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ON THE AUTHENTICITY OF GARBLING SCHEMES

Abstract

In this thesis we study one of the fundamental security notions achievable by a

powerful cryptographic primitive; namely the authenticity of garbling schemes. While

almost all garbling schemes in the literature (including Yao’s) achieve both privacy and

authenticity, Frederiksen et al. (Eurocrypt ’15) were the first to show a natural sepa-

ration between these two notions of security. ‘Privacy-free’ garbling schemes achieve

authenticity with increased efficiency at the cost of privacy. Zahur et al. (Eurocrypt

’15) bound the performance of private and privacy-free schemes separately within their

model of linear garbling. However in this work, we show constructively that the lower

bound of Zahur et al. for privacy-free linear garbling schemes does not hold. Further,

our construction requires no cryptographic assumptions, and can be used to garble for-

mulas with an asymptotic improvement over its counterpart which achieves privacy as

well. An interesting aspect of our construction is that it allows an evaluator to be in

possession of both keys on some non-output wires, with no impact on authenticity. Our

techniques further conceptually separate private from privacy-free garbling, while also

finding direct application in zero-knowledge proofs for SAT. We also introduce uncon-

ditional privacy-free garbling for threshold/majority gates, which at the cost of standard

cryptographic assumptions can be embedded in Boolean circuits with high concrete

efficiency.

We motivate and initiate the study of the orthogonal variant of ‘authenticity-free’

garbling schemes which achieve privacy alone, and show that known garbling tech-

niques can not be used to compromise authenticity without affecting privacy.
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CHAPTER 1

INTRODUCTION

Secure Multiparty Computation (MPC) generalizes the task of computing a func-

tion on the joint private inputs of participants in a protocol. Two-party Computation

(2PC) is a special case of MPC where two mutually distrusting parties wish to compute

a function on their joint inputs. Relaxations of 2PC represent natural applications such

as zero-knowledge protocols [2]. A breakthrough in the design of 2PC protocols came

in the form of Yao’s garbled circuit technique [3]. A physical analogue of this tech-

nique as described by Lindell and Pinkas [4] is that of two sets of two identical ‘input’

keys, and four identical lock-boxes such that each box can be opened only by a unique

combination of one key from each set. If each of the input keys are assigned semantic

Boolean values, arranging for each lock-box to contain one of two ‘output’ keys makes

the process of unlocking a box (given two input keys) implement the evaluation of a

Boolean gate, as per the semantics of the keys used and obtained. When the output keys

can serve as input keys to the next set of lock-boxes, we have a technique to evaluate a

whole circuit.

1.1 A Brief Primer on Yao’s Protocol

Informally the concrete instantiation of this technique assigns random Boolean strings

as the input keys, which are used to construct four ‘double-encryption’ ciphertexts, each
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of which function as a lock-box containing an output key.

A little more formally, consider an AND gate g to have left and right incoming wires

i and j respectively. Garbling g would produce input keys (k0i , k
1
i ) corresponding to se-

mantic zero and one values respectively on wire i,
(
k0j , k

1
j

)
corresponding to semantic

zero and one values on wire j, and
(
k0g , k

1
g

)
as the output keys corresponding to zero

and one respectively. Each key is a random κ-bit string, where κ is the security pa-

rameter. Finally, garbling g also produces a randomly ordered set of four ciphertexts

T =
(
Enckai

(
Enckbj

(
ka∧bg

)))
a,b∈{0,1}

. An evaluator who is in possession of kai , k
b
j and

T , should be able to obtain ka∧bg and nothing else. Given this construction, one of the

two parties in Yao’s secure function evaluation protocol creates such ciphertexts and

keys, and provides the required keys for evaluation to the other party, who in turn per-

forms the evaluation by ‘unlocking’ one ciphertext for every gate, and sends back the

output. Lindell and Pinkas [4] provide a full proof of security for Yao’s protocol when

Enc is the encryption algorithm of a CPA-secure encryption scheme satisfying a special

correctness property.

Yao’s technique was named ‘garbled circuits’ by Beaver et al. [5], and has been cen-

tral to many theoretical and practical protocols that followed, including constant-round

MPC [5, 6], 2PC [7, 8], Verifiable Computation [9], Non-interactive Secure Computa-

tion [10, 11], One-time programs [12], and Zero-knowledge [1, 13] to name a few.

1.2 Garbled Circuits as a Primitive

There have been multiple optimizations to Yao’s garbled circuits [5,14–16], as well

as diverse use-cases as listed above. In recognition of a need for a formal abstraction

for this powerful cryptographic technique, Bellare et al. [17] introduced the notion of

a garbling scheme as a cryptographic primitive. A garbling scheme can now be viewed

as an end in itself, with well-defined security properties enabling modular use in secure
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protocols. Bellare et al. [17] define privacy and obliviousness as security notions which

capture the privacy of inputs and outputs during a garbled evaluation, and authenticity as

the unforgeability of a garbled output. These security notions are shown to be separate

by the existence of garbling schemes that achieve each definition but not the others.

This language of garbling schemes has largely been adopted in the literature, with

recent work on efficient garbled circuit constructions [18–20] being cast in the frame-

work of Bellare et al. .

Besides providing a modular approach with which to use garbling schemes as a

primitive, the work of Bellare et al. also points out that garbled circuits are complex

objects which (until then) achieved different, possibly independent security goals si-

multaneously. Certain garbled circuit based protocols may not rely on all of the secu-

rity properties that a garbling scheme can achieve, and a natural question that follows

is whether it is possible to gain efficiency in garbling by relaxing the security goals as

required. Frederiksen et al. [21] ask exactly this question when tailoring a garbling

scheme to the garbled circuit based Zero-knowledge protocol of Jawurek et al. [1].

1.3 Our Contributions

In this thesis, we expand on the understanding of the separations between privacy

and authenticity in particular, showing that they are conceptually different security goals

instantiable by significantly different techniques. More specifically, we show that the

invariant of an evaluator obtaining only one key for each non-output wire of a gar-

bled circuit (henceforth the ‘single-key invariant’) does not need to hold in the privacy-

free setting, whereas it is arguably the conceptual core of every known garbling tech-

nique [5,14,15,18–22] until now. We also initiate the study of garbling without authen-

ticity but privacy alone, and show that this relaxation does not yield any benefit using

current garbling techniques. Specifically, if a garbling scheme satisfies a natural notion
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of composability, achieving privacy inherently requires authenticity. The implication is

that with current garbling techniques, authenticity can not be sacrificed meaningfully

while still retaining privacy.
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CHAPTER 2

PRELIMINARIES

The primitives and terminology used in this thesis are defined below.

We use the language of Bellare et al. [17] for circuits as well as garbled circuits.

As most of our discussions are centred on garbling formulas, we formally describe

formulaic circuits, in addition to formally specifying general circuits.

2.1 Fundamental Concepts

Definition 2.1.1 ( Negligible Function [23]) A function η from the natural numbers

to the non-negative real numbers is negligible in the security parameter κ if for every

positive polynomial P there is an N , such that for all integers κ > N it holds that

η(κ) < 1
P(κ) .

Definition 2.1.2 ( Pseudorandom Function (PRF) [23]) LetF : {0, 1}`key×{0, 1}`in →

{0, 1}`out be an efficient, keyed function1, where `key, `in and `out are functions of the

security parameter κ. Then F is a pseudorandom function if for all probabilistic
1A keyed function is a two-input function, where the first input is called the key and denoted by k. We say F is

efficient if there is a polynomial-time algorithm that computes F (k, x) given k and x. While using a PRF, typically
a key k is chosen randomly and fixed, and we are then interested in the single-input function Fk : {0, 1}`in →
{0, 1}`out , defined as Fk(x) ⇒ F (k, x).



6

polynomial-time distinguishers D, there is a negligible function η such that:

|Pr[DFk()(1κ) = 1]− Pr[Df(·)(1κ) = 1]| ≤ η(κ), (Eqn 2.1)

where the first probability is taken over uniform choice of k ∈ {0, 1}`key and the

randomness of D, and the second probability is taken over uniform choice of f ∈

Func`in,`out and the randomness of D. Here Func`in,`out denotes the set of all functions

with domain {0, 1}`in and codomain {0, 1}`out .

2.2 Circuits

The terms “wire” and “gate” are used interchangeably throughout, as a gate is iden-

tified by the index of its outgoing wire.

Definition 2.2.1 (Circuits) A circuit is a tuple f = (n,m, q, A,B,G). The parameters

n,m, q are positive integers which define the number of input, output, and non-input

wires respectively. Wires are indexed from 1 to n+ q, with 1 to n being input wires, and

n + q − m + 1 to n + q being output wires. A gate is identified by its outgoing wire

index. For a gate g ∈ [n + 1, n + q], A(g) and B(g) give the left and right incoming

wire indices respectively. We have B(g) ∈ [1, n+ q −m], and A(g) ∈ [0, n+ q −m];

A(g) = 0 if g has fan-in of 1 (ie. NOT gate). In order to avoid cycles, we require that

A(g) < B(g) < g. The gate functionality G(g) is a map G(g) : {0, 1}2 7→ {0, 1}.

From the above definition, it is clear that evaluating a circuit f = (n,m, q, A,B,G)

comprises of executing the gate functionality of each gate g ∈ [n+1, n+q] in increasing

order, starting with a given input x ∈ {0, 1}n populating the values on the input wires

w ∈ [1, n]. We use f(x) to denote the evaluation of input x ∈ {0, 1}n on circuit f . The

‘size’ of f is denoted |f |, and is determined by computing |f | = n+ q.
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1
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8

Figure FC2.1: A simple circuit with n = 4, m = 1, q = 4. The left incoming wires are defined
as A(5) = 2, A(6) = 1, A(7) = 4, A(8) = 7, with right incoming wires defined similarly. The
gate functionalities G(5) and G(8) consist of the truth table for AND, while G(6) and G(7) are
the truth table for OR.

2.3 Formulaic Circuits

Informally, a formula is a circuit which has a fan-out of one for every gate. The

implication of this is that a gate’s output wire can either be a circuit output wire, or an

input wire for only one other gate. Formally, we use a modified version of the syntax

for circuits in [17].

Definition 2.3.1 (Formulaic Circuits) A formulaic circuit is characterized by a tuple

f = (n, q, A,B,G). The parameters n, q define the number of input, and non-input

wires respectively. Wires are indexed from 1 to n + q, with 1 to n being input wires,

and n + q being the output wire. A gate is identified by its outgoing wire index. For

a gate g ∈ [n + 1, n + q], A(g) and B(g) are injective functions that map to left and

right incoming wire indices respectively2. We have B(g) ∈ [1, n + q − 1], and A(g) ∈

[0, n + q − 1]; A(g) = 0 if g has fan-in of 1. We also require that A(g) < B(g) < g.

Additionally, we require that for every gate g, if ∃g′, A(g′) = g, then @g′′, B(g′′) = g,

and vice versa. This is to ensure that a gate can be an incoming wire to at most one

other gate. The gate functionality G(g) is a map G(g) : {0, 1}2 7→ {0, 1}.
2 The injection property required here ensures that every gate in the circuit has a fan-out of one.
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A formula with Boolean inputs (x1, x2 · · · xn) can be expressed as a combination

of those xis and the defined gates (eg. ∧,¬,⊕) with the appropriate bracketing. For

instance, the circuit in Fig. FC2.1 can be expressed as a formula:

f(x1, x2, x3, x4) = ((x2 ∧ x3) ∨ x1) ∧ ((x2 ∧ x3) ∨ x4) (Eqn 2.2)

Observe that the circuit representation of a formula is always a tree.

2.4 Garbling Schemes

A garbling scheme G is characterised by a tuple of algorithms G = (Gb,En,Ev,De).

All of these algorithms are poly-time, and with the exception of Gb, are all deterministic.

The sequence of invoking these algorithms is as follows:

• Gb (1κ, f) is invoked on a circuit f in order to produce a ‘garbled circuit’ GC,

‘input encoding information’ e, and ‘output decoding information’ d.

• En (x, e) encodes a clear input x with encoding information e in order to produce

a garbled/encoded input X .

• Ev (GC, X) evaluates X upon GC to produce a garbled output Y .

• De (Y, d) translates Y into a clear output y as per decoding information d.

A block diagram depicting the above sequence is provided in Fig. FC2.2.

A correctness requirement of the garbling scheme follows naturally from the above

definition of its components. Informally, for a given circuit f and input x, garbling f

and evaluating it on the correspondingly encoded x should produce a garbled output

that decodes to the clear value f(x).
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1κ

f

x

Gb
Ev

En

De y

e X

GC

Y

d

Figure FC2.2: Block diagram of garbling a circuit f , encoding an input x, and decoding the
‘garbled’ evaluation to retrieve y = f(x).

Definition 2.4.1 (Correctness) A garbling scheme G = (Gb,En,Ev,De) is ‘correct’ if

and only if for all circuits f : {0, 1}n 7→ {0, 1}m and all inputs in its domain x ∈

{0, 1}n where n ≤ poly (1κ), we have that,

∀GC, e, d← Gb (1κ, f) , De (Ev (GC,En(x, e)) , d) = f(x) (Eqn 2.3)

Bellare et al. formalize the security notions of a garbling scheme by means of code-

based games, equivalent definitions of which are presented in the following section.

2.5 Notions of Security for Garbling Schemes

Before discussing the security notions of garbling schemes themselves, Bellare et al.

note that certain ‘side information’ about the underlying circuit being evaluated upon

may be leaked during the garbled evaluation. This is certainly the case for garbling

schemes such as FreeXOR [16], which require the garbled circuit evaluator to know

which gates are XOR gates. Bellare et al. formalize this additional information avail-

able to the evaluator by means of the side-information function Φ (f) of a circuit f .

Therefore when stating that a garbling scheme achieves certain kinds of security, it is

important to state with respect to which side information function Φ it does so. For

instance, Yao’s original construction [4] reveals only the topology of the underlying
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circuit, which can conveniently be represented as Φtopo (f) = (n,m, q, A,B, 0) for a

circuit f = (n,m, q, A,B,G). However, many of the use-cases for garbled circuits

permit (or even require) the function being computed to be known to all parties, in-

dicating that the weakest side information function Φcirc (f) = f is usually sufficient.

In addition to this, garbled circuits can be heavily optimized when the evaluator is as-

sumed to know the circuit [16, 18, 19]. The context in which we use the definition of

privacy in this thesis is to discuss how it relates to authenticity; we go on to prove that

garbling with privacy with respect to even the weakest side information function (Φcirc)

is not possible for composable garbling schemes not achieving authenticity. Therefore

for readability we do not explicitly specify the side information function; it is implicit

that whenever we discuss privacy in this thesis, it is with respect to Φcirc.

The notion of privacy of inputs and outputs is captured by privacy and oblivious-

ness respectively. Informally, a private garbling scheme requires the garbled circuit,

encoded input, and decoding information to be simulatable given only the clear output

and description of the function. This requirement captures the intuition that the garbled

evaluation itself leaks no information about the clear inputs and intermediate values in

the circuit.

Definition 2.5.1 (Privacy [17]) A garbling scheme G = (Gb,En,Ev,De) achieves prv

security if there exists a PPT simulator S such that for every circuit f : {0, 1}n 7→

{0, 1}m, |f | ≤ poly (κ), and input x ∈ {0, 1}n, there exists no PPT adversary A (1κ)

which succeeds in distinguishing between the following distributions with probability

better than 1
2

+ η(κ), where η is a negligible function:

1. REAL (f, x): (GC,En(x, e), d), where (GC, e, d)← Gb (1κ, f)

2. IDEALS (f, f(x)): (GC, X, d)← S (1κ, f, f(x))

For clarity, the above definition of privacy is represented diagrammatically as an
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experiment in Fig. FC2.3 (a).

Motivated by applications where the garbled circuit evaluator is not to be given the

clear output of the evaluation, Bellare et al. define obliviousness in the same spirit as

privacy: given only the side information of the function, the garbled circuit and encoded

input (but not the decoding information) should be simulatable. The intuition captured

here is that when the decoding information is withheld, the garbled evaluation leaks no

information about any underlying clear values; be they of the input, intermediate, or

output wires of the circuit. We do not discuss obliviousness further in this thesis, as we

are focussed on privacy and authenticity alone.

The final property, ‘authenticity’ as defined by Bellare et al. concerns the unforge-

ability of garbled outputs. Informally, an evaluator should not be able to derive a valid

garbled output which is not the direct result of executing the Ev algorithm on the garbled

circuit and encoded input which she was given.

Definition 2.5.2 (Authenticity [17]) A garbling scheme G = (Gb,En,Ev,De) achieves

aut security if for all circuits f : {0, 1}n 7→ {0, 1}m, |f | ≤ poly (κ), and inputs x ∈

{0, 1}n, the following probability holds for every PPT adversary A:

Pr

 Ŷ 6= Ev (GC, X)

∧De
(
Ŷ , d

)
6= ⊥

:
Ŷ ← A (GC, X) , X = En(x, e)

(GC, e, d)← Gb (1κ, f)

 ≤ f(κ) (Eqn 2.4)

Where f is a negligible function. In case f(κ) = 1
2κ

and A is computationally un-

bounded, authenticity is unconditional.

The diagram in Fig. FC2.3 (b) depicts the authenticity experiment.

Indistinguishability based notions of security. Bellare et al. [17] also define indistin-

guishability based notions of privacy and obliviousness. Informally, an indistinguish-
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A (1κ)

(a) prvG

Challenger (1κ,G,S)
f, x

b← {0, 1}
if b = 1 then:
GC, e, d← Gb (1κ, f)
X := En(x, e)

else:
GC, X, d← S (1κ, f, f(x))

GC, X, d

b′

output b ?
= b′

A (1κ)

(b) autG

Challenger (1κ,G)
f, x

GC, e, d← Gb (1κ, f)
X := En(x, e)

GC, X

Y

if Ev(GC, X) = Y or
De(Y, d) = ⊥ then:
output 0

else:
output 1

Figure FC2.3: Diagrams of experiments capturing the security requirements of a garbling
scheme G. The privacy experiment is captured in (a), and the authenticity experiment is captured
in (b). The output 1 of the challenger in each experiment corresponds to the PPT adversary A
winning the game, while output 0 denotes A’s loss. For a private G, the challenger in (a) must
output 1 with probability not more than negligibly (in κ) greater than 1

2 , for every PPT A. An
authentic G will ensure that the challenger in (b) outputs 1 with probability negligible in κ, for
every PPT A.

ably private garbling scheme G ensures that no PPT adversary A will be able to cor-

rectly guess whether a given (GC, X, d) was produced using f0, x0 or f1, x1 (both of

which are chosen by A subject to f0 = f1 and f0(x0) = f1(x1)) with probability

non-negligibly greater than 1
2
. Indistinguishability-based obliviousness is defined along

similar lines. However we do not elaborate upon, or use these definitions further in

this thesis, as Bellare et al. prove in the same work that simulation-based privacy and

obliviousness subsume their indistinguishability-based counterparts. In addition to this,

the simulation-based definitions have arguably seen more widespread adoption in the

literature that has followed [18–20].

Finally, we also consider the property of verifiability introduced in [1]. A privacy-

free garbling scheme that can be plugged into their ZK protocol must have an addi-

tional ‘verification function’ Ve : (F, f, e) 7→ b. The purpose of this function is to

enable verification that a given garbled circuit was legitimately constructed. A verifi-

able garbling scheme ensures that the garbled output is independent of the clear input;
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ie. if f(x1) = f(x2), then Ev(GC,En(x1, e)) = Ev(GC,En(x2, e)) for every honestly

generated GC, e. This function outputs a single bit b, given a garbled circuit F , the un-

derlying clear function f , and encoding information e. Informally, when Ve outputs 1

for a certain F, f, e, then evaluating F on garbled input X corresponding to x such that

f(x) = 1 will produce garbled output that matches the expected garbled output that can

be extracted given F, e.

Definition 2.5.3 (Verifiability) A verifiable garbling scheme G = (Gb,En,Ev,De,Ve)

contains a poly-time computable function Ve such that there exists an expected poly-

time algorithm Ext, which for every computationally unbounded adversary A, function

f within the domain of Gb, input x where f(x) = 1, ensures the following,

Pr [Ext(GC, e) = Ev (GC,En(e, x))] = 1, when Ve (GC, f, e) = 1; (GC, e)← A (1κ, f)

(Eqn 2.5)

For completeness, for every f , ∀ (GC, e, d)← Gb (1κ, f), Ve (GC, f, e) = 1.

An unconditionally secure privacy-free garbling scheme G = (Gb,En,Ev,De,Ve)

is correct (Def. 2.4.1), unconditionally authentic (Def. 2.5.2), and verifiable (Def. 2.5.3).

2.6 Zero knowledge protocols

We do not discuss zero knowledge (ZK) protocols formally in this thesis, and there-

fore only provide an informal description. Conceptualized by Goldwasser et al. [2], a

zero-knowledge proof system is a protocol that allows a ‘prover’ to convince a ‘veri-

fier’ of the validity of a statement (completeness), while revealing no information as to

why the statement is true (zero-knowledge). A malicious prover should be unable to

convince a verifier of a false statement, except with negligible probability (soundness).

If the zero-knowledge protocol guarantees soundness only against a computationally

bounded prover, it is referred to as an argument rather than a proof.



14

The garbled circuit approach to this problem as per the construction of Jawurek

et al. [1] is informally described in Fig. FC4.14, and does not require privacy of the

underlying garbling scheme.



15

CHAPTER 3

BACKGROUND AND RELATED WORK

The work of Bellare et al. [17] in distilling the different notions of GC security

as discussed earlier is a relatively recent development. Thus far, privacy-free garbling

schemes are the only class of special-purpose garbling that have been shown to be more

efficient than general purpose garbling. Here, we briefly recall the previous results per-

taining to the study of privacy-free garbling, and frame the natural orthogonal question

of authenticity-free garbling.

3.1 Privacy-free Garbling

Further showing that the notions of privacy and authenticity as defined by Bellare et

al. are conceptually separate, the work of Frederiksen et al. [21] considers what ef-

ficiency gains can be made when constructing a garbling scheme achieving only au-

thenticity. Frederiksen et al. interpret a privacy-free garbling scheme to be a gadget

which when given two input keys and ciphertext, will allow an evaluator to derive only

the corresponding semantically correct output key, and no other information. While

this seems like a straightforward relaxation of the standard definition of garbling, we

expand the intuition of a privacy-free garbling gadget by showing that it is possible

in certain cases that such a gadget allows an evaluator to entirely derive both keys on

certain wires–a property certainly not permissible in garbling schemes achieving pri-



16

vacy. We constructively demonstrate that this property can be realized and leveraged

in the privacy-free setting. To the best of our knowledge, no previous garbling scheme

has violated the single-key invariant. Indeed, the simulation paradigm for garbled cir-

cuits introduced by Lindell and Pinkas [4] does not even define an inactive key1 for the

simulated garbled circuit.

Another point of departure from garbling with privacy is illustrated in the case of

information-theoretic garbling (which is only possible for formulas). The most efficient

information-theoretic garbling scheme which achieves privacy, the Gate Evaluation Se-

cret Sharing construction of Kolesnikov [24], suffers from the key-size being dependent

on the depth of the gate within the formula. Specifically, when instantiated with κ-bit

output keys, a gate at depth d from the root will have key sizeO (d · (κ+ d)). However

we show that this is not the case in the privacy-free setting, as our information-theoretic

construction produces keys which are exactly κ-bits in length for every gate in the for-

mula.

The work of Zahur et al. [18] defines a model of ‘linear garbling’ which captures

most practical garbling schemes in the literature that make use of only a linear combi-

nation of symmetric-key operations, with the only non-linearity coming from a popular

GC optimization called point-and-permute [5]. They claim a lower bound of two ci-

phertexts required to garble a standalone AND gate with privacy, and one ciphertext

to garble such a gate in the privacy-free setting. We observe that our construction is

linear as per their model, and yet is able to garble an atomic AND gate producing no

ciphertexts whatsoever, with information-theoretic security.

Finally, we define a novel garbling technique for threshold gates in the privacy-

free setting. Ball et al. [25] consider the task of garbling threshold gates natively in

arithmetic circuits, and manage to do so efficiently assuming a variant of a circular

correlation robust hash function [26]. Threshold/majority gates are highly non-trivial
1The key that is not the result of honest garbled evaluation.
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to represent succinctly in formulas [27]. Our garbling scheme handles threshold gates

natively in formulas, requiring no ciphertext, and only a couple of independent instances

of Shamir secret sharing [28]. In addition to this, our construction immediately yields

a threshold gate garbling scheme for circuits in the privacy-free setting, which with a

standard optimization leads to improved concrete efficiency under weaker assumptions

than Ball et al. .

Our garbling scheme can be used to obtain Zero-knowledge proofs (which are se-

cure against unbounded provers, as opposed to ZK arguments which guarantee only

computational soundness) for SAT in the paradigm of Jawurek et al. [1]. In addition to

this, using our scheme in place of a generic privacy-free GC to obtain zero-knowledge

arguments for SAT yields a concrete improvement in communication cost, as well as

the qualitative benefit of using only pseudorandom generators (PRGs) which are bound

to be weaker cryptographic primitives than any type of hash/key derivation function

used by a circuit garbling scheme.

We discuss our privacy-free garbling scheme, prove its security, and present its ex-

tensions in Chapter 4.

3.2 Authenticity-free Garbling

While privacy-free garbling has been discussed in much detail, there has been no

study yet of the orthogonal variant of garbling without authenticity. While Bellare et

al. [17] do provide an example of scheme achieving privacy but not authenticity, their

construction is pathological and does not offer any insights into whether it is natural

to separate these two notions of security. There do exist many garbled circuit based

protocols which do not rely on the authenticity property of the underlying garbling

scheme; in fact, Yao’s original 2PC technique [3] itself is one such protocol2. Even
2An adversarial circuit evaluator is assumed not attempt to deviate from the protocol by forging a key.
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certain recent 2PC and Zero-knowledge protocols offering stronger security guarantees

against malicious adversaries [29–32] who may deviate arbitrarily from the protocol,

do not require authenticity of the garbling schemes that they use.

Clearly, studying techniques for garbling with privacy efficiently at the cost of au-

thenticity is a well-motivated problem. However, we show that the current approach

to garbling, which is roughly characterized by defining a garbling gadget composed

with itself to garble larger units, leads to authenticity being inherently entangled with

privacy. We formalize this notion of composability and prove our theorem in Chapter 5.
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CHAPTER 4

A NEW APPROACH TO PRIVACY-FREE GARBLING

We first describe our approach to garbling an atomic gate; AND, XOR or NOT in the

privacy-free setting, in Section 4.1.1. Our garbling scheme for AND gates (Fig. FC4.2)

illustrates that it is possible for a privacy-free gate garbling gadget to violate the single-

key invariant. We then prove that our gate garbling gadgets can be composed to garble

formulas without any blowup in the key size in Section 4.2. We discuss the linear gar-

bling model of Zahur et al. [18] and why our construction violates their lower bound

despite fitting into their model of computation, in Section 4.3. Constructions for gar-

bling large fan-in and threshold gates is discussed in Section 4.4, and we show to extend

our construction to general circuits in Section 4.5.

4.1 Privacy-Free Garbling for Formulas

In this section, we define our construction for an unconditionally secure, verifiable

privacy-free garbling scheme whose domain of circuits that can be garbled are formu-

laic. As per previous paradigms of garbling formulaic circuits in [22, 24], our garbling

scheme proceeds upwards from the output wire.
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4.1.1 Garbling Individual Gates

As per Yao’s paradigm of garbling circuits [3], every wire in the circuit is assigned

two κ-bit string tokens, called “keys”; one each for bit values zero and one on that wire.

For a gate g, let the output wire keys corresponding to zero and one be K0 and K1

respectively. The zero and one keys of the left incoming wire are L0, L1 respectively,

and those of the right incoming wire are R0, R1 respectively. The bit value flowing

on wire w is bw. A gate garbling routine is a randomized algorithm that accepts the

gate keys K0, K1 as arguments, and returns constructed keys L0, L1, R0, R1 for the

gate’s input wires. A gate evaluation routine deterministically returns a key KGg(bL,bR)

where Gg is the gate functionality, upon being supplied with input wire keys LbL , RbR

(and possibly input bits bL, bR). In this section, we define gate garbling and evaluation

routines for XOR, AND, and NOT gates.

4.1.1.1 Garbling XOR Gates.

Garbling and evaluation of XOR gates is relatively simple. Our garbling scheme

for XOR gates is similar to that of Kolesnikov’s [24]. The wire keys produced by our

garbling scheme maintain the same relation, namely LbL ⊕ RbR = KbL⊕bR . However,

while the construction of [24] requires four XOR operations to garble an XOR gate, our

construction requires only three (tending to two in the l-fan-in setting), hence saving on

computation cost.

First,K0 is split into two additive shares, assigned to L1 andR1 respectively. There-

fore, L1⊕R1 = K0. Next,K1 is masked withR1 and assigned to L0, and independently

masked with L1 and assigned to R0. ie. L0 := K1 ⊕ R1 and R0 := K1 ⊕ L1. This

ensures that L0 ⊕R1 = R0 ⊕ L1 = K1. Conveniently, L0 ⊕R0 = L1 ⊕R1 = K0.

Evaluation can hence be defined as follows: if the evaluator has keys LbL and RbR ,
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corresponding to bits bL and bR on the left and right wires respectively, she can obtain

the output key as KbL⊕bR = LbL ⊕ RbR . Correctness of evaluating an XOR gate as per

this scheme is implicit.

GbXOR
(
K0,K1, 1κ

)
The zero and one keys of the left and right incoming wires will be L0, R0 and L1, R1 respectively

1. Split K0 into additive secret shares, L1 ← {0, 1}κ; R1 := K0 ⊕ L1

2. Mask K1 for the incoming zero keys, L0 := K1 ⊕R1; R0 := K1 ⊕ L1

3. return L0, L1, R0, R1

EvXOR
(
LbL , RbR

)
1. return LbL ⊕RbR

VeXOR
(
L0, L1, R0, R1

)
1. Generate both output keys in all combinations

i. K00 := L0 ⊕R0; K01 := L0 ⊕R1

ii. K11 := L1 ⊕R1; K10 := L1 ⊕R0

2. if K00 6= K11 or K10 6= K01 then the keys are inconsistent, return 0, ⊥, ⊥. else return 1,
K00,K01

Figure FC4.1: Garbling, evaluation and verification of an XOR gate

The VeXOR routine defined in Fig. FC4.1 ensures that any combination of LbL , RbR

taken from L0, L1, R0, R1 consistently evaluates to a KbL⊕bR . This can be considered

a “consistency check”, that a given tuple of keys (L0, L1, R0, R1) maintain correctness

of a garbled XOR gate.

4.1.1.2 Garbling AND Gates.

Our construction for garbling AND gates is as simple as the one defined for XOR

gates, however the proof of authenticity is not as straightforward. Interestingly, our

scheme requires only one XOR operation to garble an AND gate, and at most one

XOR operation to evaluate a garbled AND gate (in three out of four cases, evaluation
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is completely free). This makes garbling, evaluation, and verification of AND gates

cheaper than that of XOR gates. Figure FC4.2 formalizes the construction discussed in

the Introduction.

Correctness of evaluating an AND gate as per this scheme is hence implicit. Note

that if an evaluator has key L0, she will be missing L1, therefore making whatever key

she has on the right incoming wire irrelevant; K1 remains completely hidden unless

both L1 and R1 are available. A similar argument applies in case she has R0. Addition-

ally, if she is able to derive K1 during evaluation, it implies that she started with L1 and

R1, keeping K0 inaccessible for the lack of L0 and R0. Therefore, during an evaluation

of the gate for the first time (when no gate g′ > g has been evaluated yet), the evaluator

will be unable to forge the output key that she is missing.

It can be observed that knowledge of L0 implies knowledge ofR0. Due to the earlier

argument regarding K1 being perfectly hidden unless both L1 and R1 are known, this

does not pose a problem. Intuitively, the worst that an adversary could do with this

knowledge (eg. given L0 and R1) is obtain both keys on the right incoming wire, but

the damage is “contained”; wires occurring after this gate are not affected. Examining

what an adversarial evaluator is capable of doing with this information (beyond just

one ‘pass’ of evaluation) requires a more comprehensive analysis, which we defer to

Section 4.2. We show that despite the information leaked by the key structure of the

AND gates, our scheme achieves unconditional authenticity.

The routine VeAND defined in Fig. FC4.2 verifies that both incoming wires of a gate

g have the same zero key, which will also be the zero key for g. The key corresponding

to bit value one for wire g is defined such that it requires no consistency checking with

respect to its incoming wires’ keys. This routine can hence be considered a “consistency

check” that a given tuple of keys (L0, L1, R0, R1) maintain correctness of a garbled

AND gate.
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GbAND
(
K0,K1, 1κ

)
The zero and one keys of the left and right incoming wires are L0, R0 and L1, R1 respectively

1. Set both zero keys, L0 := K0; R0 := K0

2. Split K1 into additive secret shares, L1 ← {0, 1}κ; R1 := K1 ⊕ L1

3. return L0, L1, R0, R1

EvAND
(
LbL , RbR , bL, bR

)
Note that we require the bit values on the incoming wires to evaluate AND gates

1. if bL = 0 then return LbL

2. else if bR = 0 then return RbR

3. else return LbL ⊕RbR

VeAND
(
L0, L1, R0, R1

)
1. if L0 6= R0 then zero keys are inconsistent, return 0, ⊥, ⊥. else return 1, L0, L1 ⊕R1

Figure FC4.2: Garbling, evaluation and verification of an AND gate

4.1.1.3 Garbling NOT Gates.

NOT gates can be garbled for free, like in [24], by switching the association of the

zero and one keys. If wire w has keys K0
w, K

1
w corresponding to bit values zero and

one respectively, and is input to a NOT gate g, the outgoing wire of g will have keys

K0
g = K1

w, K1
g = K0

w corresponding to values 0 and 1 respectively.

Note that none of the above schemes require ciphertexts to be published. Given that

XOR, NOT, and AND gates can be garbled without ciphertexts, we therefore have a

scheme to garble any formula without ciphertexts in the information-theoretic, privacy-

free setting. Note that unlike the GESS construction of [24], in our scheme the key size

on every wire is the same (κ bits), hence allowing the online communication complexity

of encoding the input x to be dependent only on the size of the input x, and not circuit

depth of f .
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4.1.2 Garbling an Entire Circuit

We can combine the routines defined in Fig. FC4.1 and Fig. FC4.2 in order to

construct a garbling scheme for an entire formulaic circuit. Our garbling scheme G is

defined by the tuple G = (Gb,En,Ev,De,Ve), as detailed in Fig. FC4.3, Fig. FC4.4,

Fig. FC4.5, Fig. FC4.4, and Fig. FC4.6 respectively.

Gb (f, 1κ)

– Parse n, q from f
– Denote the keys on wire w as K0

w,K
1
w corresponding to bit values 0 and 1 respectively

1. Start with the the circuit output gate, g = n+ q

2. Set circuit output gate keys, K0
g ← {0, 1}κ; K1

g ← {0, 1}κ

3. while g > n do

i. α := A(g); β := B(g)

ii. if g is an XOR Gate then K0
α,K

1
α,K

0
β ,K

1
β ← GbXOR

(
K0
g ,K

1
g , 1

κ
)

iii. else if g is an AND Gate then K0
α,K

1
α,K

0
β ,K

1
β ← GbAND

(
K0
g ,K

1
g , 1

κ
)

iv. else g is a NOT gate, K0
β := K1

g ; K1
β := K0

g

v. Proceed to the previous gate, g := g − 1

4. Prepare encoding information, e :=
((
K0
i ,K

1
i

)
i∈[n]

)
5. Prepare decoding information, d :=

(
K0
n+q,K

1
n+q

)
6. return ∅, e, d

Figure FC4.3: Garbling an entire circuit

We can further optimize our scheme to handle `-fan-in gates with better concrete

efficiency. A detailed discussion is deferred to Section 4.4. The full proof of security

appears in the next section.
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En (x, e)

Let xi denote the ith bit of x

1. Parse e into keys,
((
K0
i ,K

1
i

)
i∈[n]

)
:= e

2. return (Kxi
i ||xi)i∈[n]

De (Y, d)

1. if Y = d[0] then return 0

2. else if Y = d[1] then return 1

3. else return ⊥

Figure FC4.4: Encoding a clear function input and Decoding a garbled output

Ev (F,X)

– The clear circuit f is assumed to be known
– Let Kw, bw denote the key obtained on wire w, and the bit on that wire respectively

1. Parse (Kw||bw)i∈[n] := X

2. Start with the first input gate g := n+ 1

3. while g ≤ n+ q do

i. α := A(g); β := B(g)

ii. if g is an XOR Gate then compute bg := bα ⊕ bβ and Kg ← EvXOR (Kα,Kβ)

iii. else if g is an AND Gate then compute bg := bα ∧ bβ and Kg ←
EvAND (Kα,Kβ , bα, bβ)

iv. else g is a NOT gate, bg := ¬bβ
v. Proceed to the next gate, g := g + 1

4. The key on the last wire is the garbled output, return Kn+q

Figure FC4.5: Evaluating a Garbled Circuit on Garbled Input

4.2 Full Proof of Security

Theorem 4.2.1 The garbling scheme G is an unconditionally secure privacy-free gar-

bling scheme.

Correctness follows from the correctness of the garbling schemes for individual gates,
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Ve (F, f, e)

– The consistency of each gate is verified, and if found to be consistent, the corresponding keys
are derived

– Let K0
w,K

1
w denote the keys corresponding to values 0 and 1 respectively on wire w

– Parse n, q from f

1. Parse e into keys
((
K0
i ,K

1
i

)
i∈[n]

)
:= e

2. Start with the first gate, g := n+ 1

3. while g ≤ n+ q do

i. α := A(g); β := B(g)

ii. if g is an XOR gate then

– b,K0
g ,K

1
g := VeXOR

(
K0
α,K

1
α,K

0
β ,K

1
β

)
– if b = 0 then return 0

iii. else if g is an AND gate then

– b,K0
g ,K

1
g := VeAND

(
K0
α,K

1
α,K

0
β ,K

1
β

)
– if b = 0 then return 0

iv. else g is a NOT gate, K0
g := K1

β ; K1
g := K0

β

v. Proceed to the next gate, g := g + 1

4. All keys are consistent, return 1

Figure FC4.6: Verifying a Garbled Circuit

discussed in Section 4.1.1.2. Verifiability follows from the consistency-checks of indi-

vidual gates conducted in the Ve algorithm, discussed in Section 4.1.1.2.

We now construct a proof of authenticity by reducing the authenticity of our scheme

for a generic formulaic circuit to the authenticity of a single garbled gate. We start by

showing that a garbling of a circuit consisting of one gate is authentic. We then show

that forging an output for an n-input garbled formulaic circuit is exactly as hard as

forging an output for the same circuit with one of its gates deleted, when garbled with

the same randomness1. The “hidden core” of our argument is that any compromise

in the keys of a gate allowed by our scheme will not concede the gate’s child’s keys;

the damage will only spread ‘upward’ to its incoming wires. We denote an adversary
1ie. the random tapes used in the garbling of f and f ′ are identical.
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wishing to compromise the authenticity of a circuit with n inputs as An.

4.2.1 Single Gate Case

Lemma 4.2.2 The garbling scheme G achieves unconditional authenticity as per Defi-

nition 2.5.2 when the domain is restricted to circuits f with input size n = 2.

Proving that an adversarial evaluator will be unable to forge an output key, given her

requested input keys for any single gate will prove Lemma 4.2.2. This can be done by

considering the garbling of AND and XOR gates, as per Fig. FC4.2 and Fig. FC4.1

respectively.

Let the keys on the left input wire be L0, L1, right input wire be R0, R1, and output

wire be K0, K1. The evaluator has input bits bL and bR on the left and right input

wires respectively. Consequently, she is given the keys LbL and RbR . We denote the

adversarial evaluator as A2, and show that she can not forge the key K¬bK , where bK is

the output bit (either bL ∧ bR or bL ⊕ bR as per the case).

4.2.1.1 XOR Gate.

The authenticity of XOR gate garbling is relatively straightforward. As per the

output of the GbXOR routine, we have,

L0 ⊕R0 = L1 ⊕R1 = K0, and L1 ⊕R0 = L0 ⊕R1 = K1 (Eqn 4.1)

Let bK = bL⊕bR. The evaluator computesKbK = LbL⊕RbR . The adversarial evaluator

A2 wishing to forge K¬bK will notice that the only relations connecting her input keys
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to K¬bK are as follows,

K¬bK = L¬bL ⊕RbR = LbL ⊕R¬bR (Eqn 4.2)

Clearly, she will be unable to forge K¬bK without guessing either L¬bL or R¬bR .

4.2.1.2 AND Gate.

To show authenticity of a garbled AND gate, we have to take into account that one

of the input wires may compromise both keys. We analyze all four cases, based on the

input bits. Keep in mind that L0 = R0 = K0, and L1 ⊕R1 = K1.

1. bL = bR = 0 : In this case, A2 has absolutely no information about K1, and can

do no better than directly guessing it.

2. bL = bR = 1 : In this case, A2 has absolutely no information about K0, and can

do no better than directly guessing it.

3. bL = 1, bR = 0, bK = bL ∧ bR = 0 : A2 has K0 = R0, as well as L1. Due to the

key structure, she also obtains L0 = R0. However, this information is useless, as

the missing output key K1 = L1 ⊕ R1 requires knowledge of R1, which A2 does

not have.

4. bL = 0, bR = 1, bK = bL ∧ bR = 0 : This case is identical to Case 3, as the left

and right input wires are treated symmetrically.

4.2.1.3 NOT Gate.

A NOT gate may be added on or removed from any wire at will, with no implications

for authenticity, as the distributions of input and output keys for the individual gates

remain unchanged.
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Hence, we have shown on a case-by-case basis that there exists no gate or input

combination in which an adversaryA2 can do better than guessing the output key K¬bK

that she is missing. Therefore, even a computationally unbounded adversary will be

successful in forging a gate output with probability no greater than 2−κ, which proves

Lemma 4.2.2.

4.2.2 Reduction Step

In this section, we perfectly reduce the authenticity of the garbling of an n-input

formulaic circuit to that of an (n− 1)-input one. We denote the garbling (ie. collection

of keys on each wire, generated within Gb) of a function f as K = (K0
i , K

1
i )i∈[1,n+q].

Simply put, given that garbling an n-input formulaic circuit f produces K, an ad-

versary loses no advantage by deleting an input gate g (gate fed only by circuit input

wires), as Lemma 4.2.2 demonstrates that the keys on input wires A(g) and B(g) are

completely useless in forging an unknown key for g. Hence, an adversary An wishing

to forge an output key as per K will be as successful in forging an output key as per

K′, a garbling of f with any input gate g deleted. An adversary for the latter procedure

is denoted by An−1. As there is no security loss in the reduction from An to An−1,

we finally conclude that An is as successful in forging an output as per K as A2 is in

forging an output for a single-gate circuit. We know from Lemma 4.2.2 that no such

computationally unbounded A2 succeeds with probability greater than 2−κ.

Given an adversary An that can forge an output for an n-input formulaic circuit

f , we construct adversary An−1 (in Fig. FC4.7), that can forge an output for an

(n − 1)-input formulaic circuit f ′ with the same probability of success. For readabil-

ity, for a scheme G, denote the event that a computationally unbounded adversary A

succeeds in forging a garbled output Y given F,X for some f, x (where (F, e, d) ←
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Gb(f, 1κ);X ← En(e, x)), by the outcome of AutG (A, 1κ). Specifically,

AutG (A, 1κ) =


1 if A(F,X) = Y ;Y 6= Ev(F,X),De(Y, d) 6= ⊥

0 otherwise
(Eqn 4.3)

It is clear to see that a garbling scheme G is authentic if, and only if, for every unbounded

A, Pr [AutG (A, 1κ) = 1] ≤ 2−κ. Therefore, as there is no security loss in our reduction

from An to An−1, we have:

Pr [AutG (An, 1κ) = 1] = Pr [AutG (An−1, 1κ) = 1] =

· · · = Pr [AutG (A2, 1
κ) = 1] ≤ 2−κ

(Eqn 4.4)

Hence, there exists no computationally unbounded adversary that succeeds in forg-

ing an output for a formulaic circuit of any size when garbled by G, with probability

greater than 2−κ. This proves Theorem 4.2.1.

4.2.3 Adaptive Security

We had mentioned in an earlier section that our scheme achieves adaptive security,

or aut1 in the terminology of [33], as opposed to Definition 2.5.2 which they term static

security, or aut.

We show this by illustrating that an adversary in the Aut1G game (which forms the

basis for the definition of adaptive security) is at no advantage in forging a garbled

output, as compared to an adversary wishing to break the ‘static’ authenticity of our

scheme as per Definition 2.5.2.

In the Aut1G game, the adversary is allowed to request from the game the garbled

circuit F for her function f before she chooses x for which she receives encoded input

X = En(e, x). The Aut1G game consists of three stages:
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An−1

– An−1 has black-box access to An, which is capable of forging Y for the garbled circuit F and
corresponding encoded inputX for a certain formulaic circuit f and corresponding n-bit input
x.

– Using An, An−1 forges garbled output Y ′ for a (F ′, X ′), for some formulaic circuit f ′ and
corresponding (n− 1)-bit input x′.

– f ′, x′ are derived from f, x as follows:

i. Choose some gate g from f such that both parents A(g) and B(g) are input wiresa.

ii. Construct f ′ identical to f , with the exception that g,A(g), B(g) are replaced with a
single input wire numbered g′.

iii. Parse x into bits x1x2 · · ·xi · · ·xn, copy them to create x′, with the exception of xA(g)

and xB(g), which are replaced with x′g′ = Gg
(
xA(g), xB(g)

)
b

iv. f ′, x′ are now an (n − 1)-input function and its corresponding input such that f(x) =
f ′(x′)

1. Parse X ′ into keys X ′1X
′
2 · · ·X ′n−1, and copy them into X at the appropriate locations.

2. X will be missing keys at locations A(g) and B(g). They can be generated as followsc:

- if g was an XOR gate then XA(g) ← {0, 1}κ; XB(g) := XA(g) ⊕X ′g′
- else if g was an AND gate then

i. if xA(g) = xB(g) = 0 then XA(g) := XB(g) := X ′g′

ii. else if xA(g) = xB(g) = 1 then XA(g) ← {0, 1}κ, XB(g) := XA(g) ⊕X ′g′
iii. else if xA(g) = 0 then XA(g) := X ′g′ , XB(g) ← {0, 1}κ

iv. else XB(g) := X ′g′ , XA(g) ← {0, 1}κ

3. Send X to An and output the response, output An (∅, X, 1κ)

aEven g such that its parent is a NOT gate A(g) with its parent as an input wire w = B(A(g)) < n will
work. In this case, consider ¬xw in place of xw wherever relevant in this algorithm.

bGg is the gate functionality of gate g, ie. XOR or AND
cThis subroutine effectively garbles the missing gate g such that the keys for parents A(g), B(g) consistently

evaluate to the keys on wire g′. Note that this leaves all the original keys generated when garbling f ′ undisturbed,
hence implying that a forged key returned by An for its garbling of f can directly be output as a forged key for
the garbling of f ′ given to An−1. Also note a minor technical detail, that we ignore that Xi is actually Ki||bi
on an input wire, for readability.

Figure FC4.7: Constructing Adversary An−1 given An

1. The GARBLE stage accepts from A a circuit f , computes (F, e, d) ← Gb (1κ, f),

and returns F to A.

2. The INPUT stage accepts from A an input x, outputs ⊥ if it is not in the domain

of f , otherwise returns X = En(e, x) to A.

3. The FINALIZE stage accepts from A a garbled output Y , and outputs 1 if Y 6=
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Ev(F,X) while still being a valid garbled output (ie. De(Y, d) 6= ⊥), and 0 other-

wise.

The output of the experiment Aut1G (A, 1κ) is the value output by the FINALIZE stage.

An unconditionally adaptively authentic scheme will ensure that Pr[Aut1G (A, 1κ) =

1] ≤ 2−κ for all computationally unbounded A.

It is immediately evident that this extra concession granted to the adversary is use-

less in our setting, as our scheme does not produce any ciphertexts to represent a garbled

circuit. An adversary A′ for the Aut1G game can be given a null string to serve as the

garbled circuit F of any function f that it may submit to the GARBLE stage. Therefore,

A′ is forced to choose x completely independently of the garbling of f , effectively hav-

ing to commit to f, x simultaneously. Hence, the task of A′ is equivalent to that of a

static adversary A (F,X) attempting to forge a garbled output as per Definition 2.5.2,

which is proven not to succeed with probability better than 2−κ by Theorem 4.2.1.

4.3 Breaking the Lower Bound of Zahur et al.

Zahur et al. [18] observe that most known garbling schemes fit into their charac-

terization of linear garbling techniques. Informally, a linear garbling scheme proceeds

gate by gate, at each gate generating a vector S = (R1, · · · , Rr, Q1, · · · , Qq), where

Ris are fresh random values, and Qis are obtained by independent calls to a random

oracle (queries may depend on Ri values). The gate ciphertexts as well as the keys

on each wire touching the gate are derived by linearly combining the values in S. The

only non-linearity allowed in their model is through the random oracle invocations, and

permutation bits. All elements are µ bits long, where µ is the security parameter. They

prove that an ideally secure garbling scheme that is linear as per their characterization

must adhere to certain lower bounds in terms of bits of ciphertext produced when gar-
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bling a single atomic AND gate. An ideally secure garbling scheme ensures that no

computationally unbounded adversary (with bounded calls to the random oracle) will

have advantage better than poly (µ) /2µ in the security games of Bellare et al. [17]. The

following are the bounds in the private and privacy-free settings respectively, as argued

by Zahur et al. [18].

Lower bound for garbling schemes achieving privacy. Linear garbling schemes are shown

to require at least 2µ bits of ciphertext to garble an AND gate privately. This bound was

circumvented (but not contradicted) in the works of Ball et al. [25] and Kempka et

al. [34] by a different treatment of permutation bits. Both schemes garble a single AND

gate privately but non-composably with just one ciphertext.

Lower bound for privacy-free garbling schemes. Linear garbling schemes achieving au-

thenticity are argued to require at least µ bits of ciphertext to garble an AND gate. To

the best of our knowledge, this bound is currently unchallenged. Our scheme is clearly

linear (with no requirement of a random oracle) and yet garbles AND gates with no

ciphertexts for any µ. Moreover, our scheme composes to garble a non-trivial class of

circuits (ie. formulas) with no ciphertexts.

4.3.1 Linear Garbling

We recall the formal definition of linear garbling [18], but simplified for the privacy-

free setting. Specifically, we enforce that the permutation bit always be 0, as there is no

reason for the semantic value of a wire key to be hidden from an evaluator in this setting.

Indeed, both previous privacy-free schemes [18, 21] rely on an evaluator knowing the

semantic value of the key she has. A garbling scheme G is linear if its routines are of

the form described in Fig. FC4.8.
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– We describe here a simplified characterization of linear garbling [18] for the privacy-free setting.
Note that garbling by default is for a single gate.

– The integers p, q, r, and vectors L0, L1, R0, R1, K0, K1,
(
Ci
)
i∈[p], (Vα,β)α,β∈{0,1} param-

eterize garbling scheme G = (Gb,En,Ev,De). p denotes the number of ciphertexts. r and
q denote the number of uniformly random elements and the number of random oracle calls
needed. Each of the above vectors is of size r + q (except Vα,β which is of size p + q + 2)
with entries in GF (2µ).

Gb (·, 1µ)

1. for i ∈ [r] do Choose Ri ← GF (2µ)

2. for i ∈ [q] do Make a query to the random oracle, store the response in Qi

3. Construct S = (R1, · · · , Rr, Q1, · · · , Qq)

4. for i ∈ {0, 1} do Corresponding to semantic value i, compute keys on the two input wires as
Li := 〈Li,S〉 and Ri := 〈Ri,S〉, and the output wire as Ki := 〈Ki,S〉

5. for i ∈ [p] do Compute the ith gate ciphertext Ci := 〈Ci,S〉

6. Construct and output encoding information e := ((L0, L1) , (R0, R1)), and gate ciphertexts
F = (Ci)i∈[p]

En (x, e)

1. Parse (x0, x1) := x, and ((L0, L1) , (R0, R1)) := e

2. Output X = (Lx0
||x0, Rx1

||x1)

Ev (F,X)

1. Parse input labels (Lα||α,Rβ ||β) := X , and ciphertexts (Ci)i∈[p] := F

2. for i ∈ [q] do Make a query to the random oracle, store the response in Q′i

3. Construct T =
(
Lα, Rβ , Q

′
1, · · · , Q′q, C1, · · · , Cp

)
4. Output 〈Vα,β ,T〉

Figure FC4.8: Form of linear garbling schemes

Claim 4.3.1 ( [18]) Every linear ideally secure privacy-free garbling scheme for AND

gates must have p ≥ 1. The garbled gate consists of at least µ bits.

Our privacy-free garbling scheme is a linear garbling scheme with the following

parameters for an AND gate and with µ = κ:

• Number of ciphertexts p = 0, random values r = 3 and random oracle queries
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q = 0.

• The same vector to obtain all zero keys, L0 = R0 = K0 = [1 0 0]

• Vectors to select independent input 1-keys, L1 = [0 1 0], R1 = [0 0 1]

• Output 1-key vector as the sum of both input 1-keys, K1 = L1 + R1 = [0 1 1]

• (Ci)i∈[p] is an empty set as there are no ciphertexts required.

• Evaluation vectors (Vα,β)α,β∈{0,1} as follows:

– When the evaluator has a zero key, output the zero key. So, V0,0 = V0,1 =

[1 0], V1,0 = [0 1].

– When both keys correspond to 1, output their sum. So V1,1 = [1 1].

Succinctness of our garbling scheme. As Zahur et al. [18] note, almost all practical

techniques so far for garbling Boolean circuits qualify as linear as per their character-

ization. If we use their parameters to define s = p + r + q as a measure of ‘program

succinctness’ of a linear garbling scheme, then we observe that our garbling scheme has

the most succinct program (s = 3) of all garbling schemes in the literature.

4.3.2 Where the ZRE15 Technique for Bounding Privacy-Free Garbling Fails

As illustrated above, our garbling scheme is clearly linear and achieves ideal secu-

rity, but can still garble an AND gate in the privacy-free setting with no ciphertext. Our

scheme is therefore a simple and direct counterexample to the argument of Zahur et

al. [18] that a linear garbling scheme achieving ideal authenticity must produce at least

µ bits of ciphertext when garbling and AND gate.

In more detail, the ciphertext generating Ga,b becomes a dimension 0 matrix. At the

core of the linear garbling model is that the evaluator’s behaviour must depend only on
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the public α, β ‘signal’ bits, a property which is adhered to by our privacy-free scheme.

In our setting, the signal bits convey the actual semantic values with which the keys are

associated. However, the lower bound proof in [18] relies on the property that changing

a ‘permute’ bit a/b which is defined when garbling, must also change the corresponding

signal bit on which the evaluator acts. In our setting it is immediate that this assumption

does not need to hold (as α, β are not tied to a, b), and our scheme takes advantage of

this to break the claimed lower bound.

4.4 `-fan-in Gates

In this section, we describe how to handle `-fan-in gates efficiently. We first provide

a new garbling scheme for threshold gates in Section 4.4.1, then describe how to save

computation in garbling and evaluating `-fan-in XOR and AND gates respectively in

Sections 4.4.3 and 4.4.4.

4.4.1 Threshold Gates

An `-input threshold gate, parameterized by a threshold t, realizes the following

function:

ft(x1, · · · , xi, · · · , x`) =


1, if

∑̀
i=1

xi > t

0, otherwise
(Eqn 4.5)

The threshold range 1 < t < ` − 1 is of interest to us, as the gate otherwise degen-

erates into an `-fan-in AND or NAND gate, which can be handled more efficiently by

our scheme. Boolean threshold gates are considered and motivated by Ball et al. [25],

who construct a scheme to garble them natively (generatingO
(
log3 `/ log log `

)
cipher-

texts) as opposed to garbling a composition of AND, XOR and NOT gates (yielding

O (` log `) ciphertexts using the best known garbling scheme of [18]). Here, we present
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a method of garbling Boolean threshold gates (embedded in formulaic circuits) directly,

producing no ciphertext, and using only information-theoretic operations; specifically

two independent instances of Shamir secret sharing [28] per threshold gate assuming

the underlying field to be GF (2κ).

The idea is as follows; an evaluator having inputs x1 · · ·x` to the threshold gate

computing ft, such that
∑̀
i=1

x` = m, will possess m input 1-keys, and ` − m input 0-

keys. Let the gate output keys be denoted as K0 and K1, and denote the keys on the

ith input wire as K0
i , K

1
i . As the requirement of the threshold gate is that more than t

of the evaluator’s inputs must be 1 in order to output 1, we need to devise a garbled

evaluation scheme which allows the evaluator to obtain K1 when she has more than

t K1
i s. A natural candidate for this construction is a threshold secret sharing scheme,

where the K1
i s form a t-out-of-l sharing of K1; ie. any t+ 1 of the K1

i s are sufficient to

reconstruct K1, while having t or fewer K1
i s renders K1 unconditionally hidden except

with a probability of 2−κ.

Note that in order to correctly realise ft, our garbled gate evaluation scheme also

needs to ensure that if (and only if) the evaluator has fewer than (t + 1) input values

equal to 1, she should obtain K0. In this case, her ` − m zero keys K0
i should be

sufficient to reconstruct K0. Therefore, we define the K0
i s to form an (`− (t+ 1))-out-

of-l sharing of K0, ie. any (`− t) of the K0
i s are sufficient to reconstruct K0. This also

ensures that when m > t (ie. ft (x1 · · ·x`) = 1), she will be unable to reconstruct K0,

as (`−m) < (`− t), and she only has (`−m) K0
i s.

We formalize the described scheme in Fig. FC4.9. It is evident how to invoke the

GbTHR, EvTHR, and VeTHR routines within the Gb, Ev, and Ve algorithms respec-

tively. To formally prove the authenticity of our threshold gate garbling routine, we

describe how the adversary An−`+1, given black-box access to An, can forge an output

for an n−`+1 input formula obtained by deleting an `-fan-in input threshold gate from
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GbTHR
(
`, t,K0,K1, 1κ

)
The zero and one keys of the ith incoming wire will be K0

i ,K
1
i . We denote the set of all t-degree

polynomials with constant s as Ps,t.

1. Choose a uniformly random t-degree polynomial with K1 as its constant, hK1 ← PK1,t

2. Generate the input 1-keys to be Shamir shares of K1, for all i ∈ [`] do K1
i := hK1(i)

3. Choose a uniformly random (`− (t+ 1))-degree polynomial with K0 as its constant, hK0 ←
PK0,(`−(t+1))

4. Generate the input 0-keys to be Shamir shares of K0, for all i ∈ [`] do K0
i := hK0(i).

5. return
(
K0
i ,K

1
i

)
i∈[`]

EvTHR
(
t′, (ji,Ki)i∈[t+1]

)
1. The input to this routine is assumed to be a set of t′ + 1 unique (index, key) pairs, where each

key corresponds to the same value. Note that t′ may be t or `− (t+ 1) depending on the gate
output.

2. Using Lagrange interpolation, we obtain the unique t-degree polynomial h, such that h (ji) =
Ki, ∀i ∈ [t+ 1].

3. Compute the output key by retrieving the constant of h; K := h(0).

4. return K

VeTHR
(
t,
(
K0
i ,K

1
i

)
i∈[`]

)
1. Using Lagrange interpolation, we obtain the unique t-degree polynomial hK1 , such that
hK1 (i) = K1

i , ∀i ∈ [t+ 1].

2. if ∃j ∈ [t+ 2, `] such that hK1 (j) 6= K1
j then return 0,⊥,⊥

3. Using Lagrange interpolation, we obtain the unique (` − (t + 1))-degree polynomial hK0 ,
such that hK0 (i) = K0

i , ∀i ∈ [`− t].

4. if ∃j ∈ [`− t+ 1, `] such that hK0 (j) 6= K0
j then return 0,⊥,⊥

5. The input 0-keys and 1-keys each define unique polynomials of degrees ` − (t + 1) and t
respectively. Compute the output keys to be the constants of the curves, K0 := hK0(0) and
K1 := hK1(0)

6. return 1,K0,K1

Figure FC4.9: Garbling, evaluation and verification of a threshold gate

an n-input formula used by An, in Fig. FC4.10.

As discussed earlier, the unconditional authenticity of our threshold gate garbling in

the single gate case is implied by the unconditional security of Shamir’s secret sharing
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An−`+1 (f ′, x′, F ′, X ′)

– This procedure is a modification of the adversary from Fig. FC4.7, to accommodate threshold
gates.

– Without loss of generality, f ′ was generated by deleting an input threshold gate g from f , which
was fed by input bits x1 · · ·x`.

– This routine adds a clause to Step 2 of the originalAn−1 to detail how to generate X1 · · ·X` for
An, given the input key X ′g on wire g′.

2. - else if g was a threshold gate ft then
i. b := ft (x1 · · ·x`)

ii. if b = 1 then Choose a uniformly random t-degree polynomial with X ′g as its
constant, h← PX

′
g,t

iii. else Choose a uniformly random (` − (t + 1))-degree polynomial with X ′g as its
constant, h← PX

′
g,(`−(t+1))

iv. for i ∈ [1, `] do
– if xi = b then Xi := h(i)

– else Xi ← {0, 1}κ

Figure FC4.10: Deleting a threshold gate to reduceAn toAn−`+1 as per the gate deletion proof
strategy

[28]. Observe that our threshold gate garbling scheme is also made possible by the

violation of Yao’s invariant; the nature of threshold secret sharing is such that once

the curve is reconstructed, the missing shares can be computed as well. Specifically,

possessing the 1-key on t + 1 input wires to an `-fan-in threshold gate computing ft,

allows the reconstruction of the 1-keys on the remaining ` − (t + 1) input wires in

addition to the gate output 1-key. However, this information is useless in reconstructing

the 0-key of the gate, and hence has no impact on authenticity.

4.4.2 Embedding Threshold Gates in Circuits

The threshold gate garbling scheme in Fig. FC4.9 immediately yields a threshold

gate garbling gadget to augment a circuit garbling scheme Gc, under cryptographic as-

sumptions no stronger than what is already required by Gc. For instance, let H repre-

sent the cryptographic primitive required by Gc to instantiate encryption; this could be a
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PRF [19], Key-derivation function [21], related-key or circular correlation robust hash

function [18, 20]. The gadget, given the input keys (k0i , k
1
i )i∈[`] proceeds as follows for

an `-input threshold gate ft with gate ID g:

1. Choose random keys K0, K1 as required by Gc (eg. FreeXOR compatible keys

need to maintain a global offset).

2. Compute and encrypt the keys produced by the threshold gate garbling routine;

Tg =
(
H(g, i, 0, k0i )⊕K0

i , H(g, i, 1, k1i )⊕K1
i

)
i∈[`] (Eqn 4.6)

where (K0
i , K

1
i )i∈[`] ← GbTHR (`, t,K0, K1, 1κ)

3. Now Tg comprises the ciphertext, and K0, K1 the output keys for this gate.

Performance and security. The above gadget requires 2` ciphertexts to be communi-

cated. It suffices to prove that ` − t ciphertexts encrypting K1
i s are unintelligible to an

adversary attempting to forge K1
i , and that t+ 1 ciphertexts encrypting K0

i are unintel-

ligible to an adversary attempting to forge K0.

Optimization for concrete efficiency. We can further cut down the communication cost

of this gadget by half, if we generate the curves pseudorandomly rather than uniformly

at random. Specifically, the polynomial hK1 in GbTHR (Fig. FC4.9) can be set by fixing

t − 1 points as hK1(i) = H(g, i, 1, k1i ), ∀i ∈ [t − 1], so that cipherexts are needed to

convey only the remaining `−t+1 points. The same optimization applied to hK0 yields

that the total number of ciphertexts that need to be communicated for this gadget is now

`+ 2.

The threshold gadget of Ball et al. [25] when embedded directly in a Boolean circuit

will cost O(log3(`)/ log log(`)) ciphertexts more than ours. In addition to this, the un-
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derlying cryptographic assumption for their construction is that of a circular correlation

robust hash function, whereas ours can be instantiated with weaker primitives. While

their construction achieves privacy in addition to authenticity, it is not immediate as to

whether their scheme can be optimized in the privacy-free setting.

4.4.3 Improved `-fan-in XOR

The routine to garble an individual XOR gate described in Fig. FC4.1 performs 3

XOR operations in order to derive the incoming wire keys corresponding to a given pair

of gate keys. Hence, in order to garble ` XOR gates, repeating this routine ` − 1 times

will cost 3(`− 1) XOR operations.

Consider a subtree (with ` leaves) consisting only of XOR gates, contained within

the tree representation of a formulaic circuit. Note that there are ` − 1 gates in this

subtree. Without loss of generality, let the subtree be collapsed into a single gate ac-

cepting ` incoming wires. For convenience, the incoming wires (leaves of the subtree)

are assumed to be numbered consecutively from w to w + ` − 1, with the final XOR

gate itself (root of the subtree) being numbered g such that the internal nodes of the

subtree are numbered consecutively from w + ` to g − 1. As usual, the keys on wire i

are denoted K0
i , K

1
i , corresponding to bit values 0 and 1 respectively.

Consider the keys (K0
i , K

1
i )i∈[w,g] to be produced by ` − 1 instances of the GbXOR

routine from Fig. FC4.1; starting from the root K0
g , K

1
g and ending at the leaves to

produce (K0
i , K

1
i )i∈[w,w+`−1]. Observe that the zero and one keys on each wire differ by

the same offset; ie. ∀i ∈ [w, g]:

K0
w ⊕K1

w = · · · = K0
i ⊕K1

i = · · · = K0
g ⊕K1

g (Eqn 4.7)

We make use of the property observed in Equation (Eqn 4.7) in order to garble such an
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`-fan-in XOR gate more efficiently. Essentially, the 0-keys of the incoming wires are

chosen so as to form an additive secret sharing of the gate’s 0-key. The 1-keys are then

generated by offsetting the 0-keys by the same offset as the gate key pair (ie. K0
g ⊕K1

g ).

The formal description is given in Fig. FC4.11.

GbXOR
(
`,K0,K1, 1κ

)
– We have to generate ` key pairs, which will produce either K0 or K1 appropriately upon being

combined by XORing
– The resultant keys are locally indexed here as K0

i ,K
1
i , i ∈ [1, `]

1. Calculate the offset, ∆ := K0 ⊕K1

2. Choose the 0-keys on all but one wire randomly, for all i ∈ [1, `− 1] do K0
i ← {0, 1}κ

3. Set the final 0-key so that all the incoming wires’ 0-keys form an additive secret sharing of

K0, K0
` :=

(
`−1⊕
i=1

K0
i

)
⊕K0

4. Offset the 0-keys to generate the 1-keys on the incoming wires. for all i ∈ [1, `] do K1
i =

K0
i ⊕∆

5. return
(
K0
i ,K

1
i

)
i∈[1,`]

Figure FC4.11: Garbling an `-fan-in XOR gate

The routine detailed in Fig. FC4.11 produces keys that adhere to the exact same

distribution as the result of invoking the original GbXOR routine ` − 1 times in an

appropriate sequence. The evaluation and verification algorithms for garbled XOR gates

(Fig. FC4.1) are directly compatible. A separate proof of authenticity is therefore not

required.

As for the computation cost, the new GbXOR routine of Fig. FC4.11 requires one

XOR operation to find the gate offset, ` − 1 XOR operations to additively secret share

one of the gate keys, and ` XOR operations to offset each of the 1-keys on the incoming

wires, bringing the total to 2`. This beats the 3(` − 1) cost of using multiple instances

of the original routine when ` > 3.
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4.4.4 Improved `-fan-in AND

The cost of garbling an AND gate is already minimal, at a single XOR operation per

gate. Instead, we focus on optimizing the evaluation of AND gates.

Similar to the `-fan-in case of XOR gates, consider a subtree consisting solely of

AND gates, contained in a formulaic circuit. The gates in the subtree are numbered as

described in the `-fan-in XOR section; w to w + ` − 1 for the inputs, w + ` to g for

the intermediate gates, and g for the root of the subtree. The subtree is collapsed into a

single `-fan-in AND gate. We follow the standard naming convention for wire keys and

bit values.

Observe that if any of the bit values on wires w to w + ` − 1 are 0, then the entire

subtree (the `-fan-in AND gate) will evaluate to 0, as bg = bw ∧ · · · ∧ bw+`−1. Also

observe that as per the GbAND routine defined in Fig. FC4.2, the following relation

holds:

K0
w = · · · = K0

i = · · · = K0
g , ∀i ∈ [w, g] (Eqn 4.8)

We exploit the above relation in order to save time during evaluation; if a wire j ∈

[w,w+ `−1] is found to be carrying a bit value of 0, then the `-fan-in AND gate output

is set to 0, with the key Kj being assigned to the gate output key Kg. The routine is

formally detailed in Fig. FC4.12.

The only case where XOR operations are performed in the EvAND routine in Fig.

FC4.12 is when all input bit values are 1; ie. bi = 1,∀i ∈ [w,w + ` − 1]. Even so,

only ` − 1 XOR operations are performed, which is the same as when ` − 1 instances

of the original EvAND routine from Fig. FC4.2 are executed. However, if there exists

at least one incoming wire carrying bit value 0, ie. ∃j ∈ [w,w + ` − 1], bj = 0, no

XOR operations are performed to evaluate the entire `-fan-in AND gate. This occurs

for 2` − 1 out of the 2` input cases. The number of XOR operations saved will be
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EvAND
(

(Ki, bi)i∈[1,`] , 1
κ
)

– We have to process ` (key, bit value) pairs that effectively correspond to an `-fan-in AND gate.
– The incoming wire keys and bit values are locally indexed as Ki, bi, where i ∈ [1, `], and the

resultant key and bit value are locally indexed as Kg, bg .

1. if ∃j ∈ [1, `] such that bj = 0 then Gate output is zero, Kj is also the output key. Kg := Kj

2. else Gate output is 1, XOR all input keys. Kg :=
⊕̀
i=1

Ki

3. return Kg, bg

Figure FC4.12: Evaluating an l-fan-in AND gate

equal to the number of gates in the (now collapsed) subtree that evaluate to bit value

1. As there is no modification to the garbling routine, there is no additional proof of

authenticity required here.

4.5 Garbling Circuits

In this section, we briefly discuss how to adapt our construction for generic circuits

which contain multi-fan-out gates, using PRFs. Note that we do not mean for this

scheme to compete with native generic circuit-garbling schemes.

4.5.1 Dealing With `-fan-out Gates

We continue to garble “upwards” from the output gate(s) as per the standard paradigm

of garbling for formulas. It can immediately be observed that we will run into a problem

for gates with fan-out greater than one.

Consider the case where we have to garble an `-fan out gate g; ie. ∃` different gates

g1, · · · , g` such that A(gi) = g or B(gi) = g, ∀i ∈ [1, `]. We can interpret g to be

the convergence of ` different (not necessarily disjoint) paths from the output gates.
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Garbling along each of these paths will produce ` different pairs of zero and one keys

to be assigned to g, denoted
(
K0
g,i, K

1
g,i

)
i∈[1,`].

Kempka et al. [22] deal with the issue2 by choosing the first of the ` pairs of keys to

assign to g (ie. Kb
g := Kb

g,1), and encrypting the remaining `− 1 pairs of keys using the

corresponding keys from the first pair. This way, an evaluator requiring an input key for

g′ from g such that A(g′) = g or B(g′) = g will be able to obtain it by decrypting the

appropriate ciphertext using her key on g.

We adapt this approach to our setting, with an important tweak. Note that our vi-

olation of the single-key invariant makes it infeasible to directly assign K0
g,1 and K1

g,1

to be the keys for gate g. This is because while the garbling of a formula allows keys

to be compromised “upward” (in a direction opposite to that of the output gates), in

this case, having K0
g,1 and K1

g,1 compromised will cause a “sideways” leak in a generic

circuit; ie. if the sub-circuit with K0
g,1, K

1
g,1 as one of its input keys is structured such

that leaking both K0
g,1 and K1

g,1 is tolerated by the original formula garbling scheme,

this will directly compromise both keys on gate g, which in turn may have ramifications

for other gates which have g as a parent.

Therefore, when we encounter an `-fan-out gate g, we choose for it fresh random

keysK0
g , K

1
g , and use them to correspondingly encrypt

(
K0
g,i, K

1
g,i

)
i∈[1,`]. We provide an

outline of such a routine to be invoked before garbling an `-fan-out gate, in Fig. FC4.13.

The keys produced by the Gb-`-fan-out routine are supplied to a gate garbling routine

(GbXOR, GbAND, GbTHR), while the ciphertexts produced are sent to the evaluator as

part of the garbled circuit.
2They discuss how to extend their scheme for 2-fan-out gates, but this can easily be extended to `-fan-out how

we describe it.



46

Gb-`-fan-out
(
g,
(
K0
i ,K

1
i

)
i∈[1,`] , 1

κ
)

– This routine accepts the gate index g, and ` pairs of keys as arguments, and returns a fresh pair
of keys to act as the gate keys for g, along with 2` ciphertexts. The bth element of the ith pair
of ciphertexts (denoted Ti,b) will allow the evaluator to obtain the key corresponding to bit b
for the ith child of g.

– Access to a PRF F : {0, 1}κ × {0, 1}2|g| 7→ {0, 1}κ where |g| is the number of bits required to
represent a gate in the circuit, is assumed.

1. Choose gate keys, K0
g ← {0, 1}κ, K1

g ← {0, 1}κ

2. Encrypt each of the ` pairs of keys using the corresponding gate keys, for all i ∈ [1, `] do

i. Ti,0 := K0
g,i ⊕ FK0

g
(g||i)

ii. Ti,1 := K1
g,i ⊕ FK1

g
(g||i)

3. Return the gate keys and the pairs of ciphertexts, return K0
g ,K

1
g , (Ti,0, Ti,1)i∈[1,`]

Figure FC4.13: Enabling output key retrieval for an l-fan-out gate

4.5.2 Security

Rather than providing a full proof, we provide an intuition as to why the ciphertexts

produced by this extension do not allow for a computationally bounded adversary to

gain any non-negligible advantage in her attempt to forge a garbled output.

The authenticity of the garbling of individual gates as per this scheme follows from

the authenticity of garbling individual gates by our original scheme. The authenticity

of garbling entire formulaic sub-circuits within the generic circuit also follows from the

authenticity of our original scheme for formulaic circuits.

The points of interest for this extension are the multi-fan-out gates. Consider an `-

fan-out gate g, with ciphertext T [g]. Observe that at no point will an evaluator hold both

keys K0
g , K

1
g on g. This is because g is an output gate for a formulaic sub circuit (of

size 1 as a border case), whose garbling is guaranteed to be authentic. The only way to

efficiently obtain a key corresponding to bit b on child gi of g, is to compute FKb
g

(g||i)

and unmask ciphertext T [g]i,b. Given this, along with the fact that an evaluator holds

only key Kb
g on g, we have that an adversarial evaluator wishing to illegally obtain
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K¬bgi must decrypt T [g]i,¬b without K¬bg , which can not be done with non-negligible

probability under a computational restriction.

Also note that should K¬bg,i be compromised “legitimately” due to the original gar-

bling scheme applied to its formulaic sub-circuit, the gate key K¬bg is still protected, as

are
{
K¬bg,j

}
for other gates gj where A(gj) = g or B(gj) = g. The former is represented

only by FK¬bg (g||i) in T [g]i,¬b, and the latter are encrypted independently of K¬bg,i .

Therefore, a computationally bounded adversary attempting to forge a garbled out-

put, is at negligible advantage by seeing the ciphertexts produced by adapting our

scheme to work for multi-fan-out gates. Given that our original scheme is uncondi-

tionally authentic for formulaic circuits, it hence can be adapted to work for general

circuits (by using the routine in Fig. FC4.13) while preserving authenticity against

computationally bounded adversaries.

4.5.3 Performance

This extension to generic circuits adds two κ-bit ciphertexts for each gate that has a

multi-fan-out parent. In the worst case, the communication cost tends to that of Yao’s

original scheme; four ciphertexts per gate. For general purpose privacy-free garbling,

the schemes of [18] and [21] are clearly much more efficient. However, for circuits that

can be interpreted as blocks of formulaic sub-circuits “stitched” together by a small

number of multi-fan-out gates, this extension exploits the formulaic nature of the sub-

circuits in order to provide efficient privacy-free garbling using our original scheme.

Reducing One Ciphertext per Gate. To further reduce one ciphertext per gate, we can

exploit the fact that we have one degree of freedom in choosing the gate keys for AND

and XOR gates in our garbling scheme. Consider a gate g′ to be the ith child of gate g,

without loss of generality A(g′) = g. We can first choose the gate keys K0
g , K

1
g uni-
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formly at random for g, and then set the 1-key on the left wire of g′ as L1 := FK1
g

(g||i).

This is effectively ensuring that the ciphertext T [g]i,1 = 0, therefore removing its need

for transmission. Note that this is possible because the garbling routines for AND and

XOR gates produce 1-keys for the two input wires by choosing one at random and

setting the other appropriately.

Feasibility Result. We note that this extension of our scheme demonstrates the feasi-

bility of a privacy-free garbling scheme for general circuits (relying only on PRFs) that

violates the single-key invariant for some wires in the circuit.

4.6 Applications of our Construction

Our construction finds direct application in settings where privacy of garbled in-

puts is not required, such as Zero knowledge protocols [1, 35] and Attribute-based key

exchange [36].

We informally recall the zero-knowledge protocol of Jawurek et al. in Fig. FC4.14.

Zero-knowledge proofs for SAT. We note that as our construction guarantees authen-

ticity against an unbounded evaluator, it therefore immediately yields a simple zero-

knowledge proof system for Boolean formula satisfiability when plugged into the [1]

construction3 with linear overhead in the size of the formula times the soundness pa-

rameter. Zero-knowledge proof systems guarantee that even an unbounded malicious

prover can not convince a verifier that an invalid statement is true. Garbling schemes

relying on cryptographic assumptions will not yield ZK proofs without additional over-

head in the protocol [32], as their security guarantees do not hold when the evaluator is

unbounded.
3Assuming that the other primitives (OT, Commitment) are instantiated with statistical security against the prover.
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ZKGC

Prover
input: y, x

(xi)i∈[n] := x

Verifier
input: y

GC, e, d← Gb (f, 1κ)(
K0
i ,K

1
i

)
i∈[n] := e

OTi
xi

Kxi
i K1

i

K0
i

X := (Kxi
i )i∈[n]

GC

Y := Ev (GC, X)

C ← Commit(Y )
C

OT-OpenAll()(
K0
i ,K

1
i

)
i∈[n]e :=

(
K0
i ,K

1
i

)
i∈[n]

v := Ve (GC, f, e)

if v = 1: Open C
else : 0

if Y = K1
n+q :

output accept
else:

output reject

Figure FC4.14: ZKGC: Zero-knowledge from one GC [1]. Here, for an NP language L, a prover
wishes to prove the statement y ∈ L, and the witness for the same is x. The circuit f realizes
the witness relation checking function for the language; ie. f(x) = 1 iff. x is a valid witness for
the statement y ∈ L. Oblivious transfer (OT) and Commitments are used as ideal primitives.

Concretely efficient ZK with weaker primitives. When security against an unbounded

prover is not necessary, our construction provides the most communication and com-

putation efficient ZK argument system for SAT yet in the [1] paradigm. Observe that

with the simple PRG-based domain extension technique for OT [37] the number of pub-

lic key operations required to encode a witness as garbled input becomes independent

of the size of the formula. Competing privacy-free schemes [18, 21] rely on stronger

cryptographic primitives (KDF/Circular correlation robust hash), and will also require
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larger key sizes for the same level of security (as they are instantiated with computa-

tional security parameters). Essentially, number of ciphertexts when garbling a formula

with [18,21] will be equal to the number of gates in the formula, which is also the num-

ber of inputs/leaves (which determines the communication cost for encoding an input

for our garbling scheme). However, the size of each ciphertext in [18,21] will be larger

than the comparable element in our garbling scheme, as ours will be instantiated with a

statistical security parameter, as opposed to computational for [18, 21].
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CHAPTER 5

GARBLING WITHOUT AUTHENTICITY

As we have seen earlier, garbling schemes that achieve authenticity alone are well-

studied. Along the lines of Frederiksen et al. [21] we ask the natural complementary

question, “can we leverage the lack of an authenticity requirement in order to construct

more efficient garbling schemes?”

“Authenticity-free” garbling schemes would find direct application in semi-honest

2PC, as well as many maliciously secure 2PC protocols in which the GC evaluator does

not have to send the garbled output back to the constructor.

Unfortunately in this section we answer the above question in the negative, for most

‘standard’ garbling schemes. Specifically, we show that if a garbling scheme achieving

privacy satisfies a notion of composability, then the scheme is necessarily authentic. In-

tuitively, any garbling scheme that does not treat output gates differently from interme-

diate/input gates will be composable. This definition covers state-of-the-art construc-

tions such as those of HalfGates [18], Gueron et al. [19], and the basic Yao garbling

scheme itself [4]. We show that an adversary who is able to forge a garbled output

for a GC produced by a composable garbling scheme, can be used to perform multiple

evaluations on a slightly larger circuit garbled by the same scheme.
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5.1 Composable Garbling

Informally, a composable garbling scheme allows the ‘output keys’ of a previously

garbled gate to be the ‘input keys’ to an instance of garbling another gate in the circuit.

A Gb routine that directly uses the output keys of a gate as the input keys to a child gate,

and does not distinguish between output and non-output gates, will make the garbling

scheme composable.

We only consider projective garbling schemes which work by associating keys k0w, k
1
w

corresponding to semantic values 0 and 1 respectively for each input/output wire w in

the circuit being garbled. Note that referring to the key corresponding to semantic 0

as k0w is done for notational convenience; our proof is unaffected by point-and-permute

style optimizations. We ignore cases where a garbling scheme does not achieve au-

thenticity only because the De routine never outputs ⊥; specifically we require that:

De (Y, d) 6= ⊥ =⇒ Y = (Yi)i∈[m] such that ∀i ∈ [m], Yi ∈ {k0out+i, k1out+i}

(Eqn 5.1)

where w ∈ [out, out + m] are the output wires. Also note that we use the language

of [17] for circuits; the circuit itself is a directed acyclic graph, where each gate g is

indexed by its outgoing wire, and its left and right incoming wires A(g) and B(g) are

numbered such that g > B(g) > A(g). Also, a circuit output wire can not be an input

wire to any gate.

Definition 5.1.1 A garbling scheme G = (Gb,En,Ev,De) is composable if there exists

a garbling routine Gb′G as per Fig. FC5.1 such that the composed garbling scheme

G ′G =
(
Gb′G,En,Ev,De

)
is correct and private.

Our definition of composability is sufficient the purpose of our proof, while captur-

ing most practical garbling schemes [18, 19]. Note that Gb′G does not by itself provide
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For garbling scheme G, we provide a template for a garbling routine Gb′G which uses the garbling rou-
tine Gb ∈ G to garble a given circuit C : {0, 1}n 7→ {0, 1}m, which is subject to certain restrictions
as given below. Circuit C is interpreted as the composition of a sub-circuit f : {0, 1}n−1 7→ {0, 1}m
and a single 2 fan-in gate f ′. The gate f ′ provides an output wire in circuit C. The left and right
incoming wires to f ′ are indexed L and R respectively. Clearly L is an output wire of f , and R is an
input wire of C. Note that given a circuit C′ that satisfies this requirement, we can always construct
C such that f ′ is indexed to be the last gate in C, and L is indexed as the last (mth) output wire of f .
We assume C to be constructed as such.

Gb′G (1κ, C)

1. Parse f and f ′ from C, where f ′ is the last gate in C.

2. Use G to garble f , i.e. (GC, e, d)← Gb (1κ, f)

3. Extract keys k0L, k1L using (f,GC, e)a.

4. Choose fresh keys k0R, k1R. For garbling schemes such as FreeXOR which require a certain
key structure, choose fresh input keys appropriately. Otherwise, two independent random
κ-bit strings will suffice.

5. Compute (GC′, e′, d′) = Gb (1κ, f ′) such that (e′ =
((
k0L, k

1
L

)
,
(
k0R, k

1
R

))
6. Set GC′′ = GC||GC′, e′′ = e||e′[2] and d′′ = d[1]||d[2]|| · · · ||d[m− 1]||d′.

7. return GC′′, e′′, d′′

aThis can be done by saving the required keys from Step 2

Figure FC5.1: Specification of a composing Gb routine

a template for the full garbling routines of such schemes. However, it is easy to extend

this template for composable garbling to more accurately reflect garbling for general

circuits by removing the constraints on the input wires of f ′ (ie. L and R). While

not required for our proof, we provide such a template capturing gate-by-gate garbling

schemes in Appendix A for completeness. The tradeoff for a more precise template is a

loss of generality in the garbling techniques caputured; as an example, the work of [38]

abandons the gate-by-gate approach to garbling. The composability requirement (Fig.

FC5.1) for our proof is meaningful for any projective garbling scheme, which we be-

lieve will be relevant beyond current garbling techniques.
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5.2 Relating Composability to Authenticity

We can show that a garbling scheme G whose composed garbling scheme G ′ is

private and correct as per Def. 5.1.1 must necessarily be authentic. Intuitively, this

is because an intermediate wire of a circuit C is effectively the output wire of some

induced sub-circuit f . Given that the garbling scheme is composable, if it is possible to

forge a missing output key for a garbling of f , it will be possible to perform multiple

evaluations of an intermediate gate in a garbling of C. Multiple evaluations can be

used to derive the semantic value of some intermediate key, allowing an adversarial

evaluator to distinguish between a simulated GC and a legitimately constructed GC.

This is because the simulator only has access to the clear function output; for a carefully

chosen circuit, even an arbitrarily complex simulation strategy will be as successful as

guessing a circuit input (which is adversarially chosen).

Theorem 5.2.1 If a private and correct garbling scheme G = (Gb,En,Ev,De) is com-

posable as per Definition 5.1.1, then it is also authentic.

Proof. Given black-box access to a an adversary Aaut who is able to forge a garbled

output for some f, x garbled using G, we construct an adversary Aprv who can distin-

guish between a legitimate and simulated garbling of some C, x||x′ as per composed

garbling scheme G ′ (as per Def. 5.1.1). For simplicity, we assume that f outputs only 1

bit; we will address the general case later.

This reduction of the authenticity of garbling scheme G to the privacy of composed

garbling scheme G ′ is formally described in Fig. FC5.2, with a formal analysis below.

Advantage of Aprv. Let the advantage of Aaut in correctly forging a valid missing gar-

bled output for a GC and input produced by G be h (κ) (see Def. 2.5.2). Index the REAL

world b = 0, and IDEAL world b = 1. We analyze the following cases in order to deter-
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Assuming black box access to an adversaryAaut who can forge a garbled output for some function f :
{0, 1}n 7→ {0, 1} and input x ∈ {0, 1}n as per G, we construct adversary Aprv who can distinguish
whether a given (GC, X, d) corresponding to a larger circuit C as per G′ is produced legitimately, or
simulated.

Aprv (1κ)

1. receive f, x from Aaut, compute b = f(x)

2. Construct C (y, y′) as followsa:

• if b = 0 then C (y, y′) = f(y) ∧ y′

• else C (y, y′) = (¬f(y)) ∧ y′

3. Sample bit x′ R← {0, 1}

4. send C, x||x′ as the function and input to the challenger of the privacy experiment, and receive
GC′′, X ′′, d′′ as a response.

5. From the above response, parse GC||GC′ = GC′′, where GC ∈ Gb(1κ, f) and GC′ ∈
Gb(1κ,∧), as well as X||X ′ = X ′′ where X ∈ En(y, ·) and X ′ ∈ En(y′, ·)

6. Compute Z = Ev (GC, X)

7. send (GC, X) to Aaut and receive Z ′ as a candidate forged output.

8. Compute Y = Ev
(
GC′, Z||X ′

)
and Y ′ = Ev

(
GC′, Z ′||X ′

)
9. Check the consistency of the final garbled gate to determine whether it was garbled legiti-

mately, as follows:

• if De (Y ′, d) = ⊥ then output guess R← {REAL, IDEAL}
• else if (Y ′ = Y and x′ = 0) or (Y ′ 6= Y and x′ = 1) then output guess = REAL

• else output guess = IDEAL

aWe must ensure that the output of C(y, y′) is always 0 in order to completely hide the value y′ from S,
thereby providing no clues for S to garble the correct input for that wire.

Figure FC5.2: Reduction of authenticity of G to privacy of G′

mine how much of this advantage is translated in distinguishing a simulated (GC, X, d)

from one legitimately produced by G ′:

1. REAL world: (GC, X, d) ∈ {REALG′ (C, x||x′)}.

a) Aaut is successful in forging an output. This case occurs with probability h (κ).

Then, Aprv guesses REAL and is correct with probability 1.

b) Aaut is unsuccessful in forging an output. This case occurs with probability

1 − h (κ). Then, either decoding or evaluation of the final gate will fail; Aprv
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submits a random guess and is correct with probability 1
2
.

In this case, the adversary Aprv correctly guesses that she is in the REAL world

with the following probability:

Pr [Aprv (1κ) = 0 | b = 0] = h (κ) · 1 + (1− h (κ)) · 1

2

=
1

2
· (h (κ) + 1)

(Eqn 5.2)

2. IDEAL world: (GC, X, d) ∈ {IDEALS (C, 0)}.

a. Aaut is successful in forging an output. This case occurs with some proba-

bility h′ (κ). We will give the benefit of the doubt to S and assume that all

keys and ciphertexts in GC are consistent, and that the decoding information is

constructed correctly (if not,Aprv will terminate with a random guess, winning

with probability 1
2
). Given that GC is correct, Aprv will derive the semantic

value of the key she was given for input x′. Note that S has no information

about x′ whatsoever (as the function output is always 0) and hence can at best

guess x′ at random to provide an appropriate key. Each of the following cases

occur with probability 1
2
:

i) S guesses x′ correctly, Aprv outputs IDEAL with probability 0.

ii) S guesses x′ incorrectly, Aprv outputs IDEAL with probability 1.

b. Aaut is unsuccessful in forging an output. This case occurs with probability

1 − h′ (κ). Then, either decoding or evaluation of the final gate will fail; Aprv

submits a random guess and is correct with probability 1
2
.

The adversary Aprv therefore has the following probability in guessing correctly
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that she is in the ideal world:

Pr [Aprv (1κ) = 1 | b = 1] = h′ (κ) ·
[

1

2
· 0 +

1

2
· 1
]

+ (1− h′ (κ)) · 1

2

=
1

2
(Eqn 5.3)

We can compute the advantage of Aprv in distinguishing the output distributions

{REALG′ (C, x||x′)} and {IDEALS (C, 0)}, plugging in the probabilities from (Eqn 5.2)

and (Eqn 5.3) as follows:

Pr [Aprv (1κ) = 0 | b = 0]−Pr [Aprv (1κ) = 0 | b = 1] =
1

2
· (h (κ) + 1)− 1

2

=
1

2
· h (κ)

(Eqn 5.4)

Given that G is composable, G ′ is private by definition. As per Def. 2.5.1, the ad-

vantage of Aprv computed in (Eqn 5.4) must be negligible, implying that h (κ) must be

negligible for all Aaut (1κ). There can not exist a PPT adversary Aaut who can succes-

fully forge a garbled output for any GC, X produced by a composable garbling scheme

G with non-negligible advantage as per Definition 2.5.2. Therefore, given that a garbling

scheme G is composable, it is necessarily authentic, and this proves Theorem 5.2.1. �

What if f has multiple wires? To handle the case where f(x) has m output wires,

we define C(y, y′) such that y′ is a bit vector (y′i)i∈[m]. Denoting fi and Ci to be the

ith output bits of f and C respectively, we define Ci (y, y′) = fi (y) ∧ y′i , ∀i ∈ [m]

(adjusting as per Step 2 of Fig. FC5.2). The strategy ofAprv hence follows with at least

the same advantage, as if Aaut forges output keys on m′ wires, S is successful only

when it guesses every y′i input to the corresponding wires, which it can do probability

no greater than 2−m
′ .
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5.3 Feasibility of Authenticity-Free Garbling

Garbling gate by gate in topological order where the output keys of one garbled

gate are used as the input keys to its children, coupled with circuit output key distribu-

tions being (nearly) identical to the input key distribution of intermediate gates, is the

dominant paradigm underlying most state-of-the-art garbling schemes for Boolean cir-

cuits [15, 16, 18–20]. This means that the current methods of garbling Boolean circuits

privately is inherently composable, therefore making authenticity impossible to avoid.

However, we note that it is possible to have efficient authenticity-free garbling that

is non-composable, assuming access to a PRF F . Consider any projective topological

gate-by-gate garbling scheme G with the following modifications to construct G ′:

• Gb : Garble all gates until the output layer topologically as per G; the keys on

wire w are k0w, k
1
w corresponding to semantic values 0 and 1, and the ciphertext

for wire w is stored in T [w]. Let i ∈ [m] index the output gates, while `i and ri

index the left and right incoming wires of i respectively. For all i ∈ [m] such that

i is an AND gate, set ciphertext T [i] := Fk1`i
(i) ⊕ Fk1ri (i), zero-key k0i := 0κ and

one-key k1i := 1κ.

• Ev : Evaluate all gates until the output layer topologically as per G; the key ob-

tained on wire w is kw. Let i ∈ [m], `i, ri be defined as earlier. Evaluating output

AND gate i ∈ [m] proceeds as follows: compute C := Fk`i (i) ⊕ Fkri (i). If

C = T [i] then set ki = 1κ, otherwise set ki = 0κ.

Security. The output keys for any output-layer AND gate are predictably always 0κ and

1κ, making G ′ clearly non-authentic. These output keys can not be reused as input keys

to another gate for the same reason, making G ′ non-composable. However if G is private

and correct, then so is G ′; leaking the semantic values of the output keys to the evalu-
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ator does not compromise privacy. The privacy property of a garbling scheme requires

that a PPT A can not (with non-negligible advantage) distinguish between an honestly

constructed (GC, X, d) and such values constructed by a simulator that has access to

only the clear output f(x) (and not x). A is allowed to see the decoded output anyway,

therefore the distribution of the routines of G ′ can be simulated for privacy if those of

G can be. The Garble1 scheme of [17] achieves privacy despite leaking the semantic

values of the output wires.

Performance. Most practical garbling schemes are shown to satisfy a definition of ‘lin-

earity’ by Zahur et al. [18]. They go on to show that a linear garbling scheme achieving

privacy requires at least two ciphertexts to garble an AND gate. However, G ′ garbles

every output AND gate with just one ciphertext, implying that for any linear G, a cor-

responding G ′ as defined above will necessarily produce one less ciphertext per output

AND gate.

Lower bound of [18]. The garbling scheme G ′ when used to garble a single AND

gate in isolation produces only one ciphertext, which may seem to contradict the 2-

ciphertext lower bound for private garbling proven in [18]. However the Ev routine of

of G ′ makes use of a comparison operation, which disqualifies it from being a linear

garbling scheme.
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CHAPTER 6

CONCLUSION

In this thesis we have studied the conceptual separations and relations between the

authenticity and privacy security goals of a complex cryptographic primitive, ie. gar-

bling schemes. Our study of privacy-free garbled circuits yielded a construction proving

that a previously claimed lower bound for garbling an atomic AND gate in this setting

does not hold. Furthermore our construction composes to garble formulas with uncon-

ditional security, in the process demonstrating another conceptual separation between

garbling with and without privacy; that the key size of a gate can be independent of its

depth in the latter case. However the most significant conceptual difference in garbling

without privacy is brought out in the ability to leak both keys on certain wires of the

circuit.

We also initiated the study of authenticity-free garbled circuits. It is possible to

construct garbling schemes achieving privacy alone, that are more efficient than their

authentic counterparts. However, our result indicates that any approach to authenticity-

free garbling must be inherently non-composable as per our definition. We leave as an

open problem the task of constructing garbling schemes achieving privacy that mean-

ingfully sacrifice authenticity in favour of improved efficiency.
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APPENDIX A

COMPOSABLE GATE-BY-GATE GARBLING

Our template for gate-by-gate composable garbling is detailed in Fig. FC1.1.

For garbling scheme G, we provide a template for a garbling routine Gb? which uses the garbling
routine Gb ∈ G to garble a given circuit f?. A circuit f? is interpreted as the composition of a
sub-circuit f and a single 2 fan-in gate f ′. The gate f ′ provides an output wire in circuit f . The left
and right incoming wires to f ′ are indexed L and R respectively. Note that L and R could each be
any of the following: an input wire to f , an internal wire in f , or an input wire of f? that does not
touch f at all.

Gb? (1κ, f?)

1. Parse f and f ′ from f?, where f ′ was indexed as the last gate in f

2. Use G to garble f . GC, e, d← Gb (1κ, f)

3. For w ∈ {L,R} such that w is a wire touching f , extract keys k0w, k1w using (f,GC, e)a.

4. For w ∈ {L,R} such that w is a wire not touching f , choose fresh keys k0w, k1w. For garbling
schemes such as FreeXOR which require a certain key structure, choose fresh input keys
appropriately. Otherwise, two independent random κ-bit strings will suffice.

5. Compute GC′, e′, d′ = Gb (1κ, f ′) such that e′ =
((
k0L, k

1
L

)
,
(
k0R, k

1
R

))
6. Set GC? = GC||GC′, and initialize e? = e and d? = d||d′.

7. The encoding and decoding information for GC? are made consistent:

• if L does not touch f then Update e? = e?||e′[0].

• if R does not touch f then Update e? = e?||e′[1].

• For w ∈ {L,R} such that w is the ith output wire of f , update d? = d? \ d[i]

8. return GC?, e?, d?

aThis can be done by saving the required keys from Step 2

Figure FC1.1: Complete Specification of a Gate-by-gate Composing Gb Routine
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Given garbling scheme G = (Gb,En,Ev,De), we construct composed garbling

scheme G? = (Gb?,En,Ev,De) as per Fig. FC1.1. G is composable if there exists a

G? as per Fig. FC1.1 which achieves privacy. Note that when the output distribution

of Gb? is identical to that of Gb, G? is equivalent to G, and hence Gb can be com-

posed recursively to garble any poly-size circuit gate by gate. Most practical garbling

schemes [18, 19] already follow this template.
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