
Honest Majority and Beyond: Efficient Secure

Computation over Small Population

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty of Engineering

BY

Swati Singla

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2019

Declaration of Originality

I, Swati Singla, with SR No. 04-04-00-10-22-16-1-13894 hereby declare that the material

presented in the thesis titled

Honest Majority and Beyond: Efficient Secure Computation over Small

Population

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2016-2019.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

c© Swati Singla

June, 2019

All rights reserved

DEDICATED TO

My beloved

Maa & Papa

Acknowledgements

The first person I would like to extend my most sincere gratitude to is my advisor Dr. Arpita

Patra for welcoming me to the ‘Cryptography and Information Security’ lab. Other than being

my research mentor and being solely responsible for my academic progress, there are a shedload

of personally invaluable lessons she has added to my life. She is a personality with unparalleled

research enthusiam topped with childlike innocent curiosity. Her motherly love for the lab

members and her steadfast ethics are what glued the group together. I would consider my life

a tremendous success if I someday happen to become half the woman she is.

I am joyously indebted to my labmates (some of which were my co-authors for my research

submissions) for the brilliant brainstorming sessions. The cheerful lab atmosphere and the

knowledge transferred inside the lab as a result of active detailed discussions was massively

crucial to the work in this thesis. In particular, I would like to thank Divya Ravi, my personal

go-to research guru, who taught me the meticulous art of research. I feel supremely fortunate

to have got the experience of working closely with her on a project that was indispensable in

building my research aptitude. The next person I would like to extend my love to is Megha

Byali, a partner in all my projects and one of my closest friends at IISc. She was my rock when

I had hit the depressing researcher’s block. She had the unbelievable talent of making work

look simple and life was easy around her!

A shout-out to my beloved friends, Vertika Singh, Aishwarya Garg, Kunal Chelani and

Nishant Bhai for standing strong with me in this entire journey. These people are my safe

home, having seen me at my worst. Also, my most adorable pals I spent the time of my life

with in terms of the countless drives and dances we embarked upon together in my first year:

Sanket Purandare, Stanly Samuel, Bhushan Patil and Ajinkya Rajput.

Lastly, I would like to extend immense love to my family: a father who fulfilled my every

single (even stupid) wish, a mother who was my strength, a brother whose rock-solid support

took my worries away in a jiffy and the recent addition, a sister-in-law who has made this home

a merrier place. I will forever be indebted to Maa, who has gone beyond her means all my life

to give me extraordinary education and values and to nurture all my silly impulsive passions.

i

Abstract

Secure Multi-Party Computation for small population has witnessed notable practically-efficient

works in the setting of both honest majority and dishonest majority. While honest majority

provides the promise of stronger security goals of fairness (either all parties get the output

or none of them do) and guaranteed output delivery (honest parties always get the output

irrespective of adversary’s behaviour), the best that dishonest majority can offer is unanimous

abort (either all honest parties get the output or none of them do). In this work, we consider

the computation among 4 parties in two different threat models. To avoid clutter and enable

ease of understanding, we segregate the thesis into two parts (one for each threat model).

Part I considers the standard honest majority (i.e. 1 corruption) where we provide constant-

round (low-latency) protocols in a minimal model of pairwise private channels. Improving over

the state-of-the-art work of Byali et al. (ACM CCS ’18), we present two instantiations that

efficiently achieve: (a) fairness in 3 rounds using 2 garbled circuits (GC) (b) guaranteed output

delivery (GOD) in 3 rounds using 4 GCs. Further, improving the efficiency of 2-round 4PC

feasibility result of Ishai et al. (CRYPTO ’15) that achieves GOD at the expense of 12 GCs,

we achieve GOD in 2 rounds with 8 GCs, thus saving 4 GCs over that of Ishai et al. Under a

mild one-time setup, the GC count can further be reduced to 6 which is half of what the prior

work attains.

This widely-followed demarcation of the world of MPC into the classes of honest and dis-

honest majority suffers from a worrisome shortcoming: one class of protocols does not seem to

withstand the threat model of the other. Specifically, an honest-majority protocol promising

fairness or GOD violates the primary notion of privacy as soon as half (or more) parties are

corrupted, while a dishonest-majority protocol does not promise fairness or GOD even against a

single corruption, let alone a minority. The promise of the unconventional yet much sought-after

brand of MPC, termed as Best-of-Both-Worlds (BoBW), is to offer the best possible security

in the same protocol depending on the actual corruption scenario. With this motivation in

perspective, part II presents two practically-efficient 4PC protocols in the BoBW model, that

achieve: (1) guaranteed output delivery against 1 corruption and unanimous abort against 2

ii

corruptions. (2) fairness against 1 corruption and unanimous abort against arbitrary corrup-

tions. The thresholds are optimal considering the feasibility given in the work of Ishai et al.

(CRYPTO ’06) that marks the inauguration of the BoBW setting.

We provide elaborate empirical results through implementation that support the theoretical

claims made in all our protocols. We emphasize that this work is the first of its kind in providing

practically-efficient constructions with implementation in the BoBW model. Also, the quality

of constant-rounds makes all protocols in this work suitable for high-latency networks such as

the Internet.

iii

Publications

Based on the thesis

- Megha Byali, Arpita Patra, Divya Ravi and Swati Singla. Beyond Honest Majority: On

the Efficiency of 4-Party Computation in High-latency Networks. Under Submission.

- Megha Byali, Nishat Koti, Arpita Patra, Divya Ravi and Swati Singla. Speedo4: High-

Speed Secure 4-Party Computation over the Internet. Under Submission.

Other

- Megha Byali, Carmit Hazay, Arpita Patra and Swati Singla. Fast Actively-secure Five

Party Computation with Security Beyond Abort. ACM CCS 2019.

- Arpita Patra, Divya Ravi and Swati Singla. On the Exact Round Complexity of Best-

of-both-Worlds Multi-Party Computation. Under Submission.

iv

Contents

Acknowledgements i

Abstract ii

Publications iv

Contents v

List of Figures ix

List of Tables xii

I 4PC in Honest-Majority Setting 1

1 Introduction 2

1.1 Related Work . 3

1.2 Our Contributions . 4

1.3 Outline of Part I . 6

2 Preliminaries 7

2.1 Security Model . 7

2.2 Functionalities . 8

2.3 Primitives . 9

2.3.1 Collision-Resistant Hash [RS04] . 9

2.3.2 Replicated Secret Sharing (RSS) [CDI05b, ISN89] 9

2.3.3 Garbling . 9

2.3.4 Non-Interactive Commitment Scheme (NICOM) 11

2.3.5 Equivocal Non-Interactive Commitment Scheme (eNICOM) 12

v

3 Building Blocks 13

4 Fairness in 3 rounds 16

4.1 The construction . 16

4.2 Our Techniques . 17

4.3 Optimizations . 22

4.4 Correctness and Security . 23

4.4.1 Correctness . 23

4.4.2 Security . 25

5 GOD in 3 Rounds 33

5.1 The Construction . 33

5.2 Correctness and Security . 35

5.2.1 Correctness . 35

5.2.2 Security . 36

6 GOD in 2 Rounds 39

6.1 With one-time setup . 39

6.1.1 Optimization . 44

6.2 Correctness and Security of 2RGodSetup . 45

6.2.1 Correctness . 45

6.2.2 Security . 46

6.3 Without Setup . 50

6.4 Correctness and Security of 2RGod . 53

6.4.1 Correctness . 53

6.4.2 Security . 55

7 Experimental Results 56

II Beyond Honest Majority:
4PC in Best-of-Both-Worlds Setting 60

8 Introduction 61

8.1 Related Work . 63

8.2 Our Contribution . 64

8.3 Outline of Part II . 65

vi

9 Preliminaries 66

10 Garbling Building Blocks 68

10.1 Distributed Garbled Circuit [BMR90] . 68

10.2 Seed-distribution . 70

10.3 Attested Oblivious Transfer . 71

11 GOD in Best-of-Both-Worlds Setting 73

11.1 The Construction . 73

11.2 Security Proof . 81

11.2.1 Honest Majority . 82

11.2.2 Dishonest Majority . 89

12 Fairness in Best-of-Both-Worlds Setting 98

12.1 Distributed Garbling of [WRK17] . 98

12.2 Our Techniques . 101

12.3 Correctness and Security . 104

12.3.1 Correctness . 104

12.3.2 Security . 105

12.4 Scaling to 3 parties . 108

13 Empirical Results 110

14 Conclusion 113

Bibliography 114

vii

viii

List of Figures

2.1 Ideal Functionality Fgod . 8

2.2 Ideal Functionality Ffair . 8

2.3 Ideal Functionality FuAbort . 8

3.1 Input Commit routine InputCommiti() . 14

4.1 Garbling routine Garblevh . 20

4.2 3-round Fair Protocol 3RFair . 22

4.3 Simulator S1
InputCommit1

. 26

4.4 Simulator S2
InputCommit1

. 26

4.5 Simulator S1
3RFair . 28

4.6 Simulator S3
3RFair . 30

5.1 Circuit Description Ckt . 34

5.2 Abort GC routine GC`k . 34

5.3 3-round GOD protocol 3RGod . 35

5.4 Simulator S1
3RGod . 37

5.5 Simulator S3
3RGod . 38

6.1 Circuit Description in sGod4 . 41

6.2 Single instance with P4 as evaluator (with setup) sGod4 44

6.3 2-round GOD (with setup) 2RGodSetup() . 44

6.4 Optimization of sGod4 . 45

6.5 SsGod4 : S2RGodSetup during sGod4 . 49

6.6 SsGod1 : S2RGodSetup during sGod1 . 50

6.7 Single garble instance god4() . 53

6.8 2-round GOD 2RGod . 53

ix

9.1 Extractable Commitment . 67

9.2 Extractor Algorithm Extract . 67

10.1 Functionality FGC . 69

10.2 Modified Functionality FGCMod of FGC . 70

10.3 Seed-distribution πseedDist . 71

10.4 Functionality Faot(Ps, Pr, Pa) . 72

11.1 Modified Attested OT πaot.bobw(Ps, Pr, Pa, Ph) . 75

11.2 Random-mask distribution routine πmask.bobw . 77

11.3 Input-commit routine πICom.bobwi . 78

11.4 Three-party instance 3PC() . 79

11.5 Protocol πbobw.god . 81

11.6 Simulator S1
ICom.hm . 82

11.7 Simulator S1
seed.hm . 83

11.8 Simulator Skmask.hm . 83

11.9 Extraction of challenge-string SiCCstring.hm . 83

11.10Simulator S1
hm.bobw . 85

11.11Simulator S4
seed.hm . 86

11.12Extraction of challenge-string S4
CCstring.hm . 86

11.13Simulator S4
hm.bobw . 87

11.14Simulator S12
ICom.dm . 89

11.15Simulator S12
seed.dm . 90

11.16Simulator Sk`mask.dm . 90

11.17Simulator S12
CCstring.dm . 90

11.18Simulator S12
dm.bobw . 92

11.19Simulator S14
seed.dm . 93

11.20Extraction of challenge-string S14
CCstring.dm . 94

11.21Simulator S14
dm.bobw . 96

12.1 Functionality FnaBit . 99

12.2 Functionality FPre . 100

12.3 Distributed Garbling Protocol of [WRK17] πdm.abort 101

12.4 Protocol πbobw.fair . 104

12.5 Simulator S1
hm.bobw . 105

12.6 Simulator S4
hm.bobw . 106

x

12.7 Simulator S123
dm.bobw . 107

12.8 Simulator S234
dm.bobw . 108

12.9 3-party protocol of πbobw.fair . 109

xi

List of Tables

6.1 Table representing the views of all parties. 40

7.1 Computation time (CT), Runtime for LAN, WAN (bandwidth 8Mbps), Communication (CM)

of all protocols for AES (g ∈ [2], e ∈ {3, 4}). 58

7.2 Computation time (CT), Runtime for LAN, WAN (bandwidth 8Mbps) and Communication

(CM) of all protocols for SHA where g ∈ [2] and e ∈ {3, 4}. (The 4th almost idle party in

4PC GOD of [BJPR18] has the following values for AES,SHA in order: CT=0.04 ms,0.09 ms;

LAN=0.23 ms,0.6 ms; WAN=0.42 s,0.84 s; Comm=2.1 KB,2.1 KB). 58

7.3 Average per party values of Computation time (CT), Runtime for LAN, WAN (bandwidth

8Mbps) and Communication (CM) for all protocols. 58

13.1 Computation time (CT), LAN run-time (LAN), WAN run-time (WAN) and Com-

munication (COM) indicating the additional overhead involved in πbobw.fair protocol

over [WRK17] for g ∈ [3]. 111

13.2 Computation time (CT), runtime in LAN (LAN) and WAN (WAN) and Communi-

cation (COM) of πbobw.god for voting circuit where Pg, g ∈ [3] denotes a garbler and

Pe denotes evaluator. 112

xii

xiii

Part I

4PC in Honest-Majority Setting

1

Chapter 1

Introduction

Protocols for secure multiparty computation (MPC) [Yao82, GMW87, CDG87] allow a set of

mutually distrusting parties to compute a function in a distributed fashion while guaranteeing

the privacy of the parties’ inputs and the correctness of their outputs such that no coalition of

t parties can violate either correctness or privacy. The vast body of research in this area can be

divided into two, almost disjoint, lines of work: one when a majority of the parties are assumed

to be honest [BGW88, RB89, BMR90, DN07, BH07, BH08, BFO12], and the other when an

arbitrary number of parties may be corrupted [GMW87, DO10, BDOZ11, DPSZ12, AJL+12,

GGHR14, LPSY15]. Efforts have been made in both areas to achieve practical constructions.

In the dishonest-majority world, 2PC has been of special interest in the past decade due to the

efficiency factor. However, MPC with small population in honest majority has been the cor-

nerstone of research lately mainly due the extensive applicability it offers for real-time systems.

Most real-time MPC implementations such as financial data analysis [BTW12], danish sugar

beet auction [BCD+09], distributed credential encryption [MRZ15], server aided computation

[MR18], involve small number of parties. Also, MPC with small parties is a major contribu-

tor in the recent advancement of utilizing machine learning as a prediction service offered by

technology giants such as Amazon Web Services. Attaining this service in a privacy preserving

manner involves outsourcing the computation to servers in a distributed way, with computation

performed using MPC [DSZ15, MR18]. Further, when a majority of the participants are honest,

it is possible to attain the strong security promises such as guaranteed output delivery (GOD)

(honest parties are guaranteed to successfully complete the computation) and fairness (either

all parties get the output or none of them do) [Cle86]. However, when no honest majority is

assumed, a weaker notion security with abort is used. Stronger security is desirable for practi-

cal applications such as voting and auctions, to prevent the adversary from repeatedly causing

the computation to rerun, thereby wasting valuable time and resources on one hand and on

2

the other, learning multiple outcomes and utilising them for frauds (such as election rigging).

The recent work of [BJPR18] has demonstrated that these stronger goals can be achieved with

minimal overhead over their abort counterparts. Further, honest majority aids in obtaining

simple yet efficient constructions with the use of inexpensive tools such as customized secret

sharing, semi-honest Yao circuits and so on as opposed to the inevitability of expensive public-

key primitives such as oblivious transfer in dishonest-majority setting. All these features make

the study of MPC for small population in honest-majority worthwhile.

This work explores the efficiency of four-party (4PC) protocols tolerating one active corrup-

tion achieving strong security of fairness and GOD. The 4PC setting is quite special for reasons

below: (1) Ensuring honest majority and satisfying n = 3t+ 1 at the same time eliminates the

need of broadcast channel to achieve GOD, making the constructions highly efficient. However,

broadcast is inevitable in three-party (3PC) owing to the result of [CL14]. (2) For any message

sent by a party that needs agreement, a simple honest majority rule by the residual three parties

suffices. Such a property cannot be counted on in 3PC. These key features are leveraged in our

work, proving the simplicity and efficiency gains of 4PC over 3PC.

1.1 Related Work

The notable works in MPC with small population can be broadly cast into high-throughput

and low-latency protocols. The former aims at minimizing the communication overhead (band-

width) at the expense of non-constant rounds while the latter involves low-latency constructions

that are constant round and are best suited for Internet like networks. In this paper, we focus

on the latter category and highlight the most relevant literature below.

In the regime of constant-round protocols, the work of [MRZ15] presents a 3PC with selec-

tive abort in 3 rounds. Concurrently, [IKKP15] also presents a 3PC with selective abort and

additionally a 4PC with GOD in 2-rounds at the expense of 12 garbled circuits. The work

of [PR18] presents theoretical lower bounds of honest majority protocols achieving stronger

security notions and matching upper bounds for 3PC. Most recently, [BJPR18] presents effi-

cient 3PC and 4PC with stronger security notions of fairness and GOD with minimal overhead

over the state of the art [MRZ15]. For corruptions beyond 1, [CGMV17] presents an efficient

selective abort construction for 5 parties. The work of [CKMZ14] explores 3PC in the dishon-

est majority. In the domain of high-throughput protocols, [GRW18] explores 4PC with abort,

fairness and GOD. In the regime of 3PC with honest-majority, [AFL+16] presents an abort

protocol that operates invariably over rings and fields tolerating passive corruption. The work

of [CGH+18] proposes a compiler to convert passive security to active at twice the cost of the

passive protocol. In the active setting, the works of [ABF+17, DOS18, FLNW17, BBC+19]

3

consider computation over circuits defined on rings. The recent work of [NV18] improves the

state of the art [CGH+18] by presenting efficient techniques for batch-multiplication.

1.2 Our Contributions

In the regime of low-latency protocols, we propose efficient protocols that achieve the stronger

security of fairness and GOD for 4 parties tolerating one malicious corruption. We attempt to

improve the state-of-the-art [BJPR18] and [IKKP15] in terms of rounds and communication.

All our garbled circuit (GC) based protocols are set in a minimal network with parties connected

only via pairwise-private channels. We summarize our contributions below.

3 round protocols We present two 3-round protocols achieving: (1) fairness and (2) GOD

at the expense of 2 GCs and 4 GCs respectively. Both protocols involve two garblers and

two evaluators to leverage the presence of at least one honest evaluator. Performance wise,

our 3-round protocols improve over [BJPR18] and are highly efficient in WAN. On a technical

note, in our fair protocol, we adopt the idea of [MRZ15] that asks two parties to emulate the

garbler role for active security. We use replicated secret sharing (RSS) for input distribution.

The first 2 rounds of input distribution are overlapped with the garbling phase to optimize

rounds which introduces multiple challenges. Inspired from [BJPR18], we rely on oblivious

garbling and withhold the decoding information until it is ensured that the circuit evaluation is

performed on the correct input only. However with only one round remaining for robust output

computation, it is quite tricky to decide whether (or not) to release the decoding information

while ensuring agreement on output among all honest parties. We address such concerns by

putting together delicate techniques such as splitting the decoding information, strategic use

of signals to indicate the legitimacy of the output and means for an evaluator to aid her co-

evaluator to obtain encoding information without compromising on security. Building on our

fair protocol, we achieve GOD by tackling the cases leading to abort, without inflating the

round complexity. For each abort situation, we enable a pair of honest parties to unanimously

conclude by the end of round 2 about either (a) the corrupt party or (b) two parties in conflict.

To ensure the identified corrupt (or conflicting) party obtains the output, the honest pair

generates one extra GC for case (a) and two for case (b) and send GCs along with the encoding

and decoding information to the corrupt (or conflicting) party. Additionally, the pair exchanges

their views to construct the output amongst themselves (2 parties suffice to compute any input

as per RSS).

2 round protocols We improve the feasibility result of [IKKP15] that achieves GOD in 2

rounds at the expense of 12 GCs and present a construction that achieves GOD at the expense

4

of 8 GCs while preserving the round optimality. We first present a construction that achieves

GOD in 2 rounds with 6 GCs assuming the presence of a mild one-time setup and then provide

techniques to eliminate the setup and handle the challenges that come up. On a technical

note, it can be observed that the latest a party can obtain the output is as an evaluator at

the end of 2 rounds in the GC based approach. Accordingly, we run four robust 2-round

executions with each party Pi obtaining output from ith execution where she acts as evaluator

and the remaining 3 parties as garblers. While we adopt some techniques of input distribution

using RSS and circuit augmentation (to include input commitment logic) from [IKKP15], the

main ideas in improving efficiency come from: (1) Use of only 4 executions with each party as

evaluator exactly once as opposed to [IKKP15] that involves computation of a GC for every

possible 3-party committee (12 in total; ensuring each party acts as evaluator in one all-honest

committee). (2) Each execution comprises of 3 garblers and two different GCs are constructed

with randomness for each GC distributed by a different garbler. This ensures the presence of

at least one honest distributor and the corresponding GC can be used for robust evaluation.

However, a distinctive challenge we face in our construction is that a corrupt distributor can

misbehave such that, within an execution, the encoding information of an honest garbler is

rendered useless. This is resolved with careful discretion by asking each garbler to additionally

release the encoding information corresponding to her co-garblers’ wires. This solution demands

a highly-involved analysis to ensure that the input privacy and consistency is preserved across

executions. Performance wise, the gain of 4 GCs over [IKKP15] turns out to be significant as

depicted in Chapter 7. In essence, our protocol strikes a good balance between rounds and

efficiency.

Empirical Results and Comparison The table below summarizes the overhead incurred by

each of our protocols to achieve the stronger security goals: fairness and GOD when compared

to state-of-the-art in terms of overall LAN runtime, WAN runtime; communication involved.

The bandwidth of WAN is limited to 8Mbps as our protocols cater to systems with limited

bandwidth support. The values are given for benchmark circuits of AES-128 and SHA-256

with range determined over the benchmark circuits. (- bold numbers indicate the gain in

efficiency).

5

Protocol Parameters 3PC Abort [MRZ15] 3PC fair [BJPR18] 3PC GOD [BJPR18] 4PC GOD [BJPR18]

3 Rounds 4 Rounds 5 Rounds 5 Rounds

3RFair

(4PC Fair)

LAN(ms) 1.55 – 22.86 1.7 – 22.62 0.95 – 20.76 0.44 – 32.92

WAN(s) 1.14 – 1.29 0.18 – 0.66 – (-0.48) – 0.04

Comm(KB) 0.34 – 6.08 0.34 – 6.05 0.34 – 6.08 0.32 – 6.04

3RGod

(4PC GOD)

LAN(ms) 2.07 – 23.18 2.22 – 22.94 1.47 – 21.08 0.96 – 33.24

WAN(s) 1.18 – 1.25 0.22 – 0.62 – (-0.44) – 0

Comm(KB) 0.34 – 6.08 0.34 – 6.05 0.34 – 6.08 0.32 – 6.04

3RGod

(4PC GOD

worst case)

LAN(ms) 6.35 – 23.62 6.5 – 23.38 5.75 – 21.52 5.24 – 33.68

WAN(s) 1.45 – 1.58 0.62 – 0.82 – (-0.04) – 0.2

Comm(KB) 0.62 – 12.12 0.62 – 12.09 0.62 – 12.12 0.6 – 12.08

In summary, the overhead for our 3-round protocols is a consequence of the use of more

than one GC. This overhead, however, is annulled by the efficiency gain in WAN resulting from

minimizing the round complexity, thus bridging the gap between efficiency and optimal round

complexity, which is of foremost priority in networks such as the Internet.

1.3 Outline of Part I

Post the introduction, this part of the thesis starts with the preliminaries needed for the un-

derstanding of the work. In Chapter 3, we discuss some building blocks common to all the

constructions. We present the details of each protocol from the subsequent chapter: Chapter 4

presents the fair protocol in 3 rounds using 2 GCs. Chapter 5 presents the GOD protocol in 3

rounds using 4 GCs. Chapter 6 starts with the GOD construction with a mild setup and later,

provides a mechanism to get rid of the setup, both the constructions requiring 2 rounds and 8

GCs. An optimisation is given to reduce the number of GCs required to 6 GCs for the protocol

with setup. Each construction is backed with a security proof presented via the existence of

a simulator. The final chapter provides elaborate implementation results for both LAN and

WAN setting. We compare our work with the relevant constructions in the literature to provide

a concrete evidence of the claimed improvement.

6

Chapter 2

Preliminaries

2.1 Security Model

We consider 4 parties which are connected via pair-wise secure and authentic channels and

modelled as non-uniform PPT interactive Turing machines. We denote by P the set of 4 parties

i.e. P = {P1, P2, P3, P4}. We consider static security model with honest majority where a

PPT adversary A can maliciously corrupt at most 1 party at the onset of protocol. Let κ

denote the computational security parameter. The security of our protocols is proved in the

real/ideal world paradigm, i.e. security of a protocol is analyzed by comparing the adversary’s

behaviour in the real world execution and the ideal world execution (which is considered secure

by definition in the presence of an incorruptible trusted third party). In an ideal execution,

the parties send their inputs to the trusted third party via a perfectly secure channel, the

trusted party computes the function output on the inputs provided, and sends the respective

outputs to the parties. Informally, we say that a protocol is secure if whatever an adversary

can do in the real world execution can be simulated in the ideal world execution. Please refer

to [Can00, Gol01, CL14, Lin17] for further details.

The real world execution of a protocol Π consists of a set of parties (in our case 4) and a PPT

adversary A which may corrupt atmost one party. The ideal world execution consists of a

set of parties, an ideal world adversary S and a functionality F. Let ideal(1κ, z) denote the

joint output of the honest parties and S from the ideal execution with respect to the security

parameter κ and auxiliary input z. Similarly, let real(1κ, z) denote the joint output of the

honest parties and A from the real world execution. We say that the protocol Π securely realizes

F if for every PPT adversary A there exists an ideal world adversary S corrupting the same

parties such that idealF,S(1
κ, z) and realΠ,A(1κ, z) are computationally indistinguishable.

7

2.2 Functionalities

We define the ideal functionalities for the security notion of GOD (Fgod), fair (Ffair) and unan-

imous abort (FuAbort) for secure 4PC of a function f in figures 2.1, 2.2 and 2.3 respectively.

These are motivated from [CL14, GLS15].

Each honest Pi (i ∈ [4]) sends its input xi to the functionality. Corrupt parties may send arbitrary

inputs chosen by the adversary.

Input: On message (Input, xi) from Pi, do the following: if (Input, ∗) already received from Pi,

then ignore the current message. Otherwise, record x′i = xi internally. If xi is outside Pi’s domain,

consider x′i to be some predetermined default value.

Output: Compute y = f(x′1, x
′
2, x
′
3, x
′
4). Send (Output, y) to all.

Figure 2.1: Ideal Functionality Fgod

Every honest party Pi (i ∈ [4]) sends its input xi to the functionality. Corrupted parties may send

arbitrary inputs as instructed by the adversary. When sending inputs, the adversary is allowed to

send a special abort command.

Input: On message (Input, xi) from Pi, do the following: if (Input, ∗) already received from Pi,

then ignore the current message. Otherwise, record x′i = xi internally. If xi is outside Pi’s domain,

consider x′i = abort.

Output: If there exists i ∈ [4] such that x′i = abort, send (Output,⊥) to all the parties. Otherwise,

send (Output, y) to all parties, where y = f(x′1, x
′
2, x
′
3, x
′
4).

Figure 2.2: Ideal Functionality Ffair

Each honest party Pi (i ∈ [4]) sends its input xi to the functionality. Corrupted parties may send

arbitrary inputs as instructed by the adversary. When sending the inputs to the trusted party, the

adversary is allowed to send a special abort command as well.

Input: On message (Input, xi) from Pi, do the following: if (Input, ∗) message was received from

Pi, then ignore. Otherwise record x′i = xi internally. If x′i is outside of the domain for Pi, consider

x′i = abort.

Output to the adversary: If there exists i ∈ [4] such that x′i = abort, send (Output,⊥) to

all the parties. Else, send (Output, y) to the adversary, where y = f(x′1, x
′
2, x
′
3, x
′
4).

Output to honest parties: Receive either continue or abort from the adversary. In case of

continue, send y to all honest parties. In case of abort send ⊥ to all honest parties.

Figure 2.3: Ideal Functionality FuAbort

8

2.3 Primitives

A function negl(·) is said to be negligible if for every positive polynomial poly(·) there ex-

ists a positive integer n0 s.t ∀n > n0, negl(n) < 1
poly(n)

. A probability ensemble X =

{X(a, n)}a∈{0,1}∗;n∈N is an infinite sequence of random variables indexed by a ∈ {0, 1}∗ and

n ∈ N. Probability ensembles X = {X(a, n)}a∈{0,1}∗;n∈N, Y = {Y (a, n)}a∈{0,1}∗;n∈N are said

to be computationally indistinguishable, denoted by X
c
≈ Y , if for every PPT algorithm D,

there exists a negligible function negl(·) s.t for every a ∈ {0, 1}∗, n ∈ N, |Pr[D(X(a, n)) = 1]

− Pr[D(Y (a, n)) = 1]| ≤ negl(n). Next, we describe the primitives used in our constructions.

2.3.1 Collision-Resistant Hash [RS04]

A family of hash functions {H : K ×M → Y} is said to be collision resistant if for all PPT

adversaries A, given the hash function Hk for k ∈R K, the following holds: Pr[(x, x′)← A(k) :

(x 6= x′) ∧ Hk(x) = Hk(x
′)] = negl(κ), where x, x′ ∈ {0, 1}m and m = poly(κ).

2.3.2 Replicated Secret Sharing (RSS) [CDI05b, ISN89]

We use a 3-party RSS scheme private against one corruption. RSS allows a dealer to share a

secret among a set of parties s.t any two shareholders can come together and reconstruct the

secret, but a single party, by itself, will have no information about the secret s. Informally,

for a secret s to be shared, the dealer samples random r1, r2, r3 s.t. s = r1 ⊕ r2 ⊕ r3. Each of

the shareholders say P1, P2, P3 receives 2 out of the 3 shares, i.e. (r2, r3), (r1, r3) and (r1, r2)

respectively. The secret s can be reconstructed if any 2 out of three shareholders combine their

shares. However, a single shareholder will be unaware of one share of s and due to random

distribution of shares, s remains private.

2.3.3 Garbling

A garbling scheme G is a technique used in MPC formalized by [BHR12]. and has been used

by several works [JKO13, ZRE15, GLNP15]. A garbling scheme consists of four algorithms

(Gb,En,Ev,De) where all but Gb are deterministic and are defined as follows:

Gb(1κ, C) = (GC, e, d) Gb takes as input the security parameter κ and the circuit C to be

garbled, and outputs a garbled circuit GC, encoding information e and decoding information

d.

En(x, e) = X En encodes input x using e to output encoded input X. We refer to X as encoded

input or encoded labels interchangeably.

9

Ev(GC,X) = Y Ev evaluates the garbled circuit GC on the encoded input X and produces the

encoded output Y.

De(Y, d) = y The encoded output Y is decoded into the clear output y by running the De

algorithm on Y and d.

A garbling scheme is required to satisfy the properties of correctness, privacy, obliviousness

and authenticity. Informally, correctness ensures that a correctly garbled circuit returns the

correct output of the underlying circuit when evaluated. Privacy ensures that encoded inputs

don’t leak information about the actual inputs. Obliviousness enforces that if the decoding

information is withheld, then the garbled circuit evaluation doesn’t leak information about the

underlying clear values, be it the inputs, output or the intermediate wire values. Authenticity

ensures that the evaluator learns only the encoded output corresponding to the actual circuit

output.

Definition 1. A garbling scheme G = (Gb,En,Ev,De) is correct if for all input lengths n ≤
poly(κ), circuit C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n it holds that,

Pr[De(Ev(C, En(x, e)), d) 6= C(x) : (C, e, d)← Gb(1κ, C)] ≤ negl(κ)

Definition 2. A garbling scheme G is private if for all n ≤ poly(κ), circuit C : {0, 1}n →
{0, 1}m, there exists a PPT simulator Spriv such that for all x ∈ {0, 1}n, for all PPT adversary

A the following distributions are computationally indistinguishable:

- real(C, x): run (C, e, d)← Gb(1κ, C) and output (C,En(x, e), d)

- ideal(C,C(x)): output (C′,X, d′)← Spriv(1κ, C, C(x))

Definition 3. A garbling scheme G is authentic if for all n ≤ poly(κ), circuit C : {0, 1}n →
{0, 1}m, input x ∈ {0, 1}n and for all PPT adversary A, the following probability is negl(κ):

Pr

(
Ŷ 6= Ev(C,X)

∧ De(Ŷ, d) 6= ⊥
:

X = En(x, e),(C, e, d)← Gb(κ,C),

Ŷ← A(C,X)

)

For our constructions, we use projective garbling schemes as defined in [BHR12].

Definition 4. A projective garbling scheme is one where while garbling a circuit C : {0, 1}n →
{0, 1}m, the e has the form e = (e0

i , e
1
i)i∈[n], and X for x = (xi)i∈[n] can be interpreted as

X = En(x, e) = (exii)i∈[n].

10

2.3.4 Non-Interactive Commitment Scheme (NICOM)

A NICOM consists of two PPT algorithms (Com, Open) defined as:

- Com takes as input a security parameter κ, public parameter pp, a message x and random

coins r, and outputs a commitment c and the corresponding opening information o.

- Open takes as input κ, pp, commitment c and corresponding opening information o, and

outputs the message x.

Properties The commitment scheme must satisfy the properties: hiding (a commitment

leaks no data about the underlying message), binding (a commitment cannot be opened to

two different messages), and correctness (given the opening, Open should output the correct

committed message).

- Correctness. For all messages x ∈M, r ∈ R, pp, if (c, o)← Com(x; r) then Open(c, o) = x.

- Hiding. For all PPT adversaries A, for all pp, x, x′ ∈ M, |Pr(c,o)←Com(x)[A(c) = 1] −
Pr(c,o)←Com(x′)[A(c) = 1]| ≤ negl(κ).

- Binding. For all PPT adversaries A, over uniform choice of pp and random coins of

A, probability that A outputs (c, o, o′), such that Open(c, o) 6= Open(c, o′) and ⊥ /∈
{Open(c, o),Open(c, o′)}, is negligible.

NICOM (Com,Open) is said to have strong binding if the binding property holds over all pp

and not just over uniform choice of pp.

Instantiations In the random oracle model, strong commitment is defined as Com(x; r) =

(c, o) = (H(x||r), x||r). The pp can be empty. For implementation purpose, the random or-

acle is instantiated using a hash function (SHA-256). The following is an instantiation of a

commitment scheme (Com,Open) with strong binding based on one-way permutation. Let

f : {0, 1}n → {0, 1}n be a one-way permuation and h : {0, 1}n → {0, 1}n be its hardcore

predicate. Commitment for a single bit x is defined as follows.

- Com(x; r): return c = (f(r), x⊕ h(r)) where r ∈ {0, 1}n, and o = (r, x).

- Open(c, o = (r, x)): return x if c = (f(r), x⊕ h(r)); else return ⊥.

11

2.3.5 Equivocal Non-Interactive Commitment Scheme (eNICOM)

An Equivocal Non-Interactive Commitment Scheme (eNICOM) consists of four PPT algorithms

(eGen,Equiv, eCom, eOpen). eCom and eOpen are as defined for NICOM. eGen and Equiv are

used to equivocate a commitment to any desired message given a trapdoor. These are defined

as follows.

- eGen takes as input κ and outputs a public parameter epp and a corresponding trapdoor t.

This public parameter epp is used by both eCom and eOpen, and t is used for equivocation.

- Equiv takes as input a commitment c, its opening o, the desired message x and trapdoor t,

and returns as output an opening o′ such that x← eOpen(epp, c, o′).

Properties An eNICOM scheme (eCom, eOpen) has the following properties.

- Correctness For all x ∈ M, r ∈ R, (epp, t) ← eGen(1κ), if (c, o) ← eCom(x; r) then

eOpen(c, o) = x.

- Hiding For all PPT adversaries A, for all (epp, t) ← eGen(1κ), x, x′ ∈ M, the following is

negligible, |Pr(c,o)←eCom(x)[A(c, o) = 1]− Pr(c,o)←eCom(x′),o←Equiv(c,x,t)[A(c, o) = 1]| ≤ negl(κ)

- Binding For all PPT A, all (epp, t) ← eGen(1κ), probability that A outputs (c, o, o′), such

that eOpen(c, o) 6= eOpen(c, o′) and ⊥ /∈ {eOpen(c, o), eOpen(c, o′)}, is negligible.

Instantiations The random oracle based commitment scheme defined before supports equiv-

ocation where (epp, t = (t1, t2)) is empty. We rely on this for empirical purposes where random

oracle is realized using hash function. In the plain model, the following is an equivocal bit

commitment scheme from [CIO98] based on Naor’s commitment scheme [Nao91] for single bit.

Let G : {0, 1}n → {0, 1}4n be a PRG.

- eGen(1κ): set (epp, t1, t2) = ((σ,G(r0),G(r1)), r0, r1) where σ = G(r0)⊕ G(r1).

- eCom(x; r): set c = G(r) if x = 0 else c = G(r)⊕ σ; set o = (r, x).

- eOpen(c, o = (r, x)): return x if c = G(r)⊕x ·σ (where · denotes multiplication by constant);

else return ⊥.

- Equiv(c = G(r0),⊥, x, (t1, t2)): return o = (r, x) where r = t1 if x = 0 else r = t2. Both t1, t2

are needed to perform equivocation.

12

Chapter 3

Building Blocks

Notations P denotes the set of all parties i.e. {P1, P2, P3, P4}. Pi and Pij denote the sets

P \ {Pi} and P \ {Pi, Pj} respectively. ind(S) denotes the set of indices of parties in set S.

Corrupt and Conflict Set Each party Pi locally maintains two sets: a corrupt (Corri) and

a conflict (Coni) set. The corrupt set Corri is populated with the identity of a party that is

determined to be corrupt by Pi. |Corri| ≤ 1. The conflict set Coni is populated with pairs of

parties identified to be in conflict by Pi.

Input Commit routine We present a 2-round input-sharing routine InputCommiti that en-

forces input consistency w.r.t. every party Pi’s input xi using RSS [CDI05a]. This technique

of input sharing is a variant of the one in [BJPR18, IKKP15]. To recall, Pi splits its input

xi into three additive shares as xi = ⊕j∈ind(Pi)xij. As per RSS, each share xij is assigned to

all parties except Pj. As shares are replicated, a corrupt dealer may create confusion by dis-

tributing inconsistent values of a particular share to the two shareholders. It is necessary for

the honest shareholders to agree on all the shares at the end of the input-sharing routine. Such

inconsistencies are handled by enforcing the dealer to commit to the shares and distribute the

commitments to all parties with openings being sent only to the relevant shareholders. This

allows to conclude on the majority commitment and its opening. To elaborate, in round 1, for

each xij, commitment on xij is sent to all parties while the opening is sent to all but Pj. In

round 2, all parties exchange the commitments received in the first round while only relevant

shareholders exchange the openings. The commitment cij on the share xij is determined using

a majority rule. If no majority exists among the commitments, then the dealer Pi is identified

to be corrupt and a pre-determined default value is taken for Pi’s input. If the commitments

received from Pi (in round 1) and that forwarded by Pj (in round 2) mismatch, then Pi, Pj are

added to the conflict set. Likewise, the corrupt and conflict set for openings are populated.

13

In our input-commit routine, we add the following additional rule to populate the corrupt

set: if the commitment cij received from Pi does not turn out to be the commitment that is

established as the majority, then Pi is added to the corrupt set. The definition below precisely

defines the terms, majority commitment, majority opening, committed share. To ensure that

a corrupt dealer does not modify her committed secret later, a strong NICOM is used. The

formal InputCommiti routine is described in Fig 3.1.

Input: Party Pi has input xi.

Output: Each Pk ∈ Pi outputs ({cij}j∈ind(Pi), {oij , xij}j∈ind(Pik),Corrk,Conk). {cij , oij} respec-

tively denote commitment and opening of share xij .

Primitives: A strong NICOM (Com,Open).

Round 1: For j ∈ ind(Pi), Pi splits her input as xi = ⊕jxij , samples pp and computes (cij , oij)←
Com(pp, xij). Pi sends (pp, cij) to Pi and oij to Pij .

Local Computation by Pk ∈ Pij: Set Corrk = {Pi} and cij = oij = ⊥ if Open(pp, cij , oij) = ⊥ for

any oij received.

Round 2: The following is done for each j ∈ ind(Pi):

- Pk ∈ Pi forwards (pp, cij) to other parties in Pi.

- Pk ∈ Pij forwards oij to the other party in Pij .

Local Computation for each j ∈ ind(Pi):

- Pk ∈ Pi adds (Pi, Pl) to Conk if received two different copies of (pp, cij) from Pi in Round 1 and

Pl in Round 2.

- Pk ∈ Pi sets Corrk = {Pi} if no honest majority exists among the three versions of (pp, cij) sent

by Pi in Round 1 and forwarded by Pik in Round 2. Also, Pk sets default commitments for each

xim,m ∈ ind(Pi) and pre-agreed default share-values for xim. (This is done to ensure xi is set to

a pre-agreed default value.)

- Otherwise, Pk ∈ Pi sets (pp, cij) as the majority commitment and Pk ∈ Pij further sets the re-

spective opening oij as the majority opening to obtain the committed share xij = Open(pp, cij , oij).

- Pk ∈ Pi sets Corrk = {Pi} if (pp, cij) received from Pi in Round 1 does not turn out to be the

majority commitment.

- Pk ∈ Pij adds Pl to Corrk if the commitment-opening pair (cij , oij) forwarded by Pl in round 2 is

invalid (Open(pp, cij , oij) = ⊥).

Figure 3.1: Input Commit routine InputCommiti()

Definition 5. A share xij is said to be committed after InputCommiti if every honest Pk ∈

14

ind(Pi) holds cij such that every honest Pk ∈ Pij holds an opening oij that opens cij to xij. The

corresponding commitment (to xij) is called the majority commitment and the corresponding

opening is called the majority opening.

Lemma 1. A party either commits to unique input or is publicly identified to be corrupt.

Proof. A corrupt Pi, for its share xij, can send same (pp, cij) to at least two parties in Pi and

a corresponding valid opening to at least one of Pij in which case (pp, cij) will be chosen as

majority commitment and xij as the committed share. The strong binding of NICOM ensures

that the share is unique. Otherwise, no honest majority will exist for xij at the end of round

2 and Pi is added to the corrupt set of all honest parties with a default value taken for xij.

For honest Pi, each share xij and thus xi chosen by Pi remains committed, irrespective of the

corrupt party’s behaviour in the InputCommiti, as there is only one corrupt party in Pi.

Lemma 2. A corrupt party Pi either belongs to Conj or Corrj of each honest party Pj if it

behaves adversarially in InputCommiti.

Proof. A corrupt party Pi, for its share xij, can send (a) Two same and one different copy of

(pp, cij) with valid opening to one party in Pij. (b) All 3 different copies of (pp, cij). (c) Two

same and one different copy of (pp, cij) with no valid opening to either party in Pij. In case

(a), the recipients of a different copy and invalid opening add Pi to their corrupt set and the

remaining honest parties add, to their conflict set, a pair consisting of Pi. In case (b) and case

(c), all parties add Pi to their corrupt set as no majority commitment will be established at

the end of round 2.

15

Chapter 4

Fairness in 3 rounds

Relaxing the security notion from GOD to fairness, we present an efficient 3 round 4PC that

achieves fairness against 1 active corruption, in a minimal network of pairwise-private channels

at the expense of 2GCs and improve upon the state-of-the-art efficient protocols of [BJPR18]

that achieve GOD in 5 and 4 roun‘ds with 1 GC and 2 GC respectively. Building upon [BJPR18],

we add several new techniques to minimize the round complexity and achieve fairness in a highly

efficient manner.

4.1 The construction

We adopt a GC based approach [Yao82] with two garblers (P1, P2) and two evaluators (P3, P4)

to leverage the guarantee of at least one honest evaluator. We use two garbling instances,

both with {P1, P2} as garblers with P3 and P4 as respective evaluators. We use semi-honest

GC and achieve security against a malicious garbler by allowing the garblers to generate the

same GC (with shared randomness) as in [MRZ15]. The 2 rounds of InputCommit routine aid

in input distribution. The garblers exchange randomness used to generate the GC in round

1. Round 2 of InputCommit is overlapped with sending of GC (without decoding information)

and encoded inputs needed for evaluation to save rounds as in [BJPR18]. A simple check of

equality suffices (due to the presence of an honest garbler) to determine the correctness of GC.

Finally, round 3 is used to exchange the decoding information and encoded output Y for fair

output computation. We summarize our techniques below.

On the transfer of encoding information The RSS sharing of input ensures that two

parties collectively hold all input shares. Hence, it suffices for the garblers to send the encoded

labels for the shares they own to each evaluator. To enable an honest evaluator to detect

incorrect / inconsistent labels sent by a potentially corrupt garbler, we adopt the standard

16

commit-then-open approach of [MRZ15, BJPR18] where the garblers perform commitments on

the encoding information (e) in a permuted fashion and send openings for the shares they own

to the evaluator. This suffices since, for an input share not held by the evaluator, it is available

with both garblers and thus, the evaluator can verify if both the openings received for such a

share are the same. The use of permutation here further ensures that the evaluator does not

learn the underlying value of the encoded label that she has the opening for. However, for the

input shares held by the evaluator, the permutation is also revealed to the evaluator to help

verify if the correct opening has been received. This method of communication brings along the

following concern for the evaluator’s (say P3) input share which both the garblers hold (x34).

A corrupt P3 might disseminate inconsistent x34 to the garblers in round 1 of InputCommit3

which leads to them sending different encoded labels for x34 and thus enabling P3 to perform

evaluation on multiple inputs. Despite withholding decoding information, this still allows P3 to

compare the two resulting encoded outputs and conclude if they are the same for two different

input shares. We tackle this as in [BJPR18] by allowing only one garbler to send the opening

for the input shares (x34 in x3) of the evaluator (P3) while for shares corresponding to inputs

of other parties, each garbler sends the openings for the share she owns to P3.

On Evaluation and Output Computation During evaluation, the following invariant is

maintained by an honest evaluator: evaluation of GC is performed only if all the received en-

coded labels correspond to the committed input shares as per Definition 5. Else the corrupt and

conflict sets are populated accordingly. This ensures that the output, if computed corresponds

to a unique set of inputs. A corrupt evaluator P4 can trivially violate fairness by deliberately

not revealing the encoded output (Y) to the remaining parties on successful evaluation. This is

tackled robustly with the use of i) two evaluators to ensure the presence of at least one honest

evaluator and ii) oblivious garbling along with withholding of the decoding information (d)

by garblers until they are convinced that evaluation is indeed performed on committed inputs.

Specifically, we restrict a garbler to send d to an evaluator only if the evaluator is neither in her

corrupt set nor identified to be in conflict with the co-garbler. This ensures that d is revealed

to an evaluator only if the invariant is maintained. Further, point (i) ensures that one (honest)

of the two evaluators reveals Y to enable everyone to compute the output.

4.2 Our Techniques

Splitting of decoding information The above restriction for revealing d gives rise to an-

other issue. A corrupt P1 can misbehave in the InputCommit routine and send encoded labels

in a way that all checks pass for honest P3 who is able to evaluate on committed inputs but

17

P4 is unable to; resulting in P4 populating either Con4 with (P1, P2) or Corr4 with P1. Further,

P1 also ensures that (P1, P3) are in Con2 by misbehaving in InputCommit3. As a result, despite

evaluating on committed inputs and sending Y to all, P3 gets d neither from corrupt P1 nor

from honest P2, but the corrupt P1 has learnt the output violating fairness. From P2’s perspec-

tive, this scenario is indistinguishable to the case when P3 is indeed corrupt and evaluated on

inputs that do not correspond to committed input shares. To tackle this, we use the deduction

that P4 has identified P3 to be honest. With this knowledge, we enforce the garblers to split d

(say for GC that P3 evaluates) as d = d3⊕ d4 and commit on these shares for consistency. The

garblers send commitments on both the shares (for equality check) to both evaluators, but the

openings for d3 and d4 are sent only to P3 and P4 respectively. Thus, to enable P3 to compute

the output, P4 reveals the opening of share d4 (of d) she holds to P3 when P4 herself cannot

evaluate the GC but identifies P3 to be honest. Also, P3 sends the opening of commitment

on d3 along with Y to P4 to let P4 compute the output. Lastly, to convince the honest P2 to

accept Y sent by honest P3, we enable an evaluator (here P4) to additionally send a signal to

the garblers to indicate the honesty of her co-evaluator (here P3). This signal suffices for P2 to

accept Y sent by P3 since the signal confirmation was received from P4 known to be honest to

P2 (as Con2 = {(P1, P3)}).

Splitting openings of encoding labels With the above solution of splitting of d and sig-

naling in place, a corrupt P1 can still violate fairness as: P1 misbehaves in InputCommit3 (for

x32 by sending incorrect c32 to P2 and P4) s.t. the invariant of evaluation on committed inputs

holds for P3 but not P4. Both P2, P4 put (P1, P3) in conflict and consequently, honest P2, P4

neither reveal the decoding information to P3 nor accept Y computed by P3, whereas P1 is

successful in obtaining the output. Since it appears that no solution other than making P4

evaluate works in this case, we provide P3 a chance to help P4 obtain the encoded labels that

correspond to the committed shares (x31, x32) of P3. To elaborate, we split the openings of

encoding labels corresponding to the input-shares of an evaluator (here P3) between P3 and the

garblers. This modification is not required for share x34 as it is with both garblers and at least

one of them would send an opening of the encoded label corresponding to the committed x34,

as P3 is honest (Lemma 1). P1, P2 redundantly send their additive shares of openings (for both

labels) to P4 in round 2 in addition to sending the entire opening (of one corresponding label)

for the input shares x31, x32. P3 also sends her opening share for label corresponding to x31, x32

to P4. Since P4 holds x32 as per RSS, P4 can now add the shares of the opening sent by P3 and

the corresponding share (out of the two) sent by P2 (as P2 is identified to be honest by P4) to

determine if the resulting value forms a valid opening for the encoded label corresponding to

x32. If so, P4 too evaluates the GC and the evaluators help each other to compute the output

18

while P2 accepts the output from P4. However, generating the two additive shares of these

openings poses a challenge since the entire GC and relevant data is generated using the ran-

domness shared by the garblers in round 1 and also there are not enough rounds available before

the communication of encoded labels, for the garblers and the evaluator involved to arrive at

a consensus about the consistency of the opening shares. Hence, we make the evaluator P3

sample random shares for the encoding information corresponding to her input shares x31, x32

and send the same to the garblers in round 1. The garblers use the random shares sent by P3 to

appropriately compute the second share of each opening of the labels. Since, these openings are

used by P4 only in the case when the invariant of evaluation on committed inputs is violated

due to P3’s input shares x31, x32, it suffices to not have agreement of the random shares received

by the garblers from P3 amongst themselves. In the above case, since P4 knows P2 is honest,

P4 uses the opening shares sent by P2 alone along with P3’s and if the addition of their shares

still leads to an opening that is invalid, then P4 can conclude that P3 is corrupt and case (ii)

follows. Thus, splitting of openings corresponding to the encoding information for evaluator’s

input coupled with splitting of d and signalling suffices to handle fairness violation by a corrupt

garbler.

Why 2 different GCs? There arises a subtle case of evaluation on multiple inputs by a

corrupt evaluator due to the inclusion of all the above techniques. A corrupt P4 may send some

x42 to P1 in round 1 that does not correspond to the committed input share x42 committed

at the end of round 2, thus violating the invariant of evaluation on committed inputs. This

causes honest P2, P3 to put (P1, P4) in conflict and P1 to add P4 to Corr4 at the end of round

2. However, P4 helps P3 obtain the encoded label for x42 with the technique of splitting the

openings and enables P3 to evaluate the GC. Thus, P3 evaluates the GC on committed inputs

whereas the corrupt P4 evaluates the GC on whatever labels obtained from P1. In round 3, P3

sends Y and opening for d3 to P4 who now can decode both, (the encoded output computed by

P4 and the Y sent by P3) and obtain output on multiple inputs. To resolve this, we maintain

that a garbler who evaluated on non-committed inputs never gets access to the corresponding

decoding information. This is enforced by following 2 steps: (a) The garblers sample two

different randomness (one for P3, one for P4) and generate two unique GCs and send them to

P3 and P4 respectively. This results in generating shares of decoding information for each GC

and exactly one share of each decoding information is revealed to an evaluator in round 2. (b)

When an evaluator, say P3 (in above example) successfully evaluates his GC (possibly with P4’s

aid), he gives the decoding information that P4 misses only corr. to P3’s GC. We use equivocal

commitments to commit on the shares of d to tackle a technical aspect in the simulation proof.

This completes the protocol description. The formal details of one garbling instance and the

19

final protocol appear in Figs 4.1 and 4.2 respectively. We extend this fair protocol to achieve

GOD in Chapter 5. We denote the steps relevant to GOD alone with bold blue color.

Common Inputs: Circuit C(x1, x2, x3, x4) that computes function

f(⊕j∈ind(P1)x1j ,⊕j∈ind(P2)x2j ,⊕j∈ind(P3)x3j ,⊕j∈ind(P4)x4j) with each input, their shares and out-

put of the form {0, 1} (for simplicity).

Notations: We denote the evaluator receiving the GC in the routine as Pv and the remaining

evaluator as Ph (helper) and v, h ∈ {3, 4}. We denote the additive sharing of an opening o with

[·] notation. The first share is denoted as [o]0 and the second share is denoted as [o]1.

Output: Evaluator Pv outputs Bg
v/⊥ and Ph outputs B′gv/⊥.

Primitives: Garbling (Gb,En,Ev,De), a PRG G, a collision resistant hash H, an eNICOM

(eCom, eOpen), a strong NICOM (Com,Open).

Round 1:

- P1 samples random seed r ← {0, 1}κ for G and sends to P2.

- P1 samples share epp1 for eNICOM and sends epp1 to P2. Similarly, P2 samples share epp2 and

sends epp2 to P1.

- Ph samples random {[obh1]0, [o
b
h2]0}b∈{0,1} for encoding labels belonging to shares xh1, xh2, sends

{[obh1]0, [o
b
h2]0}b∈{0,1} to P1, P2.

Round 2:

- Each garbler, Pg, g ∈ [2] computes s = G(r), epp = epp1 ⊕ epp2 and does the following using

randomness s:

◦ Garble the circuit C as (GC, e, d)← Gb(1κ, C). Sample pp derived from s for strong NICOM.

◦ Let pij ∈R {0, 1} denote the permutation bit for input wire corresponding to Pi’s input share

xij , i ∈ [4], j ∈ ind(Pi). Set pi ← ||j∈ind(Pi)pij . Set p← ||i∈[4]pi.

◦ For i ∈ [4], j ∈ ind(Pi), let {e0
ij , e

1
ij} denote encoding labels belonging to the jth share of Pi’s

input i.e. xij . For b ∈ {0, 1}, compute commitments as: (cbij , o
b
ij)← Com(pp, e

pij⊕b
ij).

◦ For {obhi}b∈{0,1},i∈[2] belonging to input shares xhi, set [obhi]1 = obhi ⊕ [obhi]0.

◦ Split the decoding information d as d = d3 + d4. Compute: (c3, o3)← eCom(epp, d3), (c4, o4)←
eCom(epp, d4).

◦ Let pv = {pij}i∈[4],j∈ind(Piv) denote the set of permutation bits corresponding to the shares

possessed by Pv. Set Bg
v =

{
GC, {cbij}i∈[4],j∈ind(Pi),b∈{0,1} , c3, c4, o3,pv

}
and B′gv = {c3, c4, o4}.

- P1 sends Bv and P2 sends H(Bv) to Pv. Pv sets Conv = Conv ∪ {(P1, P2)} if inconsistent copies

are received. Set conflict = 1

- P1 sends B′v to Ph and P2 sends H(B′v) to Ph. If the copies are inconsistent, Ph sets Conh = Conh

∪ {(P1, P2)}. Set conflict = 1.

Figure 4.1: Garbling routine Garblevh

20

Inputs and Output: Party Pi has input xi, i ∈ [4]. Each party outputs y = f(x1, x2, x3, x4) or ⊥.

Common Inputs: Circuit C(x1, x2, x3, x4) that computes function

f(⊕j∈ind(P1)x1j ,⊕j∈ind(P2)x2j ,⊕j∈ind(P3)x3j ,⊕j∈ind(P4)x4j) with each input, their shares and out-

put taken from {0, 1} (instead of {0, 1}` for simplicity).

Primitives: A strong (NICOM) (Com,Open), a collision resistant hash H.

Round 1: Round 1 of InputCommiti() (Fig 3.1) is run for each i ∈ [4]. Round 1 of Garble34 (Fig 4.1)

is run. Analogously round 1 of Garble43 is run.

Round 2: Round 2 of InputCommiti() (Fig 3.1) is run for each i ∈ [4]. Besides, the following is

done:

- Round 2 of Garble34 (Fig 4.1) is run. Analogously round 2 of Garble43 is run. Denote the sets

obtained by P3 as B3 =
{

GC, {cbij}i∈[4],j∈ind(Pi),b∈{0,1} , c3, c4, o3,p3

}
and B′4 = {c̃3, c̃4, õ3} and the

sets obtained by P4 as B4 =
{

G̃C, {c̃bij}i∈[4],j∈ind(Pi),b∈{0,1} , c̃3, c̃4, õ4,p4

}
and B′3 = {c3, c4, o4}.

Communication of encoded labels:

- Let mij = xij ⊕ pij where i ∈ [4], j ∈ ind(Pi). If Corrg = ∅, then Pg, g ∈ [2] sends openings for

input wires corresponding to the input shares {xij}i∈[4],j∈ind(Pig) to evaluator Pv, v ∈ {3, 4}. Pg

also sends {mij}i∈[4],j∈ind(Pig) to Pv. The common share of Pv’s input (x34 for P3, x43 for P4) is

opened by exactly one garbler. The opening corresponding to x34 is sent by P1 to P3 for GC and

that corresponding to x43 is sent by P2 to P4 for G̃C.

- If Corrg = ∅, then Pg, g ∈ [2] also sends {[ob41]1, [o
b
42]1}b∈{0,1} for input wires belonging to shares

x41, x42 to P3. Similarly, Pg sends {[õb31]1, [õ
b
32]1}b∈{0,1} for input wires belonging to shares x31, x32

to P4.

- If Corr4 = ∅, P4 sends {[ox4141]0, [o
x42
42]0} for input wires belonging to shares x41, x42 to P3. Similarly,

if Corr3 = ∅, P3 sends {[õx3131]0, [õ
x32
32]0} for input wires belonging to shares x31, x32 to P4.

Local computation by Pv, v ∈ {3, 4}:
- If Conv = Corrv = ∅ (no conflict or corrupt detected so far): Add Pg to Corrv if the indices

{mij}i∈[4],j∈ind(Piv) computed using its version of xij and pij received from garblers mismatches

with the copy sent by Pg. Also, add Pg to Corrv if any of the openings sent by Pg is invalid (results

in ⊥). Set corruptg = 1,honestk = 1 for k = [2] \ {g}. For the input shares not held by Pv,

add (P1, P2) to Conv if {miv}i∈[4] sent by P1 and P2 are not the same. Set conflict = 1. Else,

compute eiv ← Open(pp, cmiviv , omiviv).

- For Pv = P3 and g ∈ [2], if the opening o
m4j

4j sent by Pg does not correspond to the committed

share x4j , j ∈ [2]\{g}, then add (Pg, P4) to Con3 and compute o
x4j
4j = [o

x4j
4j]0⊕ [o

x4j
4j]1 where [o

x4j
4j]1

is the copy sent by Pj (honest). If the opening is still invalid (results in ⊥), then add P4 to Corr3.

Set corrupt4 = 1,honestj = 1 Else compute e4j ← Open(pp, c
m4j

4j , o
x4j
4j). Similar steps are done

21

for Pv = P4.

If all encoded labels received correspond to the committed input shares, then P3 sets X to be

the encoded input. P3 computes Y = Ev(GC,X). Similarly, P4 sets X̃ to be the encoded input. P4

computes Ỹ = Ev(G̃C, X̃).

Round 3:

- If obtained Y, P3 sends Y to the garblers and (Y, o3) to P4. Similar steps are performed by P4

if obtained Ỹ.

- If not computed Y and P4 /∈ Con3 ∪ Corr3, then P3 sends (P4,HSig) to the garblers and õ3 to

P4. Similarly, if P4 has not computed Ỹ and P3 /∈ Con4 ∪ Corr4, then P4 sends (P3,HSig) to the

garblers and o4 to P3.

- For g ∈ [2], j ∈ [2] \ {g}, if P3 /∈ Corrg and (Pj , P3) /∈ Cong, then Pg sends o4 to P3. Similarly, if

P4 /∈ Corrg and (Pj , P4) /∈ Cong, Pg sends õ3 to P4.

Local Computation by Pg, g ∈ [2]:

- If received Y from P3 and Ỹ from P4, compute y = De(Y, d).

- Else if received Y from P3 and HSig(P3) from P4, compute y = De(Y, d). Similarly, if received

Ỹ from P4 and HSig(P4) from P3, compute y = De(Ỹ, d̃).

- Else if received Y (or Ỹ) received from P3 (or P4) and (P3, P4) ∈ Cong, compute y = De(Y, d)

(y = De(Ỹ, d̃)).

- Else if received Y from P3 and P3 /∈ Cong ∪Corrg, compute y = De(Y, d). Likewise, if got Ỹ from

P4 and P4 /∈ Cong ∪ Corrg, compute y = De(Ỹ, d̃).

Local Computation by P3: If sent Y and received o4 from one of P1, P2, P4, then compute

d4 ← eOpen(epp, c4, o4) and d = d3 ⊕ d4 and y = De(Y, d). Else if received (Ỹ, õ4) from P4 and

P4 /∈ Con3 ∪ Corr3, then compute d̃4 ← eOpen(epp, c̃4, õ4) and d̃ = d̃3 ⊕ d̃4 and y = De(Ỹ, d̃).

Local Computation by P4: If sent Ỹ and received õ3 from one of P1, P2, P3, then compute

d̃3 ← eOpen(epp, c̃4, õ4) and d̃ = d̃3 ⊕ d̃4 and y = De(Ỹ, d̃). Else if received (Y, o3) from P3 and

P3 /∈ Con4 ∪ Corr4, then compute d3 ← eOpen(epp, c3, o3) and d = d3 ⊕ d4 and y = De(Y, d).

Figure 4.2: 3-round Fair Protocol 3RFair

4.3 Optimizations

The following optimizations are adopted to boost efficiency. The garblers P1 sends the common

information B3 to P3 and P2 sends B4 to P4. However, P1 sends H(B4) to P4 and P2 sends

H(B3) to P3. This optimization reduces communication and in turn improves the latency

of communication of the garbled circuit. A similar technique is used to communicate B′3

and B′4. We also improve communication by performing equivocal commitments on the hash

22

of the shares of the decoding information. For empirical purposes, we instantiate equivocal

commitments with hash function since the hash function can be visualized as a programmable

random oracle.

4.4 Correctness and Security

Theorem 1. Assuming one-way permutations exist, the protocol 3RFair (Fig 4.2) securely re-

alizes the functionality Ffair (Fig 2.2) against one malicious corruption in the standard model.

4.4.1 Correctness

This sections proves correctness which is established via a series of lemmas as follows:

Lemma 3. No two honest parties belong to the conflict set Coni of an honest party Pi.

Proof. An honest Pi populates its conflict set with (Pj, Pk) only if: (i). In InputCommit()

routine, if the version of commitments for any share received from Pj, Pk mismatch. (ii). When

Pj, Pk are garblers and (iia) the received Bi,B
′
i or (iib). when Coni = ∅ by the end of round

2, but the mlj’s received for l ∈ [4], j ∈ ind(Pi) mismatch. Cases (i),(iia) cannot happen for an

honest Pj, Pk. However, for case (iib), it must be the case that Pj, Pk were in agreement about

the corrupt party’s share. Else, Pi would put one of Pj, Pk in the conflict pair with the corrupt

party, but in either case, (Pj, Pk) /∈ Coni and contradicts the assumption of Coni = ∅ in case

(iib).

Lemma 4. For a pair of honest parties Pi, Pj, the following holds: Pi /∈ Corrj.

Proof. An honest Pi adds Pj to Corri only if: (i). In InputCommitj, there was no majority

commitment or corresponding valid opening for some xjk. (ii). If Corri = ∅ at the end of round

2, but Pi as an evaluator did not evaluate, as no encoded labels were available for committed

xj2 (Pj as co-evaluator). (iii). Pj as garbler sent invalid openings (⊥) for encoded labels input

shares held by her or sends labels inconsistent with her messages in round 1 of InputCommit.

Since neither of the above cases are possible for an honest Pj, the lemma holds.

Lemma 5. An honest evaluator evaluates the GC on committed inputs alone.

Proof. An honest evaluator Pi evaluates the GC only if all encoded labels received correspond

to the committed input shares. This implies that the corrupt party Pj commits to its input

in round 1 of InputCommitj and sends encoded labels wrt them. Further, a corrupt garbler Pj

is forced to send valid openings for encoded labels corresponding to committed input shares

belonging to her. Else Pj will be identified to be corrupt and the invariant of evaluation on

23

committed input shares fails. However, for the co-evaluator Pk’s input share owned by Pj, even

if Pj sends invalid/non-committed openings, Pk or the honest co-garbler (for xki) will help Pi

obtain the labels for committed share. Hence the lemma.

Lemma 6. A corrupt evaluator does not receive the decoding information for a circuit evaluated

on inputs that are not committed.

Proof. For a corrupt evaluator Pi will receive the decoding information only if (i). Pi /∈ Corrj

for garbler Pj and Pi is not in conflict with her co-garbler. (ii). If the co-evaluator Pk has

garblers in conflict or one of the garblers in corrupt set. If Pi evaluates on her input that is not

committed (honest parties’ inputs are committed by the end of round 1) , case (i) will not hold

since, at the end InputCommiti, an honest garbler Pj will populate either Corrj or Coni with Pi

and co-garbler. By Lemma 3, 4 case (ii) will not hold.

Lemma 7. An evaluator Pi sends HSig to the garblers only if Pi has identified the co-evaluator

to be honest.

Proof. If Pi is corrupt and sends HSig, then her co-evaluator Pj is honest. If Pi is honest,

then Pi sends HSig only if Pi is unable to evaluate the GC due to the violation Lemma 5 and

Corri = {Pk} or Coni = (Pk, Pl) where Pk, Pl are garblers. By Lemma 3, 4, both Pk, Pl cannot

be honest. Hence Pj is honest and the lemma.

Lemma 8. An honest garbler accepts the encoded output Y only if circuit evaluation was

performed on committed inputs.

Proof. An honest garbler Pi accepts the encoded output only if (i). Y/Ỹ was received from

an evaluator Pj not in Corri or in conflict with Pi’s co-garbler. (ii). Y/Ỹ was received from Pj

who was in conflict with Pi’s co-garbler but received (HSig, Pj) from Pj’s co-evaluator (honest).

In case (i), by Lemma 5 the GC was evaluated on committed inputs by both evaluators and

case (ii) follows from Lemma 7.

Lemma 9. If an honest evaluator P3 receives no d from either garblers, but receives (Ỹ, õ4)

from co-evaluator, then P3 accepts it.

Proof. An honest evaluator P3 does not receive the decoding information from an honest garbler

Pj only if P3 was in conflict with Pj’s co-garbler at the end of round 2. This further implies

corruption to be among the garblers and thus P3 accepts (Ỹ, õ4) sent by P4 who is found to be

honest by P3.

Lemma 10. The protocol 3RFair is correct.

24

Proof. We prove that the output y is computed on unique inputs committed in InputCommit.

By Lemma 1, a corrupt party is forced to commit to unique input while the honest parties’

inputs are established by the end of round 1 of InputCommit. If a corrupt party is not identified

at the end of InputCommit and the encoded inputs received correspond to the committed input

shares established at the end of round 2 of InputCommit, by Lemma 5, an honest evaluator

Pi computes the encoded output. Else if Pi does not evaluate and determined one of the

garblers to be corrupt, by Lemma 7, Pi sends an HSig for garblers to accept the output only if

her co-evaluator is honest. A corrupt evaluator also never obtains the decoding information for

evaluation done on inputs that are not committed (by Lemma 6). Lastly, Lemmas 8 and 9 ensure

that output if accepted, corresponds to the inputs committed at the end of InputCommit.

4.4.2 Security

This section presents the security proof of Theorem 1 which states the security of the protocol

3RFair relative to its ideal functionality.

Proof. We describe the simulator S3RFair for the case when P1 and P3 are corrupt. The cor-

ruption of P2 and P4 are symmetric to the case when P1 and P3 are corrupt, respectively. We

will first describe the simulation for the InputCommiti() routine, specifically for InputCommit1()

(InputCommit2(), InputCommit3() and InputCommit4() are symmetric). We will consider, sep-

arately, the cases when P1 and P2 are corrupt in InputCommit1(). Corruption of P3, P4 in

InputCommit1() is symmetric to the case of P2’s corruption. Simulation of InputCommit1 for

corrupt P1 and P2 is described in Figures 4.3, 4.4 respectively.

We now give a brief overview of the simulation for 3RFair. When P1 is corrupt, the simulator,

acting on behalf of the honest parties can extract the input (either the committed input sent to

majority of the honest parties or a default value) x1 of P1 by the end of Round 1. Depending

on how P1 behaves in Round 2, the ideal functionality Ffair is invoked by the simulator on

adversary’s behalf with either abort or x1 to obtain the output. In case of simulation of P3,

as before, P3 can decide to let the execution succeed or fail upto Round 2. This forces the

simulator to invoke the ideal functionality based on P3’s behaviour only at the end of Round 2

and get the corresponding ouput. A technicality arises, since the simulator, on behalf on the

honest parties, is required to send the GC, commitment on encoding and decoding information in

Round 2 itself without knowing the output. To address this, it invokes the oblivious simulator of

the GC, Sobv, which doesn’t take the output and also doesn’t return the decoding information.

This results in the simulator committing to a dummy value for one share of the decoding

information. Subsequently, when Ffair is invoked to obtain y, the privacy simulator for the GC,

25

Spriv, is invoked with the same randomness and y, which returns the decoding information that

makes the fake GC output y. The simulator then equivocates the commitment on the dummy

value to the correct share of the decoding information. All of this pertains to the GC that P3

evaluates. For the GC to be evaluated by P4, P3 receives the commitment to both shares of the

decoding information and opening to only one of them. Similar equivocation steps are followed

for the other commitment that is not opened, depending on P3’s behaviour. The details of the

simulator when P1 and P3 are corrupt are described in Figures 4.5, 4.6.

P ?1 is corrupt

Round 1:

- Receive commitments (pp1, c12, c13, c14) on behalf of each of P2, P3 and P4. Receive o12 on behalf

of P3, P4; o13 on behalf of P2, P4; and o14 on behalf of P2, P3.

- For Pk ∈ P1, set Corrk = {P1} if any of the following is true:

a. Open(pp1, c1j , o1j) = ⊥ for any j ∈ ind(P1k).

b. there does not exist a majority among the versions of (pp1, c12, c13, c14) received on behalf of

parties in P1. Assume a default value for P ′1’s input share in this case. If there exists a majority,

set c1j as the majority value and o1j as the corresponding opening. Compute x1 = x12⊕x13⊕x14

where x1j = Open(pp1, c1j , o1j) for j ∈ {2, 3, 4}.
c. for j ∈ ind(P1) if (pp1, c1j) is different from majority c1j .

- For Pk ∈ P1, set Conk = Conk ∪ (P1, Pl) where l ∈ ind(P1k) if different copies of (pp1, c12, c13, c14)

are received on behalf of Pk and Pl.

Figure 4.3: Simulator S1
InputCommit1

P ?2 is corrupt

Round 1:

- On behalf of P1, sample pp1, compute c1j as commitment on randomly chosen x1j for j ∈ ind(P12)

(input shares of P1 available with P ?2), and as commitment to dummy values for j /∈ P12. Send

(pp1, c12, c13, c14) and (o13, o14) to P ?2 .

Round 2:

- Send (pp1, c12, c13, c14) and o14 on behalf of P3 to P ?2 . Send (pp1, c12, c13, c14) and o13 to P ?2 on

behalf of P4.

- Receive (pp′1, c
′
12, c

′
13, c

′
14) on behalf of both P3 and P4. Also, receive o′13 and o′14 on behalf of P4

and P3, respectively.

- For Pk ∈ P12 set Conk = Conk ∪ (P1, P2) if version of commitment received from P ?2 is not same

as that sent by P1 in Round 1.

- Set Corrk = P2 if opening received on behalf of Pk is different from what was sent in Round 1.

Figure 4.4: Simulator S2
InputCommit1

26

P ?1 is corrupt

Round 1:

- Simulation of Round 1 of SInputCommitα for α ∈ [4] (refer figure 4.3, 4.4).

- Receive seed and share of public parameter (r3, epp3
1), (r4, epp4

1) from P ?1 on behalf of P2 (for

Garble34,Garble43, respectively).

- Send [õb31]0, [õ
b
32]0 for b ∈ {0, 1} on behalf of P3, and [ob41]0, [o

b
42]0 for b ∈ {0, 1} on behalf of P4 to

P ?1 .

Round 2:

- Simulation of Round 2 of SInputCommitα for α ∈ [4].

- On behalf of P3: Receive B3 comprising of the GC to be evaluated by P3, commitments on

encoding information, commitment on shares of decoding information, opening of the first share

of the decoding information and permutation strings pij for i ∈ [4], j ∈ ind(Pi3). Receive B′4

comprising of commitment on shares of decoding information for the GC to be evaluated by P4

and opening of the first share of this decoding information. Receive openings corresponding to

input labels for xij , i ∈ [4], j ∈ ind(Pi1) and masked input shares. Also, receive {[ob41]1, [o
b
42]1}b∈{0,1}

for input wires belonging to shares x41, x42.

- Similarly, receive B4, B′3, and opening of respective labels on behalf of P4.

- Set conflict = 1 and Con3 = Con3 ∪ (P1, P2) if any of the following is true:

a. Hash of the received B3 or B′4 does not match the hash of B3 or B′4, respectively, computed

using the received random seed r3 and epp1
3.

b. For shares not possessed by P3, opening of encoding information received does not correspond to

the originally committed label (known on behalf of P2) or if the masked input shares mismatch.

Similar steps are carried out with respect to P4.

- Set Con3 = Con3 ∪ (P1, P4) if opening of encoding information for x42 does not correspond to the

originally committed label.

- Set corrupt1 = 1 and Corr3 = P1 if for shares possessed by P3 (excluding x42), opening of

encoding information received is different from the originally committed labels (known on behalf

of P2) or if there is a mismatch among the {mij}i∈[4],j∈ind(Pi3) received from P1 and the ones

computed from xij and pij received from P1. Similar steps are carried out with respect to P4.

- If for, both, P3, P4, corrupt1 = 1, or conflict = 1, or corrupt1 = 1 for one of them and

conflict = 1 for the other, then invoke Ffair with (Input, abort) on behalf of P ?1 . Else, using x1

computed in S1
InputCommit1

, invoke Ffair with (Input, x1) to obtain y.

Round 3:

- Receive o4 and õ3 on behalf of P3 and P4 respectively.

- Compute Y on behalf of P3 such that De(Y, d) = y (d known on behalf of P2). Similarly compute

Ỹ on behalf of P4.

27

- If P3 could not have computed Y and P4 /∈ Con3 ∪ Corr3, then send (P4,HSig) on behalf of P3.

Else if y 6= ⊥ send Y to P ?1 on behalf of P3. Similar steps are carried out by P4 for Ỹ.

Figure 4.5: Simulator S1
3RFair

Security against corrupt P ?
1 : We argue that idealFfair,S

1
3RFair

c
≈ real3RFair,A when A corrupts P1

based on the following series of intermediate hybrids.

hyb0: Same as real3RFair,A.

hyb1: Same as hyb0 except that {cij}i∈ind(P1),j /∈ind(Pi1) is replaced with a commitment to

a dummy value in InputCommiti when P1 doesn’t get access to the corresponding opening

information.

hyb2: Same as hyb1 except that P1 is added to Corrk, k ∈ ind(P1) if opening forwarded from

P1 to Pk corresponding to Pi’s committed share (i ∈ ind(P1k)) in InputCommiti is different

from what was originally committed.

hyb3: Same as hyb2 except that if Corrk and Conk (k ∈ {3, 4}) are empty at the end of

Round 2, then add P1 to Corrk if Pk receives anything other than the encoding information

corresponding to shares xij that Pk possesses.

hyb4: Same as hyb3 except that if Corrk and Conk (k ∈ {3, 4}) are empty at the end of Round

2, then add (P1, P2) to Conk if Pk receives anything other than the encoding information

corresponding to shares xij that Pk does not possess.

hyb5: Same as hyb4 except that Y is computed such that De(Y, d) = y instead of Y =

Ev(GC,X).

Since hyb5 := idealFfair,S
1
3RFair

, to conclude the proof we show that every two consecutive

hybrids are indistinguishable.

hyb0
c
≈ hyb1 : The difference between the hybrids is that when P1 does not get access

to openings of {cij}i∈ind(P1),j /∈ind(Pi1), in hyb0, cij is a commitment on xij, whereas in hyb1,

it is a commitment on a dummy value. Indistinguishability follows from the hiding of the

commitment scheme.

hyb1
c
≈ hyb2 : The difference between the hybrids is that in hyb1, P1 is added to Corrk if the

opening forwarded by P1 to Pk in InputCommiti i ∈ ind(P1k) results in ⊥, whereas in hyb2,

P1 is added to Corrk if the opening sent by P1 is anything other than what was originally

committed. Since the probability with which P1 could successfully decommit to something

other than what was originally committed is negligible (due to the binding of the commitment

scheme), the hybrids are indistinguishable.

hyb2
c
≈ hyb3 : The difference between the hybrids is that when Corrk and Conk are empty, in

28

hyb2 P1 is added to Corrk if the decommitment to shares xij, i ∈ [4], j ∈ ind(Pik) sent by P1

result in a ⊥, whereas in hyb3, P1 is added to Corrk if the decommitments open to any value

other than the originally committed encoding information. Since the probability with which

P1 could successfully decommit to something other than what was originally committed is

negligible (due to the binding of the commitment scheme), the hybrids are indistinguishable.

hyb3
c
≈ hyb4 : The difference between the hybrids is that when Corrk and Conk are empty, in

hyb3 P1 is added to Conk if the decommitment to shares xij, i ∈ [4], j /∈ ind(Pik) sent by P1

is inconsistent with that known on behalf of P2, whereas in hyb4, P1 is added to Conk if the

decommitments open to any value other than the originally committed encoding information.

Since the probability with which P1 could successfully decommit to something other than

what was originally committed is negligible (due to the binding of the commitment scheme),

the hybrids are indistinguishable.

hyb4
c
≈ hyb5 : The difference between the hybrids is that in hyb4 Y is computed as

Ev(GC,X) whereas in hyb5, it is computed such that De(Y, d) = y. Due to the correctness

of the garbling sheme, the equivalence of Y holds.

P ?3 is corrupt

Round 1:

- Simulation of Round 1 of S3
InputCommitα

, α ∈ [4].

- Receive [õb31]0, [õ
b
32]0 for b ∈ {0, 1} on behalf of P1 and P2 (for Garble43).

Round 2:

- Simulation of Round 2 of S3
InputCommitα

, α ∈ [4].

- Use uniform randomness r on behalf of P1, P2 and run (GC,X) ← Sobv(1
κ, C) where Sobv

is the oblivious simulator of the garbling scheme. Choose {mij}i∈[4],j∈ind(Pi) at random. Let

{cbij}i∈[4],j∈ind(Pi),b∈{0,1} be commitments to entries of X. Let B3 = {GC, {cbij}, c3, c4, o3,p3} where

pij ∈ p3 (for i ∈ [4], j ∈ ind(Pi3)), c3, c4, o3 are computed as follows.

- for i ∈ ind(P3), j ∈ ind(Pi3), set pij = xij ⊕mij consistent with the shares given to P ?3 during

S3
InputCommiti

.

- for i = 3, j ∈ ind(P33), compute pij with respect to the opening received on behalf of P1, P2 in

S3
InputCommit3

.

- c3 is computed as a commitment to a random share d3 of the decoding information for the GC

to be evaluated by P ?3 , and o3 is its corresponding opening. c4 is generated using an equivocal

commitment scheme (sample epp, with trapdoor t1, t2) as a commitment to a dummy value.

Let B′4 = {c̃3, c̃4, õ3} where c̃3 is computed as a commitment to a random share d̃3 (for P4’s GC),

and õ3 is its corresponding commitment. c̃4 is generated (using an equivocal commitment scheme)

as a commitment to a dummy value.

29

- Send B3,B
′
4 and H(B3),H(B′4) on behalf of P1 and P2 respectively.

- Send random [ox4141]0, [o
x42
42]0 on behalf of P4.

- Send openings for input wires corresponding to the input shares {xij}i∈[4],jind(Pig) for g ∈ {1, 2}
and {[ob41]1, [o

b
42]1}b∈{0,1} on behalf of the garblers (Only P1 sends opening corresponding to x34)

if corrupt set of the garbler is empty. Also send the masked input shares.

- Receive [õx3131]0, [õ
x32
32]0 on behalf of P4.

- Invoking Ffair: If either of the following conditions are satisfied (corrupt3 = 1), invoke Ffair

with (Input, abort) and set y = ⊥.

Condition 1: P ?3 gave a minority commitment and opening on x32 to P1 (during InputCommit3)

and gave incorrect [õx3232]0 to P4.

Condition 2 P ?3 gave a minority commitment and opening on x31 to P2 (during InputCommit3)

and gave incorrect [õx3131]0 to P4.

Else, using x3 computed in S3
InputCommit3

, invoke Ffair with (Input, x3) to get y.

- Invoking Spriv: If P ?3 did not result in an abort (corrupt3 = 0), run (GC,X, d)← Spriv(1κ, C, y)

where Spriv is the privacy simulator of the garbling scheme. Compute Y such that De(Y, d) = y.

Let d4 = d⊕d3. Generate G̃C to be evaluated by P4 honestly. Compute Ỹ such that De(Ỹ, d̃) = y.

Let d̃4 = d̃⊕ d̃3.

Round 3:

- Receive Y = Ev(GC,X) or HSig(P4) on behalf of P1, P2. Receive (Y, o3) and/or õ3 on behalf of

P4.

- If y 6= ⊥, send (Ỹ, õ4) where õ4 = Equiv(c̃4, d̃4, t1, t2).

- Send o4 on behalf of the garblers if P ?3 is not in their corrupt set or in confict with the co-garbler,

where o4 = Equiv(c4, d4, t1, t2). Similarly, send o4 (equivocated) on behalf of P4 if P ?3 is not in its

corrupt or conflict set.

Figure 4.6: Simulator S3
3RFair

Security against corrupt P ?
3 : We argue that idealFfair,S

3
3RFair

c
≈ real3RFair,A when A corrupts P3

based on the following series of intermediate hybrids.

hyb0: Same as realΠ,A.

hyb1: Same as hyb0 except that when P3 doesn’t get access to the opening of

{cij}i∈ind(P3),j /∈ind(Pi3), sent by Pi in InputCommiti, the commitment is replaced with a com-

mitment to a dummy value.

hyb2: Same as hyb1 except that P3 is added to Corrk, k ∈ ind(P3) if opening forwarded from

P3 to Pk corresponding to Pi’s committed share (i ∈ ind(P3k)) in InputCommiti is different

from what was originally committed.

hyb3: Same as hyb2, except that P1, P2 use uniform randomness instead of pseudo-

30

randomness.

hyb4: Same as hyb3 except the following:

hyb4.1 When the execution results in P3 getting access to labels corresponding to its non-

committed input, the GC to be evaluated by P3 is created as (GC,X)← Sobv(1
κ, C) and the

commitment to unopened share (d4) of the decoding information is created on a dummy

value. Similarly, the unopened share d̃4 of decoding information for G̃C (to be evaluated by

P4) is created on a dummy value.

hyb4.2 When the execution results in P3 getting access to labels corresponding to its com-

mitted input, the GC for P3 is created as (GC,X, d) ← Spriv(1κ, C, y), the commitment to

unopened share (d4) of the decoding information is computed on d4 = d ⊕ d3. Similarly,

the unopened share d̃4 of decoding information for G̃C (to be evaluated by P4) is created

honestly.

hyb5: Same as hyb4 except that Ỹ is computed such that De(Ỹ, d̃) = y instead of Ỹ =

Ev(G̃C, X̃).

hyb6: Same as hyb5 except that the protocol results in abort if neither P1 nor P2 nor P4

receive Y, Y, (Y, o3), where Y is obtained from GC evaluation by P3.

Since hyb6 := idealF,S33RFair , to conclude the proof we show that every two consecutive

hybrids are indistinguishable.

hyb0
c
≈ hyb1 : The difference between the hybrids is that when the execution results in P3

not getting access to openings of {cij}i∈ind(P3),j /∈ind(Pi3), in hyb0, cij is a commitment on xij,

while in hyb1, it is a commitment on a dummy value. Indistinguishability follows from the

hiding of the commitment scheme.

hyb1
c
≈ hyb2 : The difference between the hybrids is that in hyb1 P3 is added to Corrk if the

opening forwarded by P3 to Pk in InputCommiti i ∈ ind(P3k) results in ⊥, whereas in hyb2,

P3 is added to Corrk if the opening sent by P3 is anything other than what was originally

committed. Since the probability with which P3 could successfully decommit to something

other than what was originally committed is negligible (due to the binding of the commitment

scheme), the hybrids are indistinguishable.

hyb2
c
≈ hyb3 : The difference between the hybrids is that in hyb2 P1, P2 use pseudoran-

domness whereas in hyb3 they use uniform randomness. Indistinguishability of the hybrids

follows from the reduction to the security of PRG G.

hyb3
c
≈ hyb4.1 : The difference between the hybrids is in the way (GC,X) is generated

when the execution leads to P3 getting access to labels corresponding to its non-committed

input. In hyb3, it is obtained as (GC, e, d)← Gb(1κ, C) whereas in hyb4.1 it is computed as

31

(GC,X)← Sobv(1
κ, C). Also, the commitment to the unopened share of decoding information

is created on a dummy value. Indistinguishability of the hybrids follows from the reduction to

the obliviousness of the garbling scheme and the hiding property of the commitment scheme.

hyb3
c
≈ hyb4.2 : The difference between the hybrids is in the way (GC,X) is generated.

In hyb3, (GC, e, d) ← Gb(1κ, C) is run, whereas in hyb4.2, it is generated as (GC,X, d) ←
Spriv(1κ, C, y). Indistinguishability follows via reduction to the privacy of the garbling scheme

and hiding of the commitment scheme.

hyb4
c
≈ hyb5 : The difference between the hybrids is that in hyb4 Ỹ is computed as

Ev(G̃C, X̃) whereas in hyb5, it is computed such that De(Ỹ, d̃) = y. Due to the correctness

of the garbling sheme, the equivalence of Ỹ holds.

hyb5
c
≈ hyb6 : The difference in the hybrids is that in hyb5 the protocol aborts if neither

P1 nor P2 nor P4 receive Y such that De(Y, d) 6= ⊥ from P3 whereas in hyb6, the protocol

aborts if neither P1nor P2 nor P4 receive Y obtained from GC evaluation. The probability

that P3 could have sent a Y such that Y 6= Ev(GC,X) but De(Y, d) 6= ⊥ is negligible due to

the authenticity of the garbling scheme. Thus, the hybrids are indistinguishable.

32

Chapter 5

GOD in 3 Rounds

Having achieved fairness in 3 rounds at the expense of 2 GCs in 3RFair, we now aim to attain

GOD in 3 rounds that involves communication and computation of 4 GCs in the worst case.

5.1 The Construction

We begin with 3RFair and tackle all the abort cases to attain GOD. It is easy to see that, when

the adversary does not misbehave until round 2, our 3RFair substitutes for GOD. We observe

that, in most cases, when the misbehavior detected within two rounds, leads to abort in round

3 of 3RFair (due to violation of the invariant of evaluation on committed inputs), the adversary

exposes herself as corrupt to two honest parties (say Pi, Pj). Further, Pi, Pj know each other’s

identity and thus can exchange their committed input-shares in round 3 to compute the output.

RSS ensures that the shares of two parties are sufficient to know all inputs. Pi, Pj reveal their

shares to the remaining honest party Ph for her to compute the output. However, to enable

the corrupt party to compute the output (as shares cannot be revealed), Pi, Pj construct an

additional GC which takes RSS shares owned by Pi, Pj as inputs. This GC is constructed with

shared randomness sampled in one of the first two rounds and one of Pi, Pj sends the GC to

the corrupt party while both send encoded labels wrt their RSS shares in round 3. We also give

away decoding information for this extra GC to allow the corrupt party to obtain the output

on evaluation. This process causes an overhead of 1 GC compared to 3RFair and suffices for all

but below case.

A potential corrupt garbler may send incorrect copy of GC to both the evaluators in round

2. In such case, the evaluators can best identify conflict among the garblers, one of whom is

corrupt. As a result, the evaluators generate two additional augmented GCs as in the previous

case, one for each garbler and send the GCs along with the encoded labels for their RSS shares

33

to each garbler individually to help them compute the output. In this case alone, the overhead

amounts to 2 GCs over 3RFair leading to an overall use of 4 GCs for GOD and accounts for the

worst case execution of our protocol. In each of the above cases, an honest party prepares the

additional GC with appropriate randomness for the corrupt party/conflict parties at the end of

round 2 if it anticipates an impending abort in round 3 and communicates the same in round

3. The formal description of augmented circuit appears in Figs 5.1. The formal protocol which

uses a garble routine (Fig 5.2) to construct the additional GC (in case of impending abort in

3RFair) is presented in Fig 5.3.

Input: Pi has input xi, xmn for m ∈ ind(Pi), n ∈ ind(Pim). Pj has input xj , xmn for m ∈
ind(Pj), n ∈ ind(Pjm).

Output: y = f(x1, x2, x3, x4).

Computation: The circuit computes output as:

For k ∈ ind(Pij), compute xk = ⊕`∈ind(Pk)xk` using xk` given by Pi and Pj as input. Output

y = f(x1, x2, x3, x4).

Figure 5.1: Circuit Description Ckt

Input: Let {i, j} = ind(Pkl). Pi has input xi, xmn for m ∈ ind(Pi), n ∈ ind(Pim). Pj has input

xj , xmn for m ∈ ind(Pj), n ∈ ind(Pjm).

Output: Pk outputs y = f(x1, x2, x3, x4).

Common Input: The circuit Ckt (as described in Fig 5.1).

Round 1:

- Pi and Pj use rij to garble the circuit Ckt (Fig 5.1) as (GC, e, d)← Gb(1κ,Ckt). Pi sends (GC, d)

to Pk.

- Assume {e0
w, e

1
w} be the encoding information for wire w. Pi sends encoding labels for each input

wire w corresponding to value α in Vi i.e. eαw to Pk. Similarly Pj sends encoded labels for input

wire w corresponding to value β in Vj i.e. eβw to Pk.

Local Computation: Set X = {ew}w∈I , I denotes the set of all input wires. Pk computes

Y = Ev(GC,X) and y = De(Y, d). Output y.

Figure 5.2: Abort GC routine GC`k

34

Input and Output: Pi inputs xi and outputs y = f(x1, x2, x3, x4).

Round 1: Run round 1 of 3RFair (Fig 4.2). Besides,

- For each i, j ∈ [4] where i < j, Pi samples a random PRF seed rij ∈ {0, 1}κ and sends to Pj .

- Initialize flags corrupti = 0 and honesti = 0 for i ∈ [4].

Round 2:

- Run round 2 of 3RFair (Fig 4.2) except that strong NICOM is used to commit on shares of

decoding information instead of eNICOM.

- Set flags corrupti and honesti as per blue highlighted text in 3RFair.

Round 3: Run round 3 of 3RFair (Fig 4.2). Additionally,

- If there exist k, ` s.t corruptk = 1 and honest` = 1, do the following:

◦ Let i, j = ind(Pk`) such that i < j. Pi gives Vi to Pj and P`. Pj gives Vj to Pi and P`.

◦ Pi, Pj , P` compute y from Vi and Vj . Output y.

◦ Run routine GC`k (Fig 5.2).

- Else, if conflict = 1, run routine instances GC2
1 and GC1

2 (Fig 5.2).

Figure 5.3: 3-round GOD protocol 3RGod

The optimizations accounted for 3RFair can also be utilized in our 3RGod protocol. The

sending of additional GCs can also be optimized similar to the GCs sent in round 2.

5.2 Correctness and Security

Theorem 2. Assuming one-way permutations exist, the protocol 3RGod (Fig 5.3) securely

realizes the functionality Fgod (Fig 2.1) tolerating one malicious corruption in the standard

model.

5.2.1 Correctness

Lemma 11. The protocol 3RGod is correct.

Proof. We prove that the output y computed corresponds to unique inputs committed in

InputCommit. A corrupt party is forced to commit to her input or a default value is cho-

sen. The correctness of the protocol for all but abort cases follows from the correctness of

3RFair (Lemma 10). For the abort cases, the additional GCs are prepared by honest parties

and hence are correct. Since the inputs are committed by the end of round 2 of InputCommit,

the views exchanged by honest parties and the encoded input sent by honest parties to the

35

additional GC evaluator in round 3, correspond to the committed inputs. Thus the output y

that is computed always corresponds to the uniquely committed inputs.

5.2.2 Security

This section presents the security proof of Theorem 2 which states the security of the protocol

3RGod relative to its ideal functionality.

Proof. We describe the simulator S3RGod for the case when P1 and P3 are corrupt. The

corruption of P2 and P4 are symmetric to the case when P1 and P3 are corrupt, respectively.

The simulation for 3RGod is similar to that of 3RFair. When P1 is corrupt, the simulator

acting on behalf of the honest parties can extract x1 at the end of Round 1 itself. Thus, the

simulator can invoke the ideal functionality Fgod with x1 on behalf of the adversary at the

end of Round 1 to obtain the output y. However, for the case when P3 is corrupt, either the

oblivious simulator or the privacy simulator has to be invoked depending on whether P3 gets

access to input labels corresponding to non-committed input shares or not, respectively, in

Round 2. Since the simulator, acting on behalf of the honest parties, knows this at the end

of Round 1 itself, it can invoke the oblivious simulator when P3 doesn’t get access to labels

on its committed shares. In this case, the commitment on the second share of the decoding

information is done on a dummy value. When P3 behaves honestly, the privacy simulator is

invoked and the commitments to shares of decoding information are generated honestly. With

these details we describe the simulators in Figures 5.4, 5.5. While describing the simulator,

we only give the extra steps carried out in addition to steps involved in S3RFair. Please refer to

Figures 4.5, 4.6 for S3RFair.

P ?1 is corrupt

Round 1:

- Simulation of Round 1 of S1
3RFair.

- Receive seeds r12, r13, r14 on behalf of P2, P3 and P4, respectively.

- Use the x1 extracted by the simulator in the simulation of InputCommit1 to invoke the Fgod

functionality with (Input, x1) to obtain output y.

Round 2:

- Simulation of Round 2 of S1
3RFair up and until the population of conflict and corrupt sets.

- If garblers are found to be in conflict, set conflict = 1. If a corrupt garbler Pg is identified, set

corruptg = 1 and honestj = 1 where g ∈ {1, 2} and j ∈ [2] \ {g} (as in Round 2 of S1
3RFair).

Round 3:

36

- Simulation of Round 3 of S1
3RFair with the exception that instead of checking whether y 6= ⊥

check if for, both, P3, P4, corrupt1 = 1, or conflict = 1, or corrupt1 = 1 for one of them and

conflict = 1 for the other. If the condition is false, then continue as in Round 3 of S1
3RFair.

- Else, if the above condition is true, generate (GC, e, d) ← Spriv(1κ,Ckt, y). Send (GC, d), labels

for each wire corresponding to values in V3 on behalf of P3. Send labels corresponding to values

in V4 on behalf of P4.

Figure 5.4: Simulator S1
3RGod

Security against corrupt P ?
1 : We argue that idealFgod,S

1
3RGod

c
≈ real3RGod,A when A corrupts P1

based on the following series of intermediate hybrids.

hyb0: Same as real3RGod,A.

hyb1: Same as hyb0 except that we run steps from S1
3RFair.

hyb2: Same as hyb1 except that when P1 gets output from the GC generated by the parties

who identified P1 to be corrupt, the GC is generated as (GC, e, d)← Spriv(1κ,Ckt, y).

Since hyb2 := idealFgod,S
1
3RGod

, to conclude the proof we show that every two consecutive

hybrids are indistinguishable.

hyb0
c
≈ hyb1: The difference between the hybrids is that in hyb0 steps from 3RFair are run,

whereas in hyb1 steps from S1
3RFair are run. The hybrids are indistinguishable owing to the

indistinguishability of idealFfair,S
1
3RFair

and real3RFair,A.

hyb1
c
≈ hyb2: The difference between the hybrids is in the way (GC, e, d) is generated.

In hyb1, (GC, e, d) ← Gb(1κ,Ckt) is run, whereas in hyb2, it is generated as (GC, e, d) ←
Spriv(1κ,Ckt, y). Indistinguishability follows via reduction to the privacy of the garbling

scheme.

P ?3 is corrupt

Round 1:

- Simulation of Round 1 of S3
3RFair.

- Receive r34 on behalf of P4.

- Use x3 extracted by the simulator in the simulation of InputCommit3 to invoke Fgod functionality

wit (Input, x3) to obtain output y.

Round 2:

- Run Round 2 of S3
3RFair upto the point before the ideal functionality is invoked with the following

exception.

a. If P3 /∈ {Corri}i∈{1,2} and (P1, P3) /∈ Con2 and (P2, P3) /∈ Con1, then run (GC, e, d) ←
Spriv(1κ, C, y) instead of (GC,X)← Sobv(1

κ, C). In this case, let d = d3⊕ d4. Commitments c3,

c4 are generated on d3 and d4. Else run Round 2 of S3
3RFair as such.

37

b. Generate the G̃C for P4 honestly and let d̃ = d̃3 ⊕ d̃4. Generate B̃′4 = {c̃3, c̃4, õ3} where c̃3 is

computed as commitment to d̃3 and õ3 is its corresponding opening. Similarly, c̃4 is commitment

to d̃4 and õ4 is its corresponding opening.

Round 3:

- If corrupt3 = 1 and honestl = 1, generate (GC, e, d) ← Spriv(1κ,Ckt, y). Send (GC, d), labels

for each wire corresponding to values in Vi on behalf of Pi and send labels corresponding to values

in Vj on behalf of Pj where i, j ∈ ind(P3l), i < j.

- Else, run Round 3 of S3
3RFair with the following exception. P4 sends (Ỹ, õ4) where õ4 is the honestly

generated opening to d̃4 instead of being equivocated, and Ỹ is computed such that De(Ỹ, d̃) = y.

Similarly, o4, if and when sent by P1, P2 is the honestly generated opening for d4.

Figure 5.5: Simulator S3
3RGod

Security against corrupt P ?
3 : We argue that idealFgod,S

3
3RGod

c
≈ real3RGod,A when A corrupts P3

based on the following series of intermediate hybrids.

hyb0: Same as realΠ,A.

hyb1: Same as hyb0 except that we run steps from S3
3RFair.

hyb2: Same as hyb1 except that when P3 gets output from the GC generated by the parties

who identified P3 to be corrupt, the GC is generated as (GC, e, d)← Spriv(1κ,Ckt, y).

Since hyb2 := idealF,S33RGod , to conclude the proof we show that every two consecutive

hybrids are indistinguishable.

hyb0
c
≈ hyb1: The difference between the hybrids is that in hyb0 steps from 3RFair are run,

whereas in hyb1 steps from S3
3RFair are run. The hybrids are indistinguishable owing to the

indistinguishability of idealFfair,S
3
3RFair

and real3RFair,A.

hyb1
c
≈ hyb2: The difference between the hybrids is in the way (GC, e, d) is generated.

In hyb1, (GC, e, d) ← Gb(1κ,Ckt) is run, whereas in hyb2, it is generated as (GC, e, d) ←
Spriv(1κ,Ckt, y). Indistinguishability follows via reduction to the privacy of the garbling

scheme.

38

Chapter 6

GOD in 2 Rounds

In this section, we present a 2-round 4PC protocol achieving GOD. Towards achieving the goal

of all parties obtaining the output in 2 rounds, we first observe that the latest a party can obtain

the output is as an evaluator at the end of 2 rounds, in the GC based approach. Accordingly,

our 2-round robust 4PC involves 4 executions, where each party enacts as an evaluator once

and each execution comprises of 3 garblers. Due to the involved nature of the protocol, we

first describe the 2-round protocol 2RGodSetup() (Section 6.1) assuming the presence of a mild

one-time setup: a common randomness has been shared amongst every set of 3 parties. This

simplifies the description of the execution where these 3 parties act as garblers. The outline

of this chapter is as follows: We first present the 2-round protocol 2RGodSetup() involving 8

GCs and present a neat optimization that reduces its cost to 6 GCs. Next, with 2RGodSetup()

(non-optimized variant) as the stepping stone, we show how to remove the setup assumption

in order to obtain our 2-round 4PC protocol 2RGod() (Section 6.3) achieving GOD. We point

that both our protocols are round-optimal and involve communication and computation of 6

GCs and 8 GCs respectively which is a considerable improvement over the 2-round protocol of

[IKKP15] involving 12 GCs.

6.1 With one-time setup

At a high-level, our 2-round robust 4PC assuming setup 2RGodSetup() involves parallel execu-

tions of sGodi, i ∈ [4] with Pi as evaluator and {Pj}j∈ind(Pi) as garblers. We describe a single

execution sGod4() (formally presented in Fig 6.2) with {P1, P2, P3} as garblers where P4 as

evaluator obtains the output at the end of 2 rounds.

Building upon the ideas of our 3RGod, we note that if P4 must obtain the output on the

committed (Definition 5) inputs of the parties at the end of Round 2, we need a way to establish

39

the committed inputs without Round 2 of InputCommiti (i ∈ [4]). This is done by augmenting

the circuit to incorporate the logic of Round 2 of InputCommiti. To elaborate, the circuit

in sGod4 takes as input the views of garblers {P1, P2, P3} i.e {V1,V2,V3} after Round 1 of

InputCommiti(i ∈ [4]) (described in Table 6.1).

Table 6.1: Table representing the views of all parties.

V1

{c12, c13, c14, o12, o13, o14}, {c21, c23, c24, o23, o24}
{c31, c32, c34, o32, o34}, {c41, c42, c43, o42, o43}

V2

{c12, c13, c14, o13, o14}, {c21, c23, c24, o21, o23, o24}
{c31, c32, c34, o31, o34}, {c41, c42, c43, o41, o43}

V3

{c12, c13, c14, o12, o14}, {c21, c23, c24, o21, o24}
{c31, c32, c34, o31, o32, o34}, {c41, c42, c43, o41, o42}

V4

{c12, c13, c14, o12, o13}, {c21, c23, c24, o21, o23}
{c31, c32, c34, o31, o32}, {c41, c42, c43, o41, o42, o43}

The circuit computes majority commitment for each RSS share using the majority of values

input by garblers and checks if there exists a valid opening for each majority commitment to

retrieve the corresponding input share. If so, the circuit reconstructs the inputs of all parties

and then computes the function f which is output to P4. It is easy to check that the input

reconstructed for each honest Pj would indeed correspond to the input shares committed and

output by InputCommitj. This holds since the views of two honest garblers would dictate the

majority and suffice to reconstruct the committed input of honest Pj. We now consider the

cases w.r.t. the corrupt dealer Pk. Suppose Pk = P4 (evaluator) and there is a problem in

reconstruction of x4 (either no majority or appropriate opening). In such a case, the circuit

substitutes x4 with default and outputs f accordingly. Next, suppose corrupt Pk = P1 (garbler).

In this case, the circuit may be unable to reconstruct the committed input consistent with

the output of InputCommit1(). For instance, consider corrupt garbler P1 who distributes the

commitment c12 to P3, P4 and c′12 6= c12 to P2 (c12 would be the majority commitment as

per InputCommit1). Now, if the view input by P1 in sGod4() consists of c′12, then majority

established by the circuit would be c′12 (as the circuit computes majority among versions input by

{P1, P2, P3} and does not account for the version received by P4). To handle this and ensure that

P4 gets the same output that the corrupt P1 would obtain during sGod1() (where c12 constitutes

the majority as per the versions received by {P2, P3, P4}), the circuit in sGod4() additionally

does as follows : If a conflict exists amongst the garblers for any value (commitment/opening)

40

wrt garblers’ input, then the circuit outputs the views input by garblers i.e {V1,V2,V3}. This

is also done if the views input by the garblers do not suffice to reconstruct some garbler’s input.

Both these scenarios occur only when a garbler is corrupt. Privacy against the adversary is thus

preserved as the input views are revealed only to the honest evaluator. This trick of making

the circuit output views when it is established that one of the garblers is corrupt, enables us to

ensure that all parties obtain the output wrt committed inputs, as per InputCommiti (i ∈ [4]).

The formal circuit description appears in Fig 6.1. The idea of augmenting the circuit logic as

above is inspired by the 4PC protocol of [IKKP15].

Input and Output: Pi inputs Vi, i ∈ [3]. Circuit outputs y/{V1,V2,V3}.

Notation: Let c
(k)
ij , o

(k)
ij denote cij , oij ∈ Vk for i ∈ [4], j ∈ ind(Pi), k ∈ [3].

Computation: The circuit computes output as follows:

- Initialize flagg = flage = 0.

- For each i ∈ [4], j ∈ ind(Pi), k ∈ [3]: Compute cij as the majority among {c(k)
ij }k∈[3]. If there is

no majority, set flagg = 1 if i ∈ [3] or flage = 1 if i = 4. Else, check if there exists an o
(k)
ij s.t

x
(k)
ij = Open(pp, cij , o

(k)
ij) 6= ⊥. If so, set xij = x

(k)
ij , else set xij = ⊥.

- Set flagg = 1 if there exist (Vi,Vk) i, k ∈ [3], k 6= i s.t Vi and Vk are inconsistent wrt any cij or

oij where i ∈ [3], j ∈ ind(Pi).

- Set flagg = 1 if xij = ⊥ for any i ∈ [3], j ∈ ind(Pi). Else set xi = ⊕jxij .
- Set flage = 1 and x4 to default value if x4j = ⊥ for any j ∈ ind(P4). Else set x4 = ⊕jx4j .

- If flagg = 1, output {V1,V2,V3}. Else, output y = f(x1, x2, x3, x4).

Figure 6.1: Circuit Description in sGod4

The main challenge resulting from the above approach is that each execution sGodi (i ∈ [4])

needs to be made robust, since each Pi obtains output only during sGodi (as an evaluator).

This is unlike the protocol of [IKKP15] that involves multiple executions of 2-party private-

simultaneous messages (PSMs) and achieves robustness based on the fact that a party acts as

evaluator in multiple instances, including the one where only honest parties are involved. We

choose a variant where all parties are involved in each execution, as it enables us to reduce the

number of executions and improve the communication and computational efficiency. Specif-

ically, in terms of the number of GCs that constitute the primary efficiency bottleneck, our

(non-optimized) protocol involves 8 GCs as opposed to 12 GCs of [IKKP15]. We now give an

overview of a robust single execution sGod4(): The 2 round subprotocols InputCommiti (i ∈ [4])

(Fig 3.1) are run. Next, each garbler computes the GC (for the circuit described in Fig 6.1)

and set of commitments on the encoding information (in permuted order) using the shared

41

randomness and sends this information to P4 in Round 2. The presence of at least two honest

garblers allows P4 to resolve any ambiguity in this common message of the garblers. Each

garbler Pg also transfers the (opening of) encoding information corresponding to its input to

the GC i.e Vg. To account for a corrupt garbler, say P1 who does not send the encoding for V1

as per the protocol, the garblers additionally do the following: P2 and P3 aid in this transfer by

sending the encoding corresponding to P1’s wires, for the values in V1 known to them. Here,

we exploit the fact that input variables involved in V1 are known to either P2 or P3 and thereby

the transfer of labels corresponding to V1 is made resilient to P1’s misbehavior. We extend the

above trick in a natural way to account even for P2 and P3’s potential misbehavior.

While the above technique of making a garbler send labels even for its co-garblers’ input

is effective in achieving robustness against corrupt garbler, the above solution gives rise to the

following attack by corrupt P4: Consider the labels that P4 gets corresponding to V1. Wrt the

wires corresponding to V1, P4 now gets labels not only from P1 but also from P2 and P3 for the

values they have in common with V1. P4 can exploit this to obtain multiple evaluations of the

GC which breaches privacy as demonstrated by the following subtle attack: P4 distributes c41

to P1, P2 and c′41 to P3 in Round 1. Upon evaluation of GC using the labels sent by garblers,

P4 would obtain output wrt share x41 committed via c41 (established as majority commitment

by the circuit). However, the additional labels that P3 sends corresponding to V1 would be

wrt c′41. To obtain another evaluation of f wrt share committed via c′41, P4 does the following:

For input wires involving c41 in V1, use the labels sent by P3 for V1. In this evaluation, the

input to the circuit would involve c′41 in both V1 and V3, establish c′41 as majority and output

accordingly. Note that such attacks can be carried out by corrupt P4, only if P4 distributed

inconsistent commitments related to her input shares during InputCommit4. We tackle this

security breach as: Corresponding to wires involving P4’s committed shares i.e {c41, c42, c43},
the (opening of) encoding information is split and garblers send a share of the (opening of)

encoding information rather than the entire (opening of) encoding information. We explain

how this resolves the problem in context of the example described above – the garblers send

the following wrt wires involving c41 in V1: While P1 sends the encoding of the version of c41

received by her, P2 and P3 send only a share each of the encoding of the version of c41 they

possess. In case corrupt P4 distributed different versions to P2 and P3, the shares sent by them

would not be consistent and therefore render meaningless to P4; preventing her from obtaining

multiple evaluations. This completes the protocol overview. The formal description of sGod4

appears in Fig 6.2 and the robust 2-round 2RGodSetup() assuming setup that combines all

executions of sGodi (i ∈ [4]) appears in Fig 6.3.

42

Inputs and Output: Party Pi has input xi, i ∈ [4]. P4 outputs y = f(x1, x2, x3, x4).

Common Inputs: The circuit Ckt described in Fig 5.1 that takes as input views V1,V2,V3 of

garblers P1, P2, P3 respectively and computes as output either y = f(x1, x2, x3, x4) or {V1,V2,V3}.
Let |Vi| = ` denote the number of bits in the view Vi (i ∈ [3])

Primitives: A non-interactive commitment scheme (NICOM) (Com,Open).

Setup: PRF seed r shared amongst garblers {P1, P2, P3}

Round 1: Pi, i ∈ [4] runs Round 1 of InputCommiti() (Fig 3.1).

Round 2: Pi, i ∈ [4] runs Round 2 of InputCommiti() (Fig 3.1). Besides, the following is done:

- The garblers P1, P2, P3 do the following obtaining all randomness from the common PRF seed r

(that was shared during the one-time setup phase):

◦ Garble the circuit Ckt as (GC, e, d)← Gb(1κ,Ckt).

◦ Let pw ∈R {0, 1} be the permutation bit corresponding to wire index w, w ∈ [3`]. Assume

{e0
w, e

1
w} be the encoding information for the wire w. Generate commitments to them as: for

b ∈ {0, 1}, compute (Cbw,O
b
w)← Com(pp, epw⊕bw).

◦ P1,P2 send B =
{

GC, {Cbw}w∈[3`],b∈{0,1} , d, {pw}w∈S
}

to P4, where S denotes the set of wire

indices involving values in V4. P3 sends H(B) to P4.

- Let vαg (α ∈ [`]) denote the value at index α in Vg (g ∈ [3]). Corresponding to each input wire α

of V1 where α ∈ [`], the garblers do the following:

◦ P1 sends (Omα
α ,mα) to P4, where mα = pα ⊕ vα1 .

◦ Pk, k ∈ {2, 3} does as follows: If α involves an element in V1∩Vk, Pk computes m
(k)
α = pα⊕v(k),

where v(k) denotes corresponding value in Vk.

◦ For b ∈ {0, 1}, P2 and P3 use common randomness to compute shares [Ob
α]0 and [Ob

α]1 of Ob
α

such that Ob
α = [Ob

α]0 ⊕ [Ob
α]1.

◦ Let I denote the set of common elements {c41, c42, c43}. If α involves elements in I, P2 sends

[Om
(2)
α

α]0 and P3 sends [Om
(3)
α

α]1.

◦ If α involves elements in (V1 ∩ V2) \ I, P2 sends (m
(2)
α ,Om

(2)
α

α). Similarly, if α involves elements

in (V1 ∩ V3) \ I, P3 sends (m
(3)
α ,Om

(3)
α

α).

- The garblers execute steps analogous to the above for input wires corresponding to V2 and V3 as

well.

Output Computation by P4:

- Let Bi be the version of B sent by Pi (i ∈ [2]). If B1 = B2, set B = B1. Else set B = Bi where

H(Bi) matches the value sent by P3.

- To retrieve labels corresponding to input wire α of V1 i.e eα for α ∈ [`], P4 does the following:

Use (Omα
α ,mα) sent by P1 to obtain eα = Open(pp,Cmαα ,Omα

α), where Cmαα ∈ B . If the opening is

43

invalid, set Corr4 = {P1} and do the following.

◦ If α involves elements in I i.e {c41, c42, c43}, compute mα = pα ⊕ v(4), where v(4) denotes the

corresponding value in V4. Compute Omα
α as [Om

(2)
α

α]0 ⊕ [Om
(3)
α

α]1 using the shares sent by P2, P3

and set eα = Open(pp,Cmαα ,Omα
α).

◦ Else, use (m
(2)
α ,Om

(2)
α

α) if sent by P2 to retrieve eα = Open(pp,Cm
(2)
α

α ,Om
(2)
α

α). If not obtained from

P2, use Om
(3)
α

α sent by P3 to retrieve eα.

- P4 retrieves other labels corresponding to input wires of V2,V3 similar to the above step. Let

X = {ew}w∈[3`], compute Y = Ev(GC,X) where GC ∈ B.

- Use d ∈ B to decode Y. If Y decodes to y′, output y = y′. Else if Y decodes to {V1,V2,V3},
compute output y as follows:

◦ For i ∈ [3], check if {V1,V2,V3,V4} \ {Vi} suffices to obtain {oij}j∈ind(Pi) such that oij is a

valid opening to cij output by InputCommiti(). If so, use oij to compute xij and subsequently

xi = ⊕jxij . Else set xi to default value.

◦ Output y = f(x1, x2, x3, x4).

Figure 6.2: Single instance with P4 as evaluator (with setup) sGod4

Input and Output: Pi inputs xi and outputs y = f(x1, x2, x3, x4).

Round 1: Each party Pi executes Round 1 of sGodi as evaluator and sGodj (j ∈ ind(Pi)) as garbler.

Round 2: Each Pi executes Round 2 of sGodi as evaluator and sGodj (j ∈ ind(Pi)) as garbler.

Output y as the outcome of sGodi.

Figure 6.3: 2-round GOD (with setup) 2RGodSetup()

6.1.1 Optimization

We further provide an optimization technique that reduces the number of GCs involved in

2RGodSetup() to 6 GCs. Each execution sGodi (Fig 6.2) for i ∈ [4] requires two garblers to

send the GC (specifically B, the set of common information among the 3 garblers) and the

third garbler to send H(B). By considering a field F with each element of size B/2, we reduce

the communication by 25% per execution sGodi i.e. each sGodi now requires 1.5 GCs to be

communicated, summing up to 6 GCs across the four executions. The optimization trick is as

follows: Each garbler interprets the B computed as concatenation of two elements of F and

f(x) as the linear polynomial with the two elements as coefficients. Each garbler Pg sends f(x)

evaluated at a pre-defined point αg in Round 2. The idea is to allow the evaluator to obtain B

by computing the polynomial f(x) using two honest evaluation points. In order to enable the

evaluator to identify these honest evaluation points, we ask each garbler to additionally send a

44

triple comprising of 3 hash values, namely the hash computed on f(αg) wrt each of the garblers.

The two garblers who sent matching hash triples and correct hash wrt their own evaluation

point are identified as honest and are used to interpolate f(x) and subsequently, the set B. The

formal description of the optimization appears in Fig 6.4, describing the modifications over the

single execution sGod4 (Fig 6.2).

Notation: Let |B| = `. Let F = GF (2`/2). Let αg, g ∈ [3] is the public point corresponding to

garbler Pg.

Primitives: A collision-resistant hash H.

Pg, g ∈ [3] does the following:

- Run Round 2 of sGod4 with the following change in transfer of B: Split B as B = a||b with

a, b ∈ F. Consider the polynomial f(x) = ax+ b of degree 1. Let H
g
1 = H(f(α1)),Hg

2 = H(f(α2)),

H
g
3 = H(f(α3)). Send βg = f(αg) and Hg to P4, where Hg = {Hg

1,H
g
2,H

g
3}.

P4 locally computes B after Round 2 as follows:

- Identify two garblers Pi and Pj s.t. i) Hi = Hj , ii) H(βi) = Hi
i and iii) H(βj) = H

j
j . Use βi, βj

to interpolate f(x) = ax+ b. Compute B = a||b to be used for output computation.

Figure 6.4: Optimization of sGod4

6.2 Correctness and Security of 2RGodSetup

Theorem 3. Assuming one-way permutations and one-time setup of common randomness pre-

shared between every set of 3 among 4 parties, the protocol 2RGodSetup (Fig 6.3) securely

realizes functionality Fgod (Fig 2.1) tolerating one malicious corruption.

6.2.1 Correctness

Lemma 12. Protocol 2RGodSetup() is correct.

Proof. We argue that the output y computed by each honest party is based on the unique

inputs committed by Pi (i ∈ [4]) in InputCommiti (Lemma 1). Consider the output computed

by an honest P4 in sGod4. As per the protocol, the GC evaluated by P4 in sGod4 either leads

to output y′ or views of the garblers i.e {V1,V2,V3}. We first consider the case of output y′.

It is easy to check that y′ must be based on Pi’s committed input for honest Pi. This holds

since the majority commitments established by the circuit related to xi are dictated by the

views of two honest garblers which must correspond to the committed xi. Next, we claim that

y′ is based on the committed input of the corrupt garbler as well, say P1. To argue this, we

45

observe that P1 must have sent consistent commitments to honest garblers {P2, P3} in Round

1 of InputCommit1. If not, the GC correctness ensures that the GC outputs {V1,V2,V3} (since

inputs V2,V3 would be inconsistent wrt P1’s input) which contradicts our assumption that the

GC output is y′. It thus holds that the majority commitment established by the circuit wrt

P1’s input must be the version held by both P2, P3 at the end of Round 1 of InputCommit1;

which is consistent with the output of InputCommit1. The strong binding property of NICOM

ensures the uniqueness of x1 reconstructed by the circuit. Thus, we conclude that y′ is based

on the unique inputs committed by Pi (i ∈ [4]) in InputCommiti. Next, we consider the case

when honest P4 obtains {V1,V2,V3} in sGod4. It is now easy to check that the unique input

xi committed in InputCommiti (i ∈ [3]) can be recovered by P4 by using {V1,V2,V3,V4} \ Vi.
This follows directly from the properties of InputCommiti. Thus, P4 proceeds to compute the

function directly on the committed inputs.

6.2.2 Security

Before presenting the formal security proof, we begin with a brief intuition of how 2RGodSetup()

achieves guaranteed output delivery. Firstly, we argue that an honest evaluator, say P4 will

always be able to evaluate the GC during sGod4() robustly which will lead him to obtain the

correct output (Lemma 12). Wrt to each honest garbler Pi, P4 obtains labels corresponding to

Vi directly. Now suppose a corrupt garbler, say P1 does not send labels for V1. P4 obtains labels

for wires involving {c41, c42, c43} in V1 by using shares sent by P2 and P3; both of whom must

have obtained the appropriate consistent {c41, c42, c43} as distributed by honest P4 in Round

1. For other wires in V1, P4 can simply accept labels sent by P2 if available, else P3. We

claim that this works even if say P2 sends labels that do not correspond to P1’s committed

input. In such cases, there must be an inconsistency between V2 and V3 wrt P1’s input and

subsequently the circuit outputs {V1,V2,V3}; which further enables honest P4 to obtain the

correct output (Lemma 12). We thus conclude that GC evaluation is robust and all honest

parties are guaranteed to obtain the correct output.

Finally, we argue that the output obtained by the corrupt party, say P1 is also based on

the unique inputs committed by each Pi (i ∈ [4]) during InputCommiti. The argument is

straightforward- Firstly, corrupt P1 upon GC evaluation during sGod1 would obtain y′; specif-

ically the GC would never output the view of the garblers {V2,V3,V4}. This holds since the

garblers {P2, P3, P4} are honest and hence, would never be in conflict wrt their input shares. It

follows from the earlier arguments that y′ would be based on committed inputs of honest par-

ties. Lastly, even the corrupt party’s input x1 reconstructed by the circuit would be the unique

value committed in InputCommit1. This holds since the circuit of sGod1 would establish the

46

same majority commitments as InputCommit1 in case P1 distributed consistent commitments to

at least two among {P2, P3, P4} in Round 1 of InputCommit1. Else, the circuit would substitute

x1 with default which is considered as the unique value committed by P1 in InputCommit1 in

such a case. This completes the intuition.

We now present the security proof of 2RGodSetup() relative to the ideal functionality Fgod

(Fig 2.1). Since the protocol is symmetric, we describe the simulator S2RGodSetup for a single

case, namely when P4 is corrupt and the simulator acts on behalf of P1, P2, P3. For better

presentation, we present S2RGodSetup as a combination of simulators SsGodi (i ∈ [4]) where SsGodi

describes the simulation during execution sGodi. First, we describe simulator SsGod4 wrt sim-

ulation during single execution sGod4 where corrupt P4 acts as evaluator. Next, we describe

simulator SsGod1 wrt simulation during sGod1 where corrupt P4 acts as garbler. The latter is

symmetric to simulator SsGod2 and simulator SsGod3 involving simulation steps during sGod2 and

sGod3 respectively; both of which involve corrupt garbler P4.

We give an overview of a couple of technicalities in the simulation. First, simulation of

InputCommiti (i ∈ [4]) run during 2RGodSetup() is executed as described in figures 4.3 and

4.4. We recall that corrupt P4’s input is extracted by the simulator during InputCommit4 at

the end of Round 1 itself; enabling the simulator to obtain output y via Fgod at the end of

Round 1 of simulation itself. Second, we point that wrt executions where P4 acts as garbler,

the adversary corrupting P4 does not receive any messages from the honest parties as per the

protocol. Therefore the steps of SsGod1 with P4 as garbler is quite straightforward. The most

interesting case of simulation is during sGod4 when P4 acts as evaluator. Here, we use a slight

variant of the Yao’s privacy simulator that takes as argument not only the output and circuit

description but also the encoding information of the input wires. This is needed to enable

the simulator acting on behalf of garblers to transfer (possibly) different labels for the same

wire corresponding to P4’s input. However, the protocol logic ensures that these labels do not

enable P4 to obtain any additional information beyond the function evaluation on his unique

committed set of inputs. Privacy follows from the privacy of garbling scheme, relying on the

fact that corresponding to gates involving wires related to honest parties’ inputs, P4 always

obtains a single label only. More specifically, the only wires corresponding to which P4 may

obtain both labels are corresponding to gates which take as input only those values which are

already known to P4. Therefore, the intermediate outputs of these gates are values that can

be computed by corrupt P4 locally even in the ideal world. The formal description of the

simulators SsGod4 and SsGod1 appear in Fig 6.5 and Fig 6.6 respectively.

We argue that idealFgod,SsGod4

c
≈ realsGod4,A when A corrupts P4 based on the following

series of intermediate hybrids.

47

hyb0: Same as realsGod4,A.

hyb1: Same as hyb0 except that {cij}i∈ind(P4),j /∈ind(Pi4) is replaced with a commitment to a

dummy value during InputCommiti when P4 doesn’t get access to the corresponding opening

information.

hyb2: Same as hyb1 except that P4 is added to Corrk, k ∈ ind(P4) if opening forwarded from

P4 to Pk corresponding to Pi’s committed share (i ∈ ind(P4k)) in InputCommiti is different

from what was originally committed.

hyb3: Same as hyb2, except that garblers P1, P2, P3 use uniform randomness instead of

pseudo-randomness.

hyb4: Same as hyb3, except that some of the commitments of input wire labels sent on

behalf of P1, P2, P3 which will not be opened by P4 are replaced with commitments on

dummy values.

hyb5: Same as hyb4 except that the GC is created as (GC,X, d) ←
Sprv(1

κ,Ckt, {e0
w, e

1
w}w∈[3`], y).

Since hyb5 := idealFgod,SsGod4
, to conclude the proof we show that every two consecutive

hybrids are indistinguishable.

hyb0
c
≈ hyb1 : The difference between the hybrids is that when the execution results in

P4 not getting access to openings of cij where (i ∈ ind(P4), j /∈ ind(Pi4)), in hyb0, cij is a

commitment on xij, while in hyb1, it is a commitment on a dummy value. Indistinguishability

follows from the hiding of the commitment scheme.

hyb1
c
≈ hyb2 : The difference between the hybrids is that in hyb1 P4 is added to Corrk if the

opening forwarded by P4 to Pk in InputCommiti i ∈ ind(P4k) results in ⊥, whereas in hyb2,

P4 is added to Corrk if the opening sent by P4 is anything other than what was originally

committed. Since the probability with which P4 could successfully decommit to something

other than what was originally committed is negligible (due to the binding of the commitment

scheme), the hybrids are indistinguishable.

hyb2
c
≈ hyb3: The difference between the hybrids is that P1, P2, P3 use uniform randomness

in hyb3 rather than pseudorandomness as in hyb2. The indistinguishability follows via

reduction to the security of the PRF.

hyb3
c
≈ hyb4: The difference between the hybrids is that some of commitments of the

input wire labels in hyb3 that will not be opened are replaced with commitments of dummy

values in hyb4. The indistinguishability follows via reduction to the hiding property of the

commitment scheme Com.

hyb4
c
≈ hyb5: The difference between the hybrids is in the way (GC,X, d) is gener-

48

ated. In hyb4, (GC, e, d) ← Gb(1κ,Ckt) is run. In hyb5, it is generated as (GC,X, d) ←
Sprv(1

κ,Ckt, {e0
w, e

1
w}w∈[3`], y) where {e0

w, e
1
w}w∈[3`] are the set of labels corresponding to input

wires sampled uniformly at random. Since it holds that P4 obtains only single label corre-

sponding to all gates involving wires related to honest parties’ inputs; indistinguishability

follows via reduction to the privacy of the garbling scheme.

SsGod4 with corrupt P ?4

Round 1:

- Simulation of Round 1 of SInputCommitα for α ∈ [4] (refer figure 4.3, 4.4).

- Invoke Fgod with (Input, x4) on behalf of P4 to obtain output y where x4 denotes the input of P4

extracted after Round 1 of simulation of InputCommit4.

Round 2:

- Simulation of Round 2 of SInputCommitα for α ∈ [4].

- Use uniform randomness to sample the encoding information {e0
w, e

1
w}w∈[3`] for the garbled circuit.

- Run (GC,X, d)← Sprv(1
κ,Ckt, {e0

w, e
1
w}w∈[3`], y). Choose pw for w ∈ [3`] uniformly at random.

- For wires related to garblers’ input: If w is associated with xij (such as cij , oij) for i ∈ [3], 4 ∈
ind(Pij) (i.e known to P ∗4), then set mw = pw⊕v where v denotes the corresponding bit consistent

with the values sent to P ∗4 during simulation of InputCommiti; else choose mw uniformly at random.

Let Cmww be commitments on the entries of X with Omw
w as the corresponding openings. Compute

the other commitments on dummy values.

- For wires related to P4’s input: Compute (Cbw,O
b
w) on ebw for b ∈ {0, 1} as per the protocol. Set

m
(i)
w = pw ⊕ v(i) where v(i) denotes the value corresponding to w in Vi (i.e was received on behalf

of Pi during InputCommit4).

- Using the values computed as above, send B on behalf of P1, P2 and H(B) on behalf of P3 as per

the protocol.

- Corresponding to wire w in V1 related to garblers’ inputs: Send (mw,O
mw
w) on behalf of P1.

Additionally, send(mw,O
mw
w) on behalf of Pg (g ∈ {2, 3}) if w involves values present in Vg.

- Analogous step to above is executed for wire w in V2,V3 related to garblers’ inputs.

- Corresponding to wire w in V1 related to P4’s input:

◦ Send m
(1)
w ,Om

(1)
w

w on behalf of P1.

◦ If w involves {c41, c42, c43}, send the share [Om
(2)
w

w]0 and [Om
(3)
w

w]1 on behalf of P2 and P3 respec-

tively as per the protocol. Else, send (m
(g)
w ,Om

(g)
w

w) on behalf of Pg (g ∈ {2, 3}) if w involves

value in V1 ∩ Vg .

- Analogous step as above carried out for wires in V2 and V3 related to P4’s input.

Figure 6.5: SsGod4 : S2RGodSetup during sGod4

We now argue that idealFgod,SsGod1

c
≈ realsGod1,A when A corrupts P4 based on the following

49

series of intermediate hybrids.

hyb0: Same as realsGod1,A.

hyb1: Same as hyb0 except that {cij}i∈ind(P4),j /∈ind(Pi4) is replaced with a commitment to a

dummy value during InputCommiti when P4 doesn’t get access to the corresponding opening

information.

hyb2: Same as hyb1 except that P4 is added to Corrk, k ∈ ind(P4) if opening forwarded from

P4 to Pk corresponding to Pi’s committed share (i ∈ ind(P4k)) in InputCommiti is different

from what was originally committed.

hyb3: Same as hyb2, except that the honest evaluator P1 outputs ⊥ if P4 sends Õmα
α such

that Õmα
α 6= Omα

α but Open(pp,Cmαα , Õmα
α) 6= ⊥.

Since hyb3 := idealF,SsGod1 and hyb0
c
≈ hyb2 follows from argument wrt SsGod4 , to conclude

idealF,SsGod1
c
≈ realsGod1,A, it suffices to show that hyb2

c
≈ hyb3. This follows directly from

the binding property of the commitment scheme Com.

SsGod1 with corrupt P ∗4

Round 1:

- Simulation of Round 1 of SInputCommitα for α ∈ [4] (refer figure 4.3, 4.4).

Round 2:

- Simulation of Round 2 of SInputCommitα for α ∈ [4].

- Let r denote the common PRF seed shared between P2, P3 and P4. Use r to compute {Cbw,Ob
w}

for b ∈ {0, 1} and w ∈ [3`] and B as per the protocol.

- For α ∈ [`] (corresponding to V1), receive (Õmα
α ,mα) on behalf of P1. Output ⊥ if Õmα

α 6= Omα
α

but Open(pp,Cmαα , Õmα
α) 6= ⊥ where Cmαα ∈ B. Else output y on behalf of P1.

Figure 6.6: SsGod1 : S2RGodSetup during sGod1

The above argument can be extended to argue indistinguishability of the adversary’s view

as per simulation of sGod2, sGod3 as well (whose steps are identical to the case of sGod1). This

completes the proof of Theorem 3.

6.3 Without Setup

In this section, we show how the 2-round protocol 2RGodSetup() (non-optimized variant) of Sec-

tion 6.1 can be modified to construct protocol 2RGod() that avoids setup assumption without

inflating the rounds. We recall that the (non-optimized) 2RGodSetup() involves 4 executions,

each comprising of 2 GCs. Consider execution sGod4() that assumes a shared randomness be-

tween the garblers P1, P2, P3. This setup can be avoided in the subprotocol god4() of 2RGod() as

50

follows- Two of the 3 garblers, say P1, P2 are assigned to distribute fresh independent random-

ness, say ra, rb respectively to the other garblers in Round 1. In Round 2, wrt both ra, rb, the

garbler who chooses the randomness transfers the common information B (comprising of GC

and commitment on encoding information e) while the remaining garblers send H(B). Thus,

the number of GCs transmitted is 2 per execution. The transfer of e in Round 2 is similar to

sGod4(), except that now it involves labels corresponding to 2 GCs (one computed using ra,

other using rb). This completes the description of the messages communicated in god4().

We give a quick overview of how the computation by evaluator P4 in god4() is modified

according to the changes described above. We observe that the GC wrt which both honest

garblers obtain the same randomness in Round 1 can be robustly evaluated. This follows

directly from robustness of sGod4() and is guaranteed to occur when the garbler acting as

randomness distributor is honest. We point that assigning two different garblers to distribute

randomness for the two GCs ensures the presence of at least one such GC, whose evaluation

and output computation follows similar to sGod4(). If a corrupt garbler, say P1 distributes

different randomness, say r2
a to P2 and r3

a to P3 in Round 1 and P1 sends common information

Ba inconsistent with both r2
a and r3

a, she is identified to be corrupt by P4 and this GC is

discarded (only the GC based on rb distributed by honest garbler is evaluated). However, a

major challenge occurs if P1 sends Ba consistent with the message of exactly one honest garbler,

say P2 (using r2
a). Now, P4 attempts to evaluate the GC based on Ba, wrt which the labels

sent by honest P3 are futile (as they are based on r3
a). We emphasize that this is a substantial

complication over sGod4() as sGod4() is not equipped to handle cases where communication

from honest garbler in Round 2 is meaningless. We handle this as: Since P1 (randomness

distributer) and P3 are not on the same page wrt Ba, P4 adds them to her conflict set and

identifies P2 to be honest. P4 can thereby simply accept the labels sent by P2 wrt Ba for all

input wires involving values known to P2. This step ensures that the majority commitments

established by the circuit corresponding to honest parties’ inputs indeed corresponds to their

committed inputs (for instance, in the above context, the version distributed to honest P2 in

Round 1 would be established as majority; since labels given by P2 would be used wrt both V2

and V3). Next, since labels obtained exclusively from P1 (not from P2) are related to values

known to P4, P4 can verify whether they are indeed correct. In case of any problem, P4 can

simply discard this GC and evaluate the GC based on rb dealt by honest party.

While the above works for labels of honest parties’ inputs, a subtle issue emerges when P2

does not receive input shares consistent with corrupt P1’s committed input in Round 1. This is

tackled as: Recall that as per InputCommit1, in the above case, P4 populates Con4 with (P1, P2).

Now, since Con4 also contains (P1, P3), P4 points P1 to be corrupt and discards the GC based

51

on ra and evaluates only the GC based on rb distributed by honest P2. Thus, god4() maintains

the invariant that wrt the GC whose randomness is dealt by corrupt garbler, either honest P4

is able to successfully evaluate on committed inputs or the corrupt garbler is exposed leading

to P4 discarding the GC and obtaining output by robust evaluation of other GC (with honest

randomness distributor). Further, round 2 of InputCommit is run (outside of circuit) to enable

honest P4 to compute the output using only one honest garbler’s view, when the circuit outputs

views. This completes the high-level intuition of robustness of god4(). The formal description

of single execution god4() and the 2-round robust 2RGod() that combines all executions appear

in Fig 6.7 and Fig 6.8 respectively.

Inputs and Output: Party Pi has input xi, i ∈ [4]. P4 outputs y = f(x1, x2, x3, x4).

Common Inputs: The circuit Ckt described in Fig 5.1 that takes as input views V1,V2,V3 of

garblers P1, P2, P3 respectively and computes as output either y = f(x1, x2, x3, x4) or {V1,V2,V3}.
Let |Vi| = ` denote the number of bits in the view of each i ∈ [3]

Primitives: A NICOM (Com,Open).

Round 1: Pi, i ∈ [4] runs Round 1 of InputCommiti() (Fig 3.1). Besides,

- P1 sends PRF seed ra to P2 and P3. P2 sends PRF seed rb to P1, P3.

Round 2: Pi, i ∈ [4] runs Round 2 of InputCommiti() (Fig 3.1). Besides,

- The garblers P1, P2, P3 compute Ba, Bb using PRF seeds ra, rb respectively similar to sGod4.

- P1 sends Ba. P2, P3 send H(Ba). P2 sends Bb. P1, P3 send H(Bb).

- The garblers execute steps similar to Round 2 of sGod4 to transfer encoding information wrt both

GCa ∈ Ba and GCb ∈ Bb.

Output Computation by P4:

- There are 3 cases that occur wrt Ba sent by P1:

(a) Messages of both P2, P3 are consistent with Ba: Compute output using Ba and the corre-

sponding labels sent by the garblers as per output computation in sGod4() and terminate.

(b) Messages of exactly one among P2, P3 is consistent with Ba: Populate Con4 = {P1, Pj} where

Pj (j ∈ {2, 3}) denotes the garbler in conflict with P1 wrt Ba.

(c) Messages of both P2, P3 inconsistent wrt Ba: Set Corr4 = {P1}.
- Execute steps analogous to above wrt Bb.

- Set Corr4 = Pj (j ∈ [3]) if two distinct pairs in Con4 involve Pj .

- If Corr4 = P1 (correspondingly P2), compute output using Bb (correspondingly Ba) and the

associated labels sent by the garblers as per output computation in sGod4() and terminate.

- Suppose Con4 contains {P1, Pj}, garbler Pk = {P1, P2, P3} \ {P1, Pj} is identified to be honest.

P4 evaluates GCa ∈ Ba as:

52

◦ For each α (involving values known to Pk) where (Omα
α ,mα) is obtained from Pk, compute

eα = Open(pp,Cmαα ,Omα
α), Cmαα ∈ Ba.

◦ For α involving elements in V4: Compute mα = pα⊕ v(4), where v(4) denotes the corresponding

value in V4.

◦ For α corresponding to input Vj of the GC, do the following if α involves {c41, c42, c43}: Obtain

a share each of Omα
α from P1 and Pk; combine the shares to compute Omα

α , and subsequently eα

using Cmαα ∈ Ba. If the opening is invalid, set Corr4 = {P1} .

◦ Using the opening of encoding information Omα
α sent by P1 wrt wires α for which eα has not

been computed yet (values in V4 \Vk), compute eα = Open(pp,Cmαα ,Omα
α), where Cmαα ∈ Ba. If

any opening is invalid, set Corr4 = P1 and compute output using Bb and the associated labels

as per output computation in sGod4(). Else, use X = {eα}α∈[3`] to compute Y = Ev(GCa,X).

Decode Y to compute output similar to steps of sGod4 (using information obtained in Round 2

of InputCommiti (i ∈ [4]) additionally if GC outputs views).

- If output has not been computed, evaluate GCb ∈ Bb by following steps analogous to the above

in order to obtain output.

Figure 6.7: Single garble instance god4()

Input and Output: Pi inputs xi and outputs y = f(x1, x2, x3, x4).

Round 1: Each party Pi executes Round 1 of godi() as evaluator and godj() (j ∈ ind(Pi)) as

garbler.

Round 2: Each Pi executes Round 2 of godi as evaluator and sGodj (j ∈ ind(Pi)) as garbler.

Output y as the outcome of godi.

Figure 6.8: 2-round GOD 2RGod

6.4 Correctness and Security of 2RGod

Theorem 4. Assuming one-way permutations exist, the protocol 2RGod (Fig 6.8) securely

realizes functionality Fgod (Fig 2.1) tolerating one malicious corruption.

6.4.1 Correctness

Lemma 13. Protocol 2RGod() is correct.

Proof. We argue that the output y computed by each honest party is based on the unique inputs

committed by Pi (i ∈ [4]) in InputCommiti (Lemma 1). Consider the output computed by an

honest P4 in god4. Since the proof follows directly from correctness of 2RGodSetup (Lemma 12)

53

in case P4 evaluates the GC whose randomness is distributed by honest garbler, we present the

argument for the case when P4 evaluates GC based on ra, distributed by corrupt garbler, say

P1. As per the protocol, this GC would be evaluated only if P1 distributed ra to atleast one

among P2, P3, say P2 alone. (If consistent ra was distributed to both P2, P3, correctness follows

from Lemma 12). As per the protocol, the GC upon evaluation would either lead to output y′

or views of the garblers i.e {V1,V2,V3}.
We first consider the case of output y′. It is easy to check that honest P4 would proceed to

evaluation of this GC only if he obtained labels corresponding to his committed input. Next, we

argue that y′ must be based on committed inputs of honest P2 and P3 as well - since P2’s view is

consistent with the unique value committed at the end of InputCommit2 and InputCommit3, any

misbehavior by P1 wrt shares of x2 or x3 would lead to the circuit outputting {V1,V2,V3} (as

there is a conflict wrt garbler’s input). This is a contradiction to our assumption that circuit

outputs y′. Finally, we analyze the case of corrupt P1’s input. Note that since circuit did not

output {V1,V2,V3}, the x1 reconstructed by the circuit must be consistent with P2’s view i.e

the version of commitments on shares that P1 gave to P2 in Round 1 of InputCommit1. We claim

that this must consistent with the unique value committed by P1 in InputCommit1 - If not, then

the majority commitment related to P1’s input should be present with P3 and P4. In such a

case, P4 would have populated Con4 with {P1, P2} (as the versions of commitment on P1’s shares

obtained from P1, P2 would differ). Further, recall that since P3 did not send GC consistent

with ra, P4 must have populated Con4 = {P1, P3} as per the protocol. Consequently, P4 would

have concluded that P1 is corrupt and discarded this GC. We have arrived at a contradiction

to our assumption that P4 evaluates the GC based on ra. Thus, we conclude that y′ is based

on the unique inputs committed by Pi (i ∈ [4]) in InputCommiti.

Next, we consider the case when honest P4 obtains {V1,V2,V3} in god4. Here, we point that

unlike in sGod4, P4 is assured to get the view of only one honest garbler, P2 (in the context of

the above example). It is easy to check that P4 can compute the committed input of the honest

parties since the views of two honest parties at the end of Round 1 itself suffices to compute

the committed input of all honest parties. Lastly, we analyze how P4 is able to retrieve P1’s

committed input. Note that as per the argument above (about why y′ is based on committed

x1), it is evident that P4 must have evaluated this GC only if the unique input committed by

P1 during InputCommit1 is available to P2 at the end of Round 1. Thus, P4 can compute the

committed shares x13, x14 using V2 output by the GC. Wrt share x12 not held by P2 but held

by P3, note that it follows from the description of InputCommit1 that atleast one among P3, P4

must have obtained the opening corresponding to committed x12 at the end of Round 1 itself

and forwarded it to the other in Round 2. We can thus conclude that P4 has access to the

54

committed value of x12 at the end of Round 2, thereby enabling him to compute the unique

value x1 committed in InputCommit1. Thus, P4 proceeds to compute the function directly on

the committed inputs. This completes the proof of correctness.

6.4.2 Security

In this section, we present a sketch of the simulation proof of 2RGod relative to the ideal

functionality Fgod (Fig 2.1). Similar to S2RGodSetup, we describe the simulator S2RGod for a single

case, namely when P4 is corrupt and the simulator acts on behalf of P1, P2, P3 and consider

S2RGod to be a combination of Sgodi (i ∈ [4]) where Sgodi describes the simulation during execution

godi.

We begin with description of simulator Sgod4 wrt simulation during god4 where corrupt P4

acts as evaluator. Note that in this case, both randomness distributors are constituted by honest

garblers, on behalf of whom the simulator acts. Thereby, the simulation proceeds identical to

SsGod4 except that in Round 2, there are two copies of GC and encoding information that need

to be simulated. We can thus conclude based on the security arguments of SsGod4 that the view

of A corrupting P4 in ideal execution of god4 is indistinguishable from the real execution of

god4.

Next, we describe the simulator Sgod1 wrt simulation during god1 where corrupt P4 acts as

garbler. If P4 does not act as randomness distributor, it is easy to check that the simulation

can proceed similar to SsGod1 (except involving two instances of GC and encoding information).

Now suppose P4 acts as a designated randomness distributor wrt common information Ba. On

behalf of honest P1, Sgod1 checks if P4 sent Ba consistent with randomness received on behalf of

atleast one among P2, P3. If not, simulator terminates with output y (obtained upon invoking

Fgod with x4 extracted at end of Round 1 of InputCommit4). Else, Sgod1 populates the corrupt

and conflict set on behalf of honest P1 as per the protocol. If C1 = ∅, SsGod1 checks if the

(opening of) labels obtained from P4 on behalf of honest P1, that are to be used for evaluation

as per the protocol god1, indeed correspond to the same (opening of) labels as derived from the

corresponding randomness (known on behalf of atleast one among P2, P3 wrt whom Ba sent by

P4 is consistent). If not, but the opening is valid wrt corresponding commitment, Sgod1 outputs

⊥ on behalf of honest P1. As argued in SsGod1 , this can be reduced to violating the binding

property of commitment scheme; which occurs only with negligible probability. We can thus

conclude that the view of A corrupting P4 in ideal execution of god1 is indistinguishable from

the real execution of god1. The simulators Sgod2 , Sgod3 are analogous to Sgod1 as they all deal

with corrupt garbler P4. This completes the security proof of 2RGod.

55

Chapter 7

Experimental Results

In this section, we provide elaborate results of our implementation. We use the circuits of AES

128 and SHA 256 as benchmark circits. We begin with the description of the setup in terms

of hardware, software, local area network (LAN), wide area network (WAN) and provide a

detailed comparison with the relevant state-of-the-art.

Hardware Our experiments are demonstrated both in LAN and WAN setting as they are

better suited for high latency networks. For LAN setting, our system specifications include a

32GB RAM, an Intel i7 octa-core processor with 3.6GHz processing speed. For WAN setting,

we utilize instances of Microsoft Azure D4s v3 that are located in West US, South India, East

Australia and East Japan. As our protocols cater to systems with limited bandwidth support,

we limit the bandwidth for the WAN setting to 8Mbps. The slowest link has the round trip

time of 0.21 s between West US and South India. Our hardware has support from AES-NI

instructions.

Software The operating system used for both LAN and WAN setting is ubuntu 16.04LTS

(64-bit). Our code is built as per the standards of C++11. We rely on the libgarble library that

is built from JustGarble library for the code of garbled circuits. Additionally, we instantiate

our garbling scheme with the best optimization of half-gates [ZRE15]. We instantiate our

commitment scheme with hash for empirical purposes. A multi-threaded environment is created

for improved efficiency. The parties emulate a complete-graph network and sockets are used

to communicate the data. All our results depict the average values taken for 20 runs of each

experiment.

Comparison We compare our results with the state-of-the-art 3PC and 4PC of [MRZ15,

IKKP15, BJPR18]. We have implemented all these protocols in our environment for unified

comparison. We do not compare with 5PC of [CGMV17] as it relies on distributed garbling

56

to tackle 2 corruptions which incurs huge cost even for weaker abort security owing to larger

circuits. Tables 7.1, 7.2 indicate the performance of our 3RFair and 3RGod when compared to

that of [MRZ15, BJPR18]. The tables depict the values separately for the asymmetric roles

of garbler and evaluator. However, each party in 2RGod and [IKKP15] emulates symmetric

roles acting as garbler and as evaluator for the same number of instances. Also, we need to

aptly compare the efficiency of constructions with different number of parties (3PC and 4PC).

Hence, Table 7.3 depicts the average performance per party for all protocols. In all tables, the

bracketed values indicate the worst case run of 3RGod. The tables depict the computation time

(CT), runtime (CT + network time) for LAN (LAN) and runtime in WAN (WAN). WAN

runtime indicates the influence of round complexity and communication of the protocols, given

the proximity of servers.

The performance of our 3-round 3RFair is noteworthy where the overall overhead incurred

over the selective abort 3PC of [MRZ15] is a nominal value in the range 1.14 − 1.29 s (range

taken over both circuits) in terms of WAN. Despite using 2 GCs, the protocol 3RFair incurs

only an overhead of < 23 ms in LAN (majority due to computation time) over that of 3PC

fair [BJPR18], while saving one round of interaction that translates to a gain of at most 0.34 s

for garbler and 0.07 s for evaluator role in WAN and improves for larger circuits as exhibited

in Table 7.1, 7.2. Moreover, the protocols 3RFair and 3RGod (inclusive of the worst case)

improve over the state-of-the-art 5-round 4PC GOD in high-latency network albeit the use of

an additional GC. The saving amounts to best case saving of 0.44 s in WAN. The 4PC GOD

of [BJPR18] exploits an almost idle party in the system, while our 3RGod protocol involves

symmetry with two garblers and two evaluators, hence the resulting efficiency of 3RGod in WAN

highlights its practical worth. However, the overhead in computation and communication is

due to the use of 2 and 4 GCs in 3RFair and 3RGod respectively compared to the use of a single

GC in 4PC GOD of [BJPR18]. Like the authors of [BJPR18], we do not implement the 3PC

GOD of [BJPR18] in WAN as it requires a robust channel. Moreover, the per-party gain in

WAN of our 3-round protocols over 3PC fair of [BJPR18] (4 rounds) naturally implies gain

over 3PC GOD of [BJPR18] (5 rounds with additional broadcast).

In terms of per party comparison, both our 3-round 3RFair and 3RGod gain appx 0.02−0.28 s

over the 4-round 3PC fair of [BJPR18] in terms of WAN runtime, while achieving stronger secu-

rity notions. This gain comes from the presence of an additional honest party in the computation

in 4PC. Additionally, the performance of 3RGod is not far from the selective abort protocol of

[MRZ15] and incurs an overhead of 0.14− 1.79 ms, 0.05− 0.22 s per party in terms of LAN and

WAN respectively. The empirical values for the round-optimal GOD protocols of [IKKP15] and

ours indicate that the saving of 4 GCs is significant for real-time systems(0.5 s saving in WAN).

57

Table 7.1: Computation time (CT), Runtime for LAN, WAN (bandwidth 8Mbps), Communication (CM) of
all protocols for AES (g ∈ [2], e ∈ {3, 4}).

Protocol
Setting, CT(ms) LAN(ms) WAN(s) CM(KB)
Security Pg Pe Pg Pe Pg Pe Pg Pe

[MRZ15] 3PC Abort 1.45 0.91 1.54 1.45 0.58 0.56 153.2 2.25
[BJPR18] 3PC fair 1.37 0.92 1.48 1.43 0.85 0.64 161.55 2.27
[BJPR18] 3PC GOD 1.57 1.36 1.76 1.61 – – 153.39 2.29
[BJPR18] 4PC GOD 1.44 0.87 1.95 1.48 0.84 0.87 163.31 8.1
3RFair 4PC Fair 1.71 0.76 1.97 1.06 0.72 0.78 312.58 10.0
3RGod 4PC GOD 1.69 1.08 1.95 1.34 0.71 0.76 312.58 10.0

(+0.72) (+1.05) (+0.86) (+1.28) (+0.06) (+0.05) (+2.3) (+ 156.29)

Table 7.2: Computation time (CT), Runtime for LAN, WAN (bandwidth 8Mbps) and Communication (CM)
of all protocols for SHA where g ∈ [2] and e ∈ {3, 4}. (The 4th almost idle party in 4PC GOD of [BJPR18]
has the following values for AES,SHA in order: CT=0.04 ms,0.09 ms; LAN=0.23 ms,0.6 ms; WAN=0.42 s,0.84 s;
Comm=2.1 KB,2.1 KB).

Protocol
Setting, CT(ms) LAN(ms) WAN(s) CM(KB)
Security Pg Pe Pg Pe Pg Pe Pg Pe

[MRZ15] 3PC Abort 13.34 10.1 16.72 15.96 1.0 0.96 3073.65 4.51
[BJPR18] 3PC fair 13.92 9.7 16.89 15.85 1.32 1.12 3089.7 4.52
[BJPR18] 3PC GOD 14.86 10.66 17.48 16.52 – – 3074.19 4.68
[BJPR18] 4PC GOD 13.97 10.81 17.68 16.72 1.23 1.28 3091.9 14.26
3RFair 4PC Fair 19.14 10.16 21.7 14.43 0.98 1.05 6157.5 18.13
3RGod 4PC GOD 19.17 10.18 21.73 14.56 0.97 1.08 6157.5 18.13

(+11.3) (+13.24) (+0.12) (+0.10) (+0.11) (+0.09) (+9.06) (+3078.82)

Table 7.3: Average per party values of Computation time (CT), Runtime for LAN, WAN (bandwidth 8Mbps)
and Communication (CM) for all protocols.

Protocol
Setting, CT(ms) LAN(ms) WAN(s) CM(MB)
Security AES SHA AES SHA AES SHA AES SHA

[MRZ15] 3PC Abort 1.27 12.26 1.51 16.46 0.57 0.98 0.10 2
[BJPR18] 3PC fair 1.22 12.51 1.46 16.54 0.78 1.3 0.10 2.01
[BJPR18] 3PC GOD 1.5 13.46 1.71 17.16 – – 0.10 2
[BJPR18] 4PC GOD 0.95 9.71 1.41 9.83 0.74 1.14 0.08 1.51
[IKKP15] 4PC GOD 6.49 72.54 7.92 83.68 1.74 2.6 10.98 28.08
3RFair 4PC Fair 1.23 14.65 1.52 18.06 0.75 1.02 0.16 3.02
3RGod 4PC GOD 1.38 14.67 1.65 18.14 0.74 1.03 0.16 3.02

(+0.88) (+12.27) (+1.07) (+0.11) (+0.05) (+0.1) (+0.07) (+1.51)
2RGod 4PC GOD 6.28 71.72 7.93 83.243 1.58 2.09 10.68 21.96

Further, for huge circuits, having a one-time setup, while obtaining communication efficient

(reduction by half) and round optimal protocol (2RGodSetup) goes a long way in improving the

performance. Thus, our two round protocols strike a good balance between round optimality

and efficiency.

It is observed that, the performance of our protocols in high latency networks improves with

the size of circuits. Also, the difference in the latency and communication between AES and

SHA circuits reflects the circuit size. Lastly, as bandwidth increases, the gap in performance

of 2-round protocols and their efficient counterparts closes in (although computation is still

58

higher), owing to the amount of data that the channels can carry at once. In essence, for low-

bandwidth systems which is the highlight of the paper, the overheads for our 3 round protocols

is owed to the use of more GCs. This overhead, however, is annulled by the gain resulting

from fewer rounds of interaction, thus bridging the gap between efficiency and optimal round

complexity of 2, which is the foremost need of networks such as the Internet.

59

Part II

Beyond Honest Majority:

4PC in Best-of-Both-Worlds Setting

60

Chapter 8

Introduction

MPC protocol comes in distinct flavours with varying degree of robustness– guaranteed out-

put delivery, fairness and unanimous abort. The strongest security, guaranteed output de-

livery, implies that all parties are guaranteed to obtain the output, regardless of the ad-

versarial strategy. In the weaker notion of fairness, the corrupted parties receive their out-

put if and only if all honest parties receive their output. In the further weaker guarantee

of unanimous abort, fairness may be compromised, yet the adversary cannot break unanim-

ity of honest parties. That is, either all or none of the honest parties receive the output.

While highly sought-after, the former two properties can only be realised, when majority of

the involved population is honest [Cle86]. In the absence of this favorable condition, only

unanimous abort can be attained. With these distinct affordable goals, MPC with honest

majority [BGW88, CCD88, RB89, BMR90, Bea91, DN07, ACGJ18] and dishonest majority

[GMW87, DO10, GGHR14, BHP17, ACJ17, HHPV18, BGJ+18] mark one of the earliest de-

marcations in the world of MPC.

With complementary challenges and techniques, each setting independently stands tall with

spectacular body of work. Yet, the most worrisome shortcoming of these generic protocols is

that: a protocol in one setting completely breaks down in the other setting i.e. the security

promises are very rigid and specific to the setting. For example, a protocol for honest majority

might no longer even be “private” or “correct” if half (or more) of the parties are corrupted. A

protocol that guarantees security with unanimous abort for arbitrary corruptions cannot pull

off the stronger security of guaranteed output delivery or fairness even if only a “single” party

is corrupt. The quest for attaining the best feasible security guarantee in the respective settings

of honest and dishonest majority in a single protocol sets the beginning of a brand new class of

MPC protocols, termed as Best of Both Worlds (BoBW) [IKLP06, Kat07, IKK+11]. In critical

applications such as voting [KMO01, NBK15], secure auctions [DGK09], secure aggregation

61

[BIK+17], federated learning and prediction [MR18, MZ17], financial data analysis [BTW12]

and many more, where privacy of the inputs of an honest party needs protection at any cost and

yet a robust completion is called for (as much as theoretically feasible), BoBW MPC protocols

are arguably the best fit. Having discussed the motivation and the security expectations, we

now highlight the known feasibility results and give an outline of our constructions.

On the feasibility of BoBW MPC: Denoting the threshold of corruption in honest and

dishonest majority case by t and s respectively, an ideal BoBW MPC should promise the best

possible security in each corruption scenario for any population of size n, as long as t < n/2

and s < n. Specifically, an ideal protocol in BoBW model would simultaneously achieve GOD

against t < n/2 active corruptions and security with unanimous abort (UA) against s < n

active corruptions. Quite contrary to the expectation, [Kat07, IKK+11] show that ideal BoBW

is impossible to achieve in expected polynomial time (in the security parameter) when the

sum of corruption thresholds in honest and dishonest majority exceeds (or equals) n. Thus,

the feasibility reduces to achieving GOD against t active corruptions and UA against s active

corruptions under the constraint that t + s < n. In the world of 4 parties (4PC), we provide

the first efficient construction of a BoBW protocol that promises GOD against t = 1 active

corruption and UA against s = 2 active corruptions, optimally respecting the feasibility.

A number of relaxations were proposed to get around the impossibility result. We consider

the most meaningful relaxation provided in the work of [LRM10], where the best possible

security of guaranteed output delivery is compromised to the second-best notion of fairness

in the honest-majority setting. This notion brings back the true essence of BoBW protocols

with no constraint on n, apart from the natural bounds of t < n/2 and s < n. Furthermore,

fairness is almost as good as guaranteed output delivery for many practical applications where

the adversary is rational enough and does not wish to fail the honest parties at the expense

of losing its own output. In this direction, we provide the first efficient 4PC BoBW promising

fairness against t = 1 active corruption and UA against s = 3 active corruptions. We also

provide a simpler extension for this BoBW notion for 3 parties promising fairness against t = 1

active corruption and UA against s = 2 active corruptions.

We consider 4PC as 4 is the least number of parties which offers meaningful yet challenging

security notions for BoBW model, while adhering to the feasibility. To elaborate, for 3-party

setting (3PC), the BoBW feasibility t + s < n to attain GOD against t corruptions and UA

against s corruptions reduces to either simply GOD for honest majority (t = 1, s = 1) [BJPR18,

PR18] or UA for dishonest majority (t = 0, s = 2) [CKMZ14], both of which have known

practical constructions as cited.

62

8.1 Related Work

In this section, we talk about the relaxations that were proposed to get around the impossi-

bility result of [IKK+11, Kat07]. As discussed already, in the work of [LRM10], the security

expectation for honest-majority setting is compromised to fairness instead of GOD. Allowing

the adversary to learn s evaluations of the function in the dishonest-majority case, [IKLP06]

shows yet another way to circumvent the impossibility result. While the standard definition of

security restricts to a single evaluation of the the ideal functionality, this weakening corresponds

to the adversary accessing the functionality s times, each time with distinct inputs exclusively

corresponding to the corrupt parties. Another circumvention comes at the expense of achieving

a weaker notion of O(1/p)-security with abort in the dishonest-majority case. Roughly speak-

ing, this notion means that the actions of any polynomial-time adversary in the real world can

be simulated by a polynomial-time adversary in the ideal world such that the distributions of

the resulting outcomes cannot be distinguished with probability better than O(1/p). [IKLP06]

shows yet another circumvention by weakening the adversary in dishonest-majority case from

active to passive. Appealing to security against non-rushing adversary (equivalently, assum-

ing simultaneous message transmission) in order to break the polynomial-round barrier, [Kat07]

gets partial success and improves the impossibility bound to logarithmic, without any matching

upper bound which eludes till date. On the contrary, constructions are known when t+s < n is

assumed [IKLP06], tolerating active and rushing corruptions and giving best possible security

in both the honest and dishonest majority case.

A more fine-grained graceful degradation of security is dealt with in the works of

[LRM10, HLMR11, HLMR12, HLM13] considering a mixed adversary that can simultaneously

corrupt in both active and semi-honest style. An orthogonal notion of BoBW security is consid-

ered in [Cha89, HMZ08, LRM10] where information-theoretic and respectively computational

security is the desired goal in honest and dishonest majority setting. Indeed, information-

theoretic security is another note-worthy trade-mark of the honest-majority MPC protocols and

in the dishonest-majority regime, computational security is the default choice [FHW04, Cha89].

[LRM10] is by far the only work that considers attaining guaranteed output delivery or fairness

with information-theoretic security in the honest-majority world and unanimous abort with

computational security otherwise. [HIKR18] puts forward a notion of graceful degradation of

security purely in the context of information-theoretic security with the new conceptual con-

tribution of a non-traditional yet meaningful notion of information-theoretic security against

dishonest majority. They show their notion to be the best possible information-theoretic guar-

antee achievable in the honest and dishonest majority simultaneously and further demonstrate

63

realization of a specific class of MPC functions. [GGR18] studies the communication efficiency

in the BoBW setting.

8.2 Our Contribution

In the regime of MPC with small population, we investigate the adversarial model beyond the

traditional honest majority and dishonest majority in an efficient manner suitable for practical

systems. Specifically, this is the first work to explore the efficiency of constant round protocols

in Best of Both Worlds [IKLP06] – simultaneously achieving varying security notions based on

honest/dishonest majority. Both the protocols are based on distributed garbling (DG) and are

realized for n = 4 parties. The first construction, πbobw.god, simultaneously achieves guaranteed

output delivery (GOD) for t = 1 active corruption and unanimous abort (UA) for s = 2 active

corruptions while respecting the constraint of t+ s < n as per [IKLP06]. Further, relaxing the

honest-majority security from GOD to fairness to eliminate the above constraint as in [LRM10],

the second construction πbobw.fair simultaneously achieves fairness for t = 1 active corruption

and unanimous abort for s = 3 active corruptions. We also present a simpler 3PC variant of

this protocol for t = 1 and s = 2. Below, the prime technical contributions are summarized.

The heart of πbobw.god protocol lies in putting together the numerous tools optimized specially

for small parties in a way that the construction stands secure for both worlds of honest-majority

and dishonest-majority. The key ideas of construction come from– (1) Enabling the honest par-

ties to identify the corruption scenario (honest / dishonest majority) in some cases and proceed

accordingly, (2) Secret-sharing each input amongst the remaining 3 parties and exploiting the

existence of two owners of each input-share to attain robustness when needed. (3) Using the

inexpensive tricks of seed-distribution (SD) [CGMV17] and attested OT (AOT) [CGMV17] to

handle malicious adversary despite relying only on passively secure DG scheme. (4) Culmi-

nation of the tools of semi-honest DG, AOT and SD to tackle one malicious corruption and

topping it with the technique of cut-and-choose [Lin16] to undo the possible damage caused by

a 2-party coalition. (5) Identification and exclusion of a misbehaving party and proceeding to

run an efficient 3PC [MRZ15] (modified to achieve UA) amongst the remaining parties. Note

that the promise of UA from 3PC is sufficient since if t = 1, then the sole corrupt party has

already been eliminated and the remaining 3 honest parties naturally achieve GOD in 3PC. If

s = 2, then the 3PC is run in the face of one corruption promising at most UA security as

desired. Lastly, maintaining input privacy and consistency in all corruption scenarios is also

crucial and aptly handled by our construction.

For πbobw.fair, we rely on a 4-party DG scheme maliciously secure against 3 corruptions in

the abort model along with tools such as Tiny OT [NNOB12] for authentication purposes and

64

replicated secret sharing (RSS) for ensuring BoBW guarantees. We instantiate the DG with

the efficient state-of-the-art scheme of [WRK17]. To tackle fairness violation for the case of

t = 1 when the adversary does not engage in the output construction (but computes the output

based on messages from honest parties), we adopt 3-party, 1-private RSS of the output-mask

shares of the underlying garbled circuit along with authentication on these re-shares. This step

involves non-trivial challenges to ensure valid authentication of the re-shares w.r.t. all parties

as the authentication scheme is pairwise and not publicly verifiable. The purpose of 3-party,

1-private RSS as opposed to simpler additive sharing is to ensure unanimity for the case of

an adversary corrupting 2 parties i.e. to ensure that both the honest parties are in agreement

of the output obtained. Additionally, we scale the construction to 3PC with t = 1, s = 2 by

providing a simpler variant of πbobw.fair. Using the underlying DG scheme as a blackbox, our

constructions with stronger BoBW guarantees incur minimal overhead and are highly efficient

as exhibited by empirical results.

Empirical Results and Comparison We provide a detailed empirical analysis of our pro-

tocols in Chapter 13. The implementation results include realization of AES-128 and SHA-256

circuits in both LAN and WAN setting for πbobw.fair. However, to show the practicality of

πbobw.god in critical systems, we realize it with the widely-used voting system.

8.3 Outline of Part II

Post the introduction, this part of the thesis starts with the preliminaries required for both

BoBW constructions in Chapter 9 followed by the building blocks in Chapter 10. Chapter 11

presents the details of the BoBW construction achieiving GOD in honest majority. Chapter

12 presents the details of the BoBW construction achieving fairness in honest majority. Both

protocols are backed with a detailed security proof presented via the existence of a simulator.

The final chapter provides elaborate implementation results. The results for the fair protocol

show that our protocol incurs a minimal overhead to provide BoBW guarantees over the protocol

of [WRK17] on which it is built while the results for GOD protocol are shown via implementation

of the application of voting.

65

Chapter 9

Preliminaries

We denote the set of 4 parties as P = {P1, P2, P3, P4} and each pair is connected by pairwise-

secure private channels. We next describe the primitives that are additionally required for the

BoBW constructions. The remaining primitives of Garbling, Replicated Secret Sharing, Non-

interactive and Equivocal Non-interactive commitment schemes are as detailed in Chapter 2.

Extractable Commitment Here, we discuss a 3-round extractable commitment protocol

(C,R). We now define extractable commitments taken verbatim from [PW09]:

Definition 6. Let (C,R) be a statistically binding commitment scheme. We say that (C,R)

is an extractable commitment scheme if there exists an expected polynomial-time probabilistic

oracle machine (the extractor) E that given oracle access to any PPT cheating sender C∗ outputs

a pair (τ, σ∗) s.t

- (simulation) τ is identically distributed to the view of C∗ at the end of interacting with

an honest receiver in the commit phase

- (extraction) the probability that τ is accepting and σ∗ = ⊥ is negligible.

- (binding) if σ∗ 6= ⊥, then it is statistically impossible to open τ to any value other than

σ∗.

Instantiation: An instantiation of an extractable commitment (ExtCom,ExtOpen) appears in

Fig 9.1 with the extractor algorithm in Fig 9.2. We refer to [PW09] for details of proof (implicit

in [PRS02, Ros04]) that ExtCom is an extractable commitment scheme.

Commitment phase ExtCom:

Let σ ← {0, 1}m denote the input of S (committer / sender)

Round 1: S commits (using NICOM Com) to k pairs of strings (v0
1, v

1
1) . . . (v0

n, v
1
n) where

66

(v0
i , v

1
i) = (ηi, σ ⊕ ηi) and η1 . . . ηk are random strings in {0, 1}m.

Round 2: R sends challenge e = (e1 . . . ek).

Round 3: S opens the commitments to ve11 . . . vekk . R checks if the openings are valid.

Decommitment Phase ExtOpen:

- S sends σ and opens the commitments to all k pairs of strings.

- R checks that all the openings are valid and also that σ = v0
1 ⊕ v1

1 = . . . v0
k ⊕ v1

k.

Figure 9.1: Extractable Commitment

Fix a cheating committer C∗.

- First, simulate an execution of C∗ by internally emulating an honest receiver R to obtain a

transcript τ = {extcom1
1, extcom1

2, extcom1
3} of the commit phase. If τ is rejecting, then output

(τ,⊥) and halt.

- If τ is accepting with some challenge e, then keep rewinding C∗ with random challenges until we

receive another accepting response from C∗ with some challenge e′. If e = e′ then output (τ,⊥)

and halt. Otherwise, extract a value σ∗ from the C∗’s responses to distinct challenges e, e′ (by

combining the appropriate shares), and output (τ, σ∗).

Figure 9.2: Extractor Algorithm Extract

67

Chapter 10

Garbling Building Blocks

This chapter is primarily concerned with distributed garbling (used in both our BoBW construc-

tions) and related building blocks. The aim is to elaborate the garbling scheme used in πbobw.god

to allow familiarity with the concept and notation, hence enabling smooth understanding of

the techniques introduced to ensure BoBW guarantees.

10.1 Distributed Garbled Circuit [BMR90]

In multiparty setting, it is necessary for all parties to participate in the construction of gar-

bled circuit to prevent any coalition of corrupt parties from learning information about the

value being computed. We use the passively-secure scheme of [BLO16] for our BoBW protocol

achieving GOD in honest majority.

In the computation of distributed garbled circuit (DGC), let n − 1 parties be the garblers

and the remaining party (Pn wlog) be the evaluator. Each wire w is associated with mask

λw ∈ {0, 1}. Each garbler Pi samples its mask share λiw s.t ⊕i∈[n−1]λ
i
w = λw. The technique

of point and permute is used to hide the outputs of intermediate gates and λw acts as the

permutation bit for wire w. Also, Pi chooses two keys kiw,0 and kiw,1 = kiw,0 ⊕ ∆i per wire

where ∆i is the global offset of Pi. Each wire is thus defined with a set of n − 1 keys for

0-label and n − 1 keys for 1-label. The keys and mask for an output wire of an XOR gate

is set equal to the XOR of the keys and masks for the input wires to enable the property

of free XOR [KS08]. Construction of AND gate ciphertexts, as depicted in the functionality

FGC (Fig 10.1) of [BLO16], requires interaction amongst the garblers and thus is realized by all

garblers running a secure MPC protocol to compute the distributed garbled circuit. Specifically,

the ciphertext correspsonding to row α, β for a party Pj in FGC is realized with the use of two

sets of standard Oblivious Transfer (OT) between every pair of garblers such that garbler Pj

68

obtains λjγ = [(λu ⊕ α) · (λv ⊕ β)]j where λjγ is the additive share of (λu ⊕ α) · (λv ⊕ β). This

is followed by the transfer of ρi→jα,β = F2
kiu,α,k

i
v,β

(w||j) ⊕ ∆j · λiσ to Pj by every Pi, i 6= j where

λiσ = λiγ ⊕ λiw is the additive share of ((λu ⊕ α) · (λv ⊕ β) ⊕ λw). The final garbled circuit is

denoted by GC which is the concatenation of {GCj}j∈[n−1] where GCj is the fragment of the

garbled circuit constructed by Pj.

Let C be the circuit, F be a PRF, κ be the security parameter. Garbler Pi has the following set of

inputs:

- Global offset string ∆i.

- Share λiw ∈ {0, 1} of the mask bit λw for every wire w.

- Keys kiw,0 and kiw,1 for every wire w such that kiw,1 = kiw,0 ⊕∆i.

Computation: The functionality computes the garbled circuit GC. Compute the keys and masks

for output wire of XOR gates using free-XOR. For every AND gate with input wires u, v and output

wire w, row α, β ∈ {0, 1} and each garbler Pj , j ∈ [n− 1] compute:

cjα,β =
(⊕
i∈[n−1]

F2
kiu,α,k

i
v,β

(w||j)
)
⊕ kjw,0 ⊕

(
∆j · ((λu ⊕ α) · (λv ⊕ β)⊕ λw)

)

Output: Output GCj = {cjα,β}∀AND gates to Pj .

Figure 10.1: Functionality FGC

Evaluation. Evaluation of DGC is performed on masked inputs. Specifically, the evaluator

Pn gets {kiu,mu , k
i
v,mv}i∈[n−1] and masked inputs (mu,mv) where mu = xu⊕λu,mv = xv⊕λv for

gate g with input wires u, v (xu, xv are the actual inputs on u, v respectively) and output wire

w. If g is an XOR gate, then, Pn sets kiw,mw = kiu,mu⊕k
i
v,mv for each i and mw = mu⊕mv where

mw is the masked output on w. If g is an AND gate, then Pn decrypts the row (mu,mv) of the

corresponding garbled gate of GCi to obtain mw = xuxv ⊕ λw and kiw,mw for i ∈ [n − 1]. For

output wire w, the output mask λw is revealed to compute the output xw = mw ⊕ λw. We use

Y (encoded output) to denote the set of n− 1 keys on all output wires obtained on evaluation

of GC.

For our BoBW protocol achieving GOD in honest majority, we modify the functionality

FGC to segregate the messages computed by each garbler such that the ciphertext cjα,β of a

party Pj is formulated using only the data present with Pj after the OT step and no transfer

of ρi→jα,β is done to Pj by any Pi, i 6= j (instead ρi→jα,β is directly sent to the evaluator as part

of Pi’s ciphertext for the evaluator to do the needful). This is done to facilitate the correct

identification of a corrupt garbler Pj in case of a faulty GC construction once the robustness

69

of OT step is ensured. In FGC, it is not correct to implicate Pj in case of a faulty GCj received

from Pj because Pj also comprises of data sent by Pi, i 6= j which might have caused GCj to

be incorrect. For the modified functionality FGCMod, we show only the modification required in

the computation step of FGC in Fig 10.2.

Computation: For every AND gate with input wires u, v and output wire w, every α, β ∈ {0, 1}
and each garbler Pj , j ∈ [n− 1] compute:

cjα,β =
(

F2
kju,α,k

j
v,β

(w||j)⊕ kjw,0 ⊕
(
∆j · λjσ

))
||
(
||i 6=jρj→iα,β

)
where ⊕j∈[n−1]λ

j
σ = (λu ⊕ α) · (λv ⊕ β)⊕ λγ and ρj→iα,β = F2

kju,α,k
j
v,β

(w||i)⊕∆i · λjσ

Output: Output GCj = {cjα,β}∀AND gates to Pj .

Figure 10.2: Modified Functionality FGCMod of FGC

For our BoBW construction achieving fairness in honest majority, we use the state of the

art maliciously secure garbling scheme of [WRK17] which is discussed in detail in Chapter 12.

10.2 Seed-distribution

The starting point of the BoBW protocol achieiving GOD in honest majority, πbobw.god is a semi-

honest distributed garbling scheme (as per functionality FGCMod) with {P1, P2, P3} as garblers

and P4 as evaluator. The final garbled circuit (DGC) is denoted as GC = GC1||GC2||GC3 where

GCg (g ∈ [3]) denotes the gth fragment of GC. To tackle the malicious adversary while still

relying on passively secure DG, a mechanism is needed to ensure correctness of the GC. We

adopt the technique of seed-distribution (SD) used in honest-majority 5PC construction of

[CGMV17] and scale it for 4PC to ensure correctness of GC in the face of dishonest minority

i.e. 1 active corruption. SD enables a pair of parties to construct each fragment of GC and

correctness of that fragment is verified by simply checking the equality of the copies. For this,

we assume that all the randomness used to construct GC fragment GCg by the designated garbler

(say Pi) is derived from seed sg and sg is given to another garbler (say Pj). Now, both Pi and

Pj construct GCg and send to the evaluator. This strategy suffices for 1 active corruption since

one of the seed-owners is honest and is guaranteed to construct the GC fragment honestly.

Our seed-distribution works as follows: Three seeds s1, s2, s3 are distributed amongst the

garblers P1, P2, P3 such that party Pg holds all but seed sg. As a result, the fragment GC1

constructed from seed s1 (analogously GC2 and GC3) is sent by two parties P2, P3 who hold seed

s1. Additionally, this technique also maintains input privacy for colluding parties (dishonest

70

majority case in BoBW GOD construction: 2 corruptions) since, (a) for 2 corrupt garblers, all

seeds are known to the adversary but the evaluator is guaranteed to be honest; (b) a colluding

garbler and the evaluator lack the knowledge of one seed, hence the secrets remain hidden from

the adversary. We denote by Sg, the indices of the seeds held by party Pg as well as the indices

of the parties who hold seed sg i.e. S1 = {2, 3}, S2 = {1, 3}, S3 = {1, 2}.

Notation: S1 = {2, 3}, S2 = {1, 3}, S3 = {1, 2}.
Output: Party Pg, g ∈ [3] outputs seed si, i ∈ Sg.

Seed-setup:

- P1 samples a random seed s2 and runs the routine ExtCom with P3 as receiver. The broadcast-only

transcript of ExtCom (hence, the commitment) is available to the remaining parties too.

- P1 runs the routine ExtOpen and sends opening o[s]2 privately to P3. If the opening is invalid, P3

aborts. Else, P3 computes s2 using opening o[s]2.

- Similar steps are done by P2 for seed s3 and P3 for seed s1.

Figure 10.3: Seed-distribution πseedDist

For our purposes, SD is done by broadcasting commitment on each seed and sending the

opening to only the designated seed-owner. This is done for a purpose elaborated in Chapter 11.

Also, extractable commitments are used for commitment to the seeds to handle a technicality

arising in the proof.

10.3 Attested Oblivious Transfer

Attested Oblivious Transfer (AOT) is an inexpensive symmetric-key variant of OT between a

sender and a receiver with additional help from a third party called attester to ensure correctness

of OT. The primitive of AOT was introduced in the 5PC construction of [CGMV17] which

replaced the semi-honest OTs required in [BLO16] with AOTs. We recall the functionality Faot

in Fig 10.4.

Ps, Pr act as sender and receiver respectively, Pa is the attester.

- On input message (Sen, m0, m1) from Ps, record (m0, m1) and send (Sen, m0, m1) to Pa and

Sen to the adversary.

- On input message (Rec, b) from Pr, where b ∈ {0, 1}, record b and send (Rec, b) to Pa and Rec

to the adversary.

- On input message (Att, ma
0, ma

1, ba) from Pa, if (Sen, sid, ∗, ∗) and (Rec, ∗) have not been

recorded, ignore this message; otherwise, record (ma
0, ma

1, ba) and send Att to the adversary.

- On input message Output from the adversary, if (m0,m1, b) 6= (ma
0,m

a
1, b

a), send (Output,⊥) to

71

Pr; else send (Output,mb) to Pr.

- On input message abort from the adversary, send (Output,⊥) to Pr.

Figure 10.4: Functionality Faot(Ps, Pr, Pa)

In our BoBW GOD construction, due to the used of seed-distribution, standard OTs used

in the FGC [BLO16] and FGCMod are replaced with AOTs. Specifically, SD ensures that for every

OT that is supposed to run between a sender Ps and a receiver Pr, there exists an attester

Pa who possesses the seeds (hence, the OT inputs) of both Ps and Pr. For instance when the

sender’s messages are derived from seed s2 and receiver’s choice bit is derived from seed s1, P3

is set to be the attester since he knows both seeds s1 and s2. P1 (holding s2) and P2 (holding

s1) act as sender and receiver respectively.

For the BoBW GOD construction, to ensure BoBW guarantees, a modified version of the

AOT fuctionality Faot is used which is elaborated in Chapter 11.

72

Chapter 11

GOD in Best-of-Both-Worlds Setting

In this chapter, we present a BoBW protocol πbobw.god for 4 parties that promises: a) GOD

against 1 active corruption (t = 1) and b) unanimous abort (UA) against 2 active corruptions

(s = 2). The corruption thresholds are optimal, adhering to the feasibility constraint of t+s < n

[IKLP06].

At a high-level, we achieve our goal of attaining 4PC BoBW security by first identifying and

eliminating a corrupt party and then engaging the remaining 3 parties in a 3PC UA protocol.

Specifically, when a corrupt party is eliminated, the remaining 3 parties may either have no

corrupt party (in which case the 3PC will be robust and our 4PC achieves GOD as required)

or one corrupt party (in which case the 3PC achieves UA, as demanded by our 4PC against

two corruptions).

11.1 The Construction

The high-level framework involves a passively-secure distributed garbling (DG) scheme as in

FGCMod (Fig 10.2), combined with a bunch of additional techniques optimized for our setting

and security expectations. We structure the protocol with {P1, P2, P3} as the three garblers

and P4 as the evaluator. The novelty of our construction lies in tackling a horde of challenges

(and maintaining efficiency) that surface while putting together these techniques. The protocol

starts with a robust seed-distribution (SD) and input-commit routines. We segregate the rest

of construction in the following phases, each of which is geared with tools that enable the

honest parties to either unanimously identify a corrupt party (and then, run a 3PC instance)

or identify the presence of 2 corruptions (and then, abort).

Input-Insensitive Phase This includes the transfer of messages for which it is safe to reveal

the underlying randomness in case of a misbehaviour. It primarily involves distributed garbling

73

as per functionality FGCMod (Fig 10.2) enabled with the technique of seed-distribution (SD)

as explained in Chapter 10. SD involves distribution of seeds {s1, s2, s3} amongst the garblers

{P1, P2, P3} as elaborated in Chapter 10, where a garbler Pg knows all but seed sg. The formal

SD protocol πseedDist appears in Fig 10.3. For our purposes, we perform the seed distribution

by broadcasting commitment on each seed and opening the commitment to only the relevant

designated seed-owner. This is done to ease the identification of corrupt party in case of any

wrongdoing. To elaborate, SD enables two garblers to be able to construct (and broadcast) each

GC fragment. In case of mismatching copies of a fragment sent by the two seed-owners, they

are required to publicly reveal (broadcast) the opening of the corresponding seed so that each

honest party can compute the seed (by using the opening and the broadcast-only commmitment

routine ExtCom). The seed is then used to locally construct the GC fragment to pin-point the

actual corrupt sender. The modified DGC functionality FGCMod is crucial in pin-pointing the

corrupt party in case of mismatch since, once the AOT step is made robust, the ciphertext

generated wrt each seed involves data only from local computation using the respective seed.

With public revelation of seeds in case of mismatch, the GC fragment as computed by FGCMod

can be computed locally and the wrongdoer can be correctly and unanimously identified.

Further, we modify the AOT functionality Faot to incorporate the technique of opening of

seeds if the broadcasted commitments of the sender and the attester mismatch (to identify one

active corruption) and the resulting protocol πaot.bobw appears in Fig 11.1.

Ps, Pr denote the sender and receiver respectively. Pa denotes the attester and Ph denotes the

helper.

Notations: Conk, Corrk respectively denote conflict and corrupt set of Pk. C3 is the 3PC committee

with at most 1 corruption.

Input and Output: Ps inputs m0,m1, Pr inputs choice bit b. Pr outputs mb/C3. All other parties

output ⊥/C3.

Primitives: A secure NICOM (Com,Open).

Round 1:

- Ps samples pp and random values r0, r1 ← {0, 1}κ (derived from sg, g ∈ Ss ∩ Sa) to compute

(c0, o0)← Com(pp,m0) and (c1, o1)← Com(pp,m1). Ps broadcasts (pp, c0, c1).

- Pa, who knows (r0, r1) (derived from sg), also computes (c′0, o
′
0) ← Com(pp,m0) and (c′1, o

′
1) ←

Com(pp,m1). Pa broadcasts (c′0, c
′
1). Pa also broadcasts o′b ⊕ ranar where ranar is the randomness

agreed between Pa and Pr in πmask.bobw (Fig 11.2).

Local computation:

- If either c0 6= c′0 or c1 6= c′1: Ps and Pa broadcast o[s]g (opening of the seed sg common between Ps,

74

Pa) which is used by each party Pi ∈ P to compute sg and verify the correctness of commitments

sent by Pa, Ps to conclude the corrupt party and update Corri. Pi outputs C3 = [4] \ Corri.

- Else, Pr unmasks ranar and uses o′b (if valid) to compute mb ← Open(c′b, o
′
b). Pr outputs mb

and others output ⊥. If o′b is invalid, Pr broadcasts o[ran]ar for each Pi ∈ P to compute ranar ←
Open(c[ran]ar, o[ran]ar), obtain o′b to conclude the identity of the corrupt party and update Corri

accordingly. Each party outputs C3 = [4] \ Corri.

Figure 11.1: Modified Attested OT πaot.bobw(Ps, Pr, Pa, Ph)

Apart from GC communication, this phase involves the transfer of some input-insensitive

mask-shares which is discussed next. As explained in Chapter 10, each wire of the circuit is

associated with a mask. Besides, the evaluation of GC is done using the keys for masked inputs

and the GC outputs masked values for the output wires. To obtain clear outputs, the mask

values need to be provided to each party to enable unmasking. The mask-shares on output

wires are broadcast to ensure easy identification of the corrupt party using the above technique

of opening the underlying seeds in case of mismatch. Also, since the evaluation is done on

masked inputs, the input-wire owner must know the mask on the input wire. A garbler acting

as wire owner is missing one seed (hence, one share) while the evaluator acting as wire owner

is missing all shares. Each garbler is asked to broadcast the shares corresponding to the seeds

the wire owner is missing. And a mismatch is handled as done for the output mask shares.

Cut-and-Choose Note that SD ensures security of the DGC against only one actively cor-

rupt garbler as there is always an honest party to send the correct GC fragment for verification.

However, in case of two active corruptions among garblers (say P1, P2), correctness of the GC

can no longer be ensured with SD alone since the two corrupt garblers have the sole ownership

of one seed (s3) and the resulting DGC fragment (GC3). They could both send matching faulty

copies of GC3 leading to no suspicion. This could further cause privacy breach of the honest

parties’ input due to arbitrary function being computed by GC. To tackle this, we rely on the

technique of cut-and-choose [Lin13] to verify the correctness of GC and its related information.

This is reminiscent of the strategy adopted by 3PC of [CKMZ14] to tackle 2 corrupt garblers.

Note that, any failure in the check circuits can be attributed to the presence of two corruptions

(in which case the security expectation is UA), hence the honest parties abort. Any wrong-doing

in πaot.bobw in case of two corruptions (particularly when both sender and attester broadcast

incorrect commitments) goes undetected at the time of GC computation but is caught in the

cut-and-choose phase as the AOT transcript is public due to the use of broadcast messages in

πaot.bobw. Cut-and-choose brings along concerns for input privacy if any input sensitive data

has already been exchanged in the protocol as the underlying seeds are revealed to open the

75

check circuits. Hence, we structure the protocol to have the input-sensitive communication

after cut-and-choose step is complete.

For the purpose of choosing a challenge string in cut-and-choose, each party Pi commits to a

random string ρi of length s at the onset of the protocol, while the openings are revealed only in

this phase. The final challenge string is the XOR of each ρi. Note that cut-and-choose involves

the problem of input inconsistency as pointed out in [Lin16, CKMZ14]: a corrupt P1, P2 pair

can send inconsistent encoding labels across different evaluation circuits for the input wires

(w.r.t. shares owned by P1, P2) enforcing P4 to evaluate on multiple inputs. We tackle this

well-known attack using the Diffie-Hellman pseudorandom synthesizer trick [LP11, MF06] by

adapting it to our setting in a straight-forward manner.

Input-Sensitive Phase The above techniques to identify misbehaviour that rely on broad-

cast can be applied only to input-insensitive data because of threat to input privacy when the

seeds are opened. For most private input-dependent messages, πseedDist or πICom.bobw ensure that

there exist 2 parties who can send the message privately to the receiver. This comes with many

challenges: (i) The receiver must be able to identify the corrupt sender (out of the two), (ii)

He must be able to convince the remaining honest parties that the identified sender is cor-

rupt. To resolve (i), we rely on the technique of commit publicly, open privately where

both senders broadcast the commitments to the private message (which are compared and a

mismatch is tackled as in input-insensitive phase) and the openings are sent in private to the

designated receiver. In case of invalid openings received privately, the receiver (say Pr) has

identified the sender(s) to be corrupt and can raise a public conflict against the corrupt sender

(say Ps). Note that this does not suffice for the remaining honest parties to identify Ps to be

corrupt as a possibly corrupt Pr could raise a false conflict against an honest Ps leading to the

problem in case (ii). We resolve this by introducing the technique of oblivious broadcast. To

elaborate, we establish a pre-agreed random mask between each pair of parties at the onset of

the protocol and enforce the senders to broadcast the opening XORed with the random mask

pre-agreed between the sender and the receiver (so that the broadcast is meaningful only to the

receiver). This mask is agreed upon by a process similar to πseedDist where the commitments to

the mask are broadcast and openings are sent in private. The formal random-mask distribu-

tion setup πmask.bobw is given in Fig 11.2. This technique ensures that the masked opening is

always received by the receiver. Now if the receiver finds the opening (after unmasking) to be

invalid, she reveals the random mask (particularly, its opening) for everyone to publicly identify

the wrongdoer. Note that this leads to each party learning the private message which is safe,

since conflict occurs only when the adversary is involved and is already aware of the underlying

message.

76

Output: Party Pi, i ∈ [4] outputs ranij (j > i) and ranji (j < i).

Random-mask setup: Pi, Pj for i, j ∈ [4], i < j do as follows:

- Pi samples ppi and a random-mask value ranij to compute (c[ran]ij , o[ran]ij)← Com(ppi, ranij).

- Pi broadcasts (ppi, c[ran]ij); sends o[ran]ij privately to Pj .

- Pj computes ranij ← Open(ppi, c[ran]ij , o[ran]ij). If the opening is invalid, Pj aborts.

Figure 11.2: Random-mask distribution routine πmask.bobw

For the transfer of masked input bits, we combine the techniques of commit publicly, open

privately and oblivious broadcast where the commitments (generated using randomness other

than derived from seeds for privacy concerns) is broadcast in the input-insensitive phase while

the (oblivious) opening is broadcast in this phase. Any inconsistency is handled by asking the

senders to reveal the related seeds / random-masks. For the transfer of encoding labels wrt

masked inputs to P4, we follow the standard technique of [MRZ15, CGMV17] to have each party

broadcast the commitments to both labels in input-insensitive phase (where the misbehaviour

is handled as explained). We came across various challenges in the transfer of relevant openings

while maintaining BoBW security guarantees and input privacy which we addressed as follows:

(I) For shares owned by two garblers (say x12): Both the share owners (P1, P2) send key-

openings corresponding to masked input b12 wrt the seeds that they own. If an opening is

found to be invalid, P4 raises a conflict with the garbler (who sent the invalid opening) and

broadcasts b12. The remaining 2 garblers broadcast key-openings wrt the seeds they own. If

a broadcasted opening is again found to be invalid, then the honest parties conclude that

they are in the setting of s = 2 and hence abort. Note that broadcasting b12 is safe because

either it is a share that already belongs to the adversary (when one of P1, P2 is corrupt) or

the adversary doesn’t have enough seeds to know the underlying x12 (when both P1, P2 are

honest).

(II) For shares owned by P4 and a garbler (say P1) i.e. x14: P1 sends openings corresponding

to masked input b14 wrt seeds s2 and s3. Case (I) is followed in case of invalid opening.

For opening wrt seed s1 not held by P1 (possessed by both P2 and P3), P1 runs a 1-out-of-2

malicious OT acting as receiver with choice bit b14 and P2 as sender with inputs as keys

while P4 runs a similar OT acting as receiver with P3 as sender. If P4 does not receive a

valid opening from her OT with P3 she waits for a valid opening from P1 (who sends the

opening he received as his OT output privately to P4 only if it is valid). If still not received

a valid opening, P4 concludes the presence of two corruptions (P3 and P1/P2) and broadcasts

abort. An honest P1 who did not receive a valid opening from her OT with P2 also aborts

77

on receiving abort from P4 as P1 concludes the presence of two corruptions, P2 and P3/P4.

Lastly, P1 also broadcasts abort in such a case to bring P2, P3 on the same page.

Also, the selective-failure attack in which a corrupt garbler can give one valid and one

invalid label as input to the OT in order to learn the receiver’s input by checking whether

the evaluation succeeded or not is handled by directly using the XOR-tree technique [LP07].

Finally, if all valid labels are received, P4 evaluates the GC and broadcasts Y to enable all

parties to compute the output. In case a corrupt P4 broadcasts an invalid (or no) Y, each

party unanimously identifies P4 to be corrupt and switch to a 3PC without P4.

Lastly, we tackle the input consistency issue that arises when the corrupt P4 aborts after

obtaining the output herself causing the remaining parties to rely on the 3PC-instance for the

output. To prevent the adversary from obtaining multiple evaluations of f , the 3PC should

use the same inputs as in the 4PC. This is ensured using the robust πICom.bobw, where the

commitments on input shares are broadcast and agreed upon while the technique of oblivious

broadcast is used to reveal openings. The formal protocol of πICom.bobw is presented in Fig 11.3.

To elaborate, since the commitments on all input shares are already agreed upon, the circuit

computed for the 3PC instance has the commitments of the input-shares hardcoded and takes

the openings (w.r.t. all shares) from the participating parties in the 3PC-instance as input.

The circuit checks the validity of openings and computes the input-shares. Further, a potential

corrupt party in the chosen 3PC cannot give a different valid opening (due to the strong binding

property of the NICOM) to obtain multiple outputs. An invalid opening (leading to abort) can

be given in the 3PC instance only by a corrupt party amongst the participants which is an

indication of presence of 2 corruptions and thus allowing the circuit to output ⊥ in such case

is an acceptable output. The 3PC instance appears in Fig 11.4.

Input: Pi has input xi.

Output: Every Pj , j 6= i outputs (ppi, c[in]ij , o[in]ij) or C3.

Primitives: A secure NICOM (Com,Open).

Computation: Pi splits her input as xi = ⊕j∈[4]\{i}xij and computes commitments as

(c[in]ij , o[in]ij)← Com(ppi, xij). Pi broadcasts (ppi, c[in]ij) and o[in]ij ⊕ ranij where ranij is shared

randomness between Pi, Pj agreed in πmask.bobw (Fig 11.2).

Local Computation by Pj: Unmask ranij to obtain o[in]ij and compute

xij = Open(ppi, c[in]ij , o[in]ij). If o[in]ij is invalid, broadcast o[ran]ij . Each Pk ∈ P uses o[ran]ij (if

valid) to verify the validity of o[in]ij and determines the corrupt party out of Pi, Pj to set Corrk.

Run 3PC with C3 = P \ Corrk.

Figure 11.3: Input-commit routine πICom.bobwi

78

Notation: Let Pα, Pβ, Pγ be the participating parties and Pδ be the corrupt party identified.

Inputs: Party Pα (similarly Pβ and Pγ) has inputs (o[in]αi, o[in]δα)i∈[4]\{α}.

Common Inputs: The circuit C that takes the openings o[in]ij for i ∈ [4], j ∈ [4] \ {i} as inputs,

checks whether o[in]ij is valid w.r.t. c[in]ij , computes xij and xi = ⊕j∈[4]\{i}xij to compute

f(x1, x2, x3, x4).

Output: Pi ∈ P outputs y = f(x1, x2, x3, x4) or ⊥.

Computation: Run 3PC of [MRZ15] with Pα and Pβ as the garblers and Pγ as the evaluator

except the following change: Pγ broadcasts Y instead of sending Y privately in round 3 of

[MRZ15] to ensure unanimous abort.

Figure 11.4: Three-party instance 3PC()

Although it may appear that, use of a maliciously secure garbling scheme to begin with

could eliminate the need of cut-and-choose and ease several other challenges, however, the

best-known maliciously secure garbling schemes [WRK17] lack the property of identifiability in

case of corrupt behaviour and tools necessary to include such a property appear to be much

more expensive than directly using cut-and-choose. This completes the intuition. The formal

protocol appears in Fig 11.5.

Input and Output: Each party Pi ∈ P has xi. Each party outputs y = f(x1, x2, x3, x4).

Common Inputs: The circuit C that takes additive shares xij of xi for i ∈ [4], j ∈ [4] \ {i} as

inputs and computes f(x1, x2, x3, x4), each input, their shares and output are from {0, 1} (instead

of {0, 1}` for simplicity). s is the statistical security parameter.

Primitives: A secure NICOM (Com,Open), Extractable Commitment (ExtCom,ExtOpen), Oblivi-

ous Transfer (OT) and collision resistant hash H, πseedDist (Fig 10.3), πmask.bobw (Fig 11.2), πICom.bobw

(Fig 11.3).

Seed and mask distribution: For each itr ∈ [s], parties P1, P2, P3 run πseedDist. Parties Pi ∈ P

run πmask.bobw.

Input-sharing: Run πICom.bobwi for each Pi ∈ P .

Cut-and-choose challenge string: Pi, i ∈ [4] samples random ρi ← {0, 1}s and commits to ρi

with Pi+1 as receiver using the extractable commitment routine ExtCom.

(I) Input-insensitive Phase: Run this phase for each itr ∈ [s]:

- Pg, g ∈ [3] broadcasts λhw, h ∈ Sg for output wire w.

- For every input wire w w.r.t. xw held by two garblers: for each Pg (owning xw), garbler Pj , j 6= g

79

broadcasts λgw. (If P4 holds xw, then garbler Pj , j ∈ [3] broadcasts λlw, l ∈ Sj).

- Let khw,0 and khw,1 denote the two keys derived from seed sh for input wire w. Pg, g ∈ [3] computes

commitments for h ∈ Sg and b ∈ {0, 1} as: (c[k]hw,b, o[k]hw,b) ← Com(pph, khw,b) and broadcasts

{c[k]hw,b}.
If different copies of λgw (for output wire w) or λgw or {c[k]gw,b} (for some input wire w, b ∈ {0, 1})
are broadcast for some g ∈ [3] by (Pα, Pβ) with α, β ∈ Sg: Pα, Pβ broadcast opening of seed sg

(o[s]g). Each party uses valid o[s]g (if any) to compute sg and verifies the correctness of broadcast

by Pα, Pβ to determine the corrupt party (say Pα). Run 3PC with C3 = P \ {Pα}. (Abort if two

corrupt parties are identified).

In case of no mismatch, owner Pj of the input wire w computes λw = ⊕i∈[3]λ
i
w and sets bw = xw⊕λw.

Commitment on masked inputs: For input wire w, with masked input bw held by parties Pi, Pj ,

the parties compute (c[b]w, o[b]w) = Com(ppij , bw) (using randomness derived from shared ranij).

Pi, Pj broadcast (ppij , c[b]w). If the copies mismatch, Pi, Pj broadcast o[ran]ij , {o[s]l}l∈[3] and o[in]ij

(w.r.t. bw) to allow every party to compute and verify the commitments of Pi, Pj to determine the

corrupt party (say Pi). Run 3PC with C3 = P \ {Pi}. (Abort if two corrupt parties are identified).

Oblivious Transfer: For input wire w of xw held by P4, Pg, g ∈ [3]:

- Pg sends o[k]hw,bw , h ∈ Sg to P4 for P4 to compute khw,bw .

- If o[k]hw,bw is invalid, P4 broadcasts o[b]w and (Con, P4, Pg). Garblers Pj , j 6= g broadcast o[k]hw,bw
where h ∈ Sj . If any opening is still invalid (can be checked by all), honest parties conclude the

presence of two corrupt parties and abort. Else, P4 uses valid openings to obtain kjw,bw , j ∈ [3].

- To obtain o[k]gw,bw : Let {i, j} = [3] \ {g}, i < j. Pg runs OT as receiver (choice bit bw) and Pi as

sender (inputs o[k]gw,0, o[k]gw,1). If the received o[k]gw,bw is a valid opening, Pg forwards o[k]gw,bw to

P4. Similarly, P4 runs OT as receiver (choice bit bw) and Pj as sender (inputs o[k]gw,0, o[k]gw,1). If

valid o[k]gw,bw obtained from OT, P4 uses o[k]gw,bw to compute kgw,bw . Else if, received valid o[k]gw,bw
from Pg, P4 computes kgw,bw . Else, P4 broadcasts abort.

- P1 broadcasts abort if: P1 receives invalid opening from OT and P4 broadcasts abort. Honest

parties abort if both P1 and P4 broadcast abort.

Transfer of GC:

- Run DG to realize FGCMod enabled with SD where πaot.bobw (Fig 11.1) is used as a means to

achieve OT. 3PC is run with C3 when any instance of πaot.bobw returns C3.

- Each Pg, g ∈ [3] broadcasts {GCh}, h ∈ Sg. If different copies of GCg are broadcast for some

g ∈ [3] by (Pα, Pβ) with α, β ∈ Sg, Pα, Pβ broadcast o[s]g. Each party uses valid o[s]g (if any) to

compute sg and verifies the correctness of GC broadcast by Pα, Pβ to determine the corrupt party

(say Pα). Run 3PC with C3 = P \ {Pα}. (Abort if two corrupt parties are identified).

(II) Cut-and-choose Phase:

80

- Let the values broadcasted corresponding to seed sg in the input-insensitive phase in iteration itr

be denoted by B[g]itr.

- Pi, i ∈ [4] broadcasts the opening of ρi for Pk ∈ P to compute ρi. Pk constructs ρ = ⊕i∈[4]ρi.

- Let CC = {k : ρk = 1} denote the check circuits (ρk denotes the kth bit of ρ) and EC = [s] \ CC

denote the evaluation circuits.

- For itr ∈ CC, the following is done:

◦ Pg, g ∈ [3] broadcasts openings o[s](g mod 3)+1 and o[ran]gh for (h > g) (as per πseedDist, πmask.bobw

respectively).

◦ If Pg broadcasts an invalid opening, run 3PC with C3 = P \ {Pg}. Else, obtain s(g mod 3)+1 and

rangh for h > g.

◦ Each party checks if B[g]itr sent by Ph, h ∈ [3] \ {g} is consistent with that computed using sg

and rangh for h > g. If not, aborts.

(III) Input-sensitive Phase: Run this phase for itr ∈ EC:

Transfer of keys (encoding labels) and masked inputs: For each masked input bw held by

two garblers, do the following:

- Each Pg (owner of bw) broadcasts o[b]w ⊕ rang4. P4 unmasks rang4 and obtains bw from o[bw] (if

valid). Else, P4 broadcasts o[ran]g4. Each party uses o[ran]g4 (if valid) to verify the validity of

o[b]w and determines the corrupt party (say Pg). Run 3PC with C3 = P \ {Pg}.
- Pg sends o[k]hw,bw , h ∈ Sg to P4 to allow P4 to compute khw,bw . If o[k]hw,bw sent by Pg is invalid, P4

broadcasts o[ran]g4 and (Con, P4, Pg). Garbler Pj , j 6= g computes bw (using o[b]w) and broadcasts

o[k]hw,bw , h ∈ Sj . If an opening is still invalid (which can be checked by all), honest parties conclude

the presence of two corrupt parties and abort. Else, P4 uses valid openings to obtain kjw,bw , j ∈ [3].

Evaluation:

- Let GC = GC1||GC2||GC3 and X be the encoding labels. P4 evaluates GC to obtain Y = {kgw}g∈[3]

and (y ⊕ λw) for output wire w. P4 broadcasts Y. If not, run 3PC with C3 = P \ {P4}.
- Each Pi ∈ P computes λw = ⊕g∈[3]λ

g
w using mask shares sent in input-insensitive phase and

output y by unmasking λw.

- Let output obtained in iteration itr be denoted by yitr. Output the majority value among

{yitr}itr∈EC.

Figure 11.5: Protocol πbobw.god

11.2 Security Proof

In this section, we provide the formal theorem and the elaborate the corresponding security

proof.

81

Theorem 5. The protocol πbobw.god (Fig 11.5) securely realizes the functionalities Fgod (Fig 2.1)

and FuAbort (Fig 2.3) in the standard model against one active corruption and two active cor-

ruptions respectively, assuming enhanced trapdoor permutation.

Proof. The proof is presented by giving simulators separately for the honest majority and the

dishonest majority case. Let C be the set of corrupt parties and H = [4]\C be the set of honest

parties. The honest majority simulator (with 1 corruption) is denoted by Sahm.bobw where Pa is

the corrupt party while the dishonest majority simulator (with 2 corruptions) is denoted by

Sabdm.bobw where Pa and Pb are the two corrupt parties.

11.2.1 Honest Majority

Let A be a malicious adversary corrupting 1 party in an execution of πbobw.god. We discuss the

honest majority simulator for two cases: (a) S1
hm.bobw when a garbler (say P1) is corrupt and

remaining parties are honest, (b) S4
hm.bobw when evaluator P4 is corrupt and all garblers are

honest. We now describe the simulator running an ideal-world of the GOD functionality Fgod

(Fig 2.1) whose behaviour simulates the behaviour of A.

Corrupt P1: C = {P1} and H = {P2, P3, P4}. S1
hm.bobw playing the role of parties in H works

as follows:

For corrupt input x1:

- Receive broadcast values (pp1, c[in]1i) for i ∈ ind(P1) and o[in]1i ⊕ ran1i. Unmask the latter on

behalf of Pi using ran1i to obtain o[in]1i and compute x1i ← Open(pp1, c[in]1i, o[in]1i).

- If, for some i ∈ ind(P1), o[in]1i is invalid, broadcast o[ran]1i on behalf of Pi. Run 3PC() locally on

behalf of honest P2, P3, P4 and give output to P ∗1 .

For honest input x2:

- On behalf of P2: sample random x21 and compute (c[in]21, o[in]21) ← Com(pp2, x21). Broadcast

(pp2, c[in]21) and o[in]21 ⊕ ran12.

- If P1 broadcasts o[ran]12, run 3PC() locally on behalf of honest P2, P3, P4 and give output to P ∗1 .

- Also, sample dummy x2i for i ∈ {3, 4} and compute (c[in]2i, o[in]2i) ← Com(pp2, x2i). Broadcast

(pp2, c[in]2i) and o[in]2i ⊕ ran2i.

Figure 11.6: Simulator S1
ICom.hm

- Act honestly on behalf of P3 for the commitment instance between P1 as sender and P3 as receiver

to obtain seed s2.

- Sample random s3 and act honestly on behalf of P2 for the commitment instance between P2 as

sender and P1 as receiver.

82

- Sample random s1 and act honestly on behalf of P3 and P2 for the commitment instance between

P3 as sender and P2 as receiver.

Figure 11.7: Simulator S1
seed.hm

- Receive broadcast values (ppk, c[ran]ki) for i > k. Receive o[ran]ki on behalf of honest Pi. Abort

if opening is invalid. Else, compute ranki ← Open(ppk, c[ran]ki, o[ran]ki).

- On behalf of honest Pi, i ∈ ind(Pk) for i < k, sample ranik, compute (c[ran]ik, o[ran]ik) ←
Com(ppi, ranik). Broadcast (ppk, c[ran]ik).

Figure 11.8: Simulator Skmask.hm

- On behalf of Pj , j ∈ [4] \ {i}: Sample ρj ← {0, 1}s and act as honest committer in ExtCom with

Pj+1 as receiver.

- On behalf of Pi+1: Act as honest receiver for the commitment instance between Pi as sender and

Pi+1 as receiver.

Figure 11.9: Extraction of challenge-string SiCCstring.hm

Seed and mask distribution: Run S1
seed.hm (Fig 11.7) and S1

mask.hm (Fig 11.8).

Input-sharing: Run S1
ICom.hm (Fig 11.6). Compute x1 = x12 ⊕ x13 ⊕ x14. Invoke Fgod (Fig 2.1)

with (input, x1) on behalf of P ∗1 to obtain y.

Cut-and-choose Challenge String: Run S1
CCstring.hm (Fig 11.9). Run the following three phases

for iterator itr ∈ [s]:

(I) Input-insensitive Phase: Run this phase for each itr ∈ [s]:

- On behalf of honest Pg, g ∈ {2, 3} and h ∈ Sg, do the following steps honestly: Broadcast λhw for

output wire w. For every input wire w w.r.t. xw held by two garblers: for each Pj holding xw,

Pg, g 6= j broadcasts λjw. (If P4 holds xw, then Pg broadcasts λlw, l ∈ Sg). For every input wire w,

let khw,0 and khw,1 denote the two keys derived from seed sh. For b ∈ {0, 1}, compute commitments

as: (c[k]hw,b, o[k]hw,b)← Com(pph, khw,b) and broadcasts {c[k]hw,b}.
- If P1 broadcasts different copies of λhw (for output wire w) or λhw or c[k]hw,b (for some input wire

w and b ∈ {0, 1}) for h ∈ S1 than what was computed by honest Pg, g ∈ Sh, then on behalf of Pg:

broadcast o[s]h. Run 3PC locally on behalf of honest P2, P3, P4 and give output to P ∗1 .

- For input wire w owned by honest Pg, g ∈ {2, 3, 4}: compute λw = (⊕h∈[3])λ
h
w using the knowledge

of all seeds.

Commitment on masked inputs: On behalf of Pi, i ∈ {2, 3, 4}: For input wire w, with masked

input bw held by parties Pi, Pj , compute (c[b]w, o[b]w) = Com(ppij , bw) (using randomness derived

83

from shared ranij). Broadcast (ppij , c[b]w). For bw (w.r.t. x1i) held by P1, if P1 broadcasts different

values than computed by Pi, broadcast o[ran]1i, {o[s]l}l∈[3] and o[in]1i. Run 3PC locally on behalf of

honest P2, P3, P4 and give output to P ∗1 .

Oblivious Transfer: For wire w corresponding to shares owned by P1 and P4, say x14:

- Receive o[k]hw,bw where h ∈ {2, 3} on behalf of P4 from P1 and compute khw,bw .

- If the opening is invalid: Broadcast o[b]w and (Con, P4, P1) on behalf of P4. Broadcast o[k]hw,bw
on behalf of Pg, g ∈ {2, 3} for h ∈ Sg.

- Else, FOT is called by P1 (as receiver) and P2 (as sender). Receive o[k]1w,bw from P1 on behalf of

P4.

Transfer of GC:

- Behave honestly on behalf of Pg, g ∈ {2, 3} to realize FGCMod using seeds chosen in seed distribu-

tion phase. If any instance of πaot.bobw returns C3, run 3PC locally on behalf of honest P2, P3, P4

and give output to P ∗1 .

- Broadcast {GCh} on behalf of Pg, g ∈ {2, 3} and h ∈ Sg. If P1 broadcasts different copy of GCh

for h ∈ S1 than what was computed by honest Pg, g ∈ Sh, then on behalf of Pg: broadcast o[s]h.

Run 3PC locally on behalf of honest P2, P3, P4 and give output to P ∗1 .

(II) Cut-and-choose phase:

- Let the values broadcasted corresponding to seed sg in the above three phases in iteration itr be

denoted by B[g]itr.

- On behalf of Pj , j ∈ {2, 3, 4}: receive opening broadcasted by P1 and compute ρ1. Also, run

ExtOpen routine to broadcast opening for ρj . Compute ρ = ⊕i∈[4]ρi.

- Let CC = {k : ρk = 1} where ρk is used to denote the kth bit of ρ and EC = [s] \ CC.

- For itr ∈ CC, the following is done:

◦ On behalf of Pg, g ∈ {2, 3}: broadcast the openings of seed s(g mod 3)+1 and masks rangh for

(h > g). Receive openings of seed s2 and masks ran1j for j ∈ {2, 3, 4}.
◦ If the opening broadcasted by P1 is incorrect, run 3PC locally on behalf of honest P2, P3, P4 and

give output to P ∗1 .

Input-sensitive phase: Run the following three phases for itr ∈ EC:

Transfer of keys (encoding labels) and masked inputs: For wire w corresponding to shares

possessed by two garblers:

- On behalf of Pg, g ∈ {2, 3}: If Pg is an owner of w, broadcast o[b]w ⊕ rang4.

- If P1 is an owner of w, receive o[k]hw,bw where h ∈ S1 from P1 on behalf of P4.

- If opening sent by P1 is invalid, broadcast o[ran]14 and (Con, P1, P4). Broadcast o[k]hw,bw where

h ∈ Sg on behalf of Pg, g ∈ {2, 3}.

Evaluation:

84

- Using the knowledge of all seeds sg, g ∈ [3]: compute z = y ⊕ λw and Y = {kgw,z}g∈[3] for output

wire w. Broadcast Y on behalf of P4.

Figure 11.10: Simulator S1
hm.bobw

Security against active P ∗1 : We now argue that idealFgod,S
1
hm.bobw

c
≈ realπbobw.god,A when an

adversary A corrupts a single party P1 (honest majority). The views are shown to be indistin-

guishable via a series of intermediate hybrids.

– hyb0: Same as realπbobw.god,A.

– hyb1: Same as hyb0 except: For share xjk for j ∈ [4] \ {1}, k 6= 1 (i.e. the share that the

adversary doesn’t get access to), replace c[in]jk with the commitment of a dummy value.

– hyb2: Same as hyb1 except: During the OT phase, invoke FOT for OTs where P1 acts as

receiver to obtain o[k]1w,bw for wire w corresponding to shares possessed by P1 and P4.

– hyb3: Same as hyb2 except: Compute z = y ⊕ λw and Y = {kgw,z}g∈[3] instead of running

the Evaluation Phase of garbling. Here, y is the output after invoking Fgod with (input, x1).

– hyb4: Same as hyb3 except: in case of a P1 identified to be corrupt, compute y locally

between P2, P3, P4 (from all the known inputs) instead of running 3PC.

Note that hyb4 = idealFgod,S
1
hm.bobw

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference between the hybrids is that in hyb2, the commitment for

shares xjk for j ∈ [4]\{1}, k 6= 1 are replaced by commitments of dummy values. Note that these

are the shares whose openings are not revealed to the adversary. Hence, the indistinguishability

follows from the hiding property of the commitment scheme.

hyb1
c
≈ hyb2: Indistinguishability of hybrids follows from the security of the underlying

OT scheme.

hyb2
c
≈ hyb3: The indistinguishability follows from the correctness of the garbling scheme

since Y computed using the Evaluation Phase of garbling would also result in Y = {kgw,y⊕λw}g∈[3]

where y = f(x1, x2, x3, x4).

hyb3
c
≈ hyb4: The indistinguishability follows from the correctness of 3PC.

Corrupt P4: C = {P4} and H = {P1, P2, P3}. S4
hm.bobw playing the role of parties in H works

as follows:

85

Act honest on behalf of both the sender and the receiver for the three commitment instances run

as: a) P1 as sender and P3 as receiver for seed s2, b) P2 as sender and P1 as receiver for seed s3,

c) P3 as sender and P2 as receiver for seed s1.

Figure 11.11: Simulator S4
seed.hm

- On behalf of Pj , j ∈ [3]: Sample ρj ← {0, 1}s and act as honest committer in ExtCom with Pj+1

as receiver.

- For the commitment instance between P4 as sender and P1 as receiver to commit to string

ρ4:

◦ Run the ExtCom protocol with P4 as sender and honest P1 as receiver, run rounds 1-3 and

broadcast their messages (extcom1
1, extcom1

2, extcom1
3).

◦ Rewind the adversary to the end of round 1 for P4 and P1 to rerun rounds 2-3 and broadcast

(extcom2
2, extcom2

3).

◦ Run extractor algorithm Extract of the commitment scheme as in Fig 9.2 using inputs (extcom1
1,

{extcomi
2, extcomi

3}i∈[2]) to extract the committed string ρ4.

Figure 11.12: Extraction of challenge-string S4
CCstring.hm

Seed and mask distribution: Run S4
seed.hm (Fig 11.11) and S4

mask.hm (Fig 11.8).

Input-sharing: Run S4
ICom.hm (Fig 11.6). Compute x4 = x41 ⊕ x42 ⊕ x43. Invoke Fgod (Fig 2.1)

with (input, x4) on behalf of P ∗4 to obtain y.

Cut-and-choose Challenge String: Run S4
CCstring.hm (Fig 11.12) to compute ρ = ⊕i∈[4]ρi. Let

CC = {k : ρk = 1} where ρk is used to denote the kth bit of ρ and EC = [s] \ CC.

Run the following three phases for iterator itr ∈ [s]:

(I) Input-insensitive phase:

- On behalf of honest Pg, g ∈ [3] and h ∈ Sg, do the following steps honestly: Broadcast λhw for

output wire w. For every input wire w w.r.t. xw held by two garblers: for each Pj holding xw,

Pg, g 6= j broadcasts λjw. (If P4 holds w, Pg broadcasts λlw, l ∈ Sg). For every input wire w, let

khw,0 and khw,1 denote the two keys derived from seed sh. For b ∈ {0, 1}, compute commitments as:

(c[k]hw,b, o[k]hw,b)← Com(pph, khw,b) and broadcasts {c[k]hw,b}.
- For input wire w owned by honest Pg, g ∈ {2, 3, 4}: compute λw = (⊕h∈[3])λ

h
w using the knowledge

of all seeds.

Commitment on masked inputs: On behalf of Pi, i ∈ [3]: For input wire w, with masked input

bw held by parties Pi, Pj , compute (c[b]w, o[b]w) = Com(ppij , bw) (using randomness derived from

shared ranij). Broadcast (ppij , c[b]w). For bw (say w.r.t. xi4) held by P4, if P4 broadcasts different

86

values than computed by Pi, broadcast o[ran]i4, {o[s]l}l∈[3] and o[in]i4. Run 3PC locally on behalf of

honest P1, P2, P3 and give output to P ∗4 .

Oblivious Transfer: For wire w corresponding to shares owned by Pg, g ∈ [3] and P4, say x14:

- Send o[k]hw,bw where h ∈ Sg to P4 on behalf of Pg.

- FOT is called by P` (` = 2 if g = 3; ` = 3 otherwise) (as sender) and P4 (as receiver).

- Send o[k]gw,bw to P4 on behalf of Pg.

Transfer of GC:

- For itr ∈ CC, i.e. for GC that will be opened according to the challenge string, behave honestly

on behalf of Pg, g ∈ [3] to realise FGCMod using seeds chosen in seed distribution phase.

- For itr ∈ EC, i.e. for GCs that will be evaluated, compute z = y ⊕ λw for the output wire w.

Construct a simulated GC1||GC2||GC3 using the knowledge of all seeds such that each ciphertext

for the output gate of GCg encrypts the same output key kgw,z.

- Broadcast {GCh} on behalf of Pg, g ∈ [3] and h ∈ Sg.

(II) Cut-and-choose phase:

- Let the values broadcasted corresponding to seed sg in the above three phases in iteration itr be

denoted by B[g]itr.

- On behalf of Pj , j ∈ [3]: receive opening broadcasted by P4. If opening sent by P4 is invalid,

invoke simulator for 3PC (P4 corrupt). Also, run ExtOpen routine to broadcast opening for ρj .

- For itr ∈ CC, the following is done:

◦ On behalf of P1, broadcast openings of seed s2 and masks ran12, ran13 and ran14.

◦ On behalf of P2, broadcast openings of seed s3 and masks ran23 and ran24.

◦ On behalf of P3, broadcast openings of seed s1 and masks ran34.

Input-sensitive phase: Run the following three phases for itr ∈ EC:

Transfer of keys (encoding labels) and masked inputs: For wire w corresponding to shares

possessed by two garblers, do the following on behalf of Pg, g ∈ [3]:

- If Pg is an owner of w, broadcast o[b]w ⊕ o[ran]g4.

- If Pg is an owner of w, send o[k]hw,bw where h ∈ Sg to P4 on behalf of Pg.

Evaluation:

- Receive Y on behalf of Pg, g ∈ [3] as broadcasted by P4. If P4 does not broadcast anything or if

Y 6= {khw,z}h∈[3], Run 3PC locally on behalf of honest P1, P2, P3 and give output to P ∗4 .

Figure 11.13: Simulator S4
hm.bobw

Security against active P ∗4 : We now argue that idealFgod,S
4
hm.bobw

c
≈ realπbobw.god,A when an

adversary A corrupts a single party P4 (honest majority). The views are shown to be indistin-

87

guishable via a series of intermediate hybrids.

– hyb0: Same as realπbobw.god,A.

– hyb1: Same as hyb0 except: Rerun rounds 2-3 of extractable commitment for the com-

mitment of the challenge string for cut-and-choose (with P4 as sender and P1 as receiver) to

extract ρ4. Run the subsequent rounds same as hyb0.

– hyb2: Same as hyb1 except: For share xjk for j ∈ [3], k 6= 4 (i.e. the share that the adversary

doesn’t get access to), replace c[in]jk with the commitment of a dummy value.

– hyb3: Same as hyb2 except: For itr ∈ EC i.e. for GCs that will be evaluated, construct

simulated GC using knowledge of all seeds (instead of constructing an honest GC), in such a

way that each ciphertext for the output gate encrypts the same output key which corresponds

to bw = y ⊕ λw where y is obtained after having invoked Fgod and λw is known from the

information of all seeds.

– hyb4: Same as hyb3 except: In hyb4, Y is deemed to be invalid if there does not exist a

bit bw such that for each j ∈ Sg, k
j
w obtained from Y matches kjw,bw while in hyb5, it Y is

deemed invalid if it is not the one that was encrypted in the simulated GC.

– hyb5: Same as hyb4 except: in case of a P1 identified to be corrupt, compute y locally

between P2, P3, P4 (from all the known inputs) instead of running 3PC.

Note that hyb4 = idealFgod,S
4
hm.bobw

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference is that in hyb1, rounds 2-3 of extractable commitment

for the commitment of challenge string for cut-and-choose are rerun to extract ρ4. Note that

the view of the adversary doesn’t change across rewinds.

hyb1
c
≈ hyb2: The only difference between the hybrids is that in hyb2, the commitment for

shares xjk for j ∈ [4]\{1}, k 6= 1 are replaced by commitments of dummy values. Note that these

are the shares whose openings are not revealed to the adversary. Hence, the indistinguishability

follows from the hiding property of the commitment scheme.

hyb2
c
≈ hyb3: Indistinguishability of hybrids follows from reduction to the security of the

underlying garbling scheme which breaks down to the security of PRF. Also, it is ensured that

the GCs that are going to be opened for verification have been constructed correctly, so that

the adversary cannot distinguish w.r.t. those GCs.

hyb3
c
≈ hyb4: Indistinguishability follows for the two different notions of validity of Y

because a Y valid according to condition in hyb5 is valid according to condition in hyb4. Also

88

a Y invalid according to condition in hyb5 can possibly be valid according to condition in hyb4

only if P4 could forge the other output keys which is not possible with non-negligible probability

according to the authenticity of the garbling scheme.

hyb3
c
≈ hyb4: The indistinguishability follows from the correctness of 3PC.

11.2.2 Dishonest Majority

Let A be a malicious adversary corrupting 2 parties in an execution of πbobw.god. We discuss

the dishonest majority simulator for two cases: (a) S12
dm.bobw when two garblers (say P1, P2)

are corrupt and remaining parties P3, P4 are honest, (b) S14
dm.bobw when a garbler (say P1) and

evaluator P4 are corrupt and garblers P2, P3 are honest. We now describe the simulator running

an ideal-world of the GOD functionality Fgod (Fig 2.1) whose behaviour simulates the behaviour

of A.

Corrupt P1, P2: C = {P1, P2} and H = {P3, P4}. S12
dm.bobw playing the role of parties in H

works as follows:

For corrupt input x1:

- Receive broadcast values (pp1, c[in]1i) for i ∈ ind(P1) and o[in]1i ⊕ ran1i. Unmask the lat-

ter on behalf of honest Pj for j ∈ {3, 4} using ran1j to obtain o[in]1j and compute x1j ←
Open(pp1, c[in]1j , o[in]1j).

- If, for some j, o[in]1j is invalid, broadcast o[ran]1j on behalf of Pj for j ∈ {3, 4}. Invoke simulator

for 3PC() with P2, P3, P4 as participating parties (with P2 as the corrupt party).

For honest input x3:

- On behalf of P3: sample random x3i for i ∈ [2] and compute (c[in]3i, o[in]3i) ← Com(pp3, x3i).

Broadcast (pp3, c[in]3i) and o[in]3i ⊕ rani3.

- If Pi broadcasts o[ran]i3, invoke simulator for 3PC() with Pj , P3, P4 where j = [2] \ {i} as partici-

pating parties (with Pj as the corrupt party).

- Also, sample dummy x34 and compute (c[in]34, o[in]34) ← Com(pp3, x34). Broadcast (pp3, c[in]34)

and o[in]34 ⊕ ran34.

Figure 11.14: Simulator S12
ICom.dm

- Act honestly on behalf of P3 for the commitment instance between P1 as sender and P3 as receiver

to obtain seed s2.

- Sample random s1 and act honestly on behalf of P3 for the commitment instance between P3 as

sender and P2 as receiver.

- For the commitment instance between P1 as sender and P2 as receiver to commit to seed s3:

◦ Run the ExtCom protocol where P1 and P2 run rounds 1-3 and broadcast their messages

89

(extcom1
1, extcom1

2, extcom1
3).

◦ Rewind the adversary to the end of round 1 for P1 and P2 to rerun rounds 2-3 and broadcast

(extcom2
2, extcom2

3).

◦ On behalf of P3, Run extractor algorithm Extract of the commitment scheme as in Fig 9.2 using

inputs (extcom1
1, {extcomi

2, extcomi
3}i∈[2]) to extract the committed seed s3.

Figure 11.15: Simulator S12
seed.dm

- Receive broadcast values (ppk, c[ran]ki) for i > k. Receive o[ran]ki on behalf of honest Pi. Abort

if opening is invalid. Else, compute ranki ← Open(ppk, c[ran]ki, o[ran]ki).

- On behalf of honest Pi ∈ P \ {Pk, P`} for i < k, sample ranik, compute (c[ran]ik, o[ran]ik) ←
Com(ppi, ranik). Broadcast (ppk, c[ran]ik).

- Receive broadcast values (pp`, c[ran]`i) for i > `. Receive o[ran]`i on behalf of honest Pi. Abort if

opening is invalid. Else, compute ran`i ← Open(pp`, c[ran]`i, o[ran]`i).

- On behalf of honest Pi ∈ P \ {Pk, P`} for i < `, sample rani`, compute (c[ran]i`, o[ran]i`) ←
Com(ppi, rani`). Broadcast (pp`, c[ran]i`).

Figure 11.16: Simulator Sk`mask.dm

- On behalf of Pj , j ∈ {3, 4}: Sample ρj ← {0, 1}s and act as honest committer in ExtCom with

Pj+1 as receiver.

- On behalf of P3: Act as honest receiver for the commitment instance between P2 as sender and

P3 as receiver.

Figure 11.17: Simulator S12
CCstring.dm

Seed and mask distribution: Run S12
seed.dm (Fig 11.15) and S12

mask.dm (Fig 11.16). Extract seed s3.

Input-sharing: Run S12
ICom.dm (Fig 11.14).

Cut-and-choose Challenge String: Run S12
CCstring.dm (Fig 11.17).

Run the following three phases for iterator itr ∈ [s]:

(I) Input-insensitive phase:

- On behalf of honest P3 and h ∈ S3, do the following steps honestly: Broadcast λhw for output wire

w. For every input wire w, if w is owned by Pg, g ∈ [2], broadcast λgw. (If P4 owns w, broadcast

λhw). For every input wire w, let khw,0 and khw,1 denote the two keys derived from seed sh. For

b ∈ {0, 1}, compute commitments as: (c[k]hw,b, o[k]hw,b)← Com(pph, khw,b) and broadcast {c[k]hw,b}.
- If Pi, i ∈ [2] broadcasts different copies of λhw (for output wire w) or λhw or c[k]hw,b (for some input

wire w and b ∈ {0, 1}) for h ∈ S3 than what was computed by honest P3, then on behalf of P3:

90

broadcast o[s]h. Invoke simulator for 3PC() with Pj , P3, P4 where Pj = [2] \ {i} as participating

parties (with Pj as the corrupt party).

- If P1 and P2 broadcast different copies of λ3
w (for output wire w) or λ3

w or c[k]3w,b (for some input

wire w and b ∈ {0, 1}), then receive o[s]3 from P1 and P2 and conclude the party (out of the two)

who misbehaved by locally computing the messages they broadcasted using o[s]3. Invoke simulator

for 3PC() accordingly.

- For input wire w owned by honest Pg, g ∈ {3, 4}: compute λw = (⊕h∈[3])λ
h
w using the knowledge

of all seeds (including the extracted s3).

Commitment on masked inputs:

- On behalf of Pi, i ∈ {3, 4}: For input wire w, with masked input bw held by parties Pi, Pj , j 6= i,

compute (c[b]w, o[b]w) = Com(ppij , bw) (using randomness derived from shared ranij). Broadcast

(ppij , c[b]w).

- For input wire w (w.r.t. share xij) where i ∈ {3, 4} and j ∈ [2]: If Pj broadcasts different values

than computed by Pi, broadcast o[ran]ji, {o[s]l}l∈Si and o[in]ij .

- For input wire w (w.r.t. share held by P1, P2, say x12): if P1, P2 broadcast mismatching values,

receive o[ran]12, {o[seed]l}l∈Sj broadcasted by Pj , j ∈ [2] and conclude the party (out of the two)

by locally computing the messages they broadcasted (say P1 is corrupt). Invoke simulator for

3PC() accordingly.

Oblivious Transfer: For wire w corresponding to shares owned by Pg, g ∈ [3] and P4, say x14:

- Receive o[k]hw,bw where h ∈ S1 on behalf of P4 from P1 and compute khw,bw .

- If any opening sent by P1 is invalid: Broadcast o[b]w and (Con, P1, P4) on behalf of P4 and o[k]hw,bw
on behalf of P3 for h ∈ S3. Receive o[k]hw,bw broadcasted by P2 for h ∈ S2. If any opening sent by

P2 is invalid, invoke FuAbort with (input,⊥) and set y = ⊥.

- Else, receive o[k]1w,bw from P1 on behalf of P4 (after P1 (as receiver) and P2 (as sender) would

have run an OT).

Transfer of GC:

- Behave honestly on behalf of P3 to realise FGCMod using seeds s1, s2 chosen in seed distribution

phase. If any instance of πaot.bobw returns C3, invoke simulator for 3PC() with C3 as participating

parties (with C3 \ {P3, P4} as the corrupt party).

- Broadcast {GCh} on behalf of P3 for h ∈ S3. If P1 (or P2) broadcasts different copies of GCh

than what was computed by honest P3, then on behalf of P3: broadcast o[s]h. Invoke simulator

for 3PC() accordingly.

- If P1 and P2 broadcast different copies of GC3, then receive o[s]3 from P1 and P2 and conclude

the party (out of the two) who misbehaved by locally computing GC3. Invoke simulator for 3PC()

accordingly.

91

(II) Cut-and-choose phase:

- Let the values broadcasted corresponding to seed sg in the above three phases in iteration itr be

denoted by B[g]itr.

- On behalf of Pj , j ∈ {3, 4}: receive opening broadcasted by P1, P2 and compute ρ1, ρ2. Also, run

ExtOpen routine to broadcast opening for ρj . Compute ρ = ⊕i∈[4]ρi.

- Let CC = {k : ρk = 1} where ρk is used to denote the kth bit of ρ and EC = [s] \ CC.

- For itr ∈ CC, the following is done:

◦ On behalf of P3, broadcast openings of seed s1 and masks ran34.

◦ If any opening broadcasted by Pg, g ∈ [2] is incorrect, run simulator for 3PC with C3 = P\{Pg}.
◦ Check whether B[3]itr sent by P1, P2 is consistent with s3. If not, invoke FuAbort with (input,⊥)

and set y = ⊥.

(III) Input-sensitive phase: Run the following three phases for itr ∈ EC:

Transfer of keys (encoding labels) and masked inputs: For each masked input bw held by

two garblers, do the following:

- On behalf of P3, if P3 is an owner of w, broadcast o[b]w ⊕ ran34.

- For share x12 owned by P1, P2, receive o[b]w ⊕ rani4 from Pi, i ∈ [2]. If both P1, P2 send invalid

o[b]w, on behalf of P4: broadcast o[ran]14 and (Con, P1, P4). Invoke simulator for 3PC() with

P2, P3, P4 as participating parties (with P2 as the corrupt party).

- Else, use bw received to compute x12 = bw⊕(⊕h∈[3]λ
h
w) (from the knowledge of all seeds). Compute

x1 = x12 ⊕ x13 ⊕ x14. Compute x2 similarly.

- For share owned by Pi, i ∈ [2], receive o[k]hw,bw from Pi for h ∈ Si on behalf of P4.

- If opening sent by either party (say P1) is invalid, broadcast o[ran]i4 and (Con, P i, P4). Broadcast

o[k]hw,bw for h ∈ S3 on behalf of P3. If Pj , j ∈ [2]\{i} broadcasts an invalid opening, invoke FuAbort

with (input,⊥) and set y = ⊥.

Evaluation:

- Invoke FuAbort (Fig 2.3) with (input, x1), (input, x2) on behalf of P ∗1 , P
∗
2 to obtain y.

- Using the knowledge of all seeds sg, g ∈ [3] and y: compute z = y ⊕ λw and Y = {kgw,z}g∈[3] for

output wire w. Broadcast Y on behalf of P4.

Figure 11.18: Simulator S12
dm.bobw

Security against active P ∗1 and P ∗2 : We now argue that

idealFuAbort,S
12
dm.bobw

c
≈ realπbobw.god,A when an adversary A corrupts two parties P1, P2 (dishonest

majority). The views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realπbobw.god,A.

– hyb1: Same as hyb0 except: Rerun rounds 2-3 of extractable commitment (with P2 as sender

92

and P1 as receiver) in the seed-distribution phase to extract seed s3. Run the subsequent

rounds same as hyb0.

– hyb2: Same as hyb1 except: For share xij for i ∈ {3, 4}, j = {3, 4} \ {i} (i.e. the share that

the adversary doesn’t get access to), replace c[in]ij with the commitment of a dummy value.

– hyb3: Same as hyb2 except: Compute z = y ⊕ λw and Y = {kgw,z}g∈[3] instead of running

the Evaluation Phase of garbling. Here, y is the output after invoking Fgod with (input, x1)

and λw is computed using the knowledge of all seeds.

– hyb4: Same as hyb3 except: in case of a Pi, i ∈ [2] identified to be corrupt, invoke simulator

for 3PC instead of running the actual 3PC.

Note that hyb4 = idealFuAbort,S
12
dm.bobw

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference is that in hyb1, rounds 2-3 of extractable commitment

for the seed-distribution phase are rerun to extract s3. Note that the view of the adversary

doesn’t change across rewinds.

hyb1
c
≈ hyb2: The only difference between the hybrids is that in hyb2, the commitment

for shares xij for i ∈ {3, 4}, j = {3, 4} \ {i} are replaced by commitments of dummy values.

Note that these are the shares whose openings are not revealed to the adversary. Hence, the

indistinguishability follows from the hiding property of the commitment scheme.

hyb2
c
≈ hyb3: The indistinguishability follows from the correctness of the garbling scheme

since Y computed using the Evaluation Phase of garbling would also result in Y = {kgw,y⊕λw}g∈[3]

where y = f(x1, x2, x3, x4).

hyb3
c
≈ hyb4: The indistinguishability follows from the security of 3PC simulator.

Corrupt P1, P4: C = {P1, P4} and H = {P2, P3}. S14
dm.bobw playing the role of parties in H

works as follows:

- Act honestly on behalf of P3 for the commitment instance between P1 as sender and P3 as receiver

to obtain seed s2.

- Sample random s3 and act honestly on behalf of P2 for the commitment instance between P2 as

sender and P1 as receiver.

- Sample random s1 and act honestly on behalf of P3 and P2 for the commitment instance between

P3 as sender and P2 as receiver.

Figure 11.19: Simulator S14
seed.dm

93

- On behalf of Pj , j ∈ {2, 3}: Sample ρj ← {0, 1}s and act as honest committer in ExtCom with

Pj+1 as receiver.

- For the commitment instance between Pi, i{1, 4} as sender and Pi+1 as receiver to commit to

string ρi:

◦ Run the ExtCom protocol with Pi as sender and Pi+1 as receiver, run rounds 1-3 and broadcast

their messages (extcom1
1, extcom1

2, extcom1
3).

◦ Rewind the adversary to the end of round 1 for P4 and P1 to rerun rounds 2-3 and broadcast

(extcom2
2, extcom2

3).

◦ Run extractor algorithm Extract of the commitment scheme using inputs (extcom1
1,

{extcomi
2, extcomi

3}i∈[2]) to extract the committed string ρi.

Figure 11.20: Extraction of challenge-string S14
CCstring.dm

Seed and mask distribution: Run S14
seed.dm (Fig 11.19) and S14

mask.dm (Fig 11.16).

Input-sharing: Run S14
ICom.dm (Fig 11.14)

Cut-and-choose Challenge String: Run S14
CCstring.dm (Fig 11.20) to compute ρ = ⊕i∈[4]ρi. Let

CC = {k : ρk = 1} where ρk is used to denote the kth bit of ρ and EC = [s] \ CC.

Run the following three phases for iterator itr ∈ [s]:

(I) Input-insensitive phase:

- On behalf of honest Pg, g ∈ {2, 3} and h ∈ Sg, do the following steps honestly: Broadcast λhw for

output wire w. For every input wire w, if w is owned by a garbler Pi, i 6= g, broadcast λiw (If

P4 owns w broadcast λhw). For every input wire w, let khw,0 and khw,1 denote the two keys derived

from seed sh. For b ∈ {0, 1}, compute commitments as: (c[k]hw,b, o[k]hw,b) ← Com(pph, khw,b) and

broadcast {c[k]hw,b}.
- If P1 broadcasts different copies of λhw (for output wire w) or λhw or c[k]hw,b (for some input wire

w and b ∈ {0, 1}) for h ∈ S1 than what was computed by honest Pg, g ∈ {2, 3}, then on behalf of

Pg: broadcast o[s]h. Invoke simulator for 3PC() with P2, P3, P4 as participating parties (with P4

as the corrupt party).

- For input wire w owned by honest Pi, i ∈ {2, 3}: compute λw = (⊕h∈[3])λ
h
w using the knowledge

of all seeds.

Commitment on masked inputs:

- On behalf of Pi, i ∈ {2, 3}: For input wire w, with masked input bw held by parties Pi, Pj , j 6= i,

compute (c[b]w, o[b]w) = Com(ppij , bw) (using randomness derived from shared ranij). Broadcast

(ppij , c[b]w).

- For input wire w (w.r.t. share xij) where i ∈ {2, 3} and j ∈ {1, 4}: If Pj broadcasts different

94

values than computed by Pi, broadcast o[ran]ji, {o[s]l}l∈Si and o[in]ij .

- For input wire w (w.r.t. share held by P1, P4, say x14): if P1, P4 broadcast mismatching values,

receive o[ran]14, {o[s]l}l∈Sj broadcasted by Pj , j ∈ {1, 4} and conclude the party (out of the two) by

locally computing the messages they broadcasted (say P1 is corrupt). Invoke simulator for 3PC()

accordingly.

Oblivious Transfer: For wire w corresponding to shares possessed by garbler (say P1) and P4, say

x14:

- Receive bw sent by P1 to FOT for the OT that is supposed to run between P1 (as receiver) and

P2 (as sender).

- Compute x14 = bw ⊕ (⊕h∈[3]λ
h
w) and x1 = x12 ⊕ x13 ⊕ x14. Similarly, compute x4. Invoke FuAbort

(Fig 2.3) with (input, x1), (input, x4) on behalf of P ∗1 , P
∗
4 to obtain y.

Transfer of GC:

- For itr ∈ CC, i.e. for GC that will be opened according to the challenge string, behave honestly

on behalf of Pg, g ∈ {2, 3} to realise FGCMod using seeds chosen in seed distribution phase.

- For itr ∈ EC, i.e. for GCs that will be evaluated, compute z = y ⊕ λw for the output wire w.

Construct a simulated GC1||GC2||GC3 using the knowledge of all seeds such that each ciphertext

for the output gate of GCg encrypts the same output key kgw,z.

- Broadcast {GCh} on behalf of Pi, i{2, 3} for h ∈ Si. If P1 broadcasts different copies of GCh than

what was computed by honest P2 (or P3) for h ∈ S1, then on behalf of P2 (or P3): broadcast o[s]h.

Invoke simulator for 3PC() with P2, P3, P4 as participating parties (with P4 as the corrupt party).

(II) Cut-and-choose phase:

- Let the values broadcasted corresponding to seed sg in the above three phases in iteration itr be

denoted by B[g]itr.

- On behalf of Pj , j ∈ {2, 3}: receive opening broadcasted by Pi, i ∈ {1, 4}. If opening sent by Pi

is invalid, invoke simulator for 3PC (Pi corrupt). Also, run ExtOpen routine to broadcast opening

for ρj .

- For itr ∈ CC, the following is done:

◦ On behalf of P2, broadcast openings of seed s3 and masks ran23 and ran24.

◦ On behalf of P3, broadcast openings of seed s1 and masks ran34.

◦ If any opening broadcasted by P1 is incorrect, run simulator for 3PC with C3 = P \ {P1}.

(III) Input-sensitive phase: Run the following three phases for itr ∈ EC:

Transfer of keys (encoding labels) and masked inputs: For each masked input bw held by

two garblers, do the following on behalf of Pg, g ∈ {2, 3}:
- If Pg is an owner of w, broadcast o[b]w ⊕ rang4.

- If Pg is an owner of w, send o[k]hw,bw , h ∈ Sg to P4 on behalf of Pg.

95

- If P4 broadcasts o[ran]i4 and (Con, Pi, P4) w.r.t input wire w, broadcast o[k]hw,bw , h ∈ Sg on behalf

of Pg, g 6= i.

Evaluation:

- Receive Y on behalf of Pg, g ∈ [3] as broadcasted by P4. If P4 does not broadcast anything or

if Y 6= {khw,z}h∈[3], invoke simulator for 3PC() with P1, P2, P3 as participating parties (with P1 as

the corrupt party).

Figure 11.21: Simulator S14
dm.bobw

Security against active P ∗1 and P ∗4 : We now argue that

idealFuAbort,S
14
dm.bobw

c
≈ realπbobw.god,A when an adversary A corrupts two parties P1 and P4 (dis-

honest majority). The views are shown to be indistinguishable via a series of intermediate

hybrids.

– hyb0: Same as realπbobw.god,A.

– hyb1: Same as hyb0 except: Rerun rounds 2-3 of extractable commitment for the com-

mitment of the challenge string for cut-and-choose (with P4 as sender and P1 as receiver) to

extract ρ4. Similarly extract ρ1. Run the subsequent rounds same as hyb0.

– hyb2: Same as hyb1 except: For share xij for i ∈ {2, 3}, j ∈ {2, 3} \ {i} (i.e. the share that

the adversary doesn’t get access to), replace c[in]ij with the commitment of a dummy value.

– hyb3: Same as hyb2 except: invoke FOT for OT between P1 as receiver and P2 as sender to

communicate o[k]1w,bw for wire w owned by P1 and P4.

– hyb4: Same as hyb3 except: For itr ∈ EC i.e. for GCs that will be evaluated, construct

simulated GC using knowledge of all seeds (instead of constructing an honest GC), in such a

way that each ciphertext for the output gate encrypts the same output key which corresponds

to bw = y ⊕ λw where y is obtained after having invoked Fgod and λw is known from the

information of all seeds.

– hyb5: Same as hyb4 except: In hyb4, Y is deemed to be invalid if there does not exist a

bit bw such that for each j ∈ Sg, k
j
w obtained from Y matches kjw,bw while in hyb5, it Y is

deemed invalid if it is not the one that was encrypted in the simulated GC.

– hyb6: Same as hyb5 except: in case of a Pi, i ∈ {1, 4} identified to be corrupt, invoke

simulator for 3PC instead of running the actual 3PC.

96

Note that hyb5 = idealFgod,S
14
dm.bobw

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference is that in hyb1, rounds 2-3 of extractable commitment

of the challenge string for cut-and-choose are rerun to extract ρ4 and ρ1. Note that the view of

the adversary doesn’t change across rewinds.

hyb1
c
≈ hyb2: The only difference between the hybrids is that in hyb2, the commitment

for shares xij for i ∈ {2, 3}, j = {2, 3} \ {i} are replaced by commitments of dummy values.

Note that these are the shares whose openings are not revealed to the adversary. Hence, the

indistinguishability follows from the hiding property of the commitment scheme.

hyb2
c
≈ hyb3: Indistinguishability follows from reduction to the underlying OT scheme.

hyb3
c
≈ hyb4: Indistinguishability of hybrids follows from reduction to the security of the

underlying garbling scheme which breaks down to the security of PRF. Also, it is ensured that

the GCs that are going to be opened for verification have been constructed correctly, so that

the adversary cannot distinguish w.r.t. those GCs.

hyb4
c
≈ hyb5: Indistinguishability follows for the two different notions of validity of Y

because a Y valid according to condition in hyb5 is valid according to condition in hyb4. Also

a Y invalid according to condition in hyb5 can possibly be valid according to condition in hyb4

only if P4 could forge the other output keys which is not possible with non-negligible probability

according to the authenticity of the garbling scheme.

hyb5
c
≈ hyb6: The indistinguishability follows from the correctness of 3PC.

97

Chapter 12

Fairness in Best-of-Both-Worlds

Setting

In this chapter, we provide an efficient construction for 4 parties in the BoBW setting that

simultaneously guarantees: a) fairness in honest majority (t = 1), b) unanimous abort in

dishonest majority (s = 3). We discussed that, as per [IKLP06], the best feasible security

notions of guaranteed output delivery (against t < n/2 corruptions) and unanimous abort

(against s < n corruptions) can be attained simultaneously under the additional condition that

t + s < n. Due to relaxation of security from guaranteed output delivery to fairness, we get

rid of this constraint on corruption threshold parameters. Our protocol ideas can be used on

top of any 4-party Distributed Garbling scheme that achieves abort security against 3 active

corruptions. For concrete instantiation, we use the state-of-the-art n-party scheme of [WRK17]

that promises abort security against n−1 corruptions. We begin with an overview of [WRK17]

below.

12.1 Distributed Garbling of [WRK17]

For n = 4, [WRK17] has 3 garblers {P1, P2, P3} and 1 evaluator P4 (wlog). Each wire w is

associated with a mask λw ∈ {0, 1} and each party Pi samples its mask share λiw such that

λw = ⊕i∈[4]λ
i
w. Each garbler Pg also chooses a pair of keys kgw,0, k

g
w,1 = kgw,0⊕∆g for each wire w

where ∆g is the global offset of Pg. The crux of the construction is the same as the distributed

garbling explained in Chapter 10, however they also rely on pair-wise authentication to achieve

active security against 3 corruptions. Specifically, [WRK17] uses an optimized, multi-party

version of the TinyOT [NNOB12] to generate authentication information (MACs) for every

mask share. To elaborate, for its mask-share λiw on wire w, Pi runs a multi-party TinyOT with

98

every Pj, j 6= i to obtain MAC Mj[λ
i
w] where Pj uses a pair-wise authentication key Kj[λ

i
w] and

a global offset ∆j to authenticate. The keys and mask shares for output wires of XOR gates are

set in order to enable free-XOR [KS08]. A garbled-table constructed by Pg for an AND gate

with u, v as input wires and w as output wire consists of 4 ciphertexts corresponding to 4 rows

(for all possible combinations of the input values on wires u, v). For the ciphertext positioned

at row r(r ∈ [4]), Pg first obtains authenticated shares of each garbler’s keys on w (including her

own key share) to be encrypted in row r. Pg then encrypts all these shares collectively with her

own keys for input wires u, v corresponding to row r. Note that the authentication mechanism

is such that the MAC obtained by Pi w.r.t. the key Along with the keys, the shares of the

masked output and their respective MACs are also encrypted in a ciphertext. This construction

is formally depicted in functionality FPre (Fig 12.2). During evaluation, P4, when given the keys

for the input wires u, v particular to row r of an AND gate, decrypts the row r of all garbled-

tables (wrt each garbler) and computes all keys on output wire w that correspond to the masked

output using the shares obtained on decryption. P4, at every decryption step, verifies if the

mask-share and MACs encrypted using her respective authentication key are valid and aborts

otherwise. In [WRK17], only the evaluator obtains output using the authenticated mask shares

on the output wires (by unmasking the mask on masked output) from each garbler, with MACs

ensuring that the received share is valid. We first provide the FPre and FnaBit functionalities used

in [WRK17] in Fig 12.2 and 12.1 respectively. Then, we give the formal protocol of [WRK17],

πdm.abort for 4 parties in Fig 12.3.

Honest Parties: On receiving (input, i, `) from all parties, pick random string x ∈ {0, 1}`. For

each j ∈ [`], k 6= i, pick random Kk[xj], compute {Mk[xj] = Kk[xj] ⊕ xj∆k}k 6=i. For each j ∈ [`],

send {Mk[xj]}k 6=i to Pi and Kk[xj] to Pk for each k 6= i.

Corrupted Parties: Corrupted parties can choose their output from the protocol.

Global key queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 12.1: Functionality FnaBit

Honest Parties:

- On receiving init from all parties, sample {∆i ∈ {0, 1}κ}i∈[n] and send ∆i to Pi.

- On receiving random from all Pi, sample a random bit r and compute authenticated share

{(ri, {Mj [r
i],Ki[r

j]}j 6=i)}i∈[n]. Send (ri, {Mj [r
i],Ki[r

j]}j 6=i) to Pi for i ∈ [n].

- On receiving (and, (ri, {Mj [r
i],Ki[r

j]}j 6=i), (si, {Mj [s
i],Ki[s

j]}j 6=i) from Pi for all i ∈ [n], check

whether all MACs are valid. If so, compute (⊕i∈[n]r
i)(⊕i∈[n]s

i) and computes authenticated share

99

{(ti, {Mj [t
i],Ki[t

j]}j 6=i)}i∈[n]. Send (ti, {Mj [t
i],Ki[t

j]}j 6=i) to Pi for i ∈ [n].

Corrupted Parties: Corrupted parties can choose randomness used to compute the value they

receive from the functionality.

Global key queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 12.2: Functionality FPre

Inputs and Output: Party Pi has input xi for i ∈ [4]. P4 outputs y = f(x1, x2, x3, x4), each input

and output is from {0, 1}.
Input-independent phase:

- Pi sends init to FPre, which sends ∆i to Pi.

- For each wire w that is either an input wire or output wire of an AND gate, Pi, i ∈ [4] sends

random to FPre, which sends
(
λiw,

{
Mj [λ

i
w],Ki[λ

j
w]
}
j 6=i

)
to Pi s.t

⊕
i∈[4] λ

i
w = λw. Pi, i 6= 4 (i.e.

just the garblers) also picks a random κ-bit string kiw,0 as 0-label and sets kiw,1 = kiw,0 ⊕∆i as the

1-label.

- For each XOR gate G with input wires α, β and output wire γ, Pi, i ∈ [4] computes(
λiγ ,
{

Mj [λ
i
γ],Ki[λ

j
γ]
}
j 6=i

)
:=
(
λiα ⊕ λiβ,

{
Mj [λ

i
α] ⊕ Mj [λ

i
β],Ki[λ

j
α] ⊕ Ki[λ

j
β]
}
j 6=i

)
. Pi, i 6= 4 also

computes kiγ,0 := kα,0 ⊕ kβ,0 as 0-label on the output wire. He sets kiγ,1 = kiγ,0 ⊕∆i as 1-label.

- For each AND gate G with input wires α, β, output wire γ:

◦ Pi, i ∈ [3] sends

(
and,

(
λiα,
{

Mj [λ
i
α],Ki[λ

j
α]
}
j 6=i

)
,
(
λiβ,
{

Mj [λ
i
β],Ki[λ

j
β]
}
j 6=i

))
to FPre and re-

ceives
(
λiσ,
{

Mj [λ
i
σ],Ki[λ

j
σ]
}
j 6=i

)
for
⊕

i∈[4] λ
i
σ =

(⊕
i∈[4] λ

i
α

)(⊕
i∈[4] λ

i
β

)
.

◦ Pi, i 6= 4 computes the following locally:(
λiγ,0,

{
Mj [λ

i
γ,0],Ki[λ

j
γ,0]
}
j 6=i

)
:=
(
λiσ ⊕ λiγ ,

{
Mj [λ

i
σ]⊕Mj [λ

i
γ],Ki[λ

j
σ]⊕ Ki[λ

j
γ]
}
j 6=i

)
(
λiγ,1,

{
Mj [λ

i
γ,1],Ki[λ

j
γ,1]
}
j 6=i

)
:=
(
λiγ,0 ⊕ λiα,

{
Mj [λ

i
γ,0]⊕Mj [λ

i
α],Ki[λ

j
γ,0]⊕ Ki[λ

j
α]
}
j 6=i

)
(
λiγ,2,

{
Mj [λ

i
γ,2],Ki[λ

j
γ,2]
}
j 6=i

)
:=
(
λiγ,0 ⊕ λiβ,

{
Mj [λ

i
γ,0]⊕Mj [λ

i
β],Ki[λ

j
γ,0]⊕ Ki[λ

j
β]
}
j 6=i

)
(
λiγ,3,

{
Mj [λ

i
γ,3],Ki[λ

j
γ,3]
}
j 6=i

)
:=

(
λiγ,1 ⊕ λiβ,

{
M4[λiγ,1] ⊕ M4[λiβ],Ki[λ

4
γ,1] ⊕ Ki[λ

4
β] ⊕ ∆i

}
∪{

Mj [λ
i
γ,1]⊕Mj [λ

i
β],Ki[λ

j
γ,1]⊕ Ki[λ

j
β]
}
j 6=i,4

)
◦ P4 (the evaluator) computes the first three rows as above. The last row is computed as follows:(

λ4
γ,3,
{

Mj [λ
4
γ,3],K4[λjγ,3]

}
j 6=4

)
:=
(
λ4
γ,1 ⊕ λ4

β ⊕ 1,
{

Mj [λ
4
γ,1]⊕Mj [λ

4
β],K4[λ4

γ,j]⊕ K4[λjβ]
}
j 6=4

)
◦ For each i 6= 4, Pi sends the following to P4:

Giγ,0 := H(kiα,0, k
i
β,0, γ, 0)⊕

(
λiγ,0,

{
Mj [λ

i
γ,0]
}
j 6=i, k

i
γ,0 ⊕

(⊕
j 6=i Ki[λ

j
γ,0]
)
⊕ λiγ,0∆i

)
Giγ,1 := H(kiα,0, k

i
β,1, γ, 1)⊕

(
λiγ,1,

{
Mj [λ

i
γ,1]
}
j 6=i, k

i
γ,1 ⊕

(⊕
j 6=i Ki[λ

j
γ,1]
)
⊕ λiγ,1∆i

)
100

Giγ,2 := H(kiα,1, k
i
β,0, γ, 2)⊕

(
λiγ,2,

{
Mj [λ

i
γ,2]
}
j 6=i, k

i
γ,2 ⊕

(⊕
j 6=i Ki[λ

j
γ,2]
)
⊕ λiγ,2∆i

)
Giγ,3 := H(kiα,1, k

i
β,1, γ, 3)⊕

(
λiγ,3,

{
Mj [λ

i
γ,3]
}
j 6=i, k

i
γ,3 ⊕

(⊕
j 6=i Ki[λ

j
γ,3]
)
⊕ λiγ,3∆i

)
Input Processing:

- For input wire w that belongs to Pi, i 6= 4 (corresponding to input bit xw = xi), for each j 6= i, Pj

sends
(
λjw,Mi[λ

j
w]
)

to Pi, who checks that
(
λjw,Mi[λ

j
w],Ki[λ

j
w]
)

is valid, and computes the masked

input value mw := xi ⊕ λw = xiw ⊕
(⊕

i∈[4] λ
i
w

)
. Pi broadcasts the masked input value mw. The

garblers i.e. Pj , j 6= 4 send kjw,mw to P4.

– For input wire that belongs to P4 (corresponding to input bit xw = x4), Pj , j 6= 4 sends(
λjw,M1[λjw]

)
to P4. P4 checks if

(
λjw,M4[λjw],K4[λjw]

)
is valid. If so computes the masked in-

put mw := x4 ⊕ λw = x4
w ⊕

(⊕
i∈[4] λ

i
w

)
. P4 sends mw to Pi who sends kiw,mw to P4.

Circuit Evaluation: P4 evaluates the circuit in topological order. For each gate G with input wires

α, β and output wire γ, P4 holds
(
mα,

{
kiα,mα

}
i 6=4

)
and

(
mβ,

{
kiβ,mβ

}
i 6=4

)
where mα = xα ⊕ λα

and mβ = xβ ⊕ λβ.

– If G is an XOR gate, P4 computes mγ := mα ⊕mβ and
{

kiγ,mγ := kiα,mα ⊕ kiβ,mβ

}
i 6=4

– If G is an AND gate, P4 computes ` := 2mα + mβ. For i 6= 4, P4 computes(
λiγ,`,

{
Mj [λ

i
γ,`]
}
j 6=i, k

i
γ

)
:= Giγ,` ⊕H

(
kiα,mα , k

i
β,mβ

, γ, `
)
.

– P4 checks that
{(
λiγ,`,M4[λiγ,`],K4[λiγ,`]

)}
i 6=4

is valid and aborts if fails. P4 computes mγ :=⊕
i∈[4] λ

i
γ,`, and

{
kiγ,mγ := kiγ ⊕

(⊕
j 6=i Mi[λ

j
γ,`]
)}

i 6=4
.

Output processing: For each output wire w: Pi, i 6= 4 sends
(
λiw,M4[λiw]

)
to P4 who checks that(

λiw,M4[λiw],K4[λiw]
)

is valid and aborts if fails. P4 constructs the output mask bit λw :=
⊕

j∈[4] λ
j
w

and computes the actual output bit on wire w as xw := mw ⊕ λw.

Figure 12.3: Distributed Garbling Protocol of [WRK17] πdm.abort

12.2 Our Techniques

We now elaborate the challenges and corresponding fixes to transform [WRK17] to provide the

desired BoBW guarantees. Firstly, to enable all parties to compute the output, we enforce the

evaluator (P4) to broadcast the masked output shares (obtained on evaluation) along with the

MACs (wrt all garblers) in Round 1 of the output phase. A corrupt P1 can broadcast incorrect

MACs wrt some garblers, thereby selectively depriving some garblers of output. To tackle this,

we enable each garbler to broadcast an abort signal in Round 2, if for some received masked

output, its MAC does not pass the authentication check. Although this technique allows the

honest parties to be in agreement of the output being computed, the corrupt evaluator still

101

learns the output as all the mask shares on output wires are available to her violating our

primary requirement of fairness when t = 1. To handle a possible fairness violation in case

of corrupt P4 who misbehaves in Round 1 of output-computation, we enforce each garbler to

release the mask-shares on output wires in Round 3 only if P1 passes the authentication checks.

The final and major obstruction to fairness in honest majority (t = 1) is when a corrupt

party sends incorrect (or no) mask-shares in Round 3, but learns the output herself using the

mask-shares received from the 3 honest parties. This attack is feasible since the honest parties

must rely on the adversary to obtain the output. Hence, we make the honest parties constituting

the majority self-sufficient to reconstruct the output mask by additively re-sharing (second-level

sharing) each authenticated mask-share on all output wires such that 3 parties are enough to

reconstruct any output mask-share. Thus, if a faulty party does not release her mask-share,

then the remaining 3 (honest) parties can reconstruct the same. In detail, the mask-share λ1
w

owned by P1 is split as λ1
w = ⊕j∈[4]\{1}λ

1j
w where λ1j

w is to be distributed to Pj. Note that

even these re-shares need to be authenticated for verified output computation, so we use the

F4
aBit (Fig 12.1) of [WRK17] to enable P1 to obtain MACs w.r.t. every Pj for random λ12

w and

λ13
w . Using linearity of TinyOT, P1 computes λ14

w and the corresponding MACs locally while

the remaining parties compute the respective authentication keys. P1 then sends the re-share

and MACs (wrt all parties), i.e. (λ1j
w , {M`[λ

1j
w]}`6=1) to Pj who accepts if (λ1j

w ,Mj[λ
1j
w],Kj[λ

1j
w])

is valid (else aborts).

A non-trivial observation here is that, for fairness guarantee, it is necessary to ensure that all

the MACs {M`[λ
1j
w]} 6̀=1 received by an honest Pj must be valid to maintain the invariant of self-

sufficiency amongst honest parties. Otherwise, a corrupt P1 may send incorrect {M`[λ
1`
w]} 6̀=j to

Pj which Pj cannot verify (Pj does not own the respective authentication key). Later when Pj

sends (λ1`
w ,M`[λ

1`
w]) to P` in the output phase, P` (who owns the respective authentication key)

rejects it, thus violating fairness. Hence, there is a need to verify the correctness of {M`[λ
1j
w]}` 6=j

received by Pj in a secure manner in the re-sharing phase itself to ensure robustness of the

output-phase later. We fix this tricky issue as follows: Each party Pi is given an additional

authenticated bit (si, {Mj[si]}j 6=i) in the pre-processing phase to use for the MAC verification

of re-shares. Now, for verification of (say) M3[λ12
w] received by P2 from P1, P2 sends λ12

w ⊕ s2

and M3[λ12
w] (received from P1) ⊕ M3[s2] (received in pre-processing phase) to P3 who checks

the validity using the key K3[λ12
w]⊕ K3[s2]. Observe that, an incorrect M3[λ12

w] sent by corrupt

P1 will be detected by P3 who aborts, causing the protocol to abort before the output phase,

thus maintaining fairness. This additional check is performed for all re-shares to ensure that

the honest parties receive valid MACs (even corresponding to other parties) of re-shares, thus

enabling a robust output reconstruction amongst the honest parties in the face of one corruption.

102

While the above techniques guarantee fairness for honest-majority (t = 1), we face a subtle

issue in achieving unanimous abort for dishonest-majority (s = 3). In particular, unanimity is

a concern in the case of 2 corruptions, when it is required for the 2 honest parties say, Pα and

Pβ to be in agreement about the output. Observe that, the above technique of re-sharing each

output mask-share such that 3 parties are required to reconstruct the corresponding mask-

share, can always enable the adversary (on behalf of 2 corrupt parties) to release incorrect

MACs of re-shares selectively to Pα, thus causing Pβ to obtain the output and Pα to abort.

Similar to the fairness case, this is possible due to the dependency of honest parties on the

adversary to provide valid re-shares, thus enabling her to violate unanimity. To get around this

subtlety, we employ the tool of Replicated Secret Sharing (RSS) (Chapter 9) of each mask-share

(instead of additive) in an authenticated manner such that 2 parties suffice to construct any

output mask-share. Specifically, for λ1
w, P2 (analogously P3, P4) now holds (λ13

w , {M`[λ
13
w]} 6̀=1)

and (λ14
w , {M`[λ

14
w]} 6̀=1) (all but λ12

w) and their MACs. Each MAC is verified in the re-sharing

phase itself using the technique described before. RSS ensures the sufficiency of 2 parties to

reconstruct the output mask, hence preserving unanimity in two corruption case.

To summarize, the output phase begins with evaluator P4 broadcasting the masked output

shares and the corresponding MACs. This is followed by the garblers broadcasting an abort

signal if they received an invalid MAC from P4, in which case, all parties abort. Else, in last

round, all parties exchange the authenticated shares, re-shares they own of the output masks to

compute the output. The use of broadcast in the output phase allows us to achieve unanimity

in case P4 sends incorrect MACs to a (strict) subset of the honest garblers. The formal protocol,

πbobw.fair is presented in Fig 12.4.

Inputs: Party Pi has input xi for i ∈ [4].

Output: Each party outputs y = f(x1, x2, x3, x4) or ⊥, each input and output is from {0, 1}.

Common Inputs: The circuit C that takes as input xi for i ∈ [4] and computes f(x1, x2, x3, x4).

Notation: Mj [λ
i
w] denotes the MAC for authentication of bit λiw w.r.t. Pj ’s key Kj [λ

i
w].

Primitives: 3-party, 1-private RSS, functionalities FPre,F
4
aBit.

Input-independent phase: Run following additional steps on top of Input-Independent phase of

πdm.abort (Fig 12.3).

- Pi, i ∈ [4] sends random to FPre (Fig 12.2) and receives
(
si,
{

Mj [si],Ki[sj]
}
j 6=i
)
.

- For output wire w, do the following w.r.t. λ1
w (analogously λ2

w, λ
3
w, λ

4
w):

◦ Each party invokes F4
aBit (Fig 12.1) with (input, 1, 2) such that P1 receives(

λ12
w ,
{

Mα[λ12
w]
}
α 6=1

)
,
(
λ13
w ,
{

Mα[λ13
w]
}
α 6=1

)
while Pα receives Kα[λ12

w], Kα[λ13
w].

103

◦ P1 computes: λ14
w = λ1

w ⊕ λ12
w ⊕ λ13

w , Mα[λ14
w] = Mα[λ1

w] ⊕ Mα[λ12
w] ⊕ Mα[λ13

w] for α 6= 1. Pα

computes Kα[λ14
w] = Kα[λ1

w]⊕ Kα[λ12
w]⊕ Kα[λ13

w].

◦ For α 6= 1 and β ∈ [4] \ {1, α}, P1 sends (λ1β
w ,M2[λ1β

w],M3[λ1β
w],M4[λ1β

w]) to Pα. Pα aborts if(
λ1β
w ,Mα[λ1β

w],Kα[λ1β
w]
)

is invalid for some β.

◦ P2 (analogously P3 and P4) does the following for the verification of MACs (received from P1)

w.r.t. keys of P3, P4: P2 sends
(
λ13
w ⊕ s2,Mβ[λ13

w] ⊕Mβ[s2]
)

to Pβ for β ∈ {3, 4} who aborts if(
λ13
w ⊕s2,Mβ[λ13

w]⊕Mβ[s2],Kβ[λ13
w]⊕Kβ[s2]

)
is invalid. Similar steps are taken for the verification

of MACs of λ14
w (received from P1) w.r.t. keys of P3, P4.

Input Processing and Circuit Evaluation phase are same as the respective phases of πdm.abort.

Output processing: For output wire w, the following is done:

- P4 (evaluator) obtains
(
mi
w, {Mj [m

i
w]}j 6=i

)
i∈[3]

on evaluation where mi
w is the masked-output

share obtained from GCi.

- P4 aborts if (mi
w,M4[mi

w],K4[mi
w]) is invalid, else broadcasts

(
mi
w, {Mj [m

i
w]}j 6=i

)
for i ∈ [4].

- Pg, g ∈ [3] broadcasts abort, if (mi
w,Mg[m

i
w],Kg[m

i
w]) is invalid for some i ∈ [4]\{g}. Each party

aborts if an abort is broadcast. Else, Pg computes mw = ⊕j∈[4]m
j
w.

- Else P1 (likewise P2, P3 and P4) sends
{(
λ1
w,Mα[λ1

w]
)
,
(
λβαw ,Mα[λβαw]

)}
privately to Pα for α 6=

1, β = [4] \ {1, α}.
- P1 (analogously P2, P3, P4) computes the output mask bit as:

◦ P1 verifies
(
λαw,M1[λαw]

)
received from Pα using her key K1[λαw] for α 6= 1. If valid, P1 accepts

the respective share.

◦ Else, if the verification of (say) λ2
w (received from P2) did not go through, P1 checks the validity

of (λ21
w ,M1[λ21

w]) received from Pα, α ∈ {3, 4} using key K1[λ21
w] and aborts if invalid for each α.

Else, P1 computes λ2
w = λ21

w ⊕ λ23
w ⊕ λ24

w .

- Each party constructs the output: y = mw ⊕ (
⊕

j∈[4] λ
j
w).

Figure 12.4: Protocol πbobw.fair

12.3 Correctness and Security

Theorem 6. The protocol πbobw.fair securely realizes the functionalities Ffair (Fig 2.2) and FuAbort

(Fig 2.3) in the standard model against one active and three active corruptions respectively,

assuming enhanced trapdoor permutation.

12.3.1 Correctness

Lemma 14. The protocol πbobw.fair is correct.

Proof. The correctness of the computed output mask and mask-shares on output wires follows

from the correctness of [WRK17]. The correctness of re-sharing and authentication follows from

104

FPre,F
4
aBit. Thus, the correct output y is computed from the masked output and shares/re-shares

of output masks.

12.3.2 Security

Proof. The proof is presented by giving simulators separately for honest majority and dishonest

majority case. Let C be the set of corrupt parties and H = [4] \ C be the set of honest parties.

Honest Majority: Let A be a malicious adversary corrupting 1 party in a hybrid model

execution of πbobw.fair. We discuss the honest majority simulator for two cases: (a) S1
hm.bobw

when a garbler (say P1) is corrupt and evaluator P4 and garblers {P2, P3} are honest, (b)

S4
hm.bobw when evaluator P4 is corrupt and garblers {P1, P2, P3} are honest. We now describe

the simulator running an ideal-world of the fair functionality Ffair (Fig 2.2) whose behaviour

simulates the behaviour of A.

Malicious P1: C = {P1} and H = {P2, P3, P4}. S1
hm.bobw playing the role of parties in H

works as follows:

P ?1 is corrupt

Input-Independent phase:

- Act honestly on behalf of parties in H and play the functionality of FPre (Fig 12.2), recording all

outputs (including the re-shares of output masks).

- If an honest party aborts, invoke Ffair with (input,⊥) and set y = ⊥.

Input-Processing phase:

- Run honestly using inputs {xi = 0}Pi∈H.

- If an honest party aborts, invoke Ffair with (input,⊥) and set y = ⊥.

- Receivemw (where w is the input wire corresponding to P1’s input x1), and compute x1 = mw⊕λw
(where λiw, i ∈ [4] is obtained on behalf of FPre).

Output Computation:

- On behalf of P4, evaluate the garbled circuit using the keys received to obtain(
mi
w, {Mj [m

i
w]}j 6=i

)
i∈[3]

where mi
w is the masked output share obtained from GCi.

- If (mi
w,Mj [m

i
w],Kj [m

i
w]) is invalid for some i and j : Pj ∈ H, invoke Ffair with (input,⊥) and set

y = ⊥. Else, invoke Ffair with (input, x1) to obtain output y.

- Compute y′ by computing function f on inputs xi = 0 for i : Pi ∈ H and x1 (as extracted above).

- If y and y′ are same, send to P1 actual output mask-shares and the corresponding MACs, else

send one share (say corresponding to P4) and its MAC corresponding to P1 flipped i.e. instead of(
λ4
w,M1[λ4

w]
)
, send

(
λ4
w⊕1,M1[λ4

w]⊕∆1

)
and instead of

(
λ41
w ,M1[λ41

w]
)
, send

(
λ41
w ⊕1,M1[λ41

w]⊕∆1

)
.

Figure 12.5: Simulator S1
hm.bobw

105

Malicious P4: C = {P4} and H = {P1, P2, P3}. S4
hm.bobw playing the role of parties in H

works as follows:

P ?4 is corrupt

Input-Independent phase:

- Act honestly on behalf of parties in H and play the functionality of FPre (Fig 12.2), recording all

outputs (including the re-shares of output masks).

- If an honest party aborts, invoke Ffair with (input,⊥) and set y = ⊥.

Input-Processing phase:

- Run honestly using inputs {xi = 0}Pi∈H.

- If an honest party aborts, invoke Ffair with (input,⊥) and set y = ⊥.

- Receivemw (where w is the input wire corresponding to P4’s input x4), and compute x4 = mw⊕λw
(where λiw, i ∈ [4] is obtained on behalf of FPre).

Output Computation:

- Receive
(
mi
w, {Mj [m

i
w]}j 6=i

)
i∈[4]

broadcasted by P4.

- If (mi
w,Mj [m

i
w],Kj [m

i
w]) is invalid for some i and j : Pj ∈ H, invoke Ffair with (input,⊥) and set

y = ⊥. Else, invoke Ffair with (input, x4) to obtain output y.

- Compute y′ by computing function f on inputs xi = 0 for i : Pi ∈ H and x4 (as extracted above).

- If y and y′ are same, send to P4 actual output mask-shares and the corresponding MACs, else

send one share (say corresponding to P1) and its MAC corresponding to P4 flipped i.e. instead of(
λ1
w,M4[λ1

w]
)
, send

(
λ1
w⊕1,M4[λ1

w]⊕∆4

)
and instead of

(
λ14
w ,M4[λ14

w]
)
, send

(
λ14
w ⊕1,M4[λ14

w]⊕∆4

)
.

Figure 12.6: Simulator S4
hm.bobw

Dishonest Majority: Let A be a malicious adversary corrupting 3 parties in a hybrid model

execution of πbobw.fair. We discuss the dishonest majority simulator for two cases: (a) S123
dm.bobw

when evaluator P4 is honest and the three garblers {P1, P2, P3} are corrupt, (b) S234
dm.bobw when

a garbler (say P1) is honest and evaluator P4 and {P2, P3} are corrupt. We now describe the

simulator running an ideal-world of the unanimous abort functionality FuAbort (Fig 2.3) whose

behaviour simulates the behaviour of A.

Honest P4: C = {P1, P2, P3} and H = {P4}. S123
dm.bobw playing the role of parties in H (i.e.

P4) works as follows:

P ?1 , P
?
2 , P

?
3 are corrupt

Input-Independent phase:

- Act honestly on behalf of parties in H and play the functionality of FPre (Fig 12.2), recording all

outputs (including the re-shares of output masks).

106

- If P4 would abort, invoke FuAbort with (input,⊥) and set y = ⊥.

Input-Processing phase:

- Run honestly using input on behalf of P4 as {x4 = 0}.
- If P4 would abort, invoke FuAbort with (input,⊥) and set y = ⊥.

- Receive mw (where w is the input wire corresponding to Pi’s input xi for Pi ∈ C), and compute

xi = mw ⊕ λw (where λjw, j ∈ [4] is obtained on behalf of FPre).

Output Computation:

- On behalf of P4, evaluate the garbled circuit using the keys received to obtain(
mi
w, {Mj [m

i
w]}j 6=i

)
i∈[3]

where mi
w is the masked output share obtained from GCi.

- If (mi
w,M4[mi

w],K4[mi
w]) is invalid for some i, invoke FuAbort with (input,⊥) and set y = ⊥. Else,

invoke FuAbort with (input, x1), (input, x2), (input, x3) to obtain output y.

- Compute y′ by computing function f on inputs x4 = 0 and xi as extracted above for i : Pi ∈ C.

- If y and y′ are same, broadcast actual masked output shares obtained on evaluation and their

corresponding MACs, else, broadcast one share (say corresponding to P1) and its corresponding

MAC flipped i.e. instead of
(
m1
w, {Mj [m

1
w]}j 6=1

)
, send

(
m1
w ⊕ 1, {Mj [m

1
w]⊕∆j}j 6=1

)
.

- If P4 would abort, invoke FuAbort with abort, else invoke FuAbort with continue.

Figure 12.7: Simulator S123
dm.bobw

Honest P1: C = {P2, P3, P4} and H = {P1}. S234
dm.bobw playing the role of parties in H (i.e.

P1) works as follows:

P ?2 , P
?
3 , P

?
4 are corrupt

Input-Independent phase:

- Act honestly on behalf of parties in H and play the functionality of FPre (Fig 12.2), recording all

outputs (including the re-shares of output masks).

- If P1 would abort, invoke FuAbort with (input,⊥) and set y = ⊥.

Input-Processing phase:

- Run honestly using input on behalf of P1 as {x1 = 0}.
- If P1 would abort, invoke FuAbort with (input,⊥) and set y = ⊥.

- Receive mw (where w is the input wire corresponding to Pi’s input xi for Pi ∈ C), and compute

xi = mw ⊕ λw (where λjw, j ∈ [4] is obtained on behalf of FPre).

Output Computation:

- Invoke FUA with (input, x2), (input, x3), (input, x4) to obtain output y. Receive(
mi
w, {Mj [m

i
w]}j 6=i

)
i∈[4]

broadcasted by P4.

- If P1 would abort, invoke FuAbort with abort.

- Else, invoke FuAbort with continue. Compute y′ by computing function f on inputs x1 = 0 and

107

xi as extracted above for i : Pi ∈ C.

- If y and y′ are same, send to all actual output mask-share and the corresponding MACs, else,

send flipped share and the corresponding MAC i.e. instead of
(
m1
w, {Mj [m

1
w]}j 6=1

)
, send

(
m1
w ⊕

1, {Mj [m
1
w]⊕∆j}j 6=1

)
.

Figure 12.8: Simulator S234
dm.bobw

12.4 Scaling to 3 parties

We present scaling of πbobw.fair to 3 parties to provide fairness (for t = 1) and unanimous

abort (for s = 2). However, for 3PC, unanimous abort when s = 2 is free due the existence

of only one honest party. Hence, in 3PC, we strip πbobw.fair of the techniques introduced to

handle unanimity concerns in 4PC. Specifically, we replace RSS with the original idea of hav-

ing additive re-shares of each output mask share. We present the formal 3-party protocol in

Fig 12.9.

Inputs: Party Pi has input xi for i ∈ [3].

Output: Each party outputs y = f(x1, x2, x3) or ⊥, each input and output is from {0, 1}.

Common Inputs: The circuit C that takes as input xi for i ∈ [3] and computes f(x1, x2, x3).

Notation: Mj [λ
i
w] denotes MAC for λiw w.r.t. Pj ’s key Kj [λ

i
w].

Primitives: Functionalities FPre,F
4
aBit (Fig 12.2, 12.1).

Input-independent phase: Run following additional steps on top of Input-Independent phase of

πdm.abort (Fig 12.3).

- Pi, i ∈ [3] sends random to FPre (Fig 12.2) and receives
(
si,
{

Mj [si],Ki[sj]
}
j 6=i
)
.

- For each output wire w, do as below w.r.t λ1
w (similarly λ2

w, λ
3
w):

◦ Each party invokes F3
aBit (Fig 12.1) with (input, 1, 1) s.t. P1 receives

(
λ12
w ,
{

Mα[λ12
w]
}
α 6=1

)
while

Pα receives Kα[λ12
w].

◦ P1 sets λ13
w = λ1

w ⊕ λ12
w , Mα[λ13

w] = Mα[λ1
w] ⊕ Mα[λ12

w] for α 6= 1. Pα computes Kα[λ13
w] =

Kα[λ1
w]⊕ Kα[λ12

w].

◦ P1 sends (λ1α
w ,M2[λ1α

w],M3[λ1α
w]) to Pα, α 6= 1. Pα aborts if

(
λ1α
w ,Mα[λ1α

w],Kα[λ1α
w]
)

is invalid.

◦ P2 (analogously P3) does the following for the verification of MAC (received from P1) w.r.t. P3’s

key: P2 sends
(
λ12
w ⊕s2,M3[λ12

w]⊕M3[s2]
)

to P3 who aborts if
(
λ12
w ⊕s2,M3[λ12

w]⊕M3[s2],K3[λ12
w]⊕

K3[s2]
)

is invalid.

Input Processing and Circuit Evaluation phase are same as the respective phases of πdm.abort.

108

Output processing: For each output wire w, the following is done:

- P3 (evaluator) obtains
(
mi
w, {Mj [m

i
w]}j 6=i

)
i∈[2]

on evaluation where mi
w is the masked-output

share obtained from GCi.

- P3 aborts if (mi
w,M3[mi

w],K3[mi
w]) is invalid, else broadcasts

(
mi
w, {Mj [m

i
w]}j 6=i

)
for i ∈ [3].

- Pg, g ∈ [2] broadcasts abort, if (mi
w,Mg[m

i
w],Kg[m

i
w]) is invalid for some i ∈ [3] \ {g}. All parties

abort if an abort is broadcast. Else, Pg computes mw = ⊕j∈[3]m
j
w.

- Else P1 (likewise P2, P3) sends
{(
λ1
w,Mα[λ1

w]
)
,
(
λβ1
w ,Mα[λβ1

w]
)}

privately to Pα for α 6= 1, β =

[3] \ {1, α}.
- P1 (analogously P2, P3) computes the output mask bit as:

◦ P1 verifies
(
λαw,M1[λαw]

)
received from Pα using her key K1[λαw] for α 6= 1. If valid, P1 accepts

the respective share.

◦ Else, if the verification of (say) λ2
w (received from P2) did not go through, P1 checks the validity

of (λ23
w ,M1[λ23

w]) received from P3 using key K1[λ23
w] and aborts if invalid. Else, P1 computes

λ2
w = λ21

w ⊕ λ23
w .

- Each party constructs the output: y = mw ⊕ (
⊕

j∈[3] λ
j
w).

Figure 12.9: 3-party protocol of πbobw.fair

109

Chapter 13

Empirical Results

In this chapter, the detailed implementation results of the BoBW constructions are provided.

We begin with the description of hardware and software details of our setup and then elaborate

on the performance of our protocols in LAN (local area network) and WAN (wide area network)

as our protocols are best suited for high latency networks with constant round complexity. We

use AES-128 and SHA-256 as benchmark circuits for the protocol achieving fairness in honest

majority, πbobw.fair. For πbobw.god, we show its application to the widely celebrated system of

voting. BoBW protocols are highly relevant for voting application where privacy of individual

votes needs to hold irrespective of the number of corruptions, demanding dishonest majority

protocols that at best achieve only security with abort. But then, a single faulty machine

may prevent all honest parties from learning the output by launching a denial-of-service attack;

which can be repeatedly carried out over any subsequent re-runs as well. This leads to a

requirement of robustness from the protocol, where the adversary cannot cause the execution

to abort (despite the adversary herself not learning the outcome), when minority parties are

corrupt. Hence, we emphasize the use of robust πbobw.god in voting.

Hardware Details. In LAN setting, our system specifications include 32GB RAM, Intel

octa-core processor with processor speed 3.6GHz. The bandwidth in LAN is limited to 1Gbps.

In WAN, we use Microsoft Azure D4s v3 instances located at East Japan, West US, East

Australia, South India. The average bandwidth measured is 160Mbps and the slowest link

between South India and West US has a round trip time of 0.21 s.

Software Details. The operating system used is Ubuntu 16.04LTS (64-bit). Our code is

built in C++11 standards. We rely on libgarble library built on JustGarble licensed under

GNU GPL for garbled circuits and openSSL library for random oracle based instantiations of

commitments where Hash is realized using openSSL SHA. Our network emulates a complete

110

graph and socket connections are used to communicate data between the parties. To implement

a robust broadcast channel required in our BoBW protocols, we use Dolev-Strong protocol

[DS83] to realize an authenticated broadcast. The public-key signatures needed for this purpose

are realized using elliptic-curve based schemes [BDL+12]. We use a multi-threaded environment

to improve the performance of our protocols.

Analysis. We highlight our results in terms of computation time (CT - time spent computing

across all cores), LAN runtime (LAN - CT + network time), WAN runtime (WAN) and

Communication (COM). The bracketed values in the tables indicate the overhead needed for

worst case run over the honest run. In the BoBW threat model, our protocols are the first

attempt in efficiency with small population. We do not compare our BoBW protocols with

those in the traditional models of only honest majority or dishonest majority since the security

models are incomparable as the notions achieved by our protocols in the BoBW model is best

of the security attained in either of the traditional models.

We instantiate the malicious garbling scheme required in our πbobw.fair protocol with the

state-of-the-art construction of [WRK17]. Table 13.1 depicts the overhead incurred by πbobw.fair

over that of [WRK17] in 4PC and 3PC for AES and SHA circuits. Relying only on the abort

security of the underlying garbling scheme, we achieve the strong BoBW guarantees of fairness

in 4PC when t = 1 and unanimous abort when s = 3 with an average minimal overhead of

atmost 2.61 ms, 2.98 s and 3.33 MB in LAN, WAN and total COM respectively over [WRK17]

that achieves abort for the choice of benchmark circuits. Likewise, in 3PC, the overhead

amounts to a mere value of 1.93 ms, 2.13 s and 0.81 MB in LAN, WAN and COM respectively

over the choice of benchmark circuits.

Table 13.1: Computation time (CT), LAN run-time (LAN), WAN run-time (WAN) and Commu-
nication (COM) indicating the additional overhead involved in πbobw.fair protocol over [WRK17] for
g ∈ [3].

Circuit #Parties
CT(ms) LAN(ms) WAN(s) COM(MB)
Pg P4 Pg P4 Pg P4 Pg P4

AES-128
4PC 0.45 0.64 2.25 2.61 2.95 1.47 0.48 0.28
3PC 0.34 0.5 1.31 1.83 1.29 1.03 0.12 0.10

SHA-256
4PC 0.68 0.97 2.56 2.5 2.98 1.6 0.94 0.51
3PC 0.52 0.74 1.93 1.87 2.13 1.31 0.21 0.18

Finally, for benchmarking the performance of πbobw.god, we begin with the description of the

voting circuit that we use.

Circuit Description. The circuit caters to at most 64 contestants and n voters. The input

of each voter can be visualized as a 64-bit input with ith bit corresponding to the ith contestant.

111

Exactly, one bit is set in the 64-bit input at the position corresponding to the contestant whom

the vote is being cast. On receiving the inputs of the voters, the total count of votes for each

contestant is calculated and the maximum of the resulting counts is taken to determine the

winner. This circuit can also be used for a closed ballot decision making such as passing of

a legislative bill with only 2 contestants representing in favour and against. The decision is

chosen to be in favour only if its votes are higher. We first use 64-bit adders and comparators to

determine if the inputs of the parties are valid (i.e only one bit is set). We use n-bit adders to

compute the count of votes for each contestant and an log(n)-bit Less Than (LT) comparators

and 2:1 multiplexer to compare the vote counts for two contestants and select the winner of the

pair. We adopt an inverted binary tree technique (merge technique) to pairwise compare the

votes and sequentially propagate the winner. For our purpose, we set n = 4 (4PC). Table 13.2

depicts the performance and thus practicality of πbobw.god when used for the above described

voting circuit.

Table 13.2: Computation time (CT), runtime in LAN (LAN) and WAN (WAN) and Communication
(COM) of πbobw.god for voting circuit where Pg, g ∈ [3] denotes a garbler and Pe denotes evaluator.

Circuit
CT(ms) LAN(ms) WAN(s) COM(MB)

Pg Pe Pg Pe Pg Pe Pg Pe

Honest run 58.91 32.45 62.24 35.87 2.9 2.58 4.76 0.031
Worst Case +0.84 +0.72 +1.24 +1.15 +1.55 +1.344 +0.086 +0.002

In all the above tables, the difference in the values of AES and SHA circuits is attributed

to the bigger circuit, input and output size of SHA compared to AES. For our mixed protocols,

although the saving of AES over [CGMV17] is better than SHA, but the factor of saving for

SHA is better than AES. Thus, our protocols improve in efficiency for larger circuits.

112

Chapter 14

Conclusion

In this thesis, we explored the dimensions of the adversary for 4 party computation. We

segregate the work into two parts based on the two adversarial models we have considered. The

security we discuss are the most desirable notions of fairness and guaranteed output delivery

which is possible only in honest majority as per the result of [Cle86]. Hence we extensively

cover the threat models where these desirable security notions can be attained.

The first part deals with the standard honest-majority where we closed the gap between the

state-of-the-art and the optimal results in terms of communication and computational efficiency.

The second part considers a very interesting notion of ’Best of Both Worlds’ which explores the

security guarantees promised by a protocol simultaneously in honest and dishonest majority.

Optimally respecting the feasibility constraints of [IKLP06, Kat07], we provide the first efficient

constructions that achieve this supremely desirable security.

The theoretical claims of efficiency in each of our constructions are backed with em-

pirical evidence. For the BoBW construction that provides guaranteed output delivery

in honest majority, we show the application to the system of voting which naturally de-

mands a protocol promising BoBW security. Note that the quality of constant rounds

makes all protocols in this work suitable for high latency networks such as the Internet.

113

Bibliography

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel

Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority

MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In

2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,

May 22-26, 2017, pages 843–862, 2017. 3

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain.

Round-optimal secure multiparty computation with honest majority. In CRYPTO,

2018. 61

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to

round-optimal secure multiparty computation. In CRYPTO, 2017. 61

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

High-throughput semi-honest secure three-party computation with an honest ma-

jority. In ACM CCS, 2016. 3

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. Multiparty computation with low communication,

computation and interaction via threshold FHE. In EUROCRYPT, 2012. 2

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. How

to prove a secret: Zero-knowledge proofs on distributed data via fully linear pcps.

IACR Cryptology ePrint Archive, 2019. 3

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P.

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt

Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multi-

party computation goes live. In FC, 2009. 2

114

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

High-speed high-security signatures. Journal of Cryptographic Engineering, 2012.

111

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-

homomorphic encryption and multiparty computation. In EUROCRYPT, 2011.

2

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In

CRYPTO, 1991. 61

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-

secure multiparty computation with a dishonest minority. In CRYPTO, 2012. 2

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dak-

shita Khurana, and Amit Sahai. Promise zero knowledge and its applications to

round optimal MPC. In CRYPTO, 2018. 61

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computation (extended abstract).

In STOC, 1988. 2, 61

[BH07] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Simple and efficient perfectly-secure

asynchronous MPC. In ASIACRYPT, 2007. 2

[BH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear

communication complexity. In TCC, 2008. 2

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure

computation without setup. In TCC, 2017. 61

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled

circuits. In CCS, 2012. 9, 10

[BIK+17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical

secure aggregation for privacy-preserving machine learning. In ACM CCS, 2017.

62

115

[BJPR18] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. Fast secure computation

for small population over the internet. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’18, pages 677–694,

2018. xii, 3, 4, 6, 13, 16, 17, 56, 57, 58, 62

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure

multiparty computation for the internet. In ACM CCS, pages 578–590, 2016. 68,

71, 72

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure

protocols (extended abstract). In STOC, 1990. vii, 2, 61, 68

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party

computation for financial data analysis - (short paper). In FC, 2012. 2, 62

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J.

Cryptology, 13(1), 2000. 7

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally

secure protocols (extended abstract). In STOC, 1988. 61

[CDG87] David Chaum, Ivan Damg̊ard, and Jeroen Graaf. Multiparty computations ensuring

privacy of each party’s input and correctness of the result. In CRYPTO, 1987. 2

[CDI05a] R. Cramer, I. Damg̊ard, and Y. Ishai. Share Conversion, Pseudorandom Secret-

Sharing and Applications to Secure Computation. In TCC, 2005. 13

[CDI05b] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom

secret-sharing and applications to secure computation. In Joe Kilian, editor, Theory

of Cryptography. Springer Berlin Heidelberg, 2005. v, 9

[CGH+18] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell, and A. Nof.

Fast large-scale honest-majority MPC for malicious adversaries. In CRYPTO, 2018.

3, 4

[CGMV17] Nishanth Chandran, Juan A. Garay, Payman Mohassel, and Satyanarayana

Vusirikala. Efficient, constant-round and actively secure MPC: beyond the three-

party case. In ACM CCS, 2017. 3, 56, 64, 70, 71, 77, 112

116

[Cha89] David Chaum. The spymasters double-agent problem: Multiparty computations

secure unconditionally from minorities and cryptographically from majorities. In

CRYPTO, 1989. 63

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and

non-malleable commitment. In STOC, 1998. 12

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient

three-party computation from cut-and-choose. In CRYPTO, 2014. 3, 62, 75, 76

[CL14] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in

secure multiparty computation. In ASIACRYPT, 2014. 3, 7, 8

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are

faulty (extended abstract). In STOC, 1986. 2, 61, 113

[DGK09] Ivan Damg̊ard, Martin Geisler, and Mikkel Krøigaard. A correction to ’efficient

and secure comparison for on-line auctions’. IJACT, 2009. 61

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure mul-

tiparty computation. In CRYPTO, 2007. 2, 61

[DO10] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest major-

ity: From passive to active security at low cost. In CRYPTO, 2010. 2, 61

[DOS18] I. Damg̊ard, C. Orlandi, and M. Simkin. Yet another compiler for active security

or: Efficient MPC over arbitrary rings. CRYPTO, 2018. 3

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty

computation from somewhat homomorphic encryption. In CRYPTO, 2012. 2

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine

agreement. SIAM J. Comput., 1983. 111

[DSZ15] D. Demmler, T. Schneider, and M. Zohner. ABY - A Framework for Efficient

Mixed-Protocol Secure Two-Party Computation. In NDSS, 2015. 2

[FHW04] Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party computa-

tion with hybrid security. In EUROCRYPT, 2004. 63

117

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput

secure three-party computation for malicious adversaries and an honest majority.

In EUROCRYPT, 2017. 3

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure

MPC from indistinguishability obfuscation. In TCC, 2014. 2, 61

[GGR18] Daniel Genkin, S. Dov Gordon, and Samuel Ranellucci. Best of both worlds in

secure computation, with low communication overhead. In ACNS, 2018. 64

[GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits

under standard assumptions. In ACM CCS, 2015. 9

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness

and guarantee of output delivery. In CRYPTO, 2015. 8

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game

or A completeness theorem for protocols with honest majority. In STOC, 1987. 2,

61

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.

Cambridge University Press, 2001. 7

[GRW18] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. Secure computation with low

communication from cross-checking. IACR Cryptology ePrint Archive, 2018:216,

2018. 3

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrish-

nan Venkitasubramaniam. Round-optimal secure multi-party computation. In

CRYPTO, 2018. 61

[HIKR18] Shai Halevi, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. Best possible

information-theoretic MPC. In TCC, 2018. 63

[HLM13] Martin Hirt, Christoph Lucas, and Ueli Maurer. A dynamic tradeoff between active

and passive corruptions in secure multi-party computation. In CRYPTO, 2013. 63

[HLMR11] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Graceful degra-

dation in multi-party computation (extended abstract). In ICITS, 2011. 63

118

[HLMR12] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Passive corruption

in statistical multi-party computation - (extended abstract). In ICITS, 2012. 63

[HMZ08] Martin Hirt, Ueli M. Maurer, and Vassilis Zikas. MPC vs. SFE : Unconditional

and computational security. In ASIACRYPT, 2008. 63

[IKK+11] Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.

On achieving the ”best of both worlds” in secure multiparty computation. SIAM

J. Comput., 2011. 61, 62, 63

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky.

Secure computation with minimal interaction, revisited. In CRYPTO, 2015. 3, 4,

5, 13, 39, 41, 56, 57, 58

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining

privacy with guaranteed output delivery in secure multiparty computation. In

CRYPTO, 2006. 61, 63, 64, 73, 98, 113

[ISN89] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing

general access structure. Electronics and Communications in Japan (Part III: Fun-

damental Electronic Science), 1989. v, 9

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using

garbled circuits: how to prove non-algebraic statements efficiently. In CCS, 2013.

9

[Kat07] Jonathan Katz. On achieving the ”best of both worlds” in secure multiparty com-

putation. In ACM Symposium on Theory of Computing, 2007. 61, 62, 63, 113

[KMO01] Jonathan Katz, Steven Myers, and Rafail Ostrovsky. Cryptographic counters and

applications to electronic voting. In EUROCRYPT, 2001. 61

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR

gates and applications. In ICALP, 2008. 68, 99

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert ad-

versaries. In CRYPTO, 2013. 75

[Lin16] Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and covert ad-

versaries. J. Cryptology, 2016. 64, 76

119

[Lin17] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique.

In Tutorials on the Foundations of Cryptography., pages 277–346. 2017. 7

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-

putation in the presence of malicious adversaries. In EUROCRYPT, 2007. 78

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-

choose oblivious transfer. In TCC, 2011. 76

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient con-

stant round multi-party computation combining BMR and SPDZ. In CRYPTO,

2015. 2

[LRM10] Christoph Lucas, Dominik Raub, and Ueli M. Maurer. Hybrid-secure MPC: trading

information-theoretic robustness for computational privacy. In PODC, 2010. 62,

63, 64

[MF06] Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious

two-party computation. In PKC, 2006. 76

[MR18] P. Mohassel and P. Rindal. ABY3: A Mixed Protocol Framework for Machine

Learning. In ACM CCS, 2018. 2, 62

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party com-

putation: The garbled circuit approach. In ACM CCS, 2015. 2, 3, 4, 6, 16, 17, 56,

57, 58, 64, 77, 79

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-

preserving machine learning. In IEEE Symposium on Security and Privacy, 2017.

62

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2), 1991.

12

[NBK15] Divya G. Nair, V. P. Binu, and G. Santhosh Kumar. An improved e-voting scheme

using secret sharing based secure multi-party computation. CoRR, 2015. 61

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-

shank Burra. A new approach to practical active-secure two-party computation. In

CRYPTO, 2012. 64, 98

120

[NV18] P. S. Nordholt and M. Veeningen. Minimising Communication in Honest-Majority

MPC by Batchwise Multiplication Verification. In ACNS, 2018. 4

[PR18] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-

party computation. Cryptology ePrint Archive, Report 2018/481, 2018. https:

//eprint.iacr.org/2018/481. 3, 62

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with

logarithmic round-complexity. In (FOCS, 2002. 66

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from

one-way functions. In TCC, 2009. 66

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols

with honest majority (extended abstract). In STOC, 1989. 2, 61

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In TCC,

2004. 66

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Def-

initions, implications, and separations for preimage resistance, second-preimage re-

sistance, and collision resistance. In FSE, 2004. v, 9

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multi-

party computation. Cryptology ePrint Archive, Report 2017/189, 2017. https:

//eprint.iacr.org/2017/189. vii, x, xii, 65, 70, 79, 98, 99, 101, 102, 104, 111

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In

FOCS, 1982. 2, 16

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing

data transfer in garbled circuits using half gates. In EUROCRYPT, 2015. 9, 56

121

https://eprint.iacr.org/2018/481
https://eprint.iacr.org/2018/481
https://eprint.iacr.org/2017/189
https://eprint.iacr.org/2017/189

	Acknowledgements
	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	I 4PC in Honest-Majority Setting
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Outline of Part I

	2 Preliminaries
	2.1 Security Model
	2.2 Functionalities
	2.3 Primitives
	2.3.1 Collision-Resistant Hash RogawayS04
	2.3.2 Replicated Secret Sharing (RSS) CramerDIK05, ito1989secret
	2.3.3 Garbling
	2.3.4 Non-Interactive Commitment Scheme (NICOM)
	2.3.5 Equivocal Non-Interactive Commitment Scheme (eNICOM)

	3 Building Blocks
	4 Fairness in 3 rounds
	4.1 The construction
	4.2 Our Techniques
	4.3 Optimizations
	4.4 Correctness and Security
	4.4.1 Correctness
	4.4.2 Security

	5 GOD in 3 Rounds
	5.1 The Construction
	5.2 Correctness and Security
	5.2.1 Correctness
	5.2.2 Security

	6 GOD in 2 Rounds
	6.1 With one-time setup
	6.1.1 Optimization

	6.2 Correctness and Security of 2RGodSetup
	6.2.1 Correctness
	6.2.2 Security

	6.3 Without Setup
	6.4 Correctness and Security of 2RGod
	6.4.1 Correctness
	6.4.2 Security

	7 Experimental Results

	II Beyond Honest Majority: 4PC in Best-of-Both-Worlds Setting
	8 Introduction
	8.1 Related Work
	8.2 Our Contribution
	8.3 Outline of Part II

	9 Preliminaries
	10 Garbling Building Blocks
	10.1 Distributed Garbled Circuit BeaverMR90
	10.2 Seed-distribution
	10.3 Attested Oblivious Transfer

	11 GOD in Best-of-Both-Worlds Setting
	11.1 The Construction
	11.2 Security Proof
	11.2.1 Honest Majority
	11.2.2 Dishonest Majority

	12 Fairness in Best-of-Both-Worlds Setting
	12.1 Distributed Garbling of WangRK
	12.2 Our Techniques
	12.3 Correctness and Security
	12.3.1 Correctness
	12.3.2 Security

	12.4 Scaling to 3 parties

	13 Empirical Results
	14 Conclusion
	Bibliography

