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Abstract

Secure multiparty computation (MPC) allows n distrustful parties to jointly compute a func-
tion on their inputs while keeping their inputs private. Security should be preserved even in
the presence of an external entity referred to as the adversary that controls some parties and
coordinates their behavior. Various settings of secure computation have been considered in
the literature depending on factors such as the adversarial power and the allowed probability
of error in computation. The feasibility and communication complexity of secure compu-
tation has been extensively studied for each setting and constitutes a vast literature in the
area.

The work in this thesis aims at advancing the research in secure computation for the
most demanding setting of perfect security. Perfect security means that the adversary is all-
powerful, that is, the protocol cannot rely on any computational assumptions, and that the
protocol has zero probability of error. Such protocols come with desirable properties of un-
conditional, quantum and everlasting security. They guarantee adaptive security (with some
caveats [43, 20]) and remain secure under universal composition [84]. The contributions
of this thesis toward advancing the landscape of perfectly-secure multiparty computation in
various network settings are abstracted out below.

- Our first work targets the primitive of broadcast, which is essential for secure computa-
tion. We focus on optimal resilience (i.e., when the number of corrupted parties t is less
than a third of the computing parties n), with no setup or cryptographic assumptions in
the synchronous network setting. While broadcast with worst case t rounds is impossi-
ble, it has been shown [Feldman and Micali STOC’1988, Katz and Koo CRYPTO’2006]
how to construct protocols with expected constant number of rounds in the private
channel model. However, those constructions have large communication complexity,
specifically O(n2L + n6 log n) expected number of bits transmitted for broadcasting a
message of length L. This leads to a significant communication blowup in secure com-
putation protocols in this setting. We substantially improve the communication com-
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Abstract

plexity of broadcast in constant expected time. We also consider parallel broadcast,
where n parties wish to broadcast L bit messages in parallel. Our protocol has no
asymptotic overhead for L = ⌦(n2 log n), which is a common communication pattern in
perfectly secure MPC protocols.

- Subsequently, we study secure multiparty computation in the synchronous network
setting with perfect security and optimal resilience (less than one-third of the par-
ticipants are corrupt). The seminal protocols of Ben-Or, Goldwasser, and Wigderson
(STOC’1988), and Chaum, Crépeau and Damgård (STOC’1988) laid the foundations of
this setting. Since then, there are, in general, two families of protocols: (a) Efficient

but slow: These protocols have O(n log n) communication complexity per multiplication
gate. Still, the running time of these protocols is at least ⇥(n) rounds, even if the depth
of the circuit is much smaller D ⌧ n, and (b) Fast but not efficient: This line of protocols
run at O(D) expected number of rounds, but require (at least) ⌦(n4 log n) communica-
tion complexity per multiplication gate. We show that it is possible to simultaneously
achieve the best of both the families. We prove that perfectly-secure optimally-resilient
secure Multi-Party Computation (MPC) for a circuit with C gates and depth D can be
obtained in O((Cn + n4 + Dn2) log n) communication complexity and O(D) expected
time. For D ⌧ n and C � n3, this is the first perfectly-secure optimal-resilient MPC
protocol with linear communication complexity per gate and constant expected time
complexity per layer.

- Linear communication overhead forms a natural barrier for general secret-sharing-
based MPC protocols. Having matched it in the synchronous network setting, we fo-
cus on studying secure multiparty computation in the asynchronous setting with per-
fect security and optimal resilience (less than one-fourth of the participants are mali-
cious). It has been shown that every function can be computed in this model [Ben-
OR, Canetti, and Goldreich STOC’1993]. Despite 30 years of research, all protocols
in the asynchronous setting require ⌦(Cn2 log n) communication complexity for com-
puting a circuit with C multiplication gates. In contrast, for nearly 15 years, in the
synchronous setting, it has been known how to achieve O(Cn log n) communication
complexity [Beerliova and Hirt TCC’2008]. The techniques for achieving this result in
the synchronous setting are not known to be sufficient for obtaining an analogous result
in the asynchronous setting. We close this gap between synchronous and asynchronous
secure computation and show the first asynchronous protocol with O(Cn log n) commu-
nication complexity for a circuit with C multiplication gates.
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Abstract

- In a concluding work, deviating from the monolithic view of the network, we study
the feasibility of network-agnostic secure multiparty computation with perfect security.
Traditionally MPC is studied assuming the underlying network is either synchronous or
asynchronous. In a network-agnostic setting, the parties are unaware of the underlying
network type. It may be either synchronous or asynchronous, without the knowledge
of the parties. The feasibility of perfectly-secure MPC in synchronous and asynchronous
networks has been settled a long ago. The landmark work of [Ben-Or, Goldwasser, and
Wigderson, STOC’88] shows that n > 3ts is necessary and sufficient for any MPC pro-
tocol with n-parties over synchronous network tolerating ts active corruptions. In yet
another foundational work, [Ben-Or, Canetti, and Goldreich, STOC’93] show that the
bound for asynchronous network is n > 4ta, where ta denotes the number of active
corruptions. The previous work on network-agnostic protocols [Appan, Chandramouli,
and Choudhury, PODC’22] only shows sufficiency for a bound of n > 3ts + ta. However,
the question of its tightness remains unresolved for network-agnostic setting till date.
In this work, we resolve this long-standing question. We show that perfectly-secure
network-agnostic n-party MPC tolerating ts active corruptions when the network is syn-
chronous and ta active corruptions when the network is asynchronous is possible if and
only if n > 2max(ts, ta) + max(2ta, ts).
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Chapter 1

Introduction

Secure multiparty computation (MPC) allows n distrustful parties to jointly compute a func-
tion on their private inputs while ensuring the privacy of these inputs. The distrust among
parties is modeled as an adversary that can control and coordinate the behavior of up to t

parties. These parties controlled by the adversary are referred to as corrupt, whereas those
outside the adversary’s control are considered to be honest. Various settings encountered in
real-world scenarios are captured via fundamental dimensions of MPC such as the computa-
tional power of the adversary, the type of underlying communication network, and the type of
corruption, among others. Further, attributes of MPC protocols such as communication and
round complexity enable analysis and comparison of protocols within a particular setting. We
discuss the dimensions and attributes of MPC before proceeding to state our contributions.

1.1 Dimensions of MPC
MPC has been studied in various settings which are governed by its dimensions. Looking
ahead, the work in this thesis primarily focuses on advancing the research on secure com-
putation protocols in various types of communication networks. We overview some of the
relevant dimensions below.

1.1.1 Type of Network

Any MPC protocol requires parties to exchange messages with each other. Typically, the un-
derlying communication network is assumed to be a complete network wherein every pair of
distinct parties is connected via a point-to-point private and authentic channel. The allowed
uncertainty in communication over the network is captured via the level of synchronization.
Depending on this, MPC protocols can be classified into four categories as follows:
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1. Synchronous: In this setting, it is assumed that parties are synchronized via a common
global clock, and there is a known finite time bound � on the delay of message delivery
over any point-to-point channel. This assumption allows an MPC protocol to proceed
in synchronized rounds of communication. Additionally, it also provides the guarantee
that the messages between any pair of honest parties is delivered within � time. Con-
sequently, if some party fails to communicate in a round where it is expected to, it is
guaranteed to be corrupt. However, such strong assumptions on message delivery do
not adapt well to real-world networks such as the Internet.

2. Asynchronous: In the asynchronous network model, there is no assumption of a com-
mon global clock. The communication channels can have arbitrary but finite delays, and
moreover, the messages may be delivered in an arbitrary order. The only restriction im-
posed here is that the messages must be delivered eventually. To capture the worst-case
scenario, the adversary is allowed to schedule the delivery of messages among parties.

3. Hybrid or Partially synchronous: This setting forms the middle-ground between syn-
chronous and asynchronous networks. Here the assumption is that the protocols can
proceed in a few synchronous rounds initially, followed by the network being com-
pletely asynchronous. An alternative modeling of such a network also considers that
the network is asynchronous initially and switches to synchronous after an unknown
but finite time referred to as the global stabilization time.

4. Network-agnostic: Recently a line of work [34, 36, 13] focuses on protocols which pro-
vide best-of-both worlds guarantees. These protocols are designed to be agnostic of
the network type and provide the best guarantees possible depending on whether the
actual underlying network condition is synchronous or asynchronous. That is if a net-
work agnostic protocol is instantiated in a synchronous network setting, then it provides
the guarantees of a synchronous MPC protocol. On the other hand, it ensures security
guarantees of an asynchronous MPC protocol when executed over an asynchronous
network.

1.1.2 Computational Power of the Adversary

Based on the allowed computational power, the adversary can be categorized as either com-
putationally bounded or unbounded. In the former case, the adversary is considered to be
bounded by probabilistic polynomial time computation. Protocols secure against a bounded
adversary often rely on computational hardness assumptions and are termed as computa-
tional or cryptographically secure protocols. Whereas in the latter case, the adversary is
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allowed access to unbounded compute power. Protocols secure against such an adversary are
categorized as information-theoretic or unconditionally secure.

1.1.3 Type of Adversarial Behavior

Depending on the type of misbehaviour allowed during the execution of the protocol, an
adversary can be classified into the following categories:

1. Passive or Semi-honest: This is the most benign variant of adversarial behavior, wherein
the corrupt parties are honest-but-curious. That is, the corrupt parties follow the pro-
tocol specification honestly, however the adversary tries to learn more information by
observing the internal state (input, output, randomness and the messages exchanged
during the protocol) of the corrupt parties.

2. Active or malicious: This is a stronger type of adversarial behavior wherein the ad-
versary can control and coordinate the behavior of corrupt parties such that they can
arbitrarily deviate from the protocol specification in order to learn more information
(beyond what is allowed as per the security guarantees). Such type of corruption is also
referred to as Byzantine corruption.

3. Mixed: A mixed adversary is allowed to simultaneously perform semi-honest and mali-
cious corruptions. The malicious parties can arbitrarily deviate from the protocol spec-
ification, and additionally the adversary has access to the internal states of all (semi-
honest and malicious) parties.

1.1.4 Capacity of Corruption

Here, we have two categories of adversaries: threshold and non-threshold. In the former
case, the number of parties that can be corrupted by an adversary is bounded by a publicly
known threshold t. An MPC protocol in this setting is secure as long as at most t parties
are corrupted by the adversary. On the other hand, the corruption ability of a non-threshold
adversary is determined by a publicly known adversary structure. An adversary structure is
a collection of subsets of parties such that an adversary is allowed to corrupt any one of the
subsets from the collection.

1.1.5 Adaptivity of Corruption

An adversary can be broadly categorized into two types depending on its ability to dynami-
cally corrupt parties during the execution of the protocol based on the information it learns.
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1. Static: A static adversary decides on the set of parties to be corrupted before the execu-
tion of the protocol.

2. Adaptive: In contrast to the static adversary, an adaptive adversary decides on which
party to corrupt during the execution of the protocol. This allows the adversary to
choose the parties to be corrupted based on the information it learns over time during
the protocol execution.

1.2 Attributes of MPC
Once the setting of MPC is determined by fixing the dimensions described above, protocols
within this setting can be compared and analyzed based on various attributes that assess their
quality and efficiency. The attributes relevant to the work in this thesis are described below.

1.2.1 Quality

As described earlier, MPC protocols can be segregated broadly into two categories, compu-
tational and information-theoretic depending on the computational power of the adversary.
The former category of computational protocols considers a computationally bounded ad-
versary and additionally allows a non-zero but negligible probability of error in the security
guarantees of the protocol. Whereas information-theoretic protocols can be further classified
into two types: statistically-secure and perfectly-secure. Statistically secure protocols toler-
ate a computationally unbounded adversary; however, such protocols may have a non-zero
but negligible probability of error. In contrast, perfect security means that the adversary is
computationally unbounded and the protocol has zero probability of error.

1.2.2 Degree of Robustness

Based on the degree of robustness, MPC protocols can be classified into the following three
categories:

1. Abort: This is the weakest notion of security, where an adversary can prevent the honest
parties from obtaining the output by terminating the protocol upon receiving it.

2. Fair: In this case, the adversary receives the protocol output if and only if the honest
parties do, thus ensuring fairness.

3. Guaranteed Output Delivery (GOD): This is the strongest security notion that guaran-
tees that the honest parties receive the output irrespective of the adversary’s strategy.
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1.2.3 Resilience

Resilience refers to the maximum number of corrupt parties that can be tolerated by a pro-
tocol while ensuring security. It is typically captured by the allowed threshold of corruption
t. The most common categorization of protocols based on their resilience is that of honest
majority (t < n/2) and dishonest majority (t < n). Several feasibility and impossibility re-
sults for resilience are known in the literature conditioned on the setting of MPC and the
desired quality. The results relevant to the work in this thesis are provided in the subsequent
discussion.

1.2.4 Complexity

The optimality of MPC protocols is measured based on the following three crucial parameters:

1. Round complexity: It measures the number of rounds required by an MPC protocol.
This is relevant to the synchronous protocols, which proceed in a sequence of rounds
synchronized by the common global clock.

2. Communication complexity: This measures the total number of bits of communication
performed by the honest parties during protocol execution.

3. Computational complexity: This captures the amount of computation performed by
honest parties in the protocol. Concretely, it can be measured by the number and type
of fundamental mathematical operations, the runtime and the throughput of a protocol.

Throughout this thesis, we consider a computationally unbounded, malicious, static, and
threshold adversary. In particular, this thesis focuses on perfectly-secure protocols with guar-
anteed output delivery in various network settings.

1.3 Summary of the Contributions of this Thesis
The objective of this thesis is to enhance the existing knowledge by making significant con-
tributions to the study of perfectly-secure protocols within synchronous, asynchronous, and
network-agnostic settings. Our emphasis lies on perfect security owing to its robust assur-
ances. Additionally, it is noteworthy that protocols with perfect security remain adaptively
secure (with some caveats [43, 20]) and secure under universal composition [84]. This im-
mediately implies that while this thesis encompasses analysis under a static adversary, the
adaptive security of these protocols can be inferred from the aforementioned results. The
questions addressed in this thesis are primarily theoretical in nature, nevertheless, they have
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a direct impact on the scalability and efficiency of protocols in practice. A vast body of lit-
erature exists for the well-studied settings of synchronous and asynchronous protocols. We
advance the research in this area by resolving some of the long-standing open questions fo-
cused on the communication complexity of perfectly-secure protocols. In addition to being
theoretically interesting, our results ensure efficient scalability of MPC protocols. In contrast,
the interest in the network-agnostic setting has been fairly recent. Here, our work establishes
new lower bounds on resilience and also provides matching upper bounds.

1.3.1 Perfectly-secure Broadcast in the Synchronous Network Model

A common practice in designing secure protocols is to describe the protocol in the broadcast-
hybrid model, i.e., to assume the availability of a broadcast channel. Such a channel allows a
distinguished party to send a message while guaranteeing that all parties receive and agree
on the same message. Assuming the availability of a broadcast channel is reasonable only in
a restricted setting, for instance, when the parties are geographically close and can use radio
waves. In most settings, particularly when executing the protocol over the Internet, parties
have to implement this broadcast channel over point-to-point channels.

The cost associated with the implementation of the broadcast channel is often neglected
when designing secure protocols. In some settings, the implementation overhead is a real
obstacle in practice. In our first work, we focus on designing a broadcast protocol for the most
demanding setting: perfect security with optimal resilience. Optimal resilience means that
the number of parties that the adversary controls is bounded by t < n/3, where n is the total
number of parties. This bound is known to be tight, as a perfectly-secure broadcast protocol
tolerating n/3 corrupted parties or more is impossible to construct [85, 94], even when a
constant error probability is allowed [2].

There are, in general, two approaches for implementing broadcast in our setting. These
approaches provide an intriguing tradeoff between communication and round complexity:

1. Efficient but slow: For broadcasting a single bit, the first approach [53, 33] requires
O(n2) bits of communication complexity, which is asymptotically optimal for any deter-
ministic broadcast protocols [64], or in general, O(nL + n2 log n) bits for broadcasting
a message of size L bits via a perfect broadcast extension protocol [47].1 This comes at
the expense of having ⇥(n) rounds.

2. Fast but not efficient: The second approach, originated by the seminal work of Feld-
1Broadcast extension protocols handle long messages efficiently at the cost of a small number of single-bit

broadcasts.
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man and Micali [66], followed by substantial improvements and simplifications by Katz
and Koo [82], requires significant communication complexity of O(n6 log n) bits in ex-
pectation for broadcasting just a single bit, or O(n2L + n6 log n) bits for a message of L
bits. However, they work in expected constant number of rounds. Using broadcast exten-
sion of [89] we can bring the asymptotic cost to O(nL) + E(O(n7 log n)) bits. However,
the minimum message size to achieve this L = ⌦(n6 log n). This is prohibitively high
even for n = 100.

An interesting question exploring the tradeoff between communication and round com-
plexity is thus as follows:

Is there a perfectly secure, optimally-resilient synchronous broadcast with

O(nL) + E(O(poly(n))) communication complexity and expected O(1) rounds for

broadcasting L bits such that poly(n)⌧ n7 log n ?

Or is the tradeoff between communication and round complexity unavoidable?

Our Contributions. We provide a significant improvement in the communication complex-
ity of broadcast with perfect security and optimal resilience in the presence of a static adver-

sary. Specifically, the expected communication complexity of our protocol is O(nL+n4 log n).
For messages of length L = ⌦(n3 log n), our broadcast has no asymptotic overhead (up to
expectation), as each party has to send or receive O(n3 log n) bits. We also consider parallel
broadcast, where n parties wish to broadcast L bit messages in parallel. Our protocol has
no asymptotic overhead for L = ⌦(n2 log n), which is a common communication pattern in
perfectly-secure MPC protocols. For instance, it is common that all parties share their inputs
simultaneously at the same round, and verifiable secret sharing protocols require the dealer
to broadcast a total of O(n2 log n) bits. As an independent interest, our broadcast is achieved
by a packed verifiable secret sharing, a new notion that we introduce. We show a protocol that
verifies O(n) secrets simultaneously with the same cost of verifying just a single secret. This
improves by a factor of n the state-of-the-art verifiable secret sharing, a pivotal building block
in secure computation.

1.3.2 Perfectly-secure MPC in the Synchronous Network Model

Having designed the building block of broadcast, our subsequent work focuses on perfectly-
secure MPC protocols in the synchronous network setting where the bound t < n/3 on opti-
mal resilience carries forward [85, 94, 29]. The seminal protocols of Ben-Or, Goldwasser, and
Wigderson [29], and Chaum, Crépeau and Damgård [46] led the foundations of this setting.
Since then, there are, in general, two families of protocols:
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1. Efficient but slow: These protocols [80, 26, 76] ([26] test-of-time award) have O(n log n)

communication complexity per multiplication gate. Still, the running time of these pro-
tocols is at least ⇥(n) rounds, even if the depth of the circuit is much smaller D ⌧ n.
The protocol of [76] requires O(n3 log n+Cn log n) bits of point-to-point communication
and n sequential invocations of broadcast of O(log n) bits each, with ⌦(n + D) rounds.
Using the broadcast implementation of [7], this translates to O(n5 log n+ Cn log n) bits
communication complexity and ⌦(n+D) expected number of rounds for a circuit with C

multiplication gates and depth D. Alternatively, using the implementation of [33, 53],
the protocol can be more efficient, but even more slower: O(n3 log n + Cn log n) bits
communication complexity and ⌦(n2 +D) number of rounds.

2. Fast but not efficient: This line of protocols [29, 46, 73, 56, 19, 6] run at O(D) ex-
pected number of rounds, but require ⌦(n4 log n) communication complexity per mul-
tiplication gate. In the broadcast hybrid model, the state-of-the-art protocol of [6]
requires O(n3 log n) bits of communication complexity over point-to-point channels and
O(n3 log n) bits broadcast, in O(D) number of rounds. That is, it requires ⌦(Cn4 log n)

communication complexity and O(D) expected number of rounds using the broadcast
implementation of [7]. Using [33, 53] for implementing the broadcast, the number of
rounds is increased to ⌦(n+D).

Given the above two classes of protocols, an interesting problem has remained open for a
long time:

Is there a perfectly secure, optimally-resilient synchronous MPC with O(n log n)

communication complexity per multiplication gate and expected O(D) rounds?

Or is the tradeoff between communication and round complexity unavoidable?

Our Contributions. Our main result is that it is possible to simultaneously achieve the
best of both families. For the first time, we provide a perfectly-secure, optimally-resilient
MPC protocol that has both O(n log n) communication complexity per multiplication gate
and O(D) expected round complexity. For D ⌧ n and C � n3, this is the first perfectly-
secure optimal-resilient MPC protocol with linear communication complexity per gate and
constant expected round complexity per layer in the circuit.

One salient part of our technical contribution is centered around a new primitive we call
detectable secret sharing. It is perfectly-hiding, weakly-binding, and has the property that
either reconstruction succeeds, or O(n) parties are (privately) detected. On the one hand, we
show that detectable secret sharing is sufficiently powerful to generate multiplication triplets
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needed for MPC. On the other hand, we show how to share p secrets via detectable secret
sharing with communication complexity of just O(n4 log n + p log n). When sharing p � n4

secrets, the communication cost is amortized to just O(1) field elements per secret.
Our second technical contribution is a new verifiable secret sharing protocol that can

share p secrets at just O(n4 log n+ pn log n) communication complexity. When sharing p � n3

secrets, the communication cost is amortized to just O(n) field elements per secret. This
further improves our protocol from the previous work by a factor of n.

1.3.3 Perfectly-secure MPC in the Asynchronous Network Model

In the synchronous model of MPC, the assumption is that all messages sent between honest
parties arrive after some known bounded delay. This delay bound needs to be fixed in advance
and must hold for the lifetime of the system. Fixing a large delay bound may cause the
protocol to be inefficient and slow. More worrisome, using a delay that is smaller than the
actual delay the adversary can impose may lead to non-termination. In many real world
settings it is very hard to guess in advance a bound on the maximum delay the adversary can
impose.

These issues in the above setting are mitigated by the category of protocols in the asyn-

chronous model, where each message sent between honest parties arrives after some finite
delay. This model allows protocols to dynamically adjust to any adversarial network condi-
tions, and obtain termination (with probability 1) even under very powerful adversaries that
can adaptively manipulate network delays.

Thus, in this subsequent work, we consider the most demanding setting: perfect security

with optimal resilience in the asynchronous model. From the lower bound of [30, 31, 8], perfect
security implies that the number of corruptions in this setting is at most t < n/4, so optimal
resilience is when n = 4t+1 (this is in contrast to n = 3t+1 in the synchronous setting). The
seminal work of [30, 40] obtains perfect security with optimal resilience in the asynchronous
model.

In the perfectly secure, optimally-resilient synchronous model, O(n log n) communication
complexity per multiplication gate was obtained nearly 15 years ago by the work of [26]
which was then improved by our prior work [9] to reduce the round complexity from O(D+n)

to expected O(D) for circuits of depth D. Linear communication complexity per multiplica-
tion gate seems to be a natural barrier. While there is no lower bound, getting o(n) per
multiplication gate seems to require fundamentally different techniques and comes at the
cost of trading off optimal threshold (e.g., see [59]).

Progress in the (perfectly secure, optimally resilient) asynchronous model over the last 30
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years has been slower. The work of [30] obtained O(n6 log n) per gate. [101, 95] improve
to O(n5 log n) per gate. [25] improves to O(n3 log n) per gate. The best current bounds are
by [92, 93] that obtained O(n2 log n) communication complexity per multiplication gate. A
natural question remained open for 30 years:

Is there a perfectly secure, optimally-resilient asynchronous MPC with O(n log n)

communication complexity per multiplication gate?

Or is there an inherent lower bound due to asynchrony?

Our Contributions. Our main result is a perfectly secure, optimally-resilient asynchronous
MPC protocol that achieves O(n logn) communication per multiplication gate. We close the
gap between synchronous and asynchronous secure computation and show the first asyn-
chronous protocol with O(Cn log n) communication complexity for a circuit with C multipli-
cation gates. Our main technical contribution is an asynchronous weak binding secret sharing
that achieves rate-1 communication (i.e., O(1)-overhead per secret). To achieve this goal, we
develop new techniques for the asynchronous setting, including the use of trivariate polyno-

mials as opposed to the traditional bivariate polynomials used in verifiable secret sharing.

1.3.4 Perfectly-secure MPC in the Network-agnostic Model

So far, the work in this thesis has the traditional, monolithic view of the network. The pro-
tocols are designed assuming either a purely synchronous or purely asynchronous network;
thus, the parties are aware of the network conditions. Deviating from this traditional ap-
proach of modeling the network, a line of research focuses on the scenario where parties
are unaware of the network type [34, 36, 63, 13]. The requirements of both synchronous
and asynchronous networks must be captured by a single protocol while ensuring security.
Protocols designed in this setting are often referred to as network-agnostic protocols. While
the prior two models had been at the center of study for more than three decades, the lat-
ter model has been gaining a lot of traction recently due to its theoretical challenges and
practical importance. Having worked on the synchronous and asynchronous network models
separately, focusing on network-agnostic protocols with perfect security followed naturally.
Hence, we conclude the work in this thesis with the study of network-agnostic MPC with
perfect security.

As cited earlier, the feasibility questions for perfectly-secure MPC for synchronous and
asynchronous settings have been settled a long ago. While the landmark works of [94, 29]
show that perfectly-secure MPC in the synchronous setting tolerating ts active corruption is
possible if and only ts < n/3, it is known that perfect security in the asynchronous setting can
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be achieved as long as the number of corrupt parties is ta < n/4 [30, 31, 5]. The feasibility
question of perfectly-secure network-agnostic MPC is still alluding. The work of [13] shows
sufficiency of such a protocol with n > 3ts + ta tolerating ts active corruptions when the
network is synchronous and ta active corruptions when the network is asynchronous. So far,
it is not known if the bound is tight. A natural question thus arises:

Is n > 3ts + ta necessary for constructing perfectly-secure network agnostic

protocols? Or can we do better?

Our Contributions. Our main result is that we completely settle the feasibility of perfectly-
secure network-agnostic MPC. We show that perfectly-secure network-agnostic n-party MPC
tolerating ts active corruptions when the network is synchronous and ta active corruptions
when the network is asynchronous is possible if and only if n > 2max(ts, ta) + max(2ta, ts).
Our main result is obtained via two key components – the necessity and the sufficiency. We
prove the lower bound via the technique of proof by contradiction. We identify a function
for which the existence of a protocol with n  2max(ts, ta) + max(2ta, ts) would not allow
parties to obtain unanimous output in an asynchronous network, which is otherwise allowed
in MPC. Our second contribution thus lies in providing a matching upper bound to prove
sufficiency of our lower bound. As mentioned, all the prior work in the perfectly-secure
network-agnostic setting considers the non-optimal threshold of n > 3ts+ ta. In our view, the
most technically involved contributions here are the weak secret sharing and verifiable triple
sharing protocols for the optimal corruption threshold. To design these protocols, we develop
new techniques that leverage the fixed time delay if the network is synchronous and rely on
a higher number of honest parties when the network is asynchronous while being oblivious
to the actual network type.
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Chapter 2

Preliminaries

In this chapter, we discuss the requisite background such as the model, definitions, notations
and some of the algorithms used throughout this thesis.

2.1 Network Model and Security Definition
The first two chapters in this thesis consider a synchronous network, whereas the third chap-
ter focuses on the asynchronous network. In the former case, we prove the security of our
protocols in the standard, standalone simulation-based security model of multiparty compu-
tation. We derive universal composability [42] for free using [84]. Whereas proving security
in the latter case is not so straightforward due to the inherent nature of asynchrony and re-
quires additional techniques. Here, we prove the security of our protocols in the simplified
universally composable (SUC) setting [45]. Finally, the last chapter considers a network ag-
nostic setting, wherein the network may either be synchronous or asynchronous. This area is
fairly recent, and following all the relevant literature, we give property-based proofs for these
protocols which are mainly feasibility results.

2.1.1 Synchronous Network

For the first two chapters in this thesis, we consider a synchronous network model where the
parties in P = {P1, . . . , Pn} are connected via pairwise private and authenticated channels.
Additionally, for some of our protocols we assume the availability of a broadcast channel,
which allows a party to send an identical message to all the parties. The distrust in the net-
work is modelled as a computationally unbounded active adversary A which can maliciously
corrupt up to t out of the n parties during the protocol execution and make them behave
in an arbitrary manner. We prove security in the stand-alone model for a static adversary.
We provide the definitions (which are standard) below. Owing to the results of [44], this
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guarantees adaptive security with inefficient simulation. As mentioned, we derive universal
composability [42] for free using [84].

We prove the security of our protocols in the standard, standalone simulation-based se-
curity model of multiparty computation in the perfect settings [41, 18]. Let f : ({0, 1}⇤)n !
({0, 1}⇤)n be an n-party functionality and let ⇡ be an n-party protocol over private and au-
thenticated point-to-point channels and an authenticated broadcast channel. Let A be the
adversary with auxiliary input z, and let C ⇢ P be the set of corrupted parties controlled by
it. We define the real and ideal executions:

• Execution in the real model with protocol ⇡: In the real model, the parties run the
protocol ⇡ where the adversary A controls the parties in C. The adversary is assumed
to be rushing, meaning that in every round it can see the messages sent by the honest
parties to the corrupted parties before it determines the message sent by the corrupted
parties. The adversary cannot see the messages sent between honest parties on the
point-to-point channels. We denote by Real⇡A(z),C(~x) the random variable consisting of
the view of the adversary A in the execution (consisting of all the initial inputs of the
corrupted parties, their randomness and all messages they received), together with the
output of all honest parties.

• Execution in the ideal model: The ideal model consists of all honest parties, a trusted
party and an ideal adversary SIM, controlling the same set of corrupted parties C. The
honest parties send their inputs to the trusted party. The ideal adversary SIM receives
the auxiliary input z and sees the inputs of the corrupted parties. SIM can substitute
any xi with any x0

i
of its choice (for the corrupted parties) under the condition that

|x0
i
| = |xi|. Once the trusted party receives (possibly modified) inputs (x01, ..., x

0
n
) from

all parties, it computes (y1, ..., yn) = f(x01, ..., x
0
n
) and sends yi to Pi. The output of the

ideal execution, denoted as IdealfSIM(z),C(~x) is the output of all honest parties and the
output of the ideal adversary SIM.

Definition 2.1.1. We say that a protocol ⇡ is t-secure for a functionality f , if for every adversary

A in the real world, there exists an adversary SIM in the ideal world such that for every C ⇢ P

of cardinality at most t, it must hold that

{IdealfSIM(z),C(~x)} ⌘ {Real⇡A(z),C(~x)}

where ~x is chosen from ({0, 1}⇤)n such that |x1| = . . . = |xn|.
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Modular composition. We also consider standard f -hybrid model. In the f -hybrid model,
the parties can have access to some trusted party that can compute some functionality f for
them. See, e.g., [41, 18] for further details.

2.1.2 Asynchronous Network

We consider an asynchronous network where the parties are P = {P1, . . . , Pn}. The parties
are connected via pairwise ideal private channels. To model asynchrony, messages sent on a
channel can be arbitrarily delayed, however, they are guaranteed to be eventually received
after some finite number of activations of the adversary. In general, the order in which
messages are received might be different from the order in which they were sent. Yet, to
simplify notation and improve readability, we assume that the messages that a party receives
from a channel are guaranteed to be delivered in the order they were sent. This can be
achieved using standard techniques – counters, and acknowledgements, and so we just make
this simplification assumption.

We prove our protocols in this simplified universally composable setting (SUC), which is a
simplified UC model aimed for modeling secure protocols, formalized by Canetti, Cohen and
Lindell [45], and implies UC security. We briefly review the definitions, but many details are
left out, see [45] for additional information.

Main difference from SUC. The SUC model allows the adversary to also drop messages,
and the adversary is not limited to eventually deliver all messages. To model “eventual de-
livery” (which is the essence of the asynchronous model), we limit the capabilities of the
adversary and quantify over adversaries that eventually transmit each message in the net-
work (i.e., they do not drop messages). Formally, any message sent must be delivered after
some finite number of activations of the adversary.

As in SUC, the parties are modeled as interactive Turing machines, with code tapes, input
tapes, outputs tapes, incoming communication tapes, outgoing communication tape, random
tape and work tape.

Communication. In each execution there is an environment Z, an adversary A, participat-
ing parties P1, . . . , Pn, and possibly an ideal functionality F and a simulator S. The parties,
adversary and ideal functionality are connected in a star configuration, where all communi-
cation is via an additional router machine that takes instructions from the adversary. That
is, each entity has one outgoing channel to the router and one incoming channel. When Pi

sends a message to Pj, it sends it to the router, and the message is stored by the router. The
router delivers to the adversary a general information about the message (i.e., “a header” but
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not the “content”. That is, the adversary can know the type of the message and its size, but
cannot see its content). When the adversary allows the delivery of the message, the router
delivers the message to Pj. As mentioned, we quantify only over all adversaries that even-
tually deliver all messages. In particular, even in an execution with an ideal functionality,
communication between the parties and this functionality is done via the router machine and
is subject to (finite) delivery delays imposed by the adversary.

Note that the router machine is also part of the ideal model. When the functionality gives
for instance, some output to party Pj, then this is performed via the router, and the simulator
is notified. Thus, if the adversary, for instance, delays the delivery of the output of some party
Pj, we do not explicitly mention that in the functionality (e.g., “wait to receive OKj from the
adversary and then deliver the output to Pj”), yet it is captured by the model.

Finally, the environment Z communicates with the adversary directly and not via the
router. In particular, the environment can communicate only with the adversary (and it
cannot communicate even with the ideal functionality F). In addition, Z can write inputs to
the honest parties’ input tapes and can read their output tapes.

• Execution in the ideal model: In the ideal model we consider an execution of the
environment Z, dummy parties P1, . . . , Pn, the router, a functionality F and a simulator
S. In the ideal model with a functionality F the parties follow a fixed ideal-model pro-
tocol. The environment is first activated with some input z. The environment delivers
the inputs to the dummy honest parties, which forward the inputs to the functionality
(recall that this is done via the router, which then gives some leakage about the message
header to S, which can adaptively delay the delivery by any finite amount). Moreover,
Z can also give some initial inputs to the corrupted parties via S. At a later stage where
the dummy parties receive output from the functionality F, they just write the outputs
on their output tapes (and Z can read those outputs). The simulator S can send mes-
sages to Z and to the functionality F. The simulator cannot directly communicate with
the participating parties. We stress that in the ideal model, the simulator S interacts
with Z in an online way, and the environment can essentially read the outputs of the
honest parties, and query the simulator (i.e., can see the view of the adversary) at any
point of the execution. At the end of the interaction, Z outputs some bit b. We denote
by IDEALF,S,Z(z) an execution of this ideal model of the functionality F with a simulator
S and environment Z, which starts with an input z.

• Execution in the real model with protocol ⇡: In the real model, there is no ideal
functionality and the participating parties are Z, the parties P1, . . . , Pn, the router and
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the real-world adversary A. The environment is first activated with some input z, and
it can give inputs to the honest parties, as well as some initial inputs to the corrupted
parties controlled by the adversary A. The parties run the protocol ⇡ as specified, while
the corrupted parties are controlled by A. The environment can see at any point the
outputs of the honest parties, and communicate directly with the adversary A (and see,
without loss of generality, its partial view). At the end of the execution, the environment
outputs some bit b. We denote by REAL⇡,A,Z(z) an execution of this real model with the
protocol ⇡, the real-world adversary A and the environment Z, which starts with some
input z.

Definition 2.1.2. We say that an adversary A is an asynchronous adversary if any message that

it receives from the router, it allows its delivery within some finite number of activations of A.

Definition 2.1.3. Let ⇡ be a protocol and let F be an ideal functionality. We say that ⇡ securely

computes F in the asynchronous setting if for every real-model asynchronous adversary A there

exists an ideal-world adversary S that runs in polynomial time in A’s running time, such that for

every Z:

{IDEALF,S,Z(z)}z ⌘ {REAL⇡,A,Z(z)}z

Hybrid Model and Composition We also consider a hybrid model where the parties follow
some protocol ⇡ as in the real model but also have access to some ideal functionality F, and
the protocol instructs the parties to send messages to that ideal functionality and how to
process its response. As previously, all communication is performed via the router. We denote
the output of Z from a hybrid execution of ⇡ with ideal calls to F as HYBRIDF

⇡,A,Z(z), where
A,Z, z are as above. We call this as F-hybrid model.

The composition theorem states that if a protocol ⇡ realizes F in the G-Hybrid model, and
a protocol ⇢ realizes G in the plain model, then the protocol ⇡⇢ realizes F in the plain model.
To clarify, when the parties in ⇡ call G in the protocol ⇡, in the protocol ⇡⇢ the parties will
invoke the code of the protocol ⇢. This is a difference between the SUC and UC model, in
which in the UC model, each subprotocol is invoked as a separate interactive Turing machine,
which introduces some extra complexity. See [45] for elaborated discussion.

2.2 Notations
Our protocols are defined over a finite field F where |F| > n holds throughout this thesis. We
denote the elements by {0, 1 . . . , n}. However, the actual size |F| of the field required varies
depending on the setting and the protocols. We discuss these details in the relevant chapters
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to keep the preliminaries generic at the outset of this thesis. We use hvi to denote the degree-t
Shamir-sharing of a value v among parties in P, and hvii to denote party Pi’s share.

2.3 Threshold Secret Sharing Scheme
We consider a threshold adversary throughout this thesis; consequently, our protocols rely
on a threshold secret sharing scheme. Informally, a k-out-of-n or a (k, n)-threshold secret
sharing scheme shares a secret among n parties such that no coalition of up to k parties
can learn (any information about) the secret, whereas any group of k+1 or more parties can
completely reconstruct the secret. Here k refers to the threshold of the secret sharing scheme.
Shamir sharing is a specific instantiation of a threshold secret sharing scheme, which we use
throughout this thesis. Unless stated otherwise, for most parts of the thesis we use k = t,
where t is the maximum number of parties that can be corrupted by the adversary.

Definition 2.3.1. A k-out-of-n or (k, n)-threshold secret sharing scheme defined over a message

space M for a set of parties P = {P1, . . . , Pn} consists of two algorithms:

1. Sharing (Share): It is a randomized algorithm which takes as input a message or secret

m 2M, and gives a sequence of shares (s1, . . . , sn) as the output.

2. Reconstruction (Rec): It is a deterministic algorithm that takes as input a set of k + 1 or

more shares and gives a message or secret value as its output.

Any threshold secret sharing scheme satisfies the following requirements:

• Correctness: Any set of k + 1 parties can reconstruct the correct secret using Rec. That is,

8U ✓ P such that |U | � k + 1, Rec({si}Pi2U) = m.

• Privacy: Any set of k or fewer parties cannot learn any information about the underlying

secret. Specifically, 8 s, s0 2 M, 8U ✓ P such that |U |  k, it holds that the following

distributions are identical {{si}Pi2U} ⌘ {{s0
i
}Pi2U} where (s1, . . . , sn)  Share(s) and

(s01, . . . , s
0
n
) Share(s0).

2.4 Reed-Solomon Codes
Reed-Solomon (RS) codes are a class of non-binary error-correcting codes defined over a
finite field characterized by three parameters: alphabet size (q), message length (k + 1)
and block length n. There are various methods for encoding Reed-Solomon codes, each
yielding different representations of the set of all code words. One such perspective, originally
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introduced by Reed and Solomon [99], every code word in the Reed-Solomon code comprises
a series of function values derived from a polynomial with a degree of up to k. To construct
a code word of a message, the symbols of the message, each from an alphabet of size q such
as a finite field of size q, are interpreted as the coefficients of a polynomial p with a degree
of up to k. This polynomial p is then evaluated at n  q distinct points within the finite field
F consisting of q elements. The resulting sequence of values constitutes the corresponding
code word. Throughout the thesis, we use this interpretation of RS codes which naturally
aligns with our use of Shamir secret sharing. Specifically, we utilize the error detection and
correction capabilities of RS codes to ensure correct sharing and reconstruction of secrets in
several primitives that we design such as verifiable secret sharing (Chapters 4, 6), detectable
secret sharing (Chapter 4) and weak secret sharing (Chapter 6). We give the relevant details
regarding error detection and correction below and defer the specific parameters used to the
respective chapters.

2.4.1 Simultaneous Error Detection and Correction in Reed-Solomon
Codes

Let C be a Reed-Solomon code word of length n, corresponding to a k-degree polynomial
(containing k + 1 coefficients). Assume that at most t errors can occur in C. Let C̄ be the
word after introducing error in C in at most t positions. Let the distance between C and C̄

be s where s  t. Then there exists an efficient decoding algorithm that takes C̄ and a pair of
parameters (e, e0) as input, such that e+ e0  t and n� k � 1 � 2e+ e0 hold and gives one of
the following as output:

1. Correction: output C if s  e, i.e. the distance between C and C̄ is at most e;

2. Detection: output “more than e errors” otherwise.

Note that detection does not return the error indices, rather it simply indicates error correc-
tion fails due to the presence of more than correctable (i.e. e) errors. The above property of
RS codes is traditionally referred to as simultaneous error correction and detection. In fact the
bounds, e+ e0  t and n� k � 1 � 2e+ e0, are known to be necessary. Formally:

Theorem 2.4.1 ([49, 87]). Let C be a Reed-Solomon (RS) code word of length n, corresponding

to a k-degree polynomial (containing k + 1 coefficients). Let C̄ be a word of length n such that

the distance between C and C̄ is at most t. Then RS decoding can correct up to e errors in C̄ to

reconstruct C and detect the presence of up to e+ e0 errors in C̄ if and only if n� k� 1 � 2e+ e0

and e+ e0  t.
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2.5 Bivariate Polynomials
A bivariate polynomial of degree p in x and degree q in y, also referred to as (p, q)-bivariate
polynomial is of the form:

S(x,y) =
pX

i=0

qX

j=0

ai,jx
iyj .

Claim 2.5.1 (Interpolation). Let H ⇢ [n] be a set of cardinality q+1 and let (fh(x))h2H be q+1

univariate polynomials of degree at most p. Then, there exists a unique bivariate polynomial

S(x,y) of degree p in x and degree q in y satisfying for every h 2 H: S(x, h) = fh(x).

Following the vast literature on perfectly-secure protocols, we extensively make use of bi-
variate polynomials to design verifiable secret sharing schemes in different network scenarios
(Chapters 3, 4, 5, 6). The exact degree of polynomials we use is customised to the type of
underlying network considered and hence we defer these details to the relevant chapters.

2.6 Trivariate Polynomials
A trivariate polynomial of degree p, q, r in variables x,y, z respectively is of the form:

S(x,y, z) =
pX

i=0

qX

j=0

rX

k=0

ai,j,kx
iyjzk .

Claim 2.6.1 (Interpolation). Let H ⇢ [n] be a set of cardinality r + 1, and let (Sh(x,y))h2H
be r + 1 bivariate polynomials of degree at most p in x and at most q in y. Then, there exists a

unique trivariate polynomial S(x,y, z) of degree p, q, r in x,y, z respectively such that for every

h 2 H:

S(x,y, h) = Sh(x,y)

In our work on perfectly secure protocols in the asynchronous network (Chapter 5), we
encounter that the bivariate polynomials traditionally used in constructing weak and verifi-
able secret sharing protocols, do not suffice in achieving our goal of an MPC protocol with
linear communication complexity per gate. We circumvent this problem by using trivariate
polynomials for sharing, and give the details of the additional properties offered and the exact
degree of the polynomial in the corresponding chapter.

We remark that this chapter outlines the notation and preliminary concepts that are con-
sistently used throughout this thesis. Any additional notation or preliminaries specific to each
individual work will be introduced in their respective chapters. The subsequent chapters will
present a detailed description of the contributions of this thesis.
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Chapter 3

Asymptotically Free Broadcast in
Constant Expected Time via Packed VSS

In this chapter, we discuss our protocol for perfectly-secure broadcast in the synchronous
network. In the process, we introduce the building blocks such as verifiable secret sharing
and gradecast for which we provide improved constructions.

3.1 Introduction
As mentioned earlier, a common practice in designing secure protocols is to describe the
protocol in the broadcast-hybrid model, i.e., to assume the availability of a broadcast channel.
Such a channel allows a distinguished party to send a message while guaranteeing that all
parties receive and agree on the same message. In most settings, particularly when executing
the protocol over the Internet, parties have to implement this broadcast channel over point-
to-point channels. The cost associated with the implementation of the broadcast channel is
often neglected when designing secure protocols and indeed it forms the overhead in some
settings in practice. In this chapter, we focus on the most demanding setting: perfect security
with optimal resilience (t < n/3) [85, 94].

Asymptotically-free broadcast. What is the best implementation of broadcast that we can
hope for? For broadcasting an L bit message, consider the ideal trusted party that implements
an “ideal broadcast”. Since each party has to receive L bits, the total communication is
O(nL). To avoid bottlenecks, we would also prefer balanced protocols where all parties have
to communicate roughly the same number of bits, i.e., O(L), including the sender.

Regarding the number of rounds, it has been shown that for any broadcast protocol with
perfect security there exists an execution that requires t+1 rounds [69]. Therefore, a protocol

20



that runs in strict constant number of rounds is impossible to achieve. The seminal works of
Rabin and Ben-Or [96, 27] demonstrated that those limitations can be overcome by using
randomization. We define asymptotically-free broadcast as a balanced broadcast protocol that
runs in expected constant number of rounds and with (expected) communication complexity
of O(nL).

There are, in general, two approaches for implementing broadcast in our setting. These
approaches provide an intriguing tradeoff between communication and round complexity:

• Low communication complexity, high number of rounds: For broadcasting a single
bit, the first approach [53, 33] requires O(n2) bits of communication complexity, which
is asymptotically optimal for any deterministic broadcast protocols [64], or in general,
O(nL + n2 log n) bits for broadcasting a message of size L bits via a perfect broadcast
extension protocol [47].1 This comes at the expense of having ⇥(n) rounds.

• High communication complexity, constant expected number of rounds: The sec-
ond approach, originated by the seminal work of Feldman and Micali [66], followed by
substantial improvements and simplifications by Katz and Koo [82], requires significant
communication complexity of O(n6 log n) bits in expectation for broadcasting just a sin-
gle bit, or O(n2L+n6 log n) bits for a message of L bits.2 However, they work in expected

constant number of rounds.

To get a sense of how the above translates to practice, consider a network with 200ms
delay per round-trip (such a delay is relatively high, but not unusual, see [1]), and n =

300. Using the first type of protocol, ⇡ 300 rounds are translated to a delay of 1 minute.
Then, consider for instance computing the celebrated protocol of Ben-Or, Goldwasser and
Wigderson [29] on an arithmetic circuit with depth 30. In each layer of the circuit the parties
have to use broadcast, and thus the execution would take at least 30 minutes. The second
type of protocols require at least ⌦(n6 log n) bits of communication. The protocol is balanced
and each party sends or receives n5 log n bits ⇡ 2.4 terabytes. Using 1Gbps channel, this is a
delay of 5.4 hours. Clearly, both approaches are not ideal.

This current state of the affairs calls for the design of faster broadcast protocols and in
particular, understanding better the tradeoff between round complexity and communication
complexity.

1Broadcast extension protocols handle long messages efficiently at the cost of a small number of single-bit
broadcasts.

2Using broadcast extension of [89] we can bring the asymptotic cost to O(nL)+E(O(n7 log n)) bits. However,
the minimum message size to achieve this L = ⌦(n6 log n). This is prohibitively high even for n = 100.
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Why perfect security? Our main motivation for studying broadcast is for perfectly secure
multiparty computation. Perfect security provides the strongest possible security guarantee
which provides unconditional, quantum, and everlasting security. Perfect broadcast is an
essential primitive in generic perfectly secure protocols.

Even if we relax our goals and aim for statistical security only, the situation is not much
better. Specifically, the best upper bounds that we have are in fact already perfectly se-
cure [53, 33, 82, 90, 89, 47]. That is, current statistically secure results do not help in
achieving a better communication complexity vs round complexity tradeoff relative to the
current perfect security results. We remark that in the computational setting, in contrast,
the situation is much better. Asymptotically-free broadcast with f < n/2 can be achieved
assuming threshold signatures and setup assumption in constant expected rounds and with
O(n2 + nL) communication [82, 4, 100].

3.1.1 Our Results

We provide a significant improvement in the communication complexity of broadcast with
perfect security and optimal resilience in the presence of a static adversary. Towards that end,
we also improve a pivotal building block in secure computation, namely, verifiable secret shar-
ing (VSS). Our new VSS has an O(n) complexity improvement that may be of independent
interest. We present our results in a top-down fashion. Our main result is:

Theorem 3.1.1. There exists a perfectly secure, balanced, broadcast protocol with optimal re-

silience, which allows a dealer to send L bits at the communication cost of O(nL) bits, plus

O(n4 log n) expected bits. The protocol runs in constant expected number of rounds and assumes

private channels.

Previously, Katz and Koo [82] achieved O(n2L) bits plus O(n6 log n) expected number of
bits. For messages of size L = ⌦(n3 log n) bits, the total communication of our protocol
is O(nL) bits. Thus, we say that our protocol is asymptotically free for messages of size
L = ⌦(n3 log n) bits. We recall that [82] together with [89] are also asymptotically free albeit
only for prohibitively large value of L ( = ⌦(n6 log n)). Table 3.1 compares our work to the
state of the art in broadcast protocols.

To get a sense from a practical perspective, for broadcasting a single bit with n = 300, our
protocol requires each party to send/receive roughly n3 log n ⇡ 27 MB (as opposed to ⇡ 2.4

terabytes by [82]). Using a 1Gbps channel, this is 200ms. For broadcasting a message of size
⇡ 27 MB, each party still has to send/receive roughly the same size of this message, and the
broadcast is asymptotically free in that case.

22



Task Reference Total P2P (in bits) Rounds

1⇥BC(L)

[53, 33] O(n2L) O(n)
[53, 33] + [47] O(nL+ n2 log n) O(n)

[82] O(n2L) + E(O(n6 log n)) E(O(1))
[82] + [89] O(nL) + E(O(n7 log n)) E(O(1))
Our work O(nL) + E(O(n4 log n))O(nL) + E(O(n4 log n))O(nL) + E(O(n4 log n)) E(O(1))E(O(1))E(O(1))

n⇥BC(L)
[53, 33] O(n3L) O(n)

[82] O(n3L) + E(O(n6 log n)) E(O(1))
[82] + [89]2 O(n2L) + E(O(n7 log n)) E(O(1))

Our work O(n2L) + E(O(n4 log n))O(n2L) + E(O(n4 log n))O(n2L) + E(O(n4 log n)) E(O(1))E(O(1))E(O(1))

Table 3.1: Comparison of communication complexity of our work with the state-of-the-art broadcast.
1⇥ BC(L) refers to the task of a single dealer broadcasting a L-element message.

n⇥ BC(L) refers to the task of n dealers broadcasting a L-element message in parallel.

Parallel composition of broadcast. In MPC, protocols often instruct the n parties to broad-
cast messages of the same length L in parallel at the same round. For instance, in the protocol
of [29], all parties share their input at the same round, and for verifying the secret, each party
needs to broadcast L = O(n2 log n) bits.1 In fact, the notion of parallel-broadcast goes back
to the work of Pease et al. [94]. We have the following extension to our main result:

Corollary 3.1.2. There exists a perfectly-secure, balanced, parallel-broadcast protocol with opti-

mal resilience, which allows n dealers to send messages of size L bits each, at the communication

cost of O(n2L) bits, plus O(n4 log n) expected bits. The protocol runs in constant expected number

of rounds.

For message of size L = O(n2 log n) bits, which is common in MPC, our broadcast is
asymptotically optimal. We obtain a cost of O(n4 log n) bits in expectation, with expected
constant rounds. Note that each party receives O(nL) bits, and therefore O(n2L) = O(n4 log n)

bits is the best that one can hope for. Again, the protocol is balanced, which means that each
party sends or receives only O(nL) bits.

For comparison, the other approach for broadcast based on [53, 33, 47] requires total
O(n4 log n) bits for this task, but with ⇥(n) rounds. We refer again to Table 3.1 for comparison.

To get a practical sense of those complexities, when n = 300 and parties have to broadcast
simultaneously messages of size L, our protocol is asymptotically optimal for L = n2 log n ⇡
90KB.

1In fact, in each round of the protocol, each party performs O(n) verifiable secret sharings (VSSs), i.e., it has
to broadcast O(n3 log n) bits. In [6] it has been shown how to reduce it to O(1) VSSs per party, i.e., each party
might have to broadcast O(n2 log n).

2Since the broadcast extension protocol of [47] requires O(n) rounds, combining [82] with [47] results in
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Packed verifiable secret sharing. A pivotal building block in our construction, as well as
perfectly secure multiparty protocols is verifiable secret sharing (VSS), originally introduced
by Chor et al. [48]. It allows a dealer to distribute a secret to n parties such that no share
reveal any information about the secret, and the parties can verify, already at the sharing
phase, that the reconstruction phase would be successful.

To share a secret in the semi-honest setting, the dealer embeds its secret in a degree-t uni-
variate polynomial, and it has to communicate O(n) field elements. In the malicious setting,
the dealer embeds its secret in a bivariate polynomial of degree-t in both variables [29, 67].
The dealer then has to communicate O(n2) field elements to share its secret. An intriguing
question is whether this gap between the semi-honest (where the dealer has to encode its
secret in a structure of size O(n)) and the malicious setting (where the dealer has to encode
its secret in a structure of size O(n2)) is necessary. While we do not answer this question,
we show that the dealer can pack O(n) secrets, simultaneously in one bivariate polynomial.
Then, it can share it at the same cost as sharing a single VSS, achieving an overhead of O(n)
per secret. We show:

Theorem 3.1.3. Given a synchronous network with pairwise private channels and a broadcast

channel, there exists a perfectly secure packed VSS protocol with optimal resilience, which has a

communication complexity of O(n2 log n) bits over point-to-point channels and O(n2 log n) bits

broadcast for sharing O(n) secret field elements (i.e., O(n log n) bits) in strict O(1) rounds. The

optimistic case (where all the parties behave honestly) does not use the broadcast channel in the

protocol.

The best previous results achieve O(n3 log n) (point-to-point and broadcast) for sharing
O(n) secret elements [29, 67, 83, 16], this is an improvement by a factor of n in communica-
tion complexity.

Packing k secrets into one polynomial is a known technique, proposed by Franklin and
Yung [71]. It was previously used in Shamir’s secret sharing scheme. However, it comes
with the following price: While Shamir’s secret sharing allows protecting against even n � 1

corrupted parties, packing k secrets in one polynomial achieves privacy against only n�k� 1

parties. In the malicious case, VSS of a single secret is possible only when the number of
corruption satisfies t < n/3 to begin with, and thus when packing many secrets we do not
loose in the resilience of the protocol. The idea of packing many secrets without trading off
the allowed threshold of corruption has been explored by Damgård et al. [60]. However, it

linear-round complexity and a worse communication complexity than what the second row ([53, 33] + [47])
provides.
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is achieved at the expense of having O(n) rounds. In contrast, our packed verifiable secret
sharing enables packing O(n) secrets while keeping the threshold exactly the same and ensur-
ing O(1) round complexity. Compared to a constant round VSS of a single secret, we obtain
packed secret sharing completely for free (up to small hidden constants in the O notation of
the above theorem). Lastly, the same result as ours is achieved in the asynchronous setting
with the optimal resilience of t < n/4 in [50, 51].

Optimal gradecast for ⌦(n2) messages. Another building block that we improve along
the way is gradecast. Gradecast is a relaxation of broadcast introduced by Feldman and
Micali [66] (“graded-broadcast”). It allows a distinguished dealer to transmit a message, and
each party outputs the message it receives together with a grade g 2 {0, 1, 2}. If the dealer is
honest, all honest parties receive the same message and grade 2. If the dealer is corrupted,
but some honest party outputs grade 2, it is guaranteed that all honest parties output the
same message (though some might have grade 1 only). We show that:

Theorem 3.1.4. There exists a perfectly secure gradecast protocol with optimal resilience, which

allows a party to send a message of size L bits with a communication cost of O(nL + n3 log n)

bits and in O(1) rounds. The protocol is balanced.

Note that this result is optimal when L = ⌦(n2 log n) bits as each party has to receive L

bits even in an ideal implementation. Previously, the best gradecast protocol in the perfect
security setting [66] required O(n2L) bits of communication.

3.1.2 Applications and Discussions

Applications: Perfect secure computation. We demonstrate the potential speed up of pro-
tocols in perfect secure computation using our broadcast. There are, in general, two lines
of works in perfectly secure MPC, resulting again in an intriguing tradeoff between round
complexity and communication complexity.

The line of work [29, 46, 73, 56, 19, 6] achieves constant round per multiplication and
round complexity of O(depth(C)), where C is the arithmetic circuit that the parties jointly
compute. The communication complexity of those protocols results in O(n3|C| log n) bits
over point-to-point channels in the optimistic case, and an additional O(n3|C| log n) bits over
the broadcast channel in the pessimistic case (recall that this means that each party has to
send or receive a total of O(n4|C| log n) bits). In a nutshell, the protocol requires each party to
perform O(1) VSSs in parallel for each multiplication gate in the circuit, and recall that in each
VSS the dealer broadcasts O(n2 log n) bits. This is exactly the setting in which our parallel
broadcast gives asymptotically free broadcast (Corollary 3.1.2). Thus, we get a protocol with
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a total of O(n4|C| log n) bits (expected) and expected O(depth(C)) rounds over point-to-point
channels. Previously, using [82], this would have been resulted in expected O(n6|C| log n)
communication complexity with O(depth(C)) rounds.

Another line of work [80, 26, 76] in perfectly-secure MPC is based on the player elim-

ination framework (introduced by Hirt and Maurer and Przydatek [80]). Those protocol
identify parties that may misbehave and exclude them from the execution. Those proto-
cols result in a total of O((n|C| + n3) log n) bits over point-to-point channels, and O(n log n)

bits over the broadcast channel. However, this comes at the expense of O(depth(C) + n)

rounds. This can be compiled to O((n|C|+ n3) log n) communication complexity with O(n2 +

depth(C)) rounds using [53, 33], or to O((n|C| + n7) log n) communication complexity with
O(n + depth(C)) rounds (expected) using [82]. Using our broadcast, the communication
complexity is O((n|C| + n5) log n) with O(n + depth(C)) rounds (expected). We remark that
in many setting, a factor n in round complexity should not be treated the same as commu-
nication complexity. Roundtrips are slow (e.g., 200ms delay for each roundtrip), whereas
communication channels can send relatively large messages fast (1 or even 10Gbps).

On sequential and parallel composition of our broadcast. Like Feldman and Micali [66]
and Katz and Koo [82] (and any o(t)-round expected broadcast protocol), our protocol cannot
provide simultaneous termination. Sequentially composing such protocols is discussed in
Lindell, Lysyanskaya and Rabin [86], Katz and Koo [82] and Cohen et al. [54]. Regarding
parallel composition, unlike the black-box parallel composition of broadcasts studied by Ben-
Or and El-Yaniv [28], we rely on the idea of Fitzi and Garay [70] that applies to OLE-based
protocols. The idea is that multiple broadcast sub-routines are run in parallel when only a
single election per iteration is required for all these sub-routines. This reduces the overall
cost and also guarantees that parallel broadcast is also constant expected number of rounds.

Modeling broadcast functionalities. We use standalone, simulation-based definition as in
[41]. The standalone definition does not capture rounds in the ideal functionalities, or the
fact that there is no simultaneous termination. The work of Cohen et al. [54] shows that one
can simply treat the broadcast without simultaneous termination as an ideal broadcast as we
provide (which, in particular, has simultaneous and deterministic termination). Moreover,
it allows compiling a protocol using deterministic-termination hybrids (i.e., like our ideal
functionalities) into a protocol that uses expected-constant-round protocols for emulating
those hybrids (i.e,. as our protocols) while preserving the expected round complexity of the
protocol. We remark that in order to apply the compiler of [54], the functionalities need to
follow a structure of (1) input from all parties; (2) leakage to the adversary; (3) output. For
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simplicity, we did not write our functionalities using this specific format, but it is clear that
our functionalities can be written in this style.

Our broadcast with strict-polynomial run time. Protocols in constant expected number
of rounds might never terminate (although, with extremely small probability). Our protocols
can be transformed into a protocol that runs in strict polynomial time using the approach of
Goldreich and Petrank [75]: Specifically, after O(n) attempts to terminate, the parties can run
the O(n) rounds protocol with guaranteed termination. See also [54].

3.1.3 Related Work

We review the related works below. Error-free byzantine agreement and broadcast are known
to be possible only if t < n/3 holds [85, 94]. Moreover, Fischer and Lynch [69] showed a
lower bound of t + 1 rounds for any deterministic byzantine agreement protocol or broad-
cast protocol. Faced with this barrier, Rabin [96] and Ben-Or [27] independently studied
the effect of randomization on round complexity, which eventually culminated into the work
of Feldman and Micali [68] who gave an expected constant round protocol for byzantine
agreement with optimal resilience. Improving over this work, the protocol of [82] requires a
communication of O(n2L + n6 log n) for a message of size L bits, while achieving the advan-
tage of expected constant rounds. In regards to the communication complexity, Dolev and
Reischuk [65] established a lower bound of n2 bits for deterministic broadcast or agreement
on a single bit. With a round complexity of O(n), [53, 33] achieve a broadcast protocol with
a communication complexity of O(n2) bits.

We quickly recall the state of the art perfectly-secure broadcast extension protocols. Recall
that these protocols aim to achieve the optimal complexity of O(nL) bits for sufficiently large
message size L and utilize a protocol for bit broadcast. The protocol of [90, 72] communicates
O(nL) bits over point-to-point channels and O(n2) bits through a bit-broadcast protocol. The
work of [89] improves the number of bits sent through a bit-broadcast protocol to O(n)

bits. Both these extension protocols are constant round. The recent work of [47] presents a
protocol that communicates O(nL + n2 log n) bits over point-to-point channels and a single
bit through a bit-broadcast protocol. However, the round complexity of this protocol is O(n).

A few other works in different settings are given below. The notion of parallel broadcast
was recently explored by Tsimos et al. [102] in the dishonest majority setting under crypto-
graphic assumptions. Hirt and Zikas [79] studied the adaptive security of broadcast in the
UC model, and improved the resilience of the ideal functionality to adaptive corruptions.
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3.2 Technical Overview
We describe the high-level overview of our techniques. We start with our improved broadcast
in Section 3.2.1, and then describe packed VSS in Section 3.2.2, followed by the gradecast
protocol in Section 3.2.3. To aid readability, we summarize our different primitives and the
relationship between them in Figure 3.1. In each one of the those primitives we improve over
the previous works.

Primitive P2P Broadcast Reference Remarks

Broadcast O(nL) + E(O(n4 log n)) – Section 3.8.2 L bit message
Byzantine Agreement O(n2) + E(O(n4 log n)) – Section 3.8.1 –

Gradecast O(nL+ n3 log n) – Section 3.5 L bit message
Oblivious Leader Election O(n4 log n) – Section 3.7 –

Multi-moderated VSS O(n4 log n) – Section 3.6 Sharing O(n) values
Packed VSS (w. Gradecast) O(n3 log n) – Section 3.4 Sharing O(n) values
Packed VSS (w. Broadcast) O(n2 log n) O(n2 log n) Section 3.4 Sharing O(n) values

Broadcast 

Byzantine Agreement 
(BA) 

Oblivious Leader Election 
(OLE) Multi-moderated VSS 

Gradecast 

Packed VSS 
(w. Gradecast) 

Figure 3.1: Roadmap of our building blocks. All lines are compositions, except for the line from Multi-moderated VSS to Packed VSS,
which is a white-box modification.

3.2.1 Improved Broadcast in Constant Expected Rounds

Our starting point is a high-level overview of the broadcast protocol of Katz and Koo [82],
which simplifies and improves the construction of Feldman and Micali [66]. Following the
approach of Turpin and Coan [103] for broadcast extension closely, broadcast can be reduced
to two primitives: Gradecast and Byzantine agreement.

1. Gradecast: A gradecast is a relaxation of broadcast, where a distinguished dealer trans-
mits a message, and parties output the message together with a grade. If the dealer is
honest, all honest parties are guaranteed to output the dealer’s message together with
a grade 2. Moreover, if the dealer is corrupted and one honest party outputs grade 2,
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then it is guaranteed that all other honest parties also output the same message, though
maybe with a grade 1. Looking ahead, we show how to improve gradecast of message
of length L bits from O(n2L) bits to O(nL+n3 log n) bits, which is optimal for messages
of L = ⌦(n2 log n) bits. We overview our construction in Section 3.2.3.

2. Byzantine agreement: In Byzantine agreement all parties hold some bit as input, and
all of them output a bit at the end of the protocol. If all honest parties hold the same
value, then it is guaranteed that the output of all parties would be that value. Otherwise,
it is guaranteed that the honest parties would agree and output the same (arbitrary) bit.

To implement broadcast, the dealer gradecasts its message M and then the parties run
Byzantine agreement (BA) on the grade they received (using 1 as input when the grade of
the gradecast is 2, and 0 otherwise). Then, if the output of the BA is 1, each party outputs the
message it received from the gradecast, and otherwise it outputs ?.

If the dealer is honest, then all honest parties receive grade 2 in the gradecast, and all
would agree in the BA that the grade is 2. In that case, they all output M . If the dealer is
corrupted, and all honest parties received grade 0 or 1 in the gradecast, they would all use
0 in the Byzantine agreement, and all would output ?. The remaining case is when some
honest parties receives grade 2 in the gradecast, and some receive 1. However, once there is
a single honest party that received grade 2 in the gradecast, it is guaranteed that all honest
parties hold the same message M . The Byzantine agreement can then go either way (causing
all to output M or ?), but agreement is guaranteed.

Oblivious leader election. It has been shown that to implement a Byzantine agreement (on
a single bit), it suffices to obliviously elect a leader, i.e., a random party among the parties.
In a nutshell, a Byzantine agreement proceeds in iterations, where parties exchange the bits
they believe that the output should be and try to see if there is an agreement on the output.
When there is no clear indication of which bit should be the output, the parties try to see if
there is an agreement on the output bit suggested by the elected leader. A corrupted leader
might send different bits to different parties. However, once an honest leader is elected, it
must have sent the same bit to all parties. In that case the protocol guarantees that all honest
parties will agree in the next iteration on the output bit suggested by the leader, and halt.

Oblivious leader election is a protocol where the parties have no input, and the goal is
to agree on a random value in {1, . . . , n}. It might have three different outcomes: (1) All
parties agree on the same random index j 2 {1, . . . , n}, and it also holds that Pj is honest;
this is the preferable outcome; (2) All parties agree on the same index i 2 {1, . . . , n}, but Pi

is corrupted; (3) The parties do not agree on the index of the party elected. The goal is to
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achieve the outcome (1) with constant probability, say � 1/2. Recall that once outcome (1)
occurs then the Byzantine agreement succeeds. Achieving outcome (1) with constant number
of rounds and with constant probability implies Byzantine agreement with constant expected
number of rounds.

The key idea to elect a leader is to randomly choose, for each party, some random value ci.
Then, the parties choose an index j of the party for which cj is minimal. To do that, we cannot
let each party Pj choose its random value cj, as corrupted parties would always choose small
numbers to be elected. Thus, all parties contribute to the random value associated with each
party. That is, each party Pk chooses ck!j 2 {1, . . . , n4} as its share in the value cj that will
be assigned to Pj. Parties then define cj =

P
n

k=1 ck!j mod n4 as the random value associated
with Pj. This guarantees that each value cj is uniform.

However, just as in coin-tossing protocols, a party cannot publicly announce its random
choices, since then it would allow a rushing adversary to choose its random values as a func-
tion of the announced values. This is prevented by using verifiable secret sharing. Verifiable
secret sharing provides hiding – given t shares, it is impossible to determine what is the se-
cret, and binding – at the end of the sharing phase, the dealer cannot change the secret, and
reconstruction is guaranteed. The parties verifiably share their random values ck!j for every
k, j. After all parties share their values, it is safe to reconstruct the secret, reveal the random
values, and elect the leader based on those values.

A problem: VSS uses a broadcast channel. A problem with the above solution is that
protocols for VSS use a broadcast channel to reach an agreement on whether or not to ac-
cept the dealer’s shares. Yet, the good news is that broadcast is used only during the sharing
phase. Replacing each broadcast with a gradecast does not suffice since honest parties do not
necessarily agree on the transmitted messages when corrupted senders gradecast messages.
This leads to the notion of “moderated VSS”, where the idea is to have a party that is re-
sponsible for all broadcasted message. Specifically, now there are two distinguished parties:
a dealer Pk and a moderator Pj. The parties run the VSS where Pk is the dealer; whenever
a participant has to broadcast a message m, it first gradecasts it, and then the moderator
Pj has to gradecast the message it received. Each party can then compare between the two
gradecasted messages; however, the parties proceed the execution while using the message
that the moderator had gradecasted as the message that was broadcasted. At the end of the
execution, each party outputs together with the shares, a grade for the moderator in {0, 1}.
For instance, if the moderator ever gradecasted some message and the message was received
by some party Pi with grade  1, then the grade that Pi gives the moderator is 0 — Pi cannot
know whether other parties received the same message at all. The idea is that honest parties
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might not necessarily output the same grade, but if there is one honest party that outputs
grade 1, it is guaranteed that the VSS was successful, and we have binding. Moreover, if the
moderator is honest, then all honest parties would give it grade 1.

Going back to leader election, the value ck!j is distributed as follows: the parties run a
VSS where Pk is the dealer and Pj is the moderator. After all values of all parties were shared
(i.e., all parties committed to the values ck!j), each party defines for each moderator Pj the
value cj =

P
n

k=1 ck!j. If the grade of Pj was not 1 in all its executions as a moderator, then
replace cj =1. Each party elects the party P` for which c` is minimal.

If the moderator Pj is honest, then for both honest and corrupted dealer Pk, the VSS would
end up with agreement, and all honest parties would give Pj grade 1 as a moderator. The
value cj =

P
n

k=1 ck!j mod n4 would be the same for all honest parties, and it must distribute
uniformly as honest dealers contributed random values in this sum. Likewise, if a moderator
Pj is corrupted but some honest party outputs grade 1 in all executions where Pj served as
a moderator, then the value cj =

P
n

k=1 ck!j mod n4 must be the same for all honest parties,
and it also must be random, as honest dealers contributed random values. There might be
no agreement if some honest parties gave grade 1 for that moderator, while others did not
and defined cj = 1. In that case, we might not have an agreement on the elected leader.
However, it is guaranteed that the value cj is distributed uniformly. Thus, the inconsistency
is bounded with constant probability (roughly t/n  1/3).

Our improvements. As noticed above, each party participates as the dealer in n executions,
and as the role of the moderator in n executions. Thus, we have a total of n2 executions of
VSS. First, we show a new protocol that enables a dealer to pack O(n) secrets at the cost of
just one VSS (assuming broadcast), called packed VSS (see an overview in Section 3.2.2). For
leader election, we have to replace the broadcast in the packed VSS with a gradecast (with a
moderator).

However, we cannot just pack all the O(n) values ck!j where Pk is the dealer in one
instance of a VSS with a moderator since each one of the secrets corresponds to a different
moderator. We, therefore, introduce a new primitive which is called “Multi-moderated packed
secret sharing”: The dealer distributes O(n) values, where each corresponds to a different
moderator, and have all parties serve as moderator in one shared execution of a VSS.

More precisely, the packed VSS uses several invocations of broadcasts in the sharing phase,
just as a regular VSS. Until the very last round, the dealer also serves as the moderator
within each of those broadcasts. In the last round, there is a vote among the parties whether
accept or reject the dealer, where the vote is supposed to be performed over the broadcast
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channel. At this point, the execution is forked to O(n) executions. Each corresponds to a
different moderator, where the moderator moderates just the last round’s broadcasts. The
idea is that the vast majority of the computation is shared between all O(n) executions, thus
the additional cost introduced for each moderator is small. This allows us to replace all n
executions where Pi serves as a dealer with just one execution where Pi is the dealer and
other O(n) parties are moderators at the same time.

Another obstacle worth mentioning is that within multi-moderated packed VSS, the dealer
broadcasts O(n2 log n) bits, whereas other participant broadcasts at most O(n log n) bits. Our
gradecast is not optimal for this message size, and thus when replacing those broadcasts with
gradecasts, the overall cost would be O(n5 log n). We can do better by considering all the
multi-moderated VSSs in parallel. Each party then participates in O(1) executions as a dealer
and in O(n) executions as a participant. Therefore, each party has to broadcast O(n2 log n)

bits in all invocations of multi-moderated packed VSS combined (O(n2 log n) bits when it
serves as a dealer, and (n � 1) ⇥ O(n log n) when it serves as a participant). For that size of
messages, our gradecast is optimal.

To conclude, to obtain our broadcast, we build upon [66, 82] and introduce: (1) an
optimal gradecast protocol for ⌦(n2 log n) messages which is used twice – for gradecasting
the message before running the Byzantine agreement and within the Byzantine agreement
as part of the VSSs; (2) a novel multi-moderated packed secret sharing, which is based on a
novel packed VSS protocol; (3) carefully combine all the O(n) invocations of multi-moderated
packed secret sharing to amortize the costs of the gradecasts.

When comparing to the starting point of O(n2L) plus E(O(n6 log n)) of [82], the improved
gradecast allows us to reduce the first term to O(nL), for large enough messages. Regarding
the second term, packing O(n) values in the VSS reduces one n factor, and the improved
gradecast within the VSS reduces another n factor. Overall this brings us to O(nL) plus
E(O(n4 log n)).

3.2.2 Packed Verifiable Secret Sharing

Our packed verifiable secret sharing protocol is the basis of the multi-moderated VSS. We
believe that it will find applications in future constructions of MPC protocols, and is of in-
dependent interest. Communication cost wise, the best-known constant-round perfect VSS
sharing one secret is O(n2 log n) bits over point-to-point channels in the optimistic case, and
additional O(n2 log n) bits over the broadcast channel in the pessimistic case [29, 74, 18].
Here, we retain the same cost, yet “pack” t + 1 secrets in one bivariate polynomial and gen-
erate t + 1 independent Shamir-sharings at one go. We remark that in asynchronous setting,
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with the optimal threshold of t < n/4, this goal has been achieved in [50, 51].

Sharing more secrets at one go. Our goal is to generate Shamir-sharing of t + 1 secrets,
s�t, . . . , s0, at once. Denoting Shamir-sharing of a secret s by hsi, our goal is to produce
hs�ti, . . . , hs0i using a single instance of a VSS. For this, the dealer chooses a degree-(2t, t)
bivariate polynomial1 S(x, y) such that S(l, 0) = sl for each l 2 {�t, . . . , 0}. We set fi(x) =

S(x, i) of degree 2t and gi(y) = S(i, y) of degree-t and observe that for every i, j it holds that
fi(j) = S(j, i) = gj(i). The goal of the verification part is that each Pi will hold fi(x) and gi(y)

on the same bivariate polynomial S(x, y). Then, each degree-t univariate polynomial gl(y) for
l 2 {�t, . . . , 0} is the standard Shamir-sharing of sl amongst the parties. Once the shares of
the parties are consistent, each party Pi can locally compute its share on gl(y) as gl(i) = fi(l).

Our protocol is a strict improvement of [6]. Specifically, the work of [6] considers the
VSS protocol of [29] when the dealer uses a (2t, t)-polynomial instead of a degree-(t, t) poly-
nomial. It observes that by minor modifications, the protocol still provides weak verifiability
even though the sharing is done on a higher degree polynomial. By “weak”, we mean that
the reconstruction phase of the polynomial might fail in the case of a corrupted dealer. Nev-
ertheless, the guarantee is that the reconstruction phase would either end up successfully
reconstructing S(x, y), or ?, and whether it would succeed or not depends on the adversary’s
behavior. In contrast, in a regular (“strong”) VSS, reconstruction is always guaranteed.

The work of [6] utilizes this primitive to improve the efficiency of the degree-reduction
step of the BGW protocol. However, this primitive is weak and does not suffice for most
applications of VSS. For instance, it cannot be used as a part of our leader election protocol:
The adversary can decide whether the polynomial would be reconstructed or not. Thus there
is no “binding”, and it can choose, adaptively and based on the revealed secrets of the honest
parties, whether the reconstruction would be to the secret values or some default values. As
such, it can increase its chance of being elected.

Our work: achieving strong binding. In our work, we show how to achieve strong binding.
We omit the details in this high-level overview of achieving weak verifiability of [6] secret
sharing while pointing out that the protocol is a variant of the VSS protocol of [29]. For our
discussion, the protocol reaches the following stage: If the dealer is not discarded, then there
is a CORE of 2t + 1 parties that hold shares of a unique bivariate polynomial S(x, y), and
this set of parties is public and known to all (it is determined based on votes performed over
the broadcast channel). Each party Pi in CORE holds two univariate shares fi(x) = S(x, i)

1We call a bivariate polynomial where the degree in x is 2t and in y is t, i.e., S(x, y) =
P2t

i=0

Pt
j=0 ai,jx

i
y
j

as a (2t, t)-bivariate polynomial.
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of degree-2t and gi(y) = S(i, y) of degree-t. Each party Pj for j 62 CORE holds a polynomial
gj(y) = S(j, y), where some of those polynomials are also public and were broadcasted by
the dealer. In case the dealer is honest, then all honest parties are part of CORE, whereas if
the dealer is corrupted, then it might be that only t + 1 honest parties are part of CORE. To
achieve strong binding, the dealer has to provide shares for parties outside CORE, publicly,
and in a constant number of rounds.

The first step is to make all the polynomials gj(y) for each j 62 CORE public. This is
easy, since each such polynomial is of degree t. The dealer can broadcast it, and the parties
in CORE vote whether to accept. If there are no 2t + 1 votes to accept, then the dealer is
discarded. Since the shares of the honest parties in CORE are consistent and define a unique
(2t, t)-bivariate polynomial S(x, y), the dealer cannot publish any polynomial gj(y) which is
not S(j, y). Any polynomial g0

j
(y) 6= S(j, y) can agree with at most t points with S(j, y) and

thus it would receive at most t votes of honest parties in CORE, i.e., it cannot reach 2t + 1

votes.
The next step is to make the dealer also publicize the shares fj(x) for each j 62 CORE. This

is more challenging since each fj(x) is of degree-2t, and therefore achieving 2t + 1 votes is
not enough, as t votes might be false. Therefore, the verification is more delicate:

1. First, the parties in CORE have to vote OK on the f -polynomials that the dealer pub-
lishes. If there are less than 2t+ 1 votes, the dealer is discarded.

2. Second, for each party Pj in CORE that did not vote OK, the dealer is required to publish
its gj(y) polynomial. The parties in CORE then vote on the revealed polynomials as in
the first step of boosting from weak to strong verification.

To see why this works, assume that the dealer tries to distribute a polynomial f 0
j
(x) 6= S(x, j).

Then, there must exist an honest party such that its share does not agree with f 0
j
(x). If

f 0
j
(x) does not agree with shares that are public, then it would be immediately discarded. If

f 0
j
(x) does not agree with a share of an honest party Pk that is part of CORE, then gk(y) would

become public in the next round, and the dealer would be publicly accused. The dealer cannot
provide a share gk(y) 6= S(k, y) for the same reason as the first step of boosting from weak
to strong VSS. At the end of this step we have that all honest parties are either part of CORE
and their shares are private, or they are not in CORE and their shares are public. Overall, all
honest parties hold shares on the bivariate polynomial S(x, y). We refer to section 3.4 for the
formal protocol description.
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3.2.3 Optimal Gradecast

A crucial building block in our construction is gradecast. We show how to implement grade-
cast of a message of length L bits using total communication of O(n3 log n + nL) bits. For
this overview, we just deal with the case where the dealer is honest and show that all honest
parties output the message that the dealer gradecasted with grade 2. We leave the case of a
corrupted dealer to the relevant section (Section 3.5).

Data dissemination. Our construction is inspired in part by the data dissemination protocol
of [61], while we focus here on the synchronous settings. In the task of data dissemination,
t + 1 honest parties hold as input the same input M , while other honest parties hold the
input ?, and the goal is that all honest parties receive the same output M in the presence
of t corrupted parties. In our protocol, assume for simplicity messages of size (t + 1)2 field
elements (i.e., a degree-(t, t) bivariate polynomial). Data dissemination can be achieved quite
easily: (1) Each honest party sends to each party Pj the univariate polynomials S(x, j), S(j, y).
(2) Once a party receives t + 1 messages with the same pair of univariate polynomials, it
forwards those polynomials to all others. An adversary might send different polynomials, but
it can never reach plurality t+1. (3) After all the honest parties forwarded their polynomials
to the others, we are guaranteed that each party holds 2t+ 1 correct shares of S and at most
t incorrect shares. Each party can reconstruct S efficiently using Reed Solomon decoding.
Note that this procedure requires the transmission of O(n3 log n) bits overall. Therefore, our
goal in the gradecast protocol is to reach a state where t+1 honest parties hold shares of the
same bivariate polynomial.

Gradecast. For the sake of exposition, we first describe a simpler protocol where the dealer
is computationally unbounded, and then describe how to make the dealer efficient. Again,
assume that the input message of the dealer is encoded as a bivariate polynomial S(x, y).
The dealer sends the entire bivariate polynomial to each party. Then, every pair Pi and Pj

exchange the polynomials S(x, i), S(i, y), S(x, j), S(j, y). The two parties check whether they
agree on those polynomials or not. If Pi sees that the polynomials it received from Pj are
the same as it received from the dealer, then it adds j to a set Agreed

i
. The parties then send

their sets Agreed
i

to the dealer, who defines an undirected graph where the nodes are the set
{1, . . . , n} and an edge {i, j} exists if and only if i 2 Agreed

j
and j 2 Agreed

i
. The dealer then

(inefficiently) finds a maximal clique K ✓ {1, . . . , n} of at least 2t + 1 parties and gradecasts
K to all parties using a näıve gradecast protocol of [66, 82] (note that this is a gradecast
of case O(n2L) with L = O(n log n)). A party Pi is happy if: (1) i 2 K; (2) it received the
gradecast message of the dealer with grade 2; and (3) K ✓ Agreed

i
. The parties then proceed

35



to data dissemination protocol.
The claim is that if the dealer is honest, then at least t + 1 honest parties are happy, and

they all hold the same bivariate polynomial. This is because the set of honest parties defines
a clique of size 2t + 1, and any clique that the honest dealer finds of cardinality 2t + 1 must
include at least t + 1 honest parties. The result of the data dissemination protocol is that all
honest parties output S. If the dealer is corrupted, we first claim that all honest parties that
are happy must hold the same bivariate polynomial. Any two honest parties that are happy

must be part of the same clique K that contains at least t + 1 honest parties, and all honest
parties in that clique must agree with each other (all see the same clique K defined by the
dealer, and verified that they agreed with each other). The univariate polynomials exchanged
between those t+ 1 honest parties define a unique bivariate polynomial. Again, data dissem-
ination would guarantee that all honest parties would output that bivariate polynomial.

On making the dealer efficient. To make the dealer efficient, we rely on a procedure
that finds an approximation of a clique, known as the STAR technique, introduced by [39].
In the technical section, we show how we can use this approximation of a clique, initially
introduced for the case of t < n/4, to the much more challenging scenario of t < n/3. We
refer to Section 3.5 for the technical details.

Organization. The rest of the chapter is organized as follows. In Section 3.3 we provide
preliminaries and notations. In Section 3.4 we describe our packed verifiable secret sharing,
followed by our gradecast in Section 3.5. We then proceed to multi-moderated packed se-
cret sharing (Section 3.6), oblivious leader election (Section 3.7) and we conclude with our
broadcast protocol in Section 3.8.

3.3 Preliminaries

3.3.1 Network Model and Notations

We consider a synchronous network model where the parties in P = {P1, . . . , Pn} are con-
nected via pairwise private and authenticated channels. Additionally, for some of our pro-
tocols we assume the availability of a broadcast channel, which allows a party to send an
identical message to all the parties. One of the goals of this work is to implement such a
broadcast channel over the pairwise private channels, and we mention explicitly for each
protocol whether a broadcast channel is available or not. The detailed description of the
network model and security definition is discussed in Section 2.

Our protocols are defined over a finite field F where |F| > n+ t+ 1. We consider two sets
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of n and t+ 1 distinct elements from F publicly known to all the parties, which we denote by
{1, . . . , n} and {�t, . . . , 0} respectively. We use hvi to denote the degree-t Shamir-sharing of
a value v among parties in P.

3.3.2 Bivariate Polynomials

As described earlier, a degree (l,m)-bivariate polynomial over F is of the form S(x, y) =
P

l

i=0

P
m

j=0 bijx
iyj where bij 2 F. The polynomials fi(x) = S(x, i) and gi(y) = S(i, y) are

called ith f and g univariate polynomials of S(x, y) respectively. In our protocol, we use
(2t, t)-bivariate polynomials where the ith f and g univariate polynomials are associated with
party Pi for every Pi 2 P.

Claim 3.3.1 ([6, Claim 3.4]). Let t be a non-negative integer, {1, . . . , t+1} be distinct elements

in F and f1(x), . . . , ft+1(x) be t+1 univariate polynomials of degree at most 2t. Then, there exists

a unique (2t, t)-bivariate polynomial S(x, y) such that S(x, i) = fi(x) holds for every i 2 [t+ 1].

Claim 3.3.2 ([11, Lemma 2.7]). Let C ✓ D ✓ {1, . . . , n} be two sets such that |C| � t + 1

and |D| � 2t + 1. Let {fi(x)}i2C be a set of degree-2t polynomials and {gj(y)}j2D be a set of

degree-t polynomials over F. If for every i 2 C and every j 2 D it holds that fi(j) = gj(i), then

there exists a unique (2t, t)-bivariate polynomial S(x, y) such that S(x, i) = fi(x) holds for every

i 2 C and S(j, y) = gj(y) holds for every j 2 D.

Claim 3.3.3 ([6, Claim 3.6]). Let C ⇢ {1, . . . , n} be a set such that |C|  t and let p(x) and q(x)

be two degree-2t polynomials such that p(i) = q(i) holds for every i 2 C. Then, the probability

distributions {(i, Sp(x, i), Sp(i, y))}i2C and {(i, Sq(x, i), Sq(i, y))}i2C are identical, where Sp(x, y)

and Sq(x, y) are (2t, t)-bivariate polynomials chosen under the constraint that Sp(x, 0) = p(x)

and Sq(x, 0) = q(x) respectively.

3.3.3 Finding (n, t)-STAR

Definition 3.3.4. Let G be a graph over the nodes {1, . . . , n}. We say that a pair (C,D) of sets

such that C ✓ D ✓ {1, . . . , n} is an (n, t)-star in G if the following hold:

• |C| � n� 2t,

• |D| � n� t,

• For every j 2 C and every k 2 D, the edge (j, k) exists in G.

Canetti [39] showed that if a graph has a clique of size n� t, then there exists an efficient
algorithm which always finds an (n, t)-star. For completeness, we describe the algorithm for
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finding an (n, t)-star in Algorithm 3.3.5 which is taken verbatim from [30, 40]. We describe
the (n, t)-star finding algorithm [30, 40] below.

Algorithm 3.3.5: STAR – efficiently finding a star

Input: an undirected graph G (over the nodes {1, . . . , n}), a parameter t.

1. Find a maximum matching M in G. Let N be the set of matched nodes (namely, the
endpoints of the edges in M) and let N := {1, . . . , n} \N .

2. Let T be the set of triangle-heads, i.e., all vertices that are not endpoints of the matching
but they have two neighbors in the matching.

T :=
�
i 2 N | 9j, k s.t. (j, k) 2M and (i, j), (i, k) 2 G

 
.

Let C := N \ T .

3. Let B the set of matched nodes that have neighbors in C. That is, set:

B :=
�
j 2 N | 9i 2 C s.t. (i, j) 2 G

 
.

Let D := {1, . . . , n} \B.

4. Output: If |C| � n� 2t and D � n� t then output (C,D). Otherwise, output “star not
found”.

It was shown in [40, 30] that if a graph has a clique of size n � t, then the above procedure
halts with a (C,D) star.

Claim 3.3.6. Let G be a graph over {1, . . . , n} such that if Pi and Pj are honest then {i, j} 2 G.

Then, C contains at least t+ 1 indices of honest parties.

Proof. Since honest parties trust each other, we have a clique of size at least 2t + 1 in G and
thus a (C,D)-star will be found. Since there are always edges between two honest parties in
G, all the edges in G are either between an honest party and a corrupted party, or between
a pair of corrupted parties. Let x be the number of edges in the matching that are between
pairs of corrupted parties, and let y be the number of edges in the matching that are between
an honest party and a corrupted party. We have that x + y  t. Next, we claim that the
number of honest parties in T (i.e., triangle-heads) is bounded by x. The only triangles in
questions are those between an honest party as a head and the two neighbors as corrupted
parties that are also in the matching. We claim that each edge in the matching between a pair
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of corrupted parties can be a part of only one triangle. That is, for (j, k) 2 M there exists at
most one honest i 2 N for which i 2 T . Otherwise, if there exists a pair i1, i2 2 N such that
i1, i2 2 T , then we can find a larger matching: instead of taking (j, k) 2 M we would take
(i1, j) and (i2, k), in contradiction to the maximality of M .

To conclude, C is defined as ({1, . . . , n}\N)\T . In N there are y indices of honest parties,
and in T at most x indices. Since x+ y  t, we obtain that C contains at least t+ 1 indices of
honest parties.

3.4 Packed Verifiable Secret Sharing
Here we present a packed VSS to generate Shamir sharing of t + 1 secrets at the cost of
O(n2 log n) bits point-to-point and broadcast communication.

The Functionality. On holding t+ 1 secrets s�t, . . . , s0, the dealer chooses a uniformly ran-
dom (2t, t)-bivariate polynomial S(x, y) such that S(l, 0) = sl for each l 2 {�t, . . . , 0} and
uses the polynomial as its input. Our functionality for VSS is as follows, followed by the VSS
protocol.

Functionality 3.4.1: FVSS – Packed Verifiable Secret Sharing Functionality

Input: The dealer holds a polynomial S(x, y).

1. The dealer sends S(x, y) to the functionality.

2. If S(x, y) is of degree at most 2t in x and at most t in y, then the functionality sends to
each party Pi the two univariate polynomials S(x, i), S(i, y). Otherwise, the functional-
ity sends ? to all parties.

Protocol 3.4.2: ⇧pVSS – Packed VSS Protocol

Common input: The description of a field F, two sets of distinct elements from it denoted as
{1, . . . , n} and {�t, . . . , 0}.
Input: The dealer holds a bivariate polynomial S(x, y) of degree at most 2t in x and at most
t in y. Each Pi initialises a happy bit happy

i
= 1 1.

1. (Sharing) The dealer sends (fi(x), gi(y)) to Pi where fi(x) = S(x, i), gi(y) = S(i, y).
1The happy bits will be used later for Multi-Moderated VSS in Section 3.6.
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2. (Pairwise Consistency Checks) Each Pi sends (fi(j), gi(j)) to every Pj. Let (fji, gji)

be the values received by Pi from Pj. If fji 6= gi(j) or gji 6= fi(j), Pi broadcasts
complaint(i, j, fi(j), gi(j)).

3. (Conflict Resolution) For each complaint(i, j, u, v) such that u 6= S(j, i) or v 6= S(i, j),
dealer broadcasts gD

i
(y) = S(i, y). Let pubR be the set of parties for which the dealer

broadcasts gD
i
(y). Each Pi 2 pubR sets happy

i
= 0. For two mutual complaints

(complaint(i, j, u, v), complaint(j, i, u0, v0)) with either u 6= u0 or v 6= v0, if the dealer
does not broadcast anything, then discard the dealer.

4. (Identifying the CORE Set) Each Pi 62 pubR broadcasts OK if fi(k) = gD
k
(i) holds for

every k 2 pubR. Otherwise, Pi sets happy
i
= 0. Let CORE be the set of parties who

broadcasted OK. If |CORE| < 2t+ 1, then discard the dealer.

5. (Revealing f -polynomials for non-CORE parties) For each Pk /2 CORE, the dealer
broadcasts fD

k
(x) = S(x, k). Discard the dealer if for any Pj 2 pubR and Pk /2

CORE, gD
j
(k) 6= fD

k
(j). Each Pi /2 pubR broadcasts OK if fD

k
(i) = gi(k) holds

for every broadcasted fD

k
(x). Otherwise Pi sets happy

i
= 0. Let K = {Pj|Pj /2

pubR and did not broadcast OK}.

6. (Opening g-polynomials for complaining parties) For each Pj 2 K, the dealer broad-
casts gD

j
(y) = S(j, y). Set pubR = pubR[K. Discard the dealer if fD

k
(j) 6= gD

j
(k) for any

Pk /2 CORE and Pj 2 K. Each Pi 2 CORE with happy
i
= 1 broadcasts OK if fi(j) = gD

j
(i)

for every broadcasted gD
j
(y). Otherwise, Pi sets happy

i
= 0. If at least 2t + 1 parties do

not broadcast OK, then discard the dealer.

7. (Output) If the dealer is discarded, then each Pi outputs ?. Otherwise, Pi outputs
(fi(x), gi(y)), where fi(x) = fD

i
(x) if Pi /2 CORE and gi(y) = gD

i
(y) if Pi 2 pubR.

Theorem 3.4.3. Protocol ⇧pVSS (Protocol 3.4.2) securely realizes FVSS (Functionality 3.4.1) in

the presence of a static malicious adversary controlling up to t parties with t < n/3.

Proof. Let A be an adversary in the real world. We show the existence of a simulator SIM in
the ideal world, such that for any set of corrupted parties C and for all inputs, the output of
all parties in the real protocol with A is identical to the output in the ideal world with SIM.
Depending on whether the dealer is honest or not, we have the following two cases.
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Case 1 - The dealer is honest. In this case, the dealer always holds a valid (2t, t)-bivariate
polynomial S(x, y). The simulator proceeds as follows:

1. SIM invokes A on auxiliary input z.

2. SIM receives from FVSS, the polynomials fi(x), gi(y) for every Pi 2 C and simulates the
protocol execution for A:

(a) Sharing: SIM sends (fi(x), gi(y)) to A for every Pi 2 C on behalf of the dealer.

(b) Pairwise Consistency Checks: SIM sends (gi(j), fi(j)) to A for every Pi 2 C

and every honest Pj. SIM receives from A the values (fij, gij) for each hon-
est party Pj and every Pi 2 C. If fij 6= fi(j) or gij 6= gi(j), SIM broadcasts
complaint(j, i, gi(j), fi(j)) on behalf of Pj. SIM also receives complaint(·, ·, ·, ·)
broadcasted by A.

(c) Conflict Resolution: The dealer never broadcasts gD
j
(y) for honest parties. For

every complaint(i, j, u, v) from A, SIM checks if u = fi(j) and v = gi(j). If not, SIM
broadcasts gD

i
(y) on behalf of the dealer. Define pubR to be the set of parties for

which gD
i
(y) was broadcasted.

(d) CORE Set Identification: An honest party never belongs to pubR. Since the dealer
is honest, fj(i) = gD

i
(j) holds for every honest Pj and every Pi 2 pubR. The

dealer broadcasts OK on behalf of every honest party and receives the OK messages
broadcasted by A. Define CORE to be the set of parties who broadcasted OK.

(e) Revealing f -polynomials non-CORE parties: An honest party will always be a
part of CORE. On behalf of the dealer, SIM reveals fD

i
(x) for each Pi /2 CORE.

These polynomials will always be consistent with the honest parties’ polynomials
and the g-polynomials revealed publicly. SIM broadcasts OK on behalf of each
honest party and receives the OK broadcasted by A. Let K be the parties which
did not broadcast OK.

(f) Opening g-polynomials for parties in K: Let pubR = pubR [ K. On behalf of
the dealer, SIM reveals gD

i
(y) for each Pi 2 K. These polynomials will always be

consistent with the f -polynomials of honest parties and the f -polynomials revealed
publicly. SIM broadcasts OK on behalf of each honest party and receives the OK

messages broadcasted by A.

3. Output: SIM outputs whatever A outputs, and halts.

It can be observed that, since the protocol as well as the simulation is deterministic, the
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adversary’s view in the real execution and ideal execution is identical. Hence, our goal is to
now show that the output of honest parties is the same in the real and ideal executions.

In the ideal execution, an honest dealer always invokes the functionality with a valid
(2t, t)-bivariate polynomial S(x, y). Thus, each honest party Pi outputs the polynomials
fi(x) = S(x, i) and gi(y) = S(i, y) which it receives from the functionality, and never out-
puts ?. Moreover, the corrupted parties do not have inputs and hence do not influence the
output of the honest parties. We will show that the same holds in the real execution as well.

In the real execution, since the dealer is honest, it always holds a valid (2t, t)-bivariate
polynomial S(x, y) and sends fi(x) and gi(y) as prescribed by the protocol to every Pi. As
per the protocol specification, a party’s g and f polynomials do not change unless they are
revealed publicly by the dealer in Step 3, 5 or 6. However, an honest dealer never reveals an
honest party’s polynomials during these phases. Hence, during the output phase, an honest
party either outputs fi(x), gi(y) consistent with S(x, y), or ?. We thus proceed to show that
an honest party never outputs ?.

Recall that an honest party outputs fi(x) and gi(y) if and only if at least 2t+1 parties with
happy = 1 broadcast OK during Step 6. Thus, it suffices to show that all the honest parties
have their happy bit as 1 and broadcast OK. An honest party Pi has happy

i
= 1 and broadcasts

OK during Step 6 if and only if the following conditions hold:

1. While resolving complaints, the dealer never broadcasts gD
i
(y).

2. The dealer resolves all pairs of complaints of the type complaint(j, k, u, v) and
complaint(k, j, u0, v0) where u 6= u0 or v 6= v0.

3. All gD
k
(y) broadcasted by the dealer in Step 3 satisfy fi(k) = gD

k
(i).

4. CORE set includes at least 2t+ 1 parties.

5. All fD

j
(x) broadcasted by the dealer for every Pj /2 CORE in Step 5 and gD

k
(y) broad-

casted for every Pk 2 pubR in Step 3 satisfy fD

j
(k) = gD

k
(j), and fD

j
(i) = gi(j).

6. All gD
k
(y) broadcasted by the dealer for every Pk 2 K in Step 6 and all fD

j
(x) broadcasted

for every Pj /2 CORE in Step 5 satisfy fD

j
(k) = gD

k
(j), and fi(k) = gD

k
(i).

Therefore we conclude that in the real execution, every honest party has happy
i
= 1

broadcasts OK in Step 6 and hence every honest party Pi outputs fi(x) and gi(y) identical to
the ideal execution.

Case 2 - The dealer is corrupt. In this case, the adversary A controls the dealer. The honest
parties do not have any input to the protocol and the protocol is deterministic. The simulator
proceeds as follows:
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1. SIM invokes A on auxiliary input z.

2. SIM plays the role of all the honest parties while interacting with A, as specified by
protocol ⇧pVSS (Protocol 3.4.2).

3. Let Pj be an arbitrary honest party emulated by SIM. From its output in the simulated
execution, let G be the set of parties that broadcasted OK in the simulation in Step 6.
Then,

(a) If |G| � 2t+1, then let H ⇢ G\C be the set of t+1 honest parties which broadcasted
OK. SIM finds the unique (2t, t)-bivariate polynomial, say S(x, y) that satisfies
fi(x) = S(x, i) for every Pi 2 H. Such a polynomial always exists by virtue of
Claim 3.3.1. SIM sends S(x, y) to FVSS to allow the honest parties to learn their
output, and receives the output fi(x), gi(y) for each Pi 2 C.

(b) Otherwise, SIM invokes FVSS with an invalid polynomial, say S(x, y) = x2t+1 caus-
ing all the honest parties to receive ? in the ideal execution.

4. SIM outputs whatever A outputs, and halts.

Since the simulator emulates the honest parties as in the real execution of the protocol, the
view of the adversary in the real and ideal world is identical. Thus, it remains to be shown that
the output of the honest parties in the ideal world is the same as that in the real execution.
For this, we consider the following two cases:

Case I - There exists an honest party that outputs ? in the real execution. In such a
case, we claim that all the honest parties output ?. An honest party outputs ? only if (i) the
dealer does not resolve all mutual complaints (ii) CORE set (decided based on OK messages
in Step 4) includes less than 2t+ 1 parties, (iii) any of the verification checks on the publicly
revealed polynomials fail, or (iii) less than 2t+ 1 parties from CORE broadcast OK in Step 6.
In all of the above cases, the corresponding messages are broadcasted, and hence all honest
parties output ?. Since the real execution and simulated executions are identical, all the
simulated honest parties will output ?. In this case, the simulator invokes the functionality
with S(x, y) = x2t+1, which in turn rejects the polynomial and sends ? to all the honest
parties.

Case II - No honest party outputs ? in the real execution. In this case, we want to show
that each honest party Pi holds fi(x) = S(x, i) and gi(y) = S(i, y) consistent with some unique
(2t, t)-bivariate polynomial S(x, y).

Observe that, if an honest party did not output ?, it implies that at least 2t + 1 parties
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from CORE broadcast OK in Step 6. This in turn implies that there exists CORE set with at
least 2t + 1 parties at the conclusion of Step 4, which includes at least t + 1 honest parties.
By construction of the CORE set, it is guaranteed that the fi(x) polynomial of every honest
Pi 2 CORE is consistent with gj(y) of every honest Pj. Suppose for the sake of contradiction
that there exists some honest Pi 2 CORE and an honest Pj such that fi(j) 6= gj(i). We have
the following two cases:

1. If Pj 2 pubR, the dealer must have broadcasted gD
j
(y) in Step 3. If indeed fi(j) 6= gD

j
(i),

then Pi would not have broadcasted OK in Step 4, which is a contradiction.

2. If Pj /2 pubR, and indeed fi(j) 6= gj(i), then honest Pi, Pj would have broadcasted a
mutual complaint which the dealer would have to resolve by broadcasting either gD

i
(y)

or gD
j
(y), which is a contradiction.

Therefore, by Claim 3.3.2, there exists a unique bivariate polynomial S(x, y) such that every
honest Pi 2 CORE \ C holds S(x, i) and S(i, y) and every honest Pj holds S(j, y) by the
conclusion of Step 4. We claim that all the honest parties output shares on this polynomial at
the termination of the protocol. In particular, we prove the following.

Lemma 3.4.4. If there exists a set H of at least t + 1 honest parties such that every Ph 2
H holding (fh(x), gh(y)) has happy

h
= 1 and broadcasts OK Step 6, then every honest party

Pi outputs g and f polynomial consistent with the unique bivariate polynomial S(x, y) (see

Claim 3.3.1) defined by parties in H.

Note that, in Step 5, the dealer must have broadcasted fD

j
(x) for every Pj /2 CORE. We

now show that the dealer must broadcast fj(x) = S(x, j). Assume for the sake of contradic-
tion that fj(x) 6= S(x, j). Since both fj(x) and S(x, j) are degree-2t polynomials, they can
agree on at most 2t points. However, the number of honest parties is at least 2t+1. Therefore,
there must exists some honest party Pl for which fj(l) 6= gl(j) = S(l, j). We thus have the
following two cases to consider:

1. If Pl 2 pubR, then gD
l
(y) was already revealed publicly in Step 3 and hence it must hold

that gD
l
(y) = S(l, y). This implies that parties can publicly verify the consistency of fj(x)

and gD
l
(y). If indeed fj(l) 6= gD

l
(j), every party in H would set its happy to 0 and not

broadcast OK. Hence, this case is impossible.

2. If Pl /2 pubR, then gl(y) is private. This implies that Pl would not broadcast OK during
Step 5, and thus the dealer must reveal gD

l
(y) in Step 6. We can have two sub-cases:

(a) The dealer reveals gD
l
(y) 6= S(l, y). Both, gD

l
(y) and S(l, y) are degree-t polynomi-

als, and hence they can agree on at most t points. Moreover, since |H| � t + 1,
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there must exist a party Ph 2 H such that gl(h) 6= fh(l). This implies that Ph would
set happy

h
= 0 and not broadcast OK in Step 6, which is a contradiction.

(b) The dealer reveals gD
l
(y) = S(l, y). This implies that parties can publicly verify the

consistency of fj(x) and gD
l
(y). If indeed fj(l) 6= gD

l
(j), every party in H would set

its happy to 0 and not broadcast OK. Hence, this case is impossible.

We therefore conclude that the dealer must reveal fj(x) = S(x, j) for every Pj /2 CORE. Thus,
if indeed 2t+ 1 parties broadcast OK in Step 6, it holds that each Pi holds fi(x) = S(x, i) and
gi(y) = S(i, y) on a unique (2t, t)-bivariate polynomial S(x, y) (see Claim 3.3.2).

Since the real and simulated executions are identical, the simulator reconstructs the
unique polynomial S(x, y) using the shares of the simulated honest parties in H and invokes
the functionality FVSS with the valid polynomial S(x, y). The functionality in turn sends to
each Pi its shares fi(x) = S(x, i) and gi(y) = S(i, y). This is the output of honest parties in
the ideal execution. This is exactly the same as output of simulated honest parties which is
identical to the output of honest parties in the real execution.

Lemma 3.4.5. Protocol ⇧pVSS has a communication complexity of O(n2 log n) bits over point-

to-point channels and O(n2 log n) bits broadcast for sharing O(n) values (i.e., O(n log n) bits)

simultaneously in 9 rounds.

In this section, we give details of our gradecast, multi-moderated secret sharing and obliv-
ious leader election protocols. We conclude with the byzantine agreement and the parallel-
broadcast using the above as building blocks.

3.5 Balanced Gradecast
In a Gradecast primitive, a dealer has an input and each party outputs a value and a grade
{0, 1, 2} such that the following properties are satisfied: (Validity): If the dealer is honest then
all honest parties output the dealer’s input and grade 2; (Non-equivocation): if two honest
parties each output a grade � 1 then they output the same value; and lastly (Agreement):
if an honest party outputs grade 2 then all honest parties output the same output and with
grade � 1. We model this in terms of a functionality given in Functionality 3.5.1. The case
of an honest dealer captures validity. Case 2a and Case 2b capture the agreement and
non-equivocation respectively.

Functionality 3.5.1: FGradecast

The functionality is parameterized by the set of corrupted parties, I ✓ {1, . . . , n}.
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1. If the dealer is honest: the dealer sends m to the functionality, and all parties receive
(m, 2) as output.

2. If the dealer is corrupted then it sends some message M to the functionality.

(a) If M = (ExistsGrade2,m, (gj)j 62I) for some m 2 {0, 1}⇤ and each gj 2 {1, 2}, then
verify that each gj � 1 and that at least one honest party receives grade 2. Send
(m, gj) to each party Pj.

(b) If M = (NoGrade2, (mj, gj)j 62I) where each mj 2 {0, 1}⇤ and gj 2 {0, 1}, then verify
that for every j, k 62 I with gj = gk = 1 it holds that mj = mk. Then, send (mj, gj)

to each party Pj.

In Section 3.5.1 we first describe a protocol that is not balanced, i.e., the total commu-
nication complexity is O(n2L) but in which the dealer sends O(n2L) and every other party
sends O(nL). In Section 3.5.2 we show how to make the protocol balanced, in which each
party (including the dealer) sends/receives O(nL) bits.

3.5.1 The Gradecast Protocol

We build our construction in Protocol 3.5.2 using the idea presented in Section 3.2.3. Recall
that the gradecast used inside our protocol is the näıve gradecast with complexity O(n2L) bits
for L-bit message, as in [66, 68]. The security of our protocol is stated in Theorem 3.5.3.

Protocol 3.5.2: ⇧Gradecast

Input: The dealer P 2 {P1, . . . , Pn} holds (t + 1)2 field elements (bi,j)i,j2{0,...,t} where each
bi,j 2 F that it wishes to distribute. All other parties have no input.

1. (Dealer’s polynomial distribution) The dealer:

(a) The dealer views its elements as a bivariate polynomial of degree at most t in both
x and y, i.e., S(x, y) =

P
t

i=0

P
t

j=0 bi,jx
iyj.

(b) The dealer sends S(x, y) to all parties.

2. (Pair-wise Information Exchange) Each party Pi:

(a) Let Si(x, y) be the polynomial received from the dealer.

(b) Pi sends to each party Pj the four polynomials (Si(x, j), Si(j, y), Si(x, i), Si(i, y)).

3. (Informing dealer about consistency) Each party Pi:

(a) Initialize Agreed
i
= ;. Let (f j

i
(x), gj

i
(y), f j

j
(x), gj

j
(y)) be the polynomials received

from party Pj. If f j

i
(x) = Si(x, i), gji (y) = Si(i, y), f j

j
= Si(x, j) and gj

j
(y) = Si(j, y)

then add j to Agreed
i
.
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(b) Send Agreed
i

to the dealer.

4. (Quorum forming by dealer) The dealer:

(a) Define an undirected graph G as follows: The nodes are {1, . . . , n} and an edge
{i, j} 2 G if and only if i 2 Agreed

j
and j 2 Agreed

i
. Use STAR algorithm (Algo-

rithm 3.3.5) to find a set (C,D) 2 {1, . . . , n}2 where |C| � t + 1 and |D| � 2t + 1,
C ✓ D, such that for every c 2 C and d 2 D it holds that c 2 Agreed

d
and

d 2 Agreed
c
.

(b) Let E be the set of parties that agree with at least t + 1 parties in C. That is,
initialize E = ; and add i to E if |Agreed

i
\ C| � t+ 1.

(c) Let F be the set of parties that agree with at least 2t + 1 parties in E. That is,
initialize F = ; and add i to F if |Agreed

i
\ E| � 2t+ 1.

(d) If |C| � t + 1 and |D|, |E|, |F | � 2t + 1, then gradecast (C,D,E, F ). Otherwise,
gradecast (;, ;, ;, ;).

5. (First reaffirmation) Each party Pi:

(a) Let (Ci, Di, Ei, Fi, g) be the message that the dealer gradecasted and let g be the
associated grade.

(b) If (1) g = 2; (2) i 2 Ci; (3) |Di| � 2t + 1; and (4) Agreed
i
\ Di = Di; then send

OKC to all parties. Otherwise, send nothing.

6. (Second reaffirmation) Each party Pi:

(a) Let C 0
i

be the set of parties that sent OKC in the previous round.

(b) If i 2 Ei and |Agreed
i
\ Ci \ C 0

i
| � t+ 1 then send OKE to all parties.

7. (Third reaffirmation and propagation) Each party Pi:

(a) Let E 0
i

be the set of parties that sent OKE in the previous round.

(b) If i 2 Fi and |Agreed
i
\ Ei \ E 0

i
| � 2t + 1 then send (OKF , Si(x, j), Si(j, y)) to each

party Pj.

8. (Final propagation) Each party Pi: Among all messages that were received in the
previous round, if there exist polynomials f 0

i
(x), g0

i
(y) that were received at least t + 1

times, then forward those polynomials to all. Otherwise, forward ?.

9. (Output) Each party Pi: Let ((f 01(x), g01(y)), . . . , (f 0n(x), g0n(y)) be the messages received
in the previous round. If received at least 2t + 1 polynomials that are not ?, then use
robust interpolation to obtain a polynomial S 0(x, y). If there is no unique reconstruction
or less than 2t + 1 polynomials received, then output (?, 0). Otherwise, if S 0(x, y) is
unique, then:
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(a) If (1) Pi sent OKF in Round 7; and (2) it received 2t+ 1 messages OKF at the end
of Round 7 from parties in Fi with the same polynomials (f 0

i
(x), g0

i
(y)); then output

(S 0, 2).

(b) Otherwise, output (S 0, 1).

Theorem 3.5.3. Let t < n/3. Protocol ⇧Gradecast (Protocol 3.5.2) securely realizes Functionality

FGradecast (Functionality 3.5.1) in the presence of a malicious adversary controlling at most t

parties. The parties send at most O(n3 log n) bits where O(n2 log n) is the number of bits of the

dealer’s input.

Proof.

Efficiency. The dealer sends each message to all parties in the first step, i.e., O(n3 log n)

bits. Each party then sends a pair of univariate polynomial to each other party, i.e., sends
or receive O(n log n) for each pair of parties, or a total of O(n3 log n). Each party sends a set
of size O(n log n) to the dealer, which then gradecasts, using a näıve gradecast, sets of size
O(n log n). This is again a total of O(n3 log n) bits. Each party then sends a pair of univariate
polynomials to each other party, i.e., each party sends or receives O(n2 log n) bits, and a total
of O(n3 log n) bits.

Case 1 - The dealer is honest. In this case, the honest dealer sends m to the functionality
FGradecast (Functionality 3.5.1) and all parties receive (m, 2). Moreover, the simulation is triv-
ial. Specifically, the protocol is deterministic and excluding the dealer, parties do not have
any input in the protocol. Further, the input of the dealer is known to the simulator, which
it receives from the trusted party. Therefore, the simulator can just run the protocol with the
exact same inputs as in the real world, and since the protocol is deterministic, the view of the
adversary in the real world and the simulated execution would be identical. Thus, all that
remains to be shown is that the output of honest parties in the real-world is the same as their
output in the ideal world, i.e., all the honest parties output (m, 2) in the protocol execution.
This requirement is captured by the following claim and proven subsequently.

Claim 3.5.4 (Validity). If the dealer is honest and starts with input polynomial S(x, y), then all

honest parties output the same polynomial S(x, y) and grade 2.

Proof. If the dealer is honest, then it sends the same polynomial S(x, y) to all other parties in
Round 1b. This guarantees that all the honest parties are included in the Agreed set of every
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honest party during Round 3a. Following this, in Round 4, the dealer finds sets (C,D,E, F )

as described, and gradecasts them. By the properties of gradecast, it is guaranteed that all
the honest parties receive the same sets with grade 2. Moreover, since there exists a clique of
size 2t + 1 (consisting of all the honest parties), the STAR algorithm (Algorithm 3.3.5) finds
sets (C,D) as described, such that C contains at least t + 1 honest parties (see Claim 3.3.6).
This implies that E as well as F contain all honest parties. Then:

1. First reaffirmation (Round 5) – all honest parties in C send OKC to all parties. This is
because, by the definition of the set D, all conditions in Round 5 are satisfied for each
honest party Pj for j 2 C.

2. Second reaffirmation (Round 6) – since C contains at least t + 1 honest parties, each
honest party in E sends OKE. Moreover, as mentioned above, all honest parties are a
part of E and consequently send OKE.

3. Third reaffirmation ((Round 7)) – as mentioned, all honest parties belong to F and also
agree among themselves. Therefore, each honest party Pj sends to every party Pk, the
message (OKF , Sj(x, k), Sj(k, y)).

Since, for every honest Pj, Sj(x, k) is equal to S(x, k) (and Sj(k, y) is equal to S(k, y) respec-
tively) that the dealer sent, it implies that each honest party Pk receives the same polynomial
at least 2t + 1 times in Round 8, which it forwards to all other parties. Therefore all honest
parties receive at least 2t+1 pairs of polynomials on S(x, y) thus ensuring robust reconstruc-
tion. Moreover, since each honest party Pj had sent OKF in Round 7, and thus received 2t+1

OKF messages at the end of Round 7 with the same polynomials S(x, j), S(j, y), it satisfies
the conditions described in step 9a and therefore outputs the polynomial that the dealer had
sent, with grade 2.

Case 2 - The dealer is corrupt. Since the honest parties have no input, simulation is triv-
ial. In particular, the simulator just runs the protocol while simulating the honest parties
interacting with the adversary. Since the protocol is deterministic, the view produced by the
simulator is exactly the same as the view of the adversary in the real world. At the end of the
execution, the simulator holds the outputs of the simulated honest parties, i.e., (mj, gj) for
every j 62 I where I is the set of corrupted parties. Then:

1. If there exists an honest party Pj with grade gj = 2 then the simulator verifies that
every other honest party Pk holds the same message mk = mj with grade gk � 1. If this
condition holds, then it sends (ExistsGrade2,mj, {gj}j 62I) to the trusted party. Otherwise,
it fails and outputs ?.
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2. If all honest parties have gj  1, then the simulator verifies that for every j, k 62 I with
gj = gk = 1 it holds that mj = mk. If so, it sends (NoGrade2, (mj, gj)j 62I) to the trusted
party and halts. Otherwise, it fails and outputs ?.

The functionality then delivers the output to all the honest parties. The following claims
show that the output of honest parties in the real world is the same as the output in the ideal
world, and that the simulator never fails and outputs ?.

Claim 3.5.5 (Agreement). If the dealer is corrupted and some honest party outputs (S 0, 2), then

all honest parties output S 0 with grade � 1.

Proof. If some honest party Pi outputs S 0 with grade 2, then as per the conditions of step 9a,
it must have sent OKF in Round 7. Moreover, the party must have unique interpolation; and
received 2t+1 OKF messages from parties in Fi with the same pair of polynomials fi(x), gi(y)
during Round 7.

Since 2t+ 1 parties sent OKF messages with the same fi(x), gi(y), it implies that there are
at least t+1 honest parties in Fi that sent (OKF , fi(x), gi(y)) to Pi. For each such honest party
Pj that sent this message, as per the conditions of Round 7, it holds that j 2 Fj and that
|Agreed

j
\ Ej \ E 0

j
| � 2t + 1. Here, E 0

j
is the set of parties that sent OKE to party Pj at the

end of Round 6. This further implies that at least t + 1 honest parties in E 0
j

sent OKE, and
moreover, the same set of honest parties sent OKE to all the honest parties. Denote this set
of honest parties as EH .

Since there are at least t + 1 honest parties in EH , for each such honest party Pj it holds
that |Agreed

j
\Cj \C 0j| � t+1, where C 0

j
is the set of parties that sent OKC to Pj at the end of

Round 5. This in turn implies that at least one honest party belongs to Cj and has sent OKC ,
and moreover, the same set of honest parties has sent OKC to all the other honest parties.
Since at least one honest party sent OKC , due to the conditions of Round 5, it also implies
that this honest party received (C,D,E, F ) with grade 2 from the dealer. This means that the
tuple (C,D,E, F ) has been received identically by all the honest parties (with grade � 1) and
hence we can refer to each of the sets C,D,E and F without party-specific subscript. With
the above observations , we now prove the aforementioned claim using the following three
claims which are proved subsequently.

Claim 3.5.6. All honest parties in C that sent OKC must hold the same bivariate polynomial,

denoted as Ŝ(x, y).
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Claim 3.5.7. If an honest party Pk such that k 2 E sent OKE in Round 6, then there is at

least one honest party that sent OKC in Round 5 and it it holds that Sk(x, k) = Ŝ(x, k) and

Sk(k, y) = Ŝ(k, y), where Ŝ is defined by the honest parties in C.

Claim 3.5.8. If an honest party Pj such that j 2 F sent OKF in Round 7, then there are at least

t + 1 honest parties that sent OKE in Round 6, and at least one honest party that sent OKC in

Round 5. Moreover, it holds that Sj(x, y) = Ŝ(x, y), where Ŝ is defined by the honest parties in

C.

Given these three claims, together with the fact that 2t + 1 OKF messages were received by
the honest party that output grade 2 at the end of the protocol, we have that t + 1 honest
parties hold the same polynomial Ŝ(x, y) in Round 7. Each such honest party sends to each
party Pj the two polynomials Ŝ(x, j), Ŝ(j, y) in Round 7. Thus, each honest party receives the
same two polynomials at least t + 1 times and forwards them to every other party. Note that
no other polynomial can be received with plurality t+1. This implies that every honest party
receives 2t+1 pairs of polynomials on the polynomial Ŝ, thus ensuring a robust interpolation.
Therefore, every honest party outputs Ŝ with grade at least 1.

Proof of Claim 3.5.6: Let CH be the set of honest parties in C that sent OKC . Consider j, k 2
CH . We show that Sj(x, y) = Sk(x, y), where Sj, Sk are the polynomials received by parties
Pj, Pk respectively in Step 1b. As per the conditions of Round 5, an honest party Pj sends OKC

only if it receives (Cj, Dj, Ej, Fj) with grade 2, j 2 Cj, |Dj| � 2t + 1 and Agreed
j
\Dj = Dj.

Since the message is received with grade 2 by some honest Pj, by the properties of gradecast
we know that all honest parties receive the same message (Cj, Dj, Ej, Fj) and therefore we
can omit the subscript of Dj. Moreover, since |D| � 2t + 1, it holds that D contains at least
t + 1 honest parties. Further, owing to the fact that Agreed

j
\D = D and Agreed

k
\D = D,

we have Sj(x, d) = Sk(x, d) and Sj(d, y) = Sk(d, y) for every honest d in D. Since D has at
least t+ 1 honest parties, it holds that Sj(x, y) = Sk(x, y).

Proof of Claim 3.5.7: Let EH denote the set of honest parties that sent OKE in Round 6.
For each honest party Pk in EH , it holds that |Agreed

k
\ Ck \ C 0

k
| � t + 1 where C 0

k
is the set

of parties that sent OKC in Round 5. Let CH be the set of honest parties that sent OKC in
Round 5. It must hold that |CH | � 1, and therefore at least one honest party sent OKC to all
honest parties. Therefore, by the condition of Round 5 and the properties of gradecast, all the
honest parties receive the same sets (C,E,D, F ) and we thus can omit the subscript of Ck.
Moreover, from Claim 3.5.6, we have that all honest parties in CH hold the same bivariate
polynomial, Ŝ(x, y).
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Further, since |Agreed
k
\ C \ C 0

k
| � t + 1 for each k 2 EH we have that Pk agrees with

at least one honest party in CH . Let j 2 CH such that j 2 Agreed
k
. In Step 2b, Pj and Pk

exchanged polynomials and since j 2 Agreed
k
, it must hold that k 2 Agreed

j
. This implies

that Pk holds the two polynomials Ŝ(x, k), Ŝ(k, y) in round 6.

Proof of Claim 3.5.8: For each party Pj such that j 2 F that sends OKF at the end of
Round 7, it holds that |Agreed

j
\Ej \E 0j| � 2t+1 where E 0

j
is the set of parties that sent OKE

to Pj in Round 6. This implies that at least t+1 honest parties sent OKE, which further implies
that at least one honest party sent OKC at the end of Round 5 (see claim 3.5.7). Moreover,
as described in the proof of claims 3.5.6 and 3.5.7, due to the conditions of Round 5 and
properties of gradecast, this also implies that we can omit the subscript of Ej since all honest
parties see the same sets (C,D,E, F ). Let EH be the set of honest parties that sent OKE in
Round 6, where we have that |EH | � t+ 1.

From Claim 3.5.7 we know that each party Pk in EH holds Ŝ(x, k), Ŝ(k, y). For each honest
party Pj such that j 2 F that sent OKF we have that Pj agrees with t + 1 parties in EH . For
each such k 2 EH , we conclude that Sj(x, k) = Ŝ(x, k) and Sj(k, y) = Ŝ(k, y). Since this holds
for at least t+ 1 distinct indices in EH , we conclude that Sj(x, y) = Ŝ(x, y).

This concludes the proof of Claim 3.5.5.

Claim 3.5.9 (Non-equivocation). If two honest parties each output a grade� 1 then they output

the same polynomial Ŝ(x, y).

Proof. If an honest party outputs grade � 1 then it must have received at least 2t+ 1 pairs of
polynomials at the end of Round 8. This implies that at least t + 1 honest parties forwarded
their polynomials in Round 8 thus indicating that each of these honest parties received their
polynomials with plurality at least t + 1 at the end of Round 7. This in turn implies that
there is at least one honest party that sent OKF in Round 7. By virtue of claim 3.5.8, we
know that all honest parties that sent OKF in Round 7 hold the same polynomial Ŝ(x, y). As
a result, the only two polynomials that can be forwarded by honest parties in Round 8 (i.e.,
that can be received t+1 times) must lie on Ŝ(x, y). Since t+1 honest parties forwarded their
polynomials, it holds that all honest parties receive at least t+ 1 univariate shares on Ŝ(x, y).

Thus, given that any two degree-t bivariate polynomials can agree on at most t shares, for
any honest party that receives 2t + 1 pairs of polynomials and runs the robust interpolation,
the only polynomial that can be accepted is Ŝ(x, y).

This concludes the proof of Theorem 3.5.3.
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3.5.2 Making the Protocol Balanced

To make the protocol balanced, note that each party sends or receives O(n2 log n) bits except
for the dealer who sends O(n3 log n). We therefore change the first round of the protocol as
follows:

1. The dealer:

(a) The dealer views its elements as a bivariate polynomial of degree at most t in both
x and y, i.e., S(x, y) =

P
t

i=0

P
t

j=0 bi,jx
iyj.

(b) The dealer sends S(x, i) to each party Pi.

2. Each party Pi:

(a) Forwards the message received from the dealer to every other party.

(b) Given all univariate polynomials received, say u(x, 1), . . . , u(x, n), runs the Reed-
Solomon decoding procedure to obtain the bivariate polynomial Si(x, y). If there
is no unique decoding, then use Si(x, y) = ?.

3. Continue to run Protocol ⇧Gradecast (Protocol 3.5.2) from Step 2 to the end while in-
terpreting Si(x, y) decoded from the prior round as the polynomial received from the
dealer.

Theorem 3.5.10. The modified protocol securely realizes Functionality FGradecast (Functional-

ity 3.5.1) in the presence of a malicious adversary controlling at most t parties. Each party,

including the dealer sends or receives O(n2 log n) bits (giving a total communication complexity

of O(n3 log n)).

Proof. We show that the above procedure is equivalent to let the dealer send S to each party
separately.

The case of an honest dealer. In that case, the dealer holds a (t, t)-bivariate polynomial
S(x, y) and sends to each party its share on S, which is essentially a univariate polynomial
with degree-t in x. Since there are at least 2t + 1 honest parties, each honest party holds at
least 2t + 1 univariate shares (in x) on the polynomial S defined by the dealer and therefore
the decoding will result in the polynomial S that the dealer initially holds.

The case of a corrupted dealer. In this case, any attack by the adversary in the modified
steps of the protocol can be mapped to a malicious behaviour of the dealer in the polynomial
distribution step of the unbalanced protocol. Specifically, for an honest party Pj, the failure
to obtain a bivariate polynomial Sj(x, y) upon decoding in the balanced protocol is equivalent
to a corrupt dealer sending ? to Pj in the first step of the unbalanced protocol. Thus, for any
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adversary A attacking the modified protocol we can build an adversary A0 for ⇧Gradecast. Since
⇧Gradecast tolerates at most t parties and securely realizes Functionality FGradecast, we get that
the modified protocol also securely realizes Functionality FGradecast. A0 corrupts the same set
of parties as A. It simulates the honest parties in the first two rounds of the modified protocol
and obtains the polynomial Sj that each honest party Pj uses. It then simply hands Sj as the
polynomial the corrupted dealer sends to Pj in Protocol ⇧Gradecast.

3.5.3 Conclusions

The following is a simple corollary, where for general message length of L bits the dealer
simply breaks the message into ` = dL/(t+ 1)2 log ne blocks and runs ` parallel executions of
gradecast. Each party outputs the concatenation of all executions, with the minimum grade
obtained on all executions. The protocol is optimal for L > n2 log n. We thus obtain the
following corollary.

Corollary 3.5.11. Let t < n/3. There exists a gradecast protocol in the presence of a malicious

adversary controlling at most t parties, where for transmitting L bits, the protocol requires the

transmission of O(nL+ n3 log n) bits, where each party sends or receives O(L+ n2 log n) bits.

3.6 Multi-Moderated Packed Secret Sharing
At a high level multi-moderated packed secret sharing is a packed VSS moderated by a set M
of t+1 distinguished parties called moderators. The parties output a flag for every moderator
in the end. We represent the flag for a moderator M 2 M held by a party Pk as vk

M
. In

addition, each party Pk holds a variable dk
M

taking values from {accept, reject} for each M 2M

which identifies whether the dealer is accepted or rejected when M assumes the role of the
moderator.

If a moderator M is honest, then every honest party Pk will set vk
M

= 1 and the properties
of VSS will be satisfied irrespective of whether the dealer is honest or corrupt. If the dealer
is honest, every honest Pk will set dk

M
= accept. For a corrupt dealer, the bit can be 0 or 1

based on the dealer’s behaviour, but all the honest parties will unanimously output the same
outcome.

If a moderator M is corrupt, then it is guaranteed that: if some honest party Pk sets the
flag vk

M
= 1, then the properties of VSS will be satisfied irrespective of whether the dealer

is honest or corrupt. That is, if the dealer is honest every honest Pk outputs dk
M

= accept.
For a corrupt dealer, it is guaranteed that all the honest parties unanimously output the same
outcome for the dealer. We note that when no honest party sets its flag to 1 for a moderator
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M , then irrespective for whether the dealer is honest or corrupt, it is possible that the parties
do not have agreement on their dk

M
.

We capture these properties in a functionality, defined as follows:

Functionality 3.6.1: Fmm-pVSS – Multi-Moderated Packed Secret Sharing

The functionality is parameterized by the set of corrupted parties I ✓ {1, . . . , n}, a set M of
t+ 1 distinguished parties called as moderators.
1. The dealer sends polynomials fj(x), gj(y) for every j. If the dealer is honest, then there

exists a single (2t, t) polynomial S(x, y) that satisfies fj(x) = S(x, j) and gj(y) = S(j, y)

for every j 2 {1, . . . , n}.
2. If the dealer is honest, then send fi(x), gi(y) for every i 2 I to the adversary.
3. For each moderator Mj 2M:
(a) If the moderator Mj is honest, then set vk

Mj
= 1 for every k 2 {1, . . . , n}. Moreover:

i. If the dealer is honest, then set dk
Mj

= accept for every k 2 {1, . . . , n}.
ii. If the dealer is corrupt, then receive a message mj from the adversary. If mj = accept

then verify that the shares of the honest parties define a unique (2t, t)-polynomial. If
so, set dk

Mj
= accept for every k 2 {1, . . . , n}. In any other case, set dk

Mj
= reject for

every k 2 {1, . . . , n}.
(b) If the moderator Mj is corrupt then receive mj from the adversary.

i. If mj = (Agreement, (vk
Mj

)k 62I), dMj) where dMj 2 {accept, reject}, and for some k 62 I it
holds that vk

Mj
= 1. Set (vk

Mj
)k 62I as received from the adversary. Verify that S(x, y) is

(2t, t)-polynomial. If not, set dk
Mj

= reject for every k 62 I. Otherwise, set dk
Mj

= dMj

for every k 62 I.
ii. If mj = (NoAgreement, (dk

Mj
)k 62I) where each dk

Mj
2 {accept, reject}, then set vk

Mj
= 0

for every k 2 {1, . . . , n} and d1
Mj

, . . . , dn
Mj

as received from the adversary.
4. Output: Each honest party Pk (k 62 I) receives as output fi(x), gi(y), (dkM)M2M, and flags

(vk
M
)M2M.

To clarify, each party Pi receives global shares for all moderators, and an output di
M

and
flag vi

M
per each moderator M 2 M. If the dealer and the moderator are honest, then all

the flags are 1 and the parties accept the shares. If the moderator Mj is corrupted, then as
long as there is one honest party Pk with vk

Mj
= 1 there will be an agreement in the outputs

d1
Mj

, . . . , dn
Mj

(either all the honest parties accept or all of them reject). When vk
Mj

= 0 for all
the honest parties, we might have inconsistency in the outputs d1

Mj
, . . . , dn

Mj
with respect to

that moderator.
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The protocol. We build on the discussion given in Section 3.2.1. We consider the protocol of
VSS where the dealer inputs some bivariate polynomial S(x, y) of degree at most 2t in x and
degree at most t in y. For multi-moderated packed secret sharing, essentially, each broadcast
from ⇧pVSS is simulated with two sequential gradecasts. The first gradecast is performed
by the party which intends to broadcast in the underlying packed VSS protocol, while the
second is executed by a moderator. Note that these gradecasts are realized via the protocol
⇧Gradecast, presented in the Section 3.5, having the optimal communication complexity. Up to
Step 6 of ⇧pVSS (Protocol 3.4.2), the dealer is the moderator for each gradecast. At Step 6,
we fork into t+ 1 executions, with a unique party acting as the moderator in each execution.
Since the protocol steps remain similar to ⇧pVSS, we describe the multi-moderated packed
secret sharing protocol below in terms of how the broadcast is simulated at each step and the
required changes at Step 6 of the packed VSS protocol.

Protocol 3.6.2: ⇧mm-pVSS – Multi-Moderated Packed Secret Sharing

Simulating broadcast up to (including) Step 6 of ⇧pVSS:

1. Simulating broadcast of a message by the dealer.

(a) The dealer: When the dealer has to broadcast a message m it gradecasts it.

(b) Party Pi: Let (m, g) be the message gradecasted by the dealer, where m is the
message and g is the grade. Proceed with m as the message broadcasted by the
dealer. If g 6= 2, then set happy

i
= 0 within the execution of ⇧pVSS.

2. Simulating broadcast of a party Pj.

(a) Party Pj: When Pj wishes to broadcast a message m, it first gradecasts it.

(b) The dealer: Let (m, g) be the message and g its associated grade. The dealer
gradecasts m.

(c) Each party Pi: Let (m0, g0) be the messages gradecasted by the dealer. Use m0 as
the message broadcasted by Pj in the protocol. Moreover, if g0 6= 2; or if g = 2 but
m0 6= m, then Pi sets happy

i
= 0 within the execution of ⇧pVSS.

After Step 6 of ⇧pVSS:

1. Each party Pi: Set vi
Mj

= 1, and let fi(x), gi(y) be the pair of shares Pi is holding at end
of Step 6. Gradecast accept if happy

i
= 1 and reject otherwise.

At this point, we fork into |M| executions, one per moderator Mj 2M as follows:

(a) The moderator Mj: Let (a1, . . . , an) be the decisions of all parties as received from
the gradecast. Gradecast (a1, . . . , an).
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(b) Each party Pi: Let (a1, . . . , an) be the decisions received directly from the parties,
and let (a01, . . . , a0n) be the message gradecasted from the moderator Mj with asso-
ciated grade g0. Set vi

Mj
= 0 if g0 6= 2, or there exists ak received from Pk with grade

2 but for which ak 6= a0
k
. Then:

i. If there exists 2t+ 1 accepts within (a01, . . . , a
0
n
), then set di

Mj
= accept.

ii. Otherwise, set di
Mj

= reject.

2. Output: Pi outputs (fi(x), gi(y)), (diM1
, . . . , di

Mt
) and (vi

M1
, . . . , vi

Mt
).

Theorem 3.6.3. Let t < n/3. Protocol ⇧mm-pVSS (Protocol 3.6.2) computes Fmm-pVSS (Function-

ality 3.6.1) in the presence of a malicious adversary corrupting at most t parties. The protocol

requires the transmission of O(n2 log n) bits over point-to-point channels, the dealer gradecasts

O(n2 log n) bits, and each party gradecasts at most n log n bits.

Proof. Case 1 - The dealer is honest. Let SV SS be the simulator of the VSS protocol (Proto-
col 3.4.2). The simulator receives from the trusted party, the shares of the corrupted parties –
S(x, i), S(i, y) as in Step 2 of the functionality, and simulates the view of the adversary similar
to SV SS. While all the modifications described in the protocol for ⇧mm-pVSS (Protocol 3.6.2)
are deterministic, the simulator now also has to emulate Functionality 3.5.1. We claim that
when the dealer is honest, no honest party sets happy

i
= 0. This holds from the same rea-

soning as in SV SS, and due to the fact that the modifications in the multi-moderated packed
secret sharing do not affect this claim. In particular, note that the dealer’s broadcasted mes-
sages, which are now emulated using gradecast will always be received with grade 2 by all the
honest parties. Furthermore, observe that every other party’s broadcast which is emulated via
that party’s gradecast followed by dealer’s gradecast will not lead to an honest party setting
happy

i
= 0. This is because neither an honest dealer’s gradecast will have grade less than 2,

nor a gradecast by some party which is received by an honest party with grade 2 will follow
the dealer’s gradecast with a different output value. The latter holds due to the property of
gradecast, where if an honest party receives a message with grade 2 then all the honest par-
ties (including the dealer) would receive the same message with grade � 1, and the dealer
would further gradecast the same message. As a result, no honest party sets happy

i
= 0.

Consequently, at the modified Step 6, an honest party’s initial decision will be accept, and
the final decision of whether to accept or reject, and the grade of the moderator is determined
by the messages it receives from the moderator and the decisions it received from other
parties. Thus, the simulator can completely simulate this stage as well for all moderators
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Mj 2 M. It can then obtain the outputs of all honest parties, i.e., the set (dk
Mj

, vk
Mj

)k 62I,Mj2M,
although it cannot necessarily compute the output share of each honest party. For each
moderator Mj 2M:

1. If the moderator is honest, then the trusted party does not expect a message from the
simulator and just delivers to each honest party dk

Mj
= accept and vk

Mj
= 1. We will

show below (Claim 3.6.4) that the same happens in the simulated execution, and in the
real execution.

2. If there exists a simulated honest party that outputs vk
Mj

= 1, then we prove below
(Claim 3.6.5) that for every honest P 0

k
we have that dk

0
Mj

= dk
Mj

. Then, the simulator
sends mj = (Agreement, (vk

Mj
)k 62I) to the trusted party. Since the dealer is honest, S(x, y)

is of degree (2t, t), and the trusted party would just forward dk
Mj

, vk
Mj

to every honest
party Pk.

3. If for every k 62 I it holds that vk
Mj

= 0 then the simulator sends mj =

(NoAgreement, (dk
Mj

)k 62I) to the trusted party. The trusted party just forwards dk
Mj

to
every honest party Pk with grade 0 (as in the simulated execution).

The above shows that the output of all honest parties in the ideal world is exactly the same as
the output of honest parties simulated by SV SS in the simulated execution. As mentioned in
the proof of ⇧pVSS (Theorem 3.4.3), the view of the adversary in the simulation of SV SS and
in the real execution is exactly the same. We now show that the output of all honest parties
in the real execution is exactly the same as the output of all simulated honest parties in the
simulated execution. To conclude the case of an honest dealer, we have the following claims:

Claim 3.6.4. When the dealer is honest and the moderator Mj is honest, every honest party Pk

sets dk
Mj

= accept and vk
Mj

= 1.

Proof. Note that at Step 6, if some honest party receives the decision ai with grade 2 from
a party Pi, then by the properties of gradecast, the honest moderator Mj receives the same
ai (with grade � 1) and further gradecasts the exact same message. Moreover, the message
(a1, . . . , an) gradecasted by an honest moderator is received by all the honest parties with
grade 2. Thus, for every honest party Pk it holds that vk

Mj
= 1. Additionally, as described,

for the case of an honest dealer, for every honest party Pi it holds that happy
i
= 1 and hence

every honest party gradecasts its initial decision as accept, ensuring a total of at least 2t + 1

accept decisions. Thus, for every honest party Pk, it holds that dk
Mj

= accept. Note that in the
ideal world, this corresponds to Step 3(b)i of the functionality (Functionality 3.6.1), where
similar to the real world, all honest parties output dk

Mj
= accept and vk

Mj
= 1.
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Claim 3.6.5. If the dealer is honest and the moderator Mj is corrupted then if some honest party

Pk holds vk
Mj

= 1 then all other honest parties P 0
k

have dk
0

Mj
= accept.

Proof. If an honest party Pk outputs vk
Mj

= 1, then it must have received the decisions
(a01, . . . , a

0
n
) from Mj with grade 2, and moreover, all the decisions corresponding to honest

parties must agree with those gradecasted previously by the respective honest parties them-
selves. As described earlier, for the case of an honest dealer, every honest party gradecasts
its initial decision as accept. This implies that, of (a01, . . . , a

0
n
), at least 2t + 1 decisions are

accept. Furthermore, as guaranteed by gradecast, all the other honest parties see the exact
same decisions (a01, . . . , a

0
n
) for the moderator Mj, though they might have grade equal to 1.

As a result, every other honest party P 0
k

sets dk0
Mj

= accept while vk
0

Mj
is either 0 or 1 (depend-

ing on the grade of the message (a01, . . . , a
0
n
) gradecasted by Mj). In the ideal execution, the

simulator in this case sends (Agreement, ·) as described above and the outputs dk
Mj

are the
same for all honest Pk.

Case 2 - The dealer is corrupt. When the dealer is corrupted, simulation is trivial since all
honest parties have no input. The simulator just simulates the honest parties interacting with
the adversary as in the protocol specifications, and simulates the behavior of the gradecast
functionality as in Functionality 3.5.1. Moreover, since the protocol is deterministic, the view
of the adversary in the real execution and in the ideal execution is exactly the same.

The simulator proceeds by simulating all the honest parties’ messages and let
(fi(x), gi(y), (diM1

, . . . , di
Mt

), (vi
M1

, . . . , vi
Mt

) be the output of the simulated honest party Pi. The
decision gradecasted by an honest party is the same for all the moderators. The proof of
packed VSS (Theorem 3.4.3) shows that if there are at least t + 1 honest parties that decide
on accept in Step 6, then there exists a unique bivariate polynomial S(x, y) of degree-(2t, t)
such that the shares of all the honest parties lie on this polynomial. Then, for each moderator
Mj:

1. If Mj is honest: We will show below (Claim 3.6.6) that the output of every simulated
honest party Pk is vk

Mj
= 1 and that all the honest parties have the same output dk

Mj
. If all

of them have dk
Mj

= accept, then the simulator sets mj = accept. If all have dk
Mj

= reject,
then it sets mj = reject.

2. If Mj is corrupted: We have the following sub-cases to consider.
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(a) There exists an honest party Pk with vk
Mj

= 1 and dk
Mj

= accept: We show
below (Claim 3.6.7) that every other honest party P 0

k
must have dk

0
Mj

= accept, and
the shares of all the honest parties lie on a unique bivariate polynomial S(x, y) of
degree-(2t, t). In this case, the simulator sets mj = (Agreement, (vk

Mj
)k 62I , accept).

(b) There exists an honest party Pk with vk
Mj

= 1 and dk
Mj

= reject: We show sub-
sequently (Claim 3.6.7) that every other honest party P 0

k
must have dk

0
Mj

= reject.
Thus the simulator sets mj = (Agreement, (vk

Mj
)k 62I , reject).

(c) All honest parties have vk
Mj

= 0: In this case, there is no guarantee on the output.
Therefore, the simulator sets mj = (NoAgreement, (dk

Mj
)k 62I).

The simulator sends mj for every Mj 2 M to the trusted party. It is easy to see by inspection
of the functionality (Functionality 3.6.1) that upon sending these messages to the trusted
party, all the honest parties in the ideal world receive the exact same output as the simulated
honest parties in the simulated execution. Further, since the simulated execution is exactly
the same as the corresponding execution in the real world, the outputs of honest parties and
views are identical. To conclude the proof, we prove the following claims.

Claim 3.6.6. For an honest moderator Mj, each honest party Pk outputs a grade vk
Mj

= 1.

Moreover, all the honest parties have the same output dk
Mj

, i.e., either all accept or all reject.

Proof. Note that all the honest parties receive the messages gradecasted by the honest mod-
erator Mj identically and with grade 2. Moreover, for every message gradecasted by some
party which is received with grade 2 by any honest party, the properties of gradecast ensure
that the moderator receives the same message (although with grade � 1). This implies that
the moderator gradecasts exactly the same message. In particular, this also holds true for the
gradecast of the decisions (a01, . . . , a0n) where each ai was previously gradecasted by party Pi.
Hence, for every honest Pk it must hold that vk

Mj
= 1. Moreover, by the property of grade-

cast, since all the honest parties receive the same (a01, . . . , a
0
n
), if the decisions contain at least

2t + 1 accept messages, then every honest party Pk sets dk
Mj

= accept. On the other hand, if
the decisions do not contain 2t+ 1 accept messages, then all honest parties set dk

Mj
= reject.

For the former case, we have that at least t+1 honest parties decided on accept. Therefore,
according to Lemma 3.4.4, this implies that all honest parties have shares on the same (2t, t)

polynomial S(x, y).

Claim 3.6.7. For a corrupted moderator Mj, if some honest party Pk holds vk
Mj

= 1 then every

other honest party P 0
k

holds dk
0

Mj
= dk

Mj
.
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Proof. If an honest party Pk outputs vk
Mj

= 1 with outputk
Mj

= accept, then it must have
received 2t+ 1 decisions (a01, . . . , a0n) of accept from the moderator with grade 2 such that the
decisions corresponding to the honest parties actually agree with the ones gradecasted by
the honest parties themselves. Due to the property of gradecast, this implies that all honest
parties receive the same decisions (a01, . . . , a0n). Therefore, all other honest parties P 0

k
also set

dk
0

Mj
= accept. We now show that there is a unique polynomial S(x, y) of degree at most 2t in

x and degree t in y, and all the honest parties output shares on this polynomial.
Since the decisions of honest parties are received with grade 2, and as described these

agree with the decisions of the corresponding honest parties in (a01, . . . , a
0
n
), there must be

at least t + 1 honest parties that decided accept. For each such honest party Pi it holds that
happy

i
= 1. This implies that all the broadcasts within the VSS protocol were simulated

by the dealer (as a moderator) correctly: Pi received all the gradecasts made by the dealer
with grade 2, each complaint in the protocol that an honest party made was received with
grade 2 and was echoed by the dealer with grade 2. Since there are t + 1 honest parties
with happy

i
= 1, we have that all the complaints of honest parties were publicly resolved by

the dealer, and received by all other honest parties with grade at least 1. Thus, all honest
parties see the same messages, and all parties that are not happy have public shares. By
the properties of the underlying VSS protocol, all shares of honest parties lie on the same
bivariate polynomial S(x, y).

If an honest party Pk outputs vk
Mj

= 1 with dk
Mj

= reject, then every honest party P 0
k

sets dk
0

Mj
= reject. The proof follows similar to the previous case. Specifically, if Pk outputs

vk
Mj

= 1 with dk
Mj

= reject, this implies that Pk must have received (a01, . . . , a
0
n
) gradecasted

by Mj with grade 2 such that the decisions of honest parties in (a01, . . . , a
0
n
) agree with the

ones gradecasted by the respective parties themselves. Thus, all honest parties receive the
same (a01, . . . , a

0
n
). Moreover, (a01, . . . , a0n) does not contain 2t+ 1 accept messages. Thus, each

honest party P 0
k

sets dk0
Mj

= reject.

Efficiency. As in the packed VSS protocol, the sharing phase requires O(n2 log n) bits of point-
to-point communication. Every party gradecasts O(n) values in the worst case to communi-
cate its complaints, while the dealer performs O(n2) gradecasts to resolve the complaints.

3.6.1 Reconstruction

The reconstruction protocol ensures that even for a corrupt moderator, all the hon-
est parties reconstruct the same value when its flag is set to 1 by some hon-
est party. This aligns with the guarantees of the sharing phase, which en-
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sures that the protocol achieves VSS corresponding to a moderator when there ex-
ists an honest party with its flag set to 1 at the end of the sharing phase.
Protocol 3.6.8: ⇧Rec

mm-pVSS – Reconstruct of Multi-Moderated Packed Secret Sharing

The protocol is parameterized by the set of moderators M and a set B containing |M| distinct
non-zero values in the field. To be specific B denotes the set {�t, . . . , 0} used in ⇧pVSS. We
assume a one-to-one mapping between M and {�t, . . . , 0}.
Input: Each party Pi holds (fi(x), gi(y)), (diM)M2M and (vi

M
)M2M.

1. Each party sends fi(x) to all. Let (f1(x)0, . . . , fn(x)0) be the polynomials received.

2. For each M 2M (let �⇤ 2 B be its associated value):

(a) If di
M

= accept, then use Reed Solomon decoding procedure to reconstruct
the unique degree-t polynomial g�⇤(y) that agrees with at least 2t + 1 values
f1(�⇤), . . . , fn(�⇤) and set si

M
= g�⇤(0). If there is not unique decoding, then set

si
M

= 0.

(b) If di
M

= reject, then set si
M

= 0.

3. Output: Output (si
M
)M2M.

Theorem 3.6.9. For each moderator M 2 M, if there exists an honest party with vk
M

= 1 then

all honest parties hold the same sk
0

M
= sk

M
.

Proof. By the properties of Fmm-pVSS (Functionality 3.6.1), if there exists an honest party Pk

that holds vk
M

= 1 for some moderator M then all honest parties hold the same value dM ,
i.e., all accept or reject. For each dM = reject, every honest party Pi sets si

M
= 0 in the

reconstruction protocol. On the other hand, if there exists an honest party with dM = accept,
then according to Functionality 3.6.1, even in the case of a corrupted dealer we have that all
the shares of honest parties lie on the same (2t, t)-bivariate polynomial S(x, y). As a result,
each polynomial g�⇤(y) = S(�⇤, y) is of degree-t. Moreover, the parties send their shares to
one another, and thus the 2t+ 1 honest parties send the degree-2t polynomials S(x, i) to one
another. Therefore, each honest party would have at least 2t + 1 correct points on S(�⇤, y),
for which the Reed-Solomon error correction will return a unique decoding, thus ensuring
that every honest party Pi obtains the same output si

M
= S(�⇤, 0).
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3.7 Oblivious Leader Election
We start with the functionality which captures OLE with fairness �, where each party
Pi outputs a value `i 2 {1, . . . , n} such that with probability at least � there exists a
value ` 2 {1, . . . , n} for which the following conditions hold: (a) each honest Pi out-
puts `i = `, and (b) P` is an honest party. The functionality is parameterized by the set
of corrupted parties I, a parameter � > 0 and a family of efficiently sampling distribu-
tions D = {D}. Each D 2 D is a distribution D : {0, 1}poly(n) ! {1, . . . , n}n satisfying:
Pr

r {0,1}poly(n) [D(r) = (j, . . . , j) s.t. j 62 I] � � .

Functionality 3.7.1: FOLE – Oblivious Leader Election Functionality

The functionality is parameterized by the set of corrupted parties I ⇢ {1, . . . , n} and the
family D.

1. The functionality receives from the adversary a sampler D and verifies that D 2 D. If
not, then it takes some default sampler in D 2 D.

2. The functionality chooses a random r  {0, 1}poly(n) and samples (`1, . . . , `n) = D(r).

3. It hands r to the adversary and it hands `i to every party Pi .

Looking ahead, our protocol will define a family D in which the functionality can effi-
ciently determine whether a given sampler D is a member of D. Specifically, we define the
sampler as a parametrized algorithm with some specific values hardwired. Therefore, the
ideal adversary can just send those parameters to the functionality to specify D in the family.

Protocol 3.7.2: ⇧OLE – Oblivious Leader Election Protocol

1. Choose and commit weights: Each party Pi 2 P acts as the dealer and chooses ci!j

as random values in {1, . . . , n4}, for every j 2 {1, . . . , n}. Pi then runs the following for
T := dn/t + 1e times in parallel. That is, for ` 2 [1, . . . , T ], each Pi acting as the dealer
executes the following in parallel:

(a) Let the set of moderators be M` = (P(`�1)·(t+1)+1, . . . , P`·(t+1)).

(b) The dealer Pi chooses a random (2t, t)-bivariate polynomial Si,`(x, y) while hiding
the t+1 values ci!j for every j 2 {(`�1)·(t+1)+1, . . . , `·(t+1)}, one corresponding
to each moderator Pj 2 M`. Specifically, Pi chooses Si,`(x, y) such that Si,`(0, 0) =

ci!(`�1)·(t+1)+1 and so on till Si,`(�t, 0) = ci!`·(t+1). The parties invoke Fmm-pVSS
(Fig. 3.6.1) where Pi is the dealer, and the moderators are parties in M`.
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(c) Each party Pk gets as output a pair of shares f i,`

k
(x), gi,`

k
(y), outputs dk

i,j
and a flag

vk
i,j

for each moderator Pj 2M`.

Note that the above is run for all dealers P1, . . . , Pn in parallel, where each dealer has T
parallel instances (in total T · n invocations).
Upon completion of the above, let succeededi be the set of moderators for which Pi holds
a flag 1 in all executions, i.e., succeededi := {j | vi

d,j
= 1 for all dealers Pd 2 P}.

2. Reconstruct the weights and pick a leader: The reconstruction phase, ⇧Rec

mm-pVSS
(Fig. 3.6.8) of each of the above nT instances of multi-moderated packed secret sharing
is run in parallel to reconstruct the secrets previously shared.
Let ck

i!j
denote Pk’s view of the value ci!j for every i, j 2 {1, . . . , n}, i.e., the recon-

structed value for the instance where Pi is the dealer and Pj is the moderator.
Each party Pk sets ck

j
=

P
n

i=1 c
k

i!j
mod n4 and outputs j that minimizes ck

j
among all

j 2 succeededk (break ties arbitrarily).

Theorem 3.7.3. Let t < n/3. Protocol ⇧OLE (Protocol 3.7.2) computes FOLE (Functional-

ity 3.7.1) in the presence of a malicious adversary corrupting at most t parties. The protocol

requires a transmission of O(n4 log n) bits over point-to-point channels.

Proof. The simulator first simulates Fmm-pVSS (Functionality 3.6.1) for all the packed secret
sharings of all the honest dealers. For this, it generates random shares f i,`

k
(x), gi,`

k
(y) for each

` 2 {1, . . . , T} on behalf of every honest dealer Pi for the parties corrupted by the adversary.
Observe that these shares do not determine the underlying values ci!j (see Claim 3.3.3) for
each j 2 {1, . . . , n}. Note that each party acts as the moderator in one instance of multi-
moderated secret sharing where Pi is the dealer. Hence, for every honest moderator Pj, it
sets dk

i,j
= accept and flag vk

i,j
= 1 for every Pk. For each corrupted moderator Pj, the simu-

lator receives from the adversary, a message mj as per Functionality 3.6.1, which determines
the output dk

i,j
and flag vk

i,j
for all honest parties Pk and whether the reconstruction would be

a default value (i.e., 0 when dk
i,j

= reject) or the secret of the dealer otherwise. Following this,
the simulator simulates Functionality 3.6.1 for all the packed secret sharings of all corrupted
dealers. First, for every corrupt Pi, it receives from the adversary the shares f i,`

k
(x), gi,`

k
(y) for

each honest Pk and every l 2 {1, . . . , T}. For each honest moderator Pj, it sets the flag vk
i,j

= 1

for every Pk. Further, it receives from the adversary a message mj as per Functionality 3.6.1.
Depending on mj and whether the shares of the honest parties received from the adversary
define a unique (2t, t) polynomial, the simulator sets dk

i,j
to accept or reject as per the func-

tionality. Further, as in the case of honest dealers, it receives from the adversary, for each
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corrupted moderator, a message as per Functionality 3.6.1, which similarly determines the
outputs of all honest parties and whether the reconstruction would be a default value (i.e., 0)
or the secret of the dealer. Thus, given the shares of the honest parties, dk

i,j
and flag vk

i,j
, the

simulator can fully compute the view of each party Pk of the value – ck
i!j

for every corrupted
Pi, every moderator Pj. Moreover, given the flags vk

i,j
, the simulator can compute succeedk set

for each every honest Pk.
Given all the above information, the simulator can set the sampling algorithm D as follows

(this also defines the family D). The sampling algorithm D is parameterized with the values
ck
i!j

for every corrupted Pi and every moderator Pj, and the flags vk
i,j

for every Pi, Pj. Further,
the sampling algorithm uses its randomness r to pick all the secret ci!j values for every
honest dealer Pi and every moderator Pj. Then, given the values ci!j and the corresponding
vk
i,j

for each Pk, the algorithm can simulate the output ck
i!j

for each party Pk, i.e., Pk’s view
of the value ci!j for every honest dealer Pi and moderator Pj. Consequently, it can compute
ck
j
=

P
n

i=1 c
k

i!j
mod n4 and set `k as the index j 2 {1, . . . , n} that minimizes ck

j
among all

j 2 succeedk, just as the protocol.
Note that the family D is defined as described in the algorithm above, and therefore to

specify D it is enough for the simulator to just send the parameterized values ck
i!j

for every
corrupted Pi, and the flags vk

i,j
. Therefore the functionality itself is also efficient.

Upon defining the sampling algorithm as above, the simulator sends D to the functionality.
The functionality returns the randomness used for sampling, which is essentially all the values
ci!j corresponding to every honest dealer Pi and every moderator Pj. Using these values,
the simulator can then generate the polynomials Si,`(x, y) for each ` 2 {1, . . . , T} that each
honest dealer uses in its T instance of the multi-moderated secret sharing, as a function
of the shares it has sent to the adversary so far. That is, the simulator sets Si,`(x, y) as
described in Step 1b under the constraint that Si,`(x, k) = f i,`

k
(x) and Si,`(k, y) = gi,`

k
(y)

sent to the adversary for each corrupt Pk. The simulator then uses these polynomials to
simulate the reconstruction phase of each instance of multi-moderated secret sharing. For
this, the simulator sends f i,`

k
(x) for each honest Pk to the adversary, where for an honest Pi,

the simulator sets f i,`

k
(x) = Si,`(x, i) using Si,`(x, y) computed as described. By construction

of the polynomials Si,`(x, y) and the sampler D, the result of the reconstruction phase would
be exactly the output of D(r), as is the output of all parties in the ideal execution. Below, we
show that D is a valid sampler.

Proving that D is valid. We next show that D is a valid sampler, namely, that for a random r,
D(r) outputs the index of an honest party with some probability � > 1/2. The proof is almost
verbatim from [82].
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Towards that end, define:

succeeded =
[

k2H

succeededk ,

where H is the set of all parties that were honest at the end of phase 1 of the protocol. Recall
that by the guarantees of multi-moderated secret sharing, even if a single honest party Pk

holds vk
d,j

= 1 then in the execution where Pd is the dealer and Pj is the moderator, the
honest parties would have an agreement on the reconstructed value.

Hence, by the properties of multi-moderated secret sharing, if reconstruction is successful
and if k 2 succeeded, then for any honest Pi, Pj and any 1  `  n we have that ci

`!k
= cj

`!k
,

i.e., the outputs of Pi and Pj are the same in the reconstruction associated with the instance
with P` as a dealer and Pk as the moderator. As a result, we can omit the superscripts i and j.

We claim that all values ck for k 2 succeeded are uniformly distributed in {1, . . . , n4}. Note
that the set succeeded might contain parties that are controlled by the adversary, but acted
honestly while moderating the sharing phases and therefore are also considered. Consider
the value ci!k, that is, the instance of multi-moderated secret sharing where Pi is the dealer
and Pk is the moderator. We have the following cases to consider:

1. The moderator Pk is honest, then all the honest parties see the same values
c1!k, . . . , cn!k regardless of whether each respective dealer P1, . . . , Pn is honest or not.
Moreover, k is in the set succeeded` of all honest parties P`. Furthermore,

(a) If the dealer Pi is honest then ci!k is uniformly distributed in {1, . . . , n4}. Moreover,
the shares received by the corrupted parties are independent of ci!k.

(b) If the dealer Pi is corrupted then ci!k must have been chosen independently of all
other values, due to the secrecy property of secret sharing.

2. The moderator Pk is corrupted, then all the honest parties see the same values
c1!k, . . . , cn!k regardless of whether each respective dealer P1, . . . , Pn is honest or not.
However, k might not be in the set succeeded` of all honest parties P`. Furthermore,

(a) If the dealer Pi is honest then ci!k is uniformly distributed in {1, . . . , n4}.

(b) If the dealer Pi is corrupted then ci!k must have been chosen independently of all
other values.

We therefore conclude that all the ck for k 2 succeeded are distributed uniformly at random in
{1, . . . , n4}. Let HonestChosen be the event where the index k for which ck is minimal among
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all parties in succeeded is an index of an honest party. We have that:

Pr [HonestChosen]

� Pr [HonestChosen | 8i, j 2 succeeded ci 6= cj] · Pr [8i, j 2 succeeded ci 6= cj]

� n� t

n
· (1� Pr [9i, j 2 succeeded, ci = cj])

� n� t

n
·
✓
1� n2 · 1

n4

◆
� n� t

n
� 1

n2
� 1

2
.

3.8 Broadcast

3.8.1 Byzantine Agreement

In a Byzantine agreement, every party Pi holds initial input vi and the following properties
hold: (Agreement): All the honest parties output the same value; (Validity): If all the honest
parties begin with the same input value v, then all the honest parties output v. We simply plug
in our OLE in the Byzantine agreement of [82]. As described in Section 3.1.3, we present
standalone functionalities for Byzantine agreement and broadcast, where the intricacies of
sequential composition are tackled in [54].

Functionality 3.8.1: FBA – Byzantine Agreement

The functionality is parameterized by the set of corrupted parties I.

1. The functionality receives from each honest party Pj its input bj 2 {0, 1}. The function-
ality sends (bj)j 62I to the adversary.

2. The adversary sends a bit b̂.

3. If there exists a bit b such that bj = b for every j 62 I, then set y = b. Otherwise, set
y = b̂.

4. Send y to all parties.

The protocol for byzantine agreement appears below, followed by the proof of its security.

Protocol 3.8.2: ⇧BA – Byzantine Agreement Protocol

Input: Each party Pi holds a bit bi.
Initialization: Each party initializes decidedi = false and openToAcceptRandom = false.
Run the following iteratively until termination:
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1. Round I – each party Pi:

(a) Send bi to all parties.

(b) Let bj,i be the bit received from Pj (if no value was received, use the value from
the previous iteration; at the outset of the protocol, use a default value).

2. Round II – each party Pi:

(a) Set S0
i
:= {j | bj,i = 0} and S1

i
:= {j | bj,i = 1}.

(b) If |S0
i
| � t+ 1 then set bi = 0. If |S0

i
| � n� t then set decidedi = true.

(c) Send bi to all parties. If a value was received from party Pj, then store it as bj,i.

3. Round III – each party Pi:

(a) Update S0
i

and S1
i

according to the new values b1,i, . . . , bn,i.

(b) If |S1
i
| � t+ 1 then set bi = 1. If |S1

i
| � n� t then set decidedi = true.

(c) Send bi to all parties. If a value was received from party Pj, then store it as bj,i.

4. Round IV – each party Pi:

(a) If decidedi = false then set openToAcceptRandom
i
= true.

(b) Update S0
i

and S1
i

according to the new values b1,i, . . . , bn,i.

(c) If |S0
i
| � t+1 then set bi = 0. If |S0

i
| � n�t then set openToAcceptRandom

i
= false.

(d) Send bi to all parties. If a value was received from party Pj, then store it as bj,i.

5. Round V – each party Pi:

(a) Update S0
i

and S1
i

according to the new values b1,i, . . . , bn,i.

(b) If |S1
i
| � t+1 then set bi = 1. If |S1

i
| � n�t then set openToAcceptRandom

i
= false.

(c) Send bi to all parties. If a value was received from party Pj, then store it as bj,i.

6. Round VI – each party Pi:

(a) All parties execute ⇧OLE (Protocol 3.7.2) and let `i be the output of Pi.

(b) If openToAcceptRandom
i
= true, then set bi = b`i .

(c) If decidedi = true, then output bi and terminate. Otherwise, proceed to the next
iteration.

Theorem 3.8.3. Protocol ⇧BA (Protocol 3.8.2) is a Byzantine agreement protocol tolerating

t malicious parties that works in constant expected rounds and requires the transmission of

O(n4 log n) bits in expectation for n � 3t+ 1.
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Proof. Simulation is straightforward: since the simulator receives all the inputs of the honest
parties it can perfectly simulate them. Moreover, the simulator can also perfectly simulate the
FOLE. It just receives a (valid) sampler algorithm from the adversary, runs it, and gives the
randomness it used to the adversary, while also receiving the outputs of each honest party.
Thus, the view of the adversary is identical between the real and ideal executions.

The simulator then sees the output of the simulated honest parties b̂, and send that bit
b̂ to the trusted party. We will next show that all simulated honest parties must output the
same bit (this is essentially the “agreement” property). The trusted party then decides what
to send to the honest parties. If all honest parties sent the same input b to the trusted party,
then it ignores the bit that the simulator had sent it and just output b (this is essentially the
“validity” property). Otherwise, it outputs b̂.

We now show that the protocol satisfies agreement and validity. This in particular shows
that the output of the simulated honest parties in the simulated execution is the same as the
output of the honest parties in the ideal execution. Moreover, this also implies that the output
in the ideal execution is identical to the real.

The proof of agreement and validity here is taken almost verbatim from [82]. The proofs
of the following properties can be found in [82] and we give them here for completeness.

Claim 3.8.4. Protocol ⇧BA (Protocol 3.8.2) satisfies the following properties:

Property I: If at the beginning of some iteration, all (remaining) honest parties Pi hold the

same value bi = b, then all honest parties who have not yet terminated will output b and

terminate the protocol at the end of the iteration.

Property II: If some party Pi sets decidedi = true at some iteration, then by the end of that

iteration, each honest party Pj that has not yet terminated holds bj = bi, regardless of the

result of the OLE protocol.

Property III: If an honest party Pi sets openToAcceptRandom
i
= false in some iteration and

holds a bit bi = b, then all honest parties that have not yet terminated hold bj = bi = b by

the end of Round V of that iteration.

Property IV: If some party Pi terminates with output bi = b, then all honest parties terminate

with identical output in either the current iteration or in the next one, regardless of the

results of the OLE protocol.

Property V: If an honest leader P` is elected in Round VI of some iteration, then all honest

parties Pi terminate by the end of the next iteration.

Property I. Assume that bi = b = 0 at the beginning of the iteration for every honest party
Pi. Then, it holds that |S0

i
| � n� t and hence Pi sets decidedi = true at Step 2b. This implies
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that bi cannot be changed in Round III and remains 0. Consequently, in Round IV, Pi sets
openToAcceptRandom

i
= false and bi stays 0 (as |S0

i
| � n� t). Further, bi remains unchanged

in Round V (since |S1
i
|  t). Finally, in Round VI the parties run the OLE protocol, but ignore

its value since openToAcceptRandom
i
= false. Since decidedi = true, every honest Pi outputs

bi = 0 and terminates.
The case where all parties start with bi = b = 1 is shown analogously.

Property II. Assume that Pi sets decided = true at Step 2b. This implies that |S0
i
| � n � t.

Since at most t parties from S0
i

can be corrupt, for every other honest party Pj it holds that��|S0
i
|� |S0

j
|
��  t and thus |S0

j
| � n � 2t � t + 1. Hence, at the end of Step 2b every honest

party Pj sets bj = bi = 0. All honest parties then send their new bits in Step 2c, and thus at
Round III we have that |S1

j
|  t for every honest Pj and therefore bj remains 0. As a result,

in Round IV all honest parties set openToAcceptRandom
j
= false, and bj remains 0 for all

honest parties at the end of Round V. In Round VI, parties run the OLE protocol, but ignore
its value since openToAcceptRandom

i
= false.

Consequently, in the next round, all honest parties (that did not terminate) start with the
same input, and as follows from Property I, all terminate with the same value as the output.
An analogous argument can be shown for the case when Pi sets decidedi = true at Step 3b.

Property III. A party Pi sets openToAcceptRandom
i
= false if |S0

i
| � n � t in Step 4c. As

shown in the proof of the previous property, this implies that for every other honest party
Pj it holds that |S0

j
| � t + 1, and thus Pj sets bj = 0 (although it might keep the flag

openToAcceptRandom
i
= true if |S0

j
| < n � t). The value bj does not change during round V,

from a similar reasoning as in the previous claim.
A similar argument holds for the case when Pi sets openToAcceptRandom

i
= false in

Step 5b.

Property IV. A party Pi terminates only when decidedi = true. Property II shows that all
other honest parties Pj would hold bj = bi = b at the end of the iteration, while some might
terminate. Further, by virtue of Property I, all the honest parties which do not terminate at
the end of the iteration are guaranteed to terminate by the end of the next iteration.

Property V. When an honest leader P` is elected in Round VI, every honest party Pj obtains
the same value `j = ` as the output of ⇧OLE. Moreover, all the honest parties must have
received the same bit b` from an honest Pl in the prior rounds. If all the honest parties Pj

hold openToAcceptRandom
j
= true, then all set bj = b`, and thus begin the next iteration with

the same value. By virtue of Property I, this implies that all honest parties output b` by the end
of the next iteration. Otherwise, if some honest party Pi has openToAcceptRandom

i
= false,
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then due to Property III it holds that b` = bi by the end of Round V. Thus, every other honest
party Pj sets bj = b` = bi in Round VI. Similar to the prior case, this implies that all the
(remaining) honest parties begin the next iteration with the same value and hence output b`
by the end of the next iteration.

It is guaranteed that the OLE protocol (⇧OLE, Protocol 3.7.2) elects an honest leader with
constant probability as shown in Theorem 3.7.3. It thus follows that agreement is reached
in expected number of iterations, where each iteration requires only a constant number of
rounds.

Efficiency. In each iteration the parties send O(n2) bits over the point-to-point channels, and
then run OLE protocol (⇧OLE, Protocol 3.7.2), which requires O(n4 log n) bits of communica-
tion over point-to-point channels.

3.8.2 Broadcast and Parallel-broadcast

In a broadcast protocol, a distinguished dealer P ⇤ 2 P holds an initial input M and the fol-
lowing hold: (Agreement): All honest parties output the same value; Validity: If the dealer
is honest, then all honest parties output M . We formalize it using the following functionality:

Functionality 3.8.5: FBC

The functionality is parametrized with a parameter L.

1. The dealer (sender) P ⇤ sends the functionality its message M 2 {0, 1}L.

2. The functionality sends to all parties the message M .

To implement this functionality, the dealer just gradecasts its message M and then par-
ties run Byzantine agreement on the grade they received, while parties use input 1 for the
Byzantine agreement if and only if the grade of the gradecast is 2. If the output of the
Byzantine agreement is 1, then they output the message they received in the gradecast, and
otherwise, they output ?. We simply plug in our gradecast and Byzantine agreement in the
above protocol. Note that the above communication complexity is asymptotically free (up to
the expectation) for L > n3 log n.

Protocol 3.8.6: ⇧BC– Broadcast Protocol for a single dealer

• Input: The dealer holds a message M 2 {0, 1}L.

• Common input: A parameter L.

1. The dealer: Gradecast M .
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2. Each party Pi: Let M 0 be the resultant message and let g be the associated grade.
All parties run Byzantine agreement where the input of Pi is 1 if g = 2, and other-
wise the input is 0.

• Output: If the output of the Byzantine agreement is 1 then output M 0. Otherwise,
output ?.

Theorem 3.8.7. Protocol 3.8.6 is a secure broadcast tolerating t < n/3 malicious parties. For

an input message M of length L bits, the protocol requires O(nL) plus expected O(n4 log n) bits

total communication, and expected constant number of rounds.

Proof. We prove the protocol in the FBA-FGradecast hybrid model.

The case of a corrupted sender. In case of a corrupted sender, the simulator simulates the
FGradecast functionality and receives from the adversary either:

1. (ExistsGrade2,M, (gj)j 62I). Then, simulate the FBA functionality where all honest parties
input either 1 or 0 according to (gj)j 62I , where note that FGradecast guarantees that all
gj � 1 and there exists at least one index for which gj = 2. The FBA sends to the
adversary all the bits of the honest parties and then receives back one bit, b̂. If gj = 2

for every j, or if b̂ = 1, then the simulator sends M to FBC. Otherwise, it sends ? to
FBC. FBC forwards the chosen message to all parties.

2. (NoGrade2, (Mj)j 62I , (gj)j 62I). This time, it is guaranteed that all honest parties have
gj  1. Then, simulate the FBA functionality where all honest parties input 0 to FBA.
This implies that the output of FBA is ? to all parties. The simulator then sends ? to
FBC, which forwards that message to all parties.

From inspection, the view of the adversary in the real and ideal is identical. Likewise, the
output of the honest parties.

The case of an honest sender. In this case, the simulator receives M from the trusted party.
It then simulates the FGradecast sending (M, 2) to all corrupted parties. Next, it simulates FBA,
considering all honest parties send 1 to FBA. It receives some bit b̂ from the adversary which
it ignores as its input to FBA, and simulates the output of FBA to be 1.

From inspection, it is easy to see that the joint distribution of the view of the adversary
and the outputs of the honest parties in the real is identically distributed to the view and the
outputs in the ideal.
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Efficiency. The protocol gradecasts a message which requires O(nL) bits of communication
and runs in constant rounds. In addition, we run Byzantine agreement, which requires ex-
pected O(n4 log n) bits of communication in expected constant rounds.

Parallel Broadcast. Parallel broadcast relates to the case where n parties wish to broadcast
a message of size L bits in parallel. In that case, we rely on an idea of Fitzi and Garay [70]
that applies to OLE-based protocols. The idea is that the multiple broadcast sub-routines are
run in parallel when only a single election per iteration is required for all these sub-routines.
This results in the following corollary:

Corollary 3.8.8. There exists a perfectly secure parallel-broadcast with optimal resilience, which

allows n parties to broadcast messages of size L bits each, at the cost of O(n2L) bits communi-

cation, plus O(n4 log n) expected communicating bits. The protocols runs in constant expected

number of rounds.

For completeness, we provide the functionality for parallel broadcast below, and omit the
proof since it follows from broadcast.

Functionality 3.8.9: Fparallel

BC

The functionality is parametrized with a parameter L.

1. Each Pi 2 P sends the functionality its message Mi 2 {0, 1}L.

2. The functionality sends to all parties the message {Mi}i2{1,...,n}.

Efficiency. The protocol gradecasts n messages, each of which requires O(nL) bits of com-
munication and runs in constant rounds. In addition, we run Byzantine agreement where
a single leader election per iteration is necessary across all the instances, which requires
expected O(n4 log n) bits of communication in expected constant rounds.
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Chapter 4

Detect, Pack and Batch: Perfectly-Secure
MPC with Linear Communication and
Constant Expected Time

In this chapter, we discuss our construction of the perfectly-secure MPC protocol with optimal
resilience in the synchronous network. Along the way, we provide an improved construction
for verifiable secret sharing and introduce a new primitive which we refer to as detectable

secret sharing.

4.1 Introduction
We consider the most demanding setting: perfect security with optimal resilience. A noted
earlier, perfect security means that the adversary is all-powerful and that the protocol has
zero probability of error. Optimal resilience means that the number of corruptions is at most
t < n/3 [85, 94, 29].

As described before, the seminal protocols of Ben-Or, Goldwasser, and Wigderson [29],
and Chaum, Crépeau and Damgård [46] led the foundations of this setting. Since then, there
are, in general, two families of protocols:

1. Efficient but slow: These protocols [80, 26, 76] ([26] test-of-time award) have
O(n log n) communication complexity per multiplication gate. Still, the running time of
these protocols is at least ⇥(n) rounds, even if the depth of the circuit is much smaller
D ⌧ n. Specifically:
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Theorem 4.1.1. For an arithmetic circuit with C multiplication gates and

depth D there exists a perfectly-secure, optimally-resilient MPC protocol with

O(n5 log n + Cn log n) bits communication complexity and ⌦(n + D) expected

number of rounds.

The protocol requires O(n3 log n+Cn log n) bits of point-to-point communication and n

sequential invocations of broadcast of O(log n) bits each, with ⌦(n + D) rounds. Using
the broadcast implementation of [7], this becomes the complexity of Theorem 4.1.1.
Alternatively, using the implementation of [33, 53], the protocol can be more efficient,
but even more slower: O(n3 log n+Cn log n) bits communication complexity and ⌦(n2+

D) number of rounds.

2. Fast but not efficient: This line of protocols [29, 46, 73, 56, 19, 6] run at O(D) ex-
pected number of rounds, but require ⌦(n4 log n) communication complexity per multi-
plication gate.

Theorem 4.1.2. For an arithmetic circuit with C multiplication gates and

depth D there exists a perfectly-secure, optimally-resilient MPC protocol with

⌦(Cn4 log n) communication complexity and O(D) expected number of rounds.

In the broadcast hybrid model, the protocol requires O(n3 log n) bits of communication
complexity over point-to-point channels and O(n3 log n) bits broadcast, in O(D) number
of rounds. Theorem 4.1.2 reports the communication complexity using the broadcast
implementation of [7]. Using [33, 53] for implementing the broadcast, the number of
rounds is increased to ⌦(n+D).

Our Main Result

Our main result is that it is possible to simultaneously achieve the best of both families.
For the first time, we provide a perfectly-secure, optimally-resilient MPC protocol that has
both O(n log n) communication complexity per multiplication gate and O(D) expected time
complexity.

Theorem 4.1.3 (Main Result). For a circuit with C multiplication gates and depth D there exists

a perfectly-secure, optimally-resilient MPC protocol with O((Cn+Dn2+n4) log n) communication

complexity and O(D) expected number of rounds.
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In the broadcast-hybrid model, the total communication complexity over point-to-point is
O((Cn+Dn2 + n4) log n), and each party has to broadcast at most O(n2 log n) bits. Using [7]
for implementing the broadcast, we obtain Theorem 4.1.3. Compared to [26, 76], for D ⌧ n,
our result provides up to an O(n) improvement in round complexity while keeping the same
linear communication complexity (and also improving the communication complexity for
C 2 o(n4)). Compared to [6], for C > n3, our result provides an O(n3) improvement in the
communication complexity while keeping the same O(D) expected round complexity.

We remark that in many practical settings, a large set of parties may want to compute
a shallow depth circuit in a robust manner. For instance, consider a network with 200ms
latency and channels of 1Gbps, and consider a highly parallel circuit with 1M gates, depth
D = 10, and n = 200 parties. Then, the round complexity of our protocol is O(D), which
results in a delay of 10 · 200ms = 2 seconds. The delay associated with the communication
complexity is smaller: each party sends or receives (C+Dn+n3) log n bits, which over 1Gbps
channel results in a delay of 0.08 seconds. In [76], the delay due to the round complexity is
O(n+D), which results in a delay of 210·200ms = 42 seconds, and each party sends or receives
(C + n4) log n bits which over 1Gbps results in a delay of ⇡ 14 seconds. If we use [33, 53]
to implement the broadcast, then the round complexity becomes O(n2 +D) which is ⇡ 8000

seconds. The improvement in the round complexity is significant in this scenario. Of course,
these are only coarse estimations that do not even take into account the hidden constants in
the O notation.

Main Technical Result

Our main result is obtained via several advances in building blocks for perfectly secure opti-
mally resilient MPC. In our view, the most important and technically involved contribution is
a new primitive called Detectable Secret Sharing. This is a secret sharing with the following
properties: (1) Secrecy: The corrupted parties cannot learn anything about the secrets after
the sharing phase for an honest dealer; (2) Binding: After the sharing phase (even if the
dealer is corrupted), the secret is well defined by the shares of the honest parties; (3) Re-
construction or detection: Reconstruction ends up in the well-defined secret, or it might fail
(even if the dealer is honest). However, in the case of failure, there is a (private) detection
of O(n) corrupted parties. Moreover, successful sharing and reconstruction are guaranteed if
the dealer has already detected more than t/2 corrupted parties before the respective phases.

We show that despite the possible failure of the reconstruction, Detectable Secret Sharing
suffices for obtaining our end result for MPC. Most importantly, we obtain a highly efficient
construction for this primitive:
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Theorem 4.1.4 (informal). There exists a detectable secret sharing protocol that allows sharing

p secrets (of log n bits each) with malicious security and optimal resilience with O(n4 log n +

p log n) communication complexity and expected constant number of rounds.

For p � n4, this is O(1) field elements per secret (which is also a field element)! This
matches packed semi-honest secret sharing as in [71]. The theorem holds for a single dealer;
for n dealers, each sharing p secrets in parallel, we get O(1) field elements per secret starting
from p � n3.

Stated differently, we show a detectable secret sharing protocol that can pack O(n2) secrets
(of size log n each) at the cost of O(n2 log n) communication complexity for private channels
and each party broadcasts at most O(n log n) bits, with a strictly constant number of rounds.
There are at least two striking features of our new detectable secret sharing: packing, and
batching. First, to the best of our knowledge, this is the first protocol in the malicious setting
that can pack O(n2) secrets at the cost of O(n2) communication complexity – so an amortized
cost of O(1) per secret over point-to-point channels. Second, our scheme allows batching
– m independent instances with the same dealer require O(mn2 log n) over point-to-point
channels but just O(n log n) broadcast per party in all m instances combined. To the best of
our knowledge, this is the first protocol that requires a fixed broadcast cost independent of
the batching parameter m. By setting m = p/n2 and combining with the recent broadcast
implementation of Abraham, Asharov, Patil, and Patra [7], we obtain Theorem 4.1.4 in the
point-to-point channel model and no broadcast.

Note that this primitive is formally incomparable with weak-secret sharing [98] (where
reconstruction needs the help of the dealer but is guaranteed to succeed when the dealer
is honest). On the one hand, our notion seems weaker as there is no guaranteed validity
(no guaranteed reconstruction in case of an honest dealer). On the other hand, it is not
strictly weaker since our notion ensures mass detection in case of a reconstruction failure.
For comparison, the best known weak-secret sharing [6] requires O(n4 log n) for sharing O(n)

secrets (i.e., O(n3) per secret).

Verifiable secret sharing. We also derive (and use) a “strong” secret sharing (i.e., honest
parties always succeed to reconstruct), i.e., in the standard verifiable secret sharing [48]
setting:

Theorem 4.1.5 (informal). There exists a protocol that allows to secret share p secrets (of log n

bits each) with malicious security and optimal resilience with O(n4 log n+ p · n log n) communi-

cation complexity and expected constant number of rounds.
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For p � n3, this is an overhead of O(n) per secret. Previously, the best known [7] in
this setting packs O(n) secrets with O(n4 log n) communication complexity (an overhead of
O(n3) per secret). This is an improvement of O(n2) over the state-of-the-art. In comparison,
the starting point is the VSS of BGW and Feldman [29, 67] requires O(n2 log n) point-to-
point and O(n2 log n) broadcast, for sharing just a single secret. This results in O(n4 log n)

communication complexity over point-to-point channels and no broadcast, for sharing just a
single secret (an overhead of O(n4)).

Detection. The line of work of [80, 26, 76] in perfectly-secure MPC is based on the player

elimination framework (introduced by Hirt, Maurer and Przydatek [80]). The protocol identi-
fies a set of parties in which it is guaranteed that one of the players among the set is corrupted,
excludes the entire set, and restarts the protocol. The important aspect here is that all parties
agree on the set, and that honest parties are also “sacrificed” along the way. In each iteration,
the number of parties being excluded is constant. This is a slow process that leads to the O(n)

rounds overhead.
Instead of globally eliminating a set of parties, our approach is to have each party maintain

a local set of conflicted parties, with no global agreement among parties on who is malicious.
Each party can decide which parties to mark as conflicted while it shares its own secret(s).
When an honest party marks enough corrupt parties as conflicted, its sharing will always be
successful. Moreover, whenever there is a failure in sharing or reconstruction, then there is a
mass detection – O(n) corruptions are identified, either publicly or privately.

To elaborate further, our MPC protocol uses three kinds of detections:

1. Global detection – wherein a set of parties is excluded from the computation. Unlike
[80, 26, 76], in our case, honest parties are never discarded (e.g., “discard the dealer”).

2. Public individual detection – wherein each party has its own conflict set that is publicly
known to all (see, e.g., Step 2b in Protocol 4.4.2). While a similar mechanism, referred
to as ‘dispute control’ has been used in [24, 32, 77], these works achieve statistical

security in the honest majority setting with O(n) rounds overhead similar to the player-
elimination framework;

3. Private (local) detection – wherein each party has its private conflict set that it excludes
from its local computation. Specifically, an honest party may locally identify a set con-
flicts (with corrupted parties) without a mechanism to prove that it has done so hon-
estly. In our protocol, it can identify O(n) such conflicts simultaneously in case private
reconstruction towards it fails (see, e.g., Step 7 in Protocol 4.5.2). This allows an hon-
est party to locally discard the communication from O(n) corrupt parties, eventually
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ensuring a successful reconstruction.

4.1.1 Related Work

Linear communication MPC. Achieving (near) linear communication complexity for MPC,
has been the target for a long line of works in the literature of information-theoretic MPC with
optimal resilience. In the closely-related setting of statistical security with a synchronous net-
work, the seminal work of [98] established the feasibility of MPC in this setting with the op-
timal threshold of t < n/2, assuming the availability of a broadcast channel in addition to the
point-to-point channels. Subsequently, several works focused on the efficiency of protocols,
starting from the work of [55] that requires O(n5) bits of communication over point-to-point
channels as well as broadcast per multiplication gate. A protocol with O(n2) cost per gate
was known since the work of [24] in 2006 with the optimal threshold of t < n/2. In 2012,
Ben-Sasson, Fehr, and Ostrovsky [32] provided the first protocol with linear communication
per gate (up to log n factor). Their result is based on ideas inspired by key techniques from
PCP literature. Similar to our construction, their protocol additionally had a depth-dependent
term that was quadratic in the number of parties. This factor was later eliminated in [77]
while maintaining the linear cost per gate.

Broadcast. Our communication complexity takes into account the cost of broadcast. In the
setting of perfect security, there are two families of protocols for implementing the broadcast:
once again – efficient and slow, or fast but less efficient. The former [33, 53] takes O(n)

rounds and O(n2 + pn) for broadcasting a message of p bits. The latter [7] (built upon
Feldman and Micali [66], and Katz and Koo [82]) takes O(1) expected number of rounds and
O(n4 + pn) communication complexity for broadcasting a message of size p bits, i.e., this is
optimal for p > n3 log n. Note that when broadcasting a message of size p, then since each
party is supposed to receive p bits, the minimal possible communication complexity is pn.
Moreover, n parties broadcasting messages of size p bits each takes O(n4 + pn2), i.e., optimal
for p > n2 log n. We also remark that containing strict O(1) number of rounds is impossible
[69].

Shunning. Our notion of detectable secret sharing can be viewed as a synchronous analog
of the notion of shunning, in which parties either succeed in their asynchronous verifiable
secret sharing or some detection event happens. In the context of asynchronous verifiable
secret sharing, shunning was first suggested by Abraham, Dolev, and Halpern [3] and later
improved and extended to shunning O(n) parties by Bangalore, Choudhury, and Patra [21,
22]. However, unlike our detectable secret sharing, none of these works attain O(1) amortized
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communication cost per secret.

4.2 Technical Overview
In this section, we provide a technical overview of our work. We start in Section 4.2.1 with an
overview of our main technical result – our detectable and verifiable secret sharing schemes.
In Section 4.2.2 we overview our MPC result. Most of the building blocks are based on
previous works, and we highlight in the overview the steps where we made significant im-
provements. In Section 4.2.3 we overview another step in the protocol, triplet secret sharing.

4.2.1 Detectable and Verifiable Secret Sharing

We start this overview with the most basic verifiable secret sharing protocol – the one by
BGW [29]. See also [18, 11] for further details. To share a secret s, the dealer chooses a
bivariate polynomial S(x, y) =

P
t

k=0

P
t

`=0 sk,` · xky` of degree t in both x and y under the
constraint that S(0, 0) = s0,0 = s. The share of each party Pi is the pair of degree-t univariate
polynomials S(x, i), S(i, y). The goal of the verification step is to verify that the shares of all
honest parties indeed lie on a unique bivariate polynomial S(x, y). Let us briefly recall the
sharing phase:

1. Sharing: The dealer sends the share (fi(x), gi(y)) = (S(x, i), S(i, y)) to each party Pi.

2. Pairwise checks: Pi sends to each Pj the two points (fi(j), gi(j)) = (S(j, i), S(i, j))

= (gj(i), fj(i)). If Pi did not receive from Pj the points it expects to see (i.e., that agree
with fi(x), gi(y)), then it publicly broadcasts a complaint complaint(i, j, fi(j), gi(j)).

3. Publicly resolving the complaints: The dealer checks all complaints; if some party Pi

publicly complains with values that are different than what the dealer has sent it, then
the dealer makes the share of Pi public – i.e., it broadcasts reveal(i, S(x, i), S(i, y)).

4. If a party Pj sees that (1) all polynomials that the dealer made public agree with its
private shares; (2) its share was not made public; (3) if two parties Pk and P` both
complaint on each other, then the dealer must open one of them. If all those conditions
hold, then Pj is happy with its share, and votes to accept the dealer. If the shares of Pj

were made public, then it re-assigns fj(x), gj(y) to the publicly revealed ones.

5. If 2t+ 1 parties votes to accept the shares, then each party output its share. Otherwise,
the dealer is discarded.

Observe that if the dealer is honest, then during the verification phase the corrupted parties
do not learn anything new. Specifically, a party always broadcasts a complaint with the
values that it received from the dealer, and the dealer makes a share public only if the public
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complaint does not contain the values that the dealer has sent that party. Therefore, an honest
dealer never makes the shares of another honest party public. Moreover, all honest parties
are happy, and accept the shares.

If the dealer is corrupted, then 2t + 1 parties that voted to accept the dealer implies that
we have a set J ✓ [n] of at least t+1 honest parties that are happy with their shares and that
their shares were never made public. The shares of those t+ 1 honest parties fully determine
a bivariate polynomial of degree-t in both variables. If some honest party Pj initially held a
share that does not agree with this bivariate polynomial, i.e., does not agree with some Pk

for k 2 J , then it must be that Pj and Pk both publicly complained, and that the share of Pj

was made public with some new share that agrees with S (if it does not agree with S, then at
least one party in J would have not voted to accept). Therefore, at the end, all honest parties
hold shares of a well-defined bivariate polynomial.

To reconstruct the bivariate polynomial, each party sends to each other party its pair of
polynomials. Since the underlying polynomial is of degree-t, the adversary controls at most t
parties, we must have n � t � 2t + 1 correct points and at most t errors. The Reed-Solomon
decoding procedure guarantees that the t errors can be identified and corrected.

Our improvements. The above scheme for verifiable secret sharing requires O(n2 log n) com-
munication over the point-to-point channels, and also the broadcast of O(n2 log n) bits. This
results in total communication complexity of O(n4 log n) over point-to-point for sharing a
single secret. The work of [7] has the same complexity for sharing O(n) secrets.

For the same communication complexity, we show how to do detectable secret sharing
for O(n4) secrets or to do (standard) verifiable secret sharing for O(n3) secrets. Looking
ahead, we improve the basic scheme in the following aspects, each giving a factor of O(n2)

improvement for our detectable secret sharing:

(1) Packing: The bivariate polynomial S(x, y) in the basic construction contains only a
single secret, located at S(0, 0). This is the best possible when sharing a bivariate polynomial
of degree-t in both x and y: The t shares of the corrupted parties, together with the secret,
fully determine the bivariate polynomial. In our detectable secret sharing scheme, the dealer
shares a bivariate polynomial of degrees greater than t in both x and y. This allows planting
O(n2) secrets. The verification that all parties hold shares on the same bivariate polynomial is
much more challenging because the degrees of all the univariate polynomials are greater than
t. Nevertheless, we obtain binding with asymptotically the same cost as the basic scheme,
therefore we already obtain an improvement of O(n2) over the basic scheme.

Moreover, once the degree in both dimensions is greater than t, then reconstruction might
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fail because the underlying codeword is of degree greater than t, and the parties cannot
necessarily correct the errors if the adversary does not provide correct shares. Nevertheless,
Reed-Solomon decoding guarantees that the honest parties can (efficiently) identify whether
there is a unique decoding or not. We use this property to also detect sufficiently many cor-
rupted parties. This suffices for constructing a detectable secret sharing scheme.

For (standard) verifiable secret sharing, we must make the degree in at least one of the
dimensions to be at most t, to allow to always succeed in correcting errors. This allows us to
pack “only” O(n) secrets and not O(n2).

(2) Batching: The verification step of [29] requires broadcasting O(n2) field elements by
the dealer, and O(n) field elements by each party. Hence m independent instances (with the
same dealer) require broadcasting of O(mn2) field elements. First, we balance the protocol
such that each party broadcasts at most O(n) field elements, including the dealer. Second,
by designing a sharing protocol that is tailored for achieving cheap batching, the broadcast

cost for m independent instances remains the same as a single instance, i.e., it requires each

party to broadcast O(n log n) bits in all m executions combined. By setting m = O(n2) and
implementing the broadcast over point-to-point, we get a detectable secret sharing of O(n4)

secrets (each is a field element of size O(log n)) at the cost of O(n4 log n) communication over
the point-to-point channels. This is the second O(n2) improvement over the basic scheme.

Our batched and packed detectable secret sharing protocol. For our discussion, assume
that the dealer first chooses a polynomial S(x, y) of degree t + t/4 in x and degree t + t/4 in
y. We will use different parameters in the actual construction later,1 but we choose t + t/4

for simplicity of exposition in this overview. Like the basic scheme, the view of the adversary
consists of the pair of the univariate polynomials S(x, i), S(i, x), for every i 2 I, where I ✓ [n]

is the set of indices of the corrupted parties (of cardinality at most t). This means that the
adversary receives at most 2t(t+ t/4 + 1)� t2 values, and therefore the dealer can still plant
(t/4 + 1)2 2 O(n2) secrets in S(x, y), which is fully determined by (t + t/4 + 1)2 values.
Concretely, it can plant for every a 2 {0, . . . , t/4} and b 2 {0, . . . , t/4} a secret at location
S(�a,�b).

Looking ahead, to allow batching, the dealer will choose m different bivariate polynomials
S1(x, y), . . . , Sm(x, y), and all the parties will verify all the m instances simultaneously. To
accept the shares, all instances must end up successfully. We follow the following two design
principles:

1. Broadcast is expensive; Each broadcast must be utilized in all m instances, not

1Our actual parameters are further optimized to pack more secrets.
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just in one instance.

2. Detection: Whenever a party is detected as an obstacle for achieving agreement

(a foe), we should make it a “friend”, or more precisely, we neutralize its capac-

ity to obstruct further, and utilize it to achieve agreement on a later stage.

We focus on sharing of one instance for now, while keeping these design principles in mind.
Along the way, we also discuss how to keep the broadcasts of the dealer low for all m instances
simultaneously, and we will show how to reduce the broadcasts of other parties later on. We
follow a similar structure to that of the basic scheme:

1. Sharing: The dealer sends fi(x), gi(y) to each party Pi.

2. Pairwise checks: Each pair of parties exchange sub-shares. In case of a mismatch, a
party broadcasts a complaint complaint(i, j, fi(j), gi(j)).

The dealer now has to resolve the complaints. In the basic protocol, when the dealer identi-
fies party Pi as corrupted, the dealer simply broadcasts the “correct” (S(x, i), S(i, y)) so that
everyone can verify that the shares are consistent. However, this leads to O(n2) values being
broadcasted, and O(mn2) values in the batched case. Instead, in our protocol, the dealer just
marks Pi as corrupted and adds it to a set CONFLICTS ⇢ [n] which is initially empty. It broad-
casts the set CONFLICTS. This set should be considered as “parties that had false complaints”
from an honest dealer’s perspective. There are three cases to consider:

1. The dealer is discarded: This might happen, e.g., if two parties complained on each
other and none of them is in CONFLICTS. In this case, it is clear that the dealer is
corrupted, and all parties can just discard it.

2. If the dealer is not discarded and |CONFLICTS| > t/4, then we have large conflict.
The dealer identified a large set of conflicts (note that if the dealer is honest, then
CONFLICTS contains only corrupted parties). Instead of publicly announcing the poly-
nomials fi(x), gi(y) of the identified corrupted parties, the dealer simply restarts the
protocol. In the new iteration, the shares of parties in CONFLICTS are publicly set to
0. That is, it chooses a new random bivariate polynomial S(x, y) that hides the same
secrets as before, this time under the additional constraints that S(x, i) = S(i, y) = 0 for
every i 2 CONFLICTS.
The dealer does not broadcast the shares of parties in CONFLICTS; all the parties know
that they are 0s. When each party receives its new pair of shares fj(x), gj(y), it also
verifies that fj(i) = gj(i) = 0, and if not, it raises a complaint. Parties in CONFLICTS

cannot raise any complaints. Furthermore, observe that the outcome of “large conflict”
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might occur only O(1) times; if the dealer tries to exclude more than t parties total, then
the dealer is publicly discarded.
When batching over m instances, we choose the shares of the set CONFLICTS to be
0 in all instances. Thus, the dealer uses a broadcast of O(n log n) bits, i.e., the set
CONFLICTS, and by restarting the protocol it made the shares of parties in CONFLICTS

public in all m executions. Thus, we get the same effect as broadcasting m|CONFLICTS|
pairs of polynomials (i.e., broadcasting O(m · n2 log n) bits). This follows exactly our
first design principle.

3. If |CONFLICTS|  t/4 then the dealer proceeds with the protocol. It has to reconstruct
the f and g polynomials of all parties in CONFLICTS.

Before we proceed, let’s highlight what guarantees we have so far: when the dealer is
honest, then all the parties in CONFLICTS are corrupted. Moreover, if in some iteration there
were more than t/4 identified conflicts by the dealer, those corrupted parties are eliminated,
and they have shares that all parties know (i.e., 0) and are consistent with the shares of the
honest parties. This turns a “foe” into a “friend”, as our second design principle.

When the dealer is corrupted, then all parties that are not in CONFLICTS have shares
that define a unique bivariate polynomial, and we have binding. Specifically, if the shares
of two honest parties do not agree with each other, then they both complain on each other,
and the dealer must include one of them in CONFLICTS. Therefore, all honest parties that
are not in CONFLICTS (assuming that the dealer was not publicly discarded) hold shares
that are consistent with each other. Moreover, there is one more important property: Honest
parties that were excluded in previous iterations (and now their shares are 0) also hold shares
that are consistent with the honest parties that are not in CONFLICTS. In particular, if we
indeed proceed, then there are at most t/4 honest parties who do not hold shares on the
polynomial. This means that there are 2t + 1 � t/4 honest parties that have shares on the
bivariate polynomial – not only do we have binding, but we also have some redundancy!
This redundancy will be crucial for our next step as we show below.

However, there might still be up to t/4 honest parties (in CONFLICTS) that do not have
shares on the correct polynomial. The rest of the protocol is devoted to reconstructing their
shares. We call this phase reconstruction of the shares of honest parties in CONFLICTS.
However, before proceeding to the reconstruction, we first describe how to batch over m

instances.

Batching Complaints. Consider sharing m instances simultaneously with the same dealer.
In the above description, we already described how the dealer’s broadcast is just the set
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CONFLICTS, which require O(n log n) bits, independent of m. However, the broadcast of
other parties depends on m. Specifically:

1. A party Pi broadcasts complaint(i, j, fi(j), gi(j)) when it receives a wrong share from
some party Pj.

2. A party Pi broadcast complaint if the share it received do not agree with the parties that
are publicly 0. Recall that in that case, the dealer must include Pi in CONFLICTS.

It suffices to complain in only one of the instances, say the one with the lexicographically
smallest index. This follows our first design principle. If two parties Pi and Pj do not agree
in ` < m of the instances, they will both file a joint complaint with the same minimal index.
Thus, we have a joint complaint, and in order to not be discarded, the dealer must include
either i or j in CONFLICTS. Thus, we still have the guarantee that if two honest parties are
not in CONFLICTS then their shares must be consistent, now in all m executions.

Likewise, if some party Pi receives from the dealer private shares where on points of
some parties that were excluded it does not receive 0s, it essentially requires to be part of
CONFLICTS. Thus, there is no need to make m requests, it suffices to make just one such
request.

Reconstruction of the shares of honest parties in CONFLICTS. Going back to the last
step of the sharing process, each party Pj in CONFLICTS wishes to reconstruct its pair of
polynomials (fj(x), gj(y)). Towards that end, each party Pk that are not in CONFLICTS send
to Pj, privately, the values (fj(k), gj(k)). Pj therefore is guaranteed to receive 2t + 1 � t/4

correct points. However, the polynomials are of degree t+ t/4, and we need 2t+ t/4 “correct
values” to eliminate t errors. This means that if the adversary introduces more than t/2

incorrect values, Pj does not have unique decoding. If this is the case, then Pj broadcasts
a complaint complaint(j), insisting that its shares will be publicly reconstructed. As we will
see, when batching over m executions, it is enough to make one public complaint in one
execution, say the lexicographically smallest one, let’s denote it as � 2 [m]. Resolving this
instance will help to resolve all other m instances.

Upon receiving complaint(j, �), each party Pk broadcasts reveal(k, j, fk(j), gk(j)) for the �th
instance. Thus, we will have at least 2t + 1 � t/4 correct values that are public. Moreover,
corrupted parties might now reveal values that are different than what they have previously
sent privately, and we might already have unique decoding. In any case, with each value
that was broadcasted and is wrong, the dealer adds the identity of the party that broadcasted
the wrong value into a set Bad. It then broadcasts the set Bad, and all parties can check
that when excluding parties in Bad then all other values define a unique polynomial, and
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all public points (excluding Bad) lie on this polynomial. Otherwise, the dealer is publicly
discarded. Note that it is enough to broadcast one set Bad for all party j 2 CONFLICTS and
for all m instances. If |Bad| > t/2, we restart the protocol, again giving shares 0 to parties in
Bad (as long as the total number of parties that the dealer excluded does not exceed t).

At this point, if we did not restart and the dealer was not discarded, then it must be that Pj

can reconstruct its polynomials fj(x), gj(y) in all m instances. First, in the �th instance (that
was publicly resolved), we know that we have 2t + 1 � t/4 public points that are “correct”
and that the dealer could have excluded at most t/2 parties. Therefore, there are more than
t + t/4 + 1 correct points even if the dealer excludes up to t/2 honest parties (recall that it
cannot exclude more than t/2). Those correct points uniquely determine a polynomial of
degree t+ t/4, and therefore, since all points after excluding parties in Bad lie on one unique
polynomial, it must be that this polynomial is the correct one.

Using the information learned in the resolved instance party Pj can uniquely decode all
other m instances. Specifically, there is no unique decoding in a particular instance only if
Pj received more than t/2 wrong private shares. When going publicly, some parties might
announce different values than what they first told Pj privately. Pj can compare between the
polynomial reconstructed in the �th instance to the initial values it received privately from
the parties, and identify all parties that sent it wrong shares. Denote this set as localBadj. It
must hold that this set contains more than t/2 corrupted parties. Now, in each one of the
other instances, ignore all parties in localBadj. This implies that the remaining values are of
distance at most t/2 from a correct word, i.e., they contain at most t/2 errors. Moreover, it
is guaranteed that honest parties are not eliminated, and we still have at least 2t + 1 � t/4

correct points. Therefore, Pj guarantees to have unique decoding in all m instances.

Detectable and Robust Reconstruction. So far, we described the sharing procedure. While
we do not use the reconstruction of detectable secret sharing directly (we will use private
reconstruction, and parties never reconstruct all secrets), we briefly describe it for com-
pleteness. To reconstruct polynomials S1(x, y), . . . , Sm(x, y) that were shared with the same
dealer, we follow a similar step as reconstruction towards parties in CONFLICTS, but with
reconstructing all polynomials: Each party sends (privately) the f -shares, the parties try to
privately reconstruct gi-polynomials for all i 2 [n], and interpolate the bivariate polynomials
from the gi-polynomials. If some party does not succeed in uniquely reconstructing some
gi-polynomial, then it asks to go public. For each party Pj, it is enough to publicly recon-
struct one gi-polynomial that it did not succeed to reconstruct privately, and from that, Pj can
reconstruct all other shares (by ignoring the new privately detected parties).

However, as before, the adversary can cause the reconstruction to fail. When it does so,
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the dealer is guaranteed to detect more than t/2 corruptions. Moreover, if the dealer already
detected at least t/2 corruptions during the sharing phase, then those parties cannot fail the
reconstruction, and reconstruction is guaranteed. Note that the cost of the reconstruction is
O(mn2 log n) over point-to-point channels, plus each party has to broadcast at most O(n log n)

bits, again, independent of m.

Reconstruction for VSS. Recall that for VSS, we set the degree of y in each bivariate polyno-
mial to t. This implies that all parties can reconstruct all g-polynomials using Reed-Solomon
error correction and we never have to resolve complaints publicly. Moreover, the adversary
can never cause any failure. The cost is therefore O(mn2 log n) over point-to-point channels,
and VSS robust reconstruction is always guaranteed.

We refer the reader to Section 4.4 for our packed secret sharing scheme for a single poly-
nomial, and to Section 4.5 for the batched version.

4.2.2 Our MPC Protocol

Our MPC protocol follows the following structure: an offline phase in which the parties
generate Beaver triplets [23], and an online phase in which the parties compute the circuit
while consuming those triples.

Beaver triplets generation. Our goal is to distribute shares of random secret values a, b

and c, such that c = ab. If the circuit contains C multiplication gates, then we need C such
triplets. Towards that end, we follow the same steps as in [50], and generate such triplets in
two stages:

1. Triplets with a dealer: Each party generates shares of ai, bi, ci such that ci = ai · bi. We
generate all the triplets in parallel using expected O(1) rounds. We will elaborate on
this step below in Section 4.2.3. Our main contribution is in improving this step. In
our protocol, each party acts as a dealer to generate mn triplets. This step requires an
overall cost of O(n4 log n + mn3 log n) point-to-point communication for all the parties
together. Later, these mn2 triplets will be used for generating O(mn2) triplets overall.
Looking ahead, we will use m = C/n2 and this step costs O(n4 log n+ Cn log n).
Previously, the best known [50] used O(n3 log n) point-to-point and O(n3 log n) broad-
cast for generating just a single triplet for one dealer. That is, for O(mn2) triplets this is
O(mn5 log n) broadcast which costs at least ⌦(mn6 log n) over point-to-point. We there-
fore improve in a factor of O(n3).

2. Triplets with no dealer: Using triplet extraction of [50], we can extract from a total
of C triplets with a dealer, O(C) triplets where no party knows the underlying values.
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That is, if n parties generate C/n triplets each, then we have a total of C triplets and
we can extract from it O(C) triplets. This step costs O(n2 log n+ Cn log n).

Putting it all together, for generating C triplets we pay a total of O(n4 log n + Cn log n) and
constant expected number of rounds.

The MPC protocol then follows the standard structure where each party shares its input,
and the parties evaluate the circuit gate-by-gate, or more exactly, layer-by-layer. In each
multiplication gate, the parties have to consume one multiplication triple. Using the method
of [50], if the ith layer of the circuit contains Ci multiplications (for i 2 [D], where D is the
depth of the circuit), the evaluation costs O(n2 log n + Ci · n log n). Summing over all layers,
this is

P
i2[D](n

2 +nCi) log n = (Dn2 +Cn) log n. Together with the generation of the triplets,
we get the claimed O((Cn+Dn2 + n4) log n) cost as in Theorem 4.1.3. We refer the reader to
Section 4.8 for further details on our MPC protocol.

4.2.3 Multiplication Triplets with a Dealer

As mentioned, a building block which we improve in a factor of O(n3) over the state-of-the-art
is multiplication triplets with a dealer. The goal is that given a dealer, to distribute shares of
secret values ~a,~b,~c such that for every i it holds that ci = aibi. Towards this end, the dealer
plants ~a into some bivariate polynomial A(x, y) using our verifiable secret sharing scheme. It
plants ~b into B(x, y) and ~c into C(x, y) in a similar manner. Note that we use verifiable secret
sharing here, since we want to output the triplets shared via degree-t polynomials (which is
utilized by our MPC protocol). So we can plant only O(n) values in each one of them. Then,
the dealer has to prove, using a distributed zero-knowledge protocol, that indeed ci = aibi for
every i. The zero-knowledge proof uses sharing and computations on the coefficients of the
polynomials used for sharing ~a,~b,~c, i.e., if we shared O(M) triplets, then the zero-knowledge
involves sharing of O(Mn) values. However, since the dealer is involved in the sharing and
the reconstruction of those values, we do not need full-fledged secret sharing scheme, and we
can use the lighter detectable secret sharing. This scheme enables us to share O(Mn) values
at the same cost of “strong” verifiable secret sharing of O(M) values.

In a more detail, after verifiable sharing A,B and C, the dealer needs to prove that for
every a 2 {0, . . . , t/4} it holds that C(�a, 0) = A(�a, 0) · B(�a, 0). Towards that end, for
every a 2 {0, . . . , t/4} it considers the polynomial

E�a(y) = A(�a, y) · B(�a, y)� C(�a, y) = e�a,0 + e�a,1y + . . .+ e�a,2ty
2t

and its goal is to show that the degree-2t polynomial E�a(y) evaluates to 0 on each y 2
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{0, . . . ,�t/4}. The dealer secret-shares all the coefficients (e�a,k) for a 2 {0, . . . , t/4} and k 2
{0, . . . , 2t} using our detectable secret sharing scheme, by packing them into several bivariate
polynomials E(x, y). Note that there are O(n2) coefficients to share, and each polynomial
E(x, y) can pack (t/4 + 1)2 secrets.1 Thus, we actually share a constant number (precisely 8)
of polynomials to share all the coefficients.

Using linear combinations over the shares, the reconstruction protocol privately recon-
structs towards Pj (for every j 2 [n]) the evaluation of E�a(y) on j, i.e., E�a(j), for each
a 2 {0, . . . , t/4}. This is performed in a similar manner to the reconstruction of shares of
honest parties in CONFLICTS in our detectable secret sharing protocol. Each Pj can then
verify that E�a(j) = A(�a, j) ·B(�a, j)�C(�a, j), and if not, it can raise a public complaint.
The parties can then open the shares of Pj on A,B,C publicly, and also the value E�a(j). If
indeed E�a(j) 6= A(�a, j) · B(�a, j)� C(�a, j), then the dealer is discarded.

Moreover, again using linear evaluations over the shares and reconstruction, the parties
can obtain E�a(0) for every a 2 {0, . . . , t/4} and verify that it equals 0. If indeed E�a(j) =

A(�a, j) ·B(�a, j)�C(�a, j) for 2t+1 such js, then E�a(y) = A(�a, y) ·B(�a, y)�C(�a, y)
as those are two polynomials of degree 2t that agree on 2t + 1 points. Moreover, if indeed
E�a(0) = 0 for every a 2 {0, . . . , t/4}, then C(�a, 0) = A(�a, 0) · B(�a, 0) for every a 2
{0, . . . , t/4}, as required.

The above description is a bit oversimplified. Recall that the coefficients of E are shared
using only detectable secret sharing. This means that the private reconstruction towards some
Pj might fail. In that case, Pj will ask to perform public reconstruction, and the adversary
learns E�a(j) on a point j 62 I. This is a leakage because the reconstruction was meant
to be private and becomes public. The good news is that the outcome of each such public
reconstruction is that party Pj identifies at least t/2 corruptions in localBadj, and all the later
reconstructions towards it must succeed.

As a result, the adversary may learn up to n � t reconstructions that it was not supposed
to learn. Whenever this occurs, we cannot use the entire polynomials that are involved
(which pack O(n) triplets). If a “pack” of triplets requires a public reconstruction, we discard
the whole “pack”. On the positive side, this can happen at most once per party. Moreover,
since the multiplication triplets are just random and do not involve secret inputs, we can just
sacrifice them. This means that for generating m “packs” of triplets, we need to start with
batching O(m + n) “packs” of triplets. This additional overhead does not affect the overall
complexity, but it makes the functionalities and the protocol a bit more involved. We refer

1Again, in the actual construction we will use different dimensions, but we keep using a bivariate polynomial
with degree t+ t/4 in both x and y for simplicity.
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the reader to Sections 4.6 and 4.7 for further details.

Organization. The rest of this chapter is organized as follows. After some Preliminaries
(Section 4.3) we focus on our packed (Section 4.4) and batched (Section 4.5) secret sharing.
We then discuss our packed (Section 4.6) and batched (Section 4.7) multiplication triplets
with a dealer, and conclude with the MPC protocol in Section 4.8.

4.3 Preliminaries

4.3.1 Network Model and Notations

We consider a synchronous network model where the parties in P = {P1, . . . , Pn} are con-
nected via pairwise private and authenticated channels. Additionally, for some of our pro-
tocols we assume the availability of a broadcast channel, which allows a party to send an
identical message to all the parties. The detailed description of the network model and secu-
rity definition is discussed in Section 2.

Our protocols are defined over a finite field F where |F| > n + t/2 + 1. We denote the
elements by {�t/2,�t/2+1, . . . , 0, 1 . . . , n}. We use hvi to denote the degree-t Shamir-sharing
of a value v among parties in P.

4.3.2 Bivariate Polynomials and Secret Embedding

A degree (l,m)-bivariate polynomial over F is of the form S(x, y) =
P

l

i=0

P
m

j=0 bijx
iyj where

bij 2 F. The polynomials fi(x) = S(x, i) and gi(y) = S(i, y) are called ith f and g univariate
polynomials of S(x, y) respectively. In our protocol, we use (t+t/2, t+d)-bivariate polynomials
where d  t/4, and the ith f and g univariate polynomials are associated with party Pi for
every Pi 2 P.

We view a list of (t/2+ 1)(d+1) secrets SECRETS as a (t/2+ 1)⇥ (d+1) matrix. We then
say that the set SECRETS is embedded in a bivariate polynomial S(x, y) of degree (t+ t/2) in
x and (t + d) in y if for every a 2 {0, . . . , t/2} and b 2 {0, . . . , d} it holds that S(�a,�b) =

SECRETS(a, b).

4.3.3 Simultaneous Error Correction and Detection of Reed-Solomon
Codes

We require the following coding-theory related results which are already discussed in Sec-
tion 2 and we reiterate here with specific parameters used in our protocols. Let C be an
Reed-Solomon (RS) code word of length N , corresponding to a k-degree polynomial (con-
taining k + 1 coefficients). Assume that at most t errors can occur in C. Let C̄ be the word
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after introducing error in C in at most t positions. Let the distance between C and C̄ be s

where s  t. Then there exists an efficient decoding algorithm that takes C̄ and a pair of
parameters (e, e0) as input, such that e+ e0  t and N � k � 1 � 2e+ e0 hold and gives one of
the following as output:

1. Correction: output C if s  e, i.e. the distance between C and C̄ is at most e;

2. Detection: output “more than e errors” otherwise.

Theorem 4.3.1 ([49, 87]). Let C be an Reed-Solomon (RS) code word of length N , correspond-

ing to a k-degree polynomial (containing k + 1 coefficients). Let C̄ be a word of length N such

that the distance between C and C̄ is at most t. Then RS decoding can correct up to e errors in C̄

to reconstruct C and detect the presence of up to e+e0 errors in C̄ if and only if N�k�1 � 2e+e0

and e+ e0  t.

A couple of corollaries follows from the above theorem that we will use in our work.

Corollary 4.3.2. Let C and C̄ be as in Theorem 4.3.1 with N = 2t+ 1 + d+ t/2 and k = t+ d

for any d > 0.

1. Then RS decoding can correct up to t/2 errors in C̄, or detect the presence of up to t errors

in C̄.

2. If t0 > t/2 errors are known in code word C̄, then the remaining t � t0 errors in C̄ can be

corrected from the truncated code word C 0 obtained by removing the t0 error points from

C̄.

Proof. The first item follows because N � k � 1 = 2t + 1 + d + t/2 � t � d � 1 = t + t/2,
2e + e0 = t + t/2 and e + e0 = t hold. The second item holds because (N � t0) � k � 1 =

2t+ 1 + d+ t/2� t0 � t� d� 1 = t+ t/2� t0. And so N � t0 � k � 1 = t+ t/2� t0 � 2(t� t0)

holds true for all t0 > t/2.

Corollary 4.3.3. Let C and C̄ be as in Theorem 4.3.1 with N = 3t+ 1 and k = t+ t/2.

1. Then RS decoding can correct up to t/2 errors and detect the presence of up to t errors in

C̄.

2. If t0 > t/2 errors are known in C̄, then t � t0 errors can be corrected from the truncated

codeword C 0 obtained from C̄ after removing the t0 error points.

Proof. The first item follows since N � k � 1 = t + t/2, 2e + e0 = t + t/2 and e + e0 = t hold.
The second item follows since (N � t0)� k � 1 = 3t+ 1� t0 � t� t/2� 1 = t+ t/2� t0. And
so N � t0 � k � 1 = t+ t/2� t0 � 2(t� t0) holds true for all t0 > t/2.
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Corollary 4.3.4. Let C and C̄ be as in Theorem 4.3.1 with N = 3t + 1 and k = t + d where

d  t/4.

1. Then RS decoding can correct up to t/2 errors and detect the presence of up to t errors in

C̄.

2. If t0 > t/2 errors are known in C̄, then t � t0 errors can be corrected from the truncated

codeword C 0 obtained from C̄ after removing the t0 error points.

Proof. The first item follows since N �k�1 = 2t�d � t+3t/4, 2e+e0 = t+ t/2 and e+e0 = t

hold. The second item follows since (N�t0)�k�1 = 3t+1�t0�t�d�1 = 2t�d�t0 � t+3t/4�t0.
And so N � t0 � k � 1 � t+ 3t/4� t0 � 2(t� t0) holds true for all t0 > t/2.

4.3.4 Parallel Broadcast

In our MPC, we use parallel broadcast that relates to the case where n parties wish to broad-
cast a message of size L bits in parallel, as captured in the following functionality.

Functionality 4.3.5: Fparallel

BC

The functionality is parameterized with a parameter L.

1. Each Pi 2 P sends the functionality its message Mi 2 {0, 1}L.

2. The functionality sends to all parties the message {Mi}i2[n].

The work of [7] presents an instantiation with the following security and complexity. Also
note that, when some party has smaller message than L bits, it can pad with default values
to make an L bit message.

Theorem 4.3.6 ([7]). There exists a perfectly-secure parallel broadcast with optimal resilience

of t < n/3, which allows n parties to broadcast messages of size L bits each, at the cost of

O(n2L) bits communication, plus O(n4 log n) expected communicating bits. The protocols runs

in constant expected number of rounds.

4.4 Packed Secret Sharing
In this section we present our secret sharing scheme. In the introduction, we mentioned
that we have two variants: regular verifiable secret sharing, and a novel detectable secret
sharing. The protocol presented in this section fits the two primitives, where the difference is
obtained by using different parameters in the bivariate polynomial, as we will see shortly. In
this section, we still do not “batch” over multiple polynomials; the dealer share just a single
polynomial. In Section 4.5 we provide details on the batched version. The packed secret
sharing protocol consists of the following building blocks:
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1. The dealer chooses a bivariate polynomial S(x, y) of degree 3t/2 in x and degree t + d

in y, where its secret are embedded in S. We should think of d as 0 or t/4. Unlike
presented in Section 4.2.1, we have two different parameters for x and y. Looking
ahead, for verifiable secret sharing, we use d = 0. For detectable secret sharing, we can
use d 2 [1, t/4] (packing O((d+ 1)n) secrets).

2. The dealer tries to share S(x, y) using a functionality called FShareAttempt (see Functional-
ity 4.4.1). At the end of this functionality, the sharing attempt might have the following
three outcomes: (a) discard – the dealer is discarded; (b) (detect,CONFLICTS) - a
large set of conflicts was detected and the protocol will be restarted; (c) proceed, in
which case all parties also receive a set CONFLICTS (of size at most t/2 � d) of parties
that still did not receive shares. All honest parties not in CONFLICTS hold shares that
define unique bivariate polynomial of the appropriate degree. See Section 4.4.1 for
further details.

3. The goal is now to let parties in CONFLICTS to learn their shares. Since the degrees of
the bivariate polynomial is not symmetric, we first reconstruct the g-share (of degree
t + d < 3t/2), and then the f -share (of degree 3t/2). Reconstruction of g-polynomial
is described in Section 4.4.2. The reconstruction of f -polynomial is similar, and is
discussed in Section 4.4.3.

We first present the different building blocks, and then in Section 4.4.4 we provide the
protocol (and functionality) for packed secret sharing, that uses those building blocks.

4.4.1 Sharing Attempt

We start with the description of the functionality.

Functionality 4.4.1: Sharing Attempt– FShareAttempt

The functionality is parameterized with the set of corrupted parties I ⇢ [n].

1. All the honest parties send to FShareAttempt a set ZEROS ⇢ [n]. For an honest dealer, it
holds that ZEROS ✓ I. FShareAttempt sends the set ZEROS to the adversary.

2. The dealer sends a polynomial S(x, y) to FShareAttempt. When either the polynomial is not
of degree at most 3t/2 in x and at most t + d in y, or for some i 2 ZEROS it holds that
S(x, i) 6= 0 or S(i, y) 6= 0, FShareAttempt executes Step 4c to discard the dealer.

3. For every i 2 I, FShareAttempt sends (S(x, i), S(i, x)) to the adversary. It receives back
a set CONFLICTS such that CONFLICTS \ ZEROS = ;.1 If the dealer is honest, then

1To ease understanding and notion, we sometimes expect to receive from the adversary some sets or
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CONFLICTS [ ZEROS ✓ I. If |CONFLICTS [ ZEROS| > t for a corrupt dealer, then
FShareAttempt executes Step 4c to discard the dealer.

4. Output:

(a) Detect: If |CONFLICTS| > t/2� d, then send (detect,CONFLICTS) to all parties.

(b) Proceed: Otherwise, send (proceed, S(x, i), S(i, y),CONFLICTS) for every i 62
CONFLICTS and (proceed,?,?,CONFLICTS) to every i 2 CONFLICTS.

(c) Discard: send discard to all parties.

Protocol 4.4.2: Sharing Attempt– ⇧ShareAttempt

Common input: The description of a field F, parameter d < t.
Input: All parties input ZEROS ⇢ [n]. The dealer inputs a polynomial S(x, y) with degree
3t/2 in x and t+d in y, such that for every i 2 ZEROS it holds that S(x, i) = 0 and S(i, y) = 0.
The protocol:

1. (Dealing shares): The dealer sends (fi(x), gi(y)) = (S(x, i), S(i, y)) to Pi for i 62 ZEROS.
Each Pi for i 2 ZEROS sets (fi(x), gi(y)) = (0, 0).

2. (Pairwise Consistency Checks):

(a) Each i 62 ZEROS sends (fi(j), gi(j)) to every j 62 ZEROS. Let (fji, gji) be the values
received by Pi from Pj.

(b) Each i 62 ZEROS broadcasts complaint(i, j, fi(j), gi(j)) if (a) fji 6= gi(j) or gji 6= fi(j)

for any j 62 ZEROS. For j 2 ZEROS, Pi broadcasts complaint(i, j, fi(j), gi(j)) if
fi(j) 6= 0 or gi(j) 6= 0.

3. (Conflict Resolution):

(a) The dealer sets CONFLICTS = ;. For each complaint(i, j, u, v) such that u 6= S(j, i)

or v 6= S(i, j), the dealer adds i to CONFLICTS. The dealer broadcasts CONFLICTS.

(b) Discard the dealer if any one of the following does not hold: (i) |ZEROS \
CONFLICTS| = ;; (ii) |CONFLICTS [ ZEROS|  t (iii) if some Pi broadcasted
complaint(i, j, ui, vi) and Pj broadcasted complaint(j, i, uj, vj) with ui 6= vj or vi 6= uj,
then CONFLICTS should contain either i or j (or both); (iv) if some Pi broadcasted
complaint(i, j, u, v) with j 2 ZEROS and u 6= 0 or v 6= 0, then i 2 CONFLICTS.

inputs that satisfy some conditions. We do not necessarily verify the conditions in the functionality, and
this is without loss of generality. For instance, in this step we require that the adversary sends a set
CONFLICTS such that CONFLICTS \ ZEROS = ;. Instead, we can enforce that this is the case by resetting:
CONFLICTS = CONFLICTS \ ZEROS.
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4. (Output): Each Pi outputs discard when the dealer is discarded and
(detect,CONFLICTS) when |CONFLICTS| > t/2 � d. Else, it outputs (proceed,?,?,
CONFLICTS) when i 2 CONFLICTS, and (proceed, fi(x), gi(y),CONFLICTS) otherwise.

Lemma 4.4.3. Protocol 4.4.2, ⇧ShareAttempt, perfectly-securely computes Functionality 4.4.1,

FShareAttempt, in the presence of a malicious adversary, controlling at most t < n/3.

Proof. The efficiency of the protocol can be verified by inspection. As for security, we prove
the statement separately for the case of an honest dealer and of a corrupted dealer.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z. Initialize CONFLICTS = ;.
2. Receive from the functionality the set ZEROS and a set of polynomials (fi(x), gi(y))i2I .

For every i 2 I \ ZEROS, send A the pair (fi(x), gi(y)) as coming from the dealer to Pi.

3. For every j 62 I, and i 62 ZEROS, simulate Pj privately sending to Pi the pair
(fj(i), gj(i)) = (gi(j), fi(j)).

4. Receive from the adversary values (fi,j, gi,j) for every i 2 I \ ZEROS and j 62 I. If
fi,j 6= fi(j) or gi,j 6= gi(j), then simulate Pj broadcasting complaint(j, i, gi(j), fi(j)).

5. If the adversary broadcasts complaint(i, j, ui, vi) with ui 6= fi(j) or vi 6= gi(j), then add i

to CONFLICTS.

6. Simulate the dealer broadcasting CONFLICTS, and send CONFLICTS to the functional-
ity.

7. Receive from the functionality the output. If (detect,CONFLICTS) received, then
send it to the adversary. Otherwise, for each i 2 I \ CONFLICTS, send
(proceed, fi(x), gi(y),CONFLICTS) and send (proceed,?,?,CONFLICTS) to each i 2
CONFLICTS.

It is clear that since the protocol as well as the simulation is deterministic, the adversary’s
view in the real execution and ideal execution are identical. It thus remains to be shown that
the output of the honest parties is the same in both these executions.

In the ideal execution, all the honest parties including the dealer hold the same set
ZEROS with which they invoke the functionality. Moreover, an honest dealer always sends
a valid (3t/2, t + d)-bivariate polynomial S(x, y) such that S(x, i) = 0 and S(i, y) = 0

holds for each i 2 ZEROS. Thus, it is guaranteed that the honest parties never out-
put discard. Consequently, each honest party Pi either outputs (detect,CONFLICTS) or
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(proceed, S(x, i), S(i, y),CONFLICTS). The latter holds since no honest party belongs to
CONFLICTS in the case of an honest dealer.

In the real execution, since the dealer is honest, it always holds a valid (3t/2, t + d)-
bivariate polynomial S(x, y) such that S(x, i) = 0 and S(i, y) = 0 holds for each i 2
ZEROS. Moreover an honest dealer is never in conflict with another honest party and hence
CONFLICTS may consist of only the corrupted parties. We first show that an honest dealer
is never discarded in a real execution. To that end, observe that a dealer is discarded if and
only if the following conditions hold:

1. |ZEROS \ CONFLICTS| 6= ;.
2. |CONFLICTS [ ZEROS| > t.

3. If some Pi broadcasted complaint(i, j, ui, vi) and Pj broadcasted complaint(j, i, uj, vj) with
ui 6= vj or vi 6= uj and i, j 62 CONFLICTS.

4. If some Pi broadcasted complaint(i, j, u, v) with j 2 ZEROS and u 6= 0 or v 6= 0 and
i 62 CONFLICTS.

It is clear than none of the above conditions hold in the case of an honest dealer, and
hence the honest parties do not output discard. We thus have the following two cases to
consider:

1. There exists an honest party which outputs (detect,CONFLICTS) in the real execu-
tion: In such a case, we claim that all the honest parties output (detect,CONFLICTS).
Note that an honest party outputs (detect,CONFLICTS) if and only if |CONFLICTS| >
t/2 � d. The set CONFLICTS is broadcasted by the dealer, hence all the honest parties
output (detect,CONFLICTS). Since the simulator emulates the interaction of the hon-
est parties with the adversary as in the real execution of the protocol, all the simulated
honest parties hold the same set CONFLICTS as the honest parties in the real execution.
In this case, the simulator invokes the functionality with this set, which in turn sends
(detect,CONFLICTS) to all the honest parties in the ideal execution, which is identical
to the output of the honest parties in the real world.

2. No honest party outputs (detect,CONFLICTS) in the real execution: In this case,
we show that each honest party outputs (proceed, S(x, i), S(i, y),CONFLICTS). Ob-
serve that since the set CONFLICTS is broadcasted by the dealer and no honest party
outputs detect, it must hold that |CONFLICTS|  t/2 � d. Further, the polynomials
S(x, i), S(i, y) held by a party Pi are sent by the dealer and do not change during the pro-
tocol execution. Moreover, as mentioned, an honest party never belongs to CONFLICTS.

96



Hence, each honest party outputs the polynomials consistent with the dealer’s polyno-
mial S(x, y). That is, each honest Pi outputs (proceed, S(x, i), S(i, y),CONFLICTS). As
before, since the simulator emulates the interaction of the honest parties with the ad-
versary as in the real execution of the protocol, all the simulated honest parties hold the
same set CONFLICTS as the honest parties in the real execution. The simulator invokes
the functionality with this set, causing all the honest parties Pi to output (proceed,

S(x, i), S(i, y),CONFLICTS) in the ideal execution. This is identical to the output of the
honest parties in the real world.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the set ZEROS. Simulate running the protocol on behalf
of the honest parties with ZEROS as input.

3. There are three cases to consider:

(a) Discard: If the output of some simulated honest party Pj is discard, then send
S(x, y) = yt+d+1 to the functionality together with CONFLICTS = ; (in that case,
S(x, y) is being rejected by the functionality and all honest parties output discard).

(b) Otherwise, if some honest party output (detect,CONFLICTS) then it must hold
that |CONFLICTS| > t/2�d. Send (S(x, y) = yt+d,CONFLICTS) to the functionality
. In that case, the functionality would output (detect,CONFLICTS) to all parties.

(c) Otherwise, let J be an arbitrary set of t + d + 1 honest parties that are not in
CONFLICTS. Note that since |CONFLICTS|  t/2� d we have at least n� t/2+ d �
2t+1+ t/2+d parties that are not in CONFLICTS and therefore at least 3t/2+d+1

honest parties not in CONFLICTS. Find the unique bivariate polynomial S(x, y) in
degree 3t/2 in x and t + d in y such that (a) S(x, j) = fj(x) for every j 2 J . Send
S(x, y) together with CONFLICTS to the functionality.

Since the simulator emulates the honest parties as in the real execution of the protocol,
the view of the adversary in the real and ideal execution is identical. It thus remains to show
that the output of the honest parties in the real world and ideal world is the same. There are
three cases to consider.

1. There exists an honest party that outputs discard in the real world: An honest party
outputs discard only if verification fails at Step 3b. In this case, all the corresponding
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messages are broadcasted and hence all the honest parties output ?. Since the real and
simulated executions are identical, all the simulated honest parties also output discard.
Thus the simulator invokes the functionality as in Step 3a of the simulation, causing all
the honest parties to receive discard in the ideal world.

2. There exists an honest party that outputs (detect,CONFLICTS) in the real world:
This implies that for the set CONFLICTS broadcasted by the dealer, it holds that
|CONFLICTS| > t/2 � d. Thus, each honest party outputs (detect,CONFLICTS) in the
real world. Given that the simulated and real executions are identical, the simulated
honest parties observe the same set CONFLICTS. The simulator in this case invokes
the functionality as in Step 3b of the simulation, causing the honest parties to output
(detect,CONFLICTS) in the ideal world.

3. No honest party outputs discard or (detect,CONFLICTS) in the real world: In this
case, it means that |CONFLICTS|  t/2 � d and parties output proceed in the real
execution. We want to show that all the honest parties j 62 CONFLICTS hold fi(x) and
gi(y) consistent with a unique (3t/2, t + d)-bivariate polynomial S(x, y). Towards that
end, observe that since |CONFLICTS|  t/2 � d holds, we have that at least 3t/2 +

d + 1 honest parties are not in CONFLICTS. Let J be an arbitrary set of t + d + 1

honest parties that are not in CONFLICTS, and reconstruct the (3t/2, t + d)-bivariate
polynomial S(x, y) from the set of degree-(3t/2) univariate polynomials (fj(x))j2J . We
claim that the polynomials of all honest parties, not belonging to CONFLICTS lie on that
polynomial.
To show that, we first claim that the g polynomial of each honest party Pj where j 62
CONFLICTS agrees with S. Specifically, we have two cases here:

• For each honest party j 2 ZEROS, it holds that gj(y) = S(j, y) = 0. Specifically,
for every k 2 J \ ZEROS it trivially holds that gj(k) = fk(j) = 0. And for every
k 2 J \ ZEROS, it must hold that gj(k) = fk(j) = 0, as otherwise Pk would have
raised a complaint and if the dealer does not include it in CONFLICTS then it would
have been discarded. Since gj(y) and S(j, y) are both degree-(t + d) polynomials
which agree in t+ d+ 1 points, gj(y) = S(j, y) = 0 holds.

• For each honest party j 62 ZEROS, it holds that gj(y) = S(j, y). Specifically, for
every k 2 J \ ZEROS it must hold that gj(k) = fk(j), as otherwise Pj would have
raised a complaint and thus j 2 CONFLICTS, which is a contradiction. Similarly,
for every k 2 J \ ZEROS it must hold that gj(k) = fk(j), as otherwise Pj and
Pk would have raised a joint complaint and thus either j 2 CONFLICTS or k 2
CONFLICTS, which is a contradiction. Finally, since gj(y) and S(j, y) are both
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degree-(t+ d) polynomials which agree in t+ d+ 1 points, gj(y) = S(j, y) holds.

Thus, for each honest j 62 CONFLICTS, it holds that gj(y) is consistent with S(x, y). Note
that since |CONFLICTS|  t/2� d, we have that the g polynomial of at least 3t/2+ d+1

honest parties is consistent with S. We now proceed to show that the f polynomial
of each honest party Pj where j 62 CONFLICTS agrees with S. For this, consider an
arbitrary set K of 3t/2+ 1 honest parties that are not in CONFLICTS. Then we have the
following,

• For each honest party j 2 ZEROS, it holds that fj(x) = S(x, j) = 0. Specifically,
for every k 2 K \ ZEROS it trivially holds that fj(k) = gk(j) = 0. And for every
k 2 K \ ZEROS, it must hold that fj(k) = gk(j) = 0, as otherwise Pk would have
raised a complaint and thus k 2 CONFLICTS, which is a contradiction. Since fj(x)

and S(x, j) are both degree-(3t/2) polynomials which agree in 3t/2 + 1 points,
fj(x) = S(x, j) = 0 holds.

• For each honest party j 62 ZEROS [ CONFLICTS, it holds that fj(x) = S(x, j).
Specifically, for every k 2 K \ ZEROS it must hold that fj(k) = gk(j), as otherwise
Pj would have raised a complaint and thus j 2 CONFLICTS, which is a contradic-
tion. Similarly, for every k 2 J\ZEROS it must hold that fj(k) = gk(j), as otherwise
Pj and Pk would have raised a joint complaint and thus either j 2 CONFLICTS

or k 2 CONFLICTS, which is a contradiction. Finally, since fj(x) and S(x, j)

are both degree-(3t/2) polynomials which agree in 3t/2 + 1 points, it holds that
fj(x) = S(x, j).

We conclude that if the honest parties output proceed, then each honest j 62 CONFLICTS

holds fj(x) and gj(y) consistent with a unique bivariate polynomial S(x, y). Moreover,
since the set CONFLICTS is broadcasted and it holds that |CONFLICTS|  t/2 � d,
each honest Pj with j 2 CONFLICTS outputs (proceed,?,?,CONFLICTS). Since the
simulated and real executions are identical, output of the simulated honest parties is
the same as the honest parties in the real execution. Thus, in this case, the simulator
invokes the functionality as in Step 3c of the simulation, which in turn ensures that the
output of the honest parties is identical in the real and ideal executions.

4.4.2 Reconstruction of g-Polynomials in CONFLICTS

When invoking this functionality, we are guaranteed that the shares of the honest parties de-
fine a unique bivariate polynomial, and that the number of parties that are not in CONFLICTS
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is at least (n� t/2)+d. The goal of this step is to reconstruct the g-polynomials for the parties
in CONFLICTS, while the possible outcomes are: (i) the dealer is discarded; (ii) the dealer
detects additional t/2 parties that it will make ZEROS in the next iteration; (iii) the protocol
succeeds and all honest parties hold gj(y) as output.

Functionality 4.4.4: Reconstruction of g-Polynomials – Frec-g

1. Input:1 All honest parties send to the functionality Frec-g the sets ZEROS ⇢ [n] and
CONFLICTS ⇢ [n], each honest j 62 CONFLICTS sends (fi(x), gi(y)). Let S(x, y) be the
unique bivariate polynomial of degree at most 3t/2 in x and at most t + d in y that
satisfies fj(x) = S(x, j) and gj(y) = S(j, y) for every j 62 CONFLICTS. Moreover, it
holds that n� |CONFLICTS| � 2t+ 1 + t/2 + d.

2. Frec-g sends (ZEROS,CONFLICTS, (S(x, i), S(i, y))i2I) to the adversary. If the dealer is
corrupted, then Frec-g sends S(x, y) as well.

3. It receives back from the adversary a message M .

4. Output:

(a) If M = discard and the dealer is corrupted, then Frec-g sends discard to all
parties.

(b) If M = (detect,Bad) with Bad \ (ZEROS [ CONFLICTS) = ; and |Bad| > t/2, and
with Bad ✓ I in the case of an honest dealer, then Frec-g sends (detect,Bad) to all
parties.

(c) If M = proceed, then Frec-g sends:
for each j 2 CONFLICTS the output (proceed,?, S(j, y)), and
for each j 62 CONFLICTS send (proceed, S(x, j), S(j, y)).

Protocol 4.4.5: Reconstruct g-Polynomials in CONFLICTS – ⇧rec-g

Input: All parties hold the same set CONFLICTS and ZEROS. Each honest party not in
CONFLICTS holds a pair of polynomials (fi(x), gi(y)), and it is guaranteed that all the shares
of honest parties lie on the same bivariate polynomial S(x, y) with degree at most 3t/2 in x

and t+ d in y.
1If not all honest parties send shares that lie on the same bivariate polynomial, or not all send inputs that

satisfy the input assumptions as described, then no security is guaranteed. This can be formalized as follows.
If the input assumptions do not hold, then the functionality sends to the adversary all the inputs of all honest
parties, and lets the adversary to singlehandedly determine all outputs of all honest parties. This makes the
protocol vacuously secure (since anything can be simulated).

100



The protocol:

1. Every party sets HAVE-SHARES = [n] \ (ZEROS [ CONFLICTS).

2. For every j 2 CONFLICTS:

(a) Each party Pi for i 2 HAVE-SHARES sends (i, fi(j)) to Pj.

(b) Let (i, ui) be the value Pj received from Pi. Moreover, for every i 2 ZEROS, con-
sider (i, ui) with ui = 0. Given all (i, ui)i 62CONFLICTS, Pj looks for a codeword of a
polynomial of degree t + d with a distance of at most t/2 from all the values it
received (see Corollary 4.3.2, item 1). If there is such codeword, set gj(y) to be the
unique Reed-Solomon reconstruction. If there is no such a unique codeword, then
Pj broadcasts complaint(j) and every party Pi for i 2 HAVE-SHARES broadcasts
reveal(i, j, fi(j)).

3. The dealer sets Bad = ;. For each reveal(i, j, u) message broadcasted, the dealer verifies
that u = fi(j). If not, then it adds i to Bad. The dealer broadcasts Bad.

4. The parties go to Step 6a if one of the following is not true: (i) |ZEROS[CONFLICTS[
Bad|  t; (ii) Bad ⇢ HAVE-SHARES. The parties go to Step 6b if |Bad| > t/2.

5. Otherwise, for every j 2 CONFLICTS, if complaint(j) was broadcasted, then the parties
consider all the points Rj = {(i, ui)} such that reveal(i, j, ui) was broadcasted in Step 2b,
and i 2 HAVE-SHARES \ Bad, or ui = 0 if i 2 ZEROS. They verify if Rj defines a unique
polynomial of degree t+d. If not, they go to Step 6a. Otherwise, Pj sets gj(y) to be that
unique polynomial.

6. Output:

(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Proceed: Each party j 2 CONFLICTS outputs (proceed,?, gj(y)). All other parties
Pj with j 62 CONFLICTS output (proceed, fj(x), gj(y)).

Lemma 4.4.6. Protocol 4.4.5, ⇧rec-g, perfectly securely computes Functionality 4.4.4, Frec-g,

in the presence of a malicious adversary, controlling at most t < n/3. The protocol requires the

transmission of O(n2 log n) bits over point-to-point channels, and each party broadcasts at most

O(n log n) bits.

Proof. We prove the statement separately for the case of an honest dealer and of a corrupted
dealer.
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The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z. Set HAVE-SHARES = [n] \ (ZEROS [
CONFLICTS).

2. Receive from the functionality the sets ZEROS,CONFLICTS and the polynomials
S(x, i), S(i, y) for every i 2 I.

3. Set Bad = ;. For every i 2 CONFLICTS: (note that since the dealer is honest, then
I ✓ CONFLICTS. Thus, any such element is also in I)

(a) Simulate party Pj, j 2 HAVE-SHARES sending (j, i, fj(i)) = (j, i, gi(j)) to the ad-
versary.

(b) If Pi broadcasts complaint(i) then simulate party Pj, for j 2 HAVE-SHARES broad-
casting reveal(j, i, gi(j)).

(c) Listen to all broadcasts reveal(i0, i, ui) that the adversary sends for some i0 2
HAVE-SHARES \ I. If ui 6= gi(i0), then add i0 to Bad.

4. Simulate the dealer broadcasting Bad. If |Bad| > t/2, then send (detect,Bad) to the
functionality and halt.

5. Otherwise, send proceed to the functionality , and halt.

When the dealer is honest, we have that CONFLICTS ✓ I. Moreover, the protocol is deter-
ministic, and so is the simulator. By inspection, the view of the adversary in the real and ideal
executions is identical. We now show that the output of honest parties is identical in the real
and ideal world.

In the real world, first note that an honest dealer is discarded if and only if one of the
following conditions holds:

1. |ZEROS [ CONFLICTS [ Bad| > t.

2. Bad 6⇢ HAVE-SHARES.

3. Rj does not define a unique polynomial of degree-(t+ d).

Note that for an honest dealer, an honest party never belongs to Bad and we have that
ZEROS ✓ I and CONFLICTS ✓ I. Hence, it is clear that none of the above conditions
hold and the dealer is not discarded. We thus have the following two cases:

1. There exists an honest party that outputs (detect,Bad): In this case, it must hold
that |Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it
must hold that all the honest parties output (detect,Bad). Since the simulator emu-
lates the interaction of the honest parties with the dealer as in the real execution, all
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the simulated honest parties hold the same set Bad. In that case, the simulator sends
(detect,Bad) to the functionality , causing all the honest parties in the ideal world to
output the same.

2. There exists an honest party that outputs proceed: This implies that |Bad|  t/2.
Since this set was broadcasted by the dealer, all the honest parties hold the same set.
Moreover, an honest party never belongs to CONFLICTS. Thus, we have that all the
honest parties Pj output (proceed, fj(x), gj(y)), where fj(x) and gj(y) are consistent
with a bivariate polynomial S(x, y) by our input assumption. Since the simulator em-
ulates the interaction of the honest parties with the dealer as in the real execution, all
the simulated honest parties hold the same set Bad. In this case, the simulator sends
proceed to the functionality , causing all the honest parties in the ideal world to output
proceed. This is identical to the output of the honest parties in the real world.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z. Set HAVE-SHARES = [n] \ (ZEROS [
CONFLICTS).

2. Receive from the functionality the sets ZEROS,CONFLICTS and the bivariate polynomial
S(x, y).

3. Simulate the protocol where each honest party Pj with j 62 CONFLICTS starts with input
S(x, j), S(j, y), and all parties have the same sets CONFLICTS,ZEROS.

4. Send the message M to the functionality according to the following cases (the proof
will show that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send
(detect,Bad) to the functionality and halt.

(c) If the output of some simulated honest party is proceed, then send proceed to the
functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real
honest parties in the real execution, and since the protocol is deterministic, we get that the
view of the adversary is exactly the same in the real and in the ideal.

We now turn to show that the outputs of all honest parties is the same in the real and in
the ideal, conditioned on the view of the adversary.
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1. There exists an honest party that outputs discard in the real world: An honest
party outputs discard in one of the following cases:

(a) The dealer broadcasted Bad such that (i) |ZEROS [ CONFLICTS [ Bad| > t; or (ii)
Bad 6⇢ HAVE-SHARES. Since all honest parties hold the same sets CONFLICTS and
ZEROS, and since Bad is broadcasted, we get that all honest parties would output
discard.

(b) The dealer broadcasted Bad with |Bad|  t/2, and for which |ZEROS[CONFLICTS[
Bad|  t and Bad ⇢ HAVE-SHARES. Moreover, some honest party j 2 CONFLICTS

broadcasted reveal(j), and when considering all points Rj = {(i, ui)} such that
reveal(i, j, ui) was broadcasted in Step 2b, and i 2 HAVE-SHARES \ Bad, or ui = 0

if i 2 ZEROS, it holds that Rj does not define a unique polynomial of degree t+ d.
Since the set Rj is public, all honest parties will identify that there is no unique
reconstruction, and all would output discard.

In both cases, in the ideal execution the simulator also sends discard to the function-
ality and all honest parties output discard in the ideal execution.

2. There exists an honest party that outputs (detect,Bad). An honest party outputs
(detect,Bad) if the dealer broadcast Bad such that |ZEROS [ CONFLICTS [ Bad|  t,
and Bad ⇢ HAVE-SHARES. Moreover, it holds that |Bad| > t/2. Since the message
Bad is broadcast, then all honest parties would output (detect,Bad). In the simu-
lated execution we will have that the simulator sends to the functionality the message
(detect,Bad), and all honest parties output (detect,Bad).

3. There exists an honest party that outputs proceed. First, if no honest party out-
puts discard and (detect,Bad), then there must be an honest party in HAVE-SHARES

that outputs proceed. We now claim that all honest parties not in CONFLICTS

output (proceed, S(x, j), S(j, y)), and all honest parties in CONFLICTS outputs
(proceed,?, S(j, y)), where S(x, y) is the bivariate polynomial that is interpolated by
the input shares of the honest parties and is guaranteed to exist under our input as-
sumption.

(a) All honest parties Pj with j 62 CONFLICTS output (proceed, S(x, j), S(j, y)).
Since an honest party did not output discard and (detect,Bad), we have that
|ZEROS [ CONFLICTS [ Bad|  t, Bad ⇢ HAVE-SHARES, and |Bad|  t/2. More-
over, for every j 2 CONFLICTS that broadcast complaint(j), the points Rj that were
broadcasted (excluding the parties in Bad) define a unique polynomial. Since
all the messages are broadcast, if one honest party Pk not in CONFLICTS out-

104



put (proceed, S(x, k), S(k, y)) then all honest parties Pj not in CONFLICTS have
the exact same public view and also output (proceed, S(x, j), S(j, y)). Note that
the honest parties Pj not in CONFLICTS hold their respective S(x, j) and S(j, y)

polynomials consistent with a bivariate polynomial S(x, y) according to our input
assumptions.

(b) Each honest party Pj with j 2 CONFLICTS outputs (proceed,?, S(j, y)). Here
we have two sub-cases to consider. First, if in Step 2b the party Pj has a unique
reconstruction, then the reconstruction must be S(j, y). Specifically, let gj(y) be
the unique reconstructed polynomial of Pj. It must hold that S(j, k) = gj(k) for at
least t + 1 + t/2 + d values of k, since each honest party not in CONFLICTS sent
to Pj a point on S(x, y). Since gj(y) is of degree t + d, and since S(j, y) is also of
degree t+ d, we must have that gj(y) = S(j, y).
Second, if in Step 2b the party Pj did not have a unique reconstruction, then it
broadcast reveal(j). It will receive its polynomial only in Step 5. There must be a
unique reconstruction, as otherwise no honest party would have output proceed.
We now claim that the unique reconstruction must be S(j, y). As before, all honest
parties broadcast values on the polynomial S(j, y). The reconstruct polynomial
therefore must agree with S(j, y) on at least t+1+ t/2+ d points, and since this is
a polynomial of degree t + d, the two polynomial must be identical. We conclude
that Pj outputs (proceed,?, S(j, y)).

To conclude, in the simulated execution the simulator would submit to the func-
tionality the message proceed. Each honest party j 2 CONFLICTS would out-
put (proceed,?, S(j, y)), whereas each honest party j 62 CONFLICTS would output
(proceed, S(x, j), S(j, y)). This is exactly as in the real execution.

4.4.3 Reconstruction of f -Polynomials in CONFLICTS

The goal of this step is to make each party in CONFLICTS to receive its f -share. This is
performed in a similar manner to that of reconstruction of g. This time, all honest parties
hold shares of g, and thus each party in CONFLICTS receives at least 2t+ 1 correct values on
each its f polynomial. The f -polynomial is of degree 3t/2, and therefore we fail to reconstruct
if the adversary introduces more than t/2 errors. In that case, we will have detection, in a
similar manner to the reconstruction of g. The full details of the functionality (denoted by
Frec-f), the protocol (denoted by ⇧rec-f), and the proof are given below.
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Functionality 4.4.7: Reconstruction of f -Polynomials – Frec-f

1. Input: All honest parties send to the functionality the sets ZEROS ⇢ [n] and
CONFLICTS ⇢ [n], each honest party Pj for j 62 (CONFLICTS [ I) sends (fj(x), gj(y)).
Each honest Pj for j 2 CONFLICTS sends gj(y). Let S(x, y) be the unique bivariate poly-
nomial of degree 3t/2 in x and t+d in y that satisfies fj(x) = S(x, j) and gj(y) = S(j, y)

for every j 62 CONFLICTS and gj(y) = S(j, y) for every j 2 CONFLICTS. Moreover, it
holds that n� |CONFLICTS| � 2t+ 1 + t/2 + d.

2. Send (ZEROS,CONFLICTS, (S(x, i), S(i, y))i2I) to the adversary. If the dealer is cor-
rupted, then send also S(x, y).

3. Receive back from the adversary a message M .

4. Output:

(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with Bad \ ZEROS = ; and |Bad| > t/2, then send
(detect,Bad) to all parties.

(c) If M = proceed then send for each j the output (proceed, S(x, j), S(j, y)).

Protocol 4.4.8: Reconstruct f -Polynomials in CONFLICTS – ⇧rec-f

• Input: All parties hold the same set CONFLICTS and ZEROS. Each honest party not
in CONFLICTS holds a pair of polynomials (fi(x), gi(y)), and each honest party in
CONFLICTS holds the polynomial gi(y). It is guaranteed that all the shares of hon-
est parties lie on the same bivariate polynomial S(x, y) with degree at most 3t/2 in x

and t+ d in y.

• The protocol:

1. Set HAVE-SHARES = [n] \ ZEROS.

2. For every j 2 CONFLICTS:
(a) Each party Pi for i 2 HAVE-SHARES sends (i, gi(j)) to Pj.

(b) Let (i, ui) be the value Pj received from Pi. Moreover, for every i 2 ZEROS,
consider (i, ui) with ui = 0. Given all (i, ui), Pj looks for a codeword of distance
at most t/2 from all the values it received. If there is such a codeword, set fj(x)
to be the unique Reed-Solomon reconstruction (see Corollary 4.3.3, item 1). If
there is no such a unique codeword, then Pj broadcasts complaint(j) and every
party Pi for i 2 HAVE-SHARES broadcasts reveal(i, j, gi(j)).
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3. The dealer sets Bad = ;. For each reveal(i, j, u) message broadcasted, the dealer
verifies that u = gi(j). If not, then it adds i to Bad. The dealer broadcasts Bad.

4. Verify that (i) |ZEROS [ CONFLICTS [ Bad|  t; and (ii) Bad ⇢ HAVE-SHARES.
Otherwise, discard – go to Step 7a.

5. If |Bad| > t/2 then there is a large detection – go to Step 7b.

6. Otherwise, for every j 2 CONFLICTS, if complaint(j) was broadcasted, then con-
sider all the points Rj = {(i, ui)} such that reveal(i, j, ui) was broadcasted in
Step 2b, and i 2 HAVE-SHARES \ Bad, or ui = 0 if i 2 ZEROS. Verify that Rj

defines a unique polynomial of degree 3t/2. If not, go to Step 7a. Otherwise, Pj

sets fj(x) to be that unique polynomial.

7. Output:
(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Proceed: Each party j outputs (proceed, fj(x), gj(y)).

Lemma 4.4.9. The Protocol ⇧rec-f (Protocol 4.4.8), perfectly securely computes the Frec-f func-

tionality (Functionality 4.4.7), in the presence of a malicious adversary, controlling at most

t < n/3.

Proof. We show the case of an honest dealer and a corrupted dealer separately.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z. Set HAVE-SHARES = [n] \ ZEROS.

2. Receive from the functionality the sets ZEROS,CONFLICTS and the polynomials
S(x, i), S(i, y) for every i 2 I.

3. Set Bad = ;. For every i 2 CONFLICTS: (note that since the dealer is honest, then
CONFLICTS ✓ I. Thus, any such element is also in I)

(a) Simulate party Pj, j 2 HAVE-SHARES sending (j, i, gj(i)) = (j, i, fi(j)) to the ad-
versary.

(b) If Pi broadcasts complaint(i) then simulate party Pj, for j 2 HAVE-SHARES broad-
casting reveal(j, i, fi(j)).

(c) Listen to all broadcasts reveal(i0, i, ui) that the adversary sends for some i0 2
HAVE-SHARES \ I. If ui 6= fi(i0), then add i0 to Bad.
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4. Simulate the dealer broadcasting Bad. If |Bad| > t/2, then send (detect,Bad) to the
functionality and halt.

5. Otherwise, send proceed to the functionality , and halt.

The protocol as well as the simulator is deterministic. Hence, it can be easily observed that
the view of the adversary in the real and ideal executions is identical. It remains to show that
the output of honest parties is identical in the real and ideal world.

Towards that end, note that in the real world, an honest dealer is discarded if and only if
one of the following conditions holds:

1. |ZEROS [ CONFLICTS [ Bad| > t.

2. Bad 6⇢ HAVE-SHARES.

3. Rj does not define a unique polynomial of degree-3t/2.

Note that for an honest dealer, an honest party never belongs to Bad and we have that
ZEROS ✓ I and CONFLICTS ✓ I. It is clear that none of the above conditions hold and
the dealer is not discarded. We thus have the following two cases:

1. There exists an honest party that outputs (detect,Bad): In this case, it must hold
that |Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it
must hold that all the honest parties output (detect,Bad). The simulator emulates
the interaction of the honest parties with the dealer as in the real execution, hence all
the simulated honest parties hold the same set Bad. In that case, the simulator sends
(detect,Bad) to the functionality , causing all the honest parties in the ideal world to
output the same.

2. There exists an honest party proceed: This implies that |Bad|  t/2. Since this set
was broadcasted by the dealer, all the honest parties hold the same set. Moreover, an
honest party never belongs to CONFLICTS. Thus, we have that all the honest parties
Pj output (proceed, fj(x), gj(y)) where fj(x) and gj(y) are consistent with the bivariate
polynomial S(x, y) as guaranteed by our input assumption. As mentioned, the simulator
emulates the interaction of the honest parties with the dealer as in the real execution,
hence all the simulated honest parties hold the same set Bad. In this case, the simulator
sends proceed to the functionality , causing all the honest parties Pj in the ideal world
to output (proceed, S(x, j), S(j, y)). This is identical to the output of the honest parties
in the real world.

The case of a corrupted dealer. The simulator is as follows:
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1. Invoke the adversary A with an auxiliary input z. Set HAVE-SHARES = [n] \ ZEROS.

2. Receive from the functionality the sets ZEROS,CONFLICTS and the bivariate polynomial
S(x, y).

3. Simulate the protocol where each honest party Pj with j 62 CONFLICTS starts with
input S(x, j), S(j, y), each honest Pj with j 2 CONFLICTS starts with input S(j, y) and
all parties have the same sets CONFLICTS,ZEROS.

4. Send the message M to the functionality according to the following cases (the proof
will show that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send
(detect,Bad) to the functionality and halt.

(c) If the output of some simulated honest party is proceed, then send proceed to the
functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real
honest parties in the real execution, and since the protocol is deterministic, we get that the
view of the adversary is exactly the same in the real and in the ideal. Thus it remains to be
shown that the output of the honest parties is identical in the real and ideal executions. We
have the following cases to consider:

1. There exists an honest party that outputs discard in the real world: Observe that
an honest party outputs discard if and only if one of the following conditions holds.

(a) The dealer broadcasted Bad such that either (i) |ZEROS[CONFLICTS[Bad| > t; or
(ii) Bad 6⇢ HAVE-SHARES. Since all honest parties hold the same sets CONFLICTS
and ZEROS, and the set Bad is broadcasted, we get that all honest parties output
discard.

(b) The dealer broadcasted Bad with |Bad|  t/2, and for which |ZEROS[CONFLICTS[
Bad|  t and Bad ⇢ HAVE-SHARES. Moreover, some honest party j 2 CONFLICTS

broadcasted reveal(j), and when considering all points Rj = {(i, ui)} such that
reveal(i, j, ui) was broadcasted in Step 2b, and i 2 HAVE-SHARES \ Bad, or ui = 0

if i 2 ZEROS, it holds that Rj does not define a unique polynomial of degree 3t/2.
Since the set Rj is public, all honest parties will identify that there is no unique
reconstruction, and all would output discard.

Since the simulated honest parties have the same view as the honest parties, the simu-
lated honest parties also output discard. In this case, the simulator sends discard to
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the functionality causing all the honest parties to output discard in the ideal execution.

2. There exists an honest party that outputs (detect,Bad) in the real world: In this
case, it must hold that |ZEROS [ CONFLICTS [ Bad|  t and Bad ⇢ HAVE-SHARES.
Moreover, it must hold that |Bad| � t/2. Since the corresponding set Bad is broadcast,
all the honest parties hold the same set and hence output (detect,Bad). The simulated
honest parties hold an identical output, and thus the simulator sends (detect,Bad) to
the functionality , which in turn sends the same to all the honest parties in the ideal
execution.

3. There exists an honest party that outputs proceed in the real world: In this case,
we show that each honest Pj outputs (proceed, S(x, j), S(j, y)) where S(x, y) is the
bivariate polynomial that is interpolated from the input shares of the honest parties and
is guaranteed to exist under our input assumption. We consider the following two cases.

(a) Each honest Pj with j 62 CONFLICTS outputs (proceed, S(x, j), S(j, y)): Since
there exists an honest party that does not output discard or (detect,Bad), it must
hold that |ZEROS[ CONFLICTS[ Bad|  t, Bad ⇢ HAVE-SHARES and |Bad|  t/2.
Moreover, for every j 2 CONFLICTS which broadcast complaint(j), the points Rj

which were broadcasted (excluding the points of parties in Bad) define a unique
degree-3t/2 polynomial. Since all the corresponding messages were broadcast,
all the honest parties not in CONFLICTS have the same view and hence output
(proceed, S(x, j), S(j, y)), where the polynomials S(x, j) and S(j, y) are consistent
with S(x, y) and held by the parties not in CONFLICTS according to our input
assumption.

(b) Each honest Pj with j 2 CONFLICTS outputs (proceed, S(x, j), S(j, y)): Here we
have two sub-cases to consider. First, note that if Pj has a unique reconstruction
in Step 2b, then the reconstruction must be S(x, j). Specifically, let fj(x) be the
unique degree-3t/2 reconstructed polynomial of Pj. It must hold that S(k, j) =

fj(k) for at least 2t+1 values of k, since each honest party Pk sent to Pj a point on
S(x, j). Since both fj(x) and S(x, j) are of degree 3t/2, we have that fj(x) = S(x, j)

holds.
Second, if in Step 2b the party Pj did not have a unique reconstruction, then it
must be that Pj broadcast reveal(j). It will thus receive its polynomial only in
Step 6. In this case, it must hold that there is a unique reconstruction of degree-
3t/2 polynomial from the publicly revealed points in Rj which were broadcasted
(excluding the points of parties in Bad), as otherwise no honest party would have
output proceed. We now claim that the unique reconstruction must be S(x, j). As
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before, all honest parties broadcast values on the polynomial S(x, j). Moreover,
since |Bad|  t/2 (otherwise parties would output (detect,Bad)), it must hold
that the reconstructed polynomial agrees with S(x, j) on at least 3t/2 + 1 points
of the honest parties. Since both the reconstructed polynomial and S(x, j) are of
degree 3t/2, the two polynomial must be identical. We conclude that Pj outputs
(proceed, S(x, j), S(j, y)), where it is guaranteed to hold S(j, y) due to our input
assumption.

Consequently, in the simulated execution the simulator sends proceed to the function-
ality. Each honest party j thus outputs (proceed, S(x, j), S(j, y)) in the ideal execution.
This is exactly as in the real execution.

4.4.4 Putting Everything Together: Packed Secret Sharing

We view a list of (t/2 + 1)(d+ 1) secrets SECRETS as a (t/2 + 1)⇥ (d+ 1) matrix.

Functionality 4.4.10: Packed Secret Sharing – FPSS

The functionality is parameterized by the set of corrupted parties I ✓ [n].

• Input: All parties input a set ZEROS ⇢ [n] such that |ZEROS|  t. If the dealer is honest
then it is guaranteed that ZEROS ✓ I.

• Honest dealer: The dealer sends SECRETS to FPSS. The functionality sends ZEROS

to the adversary, which replies with (fi(x), gi(y))i2I under the constraint that fi(x) =

gi(y) = 0 for every i 2 ZEROS. The functionality chooses a random bivariate polynomial
S(x, y) of degree 3t/2 in x and t + d in y under the constraints that (i) SECRETS is
embedded in S (see Section 4.3 for the meaning of embedding); (ii) S(x, i) = fi(x) for
every i 2 I; (iii) S(i, y) = gi(y).

• Corrupted dealer: The functionality sends ZEROS to the adversary, which replies with
S(x, y). FPSS that verifies that S(x, y) is of degree 3t/2 in x and degree t+d in y, and that
for every i 2 ZEROS it holds that fi(x) = gi(y) = 0. If not, FPSS replaces S(x, y) = ?.

• Output: FPSS sends to each party Pj the pair of polynomials S(x, j), S(j, y).

We claim that there is always a bivariate polynomial that can be reconstructed. Specifically,
consider for simplicity the case where |I| = t:

1. A bivariate polynomial of degree 3t/2 in x and degree t + d in y is determined by
(3t/2 + 1)(t+ d+ 1) values.
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2. The adversary sends t pairs of polynomials of degree 3t/2 and t+ d. The f polynomials
define t(3t/2+1) values. Each g polynomial is already determined in t coordinates, and
therefore we have a total of t(t+ d+ 1� t) = t(d+ 1).

3. SECRETS determines (t/2 + 1) · (d+ 1) values.

Therefore, the number of constraints that we have is (t/2 + 1)(d+ 1) + t(3t/2 + 1) + t(d+ 1),
which is exactly (3t/2+1)(t+d+1), the total number of variables in the bivariate polynomial.

Protocol 4.4.11: Packed Secret Sharing in the (FShareAttempt,Frec-g,Frec-f)-hybrid model –
⇧PSS

Input: The dealer holds SECRETS, and all honest parties hold the same set ZEROS.
The protocol:

1. Dealing the shares:

(a) The dealer chooses a random bivariate polynomial S(x, y) of degree at most 3t/2
in x and degree t + d in y that embeds SECRETS, under the constraint that for
every i 2 ZEROS it holds that S(x, i) = 0 and S(i, y) = 0.

(b) All parties invoke Functionality 4.4.1, FShareAttempt, where the dealer inputs S(x, y)

and all parties input ZEROS:
i. If the output is discard, then proceed to Step 4a.

ii. If the output is (detect,CONFLICTS) then set ZEROS = ZEROS[CONFLICTS.
If |ZEROS| > t then proceed to Step 4a. Otherwise, go back to Step 1a.

iii. If the output is (proceed, fi(x), gi(y),CONFLICTS), then proceed to the next
step. Note that it must hold that (a) for parties i 2 CONFLICTS, fi(x) =

gi(y) = ? and (b) n� |CONFLICTS| � n� (t/2� d).

2. Reconstruct the g-polynomials: The parties invoke Functionality 4.4.4, Frec-g, where
each party Pi inputs (ZEROS,CONFLICTS, fi(x), gi(y)).

(a) If the output is discard, then proceed to Step 4a.

(b) If the output is (detect,Bad) then set ZEROS = ZEROS[Bad. If |ZEROS| > t then
discard and proceed to Step 4a. Otherwise, go back to Step 1a.

(c) Otherwise, the output is (proceed, fi(x), gi(y)) where every party Pi with i 2
CONFLICTS has gi(y) 6= ?, then proceed to the next step.

3. Reconstruct the f -polynomials: The parties invoke Functionality 4.4.7, Frec-f,
where each party Pi inputs (ZEROS,CONFLICTS, fi(x), gi(y)). Note that for parties in
CONFLICTS it holds that fi(x) = ?.

(a) If the output of the functionality is discard, then proceed to Step 4a.
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(b) If the output is (detect,Bad) then set ZEROS = ZEROS[Bad. If |ZEROS| > t then
discard and go to Step 4a. Otherwise, go back to Step 1a.

(c) Otherwise, let (proceed, fi(x), gi(y)) be the output, where now all parties have
fi(x) 6= ? and gi(y) 6= ?. Go to Step 4b.

4. Output:

(a) Discard: All parties output ?.

(b) Successful: Output fi(x), gi(y).

Lemma 4.4.12. Let t < n/3 and d  t/4. Protocol 4.4.11, ⇧PSS, perfectly securely com-

putes Functionality 4.4.10, FPSS, in the (FShareAttempt,Frec-g,Frec-f)-hybrid model (Functional-

ity 4.4.1,4.4.4,4.4.7)), in the presence of a malicious adversary, controlling at most t < n/3.

Proof. We separate between the case of an honest dealer and a corrupted dealer.

The case of an honest dealer. The simulator is as follows:

1. Invoke A on an auxiliary input z.

2. Receive from the functionality the set ZEROS.

3. Set SECRETS arbitrarily as input (say, all zeros) and run the protocol where the dealer
holds SECRETS and all other parties have ZEROS as input. In particular, simulate all
inner functionalities as a functionality would run them.

4. Let S(x, y) be the input of the simulated honest dealer used and sent to the simulated
Functionality 4.4.1 in the last iteration (by iteration, we mean running the protocol
from Step 1a until restarting or concluding the protocol). Send S(x, i), S(i, y) to the
functionality for every i 2 I.

We now show that the output of the real and ideal executions are the same. Towards that
end, consider the following games:

• Game1: This is the real execution. We run the protocol where the honest dealer uses
SECRETS as its input. The output of this experiment is the view of the adversary and
the output of all honest parties in the protocol.

• Game2: We run a modified ideal model, in which the simulator receives the same
SECRETS as in Game1 as an advice, and the dealer uses SECRETS as its input to the
functionality. The simulator uses SECRETS as its input instead of all zeros as the de-
scription of S. The simulator runs the protocol where the input of the honest dealer is
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SECRETS, exactly as the real execution in Game1. We claim that the dealer is never dis-
carded. Then, the simulator sends to the functionality the output shares of the corrupted
parties in the simulated execution. The functionality chooses some random polynomial
S(x, y) that agrees with the output shares of the adversary and SECRETS, and gives
the honest parties their shares on that polynomial. The output of this experiment is
the view of the adversary as determined by the simulator, and the output of all honest
parties (equivalent to S(x, y)).

• Game3: This is the ideal model. In particular, the simulator receives no advice, and runs
as in Game2, but with input SECRETS = 0.

We show that all the outputs of all games are identically distributed.

The outputs of Game1 and Game2 are identically distributed. The simulator in Game2

runs the exact same protocol as the real execution in Game1, and therefore the view of the
adversary is identical in both executions. We now turn to the output of the honest parties.
We claim that in that execution, the honest dealer is never discarded. Specifically:

1. The honest dealer chooses a bivariate polynomial that always satisfies the conditions of
Functionality 4.4.1 and therefore that functionality never returns discard. Moreover,
CONFLICTS ✓ I, and therefore we never reach |ZEROS| > t and the dealer is never
discarded. Furthermore, we can reboot the protocol only a constant number of times
(see Corollary 4.4.15).

2. When invoking Functionality 4.4.4 we have that the shares of the honest parties satisfy
the input assumption of the functionality. Moreover, Bad ⇢ I, and so again Bad [
CONFLICTS ✓ I, and so the dealer is not discarded. Again, we can reboot the protocol
only a constant number of times (see Corollary 4.4.15).

3. Finally, when invoking Functionality 4.4.7 we have that the shares of the honest parties
satisfy the input assumption of the functionality. From a similar reasons as above, the
output would be shares of the reconstructed polynomial, which is the same polynomial
as the dealer used in the beginning of the iteration as its input to FShareAttempt.

We conclude that when the dealer is honest, all parties output shares on the same bivariate
polynomial, which is a polynomial S(x, y) that the dealer used in that iteration. In Game1,
the output of all honest parties is shares on that polynomial. In Game2, the simulator sends
the shares (S(x, i), S(i, y))i2I to the functionality, the functionality samples a new polynomial
S 0(x, y) under the constraints that S 0(x, i) = S(x, i) and S 0(i, y) = S(i, y) for every i 2 I, and
SECRETS is embedded in S 0(x, y). The output of all honest parties is then equivalent to just
outputting S 0(x, y). We claim that the output is identical via the following claim:
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Claim 4.4.13. Let SECRETS be any arbitrary sets of (t/2 + 1)(d + 1) field elements, and let

I ⇢ [n] be a set of cardinality at most t. Then, for every ZEROS ✓ I the output of the following

two distributions is identical:

Process I
• Choose a random (3t/2, t + d)-

bivariate polynomial S(x, y) that

embeds SECRETS, such that for

every i 2 ZEROS it holds that

S(x, i) = S(i, y) = 0.

• Output S(x, y).

Process II
• Choose a random (3t/2, t + d)-

bivariate polynomial S(x, y) that

embeds SECRETS, such that for

every i 2 ZEROS it holds that

S(x, i) = S(i, y) = 0.

• Choose a random (3t/2, t+d)-bivariate

polynomial S 0(x, y) that embeds

SECRETS such that for every i 2 I

it holds that S 0(x, i) = S(x, i) and

S 0(i, y) = S(i, y).

• Output S 0(x, y).

Proof. For the case of |I| = t, we show that S 0(x, y) = S(x, y). Let S(x, i) = fi(x) and
S(i, y) = gi(y).

We claim that there is a unique polynomial S 0(x, y) that can embed SECRETS and satisfies
for every i 2 I the conditions S 0(x, i) = fi(x) and S 0(i, y) = gi(y). Specifically, reconstruct
the polynomials g0(y), . . . , g�t/2(y) of degree t + d each as follows: g�a(�b) = SECRETS(a, b)

for a 2 {0, . . . , t/2} and b 2 {0, . . . , d}. Moreover, for every a 2 {0, . . . , t/2} and i 2 I we set
g�a(i) = fi(�a). This defines t+d+1 points on each one of the polynomials g0(y), . . . , g�t/2(y),
and uniquely define polynomials of degree t + d. Now, from Lagrange interpolation there
exists a unique bivariate polynomial S 0(x, y) of degree 3t/2 in x and t + d in y that satisfies
S 0(a, y) = g�a(y) for every a 2 {0, . . . , t/2} and S 0(i, y) = gi(y) for every i 2 I. Note that those
are t/2 + t+ 1 polynomials of degree t+ d each, and therefore uniquely define S 0(x, y). This
polynomial embeds SECRETS, agrees with gi(y) for every i 2 I, and also satisfies S 0(x, i) =

fi(x) for every i 2 I, since fi(j) = gj(i) = S(j, i) for every i, j 2 I, and fi(�a) = g�a(i) =

S(�a, i) for every i 2 {0, . . . , t/2}. Thus the two univariate polynomials, S(i, y) and fi(y) of
degree 3t/2 must agree.

For the case of |I| < t, we can just view process I as first choosing polynomials fi(x), gi(y)
for every i 2 ZEROS such that fi(x), gi(y) = 0, and then choosing fi(x), gi(y) for every i 2
I \ ZEROS uniformly at random under the constraint that fi(j) = gj(i) for every i, j 2 I.
Finally, choose S(x, y) uniformly at random under the constraint that S(x, i) = fi(x) and
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Si(y) = gi(y) for every i 2 I. The two process are therefore equivalent.

Notice that Process I is equivalent to the choice of the polynomial S(x, y) in Game1. Process
II is equivalent to Game2.

The outputs of Game2 and Game3 are identically distributed. The only difference between
the two games is that in Game2 the simulator uses the same secret SECRETS as the honest
dealer uses in the ideal execution, whereas in Game3 the the simulator uses SECRETS = 0.
The following claim shows that the shares that the corrupted parties receive in the simulated
execution is identically distributed. In both execution, given the shares that the simulator
sends to the functionality, the outputs of the honest parties are defined in exactly the same
process (the functionality uses SECRETS and the shares sent by the adversary). Therefore it
is enough to show that the view is identically distributed.

Claim 4.4.14. Let SECRETS1, SECRETS2 be two arbitrary sets of (t/2+1)(d+1) field elements,

and let I ⇢ [n] be a set of cardinality at most t. Then, for every ZEROS ✓ I the output of the

following two distributions is identical:

Process I
• Choose a random (3t/2, t + d)-

bivariate polynomial S1(x, y) that em-

beds SECRETS1, such that for every

i 2 ZEROS it holds that S1(x, i) =

S1(i, y) = 0.

• Output (i, S1(x, i), S1(i, y)) for every i 2
I.

Process II
• Choose a random (3t/2, t + d)-

bivariate polynomial S2(x, y) that em-

beds SECRETS2, such that for every

i 2 ZEROS it holds that S2(x, i) =

S2(i, y) = 0.

• Output (i, S2(x, i), S2(i, y)) for every i 2
I.

Proof. We show that the probability distributions {{(i, S1(x, i), S1(i, y))}i2I} corresponding to
Process I and {{(i, S2(x, i), S2(i, y))}i2I} corresponding to Process II are identical. Towards
that end, we begin by defining the probability ensembles S2 and S1 as follows:

S1 = {{(i, S1(x, i), S1(i, y))}i2I |S1 embeds SECRETS1 and S1(x, i) = S1(i, y) = 0 8i 2 ZEROS}

S2 = {{(i, S2(x, i), S2(i, y))}i2I |S2 embeds SECRETS2 and S2(x, i) = S2(i, y) = 0 8i 2 ZEROS}

Given this, we show that S1 ⌘ S2. For this, we show that given any set of pairs of degree-3t/2
and degree-t polynomials Z = {fi(x), gi(y)}i2I that satisfy fi(j) = gj(i) for every i, j 2 I, the
number of bivariate polynomials in support of S1 that are consistent with Z are the same as
the number of polynomials in support of S2.
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First, observe that if there exist i, j 2 I such that fi(j) 6= gj(i), or if there exists some
i 2 I \ ZEROS such that fi(x) 6= 0 or gi(y) 6= 0, then there does not exist any bivariate
polynomial in support of S1 or S2 that is consistent with Z.

Now consider Z = {fi(x), gi(y)}i2I such that for every i, j 2 I, it holds that fi(j) = gj(i).
Moreover, for each i 2 I \ ZEROS, it holds that fi(x) = gi(y) = 0. We begin by counting the
number of polynomials in support of S1 that are consistent with Z. For the case when |I| = t,
note that Z together with SECRETS1 defines exactly one polynomial S(x, y), as we saw in the
proof of Claim 4.4.13.

When |I| < t, we can first define g�a(y) for each a 2 {0, . . . , t/2} by choosing t� |I| points
on each of these polynomials uniformly at random (since g�a(y) is degree-(t+ d) polynomial,
of which |I| points are already defined by {fi(�a)}i2I and additionally d+1 points are defined
by SECRETS1(a, b) for each b 2 {0, . . . , d}). Following this, the number of polynomials in the
support is |F|(t/2+1)(t�|I|).

A similar argument shows the same calculation for choosing S2 according to S2. Fi-
nally, since S1 and S2 are chosen randomly from those consistent with Z and SECRETS1

or SECRETS2 respectively, the probability that Z is obtained is same in both the cases.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A on the auxiliary input z.

2. Receive from the functionality the set ZEROS.

3. Simulate running the protocol with the adversary when all honest parties hold ZEROS

as input, while also simulating Functionalities 4.4.1, 4.4.4, 4.4.7 to the adversary.

4. If the output of some simulated honest party is ?, then send S(x, y) = x3t/2+1 to the
functionality, in which case it sends ? to all parties.

5. Otherwise, let J be a set of t + d + 1 honest parties. Reconstruct the unique bivariate
polynomial S(x, y) that satisfies S(x, j) = fj(x) for every j 2 J , where fj(x), gj(y) is the
output of the simulated honest party in the simulated execution. Send S(x, y) to the
functionality and halt.

Since the code of each party in the protocol which is not the dealer is deterministic, and the
functionalities 4.4.1, 4.4.4, 4.4.7 are also deterministic, the view of the adversary is identical

in the real and ideal. Moreover, since the functionality is deterministic, we can separately
consider the view and the outputs of the honest parties. All is left is to show that the output
of the honest parties is the same in the real and in the ideal executions. We have two cases
to consider:
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1. There exists an honest party that outputs ?. That is, the shares are rejected. This
happens if one of the functionalities returns discard, in which case all honest parties
receive the same output and all honest parties output ?. Or, it might be the case that
the output of one of the invocations of Functionality 4.4.1 is (detect,CONFLICTS) and
it holds that ZEROS = ZEROS [ CONFLICTS satisfies |ZEROS| > t. Again, since the
output of all parties is the same, and their view of the sets ZEROS and CONFLICTS

is the same, all honest parties output ?. In the ideal execution, the simulated honest
parties would also have the exact same output. In that case, the simulator sends x3t/2+1,
and the functionality delivers ? to all honest parties. We conclude that in that case the
output of the honest parties is ? both in the real and in the ideal.

2. One honest party did not output ?. In that case, we claim that no honest party
outputs ?. This is similar to the previous case. Moreover, by the guarantee of func-
tionalities 4.4.1, 4.4.4, 4.4.7 we have that all honest parties have shares of the same
bivariate polynomial S(x, y). In the ideal execution, the simulated honest parties would
also have shares of that polynomial S(x, y). The simulator chooses an arbitrary set J
of t+ d+ 1 honest parties, and reconstructs the unique bivariate polynomial that agree
with their outputs. It must hold that this polynomial is S(x, y). It sends this polynomial
to the functionality , and each honest party receives as output the shares S(x, i), S(i, y),
exactly as in the real.

Communication and Efficiency Analysis. We conclude the following lemma, proven subse-
quently:

Lemma 4.4.15. Let t < n/3 and d  t/4. There exists a protocol that implements Functional-

ity 4.4.10, has a communication complexity of O(n2 log n) bits over point-to-point channels and

O(n2 log n) bits broadcast for sharing O((d+ 1)n) values (i.e., O(n(d+ 1) log n) bits) simultane-

ously in O(1) rounds. Every party broadcasts at most O(n log n) bits.

Proof. By combining Theorems 4.4.3,4.4.6, 4.4.9, and 4.4.12, we conclude the existence of a
protocol that securely computes Functionality 4.4.10 in the plain model.

Further, Protocol 4.4.11 requires a constant number of restarts before it terminates suc-
cessfully. To see this, we analyze the case of an honest dealer and corrupt dealer separately.

In the case of an honest dealer, note that a restart may occur at Steps 1(b)ii, 2b or 3b in
Protocol 4.4.11. In each of the above cases, due to guarantees of functionality 4.4.1, 4.4.4
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and 4.4.7, it is ensured that a new CONFLICTS set of cardinality more than t/2�d, t/2 and t/2

respectively is identified. Since d  t/4, we have that more than t/4 conflicts are identified
each time that the protocol requires a restart. Recall that in the case of the honest dealer, it
is guaranteed that no honest party belongs to CONFLICTS. Thus, each time a CONFLICTS

set is identified, a new set of corrupt parties is identified, which are publicly emulated (by
setting their shares to 0) in the subsequent run. Consequently, after (at most) 3 restarts, it is
guaranteed that more than 3t/4 � t/2 + d corrupt parties are emulated publicly and hence
honestly. Since the number of parties in conflict with the honest dealer can be at most t, we
have that at most t � 3t/4, that is < t/4 parties can misbehave in the subsequent execution
of the protocol. Given that each functionality 4.4.1, 4.4.4 and 4.4.7 succeeds in this case, we
have that Protocol 4.4.11 successfully terminates.

For a corrupt dealer, if the protocol terminates after (at most) 3 restarts, then by the
guarantees of the protocol, we have that it computes Functionality 4.4.10. Otherwise, we
are guaranteed that the dealer is corrupt, and hence can be discarded. The protocol requires
the transmission of O(n2 log n) bits over point-to-point channels, and each party broadcasts
at most O(n log n) bits.

4.5 Batched and Packed Secret Sharing
In this section, we suggest how to keep the broadcast unchanged when running m instances
of the packed secret sharing with the same dealer. That is, if one instance requires O(n2 log n)

bits communicated over point-to-point channels and each party (including the dealer) broad-
casts O(n log n) bits, we have a protocol that requires O(mn2 log n) bits communicated over
point-to-point channels and each party still has to broadcast at most O(n log n) bits (and a
total of O(n2 log n)). We review the changes necessary for each one of the sub-protocols of
packed secret sharing.

Sharing attempt and Batched Complaints. Here the dealer inputs m bivariate polynomials,
but there is one set ZEROS ⇢ [n]. It is assumed that all bivariate polynomials have 0 shares
for the parties in ZEROS.

At Step 2b in Protocol 4.4.2, every Pi checks consistency in all instances but raises a
complaint for only one of them, say, the minimum index of the instance. A complaint now
looks like complaint(i, j, fi(j), gi(j),↵) where ↵ 2 {1, . . . ,m}. Moreover, if a party broadcasts
complaint(i, j, ui, vi) for j 2 ZEROS, then the dealer must add Pi to CONFLICTS. Thus, there
is no need for Pi to broadcast such a complaint in each instance that it sees inconsistency
with Pj for j 2 ZEROS, but it is enough to do it in only one of the instances.
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This keeps the broadcast cost O(n2 log n) bits among all m instances combined (as opposed
O(mn2 log n) when running them simultaneously in a black-box manner).

Note that when the dealer is honest, honest parties never complain on one another, and
this holds in all m invocations. Moreover, if the dealer is corrupted and two honest parties
have to file a joint complaint, then both will have the exact same minimal index, and the
dealer must have to add one of them into CONFLICTS, exactly as we have in single instance.

Batched reconstruction of g polynomials in CONFLICTS. Here the change in the protocol is
more delicate than the previous case, and we provide a full modeling and proof. Specifically,
In Step 2b of Protocol 4.4.5, a party Pj may fail to reconstruct gj in multiple instances. How-
ever, it is enough to pick one instance � (say, the one with minimum index) and complains
publicly with �. Now, rest of the public verification happens with respect to �th invocation.
If parties publicly reveal values that are different than what they revealed privately, then
the party knows that those parties are corrupted and can try to reconstruct the polynomials
without those shares. In particular, the only case when a party cannot uniquely reconstruct
is when the the adversary introduces more than t/2 errors. However, if the public recon-
struction of g in the �th execution is successful, it can recognize t/2 misbehaving parties
by comparing the polynomial that was publicly reconstruct to the shares sent to it privately.
Note that it is possible that a corrupted party sends some share to Pj privately but makes
some other value public. Pj knows for sure that such party is corrupt, even though Bad that
the dealer broadcasts can even be empty. Once Pj recognizes more than t/2 errors, it can
eliminate them in all other private reconstructions, remaining with less than t/2 errors in all

the m executions. The functionality (denoted as Fbatched

rec-g ), the full specification of the protocol
(denoted as ⇧batched

rec-g ) as well as the proof are given below.

Functionality 4.5.1: Batched Reconstruction of g-Polynomials – Fbatched

rec-g

1. Input: All honest parties send to the functionality the sets ZEROS ⇢ [n] and
CONFLICTS ⇢ [n], each honest j 62 CONFLICTS sends (f `

i
(x), g`

i
(y))`2[m]. Let

S1(x, y), . . . , Sm(x, y) be the unique bivariate polynomials of degree at most 3t/2 in
x and at most t + d in y that satisfy f `

j
(x) = S`(x, j) and g`

j
(y) = S`(j, y) for every

j 62 CONFLICTS and ` 2 [m]. Moreover, it holds that n� |CONFLICTS| � 2t+1+ t/2+d.

2. Send (ZEROS,CONFLICTS, (S`(x, i), S`(i, y))i2I,`2[m]) to the adversary. If the dealer is
corrupted, then send also (S`(x, y))`2[m] to the adversary.

3. Receive back from the adversary a message M .

4. Output:

(a) If M = discard and the dealer is corrupted, then send discard to all parties.
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(b) If M = (detect,Bad) with Bad \ (ZEROS [ CONFLICTS) = ; and |Bad| > t/2, and
in case of an honest dealer, then Bad ✓ I, then send (detect,Bad) to all parties.

(c) If M = proceed then send:
for each j 2 CONFLICTS the output (proceed,?, (S`(j, y))`2[m])

for each j 62 CONFLICTS send (proceed, (S`(x, j))`2[m], (S`(j, y))`2[m]).

Protocol 4.5.2: Batched Reconstruction of g-Polynomials in CONFLICTS – ⇧batched

rec-g

Input: as in the functionality.
The protocol:

1. Set HAVE-SHARES = [n] \ (ZEROS [ CONFLICTS), and localBadi = ;.
2. For every j 2 CONFLICTS:

(a) Each party Pi for i 2 HAVE-SHARES sends (i, j, (f `

i
(j))`2[m]) to Pj.

(b) Let (i, (u`

i
)`2[m]) be the values Pj received from Pi. Moreover, for every i 2 ZEROS,

consider (i, u`

i
) with u`

i
= 0. For every ` 2 [m], given all (i, u`

i
)i 62CONFLICTS, Pj looks

for a codeword of a polynomial of degree t+ d with a distance of at most t/2 from
all the values it received (see Corollary 4.3.2, item 1). If there is such a codeword,
set g`

j
(y) to be the unique Reed Solomon reconstruction.

(c) If there is no such a unique codeword for some `, then Pj broadcasts complaint(j, �),
where � is the minimal index in [m] where reconstruction of g`(y) failed.

(d) Every party Pi for i 2 HAVE-SHARES broadcasts reveal(i, j, f�

i
(j), �).

3. The dealer sets Bad = ;. For each reveal(i, j, u, `) message broadcasted, the dealer
verifies that u = f `

i
(j) = S`(j, i). If not, then it adds i to Bad. The dealer broadcasts

Bad.

4. Verify that (i) |ZEROS [ CONFLICTS [ Bad|  t; and (ii) Bad ⇢ HAVE-SHARES. Other-
wise, discard – go to Step 8a.

5. If |Bad| > t/2 then there is a large detection – go to Step 8b.

6. Otherwise, for every j 2 CONFLICTS, if complaint(j, �) was broadcasted, then consider
all the points Rj = {(i, u�

i
)} such that reveal(i, j, u�

i
) was broadcasted in Step 2c, and

i 2 HAVE-SHARES \ Bad, or u�

i
= 0 if i 2 ZEROS. Verify that Rj defines a unique

polynomial of degree t+ d. If not, discard – go to Step 8a.

7. If the dealer is not publicly discarded, then each Pj sets g`
j
(y) to be the unique bivariate

decoding of the points (i, u�

i
) as specified in the previous step. It defines the set localBadj
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as follows: localBadj = {i 2 [n] | g�
j
(i) 6= u�

i
where u�

i
was received in Step 2b}, i.e.,

it detects all the parties that provided it wrong values. Then, for every ` 2 [m] it
reconstructs (see Corollary 4.3.2, item 2) the unique polynomial g`

j
(y) from the points

(u`

i
)i 62localBadj .

8. Output:

(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Proceed: Each party j 2 CONFLICTS outputs (proceed,?, (g`
j
(y))`2[m]). All other

parties j 62 CONFLICTS output (proceed, (f `

j
(x), g`

j
(y))`2[m]).

Lemma 4.5.3. Protocol ⇧batched

rec-g (Protocol 4.5.2), perfectly-securely computes Fbatched

rec-g (Function-

ality 4.5.1) in the presence of a malicious adversary, controlling at most t < n/3.

Proof. The analysis is a direct generalization of that of Theorem 4.4.6 and we omit the de-
scription of the simulator, where the only difference is running it multiple polynomials and
not just one. We just highlight the non-trivial changes in the proof.

As previously, an honest party never belongs to Bad and we have that ZEROS ✓ I, and
the dealer is never discarded. If there exists an honest party that outputs (detect,Bad) then
all honest party output (detect,Bad). If there exists an honest party that outputs proceed

then all honest parties have their g polynomials. Specifically, consider an honest party in
CONFLICTS. It receives t + 1 + t/2 + d correct points on each polynomial. Since the output
of this iteration is not detect, it must hold that the dealer sent a set Bad with |Bad| < t/2.
However, we claim that |localBadj| � t/2. If Pj did not succeed to reconstruct the �th instance,
then the adversary must have introduced at least t/2 errors in the private points sent to Pj.
Moreover, if |Bad| < t/2, then it must hold that corrupted parties provided public points
reveal that are not the same as they sent privately to Pj. Thus, Pj must identify at least t/2
parties in localBadj, and they must all be corrupted parties. Once Pj identifies t/2 corrupted
parties, and the number of corrupted parties is bounded by t, the number of possible errors
introduced in each one of the polynomials g`(y) for ` 2 [m] is < t/2. Pj therefore succeeds to
find unique decoding for all those polynomials.

The case of a corrupted dealer. The simulator is similar to that in the proof
of Theorem 4.4.6. Again, if some honest party Pj with j 62 CONFLICTS outputs
(proceed, (S`(x, j))`2[m], (S`(j, y))`2[m]) then all honest parties output proceed. Moreover,
honest parties not in CONFLICTS output both f and g’s shares, and parties in CONFLICTS
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output the g’s shares. This is because all parties not in CONFLICTS decide what to output
according to the public view. As for the parties in CONFLICTS, we have a similar argument to
that in the case of an honest dealer: once |Bad| < t/2 it must hold that |localBadj| � t/2, and
given that each party have t + 1 + t/2 + d correct points on each polynomial, it can always
recover the underlying polynomial.

Batched reconstruction of f -polynomials in CONFLICTS. This follows the exact same lines
as the reconstruction of g polynomials. Specifically, if the local reconstruction is not unique,
then it is enough to pick one instance � 2 [m] and open it publicly. The public verification
happens with respect to the �th instance. Pj will then be able to reconstruct f `

j
for every

` 2 [m].

4.5.1 Sharing

To conclude, we realize the following functionality putting together the batched version of
protocols for the sharing attempt, reconstruction of g and f polynomials. Referring the pro-
tocol as ⇧batched

PSS
, we culminate at the following theorem.

Functionality 4.5.4: Batched and Packed Secret Sharing – Fbatched

PSS

The functionality is parameterized by the set of corrupted parties I ✓ [n].

• Input: All parties input a set ZEROS ⇢ [n] such that |ZEROS|  t. If the dealer is honest
then it is guaranteed that ZEROS ✓ I.

• Honest dealer: The dealer sends (SECRETS`)`2[m] to Fbatched

PSS
. The functionality sends

ZEROS to the adversary, who sends back (f `

i
(x), g`

i
(y))i2I,`2[m] such that f `

i
(k) = g`

k
(i) for

every i, k 2 I and ` 2 [m]. Moreover, for every i 2 ZEROS, fi(x) = gi(y) = 0. For every
` 2 [m], the functionality chooses a random bivariate polynomial S`(x, y) of degree 3t/2

in x and t + d in y under the constraints that (i) SECRETS` is embedded in S`; (ii)
S`(x, i) = f `

i
(x) for every i 2 I; (iii) S`(i, y) = g`

i
(y).

• Corrupted dealer: For every ` 2 [m], the dealer sends S`(x, y) to Fbatched

PSS
that verifies

that S`(x, y) is of degree 3t/2 in x and degree t + d in y, and for every i 2 ZEROS it
holds that fi(x) = gi(y) = 0. If not, Fbatched

PSS
replaces S`(x, y) = ?.

• Output: Fbatched

PSS
sends to each party Pj the polynomials (S`(x, j), S`(j, y))`2[m].

Theorem 4.5.5. ⇧batched

PSS
securely computes Fbatched

PSS
(Functionality 4.5.4). It requires a com-

munication complexity of O(mn2 log n) bits over-point-to-point channels and O(n2 log n) bits
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broadcast for sharing O((d+1)mn) values (i.e., O((d+1)mn log n) bits) simultaneously in O(1)

rounds. Each party broadcasts at most O(n log n) bits.

4.5.2 Reconstruction

We present the reconstruction protocols for our batched and packed secret sharing. As men-
tioned in the introduction, for our detectable secret sharing, we get a detectable reconstruc-
tion, a weaker form of robust reconstruction. For the case of d = 0, we get robust reconstruc-
tion, and so verifiable secret sharing. We start with fully specifying the functionality.

Functionality 4.5.6: Detectable Reconstruction for Batched and Packed Secret Sharing
– Fbatched

PSS-Rec
The functionality is parameterized with the set of corrupted parties I ⇢ [n].

1. Input: All honest parties send ZEROS ⇢ [n]. When the dealer is honest, ZEROS ✓ I.
Each honest party Pj sends (fk

j
(x), gk

j
(y)) for each k 2 [m] and j 62 I. For each k, let

Sk(x, y) be the unique bivariate polynomial of degree 3t/2 in x and t+d in y that satisfies
fk

j
(x) = Sk(x, j) and gk

j
(y) = Sk(j, y) for every j 62 I.

2. Send ZEROS and S1(x, y), . . . , Sm(x, y) to the adversary. If d = 0 then go to Step 4c.

3. Receive back from the adversary a message M .

4. Output:

(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with |Bad| > t/2 and Bad \ ZEROS = ;, and in case of an
honest dealer Bad ✓ I , then send (detect,Bad) to all parties.

(c) If M = proceed then send to each j the output (proceed, S1(x, y), . . . , Sm(x, y)).

Note that if the dealer is honest then discard cannot occur. Moreover, if the dealer is honest
and |ZEROS| > t/2, the (detect,Bad) cannot occur, as |Bad [ ZEROS|  t and so we cannot
have |Bad| > t/2. In that case, we always succeed to reconstruct. On the other hand, if the
dealer is honest and |ZEROS|  t/2, the adversary might cause to a failure. In that case, we
are guaranteed to have a mass detection.

The protocol. To reconstruct shared polynomials S1(x, y), . . . , Sm(x, y), the reconstruction
protocol follows a similar structure of that of Protocol 4.5.2:

1. Each party Pi holds (f `

i
, g`

i
(y))`2[m] and a set ZEROS ⇢ [n].

2. Each party now sends all its polynomials f 1
i
(x), . . . , fm

i
(x) over the private channel to

all other parties.
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3. The parties try to reconstruct polynomials g`1(y), . . . , g
`

n
(y) using the polynomials

f `

1(x), . . . , f
`

n
(x) (and taking 0 for the parties in ZEROS). E.g., reconstruct g`

j
(y) by con-

sidering (k, f `

k
(j))k 62ZEROS and adding (k, 0) for k 2 ZEROS. Try to correct at most t/2

errors, for every ` 2 [m] (see Corollary 4.3.4, item 1). If some party fails to decode some
polynomial g`

j
(y), then it broadcast complaint(j, `). Note that it is enough to broadcast

just a single complaint, say the one with the lexicographically smallest j, `.

4. We will have a public reconstruction of g`
j
(y): Each party broadcasts its point on that

polynomial, and the dealer broadcasts a set Bad if there are any wrong values broad-
casted. The parties output (detect,Bad) if |Bad| > t/2. The parties check that when
excluding all points in Bad then all points lie on a single polynomial g`

j
(y).

5. Using the public reconstruction, the party Pj can now locate t/2 corruptions and recon-
struct (see Corollary 4.3.4, item 2) all polynomials g`1(y), . . . , g`n(y) for every ` 2 [m]. All
parties can now find unique bivariate polynomials S`(x, y) satisfying S`(i, y) = g`

i
(y) for

every i 2 [n]. The parties output those polynomials.

There are few properties that we would like to highlight with respect to the above protocol:

1. Note that when d = 0, then we can simply run Reed-Solomon decoding in Step 3 and
always succeed to reconstruct as Reed Solomon decoding returns unique decoding when
there are at most t errors. Thus, there is no need for public resolution.

2. There are at most n complaints, which lead to each party broadcasting at most O(n log n)

bits to resolve all complaints.

Conclusion: Detectable Secret Sharing. While we provide functionality-based modeling
and proofs, the verifiable secret sharing literature is also full of property based definitions,
and some readers might find such modeling helpful. We provide here such properties for
completeness. From combining Functionalities 4.5.4 and 4.5.6, when using d > 0 we obtain
a two-phase protocol for parties P = {P1, . . . , Pn} where a distinguished dealer P ⇤ 2 P holds
initial SECRETS, and all honest parties hold the same set ZEROSP ⇤ ✓ [n] (where no honest
party is in ZEROSP ⇤ if P ⇤ is honest) such that the following properties hold:

• Secrecy: If the dealer is honest during the first phase (the sharing phase), then at the
end of this phase, the joint view of the malicious parties is independent of the dealer’s
input SECRETS.

• Reconstruction or detection – corrupted dealer: At the end of the sharing phase,
the joint view of the honest parties define values SECRETS0 such that at the end of the
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reconstruction phase – all honest parties will output either SECRETS0, or discard the
dealer, or t/2 new values will be added to ZEROSP ⇤ .

• Reconstruction or detection – honest dealer: At the end of the sharing phase, the
joint view of the honest parties define values SECRETS0 = SECRETS that the dealer
used as input for the sharing phase. At the end of the reconstruction phase, all honest
parties will output SECRETS, or t/2 new indices, all of corrupted parties, will be added
to ZEROSP ⇤ . If ZEROSP ⇤ initially contained more than t/2 values during the sharing
phase, then the output of the second phase is always SECRETS.

When |SECRETS| 2 ⌦(n2), the protocol uses O(n4 log n + |SECRETS| log n) communication
complexity for both sharing and reconstruction.

Conclusion: Verifiable Secret Sharing. From combining Functionalities 4.5.6 and 4.5.6,
when using d = 0 we obtain a verifiable secret sharing: A two-phase protocol for parties
P = {P1, . . . , Pn} where a distinguished dealer P ⇤ 2 P holds initial secrets s1, . . . , st is a
Verifiable Secret Sharing Protocol tolerating t malicious parties and the following conditions hold
for any adversary controlling at most t parties:

• Validity: Each honest party Pi outputs the values si,1, . . . , si,t at the end of the sec-
ond phase (the reconstruction phase). Furthermore, if the dealer is honest then
(si,1, . . . , si,t) = (s1, . . . , st).

• Secrecy: If the dealer is honest during the first phase (the sharing phase) then at the
end of this phase, the joint view of the malicious parties is independent of the dealer’s
input s1, . . . , st.

• Reconstruction: At the end of the sharing phase, the joint view of the honest parties
defines values s01, . . . , s

0
t

such that all honest parties will output s01, . . . , s0t at the end of
the reconstruction phase.

When |SECRETS| 2 ⌦(n), the protocol uses O(n4 log n + |SECRETS| · n log n) communication
complexity for both sharing and reconstruction.

4.6 Packed Verifiable Triple Sharing
Packed verifiable triple sharing (VTS) allows a dealer to verifiably share t/2+1 multiplication
triples at the cost of incurring O(n2) elements of communication over point-to-point channels
as well as broadcast. Precisely, VTS outputs each element of the triples to be Shamir-shared
via a degree-t polynomial. In the next section, we will present the batched version, where
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O(mn) shared triplets are prepared with O(mn2) elements of communication over point-to-
point channels and the same broadcast as needed for one instance (i.e. O(n2)). This is
an important contribution of this work that utilizes our both verifiable secret sharing and
detectable secret sharing constructions.

Ideally, in a VTS, for an honest dealer, the protocol guarantees privacy of the triples, while
for a corrupt dealer, it ensures correctness of the triples (i.e. they satisfy product relation)
if the dealer is not discarded. However, here we construct only a weak version where it is
possible for an adversary to learn the triples even when the dealer is honest. Interestingly, we
show this is sufficient for our purpose, for there is a way to overcome this shortcoming in the
batched version, where we show how to bound the total number of compromised instances to
at most n. Furthermore, the identities of the compromised instances will be publicly known.
Discarding these instances, we will still have enough ‘safe’ instances that satisfy the desired
qualities, when m is sufficiently large.

4.6.1 The High-Level Idea

In order to explain VTS, we require to break open the bivariate polynomial shared through
the packed secret sharing and interpret the secrets shared through univariate polynomials.
Recall the way the secret-matrix SECRETS is planted in the bivariate polynomial S(x, y):
S(�a,�b) = SECRETS(a, b) for every a 2 {0, . . . , t/2} and b 2 {0, . . . , d}. At the end of PSS,
every party Pi holds fi(x), gi(y).

1. Sharing via degree-t polynomial aka. Shamir-sharing: First assume that d = 0 which
is the case for the verifiable PSS: here SECRETS is a (t/2 + 1)-length vector and we
can treat that the `th secret in SECRETS is Shamir-shared via the degree-t polynomial
g�`(y) = S(�`, y), for ` = {0, . . . , t/2}. Note that every party Pi holds a share on g�`(y)

which is fi(�`).
2. Sharing via degree-3t/2 polynomial: Now assume that d = t/4 which is the case for the

detectable PSS: here SECRETS is a (t/2 + 1) ⇥ (t/4 + 1) matrix and we can treat the
degree-3t/2 polynomial f�`(x) = S(x,�`) as the packed-sharing of the `th column of
SECRETS, for ` = {0, . . . , t/4}. Note that every party Pi holds a share on f�`(x) which
is gi(�`).

We are now ready to explain the high-level idea of the packed VTS. The goal here is to
generate Shamir-sharing of three vectors of secrets SECRETSa = {a0, . . . , at/2}, SECRETSb =

{b0, . . . , bt/2}, SECRETSc = {c0, . . . , ct/2}, each of size t/2 + 1 such that ci = aibi holds for
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each i 2 {0, . . . , t/2}. Our packed VTS consists of two phases, of which the latter is the core
contribution here.

• Share degree-(3t/2, t) bivariate polynomials A,B,C which embed t/2+1 multiplication
triples via verifiable PSS (Functionality 4.4.10) with d = 0. Following this, every party Pi

holds A(x, i), A(i, y), B(x, i), B(i, y), C(x, i), C(i, y). The secrets for the triplets appear at
A(�`, 0), B(�`, 0) and C(�`, 0) for every ` 2 {0, . . . , t/2} and are therefore t-shared via
A(�`, y), B(�`, y) and C(�`, y) (see Item 1 above).

• A proof of product relation for the embedded secrets. The dealer needs to prove that
the product of the secrets Shamir shared via A(�`, y) and B(�`, y) is the secret Shamir

shared via C(�`, y). The constant term of the product polynomial A(�`, y)B(�`, y)
must match with the constant term of C(�`, y). That is, the degree 2t polynomial
A(�`, y)B(�`, y)� C(�`, y) must have zero in its free term. This is the check we want
to conduct.
Note that it is possible that this proof leaks an honest dealer’s secrets, in which case the
parties will kill (discard) this instance. But if it does not, then it is perfect proof in zero
knowledge.

To conduct the proof, similar to [6], the dealer finds the unique bivariate polynomial
E�`(y) of degree (at most) 2t defined by the polynomials

A(�`, y)B(�`, y)� C(�`, y)

for each ` 2 {0, . . . , t/2} (see Figure 4.1a). Following this, the dealer distributes these poly-
nomials by sharing its coefficients using the PSS (Functionality 4.4.10), with d = t/4. Specif-
ically, let ei denote the vector of the ith coefficients of all the t/2 + 1 E�`(y) polynomials
(see Figure 4.1b). The dealer views batches of d = t/4 + 1 eis as the secrets, and invokes
Functionality 4.4.10 at most eight times with d = t/4 (see Figure 4.1b-4.1c). This is be-
cause there are 2t + 1 eis and each batch can contain t/4 + 1 eis. After these invocations
of PSSs, through the f -polynomials, the parties hold a degree-3t/2 packed sharing of ei (see
Item 2 above). That is, parties hold 2t+1 packed-sharings each of degree 3t/2 corresponding
to 2t + 1 coefficient vectors (ei)i2{0,...,2t}. Denote these polynomials by f ei(x). Using lin-
earity, these packed-sharings allow for local computation of degree 3t/2 packed-sharing of
evaluation points on the t/2 + 1 polynomials E�`(y). Let fE(i) denote the degree 3t/2 poly-
nomial which shares the evaluation of these polynomials at y = i (see Figure 4.1d). That
is, fE(i) shares the secrets E(i) = (E�t/2(i), . . . , E0(i)). Next assume that each Pi has access
to fE(i), fE(0) or equivalently E(i) and E(0). Then, to verify the product relation, each party
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E0(y) = e(0,0) e(0,1)y . . . e(0,i)yi . . . e(0,2t)y2t

E�1(y) = e(�1,0) e(�1,1)y . . . e(�1,i)yi . . . e(�1,2t)y2t

...
...

...
...

...
...

...

E�t/2(y) = e(�t/2,0) e(�t/2,1)y . . . e(�t/2,i)yi . . . e(�t/2,2t)y2t

(a) The product polynomials E�`(y) for ` 2 {0, . . . , t/2}

e(0,0) . . . e(0,t/4) . . . e(0,i) . . . e(0,2t)

e(�1,0) . . . e(�1,t/4) . . . e(�1,i) . . . e(�1,2t)

...
...

...
...

...
...

...
e(�t/2,0) . . . e(�t/2,t/4) . . . e(�t/2,i) . . . e(�t/2,2t)

eiSECRETS1

(b) Pictorial depiction of notation and packing of coefficients of E�`(y)

e0 . . . et/4 et/4+1 . . . e2t/4+1 . . . e7t/4+7 . . . e2t

SECRETS1 SECRETS2 SECRETS8

(c) Packing of eis in SECRETS1, . . . , SECRETS8

2
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...

it/4
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e(0,7t/4+7) . . . e(0,2t)
e(�1,7t/4+7) . . . e(�1,2t)

...
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e7t/4+7

e(�t/2,7t/4+7) . . .
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e2t
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3
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SECRETS8

2
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i7t/4+7

i7t/4+8

...
i2t

3

77777775

(d) Pictorial depiction of computation of E(i)

Figure 4.1: Pictorial depiction of Packed Verifiable Triple Sharing

Pi requires to check if the relation E�`(y) = A(�`, y)B(�`, y) � C(�`, y) holds at y = i and
y = 0 for each ` 2 {0, . . . , t/2}. Specifically, it checks if (a) E(0) is t/2-length zero-vector and
(b) E(i) is the same as the vector (A(�`, i)B(�`, i)�C(�`, i))i2{0,...,t/2}, the latter received in
the first phase. If not, it complains. If no party complains, we have that 2t+ 1 honest parties
verified the product relation at distinct evaluation points on polynomials of at most degree
2t, thus ensuring correctness of the multiplication triples. Otherwise, we must find a way to
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make the shares of the complaining party on A,B,C and E polynomials public and verify the
product relation publicly.

The remaining tasks are (a) complaint resolution and (b) make sure Pi gets access to
E(0), E(i). We note that both these require reconstruction of 3t/2-degree polynomials:
A(x, i), B(x, i), C(x, i), fE(i)s for the former and fE(i)s for the latter. The former is a pub-
lic reconstruction, while the latter is private to every Pi. We therefore design a private and
a public reconstruction protocol. Due to the high degree of 3t/2, robust reconstruction via
Reed-Solomon decoding is not an option. Instead, we design protocols which ensure one of
the following outcomes:

• discard the dealer when it is corrupt

• identify a large of conflicts with the dealer (and restart)

• proceed with the successful reconstruction.

For the case of private reconstruction, we get a weaker guarantee wherein apart from the
above three outcomes, there is a fourth possibility that the polynomials to be reconstructed
privately to the honest parties are compromised. It is due to this breach, we have the weaker
privacy guarantee for our VTS, namely an honest dealer’s triplets may be leaked to the adver-
sary.

Lastly, similar to PSS, here too we may have a constant number of restarts of the VTS
(precisely 3) before a successful run, where the restarts can happen inside the PSS instances
or as a part of the reconstructions.

Below we discuss our reconstruction protocols, and then move on to the packed VTS
protocol.

4.6.2 Reconstructions

We present two variants of reconstructions– private and public.

4.6.2.1 Weak Private Reconstruction

In a private reconstruction functionality, the parties give their respective shares of n + 1

degree-3t/2 polynomials. The functionality reconstructs these polynomials and sends the 0th
and the ith polynomial privately to Pi. As mentioned earlier, we have four possible outcomes
here: discard the dealer, detect large number of conflicts, kill the instance (in which case the
honest parties’ polynomials are compromised) and proceed to successful completion.

Functionality 4.6.1: Weak Private Reconstruction of 3t/2-Shared Polynomials – FprivRec
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• Input: All honest parties send ZEROS ⇢ [n]. When the dealer is honest, ZEROS ✓ I.
Each honest party Pj inputs shares (h0(j), . . . , hn(j)) on polynomials, each of degree
3t/2 to FprivRec. The functionality reconstructs the polynomials as h0(x), . . . , hn(x).

• The functionality:

1. If the dealer is honest, then send ZEROS, (h0(i), . . . , hn(i))i2I and (h0(x), hi(x))i2I

to the adversary. If the dealer is corrupted, then send ZEROS and h0(x), . . . , hn(x)

to the adversary.

2. Receive a bit leak from the adversary. If leak = 1 and the dealer is honest then
send h0(x), . . . , hn(x) to the adversary.

3. Receive a message M from the adversary.

4. Output:
(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with Bad \ ZEROS = ; and |Bad| > t/2, and in case of
an honest dealer then Bad ✓ I, then send (detect,Bad) to all parties.

(c) If M = kill and leak = 1 then send kill to the parties.

(d) If M = proceed and leak = 0 then send (proceed, h0(x), h`(x)) to each party
P`.

Protocol 4.6.2: Weak Private Reconstruction of 3t/2-Shared Polynomials – ⇧privRec

• Input: All parties hold the same set ZEROS. Each honest party Pj holds shares
(h0(j), . . . , hn(j)) on n polynomials h0(x), . . . , hn(x) each of degree 3t/2. It is guaranteed
that all the shares of honest parties lie on the same 3t/2 degree polynomials.

• The protocol:

1. Each Pj sends (j, h0(j), h`(j)) to every P`.

2. Let (j, uj, vj) be the value P` received from Pj. For every j 2 ZEROS, (j, uj, vj)

is such that uj = vj = 0. Given all (j, uj) and (j, vj), P` looks for a codeword of
distance at most t/2 from all the values it received (see Corollary 4.3.3, item 1). If
there is such a codeword, set h0(x) and h`(x) to be the unique Reed-Solomon re-
construction respectively. If there is no such a unique codeword, then P` broadcasts
complaint(`) and every party Pj broadcasts reveal(`, j, h0(j), h`(j)).

3. If no party broadcasts complaint(`) then go to Step 8d.

4. The dealer sets Bad = ;. For each reveal(`, j, u, v) message broadcasted, the dealer
verifies that u = h0(j) and v = h`(j). If not, then it adds j to Bad. The dealer
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broadcasts Bad.

5. Verify that (i) |ZEROS [ Bad|  t; and (ii) Bad ⇢ [n] \ ZEROS. Otherwise, discard
the dealer and go to Step 8a.

6. If |Bad| > t/2 then there is a large detection and so go to Step 8b.

7. Otherwise, consider all the points R` = {(j, uj)} and T` = {(j, vj)} such that
reveal(`, j, uj, vj) was broadcasted in Step 2 for j 62 Bad where uj = vj = 0 if
j 2 ZEROS. Verify that each R` and T` define a unique polynomial of degree 3t/2.
If not, go to Step 8a. Otherwise, go to Step 8c.

8. Output:
(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Kill: Output kill.

(d) Proceed: Each P` outputs (proceed, h0(x), h`(x)).

Lemma 4.6.3. Protocol 4.6.2, ⇧privRec, perfectly securely computes Functionality 4.6.1, FprivRec,

in the presence of a malicious adversary controlling at most t < n/3.

Proof. We show the case of an honest dealer and a corrupted dealer separately.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the sets ZEROS, {(h0(i), . . . , hn(i))}i2I and
(h0(x), hi(x))i2I .

3. For each i 2 I, simulate every honest Pj sending (j, h0(j), hi(j)) to Pi. Receive
(i, h0(i), hj(i)) from the adversary for each i 2 I and every honest Pj.

4. If for some honest Pj, (i, ui, vi) sent by the adversary is such that ui 6= h0(i) or vi 6= hj(i)

for more than t/2 such i 2 I then simulate Pj broadcasting complaint(j). Also listen
to all complaint(i) messages broadcasted by the adversary. If some party broadcasts
complaint, then send leak = 1 to the functionality. Receive h0(x), . . . , hn(x) from the
functionality. Set Bad = ;.

5. For each complaint(`) broadcasted by some P`, simulate broadcasting (`, j, h0(j), h`(j))

for every honest Pj and listen to all the adversary’s broadcasts.

6. For each i 2 I where (`, i, ui, vi) broadcasted is such that ui 6= h0(i) or vi 6= h`(i), add i

to Bad.
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7. Simulate the dealer broadcasting Bad. If |Bad| > t/2 then send (detect,Bad) to the
functionality and halt.

8. If leak = 1 then send kill to the functionality and halt.

9. Otherwise, send proceed to the functionality and halt.

The protocol as well as the simulator is deterministic. Hence, it can be easily observed
that the view of the adversary in the real and ideal executions is identical. It remains to show
that the output of honest parties is identical in the real and ideal world.

Towards that end, note that in the real world, an honest dealer is discarded if and only if
one of the following conditions holds:

1. |ZEROS [ Bad| > t.

2. Bad 6⇢ [n] \ ZEROS.

3. R` or T` do not define a unique polynomial of degree-3t/2.

Note that for an honest dealer, an honest party never belongs to Bad and we have that
ZEROS ✓ I. It is clear that none of the above conditions hold and the dealer is not dis-
carded. We thus have the following cases to consider:

1. There exists an honest party that outputs (detect,Bad): In this case, it must hold
that |Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it
must hold that all the honest parties output (detect,Bad). The simulator emulates
the interaction of the honest parties with the dealer as in the real execution, hence all
the simulated honest parties hold the same set Bad. In that case, the simulator sends
(detect,Bad) to the functionality , causing all the honest parties in the ideal world to
output the same.

2. There exists an honest party that outputs kill: In this case, it must hold that |Bad| 
t/2. Moreover, there exists some party P` which complained and each R` and T` define
a unique degree 3t/2 polynomials. Since all the corresponding messages are broadcast,
all the honest parties would output kill. The simulator emulates the honest parties as
in the real execution, hence all the simulated honest parties hold the same set Bad and
see the same complaints. In this case, the simulator sends leak = 1 to the functionality,
followed by kill, causing all the honest parties in the ideal execution to output kill.

3. There exists an honest party proceed: This implies that no party broadcast complaint

in the real execution. Thus, it must hold that each honest party P` obtained a unique
reconstruction in Step 2, which agrees with the shares of all the honest parties. Since the
reconstructed polynomials and h0(x), h`(x) defined by the honest parties’ input shares
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are each of degree 3t/2 and agree in at least 2t+ 1 points, it must hold that the unique
reconstructed polynomials are h0(x), h`(x). Hence it must hold that all honest parties
output (proceed, h0(x), h`(x)) in the real execution. Since the simulated execution is
identical to the real execution, all the simulated honest parties also see that no complaint

was broadcast. In this case, the simulator sends proceed to the functionality, causing
all the honest parties in the ideal world to have an output that is identical to the output
of the honest parties in the real world.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the set ZEROS, and the polynomials h0(x), . . . , hn(x).

3. Simulate the protocol where each honest party Pj holds h0(j), . . . , hn(j) and all parties
have the same set ZEROS.

4. If some party broadcasts complaint in Step 2 then the simulator sends leak = 1 to the
functionality.

5. Send the message M to the functionality according to the following cases (the proof
will show that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send
(detect,Bad) to the functionality and halt.

(c) If the output of some simulated honest party is kill then send kill to the func-
tionality and halt.

(d) If the output of some simulated honest party is proceed, then send proceed to the
functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real
honest parties in the real execution, and since the protocol is deterministic, we get that the
view of the adversary is exactly the same in the real and in the ideal executions. Thus it
remains to be shown that the output of the honest parties is identical in the real and ideal
executions. We have the following cases to consider:

1. There exists an honest party that outputs discard in the real world: Observe that
an honest party outputs discard if and only if one of the following conditions holds.
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(a) The dealer broadcasted Bad such that either (i) |ZEROS [ Bad| > t; or (ii) Bad 6⇢
[n] \ ZEROS. Since all honest parties hold the same set ZEROS, and the set Bad is
broadcasted, we get that all honest parties output discard.

(b) The dealer broadcasted Bad with |Bad|  t/2, and for which |ZEROS [ Bad|  t

and Bad ⇢ [n] \ ZEROS. However, for R` = {(j, uj)} and T` = {(j, vj)} such that
reveal(`, j, uj, vj) was broadcasted in Step 2 and j 62 Bad, it holds that R` or T` does
not define a unique polynomial of degree 3t/2. Since the set R` and T` are public,
all honest parties will identify that there is no unique reconstruction, and all would
output discard.

Since the simulated honest parties have the same view as the honest parties, the simu-
lated honest parties also output discard. In this case, the simulator sends discard to
the functionality causing all the honest parties to output discard in the ideal execution.

2. There exists an honest party that outputs (detect,Bad) in the real world: In this
case, it must hold that |ZEROS[Bad|  t and Bad ⇢ [n]\ZEROS. Moreover, it must hold
that |Bad| � t/2. Since the corresponding set Bad is broadcast, all the honest parties
hold the same set and hence output (detect,Bad). The simulated honest parties hold
an identical output, and thus the simulator sends (detect,Bad) to the functionality ,
which in turn sends the same to all the honest parties in the ideal execution.

3. There exists an honest party that outputs kill in the real world: In this case, it
must hold that some party P` broadcast complaint(`). Moreover, |Bad|  t/2 and R` and
T` each define a unique degree 3t/2 polynomials. Since all the corresponding messages
are broadcast, it must hold that all the honest parties output kill. In this case, the
simulated honest parties also hold an identical output. Since the simulated honest
parties also observe the complaint(`) broadcast by P`, the simulator sends leak = 1 to
the functionality, followed by M = kill causing all the honest parties in the ideal world
to output kill.

4. There exists an honest party that outputs proceed in the real world: In this case,
we show that all honest parties P` output (proceed, h0(x), h`(x)) where h0(x), h`(x) are
the degree 3t/2 polynomials that are interpolated from the respective input shares of
the honest parties and are guaranteed to exist under our input assumption. Towards
that, observe that since there exists an honest party that does not output discard,
(detect,Bad) or kill it must hold that no party broadcasted complaint in Step 2. Hence,
it must hold that each honest P` has a unique reconstruction and consequently lesser
than t/2 errors occurred in the reconstruction for P`. The reconstructed polynomials
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agree with the shares of at least n � t/2 � 5t/2 + 1 parties, hence they agree with the
shares of at least 3t/2+ 1 honest parties. Since the reconstructed polynomials and each
h0(x), h`(x) are of degree 3t/2, it must hold that the reconstructed polynomials for each
honest P` are h0(x), h`(x) consistent with the input shares of the honest parties. In this
case, the simulated honest parties also observe that no party complains and hence the
simulator sends proceed to the functionality, causing all the honest parties in the ideal
world to obtain an output identical to the output in the real execution.

Lemma 4.6.4. Let t < n/3. There exists a protocol that implements, Functionality 4.6.1, FprivRec,

has a communication complexity of O(n2 log n) bits over point-to-point channels and O(n2 log n)

bits broadcast in O(1) rounds. Every party broadcasts at most O(n log n) bits.

4.6.2.2 Public Reconstruction

Similar to private reconstruction, shares of n degree-3t/2 polynomials are taken as the input
by the functionality. It also receives n flags where ith one indicates if the ith polynomial needs
to be made public.

Functionality 4.6.5: Public Reconstruction of 3t/2-Shared Polynomials – FpubRec

• Input: All honest parties send ZEROS ⇢ [n] and a binary vector (pub1, . . . , pubn). When
the dealer is honest, ZEROS ✓ I. Each honest party Pj inputs shares (h1(j), . . . , hn(j))

on n polynomials, each of degree 3t/2 to FpubRec. The functionality reconstructs the
polynomials as h1(x), . . . , hn(x).

• The functionality:

1. If the dealer is honest, then send ZEROS, (pub1, . . . , pubn), h`(i) for each i 2 I and
every ` 2 [n], hi(x) for every i 2 I and h`(x) for every ` 2 [n] such that pub

`
= 1

to the adversary. If the dealer is corrupted, then send ZEROS, (pub1, . . . , pubn) and
h1(x), . . . , hn(x) to the adversary.

2. Receive a message M from the adversary.

3. Output:
(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with Bad \ ZEROS = ; and |Bad| > t/2, and in case of
an honest dealer then Bad ✓ I, then send (detect,Bad) to all parties.

(c) If M = proceed then send (proceed, {h`(x)}` s.t. pub`=1) to all parties.
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Protocol 4.6.6: Public Reconstruction of 3t/2-Shared Polynomials – ⇧pubRec

• Input: All parties hold the same set ZEROS. Each honest party Pj holds shares
(h1(j), . . . , hn(j)) on n polynomials h1(x), . . . , hn(x) each of degree 3t/2. It is guar-
anteed that all the shares of honest parties lie on the same 3t/2 degree polynomials. All
parties hold the same binary vector (pub1, . . . , pubn).

• The protocol:

1. Each Pj broadcasts (`, j, h`(j)) for every ` such that pub
`
= 1.

2. Let (`, j, u`,j) be the value Pj broadcasted. For every j 2 ZEROS, (`, j, u`,j) is such
that u`,j = 0.

3. The dealer sets Bad = ;. For each (`, j, u`,j) message broadcasted, the dealer
verifies that u`,j = h`(j). If not, then it adds j to Bad. The dealer broadcasts
Bad.

4. Verify that (i) |ZEROS [ Bad|  t; and (ii) Bad ⇢ [n] \ ZEROS. Otherwise, discard
the dealer and go to Step 7a.

5. If |Bad| > t/2 then there is a large detection and so go to Step 7b.

6. Otherwise, consider all the points R` = {(j, u`,j)} such that (`, j, u`,j) was broad-
casted in Step 1 for j 62 Bad where u`,j = 0 if j 2 ZEROS. Verify that each R`

defines a unique polynomial of degree 3t/2. If not, go to Step 7a. Otherwise, set
h`(x) to be this unique polynomial and go to Step 7c.

7. Output:
(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Proceed: All parties output (proceed, {h`(x)}` s.t. pub`=1).

Lemma 4.6.7. Protocol 4.6.6, ⇧pubRec, perfectly securely computes Functionality 4.6.5, FpubRec,

in the presence of a malicious adversary controlling at most t < n/3.

Proof. We show the case of an honest dealer and a corrupted dealer separately.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.
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2. Receive from the functionality the sets ZEROS, (pub1, . . . , pubn) {h`(i)}i2I and h`(x) for
each ` such that ` 2 I or pub

`
= 1.

3. For each ` such that pub
`
= 1, simulate every honest Pj broadcasting (`, j, h`(j)). Listen

to the broadcasts (`, i, h`(i)) from the adversary for each i 2 I. Set Bad = �.

4. For each (`, i, u`,i) broadcasted by the adversary, if u`,i 6= h`(i) then add i to Bad.

5. Simulate the dealer broadcasting Bad. If |Bad| > t/2 then send (detect,Bad) to the
functionality and halt.

6. Otherwise, send proceed to the functionality and halt.

The protocol as well as the simulator is deterministic. Hence, it can be easily observed
that the view of the adversary in the real and ideal executions is identical. Thus, it remains
to be shown that the output of honest parties is identical in the real and ideal world.

Towards that end, note that in the real world, an honest dealer is discarded if and only if
one of the following conditions holds:

1. |ZEROS [ Bad| > t.

2. Bad 6⇢ [n] \ ZEROS.

3. R` does not define a unique polynomial of degree-3t/2.

Note that for an honest dealer, an honest party never belongs to Bad and we have that
ZEROS ✓ I. It is clear that none of the above conditions hold and the dealer is not dis-
carded. We thus have the following two cases to consider:

1. There exists an honest party that outputs (detect,Bad): In this case, it must hold
that |Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it
must hold that all the honest parties output (detect,Bad). The simulator emulates the
the honest parties as in the real execution, hence all the simulated honest parties hold
the same set Bad and the same output. In this case, the simulator sends (detect,Bad) to
the functionality , causing all the honest parties in the ideal world to output the same.

2. There exists an honest party proceed: In this case, we show that all the honest parties
output (proceed, {h`(x)}` s.t pub`=1). For this, note that since there exists an honest party
that does not output discard or (detect,Bad), it must hold that |ZEROS [ Bad|  t,
Bad ⇢ [n] \ ZEROS and |Bad|  t/2. Moreover, for every ` with pub

`
= 1, the points

R` which were broadcasted (excluding the points of parties in Bad) define a unique
degree-3t/2 polynomial h`(x). Since all the corresponding messages were broadcast,
all the honest parties have the same view and hence output (proceed, {h`(x)}` s.t pub`=1).
Since the real and simulated executions are identical, the simulated honest parties have
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the same output. In this case, the simulator sends proceed to the functionality, causing
the honest parties in the ideal world to receive an identical output.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the set ZEROS, (pub1, . . . , pubn) and the polynomials
h1(x), . . . , hn(x).

3. Simulate the protocol where each honest party Pj holds h1(j), . . . , hn(j) and all parties
have the same set ZEROS and (pub1, . . . , pubn).

4. Send the message M to the functionality according to the following cases (the proof
will show that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send
(detect,Bad) to the functionality and halt.

(c) If the output of some simulated honest party is proceed, then send proceed to the
functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real
honest parties in the real execution, and since the protocol is deterministic, we get that the
view of the adversary is exactly the same in the real and in the ideal executions. Thus it
remains to be shown that the output of the honest parties is identical in the real and ideal
executions. We have the following cases to consider:

1. There exists an honest party that outputs discard in the real world: Observe that
an honest party outputs discard if and only if one of the following conditions holds.

(a) The dealer broadcasted Bad such that either (i) |ZEROS [ Bad| > t; or (ii) Bad 6⇢
[n] \ ZEROS. Since all honest parties hold the same set ZEROS, and the set Bad is
broadcasted, we get that all honest parties output discard.

(b) The dealer broadcasted Bad with |Bad|  t/2, and for which |ZEROS[Bad|  t and
Bad ⇢ [n]\ZEROS. However, for R` = {(j, uj)} such that (`, j, u`,j) was broadcasted
in Step 1 and j 62 Bad, it holds that R` does not define a unique polynomial of
degree 3t/2. Since the set R` is public, all honest parties will identify that there is
no unique reconstruction, and all would output discard.
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Since the simulated honest parties have the same view as the honest parties in the real
execution, the simulated honest parties also output discard. In this case, the simulator
sends discard to the functionality causing all the honest parties to output discard in
the ideal execution.

2. There exists an honest party that outputs (detect,Bad) in the real world: In this
case, it must hold that |ZEROS[Bad|  t and Bad ⇢ [n]\ZEROS. Moreover, it must hold
that |Bad| � t/2. Since the corresponding set Bad is broadcast, all the honest parties
hold the same set and hence output (detect,Bad). The simulated honest parties hold
an identical output, and thus the simulator sends (detect,Bad) to the functionality ,
which in turn sends the same to all the honest parties in the ideal execution.

3. There exists an honest party that outputs proceed in the real world: In this case,
we show that all honest parties P` output (proceed, {h`(x)}` s.t pub`=1) where each h`(x)

is the degree 3t/2 polynomials that is interpolated from the respective input shares of
the honest parties and is guaranteed to exist under our input assumption. Towards
that, observe that since there exists an honest party that does not output discard,
(detect,Bad) it must hold that |ZEROS [ Bad|  t, Bad ⇢ [n] \ ZEROS and |Bad|  t/2.
Moreover, for each R` = {(j, uj)} such that (`, j, u`,j) was broadcasted in Step 1 and
j 62 Bad, it holds that R` defines a unique polynomial of degree 3t/2. Since |Bad|  t/2,
it must thus hold that the reconstructed polynomial for each ` agrees with shares of at
least n � t/2 � 5t/2 + 1 parties. Consequently, the reconstructed polynomial agrees
with shares of at least 3t/2 + 1 honest parties. Since both the reconstructed polynomial
and h`(x) are of degree 3t/2, it holds that polynomial obtained from R` is indeed h`(x)

that is defined by the input shares of the honest parties. In this case, the simulated
honest parties also hold the same output and hence the simulator sends proceed to the
functionality. Thus the output of honest parties in the ideal execution is identical to
their output in the real world.

Lemma 4.6.8. Let t < n/3. There exists a protocol that implements Functionality 4.6.5, FpubRec,

and has a communication complexity of O(n2 log n) bits broadcast in O(1) rounds. Every party

broadcasts at most O(n log n) bits.

4.6.3 Putting Everything Together: Packed VTS

We now present the functionality and the protocol for a packed VTS.

Functionality 4.6.9: Packed Verifiable Triple Sharing – FPVTS
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The functionality is parameterized by a set of corrupted parties I ⇢ [n].

1. Honest dealer:

(a) The dealer sends SECRETSa, SECRETSb, SECRETSc to FPVTS.

(b) The adversary sends (fa

i
(x), ga

i
(y))i2I , (f b

i
(x), gb

i
(y))i2I , (f c

i
(x), gc

i
(y))i2I to FPVTS

such that fa

i
(k) = ga

k
(i), f b

i
(k) = gb

k
(i) and f c

i
(k) = gc

k
(i) for every i, k 2 I.

(c) The functionality chooses random bivariate polynomials A(x, y), B(x, y) and
C(x, y) of degree 3t/2 in x and t in y under the constraints that (i)
SECRETSa, SECRETSb, SECRETSc are embedded in A,B,C respectively; (ii)
A(x, i) = fa

i
(x), B(x, i) = f b

i
(x) and C(x, i) = f c

i
(x) for every i 2 I; (iii)

A(i, y) = ga
i
(y), B(i, y) = gb

i
(y) and C(i, y) = gc

i
(y) for every i 2 I.

2. Corrupted dealer: The dealer sends A(x, y), B(x, y) and C(x, y) to FPVTS that verifies
that (i) A(x, y), B(x, y) and C(x, y) are of degree 3t/2 in x and degree t in y; and (ii)
A(�`, 0) · B(�`, 0) = C(�`, 0) holds for each ` 2 {0, . . . , t/2}. If not, FPVTS replaces
each A(x, y), B(x, y) and C(x, y) with ?.

3. The functionality receives from the adversary a message M .

4. Output:

(a) If M = kill, then send kill to all parties and if the dealer is honest, then send
A(x, y), B(x, y), C(x, y) to the adversary.

(b) Otherwise, send to each party Pj the pairs of polynomials A(x, j), A(j, y),
B(x, j), B(j, y) and C(x, j), C(j, y).

Protocol 4.6.10: Packed VTS in the (FPSS,FprivRec,FpubRec)-Hybrid model – ⇧PVTS

Input: The dealer holds three lists SECRETSa = {a0, . . . , at/2}, SECRETSb =

{b0, . . . , bt/2}, SECRETSc = {c0, . . . , ct/2}, each of size t/2 + 1 such that ci = aibi holds for
each i 2 {0, . . . , t/2}.
The protocol:

1. All parties set ZEROS = ;.
2. Dealing the shares of triples: Parties invoke FPSS (Functionality 4.4.10) three times

with d = 0, where the dealer inputs SECRETSa, SECRETSb, SECRETSc respectively and
each party inputs ZEROS. If the output of any instance is ?, then proceed to Step 5a.
Otherwise, each Pi holds fa

i
(x) = A(x, i), ga

i
(y) = A(i, y), f b

i
(x) = B(x, i), gb

i
(y) = B(i, y)

and f c

i
(x) = C(x, i), gc

i
(y) = C(i, y).
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3. Dealing the shares of product polynomials:

(a) For each ` 2 {0, . . . , t/2}, the dealer defines the polynomials E�`(y) of degree at
most 2t such that E�`(y) = A(�`, y) ·B(�`, y)�C(�`, y) = e(�`,0) + e(�`,1)y+ . . .+

e(�`,2t)y2t. Define ei = (e(�t/2,i), . . . , e(0,i)) for i 2 {0, . . . , 2t}, as the vector of ith
coefficients of all the t/2 + 1 polynomials.

(b) The dealer views the coefficients of these t/2 + 1 polynomials as (at most) eight
matrices SECRETS1, . . . , SECRETS8, each of size (t/2 + 1)(t/4 + 1). Specifically,
SECRETSu(., b) = e(t/4+1)·(u�1)+b where b 2 {0, . . . , t/4}, u 2 [8].

(c) All the parties invoke FPSS (Functionality 4.4.10) (at most) eight times with d =

t/4, where the dealer inputs SECRETSu for each u 2 [8] respectively and each
party inputs ZEROS. If the output of any instance is ?, then proceed to Step 5a.
Otherwise, each Pi holds the degree-(t + t/2) polynomials fu

i
(x) = Eu(x, i) and

degree-(t+ t/4) polynomials gu
i
(y) = Eu(i, y) for all u 2 [8].

(d) Let f e(t/4+1)·(u�1)+b(x) = Eu(x,�b) for b 2 {0, . . . , t/4}, u 2 [8], denote the 3t/2-
degree polynomial that packed-shares the coefficient vector e(t/4+1)·(u�1)+b.

4. Proof of product relation: To check the product relation, each Pi requires to verify
that E�`(i) = A(�`, i) · B(�`, i) � C(�`, i) holds for each ` 2 {0, . . . , t/2}. Let E(i) =

(E�t/2(i), . . . , E0(i)) and fE(i)(x) =
P2t

k=0 i
kf ek(x) be the 3t/2-degree polynomial that

packed-shares E(i). Note that each fE(i)(x) is a linear combination of the polynomials
(f ej(x))j2{0,...,2t}.

(a) Reconstructing E(i) and E(0) towards each Pi: For each party Pi, every party Pj

computes fE(i)(j) =
P2t

k=0 i
k · f ek(j) and fE(0)(j) = f e0(j). Parties invoke FprivRec

(Functionality 4.6.1) where Pj inputs
(fE(0)(j), fE(1)(j), . . . , fE(n)(j)) and ZEROS.

i. If the output is discard, then proceed to Step 5a.

ii. If the output is (detect,Bad), then set ZEROS = ZEROS [ Bad. If |ZEROS| > t

then go to Step 5a. Otherwise, go to Step 2.

iii. If the output is kill then go to Step 5b.

iv. Otherwise, Pi sets fE(0)(x) = h0(x) and fE(i)(x) = hi(x) where
(proceed, h0(x), hi(x)) is the output of FprivRec.

(b) Verifying the product relation of each Pi and that E(0) = e0 = (0, . . . , 0) holds:
i. Each Pi verifies that E(i) obtained from reconstructed polynomial fE(i)(x)

matches with (fa

i
(�`) · f b

i
(�`) � f c

i
(�`))`2{0,...,t/2}. Pi also verifies that

fE(0)(�`) = 0 holds for each ` 2 {0, . . . , t/2}. If not, then Pi broadcasts
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complaint(i).

ii. Parties construct a binary vector (pub1, . . . , pubn) where pub
i
= 1 if Pi broad-

casted complaint(i).

iii. Parties invoke FpubRec (Functionality 4.6.5) five times where each Pj in-
puts (pub1, . . . , pubn), ZEROS in each instance and the following respectively
in five instances: (i) (fE(1)(j), . . . , fE(n)(j)), (ii) (fE(0)(j), . . . , fE(0)(j)), (iii)
(ga

j
(1), . . . , ga

j
(n)), (iv) (gb

j
(1), . . . , gb

j
(n)) and (v) (gc

j
(1), . . . , gc

j
(n)).

For any of the above instances:
A. If the output is discard, then proceed to Step 5a.

B. If the output is (detect,Bad), then set ZEROS = ZEROS [ Bad. If
|ZEROS| > t then go to Step 5a. Otherwise, go to Step 2.

C. Otherwise, when the output is proceed, all parties set fE(i)(x), fE(0)(x) and
fa

i
(x), f b

i
(x), f c

i
(x) as the respective output obtained in the corresponding

five instances of FpubRec for each Pi which broadcasted complaint(i).

iv. For each Pi which complained, parties verify the checks as in Step 4(b)i using
the polynomials returned by the instances of FpubRec. If it does not hold for
some complaining party, then go to Step 5a. Otherwise, go to Step 5c.

5. Output:

(a) Discard the dealer: All parties output ?.

(b) Kill this instance: All parties output kill.

(c) Successful: Each Pi outputs (fa

i
(x), ga

i
(y), f b

i
(x), gb

i
(y), f c

i
(x), gc

i
(y)), where

{(fa

i
(�`), f b

i
(�`), f c

i
(�`))}`2{0,...,t/2} defines Pi’s shares of the t/2 + 1 multiplication

triples.

Lemma 4.6.11. Let t < n/3. Protocol 4.6.10, ⇧PVTS, perfectly securely computes Functional-

ity 4.6.9, FPVTS, in the (FPSS,FprivRec,FpubRec)-hybrid model (Functionality 4.4.10,4.6.1,4.6.5),

in the presence of a malicious adversary, controlling at most t < n/3.

Proof. We consider the case of an honest dealer and a corrupt dealer separately.

The case of an honest dealer. The simulator is as follows:

1. Invoke A on an auxiliary input z.

2. Set SECRETSa, SECRETSb, SECRETSc arbitrarily as input (say, all zeros) and run the
protocol where the dealer holds SECRETSa, SECRETSb, SECRETSc and all other parties
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have no inputs. In particular, simulate the inner functionalities FPSS, FprivRec and FpubRec

as a functionality would run it.

3. Let A(x, y), B(x, y), C(x, y) be the polynomials used in the simulated functionality FPSS

in the last iteration (by iteration, we mean running the protocol from Step 2 un-
til restarting or concluding the protocol). Send A(x, i), A(i, y), B(x, i), B(i, y) and
C(x, i), C(i, y) to the functionality for every i 2 I.

4. If the output of simulated functionality FprivRec is kill, then send kill to the function-
ality.

We will now show that the output of the real and ideal executions are the same. For this,
similar to the proof of ⇧PSS (Lemma 4.4.12) consider the following games:

• Game1: This is the real execution. We run the protocol where the honest dealer uses
SECRETSa, SECRETSb, SECRETSc as its input. The output of this game is the view of
the adversary and the output of all honest parties in the protocol.

• Game2: Here, we run a modified ideal model, in which the simulator receives the same
input = (SECRETSa, SECRETSb, SECRETSc) as in Game1 as an advice, and the dealer
uses input as its input to the functionality. The simulator uses input as its input instead of
all zeros. The simulator runs the protocol where the input of the honest dealer is input,
exactly as the real execution in Game1. We claim that the dealer is never discarded.
Then, the simulator sends to the functionality the output shares of the corrupted parties
in the simulated execution and a message kill if some party complains in the simulated
execution. If the latter holds, then the functionality sends kill to all. Otherwise, the
functionality chooses some random polynomials A(x, y), B(x, y), C(x, y) that agree with
the output shares of the adversary, and gives the honest parties their shares on these
polynomials. The output of this experiment is the view of the adversary as determined
by the simulator, and the output of all honest parties.

• Game3: This is the ideal execution. In particular, the simulator receives no advice, and
runs as in Game2, but with input SECRETSa, SECRETSb, SECRETSc set to 0.

We will now show that the output of all the games are identically distributed.

The outputs of Game1 and Game2 are identically distributed. The simulator in Game2

runs the exact same protocol as the real execution in Game1, and therefore the view of the
adversary is identical in both executions. We now turn to the output of the honest parties.
We claim that in that execution, the honest dealer is never discarded. In particular:
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1. An honest dealer always chooses bivariate polynomials that satisfy the conditions of
Functionality 4.4.10 and therefore is not discarded.

2. Similarly, by the guarantees of Functionality 4.6.1, we have that an honest dealer is
never discarded. Moreover, Bad ✓ I and Bad [ ZEROS ✓ I and hence |ZEROS|  t

always holds and the dealer is not discarded.

3. Finally, for the same reasons as above, during the invocation of Functionality 4.6.5, we
have that an honest dealer is never discarded.

Further, if the output of honest parties in Game1 is kill, then it must hold that the output
of simulated honest parties in Game2 is also kill and hence the simulator sends kill to the
functionality. All the honest parties in Game2 also output kill. Finally, when the dealer is
honest and parties do not output kill, all parties output shares on the same bivariate polyno-
mials, which are A(x, y), B(x, y), C(x, y) that the dealer used in that iteration. In Game1, the
output of all honest parties is shares on these polynomials. In Game2, the simulator sends the
shares (A(x, i), A(i, y))i2I , (B(x, i), B(i, y))i2I and (C(x, i), C(i, y))i2I to the functionality, the
functionality samples new polynomials A0(x, y), B0(x, y), C 0(x, y) under the constraints that
A0(x, i) = A(x, i), A0(i, y) = A(i, y), B0(x, i) = B(x, i), B0(i, y) = B(i, y) and C 0(x, i) = C(x, i),

C 0(i, y) = C(i, y) for every i 2 I, and SECRETSa, SECRETSb, SECRETSc are embedded in
A0(x, y), B0(x, y), C 0(x, y) respectively. The output of all honest parties is then equivalent to
just outputting shares on A0(x, y), B0(x, y), C 0(x, y). Using a similar argument as Claim 4.4.13,
it can be seen that the output of honest parties is identically distributed.

The outputs of Game2 and Game3 are identically distributed. The only difference between
the two games is that in Game2 the simulator uses the same secrets input as the honest dealer
uses in the ideal execution, whereas in Game3 the honest dealer uses input as all 0. The
following claim shows that the shares that the corrupted parties receives in the simulated
execution is identically distributed. In both execution, given the shares and the message
kill that the simulator sends to the functionality, the outputs of the honest parties are de-
fined in exactly the same process (that is, the functionality either sends kill to all or uses
SECRETSa, SECRETSb, SECRETSc and the shares sent by the adversary to define the shares of
honest parties). Therefore it is enough to show that the view of the adversary is identically
distributed. This can be easily shown using similar argument as Claim 4.4.14.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A on the auxiliary input z.

2. Observe that all honest parties have no input to the protocol. Simulate running the
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protocol with the adversary, while also simulating Functionalities 4.4.10, 4.6.1 to the
adversary as the functionality would run it.

3. If the output of some simulated honest party is ?, then send A(x, y) = B(x, y) =

C(x, y) = x3t/2+1 to the functionality, in which case it sends ? to all parties.

4. If the output of some simulated honest party is kill, then send M = kill to the
functionality.

5. Otherwise, let J be a set of t+1 honest parties. Reconstruct the unique bivariate polyno-
mials A(x, y), B(x, y), C(x, y) that satisfy A(x, j) = fa

j
(x), B(x, j) = f b

j
(x) and C(x, j) =

f c

j
(x) for every j 2 J , where fa

j
(x), ga

j
(y), f b

j
(x), gb

j
(y) and f c

j
(x), gc

j
(y) is the output of

the simulated honest party in the simulated execution. Send A(x, y), B(x, y), C(x, y) to
the functionality and halt.

Since the code of each party in the protocol which is not the dealer is deterministic, and the
functionalities 4.4.10, 4.6.1 are deterministic, the view of the adversary is identical in the real
and ideal executions. Moreover, since the functionality is deterministic, we can separately
consider the view and the outputs of the honest parties. Thus, all that is left to be shown is
that the output of the honest parties is the same in the real and in the ideal executions. We
have the following cases to consider:

1. There exists an honest party that outputs ? in the real world. An honest party
outputs ? if and only if one of the following conditions holds: (i) FPSS (Functional-
ity 4.4.10), FprivRec or FpubRec returns ?, or (ii) |ZEROS [ Bad| > t. In the first case,
if FPSS, FprivRec or FpubRec returned ? to one honest party, it implies that all the honest
parties received ?, and thus all would output ? in the protocol. For the latter case,
due to the guarantees of the functionalities FPSS, FprivRec and FpubRec, all the honest
parties must hold identical sets Bad and ZEROS. Hence, all would output ? in the
protocol. Since the real and simulated executions are identical, the simulated honest
parties must also output ?. In this case, the simulator invokes the functionality with
A(x, y) = B(x, y) = C(x, y) = x3t/2+1, causing all the honest parties to output ? in the
ideal execution.

2. There exists an honest party that outputs kill in the real world. An honest party
outputs kill if and only if FprivRec returns kill. By the guarantees of FprivRec, we have
that all the honest parties receive kill from FprivRec and hence all would output kill
in the protocol. Due to identical views of the honest parties in the real and simulated
execution, the same must hold true for each simulated honest party. In this case, the
simulator sends kill to the functionality causing all the honest parties to receive output
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kill in the ideal execution. This is exactly the output of the honest parties in the real
world.

3. No honest party outputs ? or kill in the real world. In this case, first note
that by the guarantees of FPSS, we have that all the honest parties Pi output
shares (fa

i
(x), ga

i
(y), f b

i
(x), gb

i
(y), f c

i
(x), gc

i
(y)) consistent with some bivariate polynomi-

als A(x, y), B(x, y) and C(x, y) respectively. Thus, it remains to show that A(�`, 0) ·
B(�`, 0) = C(�`, 0) indeed holds for every ` 2 {0, . . . , t/2}. For this, first note that since
no honest party outputs? or kill, in the final iteration of the protocol, it must hold that
each Pi successfully reconstructs its fE(0)(x) and fE(i)(x) polynomials in Step 4a which
are required to verify the product relation. We now claim that since the honest parties
do not output ? in the final iteration of the protocol, it must hold that no honest party
Pi broadcast complaint(i) in Step 4(b)i of the final iteration. Suppose some honest party
Pi had indeed broadcasted complaint(i) at this step, all the parties must have invoked
FpubRec in Step 4(b)iii. Since this is the final iteration, we have that FpubRec did not out-
put (detect,Bad) such that |Bad| > t/2, as otherwise the parties would have rebooted
to start a new iteration. Moreover, no party output ? hence FpubRec did not output
discard. Consequently, each party would successfully reconstructed the f polynomials
of the complaining party Pi. Given that the reconstructed polynomials agree with the
shares of at least n � t/2 � 5t/2 + 1 parties, it must agree with with the shares of at
least 3t/2 + 1 honest parties (since at most t/2 parties may have been identified as Bad
in FpubRec), thus forcing the reconstruction of the dealer’s polynomial committed during
the sharing phase. Thus, all the parties would publicly verify an honest Pi’s complain
and as a result discard the dealer, which is a contradiction. Hence, it must hold that
no honest party Pi broadcast complaint(i) in Step 4(b)i of the final iteration. Since no
honest party complains, it must hold that A(�`, i)·B(�`, i)�C(�`, i) = E�`(i) holds for
each honest Pi and every ` 2 {0, . . . , t/2}. Since each of A(�`, y) · B(�`, y) � C(�`, y)
and E�`(y) are at most degree 2t polynomials, which agree in at least 2t+1 points corre-
sponding to the honest parties, it must hold that A(�`, y) ·B(�`, y)�C(�`, y) = E�`(y).
Using a similar argument, it can be clearly seen that E�`(0) holds when the dealer is
not discarded. Thus, it can be concluded that A(�`, 0) · B(�`, 0) = C(�`, 0) holds.
In the simulated execution, the simulator chooses an arbitrary set of t + 1 honest par-
ties and reconstructs the bivariate polynomials that agree with their output. Since the
real and simulated executions are identical, it must hold that these polynomials are
A(x, y), B(x, y) and C(x, y) respectively. The simulator then invokes the functionality
with these polynomials causing the honest parties in the ideal execution to output shares
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that are identical to those in the real execution.

Lemma 4.6.12. Let t < n/3 and d  t/4. There exists a protocol that implements Func-

tionality 4.6.9, FPVTS, has a communication complexity of O(n2 log n) bits over point-to-point

channels and O(n2 log n) bits broadcast for sharing O(n) multiplication triples simultaneously in

O(1) rounds. Every party broadcasts at most O(n log n) bits.

4.7 Batched Verifiable Triple Sharing
In this section, we discuss how to run m instances of our packed VTS while keeping the broad-
cast cost unchanged. Specifically, while one instance of the packed VTS requires O(n2 log n)

bits communication over point-to-point channels and each party broadcasts O(n log n) bits,
we show how to run m instances together at a cost of O(mn2 log n) bits over point-to-point
channels and retain the same broadcast of O(n log n) bits per party. An important property
to note here is that although an adversary can compromise an instance of packed VTS even
for an honest dealer, in the batched version we ensure that at most n out of the m instances
can be compromised. When m > n, our protocols achieves the properties of a verifiable
triple sharing. That is, when the dealer is honest, our protocol guarantees privacy of triples
obtained from the m�n uncompromised instances of packed VTS. While for a corrupt dealer,
as in packed VTS, our zero knowledge proof ensures the correctness of the triples. We now
elaborate on the changes necessary to the packed VTS protocol and its sub-protocols.

Dealing the shares of triples and product polynomials. The dealer holds m lists of triples,
and one set ZEROS ⇢ [n]. Further, for the parties in ZEROS, the shares of on all the bivariate
polynomials are assumed to be 0. For sharing the triples as well as the coefficients of the
product polynomials of m instances, batched variant of the packed secret sharing Fbatched

PSS

(Functionality 4.5.4) is invoked. This ensures a cost of O(mn2 log n) bits over point-to-point
channels and a broadcast of O(n log n) bits per party.

Batched private reconstruction. The change in the protocol here follows closely to the
batched reconstruction of g polynomials defined in Section 4.5. Specifically, in Step 2, a party
P` may fail to reconstruct h0 or h` in multiple instances. However, it suffices for P` to choose
one instance (say the instance with a minimum index �) and complain with respect to �. The
complaint for a party now looks like complaint(`, �). Following this, the public verification
happens only for the �th instance for P`. In the case that the dealer is not discarded and the
publicly identified set Bad has at most t/2 parties, each party is guaranteed to reconstruct its
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polynomials in all the instances successfully. This follows similar to the argument described
in Section 4.5. Specifically, using the publicly identified Bad set, and in addition the locally
identified conflicts (by comparing the values it received over point-to-point channels and
those broadcast by parties during public reveal), a party can recognize more than t/2 errors
and correct the remaining (less than t/2) errors across the m instances. We provide the
complete modelling via Fbatched

privRec
(Functionality 4.7.1). The protocol ⇧batched

privRec (Protocol 4.7.2)
and its security proof follow.

Functionality 4.7.1: Batched Private Reconstruction of 3t/2-Shared Polynomials – Fbatched

privRec

• Input: All honest parties send ZEROS ⇢ [n]. When the dealer is honest, ZEROS ✓ I.
Each honest party inputs shares on m sets of polynomials, each of degree 3t/2 to Fbatched

privRec
.

It reconstructs the polynomials as {hk

0(x), . . . , h
k

n
(x)}k2[m].

• The functionality:

1. If the dealer is honest, then send (a) the polynomials hk

0(x), . . . , h
k

n
(x) for every

k 2 [m] to the dealer; (b) ZEROS, (hk

0(i), . . . , h
k

n
(i))i2I and (hk

0(x), h
k

i
(x))i2I for

each k 2 [m] to the adversary. If the dealer is corrupted, then send ZEROS and
hk

0(x), . . . , h
k

n
(x) to the adversary for each k 2 [m].

2. Receive a binary vector leak of length m with at most n 1’s from the adversary. For
every k such that leakk = 1, send {hk

0(x), . . . , h
k

n
(x)} to the adversary.

3. Receive a message M from the adversary.

4. Output:
(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with Bad \ ZEROS = ; and |Bad| > t/2, and in case of
an honest dealer then Bad ✓ I, then send (detect,Bad) to all parties.

(c) If M = kill and leak is not a 0-vector then then send (proceed, hk

0(x), h
k

`
(x))

to each party P` for every k where such that leakk = 0. For every other k, send
kill to all the parties.

(d) If M = proceed and leak is a 0-vector then send (proceed, hk

0(x), h
k

`
(x)) for

every k 2 [m] to each party P`.

Protocol 4.7.2: Batched Private Reconstruction of 3t/2-Shared Polynomials – ⇧batched

privRec

• Input: All parties hold the same set ZEROS. Each honest party Pj holds m sets of
shares (hk

0(j), . . . , h
k

n
(j)) for each k 2 [m] on polynomials hk

0(x), . . . , h
k

n
(x) each of degree
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3t/2. It is guaranteed that all the shares of honest parties lie on the same 3t/2 degree
polynomials.

• The protocol:

1. Each Pj sends (j, hk

0(j), h
k

`
(j)) for every k 2 [m] to every P`.

2. Let (j, uk

j
, vk

j
) be the value P` received from Pj. For every j 2 ZEROS, (j, uk

j
, vk

j
)

is such that uj = vj = 0. Given all (j, uk

j
) and (j, vk

j
), P` looks for a codeword of

distance at most t/2 from all the values it received (see Corollary 4.3.3, item 1).
If there is such a codeword, set hk

0(j) and hk

`
(x) to be the unique Reed-Solomon

reconstruction respectively for each k 2 [m]. If there is no such a unique codeword
for some k, then P` broadcasts complaint(`, �) where � is the minimal index from
{1, . . . ,m} and every party Pj broadcasts reveal(`, �, j, h�

0 (j), h
�

`
(j)). If P` sees some

reveal(`, �, j, u�

j
, v�

j
) with a value different than the one sent by Pj then add j to

localBad`.

3. If no party broadcasts complaint(`, �) then go to Step 9d.

4. The dealer sets Bad = ;. For each reveal(`, �, j, u, v) message broadcasted, the
dealer verifies that u = h�

0 (j) and v = h�

`
(j). If not, then it adds j to Bad. The

dealer broadcasts Bad.

5. Verify that (i) |ZEROS [ Bad|  t; and (ii) Bad ⇢ [n] \ ZEROS. Otherwise, discard
– go to Step 9a.

6. If |Bad| > t/2 then there is a large detection – go to Step 9b.

7. Otherwise, consider all the points R` = {(j, u�

j
)} and T` = {(j, v�

j
)} such that

reveal(`, �, j, u�

j
, v�

j
) was broadcasted in Step 2 for j 62 Bad, where u�

j
= v�

j
= 0 if

j 2 ZEROS. Verify that R` and T` each define a unique polynomial of degree 3t/2.
If not, go to Step 9a.

8. If the dealer is not publicly discarded, then each P` sets hk

0(x) and hk

`
(x) for each

k 2 [m] as the unique decoding of the points (j, uk

j
) and (j, vk

j
) respectively (see

Corollary 4.3.3, item 2) for every j 62 Bad [ localBad`, received in Step 1 and
proceed to Step 9c.

9. Output:
(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Leak: Output (proceed, hk

0(x), h
k

`
(x)) for each k 2 [m] such that complaint(·, k)

was not broadcasted in Step 2. For every other k, output kill.

(d) Proceed: Each P` outputs (proceed, hk

0(x), h
k

`
(x)) for every k 2 [m].
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Lemma 4.7.3. Protocol 4.7.2, ⇧batched

privRec, perfectly securely computes Functionality 4.7.1,

Fbatched

privRec
, in the presence of a malicious adversary controlling at most t < n/3.

Proof. We show the case of an honest dealer and a corrupted dealer separately.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the sets ZEROS, {(hk

0(i), . . . , h
k

n
(i))}i2I and

(hk

0(x), h
k

i
(x))i2I for every k 2 [m].

3. For each i 2 I, simulate every honest Pj sending (j, hk

0(j), h
k

i
(j)) to Pi. Receive

(i, hk

0(i), h
k

j
(i)) from the adversary for each i 2 I and every honest Pj, for every k 2 [m].

4. If for some honest Pj, (i, uk

i
, vk

i
) sent by the adversary is such that uk

i
6= hk

0(i) or vk
i
6= hk

j
(i)

for more than t/2 such i 2 I then simulate Pj broadcasting complaint(j, �) where � is
the minimal index from [m]. Also listen to all complaint(i, �) messages broadcasted by
the adversary. Construct a vector leak of length m such that leak� = 1 for each � for
which complaint(·, �) was broadcasted by some party, and send leak to the functionality.
Receive {h�

0 (x), . . . , h
�

n
(x)} from the functionality for each � where leak� = 1. Set

Bad = ;.
5. For each complaint(`, �) broadcasted by some P`, simulate broadcasting

(`, �, j, h�

0 (j), h
�

`
(j)) for every honest Pj and listen to all the adversary’s broadcasts.

6. For each i 2 I where (`, �, i, u�

i
, v�

i
) broadcasted is such that u�

i
6= h�

0 (i) or v�
i
6= h�

`
(i),

add i to Bad.

7. Simulate the dealer broadcasting Bad. If |Bad| > t/2 then send (detect,Bad) to the
functionality and halt.

8. If leak is not a 0-vector then send kill to the functionality and halt.

9. Otherwise, send proceed to the functionality and halt.

The protocol as well as the simulator is deterministic. Hence, it can be easily observed
that the view of the adversary in the real and ideal executions is identical. It remains to show
that the output of honest parties is identical in the real and ideal world.

Towards that end, note that in the real world, an honest dealer is discarded if and only if
one of the following conditions holds:

1. |ZEROS [ Bad| > t.
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2. Bad 6⇢ [n] \ ZEROS.

3. R` or T` do not define a unique polynomial of degree-3t/2.

Note that for an honest dealer, an honest party never belongs to Bad and we have that
ZEROS ✓ I. It is clear that none of the above conditions hold and the dealer is not dis-
carded. We thus have the following cases to consider:

1. There exists an honest party that outputs (detect,Bad): In this case, it must hold
that |Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it
must hold that all the honest parties output (detect,Bad). The simulator emulates
the interaction of the honest parties with the dealer as in the real execution, hence all
the simulated honest parties hold the same set Bad. In that case, the simulator sends
(detect,Bad) to the functionality, causing all the honest parties in the ideal world to
output the same.

2. There exists an honest party that outputs kill for some k 2 [m]: In this case, it
must hold that |Bad|  t/2. Moreover, there exists some party P` which broadcasted
complaint(`, k) and each R` and T` define a unique degree 3t/2 polynomials. Since all
the corresponding messages are broadcast, all the honest parties would output kill

for k. The same holds true for each k for which complaint(·, k) was broadcast. For
every other k, it must hold that each honest party P` is able to reconstruct hk

0(x), h
k

`
(x)

either in Step 2 or in Step 8 after discarding the shares of (at least t/2 corrupt) parties in
Bad[localBad` (similar to batched reconstruction of g polynomials in Section 4.5). Since
these polynomials are degree 3t/2 and agree with the shares of at least 2t + 1 honest
parties, they are guaranteed to be the same polynomials defined by the input shares of
the honest parties. The simulator emulates the interaction of the honest parties with
the dealer as in the real execution, hence all the simulated honest parties P` hold the
same set Bad, see the same complaints. In this case, the simulator constructs leak with
leakk = 1 for each k such that complaint(·, k) was broadcast and sends leak to the
functionality, followed by kill, causing all the honest parties in the ideal execution to
have the same output as the honest parties in the real execution.

3. There exists an honest party that outputs proceed for all k 2 [m]: This implies that
no party broadcast complaint in the real execution. Thus, it must hold that each honest
party P` obtained a unique reconstruction in Step 2, which agrees with the shares of
all the honest parties. Since the reconstructed polynomials and hk

0(x), h
k

`
(x) defined by

the honest parties’ input shares are each of degree 3t/2 and agree in at least 2t + 1

points, it must hold that the unique reconstructed polynomials are hk

0(x), h
k

`
(x). Hence
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it must hold that all honest parties output (proceed, hk

0(x), h
k

`
(x)) for every k 2 [m] in

the real execution. Since the simulated execution is identical to the real execution, all
the simulated honest parties also see that no complaint was broadcast. In this case, the
simulator sends proceed to the functionality, causing all the honest parties in the ideal
world to have an output that is identical to the output of the honest parties in the real
world.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the set ZEROS, and the polynomials hk

0(x), . . . , h
k

n
(x) for

each k 2 [m].

3. Simulate the protocol where each honest party Pj holds hk

0(j), . . . , h
k

n
(j) for each k and

all parties have the same set ZEROS.

4. If some party P` broadcasts complaint(`, �) in Step 2 then the simulator sets leak� = 1.
It sends leak = (leak1, . . . , leakm) to the functionality.

5. Send the message M to the functionality according to the following cases (the proof
will show that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send
(detect,Bad) to the functionality and halt.

(c) If the output of some simulated honest party is kill for some k then send kill to
the functionality and halt.

(d) If the output of some simulated honest party is proceed for all k, then send proceed

to the functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real
honest parties in the real execution, and since the protocol is deterministic, we get that the
view of the adversary is exactly the same in the real and in the ideal executions. Thus it
remains to be shown that the output of the honest parties is identical in the real and ideal
executions. We have the following cases to consider:

1. There exists an honest party that outputs discard in the real world: Observe that
an honest party outputs discard if and only if one of the following conditions holds.
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(a) The dealer broadcasted Bad such that either (i) |ZEROS [ Bad| > t; or (ii) Bad 6⇢
[n] \ ZEROS. Since all honest parties hold the same set ZEROS, and the set Bad is
broadcasted, we get that all honest parties output discard.

(b) The dealer broadcasted Bad with |Bad|  t/2, and for which |ZEROS [ Bad|  t

and Bad ⇢ [n] \ ZEROS. However, for R` = {(j, u�

j
)} and T` = {(j, v�

j
)} such that

reveal(`, �, j, u�

j
, v�

j
) was broadcasted in Step 2 and j 62 Bad, it holds that R` or T`

does not define a unique polynomial of degree 3t/2. Since the set R` and T` are
public, all honest parties will identify that there is no unique reconstruction, and
all would output discard.

Since the simulated honest parties have the same view as the honest parties, the simu-
lated honest parties also output discard. In this case, the simulator sends discard to
the functionality causing all the honest parties to output discard in the ideal execution.

2. There exists an honest party that outputs (detect,Bad) in the real world: In this
case, it must hold that |ZEROS[Bad|  t and Bad ⇢ [n]\ZEROS. Moreover, it must hold
that |Bad| � t/2. Since the corresponding set Bad is broadcast, all the honest parties
hold the same set and hence output (detect,Bad). The simulated honest parties hold
an identical output, and thus the simulator sends (detect,Bad) to the functionality ,
which in turn sends the same to all the honest parties in the ideal execution.

3. There exists an honest party that outputs kill for some k 2 [m] in the real world:
In this case, it must hold that some party P` broadcast complaint(`, k). Moreover,
|Bad|  t/2 and R` and T` each define a unique degree 3t/2 polynomials. Since all
the corresponding messages are broadcast, it must hold that all the honest parties out-
put kill for k. This must hold for each k for which complaint(·, k) was broadcast by
some party. Further, for every other k, it must hold that each honest party P` is able to
reconstruct hk

0(x), h
k

`
(x) either in Step 2 or in Step 8 after discarding the shares of (at

least t/2) parties in Bad [ localBad` (similar to batched reconstruction of g polynomials
in Section 4.5). Note than an honest party never belongs to localBad` set of another hon-
est party P`. Hence, during the reconstruction of its polynomials, a party may discard
shares of at most t/2 honest parties from Bad. Since these reconstructed polynomials
are degree 3t/2 and agree with the shares of at least 2t + 1 � t/2 � 3t/2 + 1 honest
parties, they are guaranteed to be the same polynomials defined by the input shares of
the honest parties. The simulator emulates the honest parties as in the real execution,
hence all the simulated honest parties P` see the same complaints. In this case, the sim-
ulator constructs leak with leakk = 1 for each k such that complaint(·, k) was broadcast
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and sends leak to the functionality, followed by kill, causing all the honest parties in
the ideal execution to have the same output as the honest parties in the real execution.

4. There exists an honest party that outputs proceed for all k 2 [m] in the real world:
In this case, we show that all honest parties P` output (proceed, hk

0(x), h
k

`
(x)) where

hk

0(x), h
k

`
(x) are the degree 3t/2 polynomials that are interpolated from the respective

input shares of the honest parties and are guaranteed to exist under our input assump-
tion. Towards that, observe that since there exists an honest party that does not out-
put discard, (detect,Bad) or kill for any k it must hold that no party broadcasted
complaint in Step 2. Hence, it must hold that each honest P` has a unique reconstruc-
tion and consequently lesser than t/2 errors occurred in the reconstruction for P`. The
reconstructed polynomials agree with the shares of at least n � t/2 � 5t/2 + 1 parties,
hence they agree with the shares of at least 3t/2 + 1 honest parties. Since the recon-
structed polynomials and each hk

0(x), h
k

`
(x) are of degree 3t/2, it must hold that the

reconstructed polynomials for each honest P` are hk

0(x), h
k

`
(x) consistent with the input

shares of the honest parties. In this case, the simulated honest parties also observe that
no party complains and hence the simulator sends proceed to the functionality, causing
all the honest parties in the ideal world to obtain an output identical to the output in
the real execution.

Lemma 4.7.4. Let t < n/3. There exists a protocol that implements Functionality 4.7.1 and has

a communication complexity of O(mn2 log n) bits over point-to-point channels and O(n2 log n)

bits broadcast in O(1) rounds. Every party broadcasts at most O(n log n) bits.

Note that in the batched private reconstruction, the public verification happens for one
instance corresponding to each party’s complaint. Thus, in total, we have that the public
reveal of shares is performed for at most n instances out of the total m that are batched to-
gether. Consequently, for an honest dealer, we have that the adversary does not learn any
additional information for the m � n instances where the shares are not publicly revealed.
Since private reconstruction is used for reconstructing distinct points on the product poly-
nomials to each party in the triple sharing protocol, we have the same privacy guarantee of
m� n uncompromised instances carry over to the batched packed VTS protocol.
Public reconstruction for complaining parties. Similar to private reconstruction, if the
product relation fails to hold during the verification in Step 4b, a party Pi complains only
for one instance, say �i. The public verification proceeds as before via FpubRec (Functional-
ity 4.6.5), with the only difference being that the ith input share of every party corresponds
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to the shares of polynomials in �ith instance, for which Pi broadcasts a complaint. At the
conclusion of this verification, if the dealer is not discarded then parties either detect more
than t/2 conflicts with the dealer, or successfully reconstruct the polynomials of Pi for the �ith
instance. In the latter case, the verification of product polynomial is performed on the recon-
structed polynomial and the dealer is discarded in case of failure. Note that when the dealer
is corrupt, it is sufficient for an honest party to complain in one instance. The “binding” prop-
erty of Fbatched

PSS
guarantees that for any individual instance, if a polynomial is reconstructed

then it is the same polynomial committed to by the dealer in the sharing phase. Thus if the
dealer shares incorrect multiplication triples, causing an honest party to broadcast complaint

in some �ith instance such that its polynomials are reconstructed successfully during Step 4b,
then the dealer is guaranteed to be discarded. The functionality for batched verifiable secret
sharing appears below. We provide the protocol for completeness.

Functionality 4.7.5: Batched and Packed Verifiable Triple Sharing Functionality – Fbatched

PVTS

The functionality is parameterized by a set of corrupted parties I ⇢ [n].

1. Honest dealer:

(a) The dealer sends {SECRETS↵

a
, SECRETS↵

b
, SECRETS↵

c
}↵2[m] to Fbatched

PVTS
.

(b) The adversary sends (f↵,a

i
(x), g↵,a

i
(y))i2I , (f↵,b

i
(x), g↵,b

i
(y))i2I , (f↵,c

i
(x), g↵,c

i
(y))i2I to

Fbatched

PVTS
such that f↵,a

i
(k) = g↵,a

k
(i), f↵,b

i
(k) = g↵,b

k
(i) and f↵,c

i
(k) = g↵,c

k
(i) for every

i, k 2 I and every ↵ 2 [m].

(c) The functionality chooses random bivariate polynomials A↵(x, y), B↵(x, y) and
C↵(x, y) of degree 3t/2 in x and t in y under the constraints that (i)
SECRETS↵

a
, SECRETS↵

b
, SECRETS↵

c
are embedded in A↵, B↵, C↵ respectively; (ii)

A↵(x, i) = f↵,a

i
(x), B↵(x, i) = f↵,b

i
(x) and C↵(x, i) = f↵,c

i
(x) for every i 2 I; (iii)

A↵(i, y) = g↵,a
i

(y), B↵(i, y) = g↵,b
i

(y) and C↵(i, y) = g↵,c
i

(y) for every i 2 I.

2. Corrupted dealer: The dealer sends A↵(x, y), B↵(x, y) and C↵(x, y) for each ↵ 2 [m] to
Fbatched

PVTS
that verifies that (i) A↵(x, y), B↵(x, y) and C↵(x, y) are of degree 3t/2 in x and

degree t in y for each ↵ 2 [m]; and (ii) A(�i, 0) · B(�i, 0) = C(�i, 0) holds for each
i 2 {0, . . . , t/2}. If not, Fbatched

PVTS
replaces each A↵(x, y), B↵(x, y) and C↵(x, y) with ?.

3. Output: Fbatched

PVTS
sends to each party Pj the pairs of polynomials A↵(x, j), A↵(j, y),

B↵(x, j), B↵(j, y) and C↵(x, j), C↵(j, y) for every ↵ 2 [m� n].

Protocol 4.7.6: Batched and Packed VTS in the (FPSS,Fbatched

privRec
,FpubRec)-hybrid model –

⇧batched

PVTS
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Input: The dealer holds m sets of three lists SECRETS↵

a
= {a↵0 , . . . , a↵t/2}, SECRETS

↵

b
=

{b↵0 , . . . , b↵t/2}, SECRETS
↵

c
= {c↵0 , . . . , c↵t/2}, each of size t/2 + 1 such that c↵

i
= a↵

i
b↵
i

holds
for each i 2 {0, . . . , t/2} and each ↵ 2 [m].
The protocol:

1. All parties set ZEROS = ;.
2. Dealing the shares of triples: Parties invoke Fbatched

PSS
(Functionality 4.5.4) three times

with d = 0. The dealer inputs (SECRETS↵

a
)↵2[m], (SECRETS

↵

b
)↵2[m], (SECRETS

↵

c
)↵2[m]

respectively and each party inputs ZEROS. If the output of any instance is ?, then
proceed to Step 5a. Otherwise, each Pi holds f↵,a

i
(x) = A↵(x, i), g↵,a

i
(y) = A↵(i, y),

f↵,b

i
(x) = B↵(x, i), g↵,b

i
(y) = B↵(i, y) and f↵,c

i
(x) = C↵(x, i), g↵,c

i
(y) = C↵(i, y).

3. Dealing the shares of product polynomials:

(a) For each ` 2 {0, . . . , t/2} and every ↵ 2 [m], the dealer defines the polynomials
E↵

�`(y) of degree at most 2t such that E↵

�`(y) = A↵(�`, y) ·B↵(�`, y)�C↵(�`, y) =
e↵(�`,0) + e↵(�`,1)y + . . .+ e↵(�`,2t)y

2t. Define e↵
i
= (e↵(�t/2,i), . . . , e

↵

(0,i)) for i 2 {0, . . . , 2t},
as the vector of ith coefficients of all the t/2 + 1 polynomials for the ↵th set of
polynomials.

(b) The dealer views the coefficients of these t/2 + 1 polynomials for each of the m

sets of polynomials as (at most) eight matrices SECRETS↵

1 , . . . , SECRETS
↵

8 , each
of size (t/2 + 1)(t/4 + 1). Specifically, SECRETS↵

u
(·, b) = e↵(t/4+1)·(u�1)+b

where b 2
{0, . . . , t/4} and u 2 [8].

(c) All the parties invoke Fbatched

PSS
(Functionality 4.5.4) (at most) eight times with

d = t/4, where the dealer inputs SECRETS↵

u
for each u 2 [8] and every ↵ 2 [m]

respectively and each party inputs ZEROS. If the output of any instance is ?, then
proceed to Step 5a. Otherwise, each Pi holds the degree-(t + t/2) polynomials
f↵,u

i
(x) = E↵

u
(x, i) and degree-(t+ t/4) polynomials g↵,u

i
(y) = E↵

u
(i, y) for all u 2 [8]

and every ↵ 2 [m].

(d) Let f e
↵
(t/4+1)·(u�1)+b(x) = E↵

u
(x,�b) for b 2 {0, . . . , t/4}, u 2 [8] and ↵ 2 [m], denote

the 3t/2-degree polynomial that packed-shares the coefficient vector e↵(t/4+1)·(u�1)+b
.

4. Proof of product relation: To check the product relation, each Pi requires to verify
that E↵

�`(i) = A↵(�`, i) · B↵(�`, i) � C↵(�`, i) holds for each ` 2 {0, . . . , t/2}. Let
E↵(i) = (E↵

�t/2(i), . . . , E
↵

0 (i)) and fE
↵(i)(x) be the 3t/2-degree polynomial that packed-

shares of E↵(i). Note that each fE
↵(i)(x) is a linear combination of the polynomials

(f e
↵
j (x))j2{0,...,2t} for each ↵ 2 [m].

(a) Reconstructing E↵(i) and E↵(0) towards each Pi: For each party Pi, ev-
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ery party Pj computes fE
↵(i)(j) =

P2t
k=0 i

k · f e
↵
k (j) and fE

↵(0)(j) = f e
↵
0 (j) for

each ↵ 2 [m]. Parties invoke Fbatched

privRec
(Functionality 4.7.1) where Pj inputs

(fE
↵(0)(j), fE

↵(1)(j), . . . , fE
↵(n)(j))↵2[m].

i. If the output is discard, then proceed to Step 5a.

ii. If the output is (detect,Bad), then set ZEROS = ZEROS [ Bad. If |ZEROS| > t

then go to Step 5a. Otherwise, go to Step 2.

iii. Otherwise, Pi sets fE
↵(0)(x) = h↵

0 (x) and fE
↵(i)(x) = h↵

i
(x) for each ↵ 2 [m]

such that Fbatched

privRec
did not output kill.

(b) Verifying the product relation of each Pi and that E↵(0) = e↵0 = (0, . . . , 0) holds:
i. Each Pi verifies that E↵(i) obtained from reconstructed polynomial fE

↵(i)(x)

matches with (f↵,a

i
(�`) · f↵,b

i
(�`) � f↵,c

i
(�`))`2{0,...,t/2}. Pi also verifies that

fE
↵(0)(�`) = 0 holds for each ` 2 {0, . . . , t/2} and each ↵ 2 [m] for which

Fbatched

privRec
did not output kill. If not, then Pi broadcasts complaint(i, �i) where

�i is the smallest ↵ for which the verification fails.

ii. Parties construct a binary vector (pub1, . . . , pubn) where pub
i
= 1 if Pi broad-

casted complaint(i, �i).

iii. Parties invoke FpubRec (Functionality 4.6.5) five times where each Pj

inputs (pub1, . . . , pubn), ZEROS in every instance and the following
shares respectively in the five instances: (i) (fE

�1 (1)(j), . . . , fE
�n (n)(j)),

(ii) (fE
�1 (0)(j), . . . , fE

�n (0)(j)), (iii) (g�1,a

j
(1), . . . , g�n,a

j
(n)), (iv)

(g�1,b

j
(1), . . . , g�n,b

j
(n)) and (v) (g�1,c

j
(1), . . . , g�n,c

j
(n)). For Pi which did

not broadcast complaint(i, �i), each Pj sets the ith share to be 0 in the five
instances above. For any of the above instances:
A. If the output is discard, then proceed to Step 5a.

B. If the output is (detect,Bad), then set ZEROS = ZEROS [ Bad. If
|ZEROS| > t then go to Step 5a. Otherwise, go to Step 2.

C. Otherwise, when the output is proceed, all parties set
fE

�i (i)(x), fE
�i (0)(x) and f�i,a

i
(x), f�i,b

i
(x), f�i,c

i
(x) as the respective output

obtained in the corresponding five instances of FpubRec for each Pi which
broadcasted complaint(i, �i).

iv. For each Pi which complained, parties verify the checks as in Step 4(b)i using
the polynomials returned by the instances of FpubRec. If it does not hold for
some complaining party, then go to Step 5a. Otherwise, go to Step 5b.

5. Output:
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(a) Discard: All parties output ?.

(b) Successful: Each Pi outputs (f↵,a

i
(x), g↵,a

i
(y), f↵,b

i
(x), g↵,b

i
(y), f↵,c

i
(x), g↵,c

i
(y)) for

each ↵ 2 [m] for which Fbatched

privRec
did not output kill in Step 4a. Here,

{(f↵,a

i
(�`), f↵,b

i
(�`), f↵,c

i
(�`))}`2{0,...,t/2} defines Pi’s shares of the multiplication

triples.

Theorem 4.7.7. Protocol 4.7.6, ⇧batched

PVTS
, perfectly securely computes Functionality 4.7.5,

Fbatched

PVTS
, in the presence of a malicious adversary controlling at most t < n/3. It requires a

communication complexity of O(mn2 log n) bits over-point-to-point channels and O(n2 log n) bits

broadcast, and O(1) rounds. Each party broadcasts at most O(n log n) bits.

Note that since (at most) n instances can be compromised (due to kill as output from
Fbatched

privRec
), the dealer shares O((m � n)n) multiplication triples. Consequently, we have that

when m� n = O(n), the dealer generates O(n2) triples at an amortized cost of O(n log n) bits
over point-to-point channels and O(1) bits of broadcast per triple.

4.8 Linear Perfectly Secure MPC
In this section, we first give details of the additional building blocks necessary for MPC such
as reconstruction of degree-t polynomials, and Beaver triple generation. We conclude with
our complete MPC protocol relying on these building blocks, the packed secret sharing (Sec-
tions 4.4, 4.5) and the verifiable triple sharing (Sections 4.6, 4.7). In the following, we use
hvi to denote the degree-t Shamir-sharing of a value v among parties.

4.8.1 Secret Reconstruction

Since the outcome of our VSS is secrets in Shamir-shared format, we discuss how such sharing
can be reconstructed efficiently. We use two standard ways of reconstruction:

Private reconstruction. Here, the secret is reconstructed privately to a specified party. This
can be achieved by simply letting all the parties disclose the shares to the party who applies
RS error correction for recovering the secret. We denote this protocol as ⇧Rec. This requires
O(n log n) bits communication.

Batched public reconstruction. Näıvely, reconstructing t+ 1 secrets that are Shamir-shared
requires (t + 1)n private reconstructions (via ⇧Rec), resulting in O(n3 log n) communication1.

1Alternatively, (t + 1)n elements of broadcasts. Broadcasts are expensive and would require a minimum of
O(n3 log n) communication and a minimum of constant expected inflation in the round complexity.
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On the other hand the batch reconstruction protocol, first presented in [57], allows parties to
robustly reconstruct t + 1 Shamir-shared values at a cost of communicating O(n2 log n) bits,
ensuring an amortized cost of O(n log n) bits per reconstruction.

In particular, given hv0i, . . . , hvti, parties translate them to n sharings non-interactively,
say hv01i, . . . , hv0ni, using a linear error correcting code, such as Reed-Solomon code which
tolerates up to t errors. To be specific, (v01, . . . , v

0
n
) can be thought of as n points on a t-

degree polynomial p(x) =
P

t

i=0 vix
i. Following this, of the n sharings, one sharing hv0

i
i is

reconstructed towards each party Pi via private reconstruction protocol ⇧Rec who obtains v0
i
.

At this stage, the parties essentially hold hv0i. Therefore, n instances of private reconstruction
enables every party to recover p(x), the polynomial used to share v0, whose coefficients are
the desired output. This requires a total communication of O(n2 log n) bits. The protocol
⇧bPubRec appears below for completeness.

Protocol 4.8.1: Batched Public Reconstruction Protocol – ⇧bPubRec

Common input: The description of a field F, n non-zero distinct elements 1, . . . , n.
Input: Parties hold the univariate degree-t sharings hv0i, . . . , hvti.

1. Let p(x) = v0 + v1x+ v2x2 + . . .+ vtxt.

2. For each Pi, parties locally compute hv0
i
i = hp(i)i = hv0i+ hv1i · i+ hv2i · i2+ . . .+ hvti · it.

3. For each party Pi, parties invoke ⇧Rec with hv0
i
i as input to enable Pi to privately recon-

struct v0
i
= p(i). Note that parties now hold hp(0)i.

4. For each party Pi, parties invoke ⇧Rec with hp(0)i as input to enable Pi to privately recon-
struct the polynomial p(x). Upon reconstructing, each Pi outputs the t + 1 coefficients
v0, v1, . . . , vt of p(x).

Lemma 4.8.2. Protocol 4.8.1, ⇧bPubRec, has a communication complexity of O(n2 log n) bits over

point-to-point channels and no broadcast for publicly reconstructing O(n) values (i.e., O(n log n)

bits) simultaneously in 2 rounds.

4.8.2 From the PSS and VTS to MPC

We now give the road-map for our MPC. Excluding the PSS and the VTS, the existing
tools are taken from [50]. Our protocol has two phases: (a) preparation of Beaver triples
(hali, hbli, hcli)l2C , where C is the number of multiplication gates in circuit to be evaluated;
(b) batched evaluation of the multiplication gates consuming the Beaver triples. Let us start
with the latter.
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Batched Beaver Multiplication. This protocol relies on the well known technique of Beaver’s
circuit randomization [23], which, given a pre-computed t-shared random and private multi-
plication triple (hai, hbi, hci), reduces the computation of hxyi from hxi and hyi to two public
reconstructions. Towards this, parties first locally compute hdi = hxi�hai and hei = hyi�hbi,
followed by public reconstruction of d and e. Since z = xy = ((x � a) + a)((y � b) + b) =

(d + a)(e + b) = de + db + ea + ab, parties can locally compute hzi = hxyi using the shared
multiplication triple and the publicly reconstructed values d and e. Specifically, parties locally
compute hxyi = de+ dhbi+ ehai+ hci.

To leverage the efficiency benefits offered by the batch public reconstruction protocol,
the protocol handles a batch of l multiplications together, each requiring 2 reconstructions.
The 2l public reconstructions are thus batched together in groups of t + 1 to invoke ⇧bPubRec

and ensure an amortized communication complexity of O(n log n) bits per reconstruction.
The resultant communication complexity of ⇧bBeaver for handling l multiplications is O((n2 +

nl) log n). The formal description appears in Protocol 4.8.3.

Protocol 4.8.3: Batched Beaver Multiplication – ⇧bBeaver

Input: Parties hold l degree-t shared triples (haii, hbii, hcii) for every i 2 [l] and l degree-t
shared pairs of values (hxii, hyii) to be multiplied.

1. For each i 2 [l], parties locally compute hdii = hxii � haii and heii = hyii � hbii.
2. Let 2l = k(t+1). Parties execute k parallel instances of ⇧bPubRec and publicly reconstruct

{di, ei} for every i 2 [l].

3. For each i 2 [l], parties locally compute hzii = hxiyii = diei + dihbii+ eihaii+ hcii.

Lemma 4.8.4. Protocol 4.8.3, ⇧bBeaver, has a communication complexity of O((ln + n2) log n)

bits over point-to-point channels and no broadcast for the multiplication of l pairs of shared

values in 2 rounds.

Preparing Beaver triples. This task is further phrased in two tasks. First, a verifiable triple
sharing (VTS) is used to make a dealer Shamir-share three values (a, b, c) such that c = ab.
Second, a triple extraction protocol that takes n verified triples, ith one contributed by Pi and
extracts t/2 triples that are unknown to the adversary.

Verifiable Triple Sharing. During this phase, each party shares verified multiplication triples
which are subsequently consumed to extract random triples (unknown to any party) required
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for circuit evaluation via Beaver’s trick [23]. Towards that, each party invokes Fbatched

PVTS
(Func-

tionality 4.7.5) in parallel to generate the desired number of triples in a batched manner. The
exact number of triples that a party has to share depends on the number of multiplication
gates in the circuit, and we provide a cost analysis in Lemma 4.8.10. We thus have that there
are n parallel instances of Fbatched

PVTS
, where in each instance a party broadcasts n log n bits.

Considering all the n instances, each party broadcasts n2 log n in parallel. For this, we use
the parallel broadcast primitive Fparallel

BC
(Functionality 4.3.5). Thus, for the parallel batched

verifiable triple sharing, we have the following.

Lemma 4.8.5. Parallel batched verifiable triple sharing requires a communication of

O(mn3 log n) bits over point-to-point channels and O(n3 log n) bits broadcast in O(1) rounds.

Each party broadcasts O(n2 log n) bits in parallel.

Using the broadcast realisation of [7], we have that the parallel batched verifiable triple

sharing requires O(mn3 log n+ n4 log n) bits over point-to-point channels.

At the termination of this phase, we have n sets of triples, one shared by each party. Note
that for each corrupt party which was discarded during Fbatched

PVTS
, all parties assume default

sharing of some publicly known triples. Given this, the next phase “merges” the triples shared
by, and known to each party respectively to extract random triples.

Triple Extraction. Our last component is a triple extraction protocol that consumes one
(verified) multiplication triple, say (haii, hbii, hcii), shared by each party Pi in the prior stage
and extracts O(n) random triples not known to any party at the cost of O(n2) point to point
communication. In particular, the protocol extracts h + 1 � t multiplication triples, where
h = bn�12 c using n triples, one shared by each party. At a high level, the protocol pro-
ceeds as follows. First, the parties “transform” the n random shared triples (haii, hbii, hcii)
for each i 2 [n] into n correlated triples (hxii, hyii, hzii) for every i 2 [n] such that the values
{xi, yi, zi}i2[n] lie on the polynomials X(·), Y (·) and Z(·) of degree h, h and 2h respectively
where X(·) · Y (·) = Z(·). Specifically, for each i 2 [n], it holds that X(i) = xi, Y (i) = yi

and Z(i) = zi where 1, . . . , n are publicly known distinct elements from F. Furthermore, the
transformation ensures that the adversary knows {xi, yi, zi} only if Pi is corrupt. This implies
that the adversary may know t points on each of the polynomials X(·), Y (·) and Z(·) of degree
h, h and 2h respectively, thus guaranteeing a degree of freedom of h+1� t = t/2 in X(·), Y (·)
(and thus Z(·)). Parties thus output the shared evaluation of these polynomials at h + 1 � t

publicly known points �1, . . . , �h+1�t as the extracted shared multiplication triples.
The transformation itself works as follows. The parties simply set xi = ai, yi = bi, zi = ci

for i 2 {1, . . . , h + 1}. Next, hxii and hyii for every i 2 {h + 2, . . . , n} can be computed
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non-interactively by taking linear combination of {xi, yi}i2[h+1]. Following this, hzii for every
i 2 {h + 2, . . . , n} is computed using Beaver’s trick where the inputs are hxii and hyii and
the triple (haii, hbii, hcii). Clearly, if Pi is corrupt then xi, yi, zi is known to the adversary
as claimed. To conclude, we note that triple extraction reduces to running a batch of O(n)
Beaver multiplications which requires O(n2 log n) bits communication using ⇧bPubRec. The
formal description appears in Protocol 4.8.6.

Protocol 4.8.6: Triple Extraction – ⇧tripleExt

Common input: The description of a field F, n = 2h + 1 non-zero distinct elements 1, . . . , n

and h+ 1� t non-zero distinct elements �1, . . . , �h+1�t.
Input: Parties hold the degree-t shared triples (haii, hbii, hcii) for every i 2 [n] such that
(ai, bi, ci) is known to party Pi.

1. For each i 2 [h+ 1], parties locally set hxii = haii, hyii = hbii and hzii = hcii.
2. Let X(·) and Y (·) be the degree-h polynomials defined by the points {xi}i2[h+1] and

{yi}i2[h+1] respectively such that X(i) = xi and Y (i) = yi for all i 2 [h+ 1].

3. For each i 2 {h+ 2, . . . , n}, parties locally compute hxii = hX(i)i and hyii = hY (i)i.
4. Parties invoke ⇧bBeaver with {hxii, hyii, haii, hbii, hcii}i2{h+2,...,n} and obtain

{hzii}i2{h+2,...,n} where zi = xiyi for every i 2 {h+ 2, . . . , n}.

5. Let Z(·) be the degree-2h polynomial defined by the points {zi}i2[n] such that Z(i) = zi

for all i 2 [n].

6. Parties locally compute haii = hX(�i)i, hbii = hY (�i)i and hcii = hZ(�i)i for every
i 2 [h+ 1� t].

Lemma 4.8.7. Protocol 4.8.6, ⇧tripleExt, has a communication complexity of O(n2 log n) bits over

point-to-point channels and no broadcast for sharing O(n) random multiplication triples in 2

rounds.

4.8.3 The MPC Protocol

The protocol ⇧MPC and the corresponding functionality FMPC are provided below. As de-
scribed, at a high level, the protocol is divided into the following two phases:

1. Beaver triple generation: In this phase, parties generate C number of degree-t Shamir-
shared multiplication triples where, C denotes the number of multiplication gates in
the circuit. Towards that, each party first generates triples using our VTS protocol.
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Subsequently, a triple extraction protocol “merges” the triples generated by all parties
and “extracts” random triples (not known to any party) which will be consumed in
the second phase. For sufficiently large circuits, specifically for circuits of size ⌦(n3),
this phase incurs an amortized cost of O(n log n) bits point-to-point communication per
triple.

2. Circuit computation: Upon sharing of inputs by the input holding parties, in this phase
the computation of the circuit proceeds by parties performing shared evaluation of the
circuit. Since our sharing is linear, the linear operations of addition and multiplication
by a constant are local. For multiplication of shared values, parties consume the Beaver
triples generated in the prior phase. This is followed by the reconstruction of the outputs
to the designated parties to complete the circuit evaluation.

Functionality 4.8.8: MPC – FMPC

Input: Each Pi holds input xi 2 F [ {?}.
Common Input: An n-party function f(x1, . . . , xn).

1. Each Pi sends xi to the functionality. For any Pi, if xi is outside the domain or Pi did
not send any input, set xi to a predetermined default value.

2. Compute (y1, . . . , yn) = f(x1, . . . , xn) and send yi to Pi for every i 2 [n].

Protocol 4.8.9: MPC – ⇧MPC

Common input: The description of a circuit, the field F, n non-zero distinct elements 1, . . . , n
and a parameter h where n = 2h+ 1. Let m = d C

h+1�te.
Input: Parties hold their inputs (belonging to F [ {?}) to the circuit.
(Beaver triple generation:)

1. Each Pi chooses m + n(t/2 + 1) random multiplication triples and executes ⇧batched

PVTS

(Section 4.7, Protocol 4.7.6) batching d m

(t/2+1)e + n instances each with t/2 + 1 triples.
Let (haj

i
i, hbj

i
i, hcj

i
i) for j 2 [m] denote the triples shared by Pi.

2. Parties execute m instances of ⇧tripleExt (Protocol 4.8.6) with (haj
i
i, hbj

i
i, hcj

i
i) for every

i 2 [n] as the input for the jth instance. Let (haii, hbii, hcii) for i 2 [C] denote the
random multiplication triples generated.

(Circuit computation:)
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1. (Input) Each party Pi holding ki inputs to the circuit executes ⇧batched

PSS
(Section 4.5)

batching d ki
t/2+1e instances to share its inputs.

2. (Linear Gates) Parties locally apply the linear operation on their respective shares of
the inputs.

3. (Multiplication Gates) Let (haii, hbii, hcii) be the multiplication triple associated with
the ith multiplication gate with shared inputs (hxii, hyii). Parties invoke ⇧bBeaver (Proto-
col 4.8.3) with {hxii, hyii, haii, hbii, hcii} for all gates i at the same layer of the circuit
and obtain the corresponding hzii as the output sharing for every gate i.

4. (Output) For each output gate j with the associated sharing hvji, parties execute ⇧Rec

towards every party Pi who is supposed to receive the output vj.

Theorem 4.8.10. Let t < n/3. Protocol 4.8.9 securely implements FMPC (Functionality 4.8.8)

and has a communication complexity of O((Cn+Dn2+n4) log n) bits over point to point channels

and O(n3 log n) bits broadcast for evaluating a circuit with C gates and depth D in expected O(D)

rounds. Every party broadcasts O(n2 log n) bits.

Proof. The circuit evaluation requires C random multiplication triples. We analyse the cost
of the two phases separately.

Beaver triple generation. Note that the triple extraction protocol (⇧tripleExt) generates O(n)
(specifically, h+ 1� t where h = bn�12 c) such random triples by consuming one verified mul-
tiplication triple per party. Thus, we need O(C/n) instances of the triple extraction protocol,
which incurs a cost of O(Cn log n + n2 log n) bits over point-to-point channels. Each instance
of triple extraction consumes one verified multiplication triple per party. This requires each
party to ensure the sharing of a set of O(C/n) verified multiplication triples. Since our ver-
ified triple sharing packs O(n) (specifically, t/2 + 1) triples in one instance, this corresponds
to each party parallelly running O(C/n2) + n instances of packed verifiable triple sharing in
a batched manner, where the additional n accounts for the (at most) n instances that the
adversary can compromise in Fbatched

PVTS
. This phase incurs a cost of O(Cn log n + n4 log n) bits

of communication over point-to-point channels and O(n3 log n) bits of broadcast, where every
party broadcasts O(n2 log n) in parallel.

Circuit computation. In this phase, parties batched the multiplication gates at the same
level in the circuit and invoke the batched Beaver multiplication protocol (⇧bBeaver) for eval-
uating them. Given Ci is the number of gates per level of the circuit, this stage incurs
a cost of O(Ci · n log n + n2 log n) bits communication over point-to-point channels. Con-
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sequently, we have that the circuit computation requires
P

D

i=1 O(Ci · n log n + n2 log n) =

O(Cn log n+Dn2 log n) bits communication over point-to-point channels.
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Chapter 5

Perfect Asynchronous MPC with Linear
Communication Overhead

In this chapter, we elaborate on the MPC protocol with perfect security and optimal resilience
in the asynchronous setting. In the process, we discuss our primary technical contribution,
an improved protocol for asynchronous weak-binding secret sharing via the use of trivariate
polynomials.

5.1 Introduction
We consider the most demanding setting: perfect security with optimal resilience in the asyn-

chronous model. From the known lower bound of [30, 31, 8], perfect security implies that
the number of corruptions in this setting is at most t < n/4, and hence the optimal resilience
is when n = 4t + 1. This is in contrast to n = 3t + 1 in the synchronous setting. The seminal
work of [30, 40] obtains perfect security with optimal resilience in the asynchronous model.

Communication Complexity of Asynchronous MPC

As described, the communication efficiency of MPC protocols is measured by the (amor-
tized) cost of their communication complexity per multiplication gate. In the perfectly secure,
optimally-resilient synchronous model, O(n log n) communication complexity per multiplica-
tion gate was obtained nearly 15 years ago by the work of [26] (recently [9] improves the
round complexity from O(D + n) to expected O(D) for circuits of depth D).

Progress in the (perfectly secure, optimally resilient) asynchronous model over the last
30 years has been slower. The work of [30] obtained Õ(n6) per gate. [101, 95] improve to
Õ(n5) per gate. [25] improves to Õ(n3) per gate. The best current bounds are by [92, 93]
that obtained Õ(n2) communication complexity per multiplication gate. The natural question
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of obtaining Õ(n) complexity per multiplication gate for perfectly secure, optimally-resilient
asynchronous protocols remained open for 30 years.

Our Main Result

Our main result is a perfectly secure, optimally-resilient asynchronous MPC protocol that
achieves eO(n) communication per multiplication gate.

Theorem 5.1.1 (Main Result). For a circuit with C multiplication gates and depth D there exists

a perfectly-secure, optimally-resilient asynchronous MPC protocol with O((Cn+Dn2+n5) log n)

communication complexity and O(D) expected run-time.

Previously, the best-known result required O((Cn2+Dn2+n5) log n) communication com-
plexity [92].

Main Technical Result

Our main technical result is a new Asynchronous Weak-Binding Secret Sharing that costs
just O(log n) bits of communication complexity per secret of size log n bits. It is perfectly
secure, resilient to t < n/4, and has constant round complexity and polynomial computation
complexity. For our MPC purposes, we do not need the reconstruction of those shares; we
just need the dealer to commit to a well-defined polynomial. We call this property as “weak-
binding”.

Theorem 5.1.2 (Asynchronous Weak-binding Secret Sharing (informal)). There exists a per-

fectly secure, optimally resilient protocol for asynchronous weak-binding secret sharing that can

share O(n4) secrets in constant time, with communication complexity of O(log n) bits per secret

of size log n bits.

Many forms of verifiable secret sharing, both in the synchronous and asynchronous set-
tings, rely on bivariate polynomial sharing. Our protocol is based on trivariate polynomial

sharing. Our use of trivariate polynomial sharing approach follows the recent work of Appel-
baum and Kachlon [15]. Nevertheless, we show how to reconstruct the trivariate polynomial
for future reference and for independent interest. This variant is “weak” in the sense that
reconstruction might fail (or not terminate). In that case, however, the honest dealer can
shun a set of t/2 + 1 corrupted parties. Nonetheless, we remark again that we do not use
reconstruction, and in particular, our final MPC construction does not shun parties and does
not use player elimination.

The first asynchronous verifiable secret sharing protocol [27] achieves O(n4) (amortized)
overhead per secret. In comparison, our trivariate-based asynchronous weak-binding secret
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sharing achieves O(1) (amortized) overhead per secret. Nevertheless, we remark again that
our primitive is weaker as it does not guarantee reconstruction. Despite this fact, we show
that this weak primitive suffices for the crux of our MPC, which is a distributed ZK proof of
multiplication triplets. The aim of the ZK proof is to prove that some (secret) polynomial p(x)
possesses a certain degree. To accomplish this, the prover incorporates the coefficients of p(x)
as secrets in the trivariate polynomial and distributes shares on this trivariate polynomial.
Since the trivariate polynomial can contain a predetermined number of secrets, the mere
success of the sharing process and the existence of a well-defined trivariate polynomial are
sufficient evidence to confirm that p(x) indeed has the desired degree. Here, there is no need
for reconstruction. Reconstruction would also reveal the coefficients of the polynomial p(x),
which have to remain secret.

5.1.1 Related work

In the setting of perfect security with a synchronous network, the work of [26, 76] achieved
Õ(n) communication per multiplication gate. A lower bound of Õ(n) was later established
in [58] for a resilience of t < n/3 which is known to be necessary in this setting. The recent
work of [9] improves the round complexity of [26, 76] from O(D+n) to O(D) in expectation
while maintaining linear communication complexity in the number of parties.

The results in the perfect asynchronous setting have been mentioned earlier and we avoid
repetition here. We simply summarize that there is no linear overhead protocol in this setting
thus far. Nonetheless, linear-overhead protocols have been achieved earlier in two weaker
setting– (a) statistical security with non-optimal resilience of t < n/4 over asynchronous
networks1 [50] (b) perfect security with t < n/4 over hybrid network where the network
permits a single synchronous round before turning to fully asynchronous mode [52, 50].

As mentioned, our trivariate secret sharing protocol is inspired by the work of Applebaum
and Kachlon [15]. This work uses trivariate polynomial for constructing error-correcting code
with quasipolynomial-time conflict-decoder.

5.2 Technical Overview
In this section, we provide a technical overview of our work. We give some background on ba-
sic asynchronous verifiable secret sharing (basically covering previous work) in Section 5.2.1,
and proceed to our asynchronous weak-binding secret sharing in Section 5.2.2. We overview
our MPC protocol in Section 5.2.3. Lastly, we conclude our triple secret sharing protocol in
Section 5.2.4 which acts as the building block for MPC and builds upon our asynchronous

1The optimal resilience for statistical asynchronous MPC is t < n/3 [31].
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weak-binding secret sharing.

The model. Before we proceed, let us first introduce the model. We assume asynchronous
communication, which means the adversary can arbitrarily delay messages sent between hon-
est parties. However, such messages are eventually received. It is important to note that the
adversary does not see the content of the messages (as we assume ideal channels between
the honest parties), but it can see the type of messages that are being sent (e.g., identifying
whether it’s the first, second, or third message of the protocol). Since the adversary controls
the corrupted parties, messages that are supposed to be sent by the corrupted parties to the
honest parties might never be sent. Honest parties cannot distinguish whether a message is
merely delayed or has not been sent altogether. Consequently, honest parties must continue
waiting, with the potential consequence of certain foundational processes never reaching
completion. However, it’s important to highlight that the complete MPC protocol guaran-
tees termination. This means that it possesses mechanisms to recognize non-terminating
sub-protocols and take appropriate measures to bring them to a halt.

Besides the point-to-point channels, we assume for now the existence of a broadcast chan-
nel with the guarantee that (1) If the sender is honest and broadcasts M then eventually all
honest parties will receive M ; (2) If some honest party received a message M (in an in-
stance of a corrupted sender), then eventually all honest parties will receive M . This can be
implemented by asynchronous broadcast or A-cast primitive [37]. The cost is O(n2|M |) for
broadcasting the message M .

5.2.1 Basic Asynchronous Verifiable Secret Sharing

Our starting point is a variant of the verifiable secret sharing due to Ben-Or, Canetti, and
Goldreich [30]. In asynchronous verifiable secret sharing (AVSS), the dealer holds some
secret s, and its goal is to distribute the shares to the parties. The parties then verify that the
shares define a unique secret. At a later point, the parties might reconstruct the secret s. The
properties that the AVSS offers are:

• Validity: If the dealer is honest, then the protocol must terminate. At the end of the
reconstruction phase, all honest parties output s, the input of the dealer in the sharing
phase;

• Secrecy: The view of the adversary in the sharing phase in the case of an honest dealer
is independent of s;

• Binding: The view of the honest parties at the end of the sharing phase (if terminated)
uniquely defines some secret s0.
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For simplicity, we assume for now that the dealer can efficiently solve the problem of finding
the maximal clique in a graph. At a high level, the secret-sharing protocol proceeds as follows:

1. The dealer: Choose a random bivariate polynomial S(x,y) of degree-t in both vari-
ables such that S(0, 0) = s. Send over the private channels to each party Pi its shares
(S(x, i), S(i,y)).

2. Each party Pi: Upon receiving the shares (fi(x), gi(y)) from the dealer, send to Pj the
sub-shares (fi(j), gi(j)).

3. Each party Pi: Upon receiving (uj,i, vj,i) from party Pj, verify that uj,i = gi(j) (= fj(i))

and vj,i = fi(j) (= gj(i)). If so, then Pi broadcasts Good(i, j).

4. The dealer: Initialize an undirected graph G over the vertices V = [n]. Upon seeing
Good(i, j) broadcasted by Pi and Good(j, i) broadcasted by Pj, add the edge (i, j) to the
graph. If a clique K ✓ [n] of cardinality at least 3t + 1 is found in G, then broadcast
(Clique, K).

5. Each party Pi: Initialize a similar graph as the dealer in the previous step. Upon seeing
a broadcasted message (Clique, K) from the dealer, verify that K is a 3t + 1 clique in
the graph. If not, continue to listen to Good messages broadcast and update the graph.
Once K is verified:

(a) If i 2 K, then halt and output (fi(x), gi(y)).

(b) If i 62 K, then wait to receive all sub-shares from parties in K (received from
Step 3), and reconstruct the polynomials fi(x), gi(y) using Reed-Solomon decod-
ing.

We do not specify the reconstruction phase, as it is immediate and less relevant to our discus-
sion. Moreover, note that the protocol might never terminate in a case of a corrupted dealer.
E.g., the parties might wait forever for the dealer to broadcast the message (Clique, K). A
party cannot decide whether to abort or whether this message will eventually arrive.

We first claim that if one honest party terminates, all honest parties eventually terminate.
An honest party terminates only after the dealer has broadcasted a clique K, and it validated
that the clique exists in its graph. Since those are all broadcasted messages if one honest
party saw this, all honest parties would eventually see the same property.

If a clique of 3t+ 1 parties is found, the clique must contain at least 2t+ 1 honest parties.
All the messages of those honest parties are broadcasted; therefore, we know that their shares
agree. Their shares define a unique bivariate polynomial S(x,y) of degree-t in both variables.
It is also guaranteed that all honest parties eventually output shares on the same bivariate
polynomial. Specifically, when running the Reed-Solomon decoding on messages received
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from parties in K, there are 2t + 1 shares on the polynomial S(x,y) and at most t errors.
Reed Solomon decoding results in shares on the bivariate polynomial. Finally, validity holds
from the fact that when the dealer is honest, all honest parties agree with each other, and
therefore a 3t+ 1-clique must appear in the graph.

Making it polynomial time – the STAR algorithm. The problem with the above protocol is
that the dealer has to solve clique, which is an NP-hard problem. A beautiful idea in the work
of Ben-Or, Canetti, and Goldreich [30] (credit within is given to Canetti’s thesis [40]) shows
that an approximation of clique suffices to bind a unique bivariate polynomial. Specifically,
the dealer searches for a (C,D)-star, which is defined as follows:

(C,D)-Star: sets C,D ✓ [n] are Star in G if (1): C ✓ D; (2) |C| � 2t + 1 and
|D| � n� t; (3) For every c 2 C and d 2 D it holds that (c, d) 2 G.

Note that C is a clique, whereas nodes in D agree with all nodes in C, but not necessarily
with each other. The main idea is that if there exists a clique K of size n � t � 3t + 1 in G,
it might be hard to find it, but it is easy to find smaller cliques of size n � 2t � 2t + 1. For
example, to find such a clique, look at the complement graph G. The clique K is now an
independent set; Find a maximal matching in the graph G; let M be that maximal matching.
The set [n] \ M is an independent set in G and, therefore, a clique in G. Moreover, when
the dealer is honest, since all the edges are between honest parties and corrupted parties, or
between corrupted parties, then M is of size at most 2t. Therefore, [n]\M is of size n�2t and
is a clique in the graph G. Canetti [40] shows a procedure that, if a 3t+ 1 clique exists, then
it efficiently finds a (C,D)-STAR in a graph – i.e., a smaller clique (C) of size 2t + 1, together
with a larger set D where each d 2 D is connected to all of C.

The verifiable secret sharing is slightly more involved when the dealer finds a (C,D)-star
and not a 3t + 1-clique. We do not get into the exact details. Yet, the main ideas why the
STAR structure suffices are as follows:

• Validity: When the dealer is honest, then the dealer must eventually find a STAR. That
is, when the dealer is honest, then eventually, we will have a clique K of size 3t + 1 in
the graph. In that case, the STAR algorithm always finds a (C,D)-star.

• Binding: If a (C,D)-star was found (either when the dealer is honest or corrupted),
then a unique bivariate polynomial is defined from the shares of the honest parties in
C. Since the size of C is at least 2t + 1, it contains at least t + 1 honest parties. The
shares of those honest parties uniquely define a bivariate polynomial. Moreover, the
honest parties in D agree with all the honest parties in C; therefore, their shares lie on
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the same bivariate polynomial. At this point, we have at least 2t+ 1 honest parties that
hold correct shares, and therefore all honest parties can eventually reconstruct correct
shares.

Communication complexity. Before we proceed, let us first elaborate on the communica-
tion complexity of the protocol above. It is easy to see that the parties exchange a total
of O(n2 log n) bits over the point-to-point channels and additional O(n2 log n) bits over the
broadcast channel. This is translated to O(n4 log n) total communication complexity over
point-to-point channels and no broadcast (using the broadcast protocol of [37]). That is, we
have an overhead of O(n4 log n) for sharing just a single value!

5.2.2 Our Asynchronous Weak-Binding Secret Sharing

Our goal: O(1) overhead per secret. To achieve secure computation with linear communi-
cation complexity, our ultimate goal is to reach O(1) overhead per secret. This necessitates a
substantial enhancement of the basic scheme by a factor of O(n4). Borrowing ideas from the
synchronous MPC [9], this goal is achieved via two routes: (1) batching; and (2) packing.
However, packing in the asynchronous case gets an intriguing turn and requires borrowing
new ideas.

Reducing the communication complexity by batching. It is immediate to reduce the com-
munication complexity using a batching technique: The dealer will invoke m instances of
AVSS in parallel. At the same time, the broadcasted information will be shared for all m
instances. That is, a party Pi will broadcast Good(i, j) only after it receives from Pj the sub-
shares in all m instances and verifies that they agree with the share it received from the dealer
in each one of the m instances. This reduces the total cost to O(m · n2 log n) over point-to-
point plus O(n2 log n) broadcast (notice that the broadcast cost is independent of m). Setting
m = n2, we obtain a protocol that runs in total communication complexity of O(n4 log n) bits
for sharing n2 secrets (each is of size log n bits). At this point, we have an overhead of O(n2)

per secret.

Reducing the communication complexity by packing. Packing in the asynchronous case
turns out to be radically different than in the synchronous case. The main reason for the
O(n2) overhead in the secret sharing is because a single secret is hidden in a structure of size
O(n2), i.e., a bivariate polynomial. To achieve O(1) overhead, we have to pack O(n2) secrets
in a single bivariate polynomial or use a different structure.
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In the basic AVSS protocol, a single secret is shared using a (t, t)-bivariate polynomial.1

The adversary, which controls at most t parties, receives fi(x) = S(x, i) and gi(y) = S(i,y) for
every i 2 I, when I is the set of corrupted parties, and assume for simplicity that |I| = t (and
not smaller). The f -shares give the adversary a total of t(t+1) points on the polynomial. Since
fi(k) = gk(i) for every i, k 2 I, the g-shares gives the adversary just additional t(t+1)� t2 = t

“new” points on the polynomial (those are gi(0) for i 2 I), and thus the adversary gets a total
of t2 +2t. The polynomial S(x,y) =

P
t

i=0

P
t

j=0 ai,jx
iyj contains a total of (t+1)2 points, and

thus we have just a single degree of freedom, i.e., we can hide just a single secret.

The main idea of packing is to use a polynomial of a higher degree while maintaining the
same cost for the sharing and verification:

Using (t + t/2)⇥t–bivariate polynomial.2 If we use a bivariate polynomial of degree,
e.g., (t + t/2, t), then there are in total (t + t/2 + 1)(t + 1) values on the polynomial. The
important part of this particular choice of parameters is that the degree of the y is t, which
still allows using Reed-Solomon decoding as part of the protocol. Similar calculation as in
the (t, t) case leads to the adversary’s shares revealing a total of t(t+ t/2 + 1) + t values. The
bivariate polynomial, therefore, contains t/2 + 1 degrees of freedom, i.e., we can hide O(n)

values in a single bivariate polynomial.
Packing O(n) values instead of O(1) reduced the overhead per secret from O(n2) to O(n).

The important message here is that the STAR algorithm still suffices. Specifically, a (C,D)-
star defines a unique bivariate polynomial: Recall that C is a clique of 2t + 1 parties, and
therefore it must contain at least t + 1 honest parties with their shares agreeing with each
other. Moreover, all the honest parties in C are consistent with all the parties in D where D

contains at least 2t + 1 honest parties. The shares f shares of honest parties in C together
with the g-shares of honest parties in D define a unique bivariate polynomial S(x,y) that
satisfies S(x, c) = fc(x) for every c 2 C (recall that each fc has degree t + t/2). Moreover
S(d,y) = gd(y) holds for every honest party d 2 D. Guaranteeing these parties will also hold
correct f -shares requires some additional work, which was already shown in previous works
(see [50]).

This protocol plays a pivotal role in our final construction, but for our ultimate goal, we
still need to go one step further and push for O(1)-word overhead per secret. Note, however,
that this one step forward will not give us verifiable secret sharing, but only some weaker

1We use (q, `)-bivariate polynomial to denote a bivariate polynomial which is of degree at most q in x and
at most ` in y.

2We use t+ t/2 just as an example. The above works for any t⇥ (t+ d)-bivariate polynomial for d  t and
d 2 O(n).

174



form of sharing.

Using (t + t/2) ⇥ (t + t/2)–bivariate polynomial. If we use a bivariate polynomial
of degree (t + t/2, t + t/2), there are (t + t/2 + 1)2 total values on the polynomial. Similar
calculations as above lead to (t/2 + 1)2 values that we can pack in the polynomial, i.e., O(n2)

secrets.
However, here the STAR technique does not give us a binding guarantee. A (C,D)-star

provides a clique C of size 2t+1, which contains, in the worst case, t+1 honest parties. Their
f -shares, their g-shares, separately or combined, do not uniquely define a (t+ t/2)⇥ (t+ t/2)-
bivariate polynomial. Since the parties in D do not necessarily agree with each other, we
cannot use their shares to define the bivariate polynomial before we have a unique one that
is defined by the parties in C.

It is easy to see that an alternative, stronger guarantee, would suffice for binding:

(C,D)-BigStar: sets C,D ✓ [n] are BigStar in G if: (1) C ✓ D; (2) |C| � 2t+ t/2+1

and |D| � n� t; (3) For every c 2 C and d 2 D it holds that (c, d) 2 G.

Note that the only difference between BigStar and Star is that C is of size 2t+t/2+1 instead of
2t+1 as in Star. Such a larger set C ensures t+t/2+1 honest parties that agree with each other,
hence defining a unique bivariate polynomial. However, we are unaware of any polynomial-
time algorithm that finds BigStar in a graph. At this point, we can potentially reach the O(1)

overhead in communication complexity, but at the expense of having the dealer find a large
clique in exponential time. This is clearly not ideal.

Exponential-time improvement using trivariate polynomials. To solve the above problem,
we add one more dimension, which will allow us, in particular, to pack O(n3) secrets and
find a BigStar efficiently, if it exists. Instead of using a bivariate polynomial S(x,y) of degree
t + t/2 in both variables x,y, the dealer will use a trivariate polynomial S(x,y, z) of degree
t+t/2 in all three variables x,y, z. We then naturally extend the protocol to trivariate sharing.
E.g., the share of each party Pi is now three bivariate polynomials:

S(x,y, i), S(x, i, z), S(i,y, z) .

Two parties, Pi and Pj then exchange six univariate polynomials:

S(x, j, i), S(x, i, j), S(i,y, j) ,

S(j,y, i), S(j, i, z), S(i, j, z) .
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and a party Pi broadcasts Good(i, j) if the shares it receives from Pj (i.e., the six univariate
polynomials) agree with those it received from the dealer.

The dealer then constructs a graph G as in the basic AVSS scheme. However, as men-
tioned, we are now looking for a more robust condition on the graph since our polynomials
are of degree t + t/2. Thus, we need a clique of size 2t + t/2 + 1, which will imply having at
least t + t/2 + 1 honest parties. BigStar now also suffices for binding, but it is unclear how
to find it just as in the bivariate sharing case. However, at this point, some seemingly weaker
property on the graph also suffices to achieve binding, which was insufficient in bivariate
sharing. The property is:

Dense: A set of vertices L ✓ [n] is called Dense if it is of cardinality at least 3t + 1,
1

and each node in L has at least degree 3t+ t/2 + 1.

This is clearly a property that is easy to find in a graph G. The intuition is that the set L

contains at least 2t + 1 honest parties. Moreover, two honest parties Pk, P` that have degree
3t + t/2 + 1 must agree with each other, even though they did not necessarily hear the shares

of one another due to communication delays (we will see why this holds soon). The honest
parties in Dense therefore define a clique of at least 2t + 1 honest parties, and their shares
define a unique trivariate polynomial.

Binding: For binding, it suffices to have one of the two following properties:

1. Dense: which essentially defines a clique of 2t+ 1 honest parties;

2. BigStar: where |C| � 2t+ t/2+1, and |D| � n� t. The set C defines a clique of t+ t/2+1

honest parties that agree with each other, which defines a unique trivariate polynomial.
Moreover, the set D defines overall 2t+ 1 honest parties that have correct shares.

Therefore, whenever one of those properties occurs in the graph, we are satisfied and can
terminate the protocol. We show a poly-time algorithm that finds those properties.

Validity. For validity, we have to guarantee that when the dealer is honest, it must find one
of these two properties (Dense or BigStar) in the graph. In the honest dealer case, the graph
will eventually contain a clique of size 3t+1. At this point, the following algorithm must find
either Dense or BigStar:

1. The dealer looks for a Dense set L in the graph. If found, output (Dense, L).
1We note that an L of size 2t + t/2 + 1 would, in fact, suffice for defining a unique trivariate polynomial.

However, we are able to find a larger set of size 3t+ 1 in polynomial time.
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2. If the graph does not contain a dense set L, then it implies that there is at least one
honest party, say Pj, whose degree is less than 3t+ t/2 + 1. Moreover, all missing edges
in the graph are between honest parties and corrupted parties, or between corrupted
parties. We then consider the graph G while considering only the neighbors of Pj

(including Pj). We will obtain a graph of size n0 = 3t + t/2 + 1 vertices, where all
removed vertices correspond to corrupted parties, and so we have t0 = t/2 corrupted
parties remaining. Moreover, this graph contains a clique of size 3t + 1. The standard
(C,D)-star returns a clique |C| � n0 � 2t0 � 2t+ t/2 + 1, and a set |D| � n0 � t0 � 3t+ 1,
which is essentially a BigStar in G. The dealer does the above for every low-degree party
Pj until it hits on a BigStar, and this procedure is efficient.

Therefore, once we have a clique of 3t + 1 honest parties, the dealer is guaranteed to find
either a Dense or a BigStar in polynomial time.

Why do bivariate polynomials not suffice? A natural question is why we could not find the
same property on the graph with bivariate polynomials, and we have to work with trivariates.
This is an idea we borrow from [15], and is the crux of this part of the work. The property we
need here is transitivity. Suppose Pk and Pj are both honest, and they agree with a common
set E of at least 2t + 1 honest parties, but they did not hear the sub-shares from each other
since the adversary delays their communication. Do their shares agree?

Note that in the setting of the Dense graph, Pk and Pj are two honest parties that have a
high degree of 3t+ t/2 + 1. This means they have at least 3t+ 1 parties in their intersection,
which implies that they agree with some common set E of at least 2t+1 honest parties. To see
whether or not their shares agree, let’s consider bivariate sharing versus trivariate sharing:

1. Bivariate: In bivariate sharing, the parties hold univariate polynomials as shares, and
they exchange points. It is easy to see that the shares of Pk and Pj do not necessarily
agree with each other, even if they agree with a common set E of cardinality 2t + 1.
We can set Pk to have fk(x), gk(y) and Pj to have fj(x), gj(y) such that fk(j) 6= gj(k)

and fj(k) 6= gk(j). Yet, we can give a set E of cardinality 2t + 1 arbitrary shares such
that fj(e) = ge(j) and gj(e) = fe(j) for every e 2 E, and likewise, fk(e) = ge(k)

and gk(e) = fe(k) for every e 2 E. This does not impose many constraints on the
polynomials fe(x), ge(y) for every e 2 E. Therefore, the existence of the property Dense

does not necessarily imply a clique of honest parties of large cardinality that agree with
each other.

2. Trivariate: In trivariate sharing, the parties hold bivariate polynomials as shares, and
they exchange univariate polynomials. If Pj and Pk have a common set of neighbors E
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of cardinality 2t + 1, then they necessarily hold shares that agree with each other
1. The

key idea is that Pk exchanges with each party Pe for e 2 E univariate polynomials. Since
the univariate polynomials agree, they also agree on the index j. The 2t + 1 points of
parties in E on the index j uniquely define the univariate polynomials that Pk expects
to receive from Pj. Thus, even though Pk did not hear yet the message from Pj, and
Pj is honest, it knows that the shares would agree, even if the dealer is corrupted. A
similar argument holds for Pj. The formal argument appears in Section 5.3.

To conclude, to share the trivariate polynomial, we have a total of O(n3 log n) bits over
point-to-point channel together with O(n2 log n) bits over the broadcast channel. If we batch
n instances together, we get a total of O(n4 log n) bits over point-to-point channels and no
broadcast for sharing O(n4) secrets, each of log n bits. I.e., we obtain an overhead of O(1).

Note, however, that the sharing is weak. Namely, we know that there is a well-defined
trivariate polynomial, but we cannot necessarily reconstruct it robustly. In particular, even in
the case of an honest dealer, reconstruction might fail. In that case, however, the dealer can
shun at least t/2 + 1 corrupted parties. We show the reconstruction in Section 5.6.

However, as we will see, the reconstruction is not required for our MPC, and the sharing
itself suffices. We gave it for completeness and as it might be useful as an independent
primitive.

5.2.3 Our MPC Protocol

Our MPC protocol follows the following structure: an offline phase in which the parties
generate Beaver triplets [23], and an online phase in which the parties compute the circuit
while consuming those triples.

Beaver triplets generation. Our goal is to distribute (Shamir, univariate degree-t) shares of
random secret values a, b, and c, such that c = ab. If the circuit contains C multiplication
gates, we need C such triplets. Towards that end, we follow the same steps as in [50], and
generate such triplets in three stages:

1. Triplets with a dealer: Each party generates shares of ai, bi, ci such that ci = ai · bi.
We generate all the triplets in parallel using expected O(1) rounds. We overview this
step below in Section 5.2.4. Our main contribution is in improving this step using the
asynchronous weak-binding secret sharing with O(1)-overhead. Despite the fact that
this secret sharing with O(1)-overhead is not robust, it suffices since it is used as part

1In fact, as shown in [15], having a common set of honest neighbors of size t + t/2 + 1 suffices for Pj and
Pk to hold shares that are consistent with the same trivariate polynomial of degree t+ t/2 in each variable.
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of a perfect zero-knowledge proof where the dealer proves that the shares it generated
indeed correspond to a product relation. If the sharing fails, then we can simply ignore
the contribution of that dealer.
In our protocol, each party acts as a dealer to generate C/n triplets. This step requires
a cost of O(n4 log n + C log n) communication for a single party and an overall cost of
O(n5 log n+ Cn log n) for all the parties together.

2. Agreeing on a core set (ACS): All triplet generations of honest dealers eventually
terminate, whereas those of corrupted dealers might never terminate. However, if one
honest party sees that the triplet generation of some player Pi terminates, then all the
honest parties will eventually receive output in that triplet generation.
As t instances might never terminate, the parties proceed with the protocol once at least
n � t parties successfully complete the triplet generation. Since parties might receive
messages in different orders, they have to agree on the set of parties for which their
triplet generation was successful.
The set Core of at least n�t parties (who have successfully completed the triple sharing)
will be chosen using the agreement on core set (ACS) protocol. The communication cost
of ACS from [40] is O(n7 log n), and its run-time is log n. In [10], the communication
is improved to O(n5 log n), and run-time is expected constant time. We use the latter to
quote our complexity. 1

3. Triplets with no dealer: Once agreed which triplets to consider (Core), using triplet
extraction of [50], we can extract from a total of C(n�t)

n
triplets generated by the deal-

ers in Core, O(C) triplets where no party knows the underlying values. This step
costs O(n2 log n+ Cn log n).

In summary, for generating C triplets we pay a total of O(n5 log n+ Cn log n).
The MPC protocol follows the standard structure where each party shares its input, and

the parties evaluate the circuit gate-by-gate, or more exactly, layer-by-layer. In each multipli-
cation gate, the parties have to consume one multiplication triple. Using the method of [50],
if the ith layer of the circuit contains Ci multiplications (for i 2 [D], where D is the depth
of the circuit), the evaluation costs O(n2 log n + Ci · n log n). Summing over all layers, this is
P

i2[D](n
2 + nCi) log n = (Dn2 + Cn) log n. Together with the generation of the triplets, we

get the claimed O((Cn + Dn2 + n5) log n) cost as in Theorem 5.1.1. We refer the reader to
Section 5.8 for further details on our MPC protocol.

One point worth addressing is that we parallelize the input-sharing phase to the triplet
1Without [10], the cost of our entire MPC is O((Cn+Dn

2 + n
7) log n) and O(D + log n) expected-time.
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generation. In that case, the ACS protocol selects the parties for which their triplet gener-
ation and input sharing were successful. Moreover, the input-sharing phase uses the robust
secret-sharing with O(n) overhead and not the non-robust O(1). After the parties obtain ro-
bust shares (either sharing inputs or of product relations), all other computations are merely
reconstructions and linear combinations of shared values. Since messages of honest parties
are guaranteed to be delivered, and we have at least 2t+1 honest parties in Core with at most
t corruptions, all reconstructions are guaranteed to terminate successfully and asynchrony
has no effect.

5.2.4 Multiplication Triplets with a Dealer

The goal is that a dealer wishes to distribute shares of secret values ~a,~b,~c such that for every
i it holds that ci = aibi. Towards this end, the dealer plants ~a into some bivariate polynomial
A(x,y) using the asynchronous VSS scheme that employs a bivariate polynomial of degree-
(t+t/2, t). Such a VSS is given in [50], which we slightly simplify and give it for completeness
in Section 5.4. Specifically, ~a is placed at (A(��, 0))�20,...,t/2. Similarly, the dealer plants~b into
B(x,y) and ~c into C(x,y). It is important to note that we deploy robust AVSS here, to ensure
that the triplets are shared via degree-t polynomials (which is utilized by our MPC protocol).
So we can plant only O(n) values in each bivariate polynomial. Specifically, the ith secret in
~a is shared via the t-degree polynomial A(�i,y).

Next, the dealer has to prove, using a distributed zero-knowledge protocol, that indeed
ci = aibi for every i (i.e., that C(��, 0) = A(��, 0) · B(��, 0) for every � 2 {0, . . . , t/2}).
The input of each party Pj is a point on the univariate polynomials A(��,y), B(��,y) and
C(��,y). The zero-knowledge proof shares and operates on the coefficients of the polyno-
mials used for sharing ~a,~b,~c. If the dealer shared O(M) triplets, then the zero-knowledge
involves sharing of O(Mn) values. For simplicity, assume hereafter that M = O(n2).

Verifying product relation. We now provide a detailed disposition of the zero-knowledge
for product relations via the asynchronous weak-binding secret sharing. For simplicity of
notation, the dealer has already (verifiably) shared, for every u 2 U = {0, . . . , t/2}2, degree-t
polynomial Au(x), Bu(x), Cu(x). Each party Pj holds shares Au(j), Bu(j), Cu(j). The goal
of the dealer is to prove that Au(0) · Bu(0) = Cu(0). The zero-knowledge proof shares and
operates on the coefficients of the polynomials used for sharing. Since |U | 2 O(n2) and
each product polynomial has O(n) coefficients, we have a total of O(n3) coefficients to pack.
We now need O(1) trivariate polynomials to pack all needed coefficients. This sharing does
not need to produce t-sharing of the secrets. Rather the mere confirmation that the dealer
commits to a unique set of secrets is good enough. Hence, as discussed in the previous section,
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we can utilize the asynchronous weak-binding secret sharing with light-enhanced features.

Constructing the trivariate polynomials. For every u 2 U , define:

Eu(x) := Au(x) · Bu(x)� Cu(x) .

We redefine U = V ⇥ V where V = {0, . . . , t/2}. Then, we need to verify that for every
(�, �) 2 V ⇥ V it holds that

E(�,�)(0) = A(�,�)(0) · B(�,�)(0)� C(�,�)(0) = 0 ,

which implies that A(�,�)(0) ·B(�,�)(0) = C(�,�)(0). Since A(�,�)(x), B(�,�)(x), and C(�,�)(x) are
polynomials of degree-t, the polynomial E(�,�)(x) is of degree-2t. We explicitly write

E(�,�)(x) = e(�,�)1 x+ . . .+ e(�,�)2t x2t .

Since the constant term of this polynomial is supposed to be 0 (if indeed A(�,�)(0) ·B(�,�)(0) =

C(�,�)(0)) we do not specify it. The dealer embeds the 2t coefficients of each of those (t/2+1)2

polynomials in four trivariate polynomials, each of degree t + t/2 in x,y and z. Note that
each trivariate polynomial can pack (t/2 + 1)3 values, where we have a total of (t/2 + 1)2 · 2t
values to pack; We therefore need four trivariate polynomial S1,S2,S3,S4 (in each we pack
t/2(t/2 + 1)2 while we can pack (t/2 + 1)3 values; i.e., we do not fully pack it). Specifically
(where in all of the following rows we quantify over all k 2 [1, . . . , t/2], and (�, �) 2 V ⇥ V ):

The coefficients Embedded in the trivariate The embedding

e(�,�)1 , . . . , e(�,�)
t/2 S1(x,y, z) S1(��,�k,��) = e(�,�)

k

e(�,�)
t/2+1, . . . , e

(�,�)
t S2(x,y, z) S2(��,�k,��) = e(�,�)

t/2+k

e(�,�)
t+1 , . . . , e(�,�)

t+t/2 S3(x,y, z) S3(��,�k,��) = e(�,�)
t+k

e(�,�)
t+t/2+1, . . . , e

(�,�)
2t S4(x,y, z) S4(��,�k,��) = e(�,�)

t+t/2+k

This fixes t/2(t/2 + 1)2 points on each trivariate polynomial. The dealer chooses random
trivariate polynomials under the above constraints. It then “secret shares” those trivariate
polynomials among the parties. Each party Pi receives the share:

sharei = (Sr(x,y, i), Sr(x, i,y), Sr(i,y, z))r2[4] .

Let us assume for simplicity that shareis are distributed such that all the honest parties’ shareis
uniquely define four trivariate polynomials of degree at most t + t/2 in each variable. We
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have to perform the following checks:

1. The shares that the dealer distributes uniquely define four trivariate polynomials of
degree at most t+ t/2 in each variable.

2. The trivariate polynomials define coefficients of polynomials E(�,�)(x) for every (�, �) 2
V ⇥ V . It should hold that for at least 2t+ 1 indices i:

a(�,�)
i

· b(�,�)
i
� c(�,�)

i
= E(�,�)(i) = i · e(�,�)1 + i2 · e(�,�)2 + . . .+ i2t · e(�,�)2t (5.1)

Since each A(�,�)(x), B(�,�)(x), C(�,�)(x) is of degree-t, the polynomial A(�,�)(x) · B(�,�)(x) �
C(�,�)(x) is of degree-2t. If Eq. (5.1) holds for at least 2t+ 1 indices i, then this polynomial is
exactly E(�,�)(x). Since E(�,�)(0) = 0, we have that A(�,�)(0) · B(�,�)(0) = C(�,�)(0). To require
that the above verification holds for at least 2t + 1 honest parties, we actually require that it
holds for at least 3t+ 1 parties.

To check that the trivariate shares pack the correct values, each Pi must be able to recon-
struct E(�,�)(i), where

E(�,�)(i) =
P

t/2
k=1

⇣
ik · S1(��,�k,��)| {z }

e
(�,�)
k

+it/2+k · S2(��,�k,��)| {z }
e
(�,�)
t/2+k

+it+k · S3(��,�k,��)| {z }
e
(�,�)
t+k )

+it+t/2+k · S4(��,�k,��)| {z }
e
(�,�)
t+t/2+k

⌘

We therefore let Pi get the bivariate polynomial from the dealer in addition to sharei,
which embeds (E(�,�)(i))(�,�)2V⇥V :

Ti(x, z) =
4X

r=1

t/2X

k=1

i(r�1)·(t/2)+k · Sr(x,�k, z) . (5.2)

Note that for every (�, �), Ti(��,��) = E(�,�)(i).
We now need a mechanism for Pi to verify that the dealer indeed passes on a correct

bivariate polynomial Ti consistent with the unique trivariate polynomials (Sr)r2{1,2,3,4} defined
by sharejs of the honest parties. We observe that Ti(x, j) can be computed by Pj based on
sharej. Since the degree of Ti is t + t/2 in both variables, it is enough if t + t/2 + 1 honest
parties or alternatively a total of 2t + t/2 + 1 parties confirm that their Ti(x, j) is consistent
with Pi’s received Ti. So, to let Pi verify Ti(x, z), the parties jointly perform the following:

1. On holding (Sr(x,y, j))r2[4] as part of sharej, for every r 2 [4], Pj evaluates Sr(x,y, j)
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on t/2 values y = �1, . . . ,�t/2 to obtain Sr(x,�1, j), . . . ,Sr(x,�t/2, j).
2. Define tj

i
(x) =

P4
r=1

P
t/2
k=1 i

(r�1)·(t/2)+k · Sr(x,�k, j).
3. Send Pi the univariate polynomial tj

i
(x).

Pi can then verify if tj
i
(x) = Ti(x, j) for at least 2t+ t/2 + 1 Pjs.

We require the dealer to find a set of size at least 3t + 1 such that: (a) the honest parties
in it must define four unique trivariate polynomials; (b) every honest party in it holds Ti that
is consistent with every honest party in the set; and (c) every honest party in it must have
successfully verified Equation (5.1). We note that an honest dealer will always be able to find
eventually such a set.

Modeling. We describe our protocol in the Simple UC (SUC) framework due to Canetti, Co-
hen, and Lindell [45]. This implies standard UC security [42]. We try to avoid over-formalism
in the protocol descriptions (e.g., we ignore sid while those are implicit). As standard secret-
shared protocols in the perfect setting, we conjecture that our protocols are also adaptively
secure.

Organization. The rest of the chapter is organized as follows. In Section 5.3, we provide the
preliminaries, mainly overview the SUC framework. In Section 5.5, we provide full details
of our zero-knowledge protocol, i.e., verifying product relation. In Section 5.6, we provide
our rate-1, asynchronous weak-binding secret sharing. We remark again that we do not use
this secret sharing directly, and we provide it just for completeness. In Section 5.7, we show
verifiable triple sharing, followed by the MPC protocol in Section 5.8.

5.3 Preliminaries

Notations. Our protocols are defined over a finite field F where |F| > n + t + 1. We denote
the elements by {�t, . . . , 0, 1 . . . , n}. We use hvi to denote the degree-t Shamir-sharing of a
value v among parties in P, and hvii to denote the share held by a party Pi.

5.3.1 Network Model and Notations

We consider an asynchronous network where the parties are P = {P1, . . . , Pn}. The parties
are connected via pairwise ideal private channels. To model asynchrony, messages sent on a
channel can be arbitrarily delayed, however, they are guaranteed to be eventually received
after some finite number of activations of the adversary. In general, the order in which mes-
sages are received might be different from the order in which they were sent. Yet, to simplify
notation and improve readability, we assume that the messages that a party receives from a
channel are guaranteed to be delivered in the order they were sent. This can be achieved
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using standard techniques – counters, and acknowledgements, and so we just make this sim-
plification assumption. The detailed description of the modelling and security definition is
discussed in Section 2.

Our protocols are defined over a finite field F where |F| > n + t + 1. We denote the
elements by {�t, . . . , 0, 1 . . . , n}. We use hvi to denote the degree-t Shamir-sharing of a value
v among parties in P, and hvii to denote the share held by a party Pi.

5.3.2 Asynchronous Broadcast and Agreement on a Core Set

A-Cast. Bracha’s asynchronous broadcast (A-Cast) protocol [37] allows a sender to send a
message m identically to all the parties at a cost of O(n2`) where ` is the length of the message
in bits. If the sender is honest, then all the honest parties eventually terminate with output
m. If the sender is corrupt, and some honest party terminates with the output m0, then all
the honest parties eventually terminate with the same output m0. In our protocol, the cost
of A-Cast can be amortized over multiple instances of triple generation with the same dealer.
For ease of description, we use the following representation in our protocols.

• “Pi broadcasts a message m” represents an instance of A-Cast with Pi as the sender.

• “Pj receives a message m from the broadcast of Pi” represents that Pj outputs m in the
instance of A-Cast with Pi as the sender.

Agreement on a Core Set (ACS). The ACS primitive [40] allows parties to agree on a com-
mon set of at least n�t parties Core ⇢ P, such that each party in Core satisfies some predefined
property prop which has the following features:

1. Every honest party eventually satisfies prop.

2. If some honest Pi sees that a party Pj satisfies prop, then eventually all the honest parties
see that Pj satisfies prop.

We model ACS as a functionality below. In the functionality, each party i receives
(record, i, k) commands with k 2 [n] and sends them to the functionality. Each party is guar-
anteed to receive at least n � t such commands and if some honest i receives a (record, i, k)

command, every honest j is guaranteed to eventually receive a (record, j, k) command as well.
In addition, parties can receive receiveS() commands which they forward to the functionality.
The functionality then returns a set S ✓ [n] as a response. Note that in either case, all parties
eventually receive the same set of indices S ✓ [n], such that for every k 2 S at least one
honest party received a (record, i, k) command.
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Functionality 5.3.1: Agreement on a Core Set – FACS

The functionality is parameterized by a set of corrupted parties I ✓ [n]. Initialize sets Si  ;
for every i 2 [n] and S  ?. In addition, initialize returned 0.

1. (record, i, k): Upon receiving this command from party i, add the index k to Si. Forwards
(record, i, k) to the adversary. If |Si| � n � t then set i as ready. If n � t honest parties
are ready, then set S to be the set of all indices k 2 [n] such that there exists some ` 62 I

for which (record, `, k) was sent.

2. (set, S 0): Upon receiving this command from the adversary, check that S 0 ✓ [n] and
that |S 0| � n � t. Moreover, check that for every k 2 S 0, there exists some ` 62 I for
which k 2 S` (i.e., P` has submitted (record, `, k)). If all those conditions hold, and
returned = 0, then store S  S 0.

3. receiveS(): Upon receiving this command from some party i, if S 6= ?, set returned 1.
Return S.

Looking ahead, we use the ACS primitive to identify a common set of parties with the
property that a verifiable triple sharing instance and a asynchronous VSS instance initiated
by a party in this set must terminate eventually for all the honest parties.

5.3.3 Finding a STAR in a Graph

Definition 5.3.2. Let G be a graph over the nodes [n]. We say that a pair (C,D) ✓ [n]2 such

that C ✓ D is an (n, t)-STAR in G of the following holds:

• |C| � n� 2t,

• |D| � n� t,

• For every c 2 C and every d 2 D the edge (c, d) exists in G.

Canetti [39] showed that if a graph has a clique of size n� t, then there exists an efficient
algorithm which always finds an (n, t)-star. For completeness, we describe the algorithm
below.

Algorithm 5.3.3: STAR Algorithm (G, n, t)

• Input: undirected graphs G (over the nodes {1, . . . , n}), a parameter t.

1. Find a maximum matching M in G (i.e., in the complement graph). Let N be the
set of matched nodes (namely, the endpoints of the edges in M).
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2. Let T be the set of triangle-heads, i.e., all vertices that are not endpoints of the
matching in G, but they have two neighbors in the matching.

T := {i 62 N | 9j, ` s.t. (j, `) 2M and (i, j), (i, `) 2 G} .

Let C := [n] \ (N [ T ).

3. Let D the set of unmatched nodes that have no neighbors in C in G. That is, the
set:

D := {j 62 N | 8i 2 C, (i, j) 62 G} .

4. Output: If |C| � n� 2t, and |D| � n� t then output (C,D). Otherwise, output ?.

Claim 5.3.4. Let I be a set of cardinality of size at most t. Let G be an undirected graph over [n]

such that for every j, k 62 I it holds that (j, k) 2 G. Then, C \ I contains at least n� 2t indices.

Proof. As in [7] we get that the number of parties in (N [T )\I is at most t. Since C is defined
as [n] \ (N [ T ), we get that C \ I is at least n� 2t.

Claim 5.3.5 ([40]). Let G be a graph over n vertices that contains a clique of size n� t. Then,

the algorithm outputs sets (C,D).

5.3.4 Bivariate Polynomials

We consider bivariate polynomials of degree t + q in x and degree t in y. Such polynomials
can be written as follows: S(x,y) =

P
t+q

i=0

P
t+q

j=0 ai,jx
iyj. Looking ahead, in Section 5.4 we

use q = t. We have:

Claim 5.3.6. Let t be a nonnegative integer, let H ⇢ [n] be a set of cardinality t + 1 and let

(fh(x))h2H be t + 1 univariate polynomials of degree at most t + q. Then, there exists a unique

bivariate polynomial S(x,y) of degree t + q in x and degree t in y satisfying for every h 2 H:

S(x, h) = fh(x).

5.3.5 Trivariate Polynomials

We consider trivariate polynomial of degree t+ q in variables x,y, z. Such polynomial can be
written as follows:

S(x,y, z) =
t+qX

i=0

t+qX

j=0

t+qX

k=0

ai,j,kx
iyjzk .

Looking ahead, in our protocol we consider q = t/2.
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Claim 5.3.7 (Interpolation). Let t be a nonnegative integer, let H ⇢ [n] be a set of cardinality

t+ q+1, and let (Sh(x,y))h2H be t+ q+1 bivariate polynomials of degree at most t+ q (in both

x,y) each. Then, there exists a unique trivariate polynomial S(x,y, z) of degree t + q such that

for every h 2 H:

S(x,y, h) = Sh(x,y)

Proof. Define the trivariate polynomial S(x,y, z) via a generalization of the Lagrange inter-
polation. For every h 2 H, define the trivariate polynomial Sh(x,y, z) as follows:

Sh(x,y, z) = Sh(x,y) ·
Q

j2H\{h}(z� j)
Q

j2H\{h}(h� j)
.

Note that Sh(x,y, h) = Sh(x,y), and for every j 2 H \ {h}, Sh(x,y, j) = 0. Moreover,
Sh(x,y, z) is of a trivariate polynomial of degree t+ q. Then, define:

S(x,y, z) =
X

h2H

Sh(x,y, h) .

Clearly, for every h 2 H it holds that S(x,y, h) = Sh(x,y), and S(x,y, z) is a trivariate poly-
nomial of degree t+ q. We now show that S is unique. Assume that there exist two different
polynomials S1(x,y, z) and S2(x,y, z) that satisfy the conditions in the claim. Consider the
polynomial R(x,y, z) = S1(x,y, z) � S2(x,y, z). Since S1 and S2 are two trivariate polyno-
mial of degree t + q then R is also a trivariate polynomial of degree t + q. Moreover, for
every h 2 H it holds that R(x,y, h) = 0. For every ↵, � 2 F, consider the degree t + q

univariate polynomial R(↵, �, z). It holds that R(↵, �, h) for all h 2 H, and thus it equals
0 on t + q + 1 points, i.e., this is the all-zero univariate polynomial. Moreover, for every
↵, �, � 2 F it holds that R(↵, �, �) = 0, that is, R(x,y, z) is the all-zero polynomial and thus
S1(x,y, z) = S2(x,y, z).

5.4 Verifiable Packed Bivariate Secret Sharing
In this section, we provide a protocol for packing O(n) secretes in a bivariate polynomial. We
model the packed VSS in Functionality 5.4.1 below. The protocol is a simplification of the
protocol of [50]: instead of the dealer re-broadcasting sets, we show how to do it with just
a single broadcast message. Moreover, as opposed to [50], we provide full simulation in the
SUC framework.

Functionality 5.4.1: Packed VSS Functionality – FVSS

The functionality is parameterized by the set of corrupted parties I ✓ [n].
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1. The dealer sends to the functionality its input S(x,y).

2. The functionality verifies that S is of degree at most 3t/2 in x and degree at most t in
y. If not, it does not terminate.

3. If the above condition does hold, then the functionality sends to the ideal adver-
sary the shares S(x, i), S(i,y) for every i 2 I, and for each honest party Pj it sends
S(x, j), S(j,y).

Definition 5.4.2. For an undirected graph G = (V,E) with V = [n], we say that the four sets

(C,D,G, F) are valid if the following conditions are satisfied:

1. |C| � 2t+ 1, C ✓ D, and |D|, |G|, |F| � 3t+ 1.

2. For every c 2 C and d 2 D it holds that (c, d) is an edge in G.

3. For every g 2 G it holds that |�(g) \ C| � 2t+ 1.

4. For every f 2 F it holds that |�(f) \ G| � 3t+ 1.

Protocol 5.4.3: Packed VSS Protocol – ⇧pVSS

• Input: The dealer holds a bivariate polynomial S(x,y) of degree 3t/2 in x and degree t

in y. Other parties hold no input.

• The protocol:

1. (Dealing Shares): The dealer sends (shares, D, i, (fi(x), gi(y)) with fi(x) = S(x, i)

and gi(y) = S(i,y) to each party Pi.

2. (Pairwise Consistency Checks:) Each party Pi does as follows
(a) Upon receiving shares from the dealer, Pi verifies that fi(x) is of degree at most

3t/2 and gi(y) is of degree at most t. If so, Pi sends (exchange, i, j, fi(j), gi(j))

to every Pj.

(b) Upon receiving shares (exchange, j, i, uj,i, vj,i) from Pj, check that uj,i = gi(j)

and vj,i = fi(j). If so, broadcast the message Good(i, j).

3. (Valid (C,D,G, F) finding:) The dealer does as follows
(a) Initialize an undirected graph G where V = [n]. Upon viewing broadcasted

messages Good(k, `) broadcasted by Pk and Good(`, k) broadcasted by P`, add
the edge (k, `) to G.

(b) Run the STAR algorithm (Algorithm 5.3.3) to find sets (C,D) ⇢ [n]2 where
|C| � 2t+1, |D| � 3t+1, and for every c 2 C and d 2 D, the edge (c, d) is in G.
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(c) Let G be the set of parties that agree with at least 2t + 1 parties in C. That is,
initialize G = ; and add i to G if |�(i) \ C| � 2t+ 1.

(d) Let F be the set of parties that agree with at least 3t + 1 parties in G. That is,
initialize F = ; and add i to F if |�(i) \ G| � 3t+ 1.

(e) If |C| � 2t + 1, C ✓ D, and |D|, |G|, |F| � 3t + 1, then broadcast (C,D,G, F).
Otherwise, continue to listen to Good messages, and repeat.

4. (Verifying (C,D,G, F):) Each party Pi:
(a) Initialize an undirected graph Gi where V = [n]. Upon viewing broadcasted

messages Good(k, `) from Pk and Good(`, k) from P`, add the edge (k, `) to Gi.

(b) Check if (C,D,G, F) is valid for the graph Gi. If not, then continue to listen to
Good message, and with each new edge, re-check validation.

5. (Deciding on output) Once (C,D,G, F) are valid for Gi, Pi outputs its share as
follows and terminates subsequently

– (Parties i 2 G \ F) Output (fi(x), gi(y)).

– (Parties i 62 G)
(a) Consider the messages (uj,i, vj,i) from Step 2b for parties j 2 F, and using

Reed Solomon decoding, try to decode the unique univariate polynomial
gi(y) of degree-t satisfying gi(j) = uj,i for all but t values in F. If there is
no unique decoding, wait to receive additional points (uj,i, vj,i).

(b) Once decoded, send (reconstruct, i, k, gi(k)) to each party Pk for k 62 F.

– (Parties i 62 F):
(a) Consider all points (j, vj,i) obtained from messages (·, vj,i) from Step 2b

for parties j 2 G, or points (j, vj,i) obtained from messages
(reconstruct, j, i, vj,i) from parties not in G. Use Reed Solomon decoding
procedure to decode the unique univariate polynomial fi(x) of degree 3t/2

satisfying fi(j) = vj,i for all but t parties. If there is no unique decoding,
wait to receive additional points (uj,i, vj,i) or (reconstruct, `, i, v`,i).

– Once both fi(x) (for i 62 F) and gi(y) (for i 62 G) were reconstructed, then
terminate and output (fi(x), gi(y)).

Theorem 5.4.4. Let n � 4t + 1. Protocol 5.4.3, ⇧pVSS, securely computes FVSS (Function-

ality 5.4.1) in the presence of a malicious adversary controlling at most t parties. It has a

communication complexity of O(n2 log n) bits over point-to-point channels and O(n2 log n) bits
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of broadcast for sharing O(n) values simultaneously. Each party broadcasts at most O(n log n)

bits.

Before showing full simulatability, we have the following two claims regarding the proto-
col: validity and binding. We will use those claims in the proof of theorem 5.4.4 when we
show full simulation.

Claim 5.4.5 (Validity). If the dealer is honest, then the protocol eventually terminates, and each

honest party Pi output S(x, i), S(i,y), where S(x,y) is the input of the dealer.

Proof. Eventually, each honest Pj broadcast Good(j, `) for all honest parties ` 62 I. We show
that the dealer must eventually broadcast (C,D,G, F). Consider time T in which all Good
messages between pairs of honest parties were received by the dealer. There are two cases to
consider:

Case I – The dealer broadcast (C,D,G, F) before time T . In that case, the dealer terminates
before time T . Claim 5.4.6 below shows that all honest parties output shares that lie on
the same bivariate polynomial. Moreover, this polynomial is determined by the set of honest
parties in C, which is the bivariate polynomial S(x,y) that the dealer holds.

Case II – The dealer did not broadcast (C,D,G, F) before time T . At time T , the dealer is
guaranteed to find an (n, t)-star (C,D) such that |C| � n�2t � 2t+1, and |D| � n� t � 3t+1

(see Claim 5.3.4). Moreover, C contains at least 2t + 1 honest parties. Since G is defined as
the set of parties that agree with at least 2t + 1 in C, we get that the set G must contain all
honest parties. Moreover, the set F is defined as the set of parties that agree with at least
3t+ 1 parties in G. Since G contains all honest parties (i.e., at least 3t+ 1 parties), all honest
parties are part of F. We conclude that the dealer finds and eventually broadcasts (C,D,G, F).

All honest parties will eventually receive the shares from the dealer, and each pair of hon-
est parties Pk, P` will eventually broadcast the messages Good(k, `) and Good(`, k). Therefore,
the graph of the dealer G, eventually contains a clique of all honest parties (i.e., of 3t + 1).
Once this occurs, each honest party is both in G and F, and therefore output the same shares
as received from the dealer. Since the dealer chose all polynomials to lie on the same bivariate
polynomial S(x,y), we have that (fi(x), gi(y)) = ((S(x, i), S(i,y)).

Claim 5.4.6 (Binding). When one honest party terminates, all honest parties will eventually ter-

minate with shares on the same bivariate polynomial S(x,y). The bivariate polynomial S(x,y)

is interpolated from the shares that the lexicographically first t + 1 honest parties in C received

from the dealer, where C is defined as the set that the dealer broadcasts.
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Proof. Consider the first honest party that terminates, say some Pj⇤ . If Pj⇤ terminates, then
the dealer must have broadcasted sets (C,D,G, F), and Pj⇤ must have validated the property
in its local graph.

Let H ✓ C be a set of some t + 1 honest parties in C. Since |C| � 2t + 1, there must exist
such a set H. Consider the unique bivariate polynomial S(x,y) satisfying S(x, h) = fh(x) for
every h 2 H, see Claim 5.3.6. At this point:

1. For every honest d 2 D it holds that gd(y) = S(d, y). Specifically, gd(y), S(d,y)
are two univariate polynomials of degree-t, and for every h 2 H it holds that gd(h) =
fh(d) = S(d, h), as otherwise the edge (d, h) does not exist in G. Since the two polyno-
mials agree on t+ 1 points, they are the same polynomial.

2. For every honest c 2 C it holds that fc(x) = S(x, c). This trivially holds for the
parties in H ✓ C. We show that this also holds for the other honest parties in C.
Specifically, for every honest c 2 C and d 2 D, Pc and Pd checked that fc(d) = gd(c).
Therefore, the two degree-3t/2 univariate polynomials, fc(x) and S(x, c) agree on 2t+1

points, and therefore it holds that fc(x) = S(x, c).

3. For every honest j 2 G it holds that gj(y) = S(y, j). Each party in G agrees with
at least 2t + 1 parties in C. Therefore, Pj agrees with at least t + 1 honest parties in
C. Thus, the two polynomials gj(y) and S(y, j) must agree on t + 1 points (i.e., each
such honest c 2 C that agrees with Pj exchanged gj(c) and fc(j) and it holds that
gj(c) = fc(j) = S(c, j)). As a result, gj(y) = S(y, j).

4. For every honest j 2 F it holds that fj(x) = S(x, j). Each party in F agrees with at
least 3t+1 parties in G. Since |G| � 3t+1, we get that Pj agrees with at least 2t+1 honest
parties in G. For each such Pj and an honest k 2 G it holds that fj(k) = gk(j) = S(j, k).
We get that two degree-3t/2 polynomials fj(x) and S(x, j) must agree on 2t+ 1 points,
and therefore fj(x) = S(x, j).

Since all Good messages are broadcasted, each honest party will eventually see the same edges
as the first honest party that terminated, Pj⇤ , and the set (C,D,G, F) will also be validated by
each one of the honest parties.

We get that all honest parties j 2 F hold a polynomial fj(x) = S(x, j). Moreover, all
honest parties j 2 G holds a polynomial gj(y) = S(j,y). If j 2 G \ F, then it has both
(fj(x), gj(y)) and it can just terminate. For parties that do not hold both polynomials:

1. If j 62 G, then it considers all the points that it received from parties in F in Step 2b.
Those points lie on the polynomial S(j,y). Since G contains 3t + 1 parties, it contains
at least 2t + 1 honest parties. Moreover, Pj might receive at most t incorrect points.
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Therefore, the decoding algorithm must eventually have a unique decoding, to the
polynomial S(j,y). Therefore, Pj eventually obtains gj(y) = S(j,y). At that point it
sends (reconstruct, j, gj(k)) for every k 62 F, where gj(k) = S(j, k).

2. If j 62 F, then it considers all the points from parties in G as received from Step 2b,
and in addition it considers the points from parties not in G, after they reconstruct their
correct g polynomial. As a result, Pj is guaranteed to eventually receive 3t + 1 correct
points on the polynomial S(x, j), and it would have at most t incorrect points. Reed
Solomon decoding is guaranteed to succeed.

We conclude that eventually, all honest parties terminate and output shares (fi(x), gi(y)) =

(S(x, i), S(i,y)).

Proof. We separate the analysis to the case of an honest dealer and a corrupted dealer.

Case I – the case of an honest dealer. We present the simulator S:

1. Upon activation, the simulator invokes the adversary A.

2. The simulator receives from the functionality the shares (fi(x), gi(y)) = S(x, i), S(i,y)

for every i 2 I. Moreover, it receives requests from the router to deliver the outputs of
the functionality to the honest parties. The simulator will allow to deliver the outputs
as the protocol proceed.

3. S sends to the adversary A the message (shares, D, i, fi(x), gi(y)) for every i 2 I as
coming from the dealer.

4. Send to the adversary A all delivery requests (shares, D, j) for j 62 I as coming from the
router.

5. Once A delivers (shares, D, j), simulate Pj sending to each corrupted party Pi the mes-
sage (exchange, j, i, fj(i), gj(i))) where (fj(i), gj(i)) = (S(j, i), S(i, j)) = (gi(j), fi(j)).
Moreover, simulate Pj sending (exchange, j, k) for every k 62 I.

6. Once A delivers the message (exchange, j, k), simulate Pk broadcasting Good(k, j).

7. Once the adversary sends (exchange, i, j, ui,j, vi,j), verify that ui,j = fi(j) and vi,j = gi(j).
If so (and Pj already received its shares from the dealer), simulate Pj broadcasting
Good(j, i).

8. Initialize an undirected graph G over nodes [n]. For each message Good(j, k) broad-
casted (by the adversary or a simulated honest party), if the message Good(k, j) was
also delivered to the dealer, then add the edge (j, k) to G. Check whether the graph
G contains sets (C,D,G, F) as in the protocol. If so, simulate the dealer broadcasting
(C,D,G, F).
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9. For each party Pj, simulate the following:

(a) Pj initializes a graph Gi. Once A delivers the broadcasted messages Good(j, k) and
Good(k, j), add the edge (k, j) to Gi. Moreover, once the adversary delivers the
broadcasted message (C,D,G, F) to Pj, check that (C,D,G, F) is valid in Gi. If not,
continue to listen to addition Good messages.

(b) Once (C,D,G, F) is valid for Pj, if j 2 G \ F, then allow the router to deliver the
output of party Pj from the ideal functionality the the dummy party.

(c) If j 62 G, then wait until the adversary delivers additional (exchange, k, j) messages
for honest k 62 I. Moreover, the simulator can identify the number of incorrect
shares that the adversary sent to Pj via (exchange, i, j, ·, ·). Let t0  t be that num-
ber of incorrect shares. Once the adversary allows receiving t0 + t + 1+ shares
from F \ I, then Pj can reconstruct its polynomial gj(y). Simulate Pj sending
(reconstruct, j, k, gj(k)) for each honest party Pk for k 62 F by giving the adversary
A the messages (reconstruct, j, k) as coming from the router.

(d) If j 62 F, then continue to listen to all messages (exchange, k, i) delivered from the
adversary, and all (reconstruct, `, i). Moreover, the simulate can identify the number
of incorrect sub-shares that the adversary had sent Pj via (exchange, i, j) messages.
Let t0 be the number of incorrect shares. Once the adversary delivers to Pj exactly
t0 + 3t/2 + 1 shares from honest parties, then Pj can reconstruct fj(x).

(e) Once Pj can reconstruct (if needed) fj(x) and gj(y), the simulator S allows the
router in the ideal model to deliver the output of Pj from the functionality to Pj.

10. The adversary must eventually allow delivering all messages, in then each simulated
honest party Pj eventually delivers all messages sent from the functionality to the honest
parties in the ideal execution.

We now show that the view of the environment Z is the same in both executions. From
inspection, it is easy to see that the view of the adversary A is the same in both execution. In
particular, this is due to the fact that the protocol and the simulation are deterministic, and
that the messages of the honest parties to the corrupted parties can be simulated from the
shares of the corrupted parties. Our goal is to show now that the outputs of the parties is
the same between the two executions (and in particular, each party receives its output at the
same “time” in both executions). Regarding the stage in which each party receives its output,
we remark that this is determined by the adversary and how it instructs the router in the real
world, or the simulated router in the ideal world (in which the simulator then forwards the
request to deliver to the real router in the ideal world).
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Therefore, it suffices to show that the outputs of the honest parties are the same in both
executions. Claim 5.4.5 shows that in the real world, each honest party Pj eventually receives
shares S(x, j), S(j,y), while the scheduling is determined by the adversary. In the ideal, the
trusted party delivers to each honest party Pj the shares S(x, j), S(j,y). The adversary A

decides on the scheduling (via S and the router), but since the view of A is exactly the same
in the real and ideal, the scheduling is exactly the same.

Case II - the case of a corrupted dealer. We provide the simulator S:

1. Upon activation, the simulator activates the adversary A.

2. Since the protocol is deterministic and the honest parties have no inputs, the simulator
can simulate all honest parties (and the router) in an execution with A. This means
that it listens to the messages A sends to the honest parties, and it can also simulate the
messages between honest parties (where A receives notifications from the simulated
router). Note that the simulation might not terminate.

3. When the first honest party Pj⇤ terminates, then all honest parties will eventually termi-
nate (see Claim 5.4.6). Consider the set C that dealer has broadcasted in the simulated
execution. Interpolate the polynomial S(x,y) according to the lexicographically first
t + 1 honest parties in C, similarly to the binding property in the proof of Claim 5.4.6.
Send to the functionality the polynomial S(x,y). It is guaranteed that S has degree at
most 2t in x and degree at most t in y.

4. The functionality delivers to each honest party Pj. The simulator instructs the router to
deliver the output to Pj⇤ .

5. It continues to simulate the protocol to the adversary, where whenever a simulated hon-
est party Pj obtains an output in the simulated protocol, then the simulator S delivers
to the router to send the output to the dummy party Pj in the ideal.

6. Eventually, all honest parties will receive output in the simulated execution. The simu-
lator then terminates.

Clearly, the view of the adversary is exactly the same in the real and ideal executions, as the
honest parties have no inputs and are deterministic. If some honest party terminates, then as
follows from the proof of Claim 5.4.6, all honest parties eventually output shares that all lie
on a bivariate polynomial that is defined from the lexicographically first t + 1 honest parties
in C. We note that the environment Z sees that the outputs at the same activation in the
real and ideal. Specifically, upon the activation in which the first honest party Pj⇤ terminates,
in the ideal execution the simulator extracts the input to send to the trusted party, and it
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delivers the output to Pj⇤ in the ideal. Since the protocol proceeds in the same way in both
executions, parties receive their outputs at the same activations.

5.5 Verifying Product Relation
In this section, we show how to realize the product-relation verification functionality. Assume
that a dealer owns and preshares O(n2) Shamir-sharings of triples, such that each of the triples
are supposed to satisfy a product relation. That is, for a triple (a, b, c), c must be equal to ab.
The parties input shares of those shared triples to the functionality, and the functionality
checks that shares define triples satisfying product relations.

Functionality 5.5.1: Verifying Product Relation – FProdVer

The functionality is parameterized by a set of corrupted parties I ✓ [n].

1. Let U = [(t/2+1)2]. Each party Pj sends to the functionality a set of points (au
j
, bu

j
, cu

j
)u2U .

2. For every u 2 U , the functionality reconstructs the unique degree-t univariate polyno-
mials Au(x), Bu(x), Cu(x) satisfying

Au(j) = au
j
, Bu(j) = bu

j
, Cu(j) = cu

j
.

If the dealer is honest, then the dealer also sends Au(x), Bu(x), Cu(x).

3. If the dealer is honest, then give the adversary the shares Au(i), Bu(i) and Cu(i) for
every i 2 I. If the dealer is corrupted, then give the adversary the reconstructed
Au(x), Bu(x), Cu(x).

4. The functionality verifies that for every u 2 U it holds that

Au(0) · Bu(0) = Cu(0).

If yes, then it sends OK to all parties and halts. Otherwise, the functionality never
terminates.

5.5.1 Trivariate Polynomial Verification – Functionality

We overviewed the ZK property in Section 5.2.4. Towards realizing Functionality 5.5.1, we
introduce an aiding functionality. To recall, we write U = V ⇥V where V = {0, . . . , t/2}, and
the dealer embeds the coefficients of the polynomials A(�,�), B(�,�), C(�,�) in four trivariate
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polynomials. We abstract some computations that the parties perform to improve readability
by considering general predicates. Specifically:

1. Each party Pi also receives from the dealer the bivariate polynomial Ti(x, z) as part of
its share; each party Pj computes from its share sharej a univariate polynomial that is
supposed to be Ti(x, j) by applying some linear combination over its shares. We abstract
this linear combination as “linear circuit”, formally defined below. Note that the same
computation that the dealer performs on the trivariate shares to obtain Ti(x,y), each
party performs on its share sharej to obtain Ti(x, j).

2. Each party Pi also checks that for every (�, �) it holds that Ti(��,��) = a(�,�)
i

· b(�,�)
i
�

c(�,�)
i

. We abstract this check as an “external validity” predicate that Pi enters as input.

Linear circuits. We consider a circuit Lj that receives as an input a bivariate polynomial
F (x,y) and it has the following structure:

1. Evaluate F (x,y) on several constants y = ↵1, . . . ,↵k in the field. The results are uni-
variate polynomials f1(x) = F (x,↵1), . . . , fk(x) = F (x,↵k).

2. Output the univariate polynomial fLj(x) =
P

k

`=1 �` ·f`(x) for some constants �1, . . . ,�k.
That is, output a fixed linear combination of f1(x), . . . , fk(x).

We write fLj(F )(x) = Lj(F (x,y)). We also evaluate the circuit Lj on a trivariate polynomial
F(x,y, z). In that case:

1. Evaluate F(x,y, z) on the same constants y = ↵1, . . . ,↵k. The results are bivariate
polynomials (F1(x, z), . . . , Fk(x, z)) = (F(x,↵1, z), . . . ,F(x,↵k, z)).

2. Output the bivariate polynomial which is a fixed linear combination FLj(x, z) :=
P

k

`=1 �` · F`(x, z).

We write FLj(F)(x,y) = Lj(F(x,y, z)). For every i 2 [n], consider Fi(x,y) = F(x,y, i), and
let fLj(Fi)(x) = Lj(Fi(x,y)). Then clearly it holds that

fLj(Fi)(x) = Lj(Fi(x,y)) = Lj(F(x,y, i)) = FLj(F)(x, i) .

The specific linear circuit that we use is given below in Circuit 5.5.2.

External validity. The predicate ExternalValidity
j

receives as input the share of Pj and outputs
0 or 1. The exact predicate that we use is given in Algorithm 5.5.3.
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Linear Circuit 5.5.2 (The circuit Li:).

• Input: Trivariate polynomials S1,S2,S3,S4.

1. For r 2 [1, . . . , 4], evaluate Sr(x,y, z) on the constants y = �1, . . . ,�t/2.

2. Obtain Sr(x,�k, z) for k 2 [1, . . . , t/2] and r 2 [1, . . . , 4].

3. Define Ti(x, z) :=
P4

r=1

P
t/2
k=1 i

(r�1)·(t/2)+k · Sr(x,�k, z).

• Output: The bivariate polynomial Ti(x, z).

Algorithm 5.5.3: The predicate ExternalValidity
i

• Input: The share sharei of Pi, which consists of shares on each one of the polyno-
mials S1, . . . ,S4 and bivariate polynomial Ti(x, z).

• Parameters: For every (�, �) 2 V ⇥ V the algorithm is hardwired with values
a(�,�)
i

, b(�,�)
i

, c(�,�)
i
2 F.

• The algorithm: Output 1 iff for every �, � 2 V it holds that:

Ti(��,��) = a(�,�)
i

· b(�,�)
i
� c(�,�)

i
.

We are now ready to provide the functionality which the product-relation verification
protocol uses as its main building block:

Functionality 5.5.4: Trivariate Polynomial Verification – FTriVer

The functionality is parameterized by (1) The set of corrupted parties I ✓ [n]; (2) Some linear
circuits L1, . . . , Ln as defined above. The functionality works as follows:

1. The dealer sends four trivariate polynomials S1(x,y, z), . . . ,S4(x,y, z).

2. Define the share of each party Pi to be

sharei =
⇣
(Sr(x,y, i),Sr(x, i, z),Sr(x,y, i))r2[4] , Li(S1,S2,S3,S4)

⌘
.

If the dealer is honest, then for every i 2 I send Pi the share sharei.

3. The honest parties send to the functionality their external validity predicates
ExternalValidity

j
to the functionality. Each ExternalValidity

j
takes as input sharej and

outputs 0 or 1.

4. If the dealer is corrupted, then send (ExternalValidity
j
)j 62I to the adversary.

5. If each one of the four trivariate polynomials S1, . . . ,S4 is of degree t+ t/2 in each one
of the three variables, and ExternalValidity

j
(sharej) = 1 holds for at least 2t + 1 honest
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parties, then send OK to all parties and halt. Otherwise, the functionality does not
terminate.

5.5.2 Verifying Product Relation using Trivariate Polynomial

We now proceed to show how to implement Functionality 5.5.1, using the trivariate sharing
as a building block (i.e., Functionality 5.5.4). We then provide the theorem statement which
we prove subsequently.

Protocol 5.5.5: Verifying the Product Relation – ⇧ProdVer

• Input: The dealer holds A(�,�)(x), B(�,�)(x), C(�,�)(x) for every (�, �) 2 V ⇥ V . Each
party Pi holds the points A(�,�)(i), B(�,�)(i), C(�,�)(i) for every (�, �) 2 V ⇥ V .

• The protocol:

1. The dealer computes E(�,�)(x) = A(�,�)(x) · B(�,�)(x) � C(�,�)(x) for every (�, �) 2
V ⇥ V and define the coefficients e(�,�)1 , . . . , e(�,�)2t .

2. The dealer chooses four trivariate polynomials S1, . . . ,S4 of degree t + t/2

in all three variables uniformly at random while embedding the coefficients
e(�,�)1 , . . . , e(�,�)2t as described in the text in Section 5.2.4.

3. The parties invoke Functionality 5.5.4 where the dealer inputs S1, . . . ,S4 and
each party Pi (eventually) inputs its private ExternalValidity

i
as defined in Algo-

rithm 5.5.3. The functionality is parameterized by the linear circuits L1, . . . , Ln,
each is defined as in Circuit 5.5.2.

4. Each party Pi: upon receiving an output OK from Functionality 5.5.4, then termi-
nate and output OK.

Theorem 5.5.6. Let n � 4t + 1. Protocol 5.5.5, ⇧ProdVer, securely computes FProdVer (Function-

ality 5.5.1) in the presence of a malicious adversary controlling at most t parties. It requires

communication of O(n3 log n) bits over point-to-point channels and O(n2 log n) bits of broadcast.

Each party broadcasts at most O(n log n) bits.

Proof. We show separately the case of an honest dealer and of a corrupted dealer.

The case of an honest dealer.

1. The simulator invokes the adversary A.
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2. The simulator receives from the functionality the shares Au(i), Bu(i), Cu(i) for every
i 2 I.

3. It chooses trivariate polynomials S1(x,y, z), . . . ,S4(x,y, z) uniformly at random under
the constraints that for every i 2 I:

4X

r=1

t/2X

k=1

i(r�1)·(t/2)+k · Sr(��,�k,��) = A(�,�)(i) · B(�,�)(i)� C(�,�)(i) .

Note that this imposes (t/2 + 1)2 · |I|  (t/2 + 1)2 · t total constraints, while in each
polynomial we pack up to (t/2 + 1)3 secrets.

4. Simulate the invocation of Functionality 5.5.4: for every i 2 I, give the adversary

sharei =
�
(Sr(x,y, i),Sr(x, i, z),Sr(x,y, i))r2[4], Li(S1,S2,S3,S4)

�

5. It simulates the functionality returning OK. Whenever the adversary delivers the mes-
sage OK to party Pj in the simulated protocol, the simulator delivers the output of
Functionality 5.5.1 to party Pj in the ideal world.

We first show that the output of the honest parties is identical in the real and ideal exe-
cutions. In the real execution, since the dealer is honest, it always holds valid polynomials
A(�,�)(x), B(�,�)(x), C(�,�)(x) each of degree-t such that A(�,�)(0) · B(�,�)(0) = C(�,�)(0) holds
for every (�, �) 2 V ⇥ V . Moreover, it chooses the the trivariate polynomials S1, . . . ,S4 such
that they satisfy the conditions of Functionality 5.5.4. Specifically, S1, . . . ,S4 are of the degree
t + t/2 in each of the three variables and ExternalValidity

j
(sharej) = 1 holds for all the honest

parties. Hence, the functionality always returns OK to all the parties. Consequently, honest
parties always output OK in the real execution. In the ideal execution, all honest parties hold
shares on the valid degree-t polynomials A(�,�)(x), B(�,�)(x), C(�,�)(x) for every (�, �) 2 V ⇥V

shared by the dealer, with which they invoke the Functionality 5.5.1. Since the dealer is hon-
est, for each (�, �) 2 V ⇥ V it holds that A(�,�)(0) · B(�,�)(0) = C(�,�)(0). The output of the
functionality is fully determined by the honest parties’ inputs and hence it always returns OK
to all the honest parties. It thus remains to show that the view of the adversary is identically
distributed in the real and ideal executions.

Below, we prove the claim for a single trivariate polynomial to ease the notations. How-
ever, the claim easily extends to the case of four trivariate polynomials as used in the actual
protocol.

Claim 5.5.7. Let E1 and E2 be any arbitrary sets of (t/2+1)⇥ t/2⇥(t/2+1) field elements each
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and let I ⇢ [n] be a set of cardinality at most t. Then, under the constraint that for each i 2 I

and (�, �) 2 V ⇥ V ,
P

t/2
k=1 i

k ·E1(�, k, �) =
P

t/2
k=1 i

k ·E2(�, k, �), the following two distributions

are identical:

Process I: Choose a random trivariate polynomial F(x,y, z) such that F(��,�k,��) =

E1(�, k, �) for every �, � 2 {0, . . . , t/2} and every k 2 {1, . . . , t/2}. Output

(i,F(x,y, i),F(x, i, z),F(i,y, z),
P

t/2
k=1 i

k · F(x,�k, z)) for every i 2 I.

Process II: Choose a random trivariate polynomial F0(x,y, z) such that F0(��,�k,��) =
E2(�, k, �) for every �, � 2 {0, . . . , t/2} and every k 2 {1, . . . , t/2}. Output

(i,F0(x,y, i),F0(x, i, z),F0(i,y, z),
P

t/2
k=1 i

k · F0(x,�k, z)) for every i 2 I.

Proof. We show that the probability distributions {{(i,F(x,y, i),F(x, i, z),F(i,y, z),
Ti(x, z))}i2I} corresponding to Process I and {{(i,F0(x,y, i),F0(x, i, z),F0(i,y, z),
T 0
i
(x, z))}i2I} corresponding to Process II are identical. Towards that, let S and S0 de-

note the probability ensembles corresponding to Process I and Process II respectively. We
thus show that S ⌘ S0. For this, we show that given any set of tuple of bivariate polynomials
with degree 3t/2 in both variables, say Z = {Qi(x,y),Wi(x, z), Ri(y, z), Ti(x, z)}i2I that
satisfy Definition 5.5.8, the number of trivariate polynomials in support of S that are
consistent with Z are the same as the number of polynomials in support of S0.

Note that if the set Z does not satisfy Definition 5.5.8, then there does not exist any
trivariate polynomial that is in support of S or S0. Now, consider a set Z that satisfies Defini-
tion 5.5.8. For simplicity, consider the case when |I| = t. Choose a set, say E, of (t/2+1)2 ele-
ments selected uniformly at random from F. Note that E1[E together with Z defines a unique
trivariate polynomial S(x,y, z) as follows. For each k 2 {0, . . . , t/2}, construct W�k(x, z) of
degree-3t/2 in each variable such that W0(��,��) = E(�, �) and W�k(��,��) = E1(�, k, �).
Note that this defines (t/2 + 1)2 points on each W�k(x,y). Moreover, for every i 2 I, we set
W�k(x, i) = Qi(x,�k) and W�k(i, z) = Ri(�k, z). This defines 2t(t + 1) more points on each
W�k(x, z). Thus, in total we have (t + t/2 + 1)2 points defined on each W�k(x, z) which de-
fines the polynomial completely. Given the t polynomials Wi(x, z) for every i 2 I and t/2 + 1

polynomials W�k(x,y) for every k 2 {0, . . . , t/2}, these define a unique polynomial F(x,y, z)
due to Claim 5.3.7. The same argument holds true for the case of the set E2 [ E and the
corresponding unique polynomial F0(x,y, z). Hence, the support for S and S0 is equal. For
the case when |I| < t, we can view process I (respectively process II) as first choosing t� |I|
polynomials Wj(x, z) (respectively W 0

j
(x, z)) for some j 62 I uniformly at random under the

constraint that Z together with {Wj(x, z)} (respectively {W 0
j
(x, z)}) satisfy Definition 5.5.8.

Following this, the analysis is same as the case with |I| = t.
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The case of a corrupted dealer.

1. The simulator invokes the adversary A.

2. The simulator receives from the functionality the polynomials A(�,�)(x), B(�,�)(x) and
C(�,�)(x) for every (�, �) 2 V ⇥ V .

3. It simulates the invocation of Functionality 5.5.4: It receives from the adversary four
trivariate polynomials S1,S2,S3,S4.

4. It generates the external validity functions ExternalValidity
j

for every j 62 I with a(�,�)
j

=

A(�,�)(j), b(�,�)
j

= B(�,�)(j) and c(�,�)
j

= C(�,�)(j). It sends to the adversary the predicates
ExternalValidity

j
for every j 62 I as in Functionality 5.5.4.

5. Define Ti(x, z) = Li(S1,S2,S3,S4) where Li is defined as in Circuit 5.5.2.

6. Check that each polynomial Sr for r 2 [4] is of degree t + t/2 in each one of the three
variables. Moreover, if ExternalValidity

j
holds for at least 2t + 1 honest parties, then

simulate Functionality 5.5.4 sending output OK. Otherwise, do not terminate.

7. Whenever the adversary delivers the message OK to party Pj in the simulated protocol,
the simulator delivers the output of Functionality 5.5.1 to party Pj in the ideal world.

Clearly the view of the adversary is the same in both executions. We now prove that if
Functionality 5.5.4 returns OK, then Functionality 5.5.1 also return OK. That is, we claim
that once A sent polynomials Sr for r 2 [4] for which ExternalValidity

j
holds for at least 2t+ 1

parties, then it holds that A(�,�)(0) ·B(�,�)(0) = C(�,�)(0) for every (�, �) 2 V ⇥ V . To see that,
fix some (�, �). Consider the following polynomial:

Y(�,�)(x) :=
4X

r=1

t/2X

k=1

x(r�1)·(t/2)+k · Sr(��,�k,��)

= e1x+ . . .+ e2tx
2t

where each e` directly corresponds to some Sr(��,�k,��). This is a univariate polynomial
where the only variable is x and is of of degree 2t. Moreover, Y(�,�)(j) = Tj(��,��), where
Tj(x, z) = Lj(S1, . . . ,S4) as defined in Step 5 of the simulation. Furthermore, consider the
polynomial:

E(�,�)(x) = A(�,�)(x) · B(�,�)(x)� C(�,�)(x) .

This is also a univariate polynomial of degree-2t. From the external validity property, for at
least 2t+ 1 honest parties J ✓ [n] it holds that

E(�,�)(j) = a(�,�)
j

· b(�,�)
j
� c(�,�)

j
= Tj(��,��) = Y(�,�)(j) .
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Therefore, the two degree-2t polynomials E(�,�)(x), Y(�,�)(x) agree. Since the constant term
of the polynomial Y(�,�)(x) is 0, we get that the constant term of E(�,�)(x) is 0. Therefore it
holds that

E(�,�)(0) = A(�,�)(0) · B(�,�)(0)� C(�,�)(0) = 0 ,

and therefore A(�,�)(0) · B(�,�)(0) = C(�,�)(0) for every (�, �) 2 V ⇥ V .

5.5.3 Trivariate Polynomial Verification – Protocol

In the remainder of this sub-section, we show how to implement Functionality 5.5.4. To
ease notations, we show how to implement the functionality with general linear functions
L1, . . . , Ln and general ExternalValidity

j
. Moreover, we assume that the dealer sends just

one trivariate polynomial S instead of four; generalizing for the case of four polynomial
is straightforward. This construction is essentially our asynchronous weak-binding trivariate
secret sharing, for which we provided an extensive overview in Section 5.2.2.

Definition 5.5.8. We say that the share that Pi received from the dealer

sharei = (Qi(x,y), Wi(x, z), Ri(y, z), Ti(x, z) )

(= (S(x,y, i), S(x, i, z), S(i,y, z), Li(S(x,y, z)))

is consistent with an exchange sub-share message mj!i that Pj sends to Pi,

mj!i :=
⇣
exchange, j, i, f

Qj

i
(x), g

Qj

i
(y), f

Wj

i
(x), g

Wj

i
(z), f

Rj

i
(y), g

Rj

i
(z), tLi(Qj)(x)

⌘
,

denoted as consistent(sharei,mj!i) = 1, if the following conditions hold:

f
Qj

i
(x) = Wi(x, j) (= S(x, i, j)), g

Qj

i
(y) = Ri(y, j) (= S(i,y, j)),

f
Wj

i
(x) = Qi(x, j) (= S(x, j, i)), g

Wj

i
(z) = Ri(j, z) (= S(i, j, z)),

f
Rj

i
(y) = Qi(j,y) (= S(j,y, i)), g

Rj

i
(z) = Wi(j, z) (= S(j, i, z)) ,

and,

tLi(Qj)(x) = Ti(x, j)

Protocol 5.5.9: Trivariate Polynomial Verification – ⇧TriVer

Input: The input of the dealer is some trivariate polynomial S(x,y, z). The input of each
party Pj is some predicate ExternalValidity

j
.

Public parameters: The protocol is parameterized by linear circuits L1, . . . , Ln.
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The protocol:

1. (Share Distribution) For each party Pi, the dealer sends the share:

(share, i, S(x,y, i), S(x, i, z), S(i,y, z), Li(S(x,y, z))

2. (Exchange sub-share) Each party Pi:

(a) Upon receiving (share, i, Qi(x,y),Wi(x, z), Ri(y, z), Ti(x, z)) from the dealer, check if:
ExternalValidity

i
(Qi(x,y),Wi(x, z), Ri(y, z), Ti(x, z)) = 1.

(b) If the above condition holds, then for every Pj define the following seven polynomi-
als:

fQi
j
(x)

def
= Qi(x, j) (= S(x, j, i)) , gQi

j
(y)

def
= Qi(j,y) (= S(j,y, i)) ,

fWi
j

(x)
def
= Wi(x, j) (= S(x, i, j)) , gWi

j
(z)

def
= Wi(j, z) (= S(j, i, z)) ,

fRi
j
(y)

def
= Ri(y, j) (= S(i,y, j)) , gRi

j
(z)

def
= Ri(j, z) (= S(i, j, z)) ,

and
tLj(Qi)(x) = Lj(Qi(x,y)) .

Then, define the message:

mi!j :=
⇣
exchange, i, j, f

Qi
j

(x), gQi
j
(y), fRi

j
(x), gRi

j
(z), fWi

j
(y), gWi

j
(z), tLj(Qi)(x)

⌘
.

(c) Verify that consistent(sharei,mi!i) = 1 (as per Definition 5.5.8), i.e., the share that Pi

received from the dealer is consistent with itself.

(d) If all the above conditions hold, then Pi sends to each Pj its sub-share mi!j.

(e) Upon receiving a message mj!i from Pj, verify that it is consistent with sharei (i.e.,
consistent(sharei,mj!i) = 1), where sharei received from the dealer and consistent is
as Definition 5.5.8. If so, then broadcast Good(i, j).

3. (Identifying Star or Clique) The dealer does as follows. Initalize a dynamic undirected
graph G = (V,E) with V = [n]. Upon receiving broadcasted messages Good(i, j) from Pi

and Good(j, i) from Pj, add the edge (i, j) to E. Run Algorithm 5.5.10 and if the output
is not ? then broadcast the output and output OK. Otherwise, continue to listen to Good

messages and repeat.
4. (Verifying Star or Clique) Each party Pi:

(a) Initialize an undirected graph Gi = (Vi, Ei) with Vi = [n]. Upon receiving broadcasted
messages Good(i, j) from Pi and Good(j, i) from Pj, add the edge (i, j) to Ei.
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i. If (Dense,C) is received from the broadcast of the dealer, validate that |C| � n� t,
and that each node i 2 C has a degree at least 3t+ t/2+1 in Gi. If the conditions
hold, output OK.

ii. If (BigStar,C,D) is received from the broadcast of the dealer, Pi verifies that C ⇢
D, |C| � 2t + t/2 + 1, |D| � n � t and that for every c 2 C and d 2 D the edge
(c, d) is in Gi. If the conditions hold, then output OK.

(b) Otherwise, continue to listen to Good messages, and with each message it updates
the graph Gi and repeats the above checks.

Algorithm 5.5.10: Finding a BigStar or a Clique

• Input: An undirected graph G over [n].

1. Initialize a set C = ;.
2. For each node i that has degree higher than 3t+ t/2 + 1, add i to C.

3. If |C| � 3t+ 1 then output (Dense,C).

4. Otherwise, let C = [n]\C, i.e., the set of all nodes with degree less than 3t+ t/2+1.
For each node i 2 C:
(a) Consider the graph G[�(i)] which consists of all vertices in G that have an edge

to i (including i). If G[�(i)] consists of less than 3t+ t/2 + 1 vertices, then add
arbitrary vertices in G (say the lexicographically first one) to have a graph with
exactly 3t+ t/2 + 1 vertices.

(b) Run STAR algorithm on input (G[�(i)], n0, t/2) where n0 is the number of ver-
tices in G[�(i)] (i.e., at least 3t + t/2 + 1). If the output is (C,D), then output
(BigStar,C,D).

5. Otherwise, output ?.

Theorem 5.5.11. Let n � 4t + 1. Protocol 5.5.9, ⇧TriVer, securely computes FTriVer (Function-

ality 5.5.4) in the presence of a malicious adversary controlling at most t parties. It has a

communication complexity of O(n3 log n) bits over point-to-point channels and O(n2 log n) bits

of broadcast. Each party broadcasts at most O(n log n) bits.

To show the full simulatability, We prove the following two claims regarding the protocol:
validity and binding.

204



Claim 5.5.12 (Validity). If the dealer is honest and starts with S(x,y, z), and the inputs of the

honest parties ExternalValidity
j

are such that ExternalValidity(sharej) = 1 where sharej is defined

as in the protocol, then the protocol eventually terminates and each honest party outputs OK.

Proof. Since for each honest party it holds that ExternalValidity(sharej) = 1, and all shares of
honest parties agree with each other, we have that eventually, each honest Pj will broadcast
Good(j, `) for all honest parties ` 62 I. We show that the dealer must eventually broadcast
either Dense or BigStar messages. Consider time T in which all Good messages between pairs
of honest parties were received by the dealer. There are two cases to consider:

• The dealer broadcasted (Dense,C) or (BigStar,C,D) before time T ;

• At time T , if each honest node has degree at least 3t + t/2 + 1 then we have a total of
n � t nodes that have high degree, and thus the dealer broadcasts (Dense,C) where C

contains (at least) all honest parties.

• Otherwise, there exists an honest party j 62 I that has degree smaller than 3t+ t/2 + 1.
Since we are at time T , all the missing edges are of corrupted parties. That is, when
considering the graph G[�(j)], the vertices that are removed correspond to t/2 corrupted
parties. Thus, the graph G[�(j)] contains n0 � 3t+ t/2+1 vertices, and contains a clique
of size 3t + 1 (i.e., all honest parties). According to Claim 5.3.5, the STAR algorithm
finds a (C,D)-star with |C| � n0 � 2 · (t/2) � 2t+ t/2 + 1 and |D| � n0 � t/2 � 3t+ 1.

The dealer thus eventually broadcasts one of the messages (Dense,C) or (BigStar,C,D), and
all honest parties eventually receive this message. Moreover, since all Good messages are
broadcasted, eventually all honest parties will see the same edges as the honest dealer, and
validates the (Dense,C) or (BigStar,C,D) messages. Once the broadcasted message of the
dealer is validated by an honest Pj, it halts and output OK.

Claim 5.5.13 (Termination). If one honest parties terminate, then all honest parties eventually

terminates.

Proof. This follows immediately from the guarantees of the broadcast (aka. A-cast): If the
dealer broadcasts (Dense,C) or (BigStar,C,D) then all honest parties will eventually see this
message. Moreover, if the property holds in the graph of one honest party, then all honest
parties eventually see those edges and validate the property in their respective graphs. This
is because the graph is defined by the Good messages that were also broadcasted.

Claim 5.5.14 (Binding). When the first honest party terminates, there exists a unique trivariate

polynomial S(x,y, z) of degree t + t/2 in each one of the variables x,y, z that can be extracted
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from the views of the honest parties. Moreover, for at least 2t + 1 honest parties J ⇢ [n] \ I it

holds that ExternalValidity
j
(sharej) = 1.

Proof. Consider the first honest party that terminates, say some Pj⇤ . If Pj⇤ terminates then
the dealer must have broadcasted Dense or BigStar messages, and Pj⇤ validated the respective
property in its local graph. There are two cases to consider:

Case I: The property is (Dense,C). In that case, the graph that the honest party Pj⇤ sees
contains n � t vertices C, where each has degree at least 3t + t/2 + 1. Consider the set of
the lexicographically first t + t/2 + 1 honest parties H ✓ C \ I. Each such party inputs some
Qh(x,y),Wh(x, z) and Rh(y, z). Consider the unique trivariate polynomial S(x,y, z) that
satisfies S(x,y, h) = Qh(x,y) for every h 2 H. Such a trivariate polynomial is guaranteed to
exist by Claim 5.3.7.

We now show that all honest parties in C agree with S(x,y, z).

Claim 5.5.15. For every honest party j 2 C it holds that Rj(y, z) = S(j,y, z).

Proof. Fix some j 2 C and h 2 H. Since Pj and Ph both have bivariate polynomials with
degrees 3t+ t/2+1 (otherwise, they would never send Good), and so they have at least 3t+1

vertices in common, in which at least 2t + 1 honest parties are in their intersection. That
is, there is a set K of honest parties of cardinality at least 2t + 1 in which Good(j, k) and
Good(h, k) was broadcasted for every k 2 K. In particular, Ph and Pk verified that (among
other things):

(S(x, k, h) =) Qh(x, k) = fQh
k

(x) = fWk
h

(x) = Wk(x, h) .

Pk and Pj also exchanged shares, and verified that gWk
j

(z) = g
Rj

k
(z), that is, it holds that

Wk(j, z) = gWk
j

(z) = g
Rj

k
(z) = Rj(k, z) ,

and in particular on z = h:

S(j, k, h) = Wk(j, h) = Rj(k, h) .

Since this holds for every k 2 K, we get that two degree t + t/2 polynomials S(j,y, h) and
Rj(y, h) agree on 2t + 1 points, and therefore S(j,y, h) = Rj(y, h). Moreover, since this
holds for every h 2 H, we have that two degree-(t+ t/2) bivariate polynomials S(j,y, z) and
Rj(y, z) must agree, i.e., S(j,y, z) = Rj(y, z).
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Claim 5.5.16. For every honest party j 2 C it holds that Wj(x, z) = S(x, j, z).

Proof. As before, fix some j 2 C and h 2 H, and consider K of cardinality 2t + 1 that agree
both with Pj and Ph. For every k 2 K, Ph and Pk verified that

(S(k,y, h) =) Qh(k,y) = gQh
k

(y) = fRk
h

(y) = Rk(y, h) .

Moreover, Pj and Pk verified that

Wj(k, z) = g
Wj

k
(z) = gRk

j
(z) = Rk(j, z) .

In particular, for z = h it holds that Wj(k, h) = Rk(j, h) = S(k, j, h). Since this holds for every
k 2 K, we have that two univariate polynomials Wj(x, h) and S(x, j, h) must agree. Since this
holds for every h 2 H, we get that the two polynomials Wj(x,y) and S(x, j,y) must agree,
and so Wj(x,y) = S(x, j,y).

Claim 5.5.17. For every honest party j 2 C it holds that Qj(x,y) = S(x,y, j).

Proof. As before, Ph and Pk exchanged the shares

(S(h, k, z) =) Rh(k, z) = gRh
k

(z) = gWk
h

(z) = Wk(h, z) ,

where S(h, k, z) = Rh(k, z) follows from Claim 5.5.15. Moreover, Pk and Pj verified that

Qj(x, k) = f
Qj

k
(x) = fWk

j
(x) = Wk(x, j) ,

and in particular for x = h it holds that Qj(h, k) = Wk(h, j) = S(h, k, j). Since this holds for
every k 2 K, we get that the two univariate polynomials Qj(h,y) and S(h,y, j) agree. Since
it also holds for every h 2 H, this means that Qj(x,y) = S(x,y, j).

Case II: The property is (BigStar,C,D). In that case, the graph that the honest party P ⇤
j

sees contains a clique C of size 2t+ t/2+1. This implies that there is a set of at least t+ t/2+1

honest parties for which for every j, k 2 C, the party Pj⇤ viewed Good(j, k) and Good(k, j),
and thus the shares that Pk and Pj agree with each other. Let H be the lexicographically
first t + t/2 + 1 honest parties in C. Consider the unique trivariate polynomial S(x,y, z) that
satisfies S(x,y, h) = Qh(x,y) for every h 2 H. Such a trivariate polynomial is guaranteed to
exist by Claim 5.3.7. We now show that all honest parties in D hold shares on the polynomial
S(x, y, z).
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All honest parties in H hold shares on S(x, y, z). Clearly, for every h 2 H it holds that
Qh(x,y) = S(x,y, h). For every i, j 2 H we have that Pi and Pj verified their shares, and
thus we have that

S(x, i, j) = Qj(x, i) = f
Qj

i
(x) = fWi

j
(x) = Wi(x, j) .

Since this holds for every j 2 H, we get that that the two t + t/2 + 1 bivariate polynomials
S(x, i, z) and Wi(x, z) agree, and so for every i 2 H, S(x, i, z) = Wi(x, z).

Similarly, for every i, j 2 H we have that Pi and Pj verified that

(S(i,y, j) =) Qj(i,y) = g
Qj

i
(y) = fRi

j
(y) = Ri(y, j)

Since this holds for every j 2 H, we get that the two t + t/2 + 1 bivariate polynomials
S(i,y, z) and Ri(y, z) agree on t + t/2 + 1 univariate polynomials, and so for every i 2 H it
holds that Si(y, z) = Ri(y, z).

All honest parties in D hold shares on S(x, y, z). Similarly to above, each party in i 2 D

agrees with each party in H. Thus, for every i 2 D and h 2 H we have that

(S(x, h, i) =) Wh(x, i) = fWh
i

(x) = fQi
h
(x) = Qi(x, h) .

Since this holds for every h 2 H, we have that S(x,y, i) = Qi(x,y). Likewise,

S(x, i, h) = Qh(x, i) = fQh
i

(x) = fWi
h

(x) = Wi(x, h) .

Since this holds for every h 2 H, we get that Wi(x, z) = S(x, i, z). Finally,

(S(i,y, h) =) Qh(i,y) = gQh
i

(y) = fRi
h
(y) = Ri(y, h) ,

and since this holds for every h 2 H, we have that S(i,y, z) = Ri(y, z).

External validity. An honest party Pj does not send shares to other parties, and in particular
does not broadcast Good(j, k) for every party Pk if its external validity was not 1. In the case
of (Dense,C), we are guaranteed to have |C| � n � t � 3t + 1 and therefore the set contains
at least 2t + 1 honest parties. Since those parties broadcasted Good, we have 2t + 1 honest
parties with validated external validity predicate. Likewise, in the case of (BigStar,C,D), we
have that |D| � n � t � 3t + 1, honest parties in D validated their external validity, and
therefore we have at least 2t+1 honest parties with validated external validity predicate.
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Proof. We are now ready to show the simulation.

The case of an honest dealer. In the honest dealer case, we assume that the honest parties
input ExternalValidity

j
which on the shares of the honest parties output 1. We then have:

1. The simulator receives from the functionality the shares of the corrupted parties sharei

for every i 2 I.

2. Invoke the adversary A. Simulate A receiving headers (shares, j) for every j 2 [n].
Moreover, simulate A receiving the message (share, i, sharei) where sharei is as received
from the functionality.

3. Once A delivers the message (shares, j) for j 62 I, simulate Pj sending exchange(j, k) for
every k 62 I. Moreover, for each i 2 I, simulate Pj sending the message mj!i to Pi,
where

mj!i := (exchange, j, i, Qi(x, j), Ri(y, j), Qi(x, j), Ri(j, z), Qi(j,y),Wi(j, z), Ti(x, j)) .

4. For every message A sends in the name of Pi to some honest Pj a message mi!j, check
that mi!j was sent correctly according to the protocol given sharei. Once A delivers the
message to Pj and the message is correct, simulate Pj broadcasting Good(j, i).

5. Once A delivers the message exchange(j, k) from Pj to Pk (and it already delivered the
message share(k) from the dealer to Pk), then simulate Pk broadcasting Good(k, j).

6. Simulate the honest dealer as in the protocol, running Algorithm 5.5.10. Since all hon-
est parties eventually broadcast Good(k, `) for every pair k, ` 62 I, eventually (as shown
in Claim 5.5.12) the dealer will ask to broadcast either (Dense,C) or (BigStar,C,D).
Simulate the dealer broadcasting this message.

7. Simulate each honest party Pj verifying the validity of the broadcasted messages by
the dealer. When the simulated Pj terminates (this occurs when the adversary delivers
some message to Pj, either a message broadcasted by the dealer or some other party),
then the simulator allows the deliver of the output of the functionality (which is OK) to
the honest party Pj in the ideal world.

We now show that the view of the environment Z is the same in both executions. From
inspection, it is easy to see that the view of the adversary A is the same in both executions. In
particular, this is due to the fact that the protocol and the simulation are deterministic, and
that the messages of the honest parties to the corrupted parties can be simulated from the
shares of the corrupted parties. As follows from Claim 5.5.12, the output of the honest parties
in the case of an honest dealer is always OK (assuming that the external validity predicates

209



that the honest parties input to the functionality give 1 on the shares provided by the dealer).
Therefore, the output of the honest parties in the real world is always OK, the same as in the
ideal world. The scheduling in which parties receive outputs is determined by the adversary
(i.e., the controlling of the router), and since the view of the adversary is exactly the same in
both executions, its control over the router is exactly the same.

The case of a corrupted dealer.

1. The simulator invokes the adversary A.

2. The simulator receives from the functionality the external validity predicates, i.e.,
ExternalValidity

j
, for every j 62 I.

3. The simulator simulates the honest parties in an execution of the protocol where the
input of each Pj is ExternalValidity

j
. The simulator also simulates the router of the real

world. Note that the simulation might not terminate.

4. When the first honest party Pj⇤ terminates, all honest parties will eventually terminate,
see Claim 5.5.14. The Claim also shows how to extract a trivariate polynomial S(x,y, z)
from the views of the honest parties. The simulator sends S to the trusted party. For this
particular S, the external validity property holds for at least 2t+1 honest parties. More-
over, S is of degree at most t + t/2 in all three variables x,y, z. Thus, the functionality
will accept this polynomial, and it would send OK to all parties.

5. The simulator continues to simulate the protocol with the adversary. Whenever a sim-
ulated honest party Pj obtains an output in the simulated protocol, the simulator S

delivers to the router to allow sending the dummy party Pj in the ideal its output, OK.

6. Eventually, all honest parties will receive output in the simulated execution. The simu-
lator then terminates.

The view of the adversary is exactly the same in the real and ideal executions, as the sim-
ulated honest parties are deterministic and use the exact same inputs as in the real world.
If some honest party terminates, then as follows from Claim 5.5.14 all honest parties would
eventually terminate and with their shares lie on the same polynomial S(x,y, z). The envi-
ronment Z sees the outputs at the same activation in the real and ideal: Upon the activation
in which the first honest party Pj⇤ terminates, the simulator extracts the trivariate polynomial
and sends it to the trusted party, and then deliver the output to Pj⇤ . Since the view of the ad-
versary is exactly the same, whenever a real honest party Pk receives an output, a simulated
Pk receives an output in the simulation, and then the simulator extracts the router to deliver
the output of the functionality to Pk in the ideal world.
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5.6 Rate-1 Asynchronous Weak-Binding Secret Sharing
Protocol 5.5.9 provides a secret sharing of a trivariate polynomial with O(1) overhead. Along
the way, it also allows some external verification (ExternalValidity) and some computation on
the trivariate shares. This section describes our weak-binding secret-sharing protocol with
a shunning reconstruction. We remark again that we do not use this protocol in our work.
Nevertheless, we provide it as an independent primitive for completeness and as it might be
useful as an independent primitive.

Definition 5.6.1 (Asynchronous Weak-binding Secret Sharing with Shunning Reconstruc-
tion). Let S be a finite domain, |S| � 2, and let [n] be a set of parties that includes a distinguished

dealer. An asynchronous weak-binding secret sharing with shunning reconstruction consists of

two phases, a sharing phase and a reconstruction phase, with the following syntax.

• Sharing: At the beginning, the dealer holds a secret s 2 S and each party including the

dealer holds an independent random input ri. The parties may communicate in several

time in sequence. Each time, each party can privately send messages to the other parties

and it can also broadcast a message. Each message sent or broadcasted by Pi is determined

by the view of Pi, consists of its input (if any), its random input and messages received

from other parties in previous rounds.

• Reconstruction: At the beginning of the reconstruction, the parties are holding their view

from the sharing phase and in addition the dealer maintains a list L which is initialized to

;. The reconstruction phase may involve several interactions, and at each time the parties

send messages based on their view. At the end of the reconstruction, each party either

outputs a value or never terminates. When the parties do not terminate, the dealer will

have at least t/2 + 1 parties in its list L.

We should have the following properties for any adversary A = (As, Ar) corrupting at most t

parties:

• Termination: If the dealer is honest then each honest party eventually terminates the

sharing phase. If some honest party terminates the sharing phase, then every honest party

must terminate it eventually. For the reconstruction phase one of these must hold: (a) If

some honest party terminates the reconstruction phase, then all other honest parties will

eventually terminate or (b) the dealer will have at least t/2 + 1 parties in L.
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• Privacy: If D is honest then the adversary’s view during the sharing phase reveals almost

no information on s. Formally, let Ds is the view A in the sharing phase on secret s. Then,

for any s 6= s0, the random variables Ds and Ds0 are identical.

• Weak-binding: At the end of the sharing phase there is a value s⇤ 2 S such that at the

end of the reconstruction phase, if the parties terminate, then the output will be s⇤. If the

dealer is honest, then s⇤ = s.

Protocol 5.6.2: Asynchronous Weak-binding Secret Sharing – ⇧AWBSS

Input: The input of the dealer is some trivariate polynomial S(x,y, z). Each other party has
no input.
Sharing phase:
1. Each party Pi and the dealer: Run Protocol 5.5.9 with ExternalValidity

i
(·) as the predicate

that always returns 1, and each Lj(·) = ? for every sharej.
2. If the protocol terminates with output OK, then:

(a) If (Dense,C) was received as the broadcasted message from the dealer: if i 2 C then
store X = C and sharei. (excluding the last element – which is ?.)

(b) If (BigStar,C,D) was received as the broadcasted message from the dealer: if i 2 D

then store X = D and sharei. (excluding the last element.)

(c) Otherwise, store X = C if Dense and X = D if BigStar.

Shunning Reconstruction phase:
1. (Broadcasting the Polynomial) The dealer:

(a) Initialise a shunning list Shun = X.

(b) Broadcast a trivariate polynomial S(x,y, z).

2. (Verifying the Dealer’s Polynomial) Each party Pi:

(a) Upon receiving a polynomial S(x,y, z) from the dealer, verify that the polynomial
is of degree at most t + t/2 in each variable. If not, then discard the dealer and
terminate.

(b) If i 2 X, then verify that S(x,y, i) = Qi(x,y), S(x, i, z) = Wi(x, z) and S(i,y, z) =

Ri(y, z) holds. If all the conditions hold, then Pi broadcasts OK.

3. (Output)

(a) Upon receiving the OK from the broadcast of Pi, the dealer updates Shun = Shun\{i}.
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(b) Upon receiving OK from at least 2t+ t/2 + 1 parties in X, party Pi outputs S(x,y, z)
and terminates. Otherwise, it continues to wait for OK messages.

We use the term “shunning” for reconstruction to indicate that the reconstruction phase
offers the following guarantees: either the reconstruction succeeds, or the dealer can identify
at least t/2 + 1 parties thereafter.

Essentially, in an honest dealer case, termination of the sharing phase is guaranteed. How-
ever, since the set X does not necessarily contain 2t+t/2+1 honest parties, for reconstruction,
we might need the adversary’s help. This is why the reconstruction is either guaranteed, or
the dealer shuns at least t/2 + 1 parties. In the case of a corrupted dealer, once the shar-
ing terminates, reconstruction must be to the same polynomial (or discard the dealer, or not
terminate, but cannot be ended successfully with a different polynomial). We formalize and
prove the properties of this protocol below.

Claim 5.6.3 (Sharing Termination). If the dealer is honest, then each honest party terminates

the sharing phase. If some honest party terminates the sharing phase then every honest party

must terminate it eventually.

Proof. Since for each honest party Pj, we have ExternalValidity
j
(·) = 1, for an honest dealer,

by Claim 5.5.12 we have that Protocol 5.5.9 terminates with the output OK. Hence, sharing
phase always completes successfully. The latter follows immediately from Claim 5.5.13.

Claim 5.6.4 (Reconstruction Termination). Either all the honest parties terminate the recon-

struction, or the dealer shuns at least t/2 + 1 parties.

Proof. We have the following two cases to consider:

1. There exists some honest party Pj⇤ which terminates: This implies that Pj⇤ received
at least 2t+t/2+1 broadcasts of OK messages from the parties in set X identified during
the sharing phase. These messages will be eventually received by all the honest parties
(including the dealer), ensuring that all the honest parties terminate.

2. No honest party has terminated: This implies that less than 2t+ t/2 + 1 OK messages
are received by the honest parties, which includes the dealer. In that case, the dealer’s
shunning set consists of all the parties from X from whom the dealer has not received
a broadcast of OK. Since |X| � n� t, we have that |Shun| � t/2 + 1.

213



The following claim follows from Theorem 5.5.11:

Claim 5.6.5 (Privacy). If the dealer is honest, then the adversary’s view during the sharing phase

reveals no information on the dealer’s input.

Claim 5.6.6 (Weak Binding). At the termination of the sharing phase, there is a unique trivari-

ate polynomial S0(x,y, z) with degree 3t/2 that might be reconstructed in the reconstruction

phase. Moreover, if the dealer is honest then S0(x,y, z) = S(x,y, z) where S(x,y, z) is the input

of the dealer.

Proof. If the sharing phase terminates for the honest parties, it implies that Protocol 5.5.9
terminates with OK and all the parties hold a set X of size at least n � t. By Claim 5.5.14,
we have that all the honest parties in X hold shares on some unique trivariate polynomial
S0(x,y, z).

Further, if the reconstruction terminates for some honest party, it implies that the dealer
broadcasted a trivariate polynomial, say S⇤, with degree 3t/2 in each variable. Moreover,
at least 2t + t/2 + 1 parties from X broadcasted OK after verifying the consistency of their
shares with the dealer’s broadcasted trivariate polynomial. Of these, at least t+t/2+1 parties
are guaranteed to be honest. We have that the two polynomials S⇤ and S0 agree in at least
(t+ t/2+1)3 points, and hence S⇤ = S0. Moreover, an honest dealer always broadcasts S⇤ = S

and hence parties output the dealer’s polynomial.

5.7 Verifiable Triple Sharing
In this section, we build upon packed VSS (Functionality 5.4.1) and Functionality 5.5.1 to
show how a dealer can verifiably share O(n2) triples simultaneously.

The functionality for verifiable triple sharing appears below, followed by the protocol. The
Shamir-shares of party Pj for the (t/2+1)2 multiplication triples are as follows, following the
invocation of the functionality or the protocol: (Au(��, j), Bu(��, j), Cu(��, j)) for every
u, � 2 {0, . . . , t/2}.

Functionality 5.7.1: Verifiable Triple Secret Sharing – FPVTS

The functionality is parameterized by a set of corrupted parties I ✓ [n].

1. The dealer sends to the functionality 3 sets of t/2+1 polynomials {Au(x,y)}, {Bu(x,y)}
and {Cu(x,y)} for each u 2 {0, . . . , t/2}.

2. The functionality verifies that each polynomial is of degree at most t+ t/2 in x and t in
y. If not, it does not terminate.
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3. If the dealer is honest, then for each u 2 {0, . . . , t/2}, give adversary the shares
(Au(x, i), Au(i,y)), (Bu(x, i), Bu(i,y)) and (Cu(x, i), Cu(i,y)) for every i 2 I.

4. The functionality verifies that for every u, � 2 {0, . . . , t/2} it holds that

Au(��, 0) · Bu(��, 0) = Cu(��, 0) .

If yes, then it sends (Au(x, j), Au(j,y)), (Bu(x, j), Bu(j,y)) and (Cu(x, j), Cu(j,y)) for
every u 2 {0, . . . , t/2} to each party Pj and halts. Otherwise, the functionality never
terminates.

Protocol 5.7.2: Verifiable Triple Secret Sharing Protocol – ⇧PVTS

• Input: The dealer holds the polynomials Au(x,y), Bu(x,y) and Cu(x,y) of degree
t + t/2 in x and t in y for every u 2 {0, . . . , t/2} such that Au(��, 0) · Bu(��, 0) =

Cu(��, 0) holds for every � 2 {0, . . . , t/2}.

• The protocol:

1. The dealer invokes Functionality 5.4.1 with its polynomials Au(x,y), Bu(x,y) and
Cu(x,y) for every u 2 {0, . . . , t/2} in a batched manner.

2. The dealer invokes Functionality 5.5.1 with the input Au(��,y), Bu(��,y) and
Cu(��,y) for every u, � 2 {0, . . . , t/2}.

3. Upon receiving an output (Au(x, j), Au(j,y)), (Bu(x, j), Bu(j,y)) and
(Cu(x, j), Cu(j,y)) from the functionality, each Pj invokes the Functionality 5.5.1
with the inputs (Au(��, j), Bu(��, j), Cu(��, j)) for every u, � 2 {0, . . . , t/2}.

4. Upon receiving an output OK from the Functionality 5.5.1, Pj out-
puts (Au(x, j), Au(j,y)), (Bu(x, j), Bu(j,y)) and (Cu(x, j), Cu(j,y)), where
(Au(��, j), Bu(��, j), Cu(��, j)) for every u, � 2 {0, . . . , t/2} defines Pj ’s degree-t
Shamir-share of the (t/2 + 1)2 multiplication triples.

Theorem 5.7.3. Let n � 4t + 1. Protocol 5.7.2, ⇧PVTS, securely computes FPVTS (Function-

ality 5.7.1) in the presence of a malicious adversary controlling at most t parties. It has a

communication complexity of O(n3 log n) bits over point-to-point channels and O(n2 log n) bits

of broadcast for sharing O(n2) triples simultaneously. Each party broadcasts at most O(n log n)

bits.

215



Proof. We show the case of an honest dealer and of a corrupted dealer separately.

Case I – the case of an honest dealer. The simulator S is as follows:

1. Upon activation, invoke the adversary A.

2. The simulator receives from the functionality the shares (fA
u

i
(x), gA

u

i
(y)),

(fB
u

i
(x), gB

u

i
(y)) and (fC

u

i
(x), gC

u

i
(y)) for every u 2 {0, . . . , t/2} and every i 2 I.

3. Simulate the invocation of the inner Functionality 5.4.1 for the adversary: for ev-
ery i 2 I, send to the adversary the shares (fA

u

i
(x), gA

u

i
(y)), (fB

u

i
(x), gB

u

i
(y)) and

(fC
u

i
(x), gC

u

i
(y)) for every u 2 {0, . . . , t/2}.

4. Simulate the invocation of the inner Functionality 5.5.1 for the adversary: for every
i 2 I, give the adversary (fA

u

i
(��), fB

u

i
(��), fC

u

i
(��)) for every u, � 2 {0, . . . , t/2}.

5. Simulate the Functionality 5.5.1 returning OK. When the adversary delivers OK to
a party Pj in the simulated protocol, the simulator delivers the output of Functional-
ity 5.7.1 to Pj in the ideal world.

Clearly, since the protocol and the simulation are deterministic, the view of the adversary
A is identical in both the real and ideal executions. It thus remains to show that the output
of honest parties is the same in both the executions.

In the ideal world, an honest dealer always invokes the functionality with valid polynomi-
als. Hence, the functionality delivers the shares on the dealer’s polynomials to each honest
party. In the real world, an honest dealer’s polynomials always satisfy the conditions of Func-
tionality 5.4.1 and from its guarantees (Claim 5.4.5) we have that each honest party receives
its share. Moreover, the dealer’s polynomials also satisfy the conditions of Functionality 5.5.1.
Hence the functionality returns OK to all the honest parties, which in turn output their re-
spective shares on the dealer’s polynomials. Hence, the output of honest parties is identical in
the real and ideal executions. Moreover, although the scheduling of message delivery is deter-
mined by the adversary A, its view is identical in both the executions. Hence, the scheduling
is also identical.

Case II – the case of a corrupt dealer. The simulator S is as follows:

1. The simulator invokes the adversary A.

2. Since the protocol is deterministic and the honest parties do not have any input to
the protocol, the simulator can simulate all honest parties in an execution with A.
That is, the simulator knows all the messages A sends to the honest parties and hence
can also simulate the communication among honest parties. This includes simulating
Functionalities 5.4.1, 5.5.1. Note that the simulation may not terminate.
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3. If there exists some honest party Pj⇤ that terminates, then it implies that Pj⇤ terminates
in the simulation of Functionality 5.4.1. By Claim 5.4.6 we have that all the honest
parties eventually terminate.

4. The simulator interpolates the dealer’s polynomials from the shares of the lexicograph-
ically first t + 1 simulated honest parties. It is guaranteed that the polynomials have
degree t+ t/2 in x and t in y.

5. Moreover, since Pj⇤ terminated in the protocol, it also implies that the simulation of
Functionality 5.5.1 terminated with the output OK.

6. The simulator sends to the functionality the interpolated polynomials ensuring that all
the honest parties will eventually receive the output. When the adversary delivers OK

to a party Pj in the simulated protocol, the simulator delivers the output of Functional-
ity 5.7.1 to Pj in the ideal world.

It is easy to see that the since the honest parties do not have inputs and the simulator
emulates the honest parties as in the real world, the view of the adversary in the ideal and real
execution is the same. Moreover, if an honest party Pj⇤ terminates in the real execution, then
the same holds true in the simulated execution. The simulator extracts the input polynomials
of the dealer from the view of these simulated honest parties, and sends it to the functionality
ensuring that the output of honest parties is identical in the ideal model.

5.7.1 Batching for Linear overhead per triple

We note that the overall communication of one instance of verifiable triple sharing protocol is
O(n3 log n) over point-to-point channels and O(n2 log n) using broadcast. Using the broadcast
of [38], the total cost turns out to be O(n4 log n) for sharing O(n2) triples. We make the cost
linear per triple by simply batching n instances of the triple sharing protocol under the same
dealer. Since all the instances have the same dealer, the broadcasts communication can be
common for all. For instance, Pi can send a single broadcast of Good(i, j) after checking
consistency with Pj in all the instances of AVSS and triple sharing. Similarly, the dealer can
run the Star algorithm just once for all the AVSSs and broadcast one common Star. Likewise,
Algorithm 5.5.10 also is run for all the trivariate sharings together and the output is broadcast
once for all.

This batching allows us to keep the broadcast communication the same as before i.e
O(n4 log n). The point-to-point communication increases by a factor of n and now becomes
O(n4 log n). However, we are now able to share n3 triplets, and thus achieve a linear over-
head.
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5.8 Linear Perfectly Secure AMPC
In this section, we give the details of the building blocks required for the complete MPC
protocol such as reconstruction of degree-t polynomials, and Beaver triple generation. We
conclude with the complete MPC protocol which relies on these building blocks, the packed
VSS (Section 5.4) and the verifiable triple secret sharing (Section 5.7) protocol.

5.8.1 Secret Reconstruction

At the termination of our packed VSS, the secrets are available in Shamir-shared format.
We discuss how such sharing can be reconstructed efficiently. We use two standard ways of
reconstruction:

Private reconstruction. Here, we describe the private reconstruction of a degree-t shared
secret to a specified party, say P ⇤. For this, all the parties disclose their shares to P ⇤, who tries
to recover the secret as follows. P ⇤ waits for 2t+1 shares, all of which lie on the same degree-
t polynomial. This requires P ⇤ to apply the Reed Solomon (RS) error correction repeatedly
in an “online” manner, also known as online error correction (OEC) [40]. If P ⇤ obtains such
a polynomial, it is guaranteed to be the correct degree-t polynomial since it agrees with the
shares of at least t+ 1 honest parties. The protocol ⇧Rec appears below.

Protocol 5.8.1: Private Reconstruction Protocol – ⇧Rec

Common input: The description of a field F, n non-zero distinct elements 1, . . . , n, identity
of a party P ⇤.
Input: Parties hold the univariate degree-t sharing hvi.

1. Each Pi sends its share hvii to P ⇤ and terminates.

2. For r = 0, . . . , t:

(a) Upon receiving the first 2t+ 1+ r values, P ⇤ looks for a codeword of a polynomial
of degree-t with a distance of at most r from the values it received. If there is no
such unique codeword, P ⇤ proceeds to the next iteration. Otherwise, it sets pr(x)

to be the unique RS reconstruction.

(b) If pr(i) = hvii holds for at least 2t+1 parties whose shares were considered during
RS reconstruction, then P ⇤ outputs pr(0) and terminates. Otherwise, it proceeds
to the next iteration.
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Lemma 5.8.2. Protocol 5.8.1, ⇧Rec, has a communication complexity of O(n log n) bits over

point-to-point channels and no broadcast for privately reconstructing a value (i.e., O(log n) bits)

in constant runtime.

Batched public reconstruction. Näıvely, reconstructing t+ 1 secrets that are Shamir-shared
requires (t + 1)n private reconstructions (via ⇧Rec), resulting in O(n3 log n) communication1.
On the other hand the batch reconstruction protocol, first presented in [57], allows parties to
robustly reconstruct t + 1 Shamir-shared values at a cost of communicating O(n2 log n) bits,
ensuring an amortized cost of O(n log n) bits per reconstruction.

In particular, given hv0i, . . . , hvti, parties translate them to n sharings non-interactively,
say hv01i, . . . , hv0ni, using a linear error correcting code, such as Reed-Solomon code which
tolerates up to t errors. To be specific, (v01, . . . , v

0
n
) can be thought of as n points on a t-

degree polynomial p(x) =
P

t

i=0 vix
i. Following this, of the n sharings, one sharing hv0

i
i is

reconstructed towards each party Pi via private reconstruction protocol ⇧Rec who obtains v0
i
.

At this stage, the parties essentially hold hv0i. Therefore, n instances of private reconstruction
enables every party to recover p(x), the polynomial used to share v0, whose coefficients are
the desired output. This requires a total communication of O(n2 log n) bits. The protocol
⇧bPubRec appears below for completeness.

Protocol 5.8.3: Batched Public Reconstruction Protocol – ⇧bPubRec

Common input: The description of a field F, n non-zero distinct elements 1, . . . , n.
Input: Parties hold the univariate degree-t sharings hv0i, . . . , hvti.

1. Let p(x) = v0 + v1x+ v2x2 + . . .+ vtxt.

2. For each Pi, parties locally compute hv0
i
i = hp(i)i = hv0i+ hv1i · i+ hv2i · i2+ . . .+ hvti · it.

3. For each party Pi, parties invoke ⇧Rec with hv0
i
i as input to enable Pi to privately recon-

struct v0
i
= p(i). Note that parties now hold hp(0)i.

4. For each party Pi, parties invoke ⇧Rec with hp(0)i as input to enable Pi to privately recon-
struct the polynomial p(x). Upon reconstructing, each Pi outputs the t + 1 coefficients
v0, v1, . . . , vt of p(x).

Lemma 5.8.4. Protocol 5.8.3, ⇧bPubRec, has a communication complexity of O(n2 log n) bits over

point-to-point channels and no broadcast for publicly reconstructing O(n) values (i.e., O(n log n)

bits) simultaneously and has constant runtime.

1Alternatively, (t + 1)n elements of broadcasts. With each party broadcasting (t + 1) elements, this results
in a cost of O(n4 log n) bits of communication.
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5.8.2 The complete MPC protocol

We now describe our MPC protocol using the packed VSS (Section 5.4), the verifiable triple
sharing and the building blocks which are taken from [50]. Our MPC protocol relies on
Beaver’s circuit randomization trick [23] and has two phases: (i) Preparing the Beaver triples
and input sharing, and (ii) Evaluation using the batched Beaver multiplication.

5.8.2.1 Preparing the Beaver Triples and Input Sharing

This phase is further divided into three tasks. First, using the verifiable triple sharing protocol,
each party acting as a dealer is made to Shamir-share the required number of triples (a, b, c)

such that c = ab holds. Each party also uses the packed VSS described in Section 5.4 to share
its inputs. Note however that due to the asynchronous nature of the network, parties cannot
afford to wait for the triple sharing and input sharing instances of all the parties to terminate.
Doing so might result in an endless wait since the corrupt parties might remain silent and not
initiate an instance of sharing. Given this, the parties are required to agree on a common set,
say Core of (at least) n� t dealers whose triple sharing as well as input sharing instances will
eventually terminate for all the parties. This forms the second task, wherein parties execute
an instance of ACS [40] (Functionality 5.3.1) to agree on a set of parties whose shared triples
and inputs will be considered for subsequent computation. For the parties outside this set, a
default sharing of 0 is considered as the input. Finally, once the common set Core is decided
upon and the triple sharing instances of all the dealers in Core terminate, parties execute the
triple extraction protocol which uses the triples shared by these parties and gives as output
random triples, not known to any party.

Verifiable Triple Sharing and Input Sharing. In this phase, each party shares verified mul-
tiplication triples, which will be used in the subsequent phases for extracting random triples
unknown to any party. The exact number of triples to be shared by each party depends on
the size of the circuit to be computed. We provide the detailed analysis of this in the proof
of Theorem 5.8.11. Towards that end, each party invokes the triple sharing functionality
(Functionality 5.7.1) in parallel to share the required number of triples. Each party invokes
the Functionality 5.4.1 in parallel to share its inputs. However, to ensure termination while
accounting for the asynchronous network, parties cannot afford to wait for the triple sharing
and input sharing instances of all the parties to terminate. Moreover, waiting for at least n� t

parties’ instances to terminate before proceeding to triple extraction does not offer a solution.
Honest parties might terminate instances in different sequence leading to inconsistency in the
subsequent phase. This issue is tackled by the second phase described below.
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Agreement on a Core Set (ACS). Here, parties execute an instance of ACS [40] (Function-
ality 5.3.1) to agree on a common set of at least n� t parties whose triple sharing and input
sharing instances are guaranteed to terminate eventually for all the parties. Having agreed
on the set, parties proceed to the final task which consumes the triples shared by each party
in this set for extracting random triples unknown to any party.

Triple Extraction. Our last component is a triple extraction protocol that consumes one
(verified) multiplication triple, say (haii, hbii, hcii), shared by each party Pi 2 Core in the prior
stage and extracts h + 1� t random triples not known to any party, where h = b |Core|�12 c. For
simplicity, let m = |Core| and without loss of generality, we assume Core = {P1, . . . , Pm}. The
protocol incurs a cost of O(n2) point to point communication and at a high level, proceeds
as follows. First, the parties “transform” the m random shared triples (haii, hbii, hcii) for
each i 2 [m] into m correlated triples (hxii, hyii, hzii) for every i 2 [m] such that the values
{xi, yi, zi}i2[m] lie on the polynomials X(·), Y (·) and Z(·) of degree h, h and 2h respectively
where X(·) · Y (·) = Z(·). Specifically, for each i 2 [m], it holds that X(i) = xi, Y (i) = yi

and Z(i) = zi where 1, . . . ,m are publicly known distinct elements from F. Furthermore, the
transformation ensures that the adversary knows {xi, yi, zi} only if Pi is corrupt. This implies
that the adversary may know (at most) t points on each of the polynomials X(·), Y (·) and
Z(·) of degree h, h and 2h respectively, thus guaranteeing a degree of freedom of h+ 1� t in
X(·), Y (·) (and thus Z(·)). Parties thus output the shared evaluation of these polynomials at
h+ 1� t publicly known points �1, . . . , �h+1�t as the extracted shared multiplication triples.

The transformation itself works as follows. The parties simply set xi = ai, yi = bi, zi = ci

for i 2 {1, . . . , h + 1}. Next, hxii and hyii for every i 2 {h + 2, . . . ,m} can be computed
non-interactively by taking linear combination of {xi, yi}i2[h+1]. Following this, hzii for every
i 2 {h + 2, . . . ,m} is computed using Beaver’s trick where the inputs are hxii and hyii and
the triple (haii, hbii, hcii). Clearly, if Pi is corrupt then xi, yi, zi is known to the adversary
as claimed. To conclude, we note that triple extraction reduces to running a batch of O(h)
Beaver multiplications which requires O((nh + n2) log n) bits communication using ⇧bPubRec.
The formal description appears in Protocol 5.8.5.

Protocol 5.8.5: Triple Extraction – ⇧tripleExt

Common input: The description of a field F, a set Core ✓ P such that m = |Core|, m = 2h+1

non-zero distinct elements 1, . . . ,m and h + 1 � t non-zero distinct elements �1, . . . , �h+1�t.
Without loss of generality, assume Core = {P1, . . . , Pm}.
Input: Parties hold the degree-t shared triples (haii, hbii, hcii) for every i 2 [m] such that
(ai, bi, ci) is known to party Pi.
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1. For each i 2 [h+ 1], parties locally set hxii = haii, hyii = hbii and hzii = hcii.
2. Let X(·) and Y (·) be the degree-h polynomials defined by the points {xi}i2[h+1] and

{yi}i2[h+1] respectively such that X(i) = xi and Y (i) = yi for all i 2 [h+ 1].

3. For each i 2 {h+ 2, . . . ,m}, parties locally compute hxii = hX(i)i and hyii = hY (i)i.
4. Parties invoke ⇧bBeaver with {hxii, hyii, haii, hbii, hcii}i2{h+2,...,m} and obtain

{hzii}i2{h+2,...,m} where zi = xiyi for every i 2 {h+ 2, . . . ,m}.

5. Let Z(·) be the degree-2h polynomial defined by the points {zi}i2[m] such that Z(i) = zi

for all i 2 [m].

6. Parties locally compute haii = hX(�i)i, hbii = hY (�i)i and hcii = hZ(�i)i for every
i 2 [h+ 1� t].

Lemma 5.8.6. Protocol 5.8.5, ⇧tripleExt, has a communication complexity of O((nh + n2) log n)

bits over point-to-point channels and no broadcast for sharing h + 1 � t random multiplication

triples in constant runtime.

5.8.2.2 Batched Beaver Multiplication

This corresponds to the second phase of our MPC protocol, which uses the degree-t shared
multiplication triples computed in the prior phase to evaluate the multiplication gates in
the circuit via Beaver multiplication in a batched manner. This protocol relies on the well
known technique of Beaver’s circuit randomization [23], which, given a pre-computed t-
shared random and private multiplication triple (hai, hbi, hci), reduces the computation of hxyi
from hxi and hyi to two public reconstructions. Towards this, parties first locally compute
hdi = hxi � hai and hei = hyi � hbi, followed by public reconstruction of d and e. Since
z = xy = ((x � a) + a)((y � b) + b) = (d + a)(e + b) = de + db + ea + ab, parties can locally
compute hzi = hxyi using the shared multiplication triple and the publicly reconstructed
values d and e. Specifically, parties locally compute hxyi = de+ dhbi+ ehai+ hci.

To leverage the efficiency benefits offered by the batch public reconstruction protocol,
the protocol handles a batch of l multiplications together, each requiring 2 reconstructions.
The 2l public reconstructions are thus batched together in groups of t + 1 to invoke ⇧bPubRec

and ensure an amortized communication complexity of O(n log n) bits per reconstruction.
The resultant communication complexity of ⇧bBeaver for handling l multiplications is O((n2 +

nl) log n). The formal description appears in Protocol 5.8.7.

Protocol 5.8.7: Batched Beaver Multiplication – ⇧bBeaver
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Input: Parties hold l degree-t shared triples (haii, hbii, hcii) for every i 2 [l] and l degree-t
shared pairs of values (hxii, hyii) to be multiplied.

1. For each i 2 [l], parties locally compute hdii = hxii � haii and heii = hyii � hbii.
2. Let 2l = k(t+1). Parties execute k parallel instances of ⇧bPubRec and publicly reconstruct

{di, ei} for every i 2 [l].

3. For each i 2 [l], parties locally compute hzii = hxiyii = diei + dihbii+ eihaii+ hcii.

Lemma 5.8.8. Protocol 5.8.7, ⇧bBeaver, has a communication complexity of O((ln + n2) log n)

bits over point-to-point channels and no broadcast for the multiplication of l pairs of shared

values and has constant runtime.

5.8.3 The MPC Protocol

We first describe the MPC functionality, followed by the complete protocol using the building
blocks described above. We subsequently provide the proof of security and the communica-
tion complexity analysis of the protocol.

Functionality 5.8.9: AMPC – FAMPC

The functionality is parameterized by a set of corrupted parties I ✓ [n]. Initialize the sets
S,H, I 0 = �. Initialize xi = 0 for every i 2 I.
Input: Each Pi holds input xi 2 F [ {?}.
Common Input: An n-party function f(x1, . . . , xn).

1. Upon receiving (Input, j, xj) from an honest party Pj, if j 62 H then add j to S.

2. Receive from the adversary, the sets H ⇢ [n] \ I and I 0 ✓ I such that |H|  |I 0|  t. Also
receive a set of inputs {(Input, i, xi)}i2I0 .

3. If |S| < n � t, then for each Pj with j 2 H, the functionality sets xj = 0 and updates
S = S \H.

4. If |S [ I 0| � n� t, then compute (y1, . . . , yn) = f(x1, . . . , xn) and send yi to Pi for every
i 2 [n] and terminate.

Protocol 5.8.10: AMPC – ⇧AMPC
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Common input: The description of a circuit, the field F, n non-zero distinct elements 1, . . . , n
and a parameter h where n� t = 2h+ 1. Let m = d C

h+1�te.
Input: Parties hold their inputs (belonging to F [ {?}) to the circuit.
(Beaver triple generation and Input sharing:)

1. (Beaver Triple generation with a dealer) Each Pi chooses m random multiplication
triples and executes d m

(t/2+1)2 e instances of Protocol 5.7.2 (Section 5.7) in a batched
manner each with (t/2 + 1)2 triples.

2. (Input sharing) Each party Pi holding ki inputs to the circuit executes the VSS protocol
(Functionality 5.4.1) in a batched manner, packing d ki

t/2+1e inputs in one instance.

3. (ACS Execution) Parties invoke ACS protocol (Functionality 5.3.1) to agree on a set
Core of at least n � t parties whose instances of triple sharing and input sharing will
terminate eventually all the honest parties. Let (haj

i
i, hbj

i
i, hcj

i
i) for j 2 [m] denote the

triples shared by Pi 2 Core. The input sharing for the parties outside Core is take as
default sharing of 0.

4. (Beaver Triple Extraction) Parties execute m instances of the triple extraction pro-
tocol, ⇧tripleExt (Protocol 5.8.5), with Core as the common input and additionally
(haj

i
i, hbj

i
i, hcj

i
i) for every Pi 2 Core as the input for the jth instance. Let (haii, hbii, hcii)

for i 2 [C] denote the random multiplication triples generated.

(Circuit computation:)

1. (Linear Gates) Parties locally apply the linear operation on their respective shares of
the inputs.

2. (Multiplication Gates) Let (haii, hbii, hcii) be the multiplication triple associated with
the ith multiplication gate with shared inputs (hxii, hyii). Parties invoke the batched
Beaver protocol, ⇧bBeaver (Protocol 5.8.7), with {hxii, hyii, haii, hbii, hcii} for all gates i

at the same layer of the circuit and obtain the corresponding hzii as the output sharing
for every gate i.

3. (Output) For each output gate j with the associated sharing hvji, parties execute private
reconstruction protocol, ⇧Rec (Protocol 5.8.1), towards every party Pi who is supposed
to receive the output vj.

Theorem 5.8.11. Let n � 4t + 1. Protocol 5.8.10 securely computes Functionality 5.8.9 in the

Functionality (5.4.1,5.7.1, 5.3.1)-hybrid in the presence of a malicious adversary controlling at
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most t parties. It has a communication complexity of O((Cn+Dn2+n5) log n) bits over point-to-

point channels and O(n3 log n) bits of broadcast for evaluating a circuit with C gates and depth

D. Each party broadcasts at most O(n2 log n) bits.

Proof. The circuit evaluation requires C random shared multiplication triples. We analyze
the cost of the two phases of the MPC protocol separately.

Beaver triple generation and Input sharing. Note that one instance of the triple extraction
protocol (Protocol 5.8.5) extracts h+1� t random triples simultaneously, where h = d |Core|�12 .
Given that Core is of size at least n � t, we have that h + 1 � t = O(n). Hence, we require
O(C/n) instances of the triple extraction, which incurs a cost of O((Cn + n2) log n) bits of
communication. Further, each instance of the triple extraction protocol consumes one verified
triple shared by each party. Hence, each party is required to share O(C/n) multiplication
triples. Since our verifiable triple sharing protocol packs O(n2) triples in one instance, it
requires each party to execute O(C/n3) instances of the protocol in a batched manner, which
results in a cost of O((C + n3) log n) bits over point-to-point channels and O(n2 log n) bits of
broadcast per dealer. That is, the total cost incurred is O((Cn + n5) log n) using the protocol
of [37] to instantiate broadcast. Moreover, the ACS protocol has a cost of O(n5 log n) (as
discussed in Section 5.2.3), resulting in a communication complexity of O((Cn+n5) log n) for
this phase.

Circuit evaluation. Here, parties evaluate batches of multiplication gates at the same level
in the circuit by invoking the batched Beaver multiplication protocol (Protocol 5.8.7). Given
Ci is the number of gates per level of the circuit, this stage incurs a cost of O(Ci · n log n +

n2 log n) bits communication over point-to-point channels. Thus we have that this phase
requires a total of

P
D

i=1 O(Ci ·n log n+n2 log n) = O(Cn log n+Dn2 log n) bits communication
over point-to-point channels.

We now show the simulation. The simulator S is as follows:

1. Upon activation, invoke the adversary A.

2. Beaver triple generation and Input Sharing

(a) On behalf of each honest party Pj, the simulator chooses m random multiplication
triples and simulates the Functionality 5.7.1 for the case of an honest dealer by
choosing the appropriate bivariate polynomials.

(b) On behalf of each honest party Pj holding an input to the circuit, the simulator
chooses a value uniformly at random and simulates the Functionality 5.4.1 for the
case of an honest dealer.
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(c) For every i 2 I, simulate Functionality 5.7.1 and 5.4.1 as a functionality would run
it. If the simulation of Functionality 5.4.1 terminates, then from the shares of the
honest parties, the simulator reconstructs the input xi.

(d) Simulate the Functionality 5.3.1: When the adversary delivers the shares to an
honest party Pj in the simulation of instance of Functionality 5.7.1 and Functional-
ity 5.4.1 (if any) corresponding to some party Pk, simulate Pj sending (record, j, k).
Listen to the record messages sent by the adversary. Simulate the functionality
sending a set S upon receiving the command receiveS() from the adversary. When
S 6= ?, let Core = S.

(e) The simulator has the shares of honest parties corresponding to the triples shared
by each party in S when S 6= ?, and hence can run Protocol 5.8.5 as honest
parties would. Specifically, it can simulate all the communication from honest
parties including that among honest parties as in the protocol.

3. Circuit evaluation

(a) The simulator holds shares of the honest parties corresponding to the inputs of
each party in Core, as well as the shares corresponding to the default input 0 of the
remaining parties.

(b) On behalf of each honest party, the simulator computes the linear operations on
the shares of honest parties as in the protocol.

(c) For each multiplication gate, the simulator holds the shares of honest parties and
can run Protocol 5.8.7 as honest parties would run it.

(d) The simulator constructs a set H of all the simulated honest parties not in Core. It
also constructs a set I 0 = Core\ I. It invokes Functionality 5.8.9 with the sets H, I 0

and the extracted inputs {(Input, i, xi)}i2I0 .
(e) It receives from the functionality the outputs yi for every i 2 I.

(f) The simulator computes the shares of the honest parties to be used in the simu-
lation of Protocol 5.8.1 using the output yi and the shares of the corrupt parties
(which can be computed from the view of the simulated honest parties). The sim-
ulator runs Protocol 5.8.1 as honest parties would using these shares.

(g) When the adversary allows successful reconstruction of the output towards an hon-
est party Pj in the simulated protocol, the simulator delivers the output of Func-
tionality 5.8.9 in the ideal protocol.

We now show that the view of the adversary is indistinguishable in both the executions.
We do this using a sequence of hybrids.
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Hybrid0: Execution of ⇧AMPC in the real world.
Hybrid1: In this hybrid, the simulator simulates the execution of the output gates as

described. The only change is that the simulator computes the inputs of the corrupt parties
in Core, and the sets H and I 0 and invokes the Functionality 5.8.9 with these inputs. Note
that for the output yi towards a corrupt Pi, the shares of honest parties in the reconstruction
are completely determined by the shares of the corrupt parties and the output yi. Hence, the
shares computed by S are identical to the real shares of the honest parties. The distributions
of Hybrid0 and Hybrid1 are identical.

Hybrid2: Here, the simulator simulates the execution of the addition and multiplication
gates. Since S knows the shares held by honest parties, it can simulate the addition and
multiplication gates as honest parties would in the real protocol. The distributions of Hybrid1

and Hybrid2 are identical.
Hybrid3: In this hybrid, S simulates the execution of triple extraction as described. Since

the shares of honest parties are held by the simulator, the two distributions are identical.
Hybrid4: In this hybrid, the simulator simulates the Functionality 5.3.1. By the security

of ACS, we have that the two distributions are indistinguishable.
Hybrid5: In this hybrid, S simulates the invocations of Functionality 5.7.1 and Function-

ality 5.4.1 by choosing triples and inputs respectively uniformly at random on behalf of the
honest parties. The two hybrids differ only in the manner that S uses the random triples
and inputs of honest parties in Hybrid4, whereas it samples random values in Hybrid5. The
shares of the corrupt parties are distributed uniformly at random in both the hybrids. Due to
Theorem 5.7.3 and Theorem 5.4.4, we have that the distributions in Hybrid4 and Hybrid5

are indistinguishable.
Note that Hybrid5 is the execution between S and A in the ideal world. Therefore, we

conclude that the distributions in Hybrid0 and Hybrid5 corresponding to the executions in
the real and ideal worlds respectively are indistinguishable.

Note that in the simulated execution, the circuit evaluation is performed considering the
inputs shared by parties in Core and with default inputs for the remaining parties. The simu-
lator invokes the functionality in the ideal world with the sets H and I 0 such that the inputs
of the same set of parties in Core are considered during computation of the function, ensuring
that the output of the honest parties is the same in both the executions.
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Chapter 6

Perfectly-secure Network-agnostic MPC
with Optimal Resiliency

In this chapter, we discuss the feasibility of the perfectly-secure network-agnostic MPC. To-
wards this end, we prove the lower bound on the corruption threshold necessary to construct
such protocols. Further, to match this bound and show sufficiency, we provide an MPC pro-
tocol for the optimal corruption threshold. For this, we give improved constructions for weak
secret sharing, verifiable secret sharing and verifiable triple sharing with optimal corruption
threshold.

6.1 Introduction
The feasibility of perfectly-secure MPC for synchronous and asynchronous settings has been
established decades ago. Specifically, [94, 29] show that perfectly-secure MPC in the syn-
chronous setting tolerating ts active corruption is possible if and only ts < n/3. Similarly, it is
known that perfect security in the asynchronous setting can be achieved as long as the number
of corrupt parties is ta < n/4 [30, 31, 5]. However, the feasibility question of perfectly-secure
network-agnostic MPC, where the parties are unaware of the network type, has remained
open although there have been conjectures in prior works. In particular, [13] conjectures
the necessity of n > 3ts + ta and shows sufficiency of such a protocol tolerating ts active
corruptions when the network is synchronous and ta active corruptions when the network is
asynchronous. Surprisingly, it is not known if the bound is tight.

Our Main Result

In this work, we completely settle the feasibility of perfectly-secure network-agnostic MPC.
We prove the following theorem.
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Theorem 6.1.1 (Main Result). There exists a perfectly-secure, network-agnostic MPC protocol

that is secure against an adversary corrupting up to ts parties in a synchronous network and up

to ta parties in the asynchronous network if and only if n > 2 ·max (ts, ta) + max (2ta, ts).

Note that when ts  ta, our result gives a bound of n > 4ta, which is the known lower
bound for asynchronous MPC protocols. Also, as observed by the prior works, any known
MPC protocol designed for the asynchronous network with this bound will be trivially secure
in the synchronous network, thus serving as the network-agnostic protocol. For the other
case, when ts > ta, we further have two cases to consider. First, when 2ta � ts, we obtain
a bound of n > 2ts + 2ta. Whereas when 2ta < ts, we have that n > 3ts is necessary and
sufficient. Thus, we show that the threshold n > 3ts+ ta used in the prior works on perfectly-
secure network-agnostic protocols is not tight for this setting.

Main Technical Result

Our main result is obtained via two key components– the necessity and the sufficiency.

Theorem 6.1.2 (Necessity). For any n, if 2 · max (ts, ta) + max (2ta, ts) � n, then there is no

perfectly-secure n-party MPC protocol that is secure against an adversary corrupting ts parties in

the synchronous network and ta parties in the asynchronous network.

Due to reasons discussed earlier, in the rest of the discussion, we focus our attention on the
case when ta < ts. Within this case, when 2ta  ts, the impossibility of n  3ts is inherited
from the impossibility of the synchronous setting. So, the most interesting case is that of
n  2ts + 2ta when 2ta > ts, which we prove. For simplicity, we assume n = 2ts + 2ta and
show that no network-agnostic perfectly-secure protocol with 2ts + 2ta parties can compute
a specific function f (described below) securely when the network is asynchronous. For this,
we assume the existence of an n-party network-agnostic protocol with n = 2ts + 2ta and
arrive at a contradiction as follows. We first reduce the n party network-agnostic protocol to
a 4 party protocol with parties P1, P2, P3, P4 such that P1, P2 emulate disjoint sets of ts parties
each, and each of P3, P4 emulate ta parties in the underlying protocol. Next, we identify a
function f as follows

f(x1, x2,?,?)! (x1 ^ x2, x1 ^ x2,?,?)

Since the n party network-agnostic protocol is secure against an adversary corrupting ts

parties in the synchronous network and ta parties in the asynchronous network, we have
that the 4 party protocol should be secure if P1 or P2 is corrupt when run in a synchronous
network, or one of P3, P4 is corrupt in an asynchronous network. We conclude our proof by
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demonstrating that it is impossible for the output receiving parties P1, P2 to have a unanimous
output when the protocol is instantiated in the asynchronous network where either P3 or P4

is corrupt.
Our second contribution lies in providing a matching upper bound. In our view, the most

technically involved contributions here are the weak secret sharing and verifiable triple shar-
ing protocols. Weak secret sharing is a primitive with the following properties: (i) privacy:
after the sharing phase, the adversary cannot learn anything about the secret of an honest
dealer; (ii) commitment: the secret is completely determined by the shares of the honest
parties after the sharing phase completes, however, all the honest parties may not necessarily
have their shares; and (iii) correctness: if the dealer is honest, then at the end of the sharing
phase, all the honest parties hold their shares corresponding to the dealer’s secret. On the
other hand, verifiable triple sharing allows a dealer to share multiplication triples such that
all the parties can verify their correctness. In the network-agnostic setting, since the parties
are unaware of the network conditions, the protocols must tolerate the worst case corruption
threshold. Hence, the protocols typically operate with the sharing threshold of ts (> ta).
Our construction of both the primitives, weak secret sharing as well as verifiable triple shar-
ing crucially relies on utilizing the additional ts � ta degree of freedom which is inherently
available when the protocol operating with threshold ts is instantiated in the asynchronous
network where at most ta parties can be corrupt. Carefully leveraging this degree of free-
dom while being unaware of the exact network type constitutes our work’s primary technical
contribution, allowing us to obtain a protocol matching the lower bound. A verifiable secret
sharing is built using the weak secret sharing to ensure that all the honest parties have shares
even for a corrupt dealer. The verifiable secret sharing then serves as a building block in
the triple secret sharing which acts as the primary tool for generating random multiplication
triples, the main ingredient for MPC.

Theorem 6.1.3 (Sufficiency). Let n, ts, ta be such that n > 2ts + max(2ta, ts). There exists a

perfectly-secure, network-agnostic MPC protocol for any function secure against an adversary

that can corrupt up to ts parties in the synchronous network and up to ta parties in the asyn-

chronous network.

Out weak secret sharing relies on finding a clique of size n � ts and hence requires ex-
ponential time. As discussed in Section 6.2, our weak secret sharing deals with a lot of
challenges, despite using a clique finding algorithm. Achieving polynomial time protocols in
the optimal threshold is an interesting open problem.
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6.1.1 Related Work

We review some other related works below. Network-agnostic computation has been con-
sidered in other settings such as the general adversarial structure [14, 12], statistical secu-
rity [12], computational security [34, 36, 63]. Further, it has been studied for state machine
replication [35], secure message transmission [62], and consensus [13]. Importantly, [13]
gives network-agnostic protocols for consensus and broadcast with perfect security and a
threshold of ts, ta < n/3 which is known to be optimal for both the synchronous and asyn-
chronous networks.

6.2 Technical Overview
In this section, we provide a technical overview of our work. We first describe the weak and
verifiable secret sharing schemes in Section 6.2.1. Verifiable secret sharing protocol allows
a designated party, the dealer, to perform a degree-ts Shamir-sharing ((often, abbreviated
as ts-sharing) of its secrets. It is built on top of weak secret sharing via similar techniques
used in earlier works [98, 97, 91]. In our MPC protocol, each party shares multiplication
triples using the above protocol. Following this, parties must verify the correctness of these
degree-ts shared triples. This is captured by our verifiable triple sharing protocol, which
requires additional techniques that are described in Section 6.2.2. Finally, in Section 6.2.3,
we conclude with the high-level ideas of how these primitives are utilized to construct the
network-agnostic MPC protocol.

6.2.1 Weak and Verifiable Secret Sharing

We start with an approach similar to the prior network-agnostic work of [13] and construct
a primitive which we refer to as weak secret sharing (WSS) which proceeds in two phases,
sharing and reconstruction. This primitive is weaker than verifiable secret sharing (VSS) in
terms of the guarantees it offers and allows a dealer to share a secret with the following
properties:

• Privacy: When the dealer is honest, the adversary cannot learn any information regard-
ing the dealer’s secret at the end of the sharing phase.

• Commitment: If the dealer is corrupt, at the end of the sharing phase, either no honest
party holds its share or a subset of the honest parties hold their shares such that these
shares completely determine the dealer’s secret. Moreover, all the parties which hold a
share are ensured to have shares corresponding to a common secret.

• Correctness: If the dealer is honest, all the honest parties hold shares consistent with
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the dealer’s secret at the end of the sharing phase.

Although [13] provides a protocol for weak secret sharing, which they call weak polyno-
mial sharing, they assume a threshold of n > 3ts + ta. We discuss the high level approach
of [13], which follows from previous work in this setting [36] and the challenges to ex-
tend it to the optimal-resiliency setting. To construct a network-agnostic weak secret sharing
protocol, the idea is to run a protocol designed for weak secret sharing in a synchronous net-
work followed by that for an asynchronous network with some intermediate steps to ensure
correctness. In more detail, the protocol design relies on observing the properties guaran-
teed by the synchronous protocol, and either deciding on an output or deciding to run the
asynchronous protocol subsequently. Typically, the sharing occurs via a bivariate polynomial,
where the dealer sends a univariate polynomial as a share to each party. This is followed by
parties checking the pairwise consistency of their univariate polynomial by exchanging one
point with each party and broadcasting the result of this check. Subsequently, parties ensure
that the dealer has indeed committed to a polynomial (and hence a value) by checking the
existence of a clique of sufficiently large size. To ensure this in polynomial time, their protocol
uses the (n, t)-Star algorithm [40] whose properties are described below and in Section 6.3.
We give a high-level relevant description of their protocol below, bypassing the finer details
such as specific time steps and wait periods to ensure correctness.

1. (Sending polynomial shares) The dealer chooses a symmetric bivariate polynomial
S(x, y) with degree ts in each variable and the constant term embedding its secret. The
dealer then sends to each Pi, its share S(x, i).

2. (Pairwise consistency check) Let the polynomial received by Pi be qi(x). Each Pi sends
to every Pj a point qi(j).

3. (Broadcasting the results of consistency check) Let qji be received by Pi from Pj. Pi

broadcasts OK(i, j) if qji = qi(j) holds, and NOK(i, j, qi(j)) otherwise.

4. (Constructing the consistency graph) Each party constructs a graph G with vertices
as {1, . . . , n} such that an edge (i, j) is included in G if and only if OK(i, j) and OK(j, i)

is received from the broadcast of Pi, Pj respectively.

5. (Finding (n, ts)-Star) The dealer updates its consistency graph as follows:

• Remove all the edges incident with Pi if NOK(i, j, qij) was received from Pi such
that qij 6= S(i, j).

• From the set of vertices, remove those with degree smaller than n � ts. Perform
this step iteratively till no more vertices can be eliminated.
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Let the graph induced after these modifications be GD, and the set of vertices be W .
Following this, the dealer runs the (n, ts)-Star algorithm and broadcasts it if found.

6. (Deciding on (n, ts) or (n, ta)-Star) Parties run a Byzantine agreement protocol to
decide on whether an (n, ts)-Star was found, or whether to proceed and identify an
(n, ta)-Star.

7. (Finding (n, ta)-Star) If the latter is decided, then the dealer runs the (n, ta)-Star algo-
rithm and broadcasts it if found.

8. (Computing the Output) Finally, parties decide on the output based on the outcome of
the byzantine agreement and upon validating the dealer’s broadcast of the Star1.

Protocol in the non-optimal threshold setting [13]. As mentioned, the above protocol
by Appan et al. [13] crucially relies on the fact that n > 3ts + ta. Specifically, consider
the case of finding an (n, ts)-Star in the graph GD with vertex set as W . The output of the
Star algorithm is a pair of sets say (C,D) where C ✓ D ✓ W such that |C| � n � 2ts and
|D| � n � ts, and additionally, there exists an edge between each i 2 C and every j 2 D.
This implies |C| � ts + ta + 1 and |D| � 2ts + ta + 1. Their protocol guarantees commitment
to a polynomial in the synchronous network by ensuring that all the honest parties in W are
indeed consistent with each other. We say that parties Pi, Pj are consistent if their pairwise
consistency check is successful, thus OK(i, j) and OK(j, i) are received from their broadcast
respectively. Specifically, the protocol is designed with appropriate timeouts which ensures
that if any pair of honest parties have a conflict (their pairwise exchanged points do not
match) in the synchronous network setting, then this conflict would be conveyed to all the
honest parties before they accept the (n, ts)-Star. Parties accept the dealer’s (n, ts)-Star, that
is the sets C,D, if and only if there are no conflicts among the parties in it and C,D ✓ W .
This ensures that if a Star is accepted, then all the honest parties included in W (and hence
in C,D) are consistent with each other. Thus, there is a unique bivariate polynomial defined
by the honest parties.

Now consider the scenario when the network is asynchronous; however, the adversary
behaves similarly to the synchronous case till the honest parties accept (n, ts)-Star. Now, we
cannot argue that the honest parties in W are consistent with each other and define a unique
bivariate polynomial based on the timeout argument. A pair of honest parties which are in
conflict may be included in W solely due to the delay of their NOK messages, which can never
occur in the synchronous network. Instead of the timeout guarantees, the argument for the

1Validating requires checking certain conditions. We mention the conditions relevant to our discussion when
required.
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asynchronous case relies the threshold of n > 3ts + ta. Observe that |C| � n � 2ts, and we
also have that the adversary can corrupt at most ta parties in the asynchronous network. This
ensures that there are at least |C| � ta > ts honest parties in the set C, which are consistent
with each other (by the properties of the Star algorithm). These parties thus define a unique
bivariate polynomial of degree ts in each variable. Further, this guarantees that all the parties
in D also have their shares on this unique polynomial. This follows from the fact that by the
properties of Star algorithm, parties in D are bound to be consistent with all the parties in C,
which in turn includes at least ts + 1 honest parties defining the polynomial.

Challenges with optimal-threshold. Translating the above protocol to optimal resilience
has immediate problems. In particular, consider the latter case described above, where the
network is asynchronous and the parties have accepted an (n, ts)-Star. The condition |C|�ta >
ts no longer holds. This in turn implies that there is no unique bivariate polynomial defined
by the shares of honest parties in C, and consequently parties in D. Thus, we do not get any
guarantees from the synchronous protocol when run in the asynchronous network, which are
typically required to ensure correctness. This is one of the primary hurdles in constructing
our protocol and requires us to introduce new techniques.

Extending to the optimal resilience. Our first crucial observation is that the issue of en-
suring the dealer’s commitment can be mitigated if we consider an (n, ta)-Star regardless of
the network type. This is because, in this case, the sets C,D are such that |C| � n � 2ta and
|D| � n � ta. This guarantees us that |C| � ta = n � 3ta > ts, and thus the honest parties in
C indeed define a unique bivariate polynomial with their shares. However, we cannot expect
an (n, ta)-Star to be found in the synchronous network even when the dealer is honest. Given
that ts > ta, even for an honest dealer, the biggest clique that the consistency graph may have
is of size n � ts. Whereas the Star algorithm guarantees an output of (n, ta)-Star only when
the graph contains a bigger clique of size n�ta. Therefore, we start with a clique of size n�ts

and find a way to expand it to a clique of size n� ta so that we have an (n, ta)-Star regardless
of the network type.

At a high level, our protocol has the following structure. It follows similar to [13] till
the broadcasting of the result of consistency check among parties. Following this, the dealer
identifies and broadcasts a clique of size n � ts. If the dealer successfully broadcasts this
within a designated time, then parties proceed to the clique extension phase. Otherwise, it
is guaranteed that the dealer is either corrupt in a synchronous network, or the network is
asynchronous. To handle this, parties run an agreement and immediately decide to switch
modes and expect the dealer to broadcast a clique of size n � ta. We now discuss the clique
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extension phase.
The extension combines the following observations to satisfy our requirements while

maintaining privacy in each network condition. First, we observe that in the synchronous
network, a pair of honest parties will broadcast the outcome of their pairwise consistency
checks within a designated time. Thus, when the dealer is honest, if any pair of parties does
not have an edge between them by this time, then it is assured that at least one of these
parties is corrupt. Hence, we can publicly reveal the common point these parties hold with-
out breaching privacy. On the other hand, if the network is asynchronous, this claim does
not hold true. That is, a pair of parties without an edge may indeed be slow honest parties
whose broadcast is delayed. Hence, such a revelation of points leads to the adversary learn-
ing more points on the polynomial. However, we observe that the protocol operating with
degree (ts, ts) bivariate polynomial in the asynchronous network has an additional degree of
freedom of ts � ta. We leverage this freedom to ensure privacy in the asynchronous network.
Precisely, the dealer first identifies a clique of the maximum possible size in the consistency
graph. We are done if the clique is already of size n � ta. Otherwise, we expect a clique of
size at least n � ts. An honest dealer in synchronous network will surely find such a clique
consisting of all the honest parties. To extend the clique, the dealer identifies at most ts � ta

additional parties it wishes to include in the clique as follows.
First, the dealer identifies if any party broadcast an incorrect value during pairwise con-

sistency check or was silent in the consistency check of more than ts parties. If it finds such
parties, it includes them in a set U . Following this, it instructs all the parties to restart the
protocol with the polynomials of parties in U now being public. Note that each party added
to U by an honest dealer in the synchronous network is guaranteed to be corrupt and will
now be forced to behave honestly, thus increasing the clique size by |U |. Hence, we have that
once U is of size ts� ta, the dealer will succeed in identifying an n� ta sized clique consisting
of all the honest parties along with the corrupt parties in U . If the dealer finds no such party
that can be added to U , then it approaches the clique extension via an alternative technique.
Here, the dealer arbitrarily identifies a set of ts � ta � |U | parties, say V , outside the clique.
Thereafter, it instructs all parties not yet marked consistent with V to broadcast their pairwise
points, and similarly, parties in V broadcast their corresponding points. Observe that if all the
parties indeed broadcast their correct points within the designated time of the synchronous
network, then we have that the clique expands to size n � ta. If not, then the dealer once
again is able to identify the parties that are silent or broadcast an incorrect value and add
them to U . Following this, similar to the earlier discussion, it instructs parties to restart the
protocol. We stress that we limit the number of parties added to U to ts � ta. While in the
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synchronous network, the designated time steps ensure privacy for an honest dealer by only
adding corrupt parties to U , privacy is maintained even in the asynchronous network due to
the public revelation of at most ts � ta polynomials of honest parties. Together with the ta

polynomials of the corrupt parties, the adversary may learn at most ts univariate polynomial
shares on the dealer’s (ts, ts)-degree bivariate polynomial which still ensures privacy. It is
worth noting that the number of reruns may go up to ts � ta.

We will briefly discuss how each party computes its share in the weak secret sharing
protocol after accepting a fully-consistent clique of size n � ta, where all the parties in the
clique are pair-wise consistent. Since the clique has at least n� ta � ts > ts +max (ta, ts � ta)

honest parties, their shares define a unique bivariate polynomial of degree ts in both variables.
Hence, a party inside the clique can output the univariate polynomial it received from the
dealer and used during pairwise consistency check. On the other hand, a party lying outside
the clique is required to obtain its polynomial share which is consistent with the honest parties
in the clique. For this, the parties in the clique send their pairwise common points to a party
outside the clique. Again, we use some crucial observations, as below, to ensure that an
honest party outside the clique indeed reconstructs a correct polynomial in all cases except
when the network is synchronous and the dealer is corrupt. It is because of this exception
our protocol does not qualify to be a verifiable secret sharing.

First, in an asynchronous network, online error correction and the fact that the clique is of
size n�ta > 2ts+max (ta, ts � ta) > 3ta allows a party to reconstruct its correct polynomial by
correcting at most ta errors. On the other hand, we observe that if the network is synchronous,
then all the honest parties’ pairwise points get delivered to a party outside within a designated
time which is known beforehand; however, we cannot ensure the correction of ts errors. Here,
we use the properties of the Reed-Solomon decoding algorithm, which allows a party to
detect and correct errors simultaneously. A clever application of this technique, as discussed
in the next paragraph, allows a party outside the clique to identify if the set of points it has
received has more than ta errors. This in turn allows the party to conclude if the network
is synchronous leveraging the fact that ta < ts holds. The knowledge that the network is
synchronous allows a party outside the clique to conclude if the dealer behaves honestly or
not, based on which it can either output the received univariate polynomial or ?. We ensure
that for a misbehaved corrupt dealer, it always outputs ?.

We now conclude with the description of how the simultaneous error correction and de-
tection is leveraged in our protocol. As mentioned, in a synchronous network it is guaranteed
that a party receives at least n�ta�ts � ts+ta+1 points from the honest parties in the clique.
Moreover, these will be received within a designated time which is known beforehand for a
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Number of points received Correct Detect Outcome
Sync Async

ts + ta + 1 0 ta Success Wait
ts + ta + 2 1 ta � 1 Success Wait

...
...

...
...

...
ts + 2ta ta � 1 1 Success Wait

ts + 2ta + 1 ta 0 Success Success

ts + 2ta + 2 ta 1 Detect -
ts + 2ta + 3 ta 2 Detect -

...
...

...
...

...
2ts + ta + 1 ta ts � ta Detect -

Table 6.1: Simultaneous error correction and detection

synchronous network. Hence, upon receiving ts + ta + 1 points, a party starts the decoding
procedure. It then decides on the number of errors to be detected and corrected as per Ta-
ble 6.1 and decides on whether to accept the reconstructed polynomial as indicated. Suppose
a party outside the clique receives m = ts + ta + 1 + x points from the parties in the clique.
Let us analyze the scenario of a synchronous network. If x  ta, then the decoding proce-
dure is guaranteed to succeed due to the following: (i) at most x of the total m points are
erroneous, and (ii) the number of errors that can be corrected equals m�(ts+1)

2 � x. Hence,
if the reconstruction succeeds, the party can output the reconstructed polynomial. On the
other hand, if x > ta, then by properties of the decoding algorithm, it can detect the presence
of more than ta errors and conclude that the network is asynchronous. Now consider the
case of an asynchronous network when the party outside receives the same number of points
m = ts + ta +1+ x. Unlike the case of a synchronous network, we do not have the guarantee
that at most x points are erroneous. Since the network is asynchronous and the messages
are received in arbitrary or even adversarially controlled order, it is possible that there are up
to ta erroneous points. Hence, we need the mechanism of allowing for correction of up to x

and additionally detection of up to x � ta errors simultaneously. In this case, if there indeed
are more than x errors, then the reconstruction fails and the party can afford to receive more
correct points from the slow honest parties. Note that in the worst case, when x = ta, the
reconstruction will definitely succeed. In our protocol, we use these observations to allow
a party outside the clique to recover its polynomial. We refer the readers to Section 6.3 for
more details about simultaneous error correction and detection and the exact bounds.

237



From weak secret sharing to verifiable secret sharing. We use the standard approach
taken in the prior works [98, 97, 91, 13] to extend the weak secret sharing scheme to the
stronger primitive of verifiable secret sharing. For this, we rely on a “two-layer” approach,
wherein the first layer is similar to the weak secret sharing, whereas the second layer enables
parties outside the clique to recover their polynomial even when the dealer is corrupt in
the synchronous network. More specifically, in the verifiable secret sharing protocol, parties
proceed very similarly to weak secret sharing, however, the pairwise consistency checks are
now performed differently. Instead of directly exchanging their pairwise points, each party
now initiates an instance of weak secret sharing to share its univariate polynomial received
from the dealer. A party broadcasts OK(j) for a party Pj in the verifiable secret sharing if and
only if it computes the pairwise point as output in Pj ’s instance of weak secret sharing. Doing
so allows a party outside the clique to reconstruct its correct polynomial based on the points
from parties in whose weak secret sharing instances it computes an output. This is a standard
technique to extend weak secret sharing to verifiable secret sharing, and we refer the readers
to [13] and the proof of our protocol for more details of its correctness.

Challenges in achieving polynomial time protocol. We now briefly discuss the challenges
we encountered while trying to achieve a polynomial time algorithm for weak secret sharing.
Note that the only exponential time component in our protocol is that of clique finding of size
n � ts. Specifically, we allow the dealer to run in exponential time and identify a clique of
size n� ts. We stress that identifying such a clique is crucial to allow for its extension to size
n�ta. Recall that during the clique extension phase if the dealer cannot restart the protocol by
adding a new party to U , then it approaches the clique extension via an alternative technique.
Here, the dealer identifies a set V of (at most) ts � ta parties outside the clique to instruct
parties to resolve all their inconsistencies. Suppose for the purpose of this discussion that the
dealer has identified a clique of size n � ts and the set V is of size ts � ta. If all the parties
successfully broadcast consistency with parties in V and vice versa, then we are guaranteed
that the parties in V are now consistent with all the parties in the clique. Hence, we now have
that guarantee that the consistency graph indeed has a clique of size (n�ts)+(ts�ta) = n�ta.
However, the same does not hold true if the parties in V are not carefully chosen from those
outside of an n � ts sized clique. If the set V is chosen to be an arbitrary set of parties, then
ensuring that they are consistent with all the parties does not suffice to guarantee a bigger
sized clique in the consistency graph. This is because the ts�ta parties from V may already be
included in the clique. Although they are now consistent with all parties outside the clique,
the other parties from the clique may still have inconsistencies with those outside, preventing
clique expansion. This is the precise reason why we required identifying the exact clique in
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our protocol. We leave it as an interesting direction to identify if clique expansion can occur
without requiring clique finding, for instance by using techniques such as Star algorithm [40].

6.2.2 Verifiable Triple Sharing

In a verifiable triple sharing (VTS) protocol, the dealer is required to share a multiplication
triple verifiably while ensuring privacy of the triple. Our starting point is the verifiable triple
sharing schemes of [50] which are designed independently for both the synchronous and the
asynchronous networks. We outline their synchronous protocol with ts < n/3 assuming a
synchronous verifiable secret sharing scheme, which outputs ts-sharing of the input secret.
This is followed by the slight changes needed for their asynchronous verifiable triple sharing.

To share a multiplication triple, the dealer first chooses 2ts + 1 random multiplication
triples (ai, bi, ci) for i 2 {1, . . . , 2ts + 1} and shares them via degree-ts polynomials using the
verifiable secret sharing protocol. To verify the multiplicative relation, parties first trans-
form these random triples into correlated triples (xi, yi, zi) such that they lie on polynomials
X, Y, Z of degree ts, ts, 2ts respectively such that XY = Z if and only if all the input triples
(ai, bi, ci) for i 2 {1, . . . , 2ts + 1} are multiplication triples. Therefore the task of verifying
the input triples reduces to the task of verifying XY = Z. Towards the latter, the sharings
of X(i), Y (i), Z(i), ith point on each of these polynomials is reconstructed to only Pi, who
locally verifies that X(i) · Y (i) = Z(i) holds and broadcasts the result of its verification. If
the verification fails for some party Pi, then parties publicly reconstruct X(i), Y (i), Z(i) and
verify the relation. If it fails, then the dealer is discarded. Otherwise, the protocol completes
successfully if the (local or public) verification holds for at least 3ts + 1 parties, which in turn
includes at least 2ts + 1 honest parties. The latter confirms that XY = Z, since the poly-
nomials are of degree at most 2ts. The output of parties is the sharing of X(�), Y (�), Z(�)

for some public value � /2 {1, . . . , n}. In the above protocol, the degree of the polynomials
X and Y is crucially defined to ts to ensure privacy and correctness of triple verification.
Observe that the verification process reveals one point on these polynomials to every party,
allowing the adversary to learn (at most) ts points. Setting a smaller degree would allow an
adversary to obtain the complete polynomials X, Y , violating the privacy of the output triple
X(�), Y (�), Z(�) for an honest dealer. On the other hand, having a higher degree would not
ensure verification of a corrupt dealer’s triples. Consider the scenario when n = 3ts + 1. If
the polynomials X, Y are of degree d such that d > ts, then consequently, Z will be of degree
more than 2d > 2ts + 1. This requires at least 2d + 1 > 2ts + 2 points on the polynomial to
be verified by the honest parties, which is not possible since there may be only 2ts + 1 honest
parties in the network in the worst case. We summarize the synchronous verifiable triple
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sharing scheme of [50] below.

1. The dealer shares 2ts + 1 multiplication triples, say (ai, bi, ci) for i 2 {1, . . . , 2ts + 1}
though a verifiable secret sharing protocol.

2. Parties transform these triples into correlated triples such that they lie on polynomials
X(·), Y (·), Z(·) where X(·) · Y (·) = Z(·) holds. Specifically, parties define the polyno-
mials X(·), Y (·), Z(·) of degree ts, ts, 2ts respectively such that X(i) = ai, Y (i) = bi and
Z(i) = ci for each i 2 {1, . . . , ts + 1}. Note that the degree ts polynomials X(·) and Y (·)
are completely defined by these points. Parties hold shares of each of these ts+1 points
on the three polynomials.

3. Using linearity of ts-sharing, parties hold sharing of the extrapolated points X(i), Y (i)

for every i 2 {ts + 2, . . . , 2ts + 1}.

4. Given these, they now require to compute Z(i) for every i 2 {ts + 2, . . . , 2ts + 1} while
maintaining the multiplicative relation. For this, parties consume one multiplication
triple (ai, bi, ci) shared by the dealer and use Beaver’s multiplication protocol to obtain
the sharing of Z(i) = X(i) · Y (i) from the sharings of X(i), Y (i) for each i 2 {ts +
2, . . . , 2ts + 1}. Note that the polynomial Z(·) of degree 2ts is now defined completely.

5. Using linearity on the sharings of {X(i), Y (i), Z(i)} for i 2 {1, . . . , 2ts+1, parties obtain
sharings of X(i), Y (i), Z(i) for each i 2 {2ts+2, . . . , n} though local computation. Thus
parties now have sharings of each X(i), Y (i), Z(i) for i 2 {1, . . . , n}.

6. To verify the multiplicative relation of the shared triples, parties have to ensure that
X(·) · Y (·) = Z(·) holds. Towards this, X(i), Y (i), Z(i) are reconstructed to Pi, who
verifies that X(i) · Y (i) = Z(i) holds and broadcasts the result of the verification, either
OK or NOK, to all the parties. Note that this step leaks ts points on polynomials X, Y, Z

to the adversary when the dealer is honest.

7. For each party Pi whose verification fails, the check is performed publicly by recon-
structing the points X(i), Y (i), Z(i) to all.

8. Since the polynomials are of degree ts, ts, 2ts respectively, the triples are successfully
verified if 2ts+1 honest parties (and hence 3ts+1 parties in total) confirm the relation.
Otherwise, the dealer is discarded.

In the asynchronous setting with ta < n/4, the protocol operates with the appropriate
threshold ta both for sharing as well as the degree of X, Y ; the rest of the steps follow closely
to the synchronous case with a few caveats. For instance, to avoid an endless wait in the
asynchronous setting, parties can afford to wait for the OK or NOK broadcast of at most
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n � ta parties. However, given that n � ta � 3ta + 1 and the polynomials X, Y are now of
degree ta, correctness is ensured when the multiplicative relation is verified for n� ta parties.
For an honest dealer, all the n� ta honest parties will eventually broadcast OK, ensuring that
the triple sharing is successful. On the other hand, verifying n� ta points on the polynomial
ensures correctness even for a corrupt dealer.

Network-agnostic protocol in the non-optimal threshold setting [13]. Recall that they
use n > 3ts + ta. Being agnostic of the network style and the threshold, [13] follows the
above protocol idea while keeping the degree of the sharings and X, Y as ts (recall that
ts > ta) and makes sure that X(i) · Y (i) = Z(i) holds for at least 2ts + 1 honest parties
as follows. They define a set W of parties with |W | � n � ts and make sure that every
party in W verifies X(i) · Y (i) = Z(i) either privately or publicly. The set W is constructed
such that it contains all the n � ts honest parties when the network is synchronous and it
contains at least 2ts + 1 honest parties when the network is asynchronous. For this, they wait
till a designated time and add to W the first (at least) n � ts parties which respond to the
verification of dealer’s triples. The designated time is such that in the synchronous network,
all the honest parties respond within this time and hence get included in W . On the other
hand, in the asynchronous network W may consist of arbitrary n�ts parties depending on the
scheduling of messages of these parties. Hence, W may contain ta corrupt parties, resulting
in the presence of at least |W |� ta honest parties inside W .

As mentioned, they ensure that every party in W verifies X(i) ·Y (i) = Z(i) either privately
or publicly. This works when the network is synchronous, since every honest party is in W

and there are at least 2ts+1 honest parties. A corrupt dealer will get caught if it shares triples
that are not multiplication triples. In contrast, when the network is asynchronous, they have
at least |W |� ta � 2ts +1 honest parties in W , which again ensures that either the triples are
correct or the dealer is discarded.

Challenges with optimal-threshold. We observe that the protocol of [13] crucially relies
on the resilience of n > 3ts + ta to ensure correctness of triples. Specifically, reducing the
threshold to optimal has an immediate problem in ensuring that the triples shared indeed
satisfy the multiplicative relation. When n > 2ts +max(2ta, ts), we have that |W | = n� ts �
ts + max(2ta, ts) + 1. Assume that the network is asynchronous. It no longer holds that
|W | � ta � 2ts + 1. Hence, the correctness of the triples cannot be established. Further,
expecting a bigger W , say of size n� ta to ensure the correctness may result in an indefinite
wait even for an honest dealer. This is because, an adversary corrupting up to ts parties may
remain silent, preventing the protocol from proceeding.
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Extending to the network-agnostic setting with optimal resilience. We now discuss our
techniques, which extend the ideas of the above approach to the network-agnostic setting.
To account for the worst-case corruption threshold, our protocol too operates with ts-sharing
and polynomials X, Y of degree ts. Observe that, following a similar template as above, to
ensure the correctness of the multiplicative relation, 2ts + 1 honest parties are required to
confirm their local verification, had the network been synchronous. On the other hand, in the
asynchronous setting, it suffices for any ta + (2ts + 1) parties to confirm.

We ensure these two conditions hold in our network agnostic protocol as follows. First
we enforce that parties resolve the NOK received from any party within a pre-specified time
before computing their output in the protocol. Second, we demand that the total number
of distinct points i for which X(i) · Y (i) = Z(i) is verified, either privately or publicly, be at
least n � ta. Contrast this with the n � ts number of points required to be verified in [13].
The first requirement ensures correctness in the synchronous network, whereas the second
condition guarantees it in the asynchronous network. Specifically, in a synchronous network,
the properties offered by the network-agnostic broadcast protocol make sure that all the
honest parties receive the OK or NOK messages from other honest parties within a designated
time. Hence, they compute their output only upon verifying each NOK message received. This
ensures that if the dealer is not discarded, then X(i) ·Y (i) = Z(i) has been verified for all the
honest parties. Since there are at least 2ts + 1 honest parties in the synchronous case, we are
guaranteed correctness of the triples. On the other hand, if the network is asynchronous, the
second condition of verifying a total of n � ta points comes into effect to ensure correctness.
Since parties verify the multiplicative relation for n� ta points and the adversary can corrupt
at most ta parties, we have that the relation holds for at least n� 2ta � 2ts+1 honest parties.
Again, we are guaranteed correctness of the multiplication triples. However, making sure
these two conditions hold requires additional techniques.

Observe that in a synchronous network, we can expect at most n� ts parties to broadcast
the result of their local verification within the designated time. There may be ts corrupt par-
ties which remain silent, that is, these parties neither broadcast OK nor NOK. In such a case,
enforcing a support of n � ta would result in stalling the protocol even for an honest dealer.
To remedy this, we perform a dealer-guided public reconstruction of points X(i), Y (i), Z(i) of
a subset of parties who either broadcast NOK later than the designated time or are silent. We
enforce that the total number of points verified, which includes the publicly verified values
and those from the OK messages of parties is at least n�ta. Here, the term dealer-guided refers
to the criteria that the dealer chooses the parties whose points have to be reconstructed pub-
licly. An important aspect to note here is that with ts-degree polynomials we do not have any
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additional degree of freedom in the synchronous setting. Moreover, we have only ts � ta de-
gree of freedom in the asynchronous setting. Thus, revealing the points has to be performed
carefully by the dealer. To maintain privacy here, we ensure that the dealer only begins the
guided reconstruction upon waiting for a designated time and additionally receiving at least

n � ts OKs, and performs the public reconstruction for at most ts � ta parties. The intuition
behind privacy in the synchronous setting is that honest parties always broadcast their OK

messages which are received by all within in the designated time. Hence, their points are
never reconstructed publicly. On the other hand, in the asynchronous setting, some of the
honest parties may be slow. However, an honest dealer reveals points for at most ts � ta

honest parties, still ensuring the degree of freedom of 1 and hence maintaining privacy.
In conclusion, our protocol ensures that parties verify all the NOK received within a des-

ignated time and that the verification succeeds for at least n� ta � ta+2ts+1 parties in total.
This ensures that if the dealer is not discarded, the triples generated are correct regardless of
the underlying network type.

6.2.3 Putting it all together: The MPC Protocol

We now describe the construction of our MPC protocol using the above primitives. At a very
high level, the MPC protocol uses Beaver’s circuit randomization trick [23] and adopts a
two-phase structure. The first phase corresponds to Beaver triple generation, followed by the
second phase of circuit evaluation. The verifiable secret sharing and verifiable triple sharing
primitives are utilized in the former phase, whereas existing primitives suffice for the latter.

Beaver triple generation. In more detail, the Beaver triple generation phase ensures that
verified random multiplication triples are shared among parties as follows. Each party enacts
the role of the dealer and shares random multiplication triples using verifiable secret sharing.
Upon completing the sharing, parties must verify the correctness of these triples, which is
precisely where they rely on the verifiable triple sharing. If the triples shared by a dealer are
verified to be correct, then they are accepted in the further computation. Otherwise, parties
discard the dealer and assume a default sharing on behalf of the dealer. Note that the corrupt
parties may never initiate an instance of triple sharing. Moreover, given that the network may
be asynchronous, waiting for all n dealers’ instances may result in an endless wait. To prevent
this, we use an instance of a primitive called asynchronous common set (ACS), which allows
parties to agree on a common set of at least n� ts dealers whose shared triples will be used in
circuit evaluation. Agreement on this set amongst parties is also crucial since it is likely that
different parties compute their output in the triple sharing instances of dealers in a different
order due to asynchrony. At this stage, we have that parties have agreed on the set of triples
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shared by at least n � ts dealers. To ensure secure evaluation of the circuit, we however
require random multiplication triples that are unknown to any party. For this, we use a ‘triple
extraction’ protocol from the literature [50, 13] which consumes one triple shared by each
dealer and extracts a random triple unknown to any party. This completes the Beaver triple
generation phase, with parties holding shares corresponding to random multiplication triples.

Circuit evaluation. Parties use the triples from the prior phase to perform a shared evaluation
of the circuit. Parties begin by sharing their inputs to the circuit. Similar to the case of
triple sharing, waiting for the input of all the parties may result in an endless wait. Hence,
parties run an instance of ACS to agree on a set of at least n� ts parties whose input will be
considered for evaluation. A default value is assumed as the input of the remaining parties.
We remark that in our protocol, parties can simultaneously perform triple sharing and input
sharing, followed by a single instance of the ACS protocol. Subsequently, the evaluation of
the circuit proceeds as follows. The evaluation of linear gates (addition and multiplication
by a constant) is done locally. Parties use one multiplication triple from the first phase and
rely on Beaver’s multiplication [23] protocol to evaluate a multiplication gate. Following
this, parties reconstruct the protocol output. Finally, they terminate upon ensuring that a
sufficient number of parties have computed the output so as to ensure that all parties obtain
their output. This concludes our MPC protocol.

6.3 Preliminaries

6.3.1 Network Model and Definitions

We consider a set of parties P = {P1, . . . , Pn} connected via pairwise private and authenti-
cated channels. The distrust among the parties is modeled as a centralized, computationally

unbounded adversary. We consider a static adversary that decides the set of corrupt parties
at the beginning of the protocol execution. The underlying network conditions can be syn-
chronous or asynchronous, and the parties are unaware of the exact network type during
the protocol execution. In a synchronous network, every message sent is delivered within a
fixed, known time bound �. Moreover, the messages are delivered in the same order they
are sent in. In contrast, in the asynchronous network, the messages are delivered with an
arbitrary but finite delay with the only guarantee that the messages are eventually delivered.
Moreover, the messages may be delivered in an arbitrary order. This is modeled by a sched-
uler which decides on the sequence of message deliveries, where the scheduler is assumed
to be controlled by the adversary. The adversary can corrupt up to ts out of the n parties
maliciously when the network is synchronous, whereas it can corrupt up to ta parties under
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asynchronous network conditions and make them behave arbitrarily.
Our protocols are defined over a field F, such that |F| > n. We denote the elements of the

field by {0, 1, . . . , n}. Further, we use hvi to denote the degree-ts Shamir-sharing of a value v

among parties in P.
Additionally, in constructing our protocols, we use several well-known primitives from the

literature. We elaborate on these in Section 6.4 and refer the readers to the same for further
details.

6.3.2 Symmetric Bivariate Polynomials

A degree (l, l) symmetric bivariate polynomial over F is of the form F (x, y) =
P

i=l,j=l

i,j=0 bijxiyj

where bij 2 F and bij = bji holds for all i, j 2 {0, . . . , l}. This implies that F (i, j) = F (j, i)

holds for every i, j. Moreover, F (x, i) = F (i, y) is also true for each i 2 {1, . . . , n}.
Our protocol uses (ts, ts) symmetric bivariate polynomials. Further, fi(x) = F (x, i) =

F (i, y) is called the ith univariate polynomial of F (x, y) and is associated with party Pi in the
protocol.

6.3.3 Finding a (n, t)-Star

Definition 6.3.1. Let G be a graph over the nodes {1, . . . , n}. We say that a pair (C,D) of sets

such that C ✓ D ✓ {1, . . . , n} is an (n, t)-star in G if the following hold: (a) |C| � n � 2t, (b)

|D| � n� t, (c) For every j 2 C and every k 2 D, the edge (j, k) exists in G.

6.3.4 Almost-surely Terminating

Following the approach of Appan et al. [13], we use randomized asynchronous byzantine
agreement protocols designed for threshold ta < ts < n/3 (note that our resiliency matches
with this requirement) in our work, which guarantee that almost-surely all the honest parties
eventually receive their output. This implies that the probability that an honest party receives
its output after participating in an infinite number of rounds of a protocol approaches 1

asymptotically [3, 88, 22]. Specifically,

limT!1 Pr [An honest party Pi receives its output by local time T ] = 1

where the probability is over the randomness of the honest parties and the adversary in the
protocol. Also, the property of almost-surely receiving the output carries forward to all the
protocols that use asynchronous byzantine agreement as a primitive. Similar to [13], for
simplicity, we do not specify the terminating condition for each sub-protocol. Rather, when a
party terminates the MPC protocol, it also terminates in all the sub-protocol instances.
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6.3.5 Simultaneous Error Correction and Detection of Reed-Solomon
Codes

We require the following coding-theory related results. Let C be a Reed-Solomon (RS) code
word of length N , corresponding to a k-degree polynomial (containing k + 1 coefficients).
Assume that at most t errors can occur in C. Let C̄ be the word after introducing error in C in
at most t positions. Let the distance between C and C̄ be s where s  t. Then there exists an
efficient decoding algorithm that takes C̄ and a pair of parameters (e, e0) as input, such that
e+ e0  t and N � k � 1 � 2e+ e0 hold and gives one of the following as output:

1. Correction: output C if s  e, i.e. the distance between C and C̄ is at most e;

2. Detection: output “more than e errors” otherwise.

Note that detection does not return the error indices; rather, it simply indicates error correc-
tion fails due to the presence of more than correctable (i.e., e) errors. The above property of
RS codes is traditionally referred to as simultaneous error correction and detection. In fact, the
bounds, e+ e0  t and N � k � 1 � 2e+ e0, are known to be necessary. We cite:

Theorem 6.3.2 ([49, 87]). Let C be a Reed-Solomon (RS) code word of length N , corresponding

to a k-degree polynomial (containing k + 1 coefficients). Let C̄ be a word of length N such that

the distance between C and C̄ is at most t. Then RS decoding can correct up to e errors in C̄ to

reconstruct C and detect the presence of up to e+ e0 errors in C̄ if and only if N � k� 1 � 2e+ e0

and e+ e0  t.

Corollary 6.3.3. Let C and C̄ be as in Theorem 6.3.2 with N = ts + ta + 1 + x, k = t = ts and

x  ta. Then RS decoding can correct up to x errors and detect the presence of up to ta�x errors

in C̄.

Proof. This follows since N �k�1 = ta+x, 2e+e0 = 2x+(ta�x) = ta+x and e+e0 = ta < ts

hold.

Corollary 6.3.4. Let C and C̄ be as in Theorem 6.3.2 with N = ts + ta + 1 + x, k = t = ts and

ta < x  ts. Then RS decoding can correct up to ta errors and detect the presence of up to x� ta

errors in C̄.

Proof. This follows since N�k�1 = ta+x, 2e+e0 = 2ta+(x� ta) = ta+x and e+e0 = x  ts

hold.
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6.4 Existing Primitives
In our work, we use network-agnostic protocols from [13] for several primitives, such as
broadcast and byzantine agreement, to name a few. Although designed for the non-optimal
threshold, these naturally follow to the optimal threshold scenario. Below, we give a descrip-
tion of each of them along with the (n, t)-Star algorithm from [40] for completeness.

6.4.1 Finding a (n, ta)-Star

Definition 6.4.1. Let G be a graph over the nodes {1, . . . , n}. We say that a pair (C,D) of sets

such that C ✓ D ✓ {1, . . . , n} is an (n, t)-star in G if the following hold:

• |C| � n� 2t,

• |D| � n� t,

• For every j 2 C and every k 2 D, the edge (j, k) exists in G.

Canetti [39] showed that if a graph has a clique of size n� t, then there exists an efficient
algorithm which always finds an (n, t)-Star. In our protocol, we use the parameter t = ta.
For completeness, we describe the algorithm for finding an (n, ta)-Star in Algorithm 6.4.2,
which is taken from [30, 40] and modified to suit our parameter. Moreover, we modify the
algorithm from [40] to output the extended Star using the techniques of [92].

Protocol 6.4.2: (n, ta)-Star

Input: An undirected graph G (over the nodes {1, . . . , n}) and a parameter ta.

1. Find a maximum matching M in G. Let N be the set of matched nodes (namely, the
endpoints of the edges in M) and let N := {1, . . . , n} \N .

2. Let T be the set of triangle-heads, i.e., all vertices that are not endpoints of the matching
but they have two neighbors in the matching.

T :=
�
i 2 N | 9j, k s.t. (j, k) 2M and (i, j), (i, k) 2 G

 
.

Let C := N \ T .

3. Let B the set of matched nodes that have neighbors in C. That is, set:

B :=
�
j 2 N | 9i 2 C s.t. (i, j) 2 G

 
.

Let D := {1, . . . , n} \B.
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4. If |C| � n� 2ta (i.e. |C| � 2ts+1) and D � n� ta (i.e. |D| � 2ts+ ta+1) then compute
E as the set of all the parties which do not have edges with at least 2ts + 1 parties in C.
Finally, construct a set F as the set of all the parties that do not have edges with at least
2ts + 1 parties in E.

5. Output: If |E| � n� ta and |F | � n� ta then output (C,D,E, F ). Otherwise, output ?.

6.4.2 Asynchronous Reliable Broadcast (Acast)

As in [13], we use Bracha’s asynchronous reliable broadcast protocol [37] (also referred
to as Acast) where there is a designated sender who holds a message m 2 {0, 1}` to be
communicated to all the parties. Appan et al. [13] demonstrated that the Acast protocol,
although designed for the asynchronous network, also provides certain guarantees in the
synchronous network. We recall the protocol and its properties below.

Protocol 6.4.3: ⇧Acast

Input: The sender holds a message m 2 {0, 1}`.

1. The sender on holding an input m, sends (init,m) to all the parties.

2. Upon receiving (init,m) from the sender, send (echo,m) to all the parties. Do not exe-
cute this step more than once.

3. Upon receiving (echo,m0) from n� t parties, send (ready,m0) to all the parties.

4. Upon receiving (ready,m0) from t+ 1 parties, send (ready,m0) to all the parties.

5. Upon receiving (ready,m0) from n� t parties, output m0.

Lemma 6.4.4. Bracha’s Acast protocol ⇧Acast is secure against an adversary corrupting up to

t < n/3 parties and achieves the following properties.

1. Synchronous Network:

(a) Liveness: If the sender is honest, then all the honest parties obtain an output within

time 3�.

(b) Validity: If the sender is honest, then every honest party with an output, has the

sender’s message m as the output.

(c) Consistency: If the sender is corrupt and some honest party outputs m0 at time T , then

every honest party outputs m0 within time T + 2�.
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2. Asynchronous Network:

(a) Liveness: If the sender is honest, then all honest parties eventually obtain an output.

(b) Validity: If the sender is honest, then every honest party with an output, has the

sender’s message m as the output.

(c) Consistency: If the sender is corrupt and some honest party outputs m0, then every

honest party eventually outputs m0.

6.4.3 Byzantine Broadcast (BC)

Appan et al. [13] construct a broadcast protocol which relies on Bracha’s asynchronous re-
liable broadcast [37] and an existing synchronous byzantine agreement protocol which is
denoted by ⇧SBA. We give the protocol ⇧BC for broadcast below, assuming the existence of
⇧Acast and ⇧SBA. We avoid repetition and refer the readers to [13] for further details on the
exact instantiation of these protocols since we make a black-box use of these primitives.

Protocol 6.4.5: ⇧BC

Input: The sender holds a message m 2 {0, 1}`.
(Regular Mode):

1. The sender Acasts the message m using ⇧Acast.

2. At time 3�, each party Pi participates in an instance of synchronous broadcast protocol
⇧SBA with its input set as follows:

• If m0 2 {0, 1}` is received from the Acast of the sender, then Pi sets m0 as the input.

• Otherwise, Pi sets its input as ?.

3. At time 3�+ TSBA, each Pi computes its output as follows:

• If m0 2 {0, 1}` is received from the Acast of the sender and m0 is computed as the
output of ⇧SBA, then Pi sets m0 as the output.

• Otherwise, Pi sets its output as ?.

(Fallback Mode):

1. Each Pi which has computed its output as ? at time 3�+ TSBA, updates it to m0 if m0 is
received from the Acast of the sender.

Lemma 6.4.6. Protocol ⇧BC is secure against an adversary corrupting up to t < n/3 parties and

has the following properties, where TBC = 3� + TSBA = (12n � 3)� when ⇧SBA is instantiated

using [33].
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1. Synchronous network:

(a) (Regular Mode)

i. Liveness: At time TBC, every honest party has an output (through regular-mode).

ii. Validity: If the sender is honest, then every honest party outputs m (through

regular-mode).

iii. Consistency: If the sender is corrupt, then every honest party has the same output

(m0 or ?) at the end of TBC (through regular-mode).

(b) (Fallback Mode)

i. Fallback Consistency: If the sender is corrupt and some honest party outputs m0

at time T > TBC (through fallback-mode), then every honest party outputs m0 by

time T + 2� (through fallback-mode).

2. Asynchronous network:

(a) (Regular Mode)

i. Liveness: At time TBC, every honest party has an output (through regular-mode).

ii. Weak Validity: If the sender is honest, then every honest party outputs m or ?
(through regular-mode).

iii. Weak Consistency: If the sender is corrupt, then every honest party has either a

common m0 or ? as the output at the end of TBC (through regular-mode).

(b) (Fallback Mode)

i. Fallback Validity: If the sender is honest, then each honest party that outputs ?
at TBC (through regular-mode) outputs m (through fallback-mode).

ii. Fallback Consistency: If the sender is corrupt and some honest party outputs m0

at time T (either through regular or fallback-mode), then every honest party

eventually outputs m0 (either through regular or fallback-mode).

6.4.4 Byzantine Agreement (BA)

Appan et al. [13] provide a network-agnostic byzantine agreement protocol by following the
approach of [34]. Here, each party first broadcasts its input via an instance of ⇧BC followed
by running an instance of some asynchronous byzantine agreement protocol ⇧ABA. Each party
decides its input to ⇧ABA based on the number of parties for which it received an output in
their respective instance of the broadcast protocol and the plurality of the received values.
We provide the protocol from [13] below for completeness, where ⇧ABA can be instantiated
with any existing protocol such as [3, 22].

Protocol 6.4.7: ⇧BA
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Input: Each Pi holds a bit bi 2 {0, 1}. Each Pi also initialises a set Ri  �.

1. Each Pi on holding an input bi, broadcasts bi using ⇧BC.

2. For j 2 {1, . . . n}, let b(j)
i
2 {0, 1,?} be received from the broadcast of Pj via regular

mode. Update Ri = Ri [ {j} if b(j)
i
6= ?. Compute the input vi for an instance of ⇧ABA

as follows:

• If |Ri| � n � t then set vi to be the majority bit among the b(j)
i

values of parties in
Ri. If there is no majority, then set vi = 1.

• Otherwise, set vi = bi.

3. At time TBC, participate in an instance of ⇧ABA with input vi. Set the output as the
output computed from ⇧ABA.

Lemma 6.4.8. Protocol ⇧BA achieves the following properties in the presence of an adversary

which corrupts up to t < n/3 parties:

1. Synchronous network: The protocol is a perfectly-secure SBA protocol, where all the honest

parties receive their output within time TBA = TBC + TABA.

(a) Guaranteed liveness: All the honest parties obtain an output by time TBA.

(b) Validity: If all the honest parties have the same input v, then all the honest parties

with an output, outputs v.

(c) Consistency: All the honest parties with an output, output the same value v.

2. Asynchronous network: The protocol is a perfectly-secure ABA protocol.

(a) Almost-surely liveness: Almost-surely, all the honest parties obtain an output eventu-

ally.

(b) Validity: If all the honest parties have the same input v, then all the honest parties

with an output, outputs v.

(c) Consistency: All the honest parties with an output, output the same value v.

6.4.5 Agreement on a Common Set (ACS)

The ACS primitive [40] allows parties to agree on a common set of at least n � t parties
Com ⇢ P, such that each party in Com satisfies some predefined property prop which has the
following features in the asynchronous network:

1. Every honest party eventually satisfies prop.
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2. If some honest Pi sees that a party Pj satisfies prop, then eventually all the honest parties
see that Pj satisfies prop.

Although the above protocol was primarily designed for the asynchronous network, it was
shown in [13] that the protocol satisfies certain properties in the synchronous network where
each party in Com satisfies some predefined property prop which has the following features:

1. Every honest party satisfies prop at the onset of the protocol.

2. If some honest Pi sees that a party Pj satisfies prop, then within a fixed time, all the
honest parties see that Pj satisfies prop.

In our protocols, we use the parameter t = ts. We describe the variant of the protocol
from [40], which was used in [13] for completeness.

Protocol 6.4.9: ⇧ACS

Input: Each party Pi holds a dynamically growing set Si.
Input Guarantees:

• If the network is synchronous, then for an honest Pi, at the onset j 2 Si for each honest
Pj. Moreover, if a corrupt k 2 Si for some honest Pi, then within a fixed time, k 2 Sj

for all honest parties Pj.

• If the network is asynchronous, then for an honest Pi, eventually j 2 Si for each honest
Pj. Moreover, if k 2 Si for some honest Pi, then eventually k 2 Sj for all honest parties
Pj.

1. Each Pi participates in an instance of byzantine agreement protocol ⇧j

BA
where j 2

{1, . . . , n} with input 1 if j 2 Si.

2. Once (at least) n � ts instances of ⇧BA terminate with output 1, Pi participates with
input 0 in the byzantine agreement instances ⇧j

BA
such that j /2 Si.

3. Upon termination of all the n instances of byzantine agreement, Pi outputs Com as the
set of parties Pj such that ⇧j

BA
terminated with the output 1.

Theorem 6.4.10. Protocol ⇧ACS is secure against an adversary corrupting up to ts parties in

the synchronous network and ta parties in the asynchronous network and has the following

properties.

1. Synchronous network:
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(a) Liveness: At time TACS = 2TBA, every honest party has an output.

(b) ts correctness: At time TACS, every honest party outputs Com of size at least n � ts

such that the following holds:

• All the honest parties belong to Com.

• For each j 2 Com, it is guaranteed that j 2 Si for each honest party Pi.

2. Asynchronous network:

(a) Liveness: Almost-surely, every honest party eventually has an output.

(b) ta correctness: Almost-surely, every honest party eventually outputs Com of size at

least n� ts such that the following holds:

• For each j 2 Com, it is guaranteed that eventually j 2 Si for each honest party

Pi.

6.5 Lower Bound
Theorem 6.5.1. For any n, if 2 ·max (ts, ta) + max (2ta, ts) � n, then there is no n-party MPC

protocol that is perfectly-secure against an adversary corrupting ts parties in the synchronous

network and ta parties in the asynchronous network.

Proof. We first consider two cases, when ts  ta and otherwise. For the former case, we
have that 4ta � n, and the known impossibility result of [30] follows immediately. For
the latter scenario, when ts > ta, we further analyze it considering two cases. First, when
2ta < ts, we have that 3ts � n. We now see that the impossibility of a network-agnostic
protocol for this setting follows directly from the impossibility of synchronous protocols with
this threshold [29]. Thus, what remains to be shown is the case of 2ts + 2ta � n when ts > ta

and 2ta � ts. We prove this by contradiction as follows.
Assume 2ts + 2ta = n, and there exists a generic MPC protocol ⇡ which is ts-secure in the

synchronous network and ta-secure in the asynchronous network. Partition the n parties into
four disjoint sets S1, S2, S3, S4 such that |S1| = |S2| = ts and |S3| = |S4| = ta and consider the
following scenarios.

Case I: Synchronous network, Parties in S1 (S2) are corrupted. The adversary blocks
all communication from parties in S1 (S2) towards parties in S2 (S1). Further, it ignores the
messages received from the parties in S2 (S1) during its local computation. It performs the
rest of the computation and communication as per the protocol specification.

Case II: Asynchronous network, Parties in S4 are corrupted. In this case, the adversary
indefinitely delays all the communication between the (honest) parties in S1 and S2. The
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adversary performs the computation and communication with the parties as per the protocol
specification.

Observe that the corruption scenarios described above are valid in the synchronous and
asynchronous networks, respectively. Moreover, each party’s view is identical in both scenar-
ios, thus guaranteeing that the parties remain unaware of the network type when either of
the aforementioned corruption occurs during the protocol. The security guarantees of the
protocol ensure that, in either case, parties receive the output of the protocol. We leverage
these observations to arrive at a contradiction.

Specifically, we show that given such an n-party generic MPC protocol, we can construct
an MPC protocol for 4 parties, say P1, . . . , P4 where Pi emulates the parties in Si. This new
protocol is secure with respect to an adversary that either corrupts one of P1, P2 when the
network is synchronous or corrupts one among P3, P4 when the network is asynchronous.
Now consider an instance of the protocol amongst the four parties to compute the following
functionality:

f(x1, x2,?,?)! (x1 ^ x2, x1 ^ x2,?,?)

We show that it is impossible for the output receiving parties, P1 and P2 to have a unanimous
output, thus showing the impossibility of the underlying n party network-agnostic protocol.
Consider the scenario when the network is asynchronous, and the adversary corrupts the
party P4. Further, the adversary follows the same (valid) strategy of blocking communication
between parties as described in Case II, which implies blocking communication between P1

and P2 in the 4-party protocol.
Let ⇡(x1, x2) be an instance of the protocol with inputs x1, x2 and r⇡(x1,x2)

i
for each i 2 [4]

denote the randomness of each Pi in the instance ⇡(x1, x2). Let Tij (1  i < j  4) denote
the transcript of the channels between Pi and Pj. Note that T12 = �. Moreover, due to perfect
security, T13 and T14 individually are independent of P1’s input x1. Otherwise, a corrupt P3

or P4 will be able to learn P1’s input. For the same reason, T23 and T24 individually are
independent of P2’s input x2. Hence, we can conclude that P1’s output is determined by its
internal state and the joint distribution {T13, T14}. Similarly, P2’s output is determined by
its internal state and the joint distribution {T23, T24}. Suppose these are the transcripts of
the protocol instance ⇡(0, 1). Since T23 and T24 are individually independent of x1, there
exists some T 024 such that {T23, T 024} results in an output 1 for P2. If not, then it implies that
irrespective of T24, the output of P2 is always 0. This further implies that the output of P2 is
completely decided by its internal state and T23. However, T23 itself is independent of x1. This
is because, the view of P3 in the protocol must be independent of x1, due to perfect security
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and T23 is contained in the view of P3. Now note that P1 does not communicate with P2 at
all. This means P1’s input is ignored in the output computation of P2, leading to breach of
correctness. Therefore, we can conclude that in an instance ⇡(0, 1), there exists some T 024 such
that {T23, T 024} results in an output 1 for P2.

Relying on the above fact, we can now conclude that an adversary corrupting P4 in an
instance of ⇡(0, 1) can behave according to T14, T34 with P1, P3 respectively, and according to
T 024 with P2. This results in P1 having the output 0, while P2 outputs 1.

6.6 Weak Secret Sharing
Some part of the protocol proceeds in a sequence of time steps. Whereas some parts are
action-based, parties execute these steps as and when they receive the messages required to
perform these steps. Throughout the descriptions of protocols, we denote the wait period of
time steps with red font, whereas the action-based steps of our protocols are denoted using
blue font. We use also use the existing primitives such as broadcast and agreement, which
are emulated using Protocol 6.4.5 and Protocol 6.4.7 of [13] (recalled in Appendix 6.4.3 and
6.4.4 respectively). In the subsequent description, � denotes the round delay associated with
a synchronous network. We also use the notations TBC and TBA to denote the time required
by the broadcast and agreement protocols of [13] in the synchronous network. The exact
values for these are inherited from their work and detailed in Section 6.4.

Protocol 6.6.1: ⇧WSS

Input: The dealer holds a secret s 2 F.
Initialisation: The dealer initialises two sets W,U to �. Only W is reset in every (re)run to ;.
The set U is initialised only during the first run, and is used without re-initialisation during
subsequent reruns.

1. (Polynomial Share Distribution) The dealer chooses a symmetric bivariate polynomial
F (x, y) of degree ts in both x, y and delivers fi(x) = F (x, i) to Pi. If |U | > ts � ta, then
assign U to be the set of first ts � ta parties lexicographically. The dealer broadcasts
(U, {fi(x)}i2U).

2. (Pair-wise exchange) At time �, if fi(x) is received then every Pi sends fij = fi(j) to
every Pj.

3. (Pair-wise Consistency Check) At time TBC
1 Pi prepares a vector Ri of length n as follows

1Had the network been synchronous, then we know that TBC > �. Hence, fi(x) and the dealer’s broadcast,
both initiated simultaneously, will be received by Pi by TBC.
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and broadcasts it. It sets Ri[j] = NR for all j if any of the following happens:

(a) it receives no fi(x)

(b) the dealer’s broadcast results in ?

(c) some fj(x) in the broadcast (U, {fi(x)}i2U) is of degree more than ts

(d) there are indices j, k such that fj(k) 6= fk(j) in the broadcast (U, {fi(x)}i2U)

Otherwise, it sets Ri as follows. (1) if Pj 2 U , then Ri[j] = fi(j) (2) if Pj 62 U , then set
(a) Ri[j] = NR if no fji is received from Pj, (b) Ri[j] = fi(j) if fji is received from Pj

and fi(j) 6= fji, (c) Ri[j] = OK otherwise.

4. (Asynchronous Pair-wise Consistency Checking) The parties execute the following steps
as and when they receive the required values. On receiving the broadcast (U, {fi(x)}i2U)
and polynomial fi(x) from the dealer, every Pi 62 U sends fij = fi(j) to every Pj and
broadcasts AOKj if (a) fji from Pj 62 U is received and fi(j) = fji (b) fj(i) for Pj 2 U

satisfies fi(j) = fj(i).

5. (Restart or Clique Finding) At time 2TBC, the dealer puts Pi 62 U in W if either happens
(a) Pi’s broadcast of Ri resulted in ? or (b) Pi’s broadcasted Ri has more than ts NRs
or (c) Ri[j] 6= F (i, j) when Ri[j] 6= OK and Ri[j] 6= NR.
The dealer makes a graph G with n vertices corresponding to n parties. There is an
edge when Ri[j] = Rj[i] = OK. There is no edge if Ri[j] = NR or Rj[i] = NR. The dealer
finds a clique Q of size n � ts + |U | in the graph including U . If |Q| � n � ta, then the
dealer sets Qa = Q and broadcasts (sync, G,Qa). Otherwise, if |W | > 0, then the dealer
sets U = U [W and broadcasts (restart, U). Otherwise, it broadcasts (continue, Q,G, V ),
where V is a set of (ts � ta)� |U | parties (vertices) outside Q [ U .

6. (Asynchronous Clique Finding) The dealer executes the following steps as and when
it receives the required messages. First, the dealer initiates a graph A with parties as
vertices with edges between a pair of parties in U . On receiving broadcasts AOKij and
AOKji from Pi, Pj 62 U , it adds an edge between Pi, Pj. On receiving broadcast AOKij

from Pi 62 U, Pj 2 U , it adds an edge between Pi, Pj. Each time there is an update in
A, it invokes (C,D,E, F ) Star(A) (Protocol 6.4.2) If |F | > n� ta, it sets Qa = F and
broadcasts (async, A,Qa).

7. (Conflict Resolution for Clique Expansion or Restart) At time 3TBC, the parties do the
following:

(a) If (sync, G,Qa) is received, then Pi verifies G,Qa as follows. It checks the validity
of Gi in the same way as in Step 7c. It checks if Qa is a (n � ta)-size clique in
Gi including parties in U . If the verification passes, then set bi = 1 and bi = 0
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otherwise and participate in an instance of ⇧BA. If the protocol output is 1 then go
to Protocol 6.6.2. Otherwise, wait for (async, A,Qa) from the dealer.

(b) If (restart, U) is received, then set bi = 0 and participate in an instance of ⇧BA. If
the output is 1, then go to Protocol 6.6.2. Otherwise, restart the protocol from
Step 1.

(c) If (continue, Q,G, V ) is received, then set bi = 0 and participate in an instance of
⇧BA. If the output is 1, then go to Protocol 6.6.2. Otherwise, when the output
is 0, verify Q,G, V . For this, construct Gi exactly as the dealer did based on the
broadcasts available at time 2TBC at Step 5. G is marked as invalid if

i. it is different from Gi AND

ii. there is a pair Pj, Pk 62 U such that Rj[k] 6= Rk[j] or there is a pair Pj 62 U, Pk 2
U such that Rj[k] 6= fk(j).

Q is invalid if it is not a clique in a valid G of size at least n� ts + |U | and does not
include parties in U . V is invalid if it is not a set of (ts� ta)� |U | parties (vertices)
outside Q [ U in a valid G.

If Q,G, V are valid, then for each (Pj, Pk) who do not have an edge and Pj 2 V ,
Pj broadcasts fj(k) and Pk broadcasts fk(j) if fj(x) and fk(x) if received from the
dealer at time �. Otherwise, they broadcast ?. Let V 0 be the set of parties in V

and the parties they do not have an edge to.

If G or Q or V from broadcast (continue, Q,G, V ) is invalid, then wait until a broad-
cast (async, A,Qa) from the dealer is received. Go to Protocol 6.6.2 on receiving
(async, A,Qa).

(d) If? is received then set bi = 0 and participate in an instance of ⇧BA. If the output is
1, then go to Protocol 6.6.2. Otherwise, wait until a broadcast (async, A,Qa) from
the dealer is received. Go to Protocol 6.6.2 on receiving (async, A,Qa).

8. (Clique Expansion or Restart (for the dealer)) At time 4TBC + TBA, the dealer adds Pi in
W if the broadcast of Pi 2 V 0 in the previous step is ? or if the broadcast is not F (i, j).
If |W | > 0, then the dealer sets U = U [W and broadcasts (restart, U). Otherwise, the
dealer sets clique Qa = Q [ V and broadcasts (sync, G,Qa).

9. (Local Computation: Deciding on exit route or restart (for all)) At time 5TBC + TBA,
every Pi does as follows:

(a) If (restart, U) is received, then set bi = 0 and participate in an instance of ⇧BA. If
the output is 1, then go to Protocol 6.6.2. Otherwise, restart the protocol from
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Step 1 with U and W reset to ;.

(b) If (sync, G,Qa) is received from the broadcast of the dealer it constructs Gi in the
same way as in Step 7c. It then updates Gi based on the broadcasts received at
time 4TBC + TBA and checks its validity as in Step 7c. Next, it checks if Qa is a
(n� ta)-size clique in Gi including parties in U . If the verification passes, then set
bi = 1 and bi = 0 otherwise and participate in an instance of ⇧BA. If the protocol
output is 1 then go to Protocol 6.6.2. Otherwise, wait for (async, A,Qa) from the
dealer.

(c) If ? is received from the broadcast, then set bi = 0 and participate in an instance
of ⇧BA. If the output is 1, then go to Protocol 6.6.2. Otherwise, wait until a broad-
cast (async, A,Qa) from the dealer is received. Go to Protocol 6.6.2 on receiving
(async, A,Qa).

The following steps are executed by a party when it receives an output of 1 from any ⇧BA

instance. Otherwise, parties continue to participate in ⇧WSS iterations.

Protocol 6.6.2: ⇧Output

WSS

Condition for Output: Parties output via (async, A,Qa) only after local time
(ts � ta + 1) · (5TBC + 2TBA). Parties output via (sync, G,Qa) only before local time
(ts � ta + 1) · (5TBC + 2TBA).

Upon receiving (sync, G,Qa) or (async, A,Qa) from the dealer, each Pi verifies G,Qa or
A,Qa as follows: It constructs Gi or Ai exactly the way the dealer does in the respective steps
based on the broadcasts available until now. Pi continues to update Gi or Ai based on the
broadcasts it receives if the edges in G (respectively A) are not a subset of the edges in Gi

(resp. Ai) or Qa is not a (n� ta)-size clique in Gi (resp. Ai). Otherwise, it does the following:

1. If Pi 2 Qa \ U , then it sends fi(j) to every Pj /2 Qa [ U , waits for time 3� and outputs
fi(x).

2. If Pi /2 Qa, it waits for 3� time1 and upon receiving ts + ta + 1 points from parties in Qa

(Pi obtains points of parties in U from the dealer’s broadcast) does the following:
1In a synchronous network, if some honest party validates Qa at time T , other honest parties may receive

and validate it by time at most T +2� when the dealer is corrupt. Hence, their shares may reach parties outside
Qa at time T +3�. Upon receiving Qa, each party outside it thus waits for 3� time to ensure that it receives all
the honest parties’ shares before starting error correction.
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• Upon receiving ts+ ta+1+x points, if x  ta then Pi tries to correct up to x errors
and simultaneously detect up to ta � x errors (Corollary 6.3.3). If the decoding is
successful, then Pi outputs the reconstructed polynomial.

• Upon receiving ts+ ta+1+x points, if x > ta then Pi tries to correct up to ta errors
and simultaneously detect up to x � ta errors (Corollary 6.3.4). If the decoding
is successful, then Pi outputs the reconstructed polynomial. Otherwise, Pi detects
that the network is synchronous. It then checks the following: If (sync, G,Qa) is
received at time 3TBC, then it checks the validity of Gi in the same way as in Step 7c.
It checks if Qa is a (n�ta)-size clique in Gi or including parties in U . If (sync, G,Qa)

is received at time 5TBC, then it first updates Gi based on the broadcasts received at
time 4TBC and checks its validity as in Step 7c. Next, it checks if Qa is a (n�ta)-size
clique in Gi including parties in U .

It outputs fi(x) if it is received from the dealer within � time from the start, Qa

does not include any Pj such that Pj ’s broadcast at time 2TBC is fji 6= fi(j) and the
above verification passes. It outputs ? otherwise.

Theorem 6.6.3. Let TWSS = (ts� ta+1) · (5TBC+2TBA)+ 3�. Protocol ⇧WSS is perfectly-secure

against an adversary corrupting up to ts parties in the synchronous network and up to ta parties

in the asynchronous network and has the following properties.

1. Synchronous network:

(a) ts correctness: When the dealer is honest, at time TWSS, all the honest parties output

fi(x) = F (x, i) corresponding to F (x, y) held by the dealer.

(b) ts privacy: The view of the adversary is independent of the honest dealer’s secret s.

(c) ts weak commitment: When the dealer is corrupt, either no honest party computes

an output or there exists a set of at least ts + ta + 1 honest parties Pi such that each

Pi outputs fi(x) where fi(x) = F 0(x, i) for some (ts, ts) degree polynomial F 0(x, y).

Moreover, if some honest party computes its output at T  TWSS then all honest

compute their output at the same time. If some honest party computes an output at

time T > TWSS then all the honest parties compute their output within T + 2�.

2. Asynchronous network:

(a) ta correctness: When the dealer is honest, almost-surely all the honest parties output

fi(x) = F (x, i) eventually where F (x, y) is held by the dealer.
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(b) ts privacy: The view of the adversary is independent of the honest dealer’s secret s.

(c) ta strong commitment: When the dealer is corrupt, either no honest party computes

an output or almost-surely each honest party Pi outputs fi(x) eventually such that

fi(x) = F 0(x, i) for some (ts, ts) degree polynomial F 0(x, y).

Proof. We first prove the properties of ⇧WSS in the synchronous network.

1. Synchronous network:

(a) ts correctness: Let the dealer be honest. Since the network is synchronous, we
have that the adversary can corrupt up to ts parties and the network delay is �.
At the start of the protocol, we also have that W,U are empty. Given this, we have
that within � time, all the parties will have their univariate polynomial shares.
Further, each pair of honest parties Pi, Pj will exchange their common points on
the polynomial within time 2�. By the liveness and validity property of broadcast
in a synchronous network, we have that (U, {fi(x)}i2U) will also be received by all
the honest parties by time TBC. Thus, we have that each honest party Pi will set
Ri[j] = OK corresponding to every honest party Pj. Moreover, Pi sets Ri[j] = fi(j)

corresponding to each Pj 2 U such that fi(j) = F (i, j). Thus, each honest Pi

has at most ts NRs corresponding to the corrupt parties. Further, the liveness and
validity properties of broadcast ensure that the honest parties’ broadcast instances
successfully terminate with an output by time 2TBC. Moreover, if Ri[j] = fij is
broadcasted by an honest Pi then it is guaranteed that fij = F (i, j) indeed holds.
Given that all the above conditions hold, an honest Pi is never added to W by
the dealer. This implies that the dealer is bound to find a clique Q of size at least
n � ts + |U | which contains all the honest parties and the parties in U . We now
have the following cases to consider:

i. The dealer finds Q such that |Q| � n � ta. This implies that at time 2TBC,
the dealer receives Ri[j] = OK and Rj[i] = OK for each Pi, Pj 2 Q. Due to the
consistency property of broadcast in the synchronous network, we have that
all the honest parties will indeed see the same Ri’s at time 2TBC as that seen by
the dealer. Further, the dealer sets Qa = Q and broadcasts (sync, G,Qa) which
will be received by all the honest parties by time 3TBC. Consequently, each
honest party Pi will construct the graph Gi exactly as the dealer, and hence its
verification passes. Hence, all the honest parties will participate with input 1
in ⇧BA, and due to its liveness and validity, they will receive the output as 1 by
time 3TBC + TBA. Further, every honest Pi 2 Qa sends its share fi(j) to every
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Pj /2 Qa. It waits for � time and outputs fi(x) at time 3TBC +�. Each Pi /2 Qa

receives at least |Q|� ts � ts + ta + 1 points from the honest parties in Qa. We
then have two cases to consider:

• If Pi receives up to ta erroneous points from parties in Qa, then by
Corollary 6.3.3 it will recover the same polynomial after error correc-
tion as what the dealer shared and hence output the correct fi(x) at time
3TBC + TBA + 3�.

• If Pi receives more than ta erroneous points from parties in Qa, then by
Corollary 6.3.4 we have that Pi will detect this. It in turn learns that
the network is indeed synchronous. Moreover, an honest Pi would have
received its share fi(x) from the dealer within time � and sent its pairwise
points fi(j) to each Pj. Let the point received by Pj 2 Qa be fij. If indeed
fj(i) 6= fij did not hold for Pj, then Pj would have broadcasted Rj[i] =

fj(i) by time 2TBC. Given that the dealer is honest, we have that a Pj

that broadcasted an incorrect value at 2TBC would be included in W and
hence Pj /2 Qa which is a contradiction. Thus, it must hold that Pj either
broadcasted Rj[i] = NR or Rj[i] = F (i, j) = fi(j). Thus, Pi can identify
a corrupt Pj which sends an erroneous point. In this case, Pi outputs the
correct polynomial received from the dealer fi(x) by time 3TBC+TBA+3�.

ii. The dealer broadcasts (restart, U). In this case, we have that the dealer has
added at least one party in the set W and hence added at least one new party
in the set U . Due to the liveness and validity properties of broadcast in the syn-
chronous network, we have that all the honest parties will receive the dealer’s
broadcast by time 3TBC. Hence, all the honest parties will participate with in-
put 0 in ⇧BA, and due to its liveness and validity, they will receive the output
as 0 by time 3TBC + TBA. Subsequently, they restart the protocol successfully
and in synchronization with each other. Moreover, as argued before, it is guar-
anteed that no honest party gets added to W or U . Thus, after at most ts � ta

restarts, U will include at least ts � ta corrupt parties. The dealer will thus
make the polynomials of ts� ta corrupt parties public in the subsequent run of
the protocol and is guaranteed to find a clique of size (n � ta) which includes
the (n � ts) honest parties and the ts � ta parties from U whose polynomials
are public. Hence, in the subsequent run, the prior case is guaranteed to occur
and parties will successfully output shares on the dealer’s polynomial.

iii. The dealer broadcasts (continue, Q,G, V ). In this case, it must hold that |Q| <
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n � ta, |U | < ts � ta and W = �. Again, by the properties of broadcast, we
have that the dealer’s broadcasted message will be delivered to all the honest
parties by time 3TBC. Hence, all the honest parties will participate with input 0
in ⇧BA and due to its liveness and validity, they will receive the output as 0 by
time 3TBC + TBA. Thus, they will proceed to check the validity of Q,G, V and
identify that it is valid. It is guaranteed that each honest Pj 2 V , has an edge
with every honest Pk and the corresponding OK is received by all the honest
parties, including the dealer by time 2TBC. Hence, for each (Pj, Pk) pair where
Pj 2 V and does not have an edge with some Pk, it is guaranteed that at least
one of Pj, Pk is corrupt. Further, every honest Pk such that it does not have an
edge with Pj 2 V broadcasts the correct fk(j) and is received by all the honest
parties and the dealer by time 4TBC. Hence, once again, no honest party gets
added to W . We now have two cases to consider:

• The dealer broadcasts (restart, U). This implies that the broadcast of some
Pk or Pj such that Pk does not have an edge with Pj 2 V results in a ? or
results in value not equal to F (k, j) at time 4TBC + TBA. The dealer adds
at least one party to W and hence adds at least one new party to U . By
the argument above, we have that Pk or Pj added to W is guaranteed to
be corrupt. The dealer then broadcasts (restart, U) which is received by
all the honest parties by time 5TBC. All the honest parties will participate
with input 0 in ⇧BA and due to its liveness and validity, they will receive
the output as 0 by time 5TBC + 2TBA. Thus, all honest parties restart the
protocol in synchronization. By the same argument as earlier, upon at most
ts � ta restarts, we have that an honest dealer will conclude the protocol
by finding a |Q| � n � ta which includes the (n � ts) honest parties and
ts � ta parties from U .

• The dealer broadcasts (sync, G,Qa). In this case, it must hold that for
every Pj 2 V , such that (Pj, Pk) did not have an edge at time 2TBC, both
parties indeed broadcasted the correct value F (k, j) by time 4TBC, thus
ensuring that (Pj, Pk) are now consistent. Given that a valid Q is of size
|Q| = n � ts + |U | and the dealer has additionally resolved conflicts with
(ts� ta)� |U | parties, this implies that Qa = Q[V is indeed of size at least
n � ta. Hence, the dealer’s broadcast of (sync, G,Qa) actually contains a
clique of the required size and will be received by the parties within time
TBC. Consequently, each honest party Pi will construct the graph Gi exactly
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as the dealer, hence its verification passes. All the honest parties will thus
participate with input 1 in ⇧BA and due to its liveness and validity, they will
receive the output as 1 by time 5TBC+TBA. The parties then compute their
output similar to the first case (The dealer finds Q such that |Q| � n� ta)
at time 5TBC + 2TBA + 3�.

(b) ts privacy: Observe that the only step at which the dealer reveals information
regarding the secret (excluding the initial step of sharing the polynomial) corre-
sponds to the public broadcast of fi(x) for parties in U . Note that a party Pi is
added to U at time 2TBC if its broadcast corresponding to the pairwise consistency
checks results in ?, has more than ts NRs or has an incorrect fi(j) value. Neither
of these conditions holds true for an honest party; hence, an honest party does not
get added to U at this time step. Further, parties also get included to U at time
4TBC. Here, a party Pi may get added to U if its broadcast corresponding to a party
Pj 2 V results in a ? or has an incorrect value. Given that an honest party re-
ceives an honest dealer’s broadcast of (continue, Q,G, V ) at time 3TBC and its own
polynomial from the dealer in time �, it broadcasts the required (correct) values
which are received by the dealer at time 4TBC. Hence, an honest party does not get
added to U . Thus, we have that from the dealer’s communication, an adversary
can learn at most ts univariate polynomials corresponding to the corrupt parties,
thus ensuring privacy.
Further, we show that the adversary does not learn any additional information
from the broadcast of honest parties. During pairwise exchange, it is ensured that
the honest parties successfully send common points to each other. Hence, every
honest Pi broadcasts Ri[j] = OK corresponding to every honest Pj and does not
reveal any information o an adversary. Further, an honest party only broadcasts
points for a party in Pj 2 V such that (Pi, Pj) does not have an edge by time
2TBC. Given that this does not hold for any honest Pj as argued earlier, each fi(j)

revealed by an honest party Pi corresponds to a corrupt Pj, thus not revealing
any information to the adversary. In conclusion, the adversary cannot learn any
information beyond (at most) ts univariate polynomial shares it can obtain from
(at most) ts corrupt parties, ascertaining ts privacy.

(c) ts weak commitment: If no honest party computes an output, then the weak com-
mitment holds trivially. Hence, we consider the case when there exists some honest
party Pk which computes the output at time T . We further analyze this in the fol-
lowing cases:

263



i. Pk computes the output via obtaining (sync, G,Qa) in some iteration of
the protocol: In this case, it implies that Pk obtains the output of ⇧BA as
1 either at time 3TBC + TBA or 5TBC + 2TBA. This further implies that some
honest party Ph participates in ⇧BA with input 1. If not, then the liveness and
validity of ⇧BA would ensure that parties output 0 and not compute output via
(sync, G,Qa). Consider the case that Ph has bh = 1 in ⇧BA instance at time
3TBC. In this case, note that Ph must have verified that the dealer’s graph G

is indeed the same as Gh constructed using the broadcast it receives by time
2TBC. Moreover, Qa also satisfies the requirements. By the consistency and
liveness properties of broadcast in the synchronous network, we have that the
output computed by all the honest parties in the broadcast instance of the
dealer is the same at time 3TBC. Similarly, by the properties of broadcast, it
also holds that the output of broadcast instances computed by all the honest
parties at time 2TBC is identical to that computed by Ph. Hence, it must hold
that (sync, G,Qa) is received and verified by all the parties successfully. Hence,
all the parties must have set bi = 1 in the instance of ⇧BA and obtained the
output 1 at time 3TBC + TBA. Given that |Qa| � n � ta and all the parties are
consistent with each other, we have that all the honest parties in Qa output
fi(x) such that F 0(x, i) = fi(x) for some (ts, ts)-degree bivariate polynomial
F 0 at time 3TBC + TBA + 3� in that iteration. Now consider an honest party
Pi /2 Qa. By time 3TBC + TBA + 3�, Pi is guaranteed to receive fj(i) from each
honest Pj 2 Qa. If Pi receives at most ta erroneous points (points not lying
on F 0(x, y)) and additionally it holds fi(x) = F 0(x, i) received from the dealer
at time � in this iteration, then by Corollary 6.3.3, Pi must have successfully
reconstructed the same fi(x) from the points of parties in Qa and set it as
its output, thus ensuring the correct output. On the other hand, suppose Pi

receives more than ta erroneous points from the parties in Qa. In this case,
by Corollary 6.3.4, Pi identifies that the network is synchronous. If Pi has not
received fi(x) from the dealer by time � then it outputs ?. Otherwise, Pi had
received its polynomial by time � and sent fi(j) to every Pj, an honest party
Pj 2 Qa for whom the value did not match would have indeed broadcasted
its own value in Rj[i] at time 2TBC or its value fj(i) would already be public if
Pj 2 U . If indeed Pj 2 Qa has broadcasted Rj[i] at time 2TBC or Pj 2 U has
fj(i) which is not equal to fi(j), then Pi identifies that the dealer is corrupt
since it has included Pj 2 Qa while it has sent fi(x) such that fi(j) 6= F 0(i, j).
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Hence, Pi outputs ?. On the other hand, if Pj has broadcasted Rj[i] = fi(j)

or Rj[i] = NR at time 2TBC, then Pi identifies that Pj is corrupt and has sent
it an incorrect value at time 3TBC + TBA + 3�. In this case, Pi ignores fji

sent by Pj. If Pi successfully reconstructs a polynomial after discarding these
points which is equal to fi(x) received from the dealer, then it is guaranteed
that the polynomial is indeed consistent with all the honest parties in Qa.
This is because Pi only discards the points of corrupt parties who behaved
inconsistently at times 2TBC and 3TBC + TBA + 3�. Thus, we have that an
honest Pi /2 Qa indeed outputs fi(x) = F 0(x, i), where F 0(x, y) is the (ts, ts)-
degree bivariate polynomial defined by the honest parties in Qa.
The other case, that Ph has bh = 1 in ⇧BA instance at time 5TBC + 2TBA follows
similarly. Here, it must also hold that the output of ⇧BA at time 3TBC+TBA was
0. Otherwise, Ph and all the honest parties would proceed as in the former
case. Thus we have that Ph received (sync, G,Qa) at time 5TBC + TBA and
accepted it, then it implies that it also received a valid (continue, Q,G, V ) at
time 3TBC and broadcasts of parties corresponding to V at time 4TBC + TBA. If
not, then Ph would have either received an invalid (sync, G,Qa) or (restart, U)

or ? or an invalid G,Q, V in (continue, Q,G, V ). In either of these cases, Ph

would not have proceeded to execute steps designated for time beyond 4TBC+

TBA and not participated in ⇧BA with input 1, which is a contradiction. Since Ph

received valid broadcasts from the dealer at time 3TBC and 5TBC + TBA, by the
consistency and liveness properties of broadcast in the synchronous network,
we have that all the honest parties also received it at the designated time steps.
Following this, the argument for ts weak commitment follows exactly as that
for the previous case, where all the honest parties either output shares on the
same polynomial or ? at time 5TBC + 2TBA + 3�.

ii. Ph computes the output via obtaining (async, A,Qa) at time T in some it-
eration of the protocol: First note that this implies that none of the (ts � ta)

iterations terminated via the (sync, G,Qa) path for Ph. Since the decision of
output computation is taken via ⇧BA, by its liveness and consistency property,
it is guaranteed that no honest party computes its output via (sync, G,Qa).
Note that since Ph computes the output at time T , it implies that the dealer’s
broadcast indeed has a valid clique which was received and verified by Ph

by time T � 3�. Moreover, by the fallback consistency property of broadcast
in a synchronous network, we have that all the honest parties will receive
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(async, A,Qa) and the AOK messages to validate its correctness within time
(T � 3�) + 2� = T � �. By the fact that |Qa| � n � ta and includes at least
ts + ta + 1 honest parties, we have that fi(x) held by each Pi 2 Qa is such that
fi(x) = F 0(x, i) for some (ts, ts)-degree bivariate polynomial F 0(x, y). More-
over, each Pi 2 Qa will compute an output by time (T � �) + 3� = T + 2�.
Consider an honest Pi /2 Qa. As before, since the network is synchronous, it
is guaranteed to receive fj(i) from each honest Pj 2 Qa by time at most T .
Since Pi /2 Qa waits for time at least 3� upon accepting (async, A,Qa), it is
guaranteed to receive the points of all the honest parties before proceeding
for reconstruction. At this time, if it receives less than ta erroneous points,
then it successfully recovers the correct polynomial fi(x) = F 0(x, i) defined by
the honest parties in Qa and computes an output at time T + 2�. Otherwise,
Pi identifies that the network is synchronous. In this case, if the dealer was
honest then Pi knows that it would have terminated via (sync, G,Qa). Hence,
Pi identifies that the dealer is corrupt and outputs ?. Thus, we have that all
the honest parties output fi(x) such that fi(x) = F 0(x, i) holds for some (ts, ts)

degree polynomial F 0(x, y). Moreover, all honest parties compute their output
within a delay of 2� from each other.

2. Asynchronous network: We now prove the properties of ⇧WSS in the asynchronous
network.

(a) ta correctness: Let the dealer be honest. Since the network is asynchronous, we
have that the adversary can corrupt at most ta parties. Given this and the fact that
all the honest parties’ messages (including the dealer’s) get delivered eventually,
we have that the set of all the honest parties eventually constitutes an (n � ta)

sized clique. Thus we have that via the sequence of steps corresponding to an
asynchronous network, the dealer will eventually broadcast (async, A,Qa) which
will be validated by all the honest parties. Moreover, each honest Pi 2 Qa will
output a correct fi(x) which it received from an honest dealer. Now consider the
case of an honest party Pi outside Qa. An honest party Pi /2 Qa will eventually
receive fj(i) from every honest party Pj 2 Qa. Since at most ta parties are cor-
rupt and can send erroneous points to Pi, by Corollary 6.3.3 we have that Pi will
successfully reconstruct and output a correct fi(x) consistent with the dealer’s bi-
variate polynomial. Moreover, if some honest party actually receives (sync, G,Qa)

and obtains an output, by the consistency of ⇧BA we have that some honest party
participated with input 1 in the agreement protocol. Hence, all the honest parties
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will eventually receive the output as 1 and compute their output correctly.

(b) ts privacy: As in the synchronous case, the only step at which the dealer reveals in-
formation regarding its secret beyond the sharing of polynomials is when it broad-
casts fi(x) corresponding to each Pi 2 U . Note that the dealer adds a party in U if
Ri[j] 6= F (i, j) or Pi’s broadcast results in NR for more than ts parties. Given that
the network is asynchronous, an honest Pi may thus get added to U . However, it
is ensured that the dealer reveals fi(x) for at most ts� ta such parties. Thus, in the
worst case, we have that the adversary learns ts such univariate polynomials fi(x)
corresponding to ta corrupt parties and additionally ts � ta honest parties in U .
Hence, the adversary can learn exactly as much information regarding the secret
as in the synchronous case, thus ensuring privacy.
Further, we show that the adversary does not learn anything beyond ts univariate
polynomials, even from the broadcast of the parties. First, observe that during the
pairwise exchange, if an honest party Pi does not receive fj(i) from an honest Pj

then it broadcasts NR at time TBC. When it eventually receives fj(i) from Pj, it is
guaranteed that fj(i) = fi(j) and hence Pi broadcasts AOKj. Hence, the broad-
casts corresponding to pairwise checks do not reveal any information regarding
the honest parties’ secrets. Next, we have that parties may reveal information re-
garding their polynomial if they receive (sync, Q,G, V ) from the dealer. In this case
again, it is possible that V contains an honest party Pi for whom all the parties Pj

not having an edge with Pi reveal their common point fj(i). However, note again
that |U [ V |ts � ta, and hence, at most ts � ta honest parties’ polynomials may
be revealed to the adversary. By the same argument as earlier, we have that the
adversary gains no information beyond ts univariate polynomials on the dealer’s
polynomial, which is exactly as in the case of the synchronous network. Thus, we
have that ts privacy holds even in the asynchronous network.

(c) ts strong commitment: We now show that when the network is asynchronous,
irrespective of the adversary’s behavior, each honest party Pi will output fi(x) such
that fi(x) = F 0(x, i) for some (ts, ts) degree polynomial F 0(x, y).
We will first show that given two cliques, say Qa and Q0

a
, each of size at least n�ta,

we have that the shares held by the honest parties in Qa as well as Q0
a

are consistent
with the same (ts, ts) degree bivariate polynomial. Given that |Qa| � n � ta, |Q0a|
and we have a total of n parties, it must hold that |Qa \ Q0

a
| � n � 2ta. Moreover,

we know that n� 2ta � 2ts+1. Hence, it holds that Qa\Q0a contains at least ts+1

honest parties who hold polynomials that define a unique (ts, ts) degree bivariate
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polynomial, say F (x, y). Let H be the set of (at least) ts + 1 honest parties such
that an honest Pi 2 H when Pi 2 Qa \ Q0

a
. Further, since both Qa and Q0

a
are

cliques, it holds that each honest Pj 2 Qa [ Q0
a

is consistent with every Pi 2 H.
Given that the degree ts polynomial fj(x) held by Pj is consistent with (at least)
ts + 1 points of F (x, j), it must hold that fj(x) = F (x, j) for each Pj 2 Qa as well
as every Pj 2 Q0

a
. This ensures that all the honest parties belonging to different

cliques of size at least n � ta are guaranteed to hold polynomials consistent with
a unique (ts, ts) degree bivariate polynomial. Given this, we now argue that our
protocol ensures ts strong commitment in an asynchronous network.
If no honest party computes an output when the dealer is corrupt, commitment
holds trivially. Thus, we consider the case when some honest party Ph computes
an output. Note that this implies that Ph has received either (sync, G,Qa) and
(async, A,Qa) and verified it to compute an output. In the former case, we have
that Ph received 1 as the output of ⇧BA during some iteration of the protocol.
Hence, there exists some honest party that participated in an instance of ⇧BA with
input 1. If not, then by the validity of ⇧BA, all the honest parties would have
output 0. Hence, Ph would not have computed its output via (sync, G,Qa) which
is a contradiction. By the consistency of ⇧BA it thus holds that all the honest
parties will receive 1 as the output of ⇧BA and eventually compute their output.
This is because parties in Qa will eventually verify the clique and compute their
output. For parties outside, Qa, by Corollary 6.3.3, we have that they will be
able to reconstruct the polynomial that is consistent with the honest parties in Qa.
Similarly, if Ph computes its output via (async, A,Qa), the same argument holds.

6.7 Verifiable Secret Sharing
The weak secret sharing protocol falls short of providing the properties of verifiable secret
sharing. This is because, when the dealer is corrupt and the network is synchronous, it is
possible that some honest parties, specifically the parties lying outside the (n, ta)-Star, may
not receive their shares. To fix this, and ensure that all or none of the honest parties receive
their shares, we follow the approach of [13]. As described in [13], this results in a verifiable
secret sharing protocol ⇧VSS with two layers. The VSS protocol ensures that all the parties
hold a degree-ts Shamir-sharing of the dealer’s input secret.

Here, we give a complete description of our verifiable secret sharing protocol, which al-
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lows a dealer to generate a degree-ts sharing of its input among parties, followed by its proof.

Protocol 6.7.1: ⇧VSS

Input: The dealer holds a secret s 2 F.
Initialisation: The dealer initialises two sets W,U to �. Only W is reset in every run to ;.

1. (Polynomial Share Distribution) The dealer chooses a symmetric bivariate polynomial
F (x, y) of degree ts in both x, y and delivers fi(x) = F (x, i) to Pi. If |U | > ts � ta, then
assign U to be the set of first ts � ta parties lexicographically. The dealer broadcasts
(U, {fi(x)}i2U).

2. (Pair-wise exchange) At time TBC, if fi(x) is received at time � then every Pi participates
in an instance of ⇧WSS as the dealer, say ⇧(i)

WSS
with input fi(x). Pi also participates in

⇧(j)
WSS

instances for every j 2 {1, . . . , n} \ U .

3. (Pair-wise Consistency Check) At time TBC + TWSS Pi prepares a vector Ri of length n as
follows and broadcasts it. It sets Ri[j] = NR for all j if either of the following happens:

(a) it receives no fi(x)

(b) the dealer’s broadcast results in ?

(c) some fj(x) in the broadcast (U, {fi(x)}i2U) is of degree more than ts

(d) there are indices j, k such that fj(k) 6= fk(j) in the broadcast (U, {fi(x)}i2U)

Otherwise, it sets Ri as follows. (1) if Pj 2 U , then Ri[j] = fi(j) (2) if Pj 62 U , then set
(a) Ri[j] = NR if fji is not computed as output in Pj ’s instance ⇧(j)

WSS
, (b) Ri[j] = fi(j) if

fji is received as output from ⇧(j)
WSS

and fi(j) 6= fji, (c) Ri[j] = OK otherwise.

4. (Asynchronous Pair-wise Consistency Checking) The parties execute the following steps
as and when they receive the required values. On receiving the broadcast (U, {fi(x)}i2U)
and polynomial fi(x) from the dealer, every Pi 62 U participates in an instance of ⇧WSS

as the dealer, say ⇧(i)
WSS

with input fi(x). Pi also participates in ⇧(j)
WSS

instances for every
j 2 {1, . . . , n}. Pi broadcasts AOKj if (a) fji is computed from ⇧(j)

WSS
from Pj 62 U and

fi(j) = fji (b) fj(i) for Pj 2 U satisfies fi(j) = fj(i).

5. (Restart or Clique Finding) At time 2TBC + TWSS, the dealer puts Pi 62 U in W if either
happens (a) Pi’s broadcast of Ri resulted in ? or (b) Pi’s broadcasted Ri has more than
ts NRs or (c) Ri[j] 6= F (i, j) when Ri[j] 6= OK and Ri[j] 6= NR.
The dealer makes a graph G with n vertices corresponding to n parties. There is an
edge when Ri[j] = Rj[i] = OK. There is no edge if Ri[j] = NR or Rj[i] = NR. The dealer
finds a clique Q of size n � ts + |U | in the graph including U . If |Q| � n � ta, then the
dealer sets Qa = Q and broadcasts (sync, G,Qa). Otherwise, if |W | > 0, then the dealer
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sets U = U [W and broadcasts (restart, U). Otherwise, it broadcasts (continue, Q,G, V ),
where V is a set of (ts � ta)� |U | parties (vertices) outside Q [ U .

6. (Asynchronous Clique Finding) The dealer executes the following steps as and when
it receives the required messages. First, the dealer initiates a graph A with parties as
vertices with edges between a pair of parties in U . On receiving broadcasts AOKij and
AOKji from Pi, Pj 62 U , it adds an edge between Pi, Pj. On receiving broadcast AOKij

from Pi 62 U, Pj 2 U , it adds an edge between Pi, Pj. Each time there is an update in
A, it invokes (C,D,E, F ) Star(A) (Protocol 6.4.2) If |F | > n� ta, it sets Qa = F and
broadcasts (async, A,Qa).

7. (Conflict Resolution for Clique Expansion or Restart) At time 3TBC + TWSS, the parties
do the following:

(a) If (sync, G,Qa) is received, then Pi verifies G,Qa as follows. It checks the validity
of Gi in the same way as in Step 7c. It checks if Qa is a (n � ta)-size clique in
Gi including parties in U . If the verification passes, then set bi = 1 and bi = 0

otherwise and participate in an instance of ⇧BA. If the protocol output is 1 then go
to Protocol 6.7.2. Otherwise, wait for (async, A,Qa) from the dealer.

(b) If (restart, U) is received, then set bi = 0 and participate in an instance of ⇧BA. If
the output is 1, then go to Protocol 6.7.2. Otherwise, restart the protocol from
Step 1.

(c) If (continue, Q,G, V ) is received, then set bi = 0 and participate in an instance of
⇧BA. If the output is 1, then go to Protocol 6.7.2. Otherwise, when the output
is 0, verify Q,G, V . For this, construct Gi exactly as the dealer did based on the
broadcasts available at time 2TBC + TWSS at Step 5. G is marked as invalid if

i. it is different from Gi AND

ii. there is a pair Pj, Pk 62 U such that Rj[k] 6= Rk[j] or there is a pair Pj 62 U, Pk 2
U such that Rj[k] 6= fk(j).

Q is invalid if it is not a clique in a valid G of size at least n � ta and does not
include parties in U . V is invalid if it is not a set of (ts� ta)� |U | parties (vertices)
outside Q [ U in a valid G.

If Q,G, V are valid, then for each (Pj, Pk) who do not have an edge and Pj 2 V ,
Pj broadcasts fj(k) and Pk broadcasts fk(j) if fj(x) and fk(x) if received from the
dealer at time �. Otherwise, they broadcast ?. Let V 0 be the set of parties in V

and the parties they do not have an edge to.
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If G or Q or V from broadcast (continue, Q,G, V ) is invalid, then wait until a broad-
cast (async, A,Qa) from the dealer is received. Go to Protocol 6.7.2 on receiving
(async, A,Qa).

(d) If? is received then set bi = 0 and participate in an instance of ⇧BA. If the output is
1, then go to Protocol 6.7.2. Otherwise, wait until a broadcast (async, A,Qa) from
the dealer is received. Go to Protocol 6.7.2 on receiving (async, A,Qa).

8. (Clique Expansion or Restart (for the dealer)) At time 4TBC + TWSS + TBA, the dealer
adds Pi in W if the broadcast of Pi 2 V 0 in the previous step is ? or if the broadcast
is not F (i, j). If |W | > 0, then the dealer sets U = U [W and broadcasts (restart, U).
Otherwise, the dealer sets clique Qa = Q [ V and broadcasts (sync, G,Qa).

9. (Local Computation: Deciding on exit route or restart (for all)) At time 5TBC + TWSS +

TBA, every Pi does as follows:

(a) If (restart, U) is received, then set bi = 0 and participate in an instance of ⇧BA. If
the output is 1, then go to Protocol 6.7.2. Otherwise, restart the protocol from
Step 1 with U and W reset to ;.

(b) If (sync, G,Qa) is received from the broadcast of the dealer it constructs Gi in the
same way as in Step 7c. It then updates Gi based on the broadcasts received at
time 4TBC+TWSS+TBA and checks its validity as in Step 7c. Next, it checks if Qa is
a (n� ta)-size clique in Gi including parties in U . If the verification passes, then set
bi = 1 and bi = 0 otherwise and participate in an instance of ⇧BA. If the output of
the protocol is 1 then go to Protocol 6.7.2. Otherwise, wait for (async, A,Qa) from
the dealer.

(c) If ? is received from the broadcast, then set bi = 0 and participate in an instance
of ⇧BA. If the output is 1, then go to Protocol 6.7.2. Otherwise, wait until a broad-
cast (async, A,Qa) from the dealer is received. Go to Protocol 6.7.2 on receiving
(async, A,Qa).

Protocol 6.7.2: ⇧Output

VSS

Condition for Output: Parties output via (async, A,Qa) only after local time
(ts � ta + 1) · (5TBC + TWSS + 2TBA). Parties output via (sync, G,Qa) only before local
time (ts � ta + 1) · (5TBC + TWSS + 2TBA).

Upon receiving (sync, G,Qa) or (async, A,Qa) from the dealer, each Pi verifies G,Qa or
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A,Qa as follows: It constructs Gi or Ai exactly the way the dealer does in the respective steps
based on the broadcasts available until now. Pi continues to update Gi or Ai based on the
broadcasts it receives if the edges in G (respectively A) are not a subset of the edges in Gi

(resp. Ai) or Qa is not a (n� ta)-size clique in Gi (resp. Ai). Otherwise, it does the following:

1. If Pi 2 Qa, outputs fi(x).

2. If Pi /2 Qa then upon computing fji as output from ⇧(j)
WSS

corresponding to ts + 1 parties
Pj 2 Qa, Pi reconstructs its polynomial fi(x) and outputs it.

Theorem 6.7.3. Let TVSS = (ts� ta+1) · (5TBC+TWSS+2TBA). Protocol ⇧VSS is perfectly-secure

against an adversary corrupting up to ts parties in the synchronous network and up to ta parties

in the asynchronous network and has the following properties.

1. Synchronous network:

(a) ts correctness: When the dealer is honest, at time TVSS, all the honest parties output

si = fi(0).

(b) ts privacy: The view of the adversary is independent of the honest dealer’s secret s.

(c) ts strong commitment: When the dealer is corrupt, either no honest party computes

an output or each honest party Pi is such that it outputs si. Moreover, it holds that

si = f 0(i) for some degree-ts polynomial f 0(x). Also, if some honest party outputs by

time T , then all honest parties have an output by time T + 2�.

2. Asynchronous network:

(a) ta correctness: When the dealer is honest, almost-surely all the honest parties output

si = fi(0) eventually.

(b) ts privacy: The view of the adversary is independent of the honest dealer’s secret s.

(c) ta strong commitment: When the dealer is corrupt, either no honest party computes an

output or almost-surely each honest party Pi outputs si eventually such that si = f 0(i)

for some degree-ts polynomial f 0(x).

Proof. At a very high level, the proof follows closely to that of ⇧WSS. We first prove the
properties of ⇧VSS in the synchronous network.

1. Synchronous Network:
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(a) ts correctness: Consider the dealer to be honest. Given that the network is syn-
chronous, we have that the network has a delay of at most �. Thus, each honest
party Pi will receive its fi(x) from the dealer within time �. Moreover, the dealer’s
broadcast of (U, {fi(x)}i2U) will be received within time TBC from the start and ini-
tiate the instance of ⇧(i)

WSS
. Further, every honest party will also participate in the

instances initiated by all the other honest parties. We have that by time TBC+TWSS,
all the honest parties will compute output in the ⇧WSS instance of every other hon-
est party. Thus, we have that by time TBC+TWSS, Pi has all the required information
to compute the vector Ri. Hence, it will compute Ri such that Ri[j] = OK for ev-
ery honest Pj and the correct fi(j) corresponding to every Pj 2 U and broadcasts
it. By the liveness and validity property of broadcast in the synchronous network,
we have that all the honest parties broadcast will be received successfully by time
2TBC + TWSS. Hence, we have that no honest party gets added to W . Similar to
⇧WSS, we now have the following cases to consider:

i. The dealer finds a Q such that |Q| � n � ta. This implies that the dealer
received the broadcasts of all the parties in Q by time 2TBC + TWSS. By the
consistency property of broadcast, we have that all the honest parties would
also have received the same. Further, we have that the dealer will broadcast
(sync, G,Qa) which will be received by all the parties at time 3TBC + TWSS.
And hence, all the honest parties will participate in ⇧BA with input 1. By the
liveness and validity of ⇧BA in the synchronous network, all the honest parties
will output 1 at time 3TBC + TWSS + TBA and hence compute the output as
follows. Every Pi 2 Qa will output the polynomial fi(x) it received from the
dealer. Now consider an honest party Pi /2 Qa. Since |Qa| � n � ta, we have
that at least n � ta � ts � ts + 1 honest parties. Thus, it holds that Pi must
have computed fji as the output in Pj ’s instance of ⇧(j)

WSS
. Hence, Pi has at

least ts + 1 points on a ts degree polynomial. We now consider the case when
Pi has computed its output in ⇧(j)

WSS
for some corrupt party Pj 2 Qa. Since

(sync, G,Qa) is such that the dealer honestly computed Qa, it must hold that Qa

was indeed a clique at time 2TBC+TWSS. This implies that each honest Pk 2 Qa

is broadcasted Rk[j] = OK corresponding to every corrupt Pj 2 Qa. By the ts

weak commitment property of ⇧WSS, we have that all the honest parties would
have indeed computed fkj which lie on a unique ts degree polynomial. Given
that at least ts + 1 honest parties broadcasted OK to such a corrupt party Pj,
it must indeed hold that Pj participated with the dealer’s correct polynomial
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fj(x) in ⇧(j)
WSS

. Hence, we have that even if Pi /2 Qa has computed an output
fji in ⇧(j)

WSS
corresponding to a corrupt Pj, it must hold that fji = fi(j). Hence,

the polynomial interpolated by Pi /2 Qa is indeed fi(x) = F (x, i) where F (x, y)

is the (ts, ts) degree bivariate polynomial held by the dealer.

ii. The dealer broadcasts (restart, U). In this case, we have that the dealer added
at least one party to W , and hence added at least one new party to U . Further,
by the validity of broadcast, all the honest parties will receive (restart, U) at
time 3TBC + TWSS and set their input to ⇧BA as 0. By the validity of ⇧BA, all
parties will output 0 at time 3TBC + TWSS + TBA and consequently, restart the
protocol in synchronization. Moreover, note that a party is added to W if and
only if it broadcasts an incorrect value or its broadcast results in more than ts

NRs. However, given that each honest Pi computes fji in ⇧(j)
WSS

corresponding
to every honest party Pj, and it receives fi(x) from the dealer within � time,
we have that Ri[j] = OK for every honest Pj. Moreover, for every corrupt Pj

such that fji 6= fi(j), it holds that Ri[j] = fi(j) broadcasted by Pi is indeed
the correct value. Hence, an honest party is never added to W and hence not
added to U . Given this observation, we have that upon ts � ta restarts of the
protocol, an honest dealer would have added ts � ta corrupt parties to U , and
hence their polynomials would be public. Thus, in the subsequent iteration,
the dealer is bound to find a clique of size n� ta and successfully terminate via
the former path of (sync, G,Qa).

iii. The dealer broadcasts (continue, Q,G, V ). This implies that |Qa| < n � ta,
|U | < ts � ta and W = �. Since the dealer broadcasts this at time 2TBC + TWSS,
we have that all the honest parties receive it by 3TBC + TWSS and participate
with input 0 in ⇧BA. Parties will thus output 0 at time 3TBC + TWSS + TBA and
proceed to verify the dealer’s broadcasted sets. By the validity of broadcast at
time 2TBC + TWSS, we have that all the honest parties will identify Q,G, V to
be valid. Moreover, we have that an honest Pi 2 V , would have computed an
output in ⇧(j)

WSS
every honest Pj and hence neither Pi nor Pj broadcast their

value at this stage. Also, each honest Pi broadcasts the correct fi(j) for every
corrupt Pj 2 V which is received by all the honest parties including the dealer
at time 4TBC + TWSS + TBA. Hence, an honest party does not get added to W .
We now have two cases to consider:

• The dealer broadcasts (restart, U). This implies that the broadcast of some
corrupt party Pj either resulted in a ? or had an incorrect value. In either
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case, the dealer adds this party to W and thus has identified a new party
to be added to U . The dealer’s broadcast of (restart, U) is received by all
the honest parties by time 5TBC+TWSS+TBA who participated with input 0
in an instance of ⇧BA. Thus, by the validity of ⇧BA, the honest parties will
obtain 0 as the output at time 5TBC + TWSS + 2TBA and restart the protocol
in synchronization.

• The dealer broadcasts (sync, G,Qa). This implies that for every Pj 2 V such
that (Pj, Pk) did not have an edge, both Pj and Pk broadcasted the correct
fj(k) by time 4TBC+TWSS+TBA. By the validity of broadcast, we have that
all the honest parties indeed have the same output. Due to this, parties
will participate in ⇧BA with input 1. By the validity of ⇧BA, we have that
all the honest parties will output 1 at time 5TBC+TWSS+2TBA and compute
their output. The output computation will be successful due to the same
argument as the first case (The dealer finds a Q such that |Q| � n� ta.)
and hence we avoid repetition.

In all the above cases, note that parties compute their output within time TVSS.

(b) ts privacy: Apart from sending the pairwise shares to each party, the dealer reveals
information corresponding to its secret only when it broadcasts fi(x) correspond-
ing to every Pi 2 U . Moreover, a party Pi is added to U only if it broadcasts the
incorrect value corresponding to fi(j) or its broadcasts result in a ? or more than
ts NRs. Given this, we note that no honest party gets added to U . Thus, we have
that every party in U is corrupt when the dealer is honest and hence already knows
the fi(x) broadcasted by the dealer. Now consider the values broadcasted by the
honest parties. Since every honest Pi computes an output in ⇧(j)

WSS
instance of every

honest Pj, we have that by time 2TBC + TWSS, Pi broadcasts their Ri[j] = OK. By
the validity property of broadcast, this will be received by all the honest parties in-
cluding the dealer and the consistency graph constructed by all the honest parties
contains an edge for every honest (Pi, Pj). The only other time step at which an
honest party Pi broadcasts fi(j) for some party Pj is when the dealer broadcasts
(continue, Q,G, V ). Again, at this step, an honest Pi 2 V will only broadcast the
correct fi(j) corresponding to every corrupt Pj. And similarly, an honest Pi /2 V

will broadcast fi(j) for every corrupt Pj 2 V . These are the values that the ad-
versary already knows having obtained the fj(x) corresponding to every Pj and
hence does not learn anything additionally. Finally, we have that for every cor-
rupt Pj, the adversary learns fi(j) corresponding to an honest Pi in its instance of
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⇧(i)
WSS

. However, this information is already available to the adversary due to its
univariate polynomial share fj(x). Further, the ts privacy of ⇧WSS ensures that the
adversary’s view remains independent of an honest party’s polynomial fi(x). In
conclusion, we have that the adversary can learn at most ts univariate polynomials
fj(x) corresponding to (at most) ts corrupt parties, thus ensuring ts privacy.

(c) ts strong commitment: Consider the case when the dealer is corrupt. If no honest
party computes an output, then strong commitment holds trivially. We thus con-
sider the case when some honest party, say Pk, computes its output. We now have
two cases to consider:

i. Pk computes the output by obtaining (sync, G,Qa) in some iteration of the
protocol. This implies that Pk received 1 as the output of ⇧BA in some iter-
ation of the protocol before TVSS. This further implies that there exists some
honest party Ph which participated in ⇧BA with input 1. If not, then all the
honest parties would have set their input as 0, and by the validity property of
⇧BA, all the parties would have received 0. In this case, parties would not have
output via (sync, G,Qa) which is a contradiction. Thus, it must be that some
Ph set bh = 1 as its input to ⇧BA. This also implies that Ph received the dealer’s
broadcasts as well as the necessary broadcasts from the parties as per the syn-
chronous time steps and verified it. By the liveness and consistency properties
of broadcast, we thus have that all the honest parties must have computed
the same output in all the broadcast instances and set their input to ⇧BA as
1. This in turn implies that all the honest parties will compute their output
via (sync, G,Qa). Further, since accepting (sync, G,Qa) involves verifying the
dealer’s graph based on the broadcast of parties at time 2TBC + TWSS, it must
hold that honest parties indeed broadcasted their Ri vector at time TBC+TWSS.
This also implies that there exist honest parties obtained the output of ⇧(j)

WSS

instantiated by some corrupt party Pj 2 Qa within time TWSS of its start. By
the ts weak commitment property of ⇧WSS, it must thus hold that all the hon-
est parties that compute an output in ⇧(j)

WSS
do so within the same time and

hence have their output by time TBC + TWSS. Now consider the honest parties
in Qa. Since parties verify the validity of the clique Qa, it is ensured that all the
honest parties in Qa are actually consistent with each other. Thus, each hon-
est Pi 2 Qa must hold fi(x) such that fi(x) = F 0(x, i) for some (ts, ts) degree
bivariate polynomial F 0(x, y). Now consider an honest party Pi /2 Qa. Given
that |Qa| � n � ta, we have that there are at least n � ta � ts � ts + 1 honest
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parties in Qa. Hence, it is guaranteed that an honest Pi /2 Qa will compute
an output in ⇧WSS instances of at least ts + 1 parties from Qa. Consequently,
Pi can reconstruct its fi(x) consistent with the polynomial F 0(x, y) defined by
the shares of the honest parties in Qa. Finally, in case Pi has computed its
output in ⇧(j)

WSS
for some corrupt party Pj 2 Qa, then by the same argument

as in the case of ts correctness, we have that the output fji computed by Pi is
indeed the same as F 0(i, j). This holds since the corrupt Pj 2 Qa is consistent
with at least ts + 1 honest parties, thus ensuring that fj(x) shared by Pj in
its ⇧WSS instance is actually F 0(x, j). Hence, we have that an honest Pi /2 Qa

successfully reconstructs its fi(x) = F 0(x, i) within time TVSS ensuring ts strong
commitment.

ii. Pk computes its output via obtaining (async, A,Qa) at time T in some itera-
tion of the protocol. We first note that in this case, T > TVSS since the parties
did not output via (sync, G,Qa) in any of the (ts� ta) iterations of the protocol.
Since Pk computes its output at time T , it implies that it received (async, A,Qa)

and verified the broadcasts of all the parties in Qa by time T . Given that the
network is synchronous, by the ts fallback consistency property of broadcast,
we have that all the honest parties will receive (async, A,Qa) as well as the cor-
responding broadcasts by time at most T + 2�. Thus, an honest party Pi 2 Qa

will output fi(x) by time T +2�. Since |Qa|� ts � ts+1, we have that the uni-
variate polynomial shares of all the honest parties in Qa indeed define a (ts, ts)

degree bivariate polynomial F 0(x, y) such that fi(x) = F 0(x, i) holds for each
Pi 2 Qa. Further, since Qa is verified to be a clique by some honest party at
time T , it implies that ⇧(i)

WSS
instance of each honest Pi 2 Qa terminated before

time T . By the ts correctness property of ⇧WSS in the synchronous network,
we have that all the honest parties compute their output at the same time and
hence would have computed their output in ⇧(i)

WSS
before time T . This further

implies that every honest Pj /2 Qa must have computed its output in at least
ts + 1 instances of ⇧WSS corresponding to the honest parties in the clique, and
hence will compute its output by time T +2� in the worst case upon receiving
(async, A,Qa) and validating it. Moreover, the correctness of the polynomial
fj(x) interpolated by an honest Pj /2 Qa can be established as in the earlier
cases. We avoid repeating the argument since it’s identical to the prior cases.

2. Asynchronous Network: We now prove the properties of ⇧VSS in the asynchronous net-
work.
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(a) ta correctness: Let the dealer be honest. Given that the network is asynchronous,
we have that the adversary can corrupt at most ta of the parties. Given this, we
have that eventually, each honest Pi will successfully compute the output in ⇧(j)

WSS

corresponding to every honest Pj and broadcast AOKj. Thus, it is guaranteed that
the dealer will eventually identify a clique Qa of size at least n� ta consisting of all
the honest parties and broadcast it. Thus, if the parties do not compute their output
via (sync, G,Qa), then we have that they will eventually receive (async, A,Qa) and
compute their output. For every honest Pi 2 Qa, we have that it will output fi(x)
received from the dealer. On the other hand, an honest Pi /2 Qa will eventually
compute its output in ⇧(j)

WSS
corresponding to at least ts+1 honest parties in Qa and

hence compute its output as in the prior cases. If Pi /2 Qa computes fji as output
in ⇧(j)

WSS
corresponding to some corrupt Pj 2 Qa, then by the same argument as

the synchronous case, fji = fi(j) must hold where fi(x) = F (x, i) corresponding
to the (ts, ts) degree bivariate polynomial held by the dealer.
In the case that some honest party computes its output via (sync, G,Qa), then it
must hold that some honest party participated with input 1 in ⇧BA instance. Oth-
erwise, all the honest parties would have input 0 and the validity of ⇧BA would
ensure that parties received 0 and do not compute their output via (sync, G,Qa)

which is a contradiction. Thus, we have that some honest party input 1 to ⇧BA.
By the consistency of ⇧BA, we first have that all the honest parties will output 1
and compute their output via (sync, G,Qa). Moreover, the party which participated
with 1 would have verified the validity of Qa before accepting it. Thus, all the
honest parties will eventually validate Qa, accept it and compute their output as
described in the prior cases.

(b) ts privacy: The argument for ts privacy is exactly as in the case of the synchronous
network, hence we avoid repetition.

(c) ta strong commitment: Let the dealer be corrupt. Since the network is asyn-
chronous, we have that the dealer can corrupt at most ta parties. Note that ts

strong commitment was already achieved by the weaker variant of ⇧WSS. This
property follows very closely to ⇧VSS. Strong commitment holds trivially if no hon-
est party computes an output in a corrupt dealer’s instance. Thus, we consider
the case when some honest party Ph computes an output. We have two cases here:
either Ph computes an output via (sync, G,Qa) or (async, A,Qa). In the former case,
we have that some honest party participated in an instance of ⇧BA with input 1. If
not then the validity of ⇧BA would ensure that parties output 0 and do not compute
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their output via (sync, G,Qa) which is a contradiction. Thus, we have that there
exists some honest party which input 1 to ⇧BA. This honest party is guaranteed
to have checked the validity of Qa as required in the protocol at designated time
steps. Hence, it must hold that Qa is indeed a clique, which will eventually be
verified by all the honest parties to compute the output. Every Pi 2 Qa will thus
output fi(x) such that fi(x) = F 0(x, i) for some (ts, ts)-degree bivariate polynomial
defined by the honest parties in Qa. Further, given that |Qa| � n� ta, we have that
the number parties in Qa \U is at least n� ta� (ts� ta), that is n� ts. Of these, we
are guaranteed to have at least n� 2ts � ts + 1 honest parties. For every Pi /2 Qa,
it is thus ensured that Pi will compute its output fji in the instance ⇧(j)

WSS
of every

honest Pj 2 Qa, and hence successfully reconstruct fi(x) = F 0(x, i) eventually. In
the latter case, it must hold that Ph did not output via (sync, G,Qa) in any of the
(ts � ta) iterations of the protocol. Since Ph indeed computes its output upon re-
ceiving (async, A,Qa), it must hold that Ph verified the validity of Qa. This implies
that all the honest parties will eventually receive the same and compute their out-
put. As in ⇧WSS, we also have that the shares of the honest parties in two different
cliques Qa and Q0

a
define the same (ts, ts)-degree bivariate polynomial. Hence, ir-

respective of which n � ta sized clique an honest party accepts, it is ensured that
its output will be consistent with all the honest parties.

6.8 Verifiable Triple Sharing
In this section, we give our triple sharing protocol which was discussed in Section 6.2.2.

Protocol 6.8.1: ⇧VTS

Input: The dealer holds 2ts + 1 random multiplication triples denoted by {(ai, bi,
ci)}i2{1,...,2ts+1}.
Common Input: n+ 1 distinct elements from F, 1, . . . , n and �.
Condition: Parties continue to resolve conflicts by publicly reconstructing X(i), Y (i), Z(i) for
NOK(i) received from a party Pi until they discard the dealer or compute an output.

1. The dealer generates the degree-ts sharings by executing ⇧VSS to compute
(haii, hbii, hcii) for every i 2 {1, . . . , 2ts + 1}.

2. Upon computing the output in all the instances of ⇧VSS, wait for the time to be a multiple
of �. Then, for each i 2 {1, . . . , ts + 1}, parties locally set hxii = haii, hyii = hbii and
hzii = hcii.
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3. Let X(·) and Y (·) be the unique polynomials of degree at most ts defined by the points
{(i, xi)}i2{1,...,ts+1} and {(i, yi)}i2{1,...,ts+1} respectively. The parties locally compute hxii =
hX(i)i and hyii = hY (i)i, for each i 2 {ts + 2, . . . , 2ts + 1}.1

4. Parties invoke ⇧Beaver with {hxii, hyii, haii, hbii, hcii}i2{ts+2,...,2ts+1} and wait for time
TBeaver. Upon obtaining the output {hzii}i2{ts+2,...,2ts+1} where zi = xiyi for every
i 2 {ts + 2, . . . , 2ts + 1}, wait for the time to be a multiple of � and then proceed
to the next step.

5. Let Z(·) be the polynomial of degree at most 2ts defined by the points
{(i, zi)}i2{1,...,2ts+1}.

6. Parties compute {(hX(i)i, hY (i)i, hZ(i)i)} for each i 2 {2ts + 2, . . . , n} using
{(hX(i)i, hY (i)i, hZ(i)i)}i2{1,...,2ts+1}.

7. For each Pi 2 P, parties invoke ⇧privRec 3 times with hX(i)i, hY (i)i and hZ(i)i as input
respectively to enable Pi to privately reconstruct X(i), Y (i) and Z(i). Each party waits
for time TPrivRec. Upon computing the output, wait for the time to be a multiple of �
and proceed to the next step.

8. If X(i) · Y (i) = Z(i) holds, Pi broadcasts OK(i), and broadcasts NOK(i) otherwise. Par-
ties publicly reconstruct X(i), Y (i), Z(i) for each NOK(i) by broadcasting their shares.
Each party waits for TBC before proceeding to the next step.

9. The dealer constructs a set OK = {i|OK(i) was received from Pi’s broadcast}. Once
|OK| � n� ts, the dealer constructs a set NOK of size (n� ta)� |OK| such that NOK ⇢
P \ OK and broadcasts (OK,NOK). Parties wait for time TBC before proceeding.

10. Parties publicly reconstruct X(i), Y (i), Z(i) for each i 2 NOK,by broadcasting their
shares. Wait for time TBC. Upon receiving X(i), Y (i), Z(i), verify that X(i) · Y (i) = Z(i)

holds. If not, then discard the dealer.

11. Upon receiving OK(i) from each i 2 OK, completing the prior check for each i 2 NOK,
and ensuring that OK [ NOK � n� ta, each party proceeds to the next step.

12. Discard the dealer if X(i) · Y (i) = Z(i) does not hold for some party which broad-
casted NOK(i). If the dealer is discarded, parties output a default degree-ts sharing of
a publicly known value. Otherwise, parties locally compute and output their shares of
(hX(�)i, hY (�)i, hZ(�)i), where � 6= i for every i 2 {1, . . . , n}.

1Computing a new point on a polynomial of degree ts is a linear function of ts + 1 given unique points on
the same polynomial.
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Theorem 6.8.2. Protocol ⇧VTS is perfectly-secure against an adversary corrupting up to ts par-

ties in the synchronous network and ta parties in the asynchronous network and has the following

properties.

1. Synchronous network:

(a) ts privacy: The view of the adversary is independent of the output triple shared on

behalf of an honest dealer.

(b) ts correctness: Within time TVTS = TVSS+TBeaver+TPrivRec+3TBC = TVSS+3TBC+2�,

the honest parties output a degree-ts Shamir-sharing of a multiplication triple on

behalf of an honest dealer.

(c) ts strong commitment: If the dealer is corrupt, then either no honest party has an

output, or all the honest parties output a degree-ts Shamir-sharing of a multiplication

triple on behalf of the dealer. Moreover, if some honest party computes its output at

time T , then all the honest parties compute their output by time T + 2�.

2. Asynchronous network:

(a) ta privacy: The view of the adversary is independent of the output triple shared on

behalf of an honest dealer.

(b) ta correctness: Almost-surely, the honest parties eventually output a degree-ts Shamir-

sharing of a multiplication triple on behalf of an honest dealer.

(c) ta strong commitment: If the dealer is corrupt, then either no honest party has an

output, or all the honest parties eventually output a degree-ts Shamir-sharing of a

multiplication triple on behalf of the dealer.

Proof. We first prove the properties of ⇧VTS in the synchronous network, followed by the
proof for the asynchronous network.

1. Synchronous network:

(a) ts privacy: In a synchronous network, for an honest dealer, each honest party com-
putes its shares in ⇧VSS by time TVSS. All the parties thus begin the execution of
⇧Beaver simultaneously, and by the guarantees of ⇧Beaver, they receive the output
within time �, that is each honest party computes its output of ⇧Beaver by time
TVSS + �. Further, by the guarantees of ⇧privRec, we have that each honest party
Pi receives its points X(i), Y (i), Z(i) within time TVSS + 2� and broadcasts OK(i).
Since the honest parties start their broadcast simultaneously, all honest parties (in-
cluding the dealer) receive the OK(i) messages by time TVSS+2�+TBC. Moreover,
no honest party broadcasts NOK(i) when the dealer is honest. Thus, the dealer
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constructs its set OK which includes all the honest parties, which also ensures that
|OK| � n � ts. This guarantees that the set NOK ⇢ P \ OK does not include any
honest party. Hence, the publicly reconstructed points X(i), Y (i), Z(i) for each
i 2 NOK correspond to points held by the corrupt parties. This implies that an
adversary knows ts points on each polynomial X(·), Y (·), Z(·) which are of degree
ts, ts, 2ts respectively, thus ensuring one degree of freedom. Hence, we have that
for every candidate output triple (X(�), Y (�), Z(�)), we have a corresponding in-
put triple (ak, bk, ck) for some k 2 {1, . . . ,m} unknown to the adversary that is
consistent with the adversary’s view.

(b) ts correctness: Let the dealer be honest. Note that all the honest parties obtain
the output of ⇧VSS instantiated by an honest dealer within time TVSS. This further
implies that ⇧Beaver and ⇧privRec succeed for all the honest parties by time TVSS +

TBeaver+TPrivRec = TVSS+2�. Hence, each honest party Pi broadcasts OK(i), which,
by the validity of broadcast in the synchronous network, is received by all the
honest parties, including the dealer by time TVSS+TBC+2�. Hence, all the honest
parties simultaneously proceed to the next step at time TVSS + TBC + 2�. Parties
additionally keep broadcasting their shares corresponding to every NOK(j) which
is received. By the validity property of broadcast in the synchronous network,
we also have that the dealer’s broadcast of (OK,NOK) sets will be received by
all the parties by time TVSS + 2TBC + 2�. Finally, parties broadcast their shares
corresponding to every j 2 NOK. Again, by the validity and liveness of broadcast in
the synchronous network, we have that every honest party’s shares will be received
by all the honest parties by time TVSS+3TBC+2�. Further, we have that if NOK(j)
was broadcasted by some corrupt Pj and X(j), Y (j), Z(j) is reconstructed by this
time, then it would hold that X(j) · Y (j) = Z(j) and hence the dealer is not
discarded. Thus, we have that all the honest parties output their shares by time
TVSS + 3TBC + 2�.

(c) ts strong commitment: If no honest party computes an output in the protocol
then strong commitment holds trivially. Hence, we consider the case when there
exists some honest party which computes an output. Note first that to ensure the
correctness of the output, that is, to ensure that the honest parties output shares
of a multiplication triple, it is required to verify that X(·) · Y (·) = Z(·) holds for at
least 2ts +1 distinct points on these polynomials. In the protocol, this translates to
ensuring that the relation holds for (at least) 2ts + 1 honest parties. Suppose there
exists some honest Ph party that successfully outputs its shares in the protocol
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without discarding the dealer. For contradiction, suppose that the relation does
not hold for some honest party Pi. First, observe that since Ph outputs its shares,
it implies that Ph computes the outputs of all the ⇧VSS instances initiated by the
dealer. Suppose the time at which Ph computed this is T . Note that every honest
party would thus have computed its output by time T + 2� in the worst case.
Suppose the worst case, that is Pi computed its output in ⇧VSS at time T +2�. It is
thus possible that Pi received its X(i), Y (i), Z(i) at time T +2�+TBeaver+TPrivRec =

T + 4�, whereas Ph obtained its X(h), Y (h), Z(h) at time T + TBeaver + TPrivRec =

T + 2�. That is, it is possible that some honest parties broadcast their OK(i)

or NOK(i) after a 2� delay compared to other honest parties. Specifically, Ph may
have broadcast OK(h) and proceed to the next step by time T+TBC+2�. Moreover,
Ph’s broadcast would have been received by all within this time. In contrast, Pi’s
broadcast may be delivered to parties (including Ph) by time T + TBC + 4�. This
implies that X(i), Y (i), Z(i) would have been reconstructed by time T + 2TBC +

4�. However, the earliest Ph can compute its output is at time T + 3TBC + 2�.
This is because Ph waits for TBC time for the dealer’s broadcast of (OK,NOK). It
waits for another TBC time for ensuring reconstruction of values corresponding to
parties in NOK. Since we have that T + 3TBC + 2� > T + 2TBC + 4�, Ph must
have received X(i), Y (i), Z(i) before it proceeded to compute its output. If indeed
X(i) · Y (i) = Z(i) did not hold, then Ph would have discarded the dealer, which
is a contradiction. Thus, it must be that X(i) · Y (i) = Z(i). This also implies
that every honest party Pi’s NOK(i) would have been received by time at most
T +2TBC+4� and verified by Ph. Since Ph did not discard the dealer, X(i) ·Y (i) =

Z(i) must hold for every honest Pi. Given that the number of honest parties is
at least 2ts + 1, X(·) · Y (·) = Z(·) must hold. Consequently, no honest party will
discard the dealer and hence all output their shares on the dealer’s polynomials.
Moreover, if some honest party computes its output by time T 0, we have that it
received all the corresponding broadcasts by time T 0. By the fallback validity of
broadcast, all the honest parties receive the necessary broadcasts by time T 0 + 2�

and subsequently compute the output.

2. Asynchronous network:

(a) ta privacy: In the asynchronous network, for an honest dealer, each honest party
computes its shares in ⇧VSS eventually. This ensures that all the parties even-
tually begin the execution of ⇧Beaver and receive their output. Further, this also
guarantees that parties invoke ⇧privRec, and each honest party Pi receives its points
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X(i), Y (i), Z(i) eventually and broadcasts OK(i). Thus we have that even if the cor-
rupt parties are silent, an honest dealer can compute the set OK of size (at least)
n� ts eventually. In the worst case, the set NOK broadcasted by the dealer may be
of size (at most) (ts�ta) and moreover may comprise completely of honest parties.
Note that the points X(i), Y (i), Z(i) of each i 2 NOK are revealed publicly. This
causes the adversary to learn ts � ta points on each of X(·), Y (·), Z(·) correspond-
ing to the ts � ta honest parties included in NOK, in addition to the ta points of
the corrupt parties. The adversary thus learns ts points on each of X(·), Y (·), Z(·),
which is exactly the information available to the adversary in the synchronous set-
ting. By the same argument as privacy in the synchronous setting, we have that
the adversary’s view is independent of the output multiplication triple.

(b) ta correctness: Let the dealer be honest. By the ta correctness of ⇧VSS in the
asynchronous network, we have that the honest parties will eventually compute
their output. Similarly, by the ta correctness of ⇧Beaver and ⇧privRec, we also have that
each honest Pi eventually receives its X(i), Y (i), Z(i) and consequently broadcasts
OK(i). Since we have n� ta honest parties, it must hold that the dealer will indeed
be able to construct the set OK consisting of at least n � ts parties. Again, due
to the validity property of broadcast in the asynchronous network, it is ensured
that the parties will receive the dealer’s broadcast of (OK,NOK), and consequently
reconstruct the values X(j), Y (j), Z(j). These reconstructed values are guaranteed
to be correct. Moreover, every NOK(j) broadcasted by a corrupt Pj will eventually
be received by all the honest parties due to the consistency property of broadcast.
Hence, we have that parties will eventually reconstruct X(j), Y (j), Z(j) for each
Pj and verify its correctness. Thus, all the honest parties will eventually output
shares on the polynomials shared by the dealer as the shares of its multiplication
triple.

(c) ta strong commitment: This follows similarly to the synchronous case due to the ta

strong commitment property of ⇧VSS and consistency of ⇧BC in the asynchronous
network. Specifically, if no honest party computes its output, then commitment
holds trivially. On the other hand, if any honest party computes its output in
⇧VSS, then by the ts strong commitment property, we have that all the honest par-
ties compute their output. Similarly, by the ta correctness property of ⇧privRec and
⇧Beaver, it is ensured that parties eventually compute their point on X(·), Y (·), Z(·).
Now observe that every honest party computes its output only upon verifying that
the multiplicative relation holds true for at least n � ta parties. Since all the com-
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munication occurs via broadcast for the verification, the consistency property of
broadcast ensures that if some honest party computes its output then eventually
all the honest parties compute their output. Further, given that the adversary can
corrupt at most ta parties in the asynchronous network, this ensures that the mul-
tiplicative relation of X(·), Y (·), Z(·) is verified for at least n� 2ta � 2ts + 1 honest
parties. As mentioned earlier, since X(·), Y (·), Z(·) are degree ts, ts, 2ts polynomi-
als respectively, this verification ensures the correctness of the multiplication triples
shared by a corrupt dealer.

6.9 Preprocessing Phase

6.9.1 Private Reconstruction Protocol

We now describe the reconstruction of a degree-ts shared value hvi to a particular party P ⇤.
For this, all the parties reveal their shares of hvi to P ⇤, who tries to recover the secret as fol-
lows. P ⇤ waits for � time to receive the shares from other parties. P ⇤ waits for 2ts+1 shares,
all of which lie on a degree-ts polynomial. If such a polynomial is reconstructed, it is guaran-
teed to be correct since it agrees with the shares of at least ts + 1 honest parties. Recovering
such a polynomial requires P ⇤ to apply error correction repeatedly in an “online” manner
to recover the secret in the case of an asynchronous network. Whereas, in the synchronous
network case, it is guaranteed that all the honest parties will send their shares lying on the
same polynomial within � time, and hence, the reconstruction will succeed. Reconstruction
towards all can be performed similarly with n instances of the protocol, one towards each
party. Alternatively, parties can also broadcast their respective shares to reconstruct a value
publicly.

Protocol 6.9.1: ⇧privRec

Input: Parties hold the degree-ts Shamir-sharing of a value hvi.
Common Input: Description of a field F, n non-zero distinct field elements 1, . . . , n and the
identity of a party P ⇤.

1. Each Pi sends its share hvii to P ⇤.

2. P ⇤ waits for � time and then applies online error correction on the received shares as
follows. For each r = 0, . . . , ts:

(a) Upon receiving n � ts � 2ts + 1 values, P ⇤ looks for a codeword of a polynomial
of degree-ts with a distance of at most r from the values it received. If there is no
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such codeword, then P ⇤ proceeds to the next iteration. Otherwise, P ⇤ sets pr(x) as
the unique Reed-Solomon reconstruction.

(b) If pr(j) = hvij holds for at least 2ts + 1 parties, P ⇤ computes v = pr(0). Otherwise,
it proceeds to the next iteration.

Theorem 6.9.2. Protocol ⇧privRec is secure against an adversary corrupting up to ts parties in

the synchronous network and ta parties in the asynchronous network and has the following

properties.

1. Synchronous network:

(a) ts correctness: Within time �, each honest party outputs v.

2. Asynchronous network:

(a) ta correctness: Each honest party eventually outputs v.

Proof. We prove the properties of ⇧privRec in the synchronous network and subsequently in
the asynchronous network.

1. Synchronous network:

(a) ts correctness: In a synchronous network, each honest party receives shares on
the degree-ts polynomial from every other honest party within time �. Thus, an
honest party receives at least n � ts � 2ts + 1 correct points on the polynomial.
Moreover, if an honest party receives r incorrect shares by time �, then by the
guarantees of Reed-Solomon codes and given that r  ts, an honest party having
(at least) 2ts+1+ r points can correct r points and recover the correct polynomial.

2. Asynchronous network:

(a) ta correctness: In the asynchronous network, note that each honest party will even-
tually receive n � ta � 2ts + ta + 1 correct points from the honest parties. By rea-
soning similar to that in the synchronous setting, the honest parties will eventually
compute the correct polynomial defined by the honest parties’ shares.

6.9.2 Beaver’s Multiplication Protocol

This protocol uses the well-known Beaver’s circuit randomization [23] technique to perform
the multiplication of two shared values. Specifically, given a pre-shared random and private
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multiplication triple (hai, hbi, hci), this technique reduces the computation of hzi = hxyi from
hxi and hyi to two public reconstructions. Towards this, parties first locally compute hdi =
hxi � hai and hei = hyi � hbi, followed by public reconstruction of d and e. Now, parties can
compute hzi locally using these values together with the shared multiplication triple. More
precisely, since z = xy = ((x � a) + a)((y � b) + b) = (d + a)(e + b) = de + db + ea + ab =

de+db+ea+c parties can compute hzi = hxyi = de+dhbi+ehai+ hci. The formal description
of the protocol appears below.

Protocol 6.9.3: ⇧Beaver

Input: Parties hold the degree-ts Shamir-sharing of a triple (hai, hbi, hci) and the inputs hxi
and hyi.

1. Parties locally compute hdi = hxi � hai and hei = hyi � hbi.
2. Parties execute 2n instances of ⇧privRec, two towards every party for reconstructing d and

e respectively. Wait for time �.

3. Parties locally compute hzi = de+ dhbi+ ehai+ hci.

Theorem 6.9.4. Protocol ⇧Beaver is secure against an adversary corrupting up to ts parties in

the synchronous network and ta parties in the asynchronous network and has the following

properties.

1. Synchronous network:

(a) Liveness: At time �, every honest party has an output.

(b) ts privacy: If (a, b, c) is a random multiplication triple from the adversary’s view, then

the view of the adversary is independent of x and y (and thus z).

(c) ts correctness: Within time �, the honest parties output a degree-ts Shamir-sharing of

z such that z = xy if and only if (a, b, c) is a correct multiplication triple, i.e. c = ab

holds.

2. Asynchronous network:

(a) Liveness: Every honest party eventually has an output.

(b) ts privacy: If (a, b, c) is a random multiplication triple from the adversary’s view, then

the view of the adversary is independent of x and y (and thus z).

(c) ta correctness: The honest parties eventually output a degree-ts Shamir-sharing of z

such that z = xy if and only if (a, b, c) is a correct multiplication triple, i.e. c = ab

holds.
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Proof. We prove the properties of ⇧Beaver in both networks simultaneously.

1. Liveness: By the linearity property of Shamir-sharing, parties can locally compute the
degree-ts Shamir-sharing of d and e. Further, due to ts (resp. ta) correctness of ⇧privRec

in the synchronous (resp. asynchronous) network, we have that parties will receive the
reconstructed values d and e within time � (resp. eventually). The computation of hzi
is local thereafter; hence, we have the required liveness guarantees.

2. ts (resp. ta) privacy: If (a, b, c) is a random multiplication triple from the adversary’s
view, then for every possible x and y values, there exist a and b such that they are
consistent with the adversary’s view and the publicly reconstructed values of d and e.
Thus, the adversary’s view is independent of x and y (hence z).

3. ts (resp. ta) correctness: Note that z = de + db + ea + c = (x � a)(y � b) + (x � a)b +

(y � b)a + c = xy + c � ab. Hence, by inspection, it is clear that z = xy if and only if
c� ab = 0, that is, c = ab.

6.9.3 Triple Extraction Protocol

The last component of the Beaver triple generation phase of our protocol is a triple extraction
protocol that consumes one (verified) multiplication triple, say (haii, hbii, hcii), shared by each
party Pi 2 Com in the prior stage and extracts h+1� t random triples not known to any party,
where h = b |Com|�1

2 c. For simplicity, let m = |Com| and without loss of generality, we assume
Com = {P1, . . . , Pm}. At a high level, the protocol proceeds as follows. First, the parties “trans-
form” the m random shared triples (haii, hbii, hcii) for each i 2 {1, . . . ,m} into m correlated
triples (hxii, hyii, hzii) for every i 2 {1, . . . ,m} such that the values {xi, yi, zi}i2{1,...,m} lie on
the polynomials X(·), Y (·) and Z(·) of degree h, h and 2h respectively where X(·)·Y (·) = Z(·).
Specifically, for each i 2 {1, . . . ,m}, it holds that X(i) = xi, Y (i) = yi and Z(i) = zi where
1, . . . ,m are publicly known distinct elements from F. Furthermore, the transformation en-
sures that the adversary knows {xi, yi, zi} only if Pi is corrupt. This implies that the adversary
may know (at most) t points on each of the polynomials X(·), Y (·) and Z(·) of degree h, h

and 2h respectively, thus guaranteeing a degree of freedom of h+1� t in X(·), Y (·) (and thus
Z(·)). Parties thus output the shared evaluation of these polynomials at h + 1 � t publicly
known points �1, . . . , �h+1�t as the extracted shared multiplication triples.

The transformation itself works as follows. The parties simply set xi = ai, yi = bi, zi = ci

for i 2 {1, . . . , h + 1}. Next, hxii and hyii for every i 2 {h + 2, . . . ,m} can be computed
non-interactively by taking linear combination of {xi, yi}i2{1,...,h+1}. Following this, hzii for
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every i 2 {h + 2, . . . ,m} is computed using Beaver’s trick where the inputs are hxii and hyii
and the random multiplication triple consumed is (haii, hbii, hcii). Clearly, if Pi is corrupt,
then xi, yi, zi is known to the adversary as claimed. Finally, we note that triple extraction
reduces to running a batch of O(h) Beaver multiplications. The formal description appears in
Protocol 6.9.5.

Protocol 6.9.5: Triple Extraction – ⇧tripleExt

Common input: The description of a field F, a set Com ✓ P such that m = |Com| � n � ts,
m = 2h + 1 non-zero distinct elements 1, . . . ,m and h + 1 � ts non-zero distinct elements
�1, . . . , �h+1�ts . Without loss of generality, assume Com = {P1, . . . , Pm}.

Input: Parties hold the degree-ts shared triples (haii, hbii, hcii) for every i 2 {1, . . . ,m} such
that (ai, bi, ci) is known to party Pi.

1. For each i 2 {1, . . . , h+ 1}, parties locally set hxii = haii, hyii = hbii and hzii = hcii.
2. Let X(·) and Y (·) be the degree-h polynomials defined by the points {xi}i2{1,...,h+1} and

{yi}i2{1,...,h+1} respectively such that X(i) = xi and Y (i) = yi for all i 2 {1, . . . , h+ 1}.

3. For each i 2 {h+ 2, . . . ,m}, parties locally compute hxii = hX(i)i and hyii = hY (i)i.
4. Parties invoke ⇧Beaver with {hxii, hyii, haii, hbii, hcii}i2{h+2,...,m} and obtain

{hzii}i2{h+2,...,m} where zi = xiyi for every i 2 {h + 2, . . . ,m}. Wait for time
�.

5. Let Z(·) be the degree-2h polynomial defined by the points {zi}i2{1,...,m} such that Z(i) =
zi for all i 2 {1, . . . ,m}.

6. Parties locally compute haii = hX(�i)i, hbii = hY (�i)i and hcii = hZ(�i)i for every
i 2 {1, . . . , h+ 1� ts}.

Theorem 6.9.6. Protocol ⇧tripleExt is secure against an adversary corrupting up to ts parties in

the synchronous network and up to ta parties in the asynchronous network and has the following

properties.

1. Synchronous network:

(a) ts privacy: The triples {(ai,bi, ci)}i2{1,...,h+1�ts} are random from the adversary’s view.

(b) ts correctness: Within time TtripleExt = �, the honest parties output a degree-ts Shamir-

sharing of of each triple {(ai,bi, ci)}i2{1,...,h+1�ts}.

2. Asynchronous network:
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(a) ts privacy: The triples {(ai,bi, ci)}i2{1,...,h+1�ts} are random from the adversary’s view.

(b) ta correctness: The honest parties eventually output a degree-ts Shamir-sharing of

each triple {(ai,bi, ci)}i2{1,...,h+1�ts}.

Proof. We prove the properties of ⇧tripleExt in both networks simultaneously.

1. ts privacy: Note that (since ta < ts) in the worst case, there will be at most ts corrupt
parties in the set Com. This implies that at most ts points are known to the adversary on
each of the polynomials X(·) and Y (·). This ensures a degree of freedom of h+1� ts on
each of these polynomials (and hence on Z(·)). Hence, we have that for every candidate
set of triples {(ai,bi, ci)}i2{1,...,h+1�ts}, there exists a set of h + 1 � ts corresponding
candidate input triples (haji, hbji, hcji) unknown to the adversary that is consistent with
the adversary’s view.

2. ts (resp. ta) correctness: By the properties of ⇧Beaver in the synchronous (resp. asyn-
chronous) network, we have that parties will receive obtain {hzii}i2{h+2,...,m} within time
� (resp. eventually). Since all the input triples are guaranteed to be valid multiplica-
tion triples, by construction of the protocol, it holds that Z(·) = X(·) · Y (·) such that
X(·), Y (·) are degree-h polynomials and Z(·) is a degree-2h polynomial. It thus follows
that all the honest parties output (haii, hbii, hcii) = (hX(�i)i, hY (�i)i, hZ(�i)i) for every
i 2 {1, . . . , h+1�ts} within time � (resp. eventually). Moreover, the relation ci = ai ·bi

holds for every i 2 {1, . . . , h+ 1� ts} since Z(·) = X(·) · Y (·) holds.

6.10 The Complete MPC Protocol
This section describes our complete MPC protocol as a composition of the primitives described
so far and the existing primitives detailed in Section 6.4. It has the following well-known two-
phase structure: a preprocessing phase wherein parties generate random Beaver triples and
an online phase wherein parties consume these triples to evaluate the circuit. We elaborate
on these two phases below.

Beaver Triple Generation. In this phase, the goal is to generate degree-ts shares of random
multiplication triples of the form (a, b, c) where c = a · b. We require C random triples to be
shared to evaluate a circuit with C multiplication gates. This phase can be further viewed as
consisting of three stages:

1. Triples with a dealer: In this stage, each party Pi acts as a dealer and shares triples of the
form (ai, bi, ci) such that ci = ai ·bi must hold. The dealer is required to provide a perfect
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zero-knowledge proof to establish the correctness of its triples. Our main contribution
lies in this stage, where the sharing of triples is performed using the verifiable secret
sharing protocol (⇧VSS) discussed in Section 6.7. Further, we also give a protocol for
verifiable triple sharing (⇧VTS), which allows the dealer to prove that the triples it
shared are indeed correct. If a dealer’s sharing fails, then its triples are ignored by all
the parties. This protocol appears in Section 6.8.

2. Agreement on a Common Set (ACS): Irrespective of the network type, we have that the
triple sharing instances of the honest dealers will eventually terminate. However, the
instances corresponding to ts corrupt dealers in the synchronous network, and analo-
gously ta corrupt dealers in the asynchronous network may never terminate. Further,
parties are unaware of the underlying network condition, and in the worst case, ts

corrupt parties may not even initiate their triple sharing. To prevent endless waiting,
parties proceed upon successful completion of (at least) n � ts instances of triple shar-
ing. Since parties may receive messages in different order, we need to ensure that all
the parties agree on the set of parties for whom triple sharing is successfully completed.
This task is handled by the ACS protocol, ⇧ACS, described in Section 6.4.

3. Triples without a dealer: Once a common set of parties Com whose triple sharing has
terminated successfully been determined, the goal is to then extract random triples
unknown to any party. For this, we use the existing triple sharing protocol, ⇧tripleExt,
which consumes the triples shared by each party in Com and extracts random triples.

Circuit Evaluation. This is the second phase of our MPC protocol, which at a high level,
consists of four stages. At the input sharing stage, parties share their inputs to the circuit.
Following this, parties run ⇧ACS to agree on a common set of at least n� ts parties that have
provided input to the MPC protocol. The second stage comprises of the shared evaluation of
the circuit. Since our sharing is linear, addition and multiplication by a constant operations
can be performed locally. For multiplication, we rely on the well-known technique of Beaver’s
circuit randomisation [23]. Here, parties use the triples generated in the prior phase to
evaluate multiplication gates in the circuit using Beaver multiplication. In this protocol, by
using a pre-shared triple (hai, hbi, hci), the task of computing a degree-ts sharing hxyi from
hxi and hyi reduces to two public reconstructions. The protocol description for Beaver’s
multiplication protocol, ⇧Beaver, appears in Section 6.4. The third stage corresponds to the
reconstructing the output of the circuit to the parties. Finally, the last stage ensures that
sufficiently many parties have obtained the same output. If this holds, then parties safely
terminate with the output, in the MPC protocol as well as all the underlying protocols. This
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concludes our MPC protocol, which appears below. In the protocol description, we perform
input sharing along with triple sharing in the first phase and invoke ⇧ACS to decide on a
common set of parties that successfully share both. Hence, we avoid an additional invocation
of ⇧ACS during the circuit evaluation phase.

Protocol 6.10.1: Network-Agnostic MPC – ⇧na

MPC

Common input: The description of a circuit, the field F, n non-zero distinct elements 1, . . . , n
and a parameter h where n� ts = 2h+ 1. Let m = d C

h+1�ts e.
Input: Parties hold their inputs (belonging to F [ {?}) to the circuit.
(Beaver triple generation and Input sharing:)

1. (Beaver Triple generation with a dealer) Each Pi chooses m random multiplication
triples and executes m instances of ⇧VTS (Protocol 6.8.1, Section 6.8) simultaneously.

2. (Input sharing) Each party Pi holding ki inputs to the circuit executes ki instances of
⇧VSS simultaneously (Protocol 6.7.1, Section 6.7). Parties wait for time TVTS.

3. (Input to ACS) Each Pi initialises a set Si  �. It includes j in Si if it receives an output
in all the ⇧VSS and ⇧VTS instances of Pj.

4. (ACS Execution) Parties invoke ⇧ACS (Protocol 6.4.9, Section 6.4) to agree on a set
Com of at least n � ts parties whose instances of triple sharing and input sharing will
terminate eventually for all the honest parties. Let (haj

i
i, hbj

i
i, hcj

i
i) for j 2 [m] denote

the triples shared by Pi 2 Com. The input sharing for the parties outside Com is taken
as default sharing of 0. Parties wait for time TACS.

5. (Beaver Triple Extraction) Upon receiving output from ⇧ACS, parties execute m in-
stances of ⇧tripleExt (Protocol 6.9.5, Section 6.4) with Com as the common input and
additionally (haj

i
i, hbj

i
i, hcj

i
i) for every Pi 2 Com as the input for the jth instance. Let

(haii, hbii, hcii) for i 2 [C] denote the random multiplication triples generated. Wait for
time �.

(Circuit evaluation:)

1. (Linear Gates) Parties locally apply the linear operation on their respective shares of
the inputs.

2. (Multiplication Gates) Let (haii, hbii, hcii) be the multiplication triple associated with
the ith multiplication gate with shared inputs (hxii, hyii). Parties invoke ⇧Beaver (Proto-
col 6.9.3, Section 6.4) with {hxii, hyii, haii, hbii, hcii} for all gates i at the same layer of
the circuit and obtain the corresponding hzii as the output sharing for every gate i. Wait
for time �.
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3. (Output) For an output gate y with the associated sharing hyi, upon computing the
share of y, parties execute ⇧privRec (Protocol 6.9.1, Section 6.4) towards every party Pi.
Wait for time �.

4. (Termination:) Each party Pi does the following:

• If y has been computed during the output step, then send (ready, y) to all the
parties.

• If (ready, y) has been received from at least ts + 1 distinct parties, then send
(ready, y) to all the parties, if not sent before.

• If (ready, y) has been received from at least 2ts + 1 distinct parties, then output y
and terminate the protocol.

Theorem 6.10.2. Let n, ts, ta be such that ta < ts and n > 2ts + max(2ta, ts). Protocol 6.10.1,

⇧MPC, is a network-agnostic MPC protocol that is perfectly-secure against an adversary corrupt-

ing up to ts parties in a synchronous network and up to ta parties in the asynchronous network.

It has the following properties:

• ts correctness: In a synchronous network, all the honest parties compute y = f(x1, . . . , xn),

where xi = 0 if i /2 Com such that |Com| � n � ts and every honest party belongs to Com

within time TMPC = TVTS + TACS + TtripleExt +D.TBeaver + TPrivRec.

• ta correctness: When the network is asynchronous, all the honest parties eventually com-

pute y = f(x1, . . . , xn), where xi = 0 if i /2 Com such that |Com| � n� ts.

• ts privacy: Irrespective of the network type, the adversary’s view is independent of the

inputs of the honest parties in Com.

Proof. We first consider a synchronous network with up to ts corruptions. By the ts correct-
ness property of the triple sharing and verifiable secret sharing protocols, we have that the
triple sharing and input sharing instances of all the honest parties will terminate within time
TVTS. Further, this implies that the input requirements of the protocol ⇧ACS for synchronous
network will hold true. Hence, by the ts correctness property of ⇧ACS, within time TACS parties
will output a set Com such that |Com| � n�ts and it includes all the honest parties. Moreover,
if there is some corrupt Pi 2 Com, it implies that some honest party Ph computed the output
of verifiable secret sharing and triple sharing in Pi’s instances. If not, then it would mean that
no honest party includes Pi in its set Si, and hence, all the parties would input 0 for the in-
stance ⇧i

BA
. By the validity property of ⇧BA in the synchronous network, we have that parties
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output 0 in the instance ⇧i

BA
. Thus, Pi is excluded from Com, which is a contradiction. There-

fore, given that some honest party computes the output in Pi’s instances of verifiable secret
sharing and triple sharing, by the ts strong commitment property of both these protocols, we
have that all the honest parties compute an output. Consequently, we have that parties hold
shares corresponding to m multiplication triples shared by each party in Com. Subsequently,
by the ts correctness property of ⇧tripleExt, within time � parties will compute the shares of
random triples for h + 1� ts for each instance of ⇧tripleExt. Given that we have m = d C

h+1�ts e,
parties obtain the random shares for C multiplication triples. In the circuit evaluation phase,
the linear gates are computed locally. Whereas for the multiplication gates, the ts correctness
property of ⇧Beaver ensures that all the honest parties obtain the correct sharing of the output
of the gates within time �. Finally, the ts correctness of the reconstruction protocol ⇧privRec

in the synchronous network ensures that parties receive their output within time �. Thus,
we have that in a synchronous network, all the honest parties will send (ready, y) messages.
Since there are at least 2ts + 1 honest parties, termination is guaranteed. The proof for the ts

correctness in the asynchronous network follows similarly, with the modification that it now
relies on the ts correctness of all the subprotocols in the asynchronous network. For termina-
tion, note that at least 2ts +1 honest parties will eventually send (ready, y) message which all
the honest parties will receive. Moreover, if some honest party terminates with an output y,
then it implies that it received (ready, y) from at least ts + 1 honest parties. All honest parties
will eventually receive these messages and send (ready, y) to all. Since there are at least 2ts+1

honest parties, termination is ensured.
The ts privacy of the MPC protocol in either of the network conditions follows from the ts

privacy of the subprotocols. Specifically, from the ts privacy of ⇧VSS, we have that the inputs
of honest parties are random from the adversary’s view. Further, from the ts privacy of ⇧VTS,
it follows that the multiplication triples shared by each honest Pi for i 2 Com are random
from the adversary’s view. Given this, the ts privacy of ⇧tripleExt ensures that the multiplication
triples extracted from the triples of parties in Com are indeed random from the view of the
adversary. Finally, the ts privacy of ⇧Beaver guarantees that the adversary does not learn any
additional information during the evaluation of a multiplication gate. Moreover, the rest of
the gates are computed non-interactively, thus ensuring ts privacy of the MPC protocol.
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Chapter 7

Conclusion and Open Problems

This thesis settles some of the long-standing open questions in the domain of perfectly-secure
multiparty computation. Specifically, the work in this thesis extends over various network
settings which include the synchronous, asynchronous and network-agnostic. In the former
two categories this thesis offers communication efficient protocols, whereas it establishes
impossibility and feasibility results in the latter category.

In the synchronous network model, we first considered the primitive of broadcast ow-
ing to the fact that its implementation is one of the primary communication bottlenecks in
MPC protocols. Here, we identified that typically, broadcast protocol implementations are
of two flavours: the first category of protocols has a round complexity of ✓(n), whereas
the second category leverages randomization to achieve expected constant round protocols.
This thesis focused on the latter with the end goal of MPC protocols where the round com-
plexity (in expectation) is independent of the number of parties n. Although protocols ex-
isted in this regime, those constructions had large communication complexity, specifically
O(n2L + n6 log n) expected number of bits transmitted for broadcasting a message of length
L. This lead to a significant communication blowup in secure computation protocols in this
setting. In this thesis, we substantially improved the communication complexity of broadcast
in constant expected time to O(nL + n4 log n) for broadcasting L bits. We also constructed
a parallel broadcast protocol, where n parties wish to broadcast L bit messages in parallel.
Our protocol has no asymptotic overhead for L = ⌦(n2 log n), which is a common commu-
nication pattern in perfectly secure MPC protocols, thereby paving a way for efficient secure
computation.

Subsequently, this thesis contributed to communication efficiency of generic secure com-
putation. Analogous to broadcast, we identified two classes of MPC protocols: the first class
comprises of protocols which have a round complexity of ⌦(D+n), whereas the second class
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has protocols with O(D) in expectation for depth D circuits. While a communication com-
plexity of O(n log n) per gate was achieved for the former category nearly 15 years ago, the
second category lagged significantly behind at O(n4 log n) cost per gate. The work in this
thesis bridged the gap between these two classes of protocols and proved that it is simultane-
ously possible to achieve the best of both the classes. Compared to state-of-the-art protocols
in the former class, for a circuit with C > n3 gates and depth D ⌧ n, our results significantly
improved the run time from ⌦(n+D) to expected O(D) while keeping communication com-
plexity at O(Cn log n). Whereas compared to state-of-the-art protocols in the latter class, for
C > n3, our results significantly improve the communication complexity from O(Cn4 log n) to
O(Cn log n) while keeping the expected run time at O(D).

Finally, we targeted the design of communication efficient protocols from the perspective
of the more realistic model of an asynchronous network. In contrast to the synchronous net-
work where O(Cn log n) cost protocols were known for nearly 15 years, albeit the ⌦(n +D)

round complexity, the landscape of asynchronous protocols was vastly different. Despite the
30 years of research, protocols in the asynchronous setting required ⌦(Cn2 log n) communi-
cation complexity. Our work in this thesis closed this gap between synchronous and asyn-
chronous secure computation and showed the first asynchronous protocol with O(Cn log n)

communication complexity.
In our concluding work, deviating from the focus on a monolithic view of the network

and communication efficiency of protocols, we established the feasibility of network-agnostic
perfectly-secure MPC. We identified that the network-agnostic setting is apt for scenarios
where parties are unaware of the network type, and yet wish to achieve the best security
guarantees that are possible. While the lower bound on the threshold for synchronous and
asynchronous networks was already known for more than three decades, the same question
remained open for the network-agnostic setting. The work in this thesis proved that the
bound of n > 3ts + ta conjectured by the prior works is not tight. We established a new
lower bound of n > 2max(ts, ta) + max(ts, 2ta) for perfectly-secure network-agnostic MPC
and proved its sufficiency by constructing a protocol matching this optimal resilience.

In conclusion, this thesis changed the landscape of perfectly-secure multiparty computa-
tion. On the one hand, it has advanced the research on the communication complexity of
protocols in the well-studied, synchronous and asynchronous network models. On the other,
it has advanced the nascent research area of network-agnostic protocols by establishing fea-
sibility and impossibility results.
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7.1 Open Problems
This thesis also spawns some interesting open questions, some of which have been targeted by
recent follow-up works. We first note the open questions in the synchronous network model,
followed by the asynchronous network. We conclude with potential research directions in the
network-agnostic setting.

Synchronous Network. In the domain of expected constant round broadcast protocols, our
work achieves O(nL + n4 log n) communication complexity for broadcast an L-bit message.
Whereas our parallel broadcast costs O(n2L + n4 log n). Although this was asymptotically
optimal from the perspective of our multiparty computation protocol where each party re-
quired to broadcast O(n2 log n) bits, it was a good open problem to consider improving the
L-independent term of our communication complexity. A recent work of [17] targets this
problem, and we encourage the readers to refer to this paper for further details. Another
interesting problem in the domain of synchronous network model is to identify the trade-
off between threshold of corruption and communication complexity. Specifically, our work
achieves O(n log n) communication per multiplication gate in the setting of t < n/3, which is
optimal up to logarithmic factors. However, the known lower bound for the case of t < n/4

in the synchronous setting hints at protocols with O(log n) protocols, where the logarithmic
factor is due to the size of field [58]. That is, while our protocol in the t < n/3 setting has a
linear overhead per gate, we believe that with a lower threshold of t < n/4, it should be pos-
sible to achieve constant overhead. This is an interesting open direction to pursue and either
obtain a protocol or improve the existing lower bound. Another interesting line of research
is to solve analogous questions for statistical security. Similar to the case of perfectly-secure
protocols, linear communication per gate has been obtained with ⌦(n + D) rounds [77].
However, the question of obtaining linear communication protocols with O(D) rounds in the
statistical setting has been open for a long time. In contrast to perfect security, the optimal
threshold for generic secure computation in the statistical setting is known to be t < n/2.
Additionally, in this setting, a broadcast channel assumption is known to be necessary which
has to be accounted for while designing protocols.

Asynchronous Network. In the asynchronous network model with optimal resilience
of t < n/4 for perfect security, this thesis provides a secure computation protocol with
O(Cn log n) communication complexity. Although a communication of linear (in the num-
ber of parties n) number of field elements seems like a natural barrier, a lower bound for this
remains unknown. One interesting question would be to resolve this by either establishing
a lower bound on the communication complexity which matches the cost of our protocol,
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or by designing a protocol with improved communication complexity. Similar to the case of
the synchronous network, another natural question here is that of achieving linear commu-
nication complexity protocols for statistical security, where the optimal corruption threshold
is t < n/3. Although this problem has been recently solved in [78, 81], the communication
complexity of their protocol has a very high circuit size independent factor of n14. Thus,
tackling the same problem with an improved complexity stays open.

Network-agnostic. Our work in the network-agnostic setting targets the feasibility and im-
possibility of secure computation, and hence does not aim for communication and computa-
tional efficiency. Consequently, our upper bound result, which is the network-agnostic proto-
col, requires exponential computation due to the necessity of a clique-finding algorithm. One
interesting potential question is to replace the clique finding with some techniques which
require polynomial time, or redesign the upper bound protocol completely to achieve a poly-
nomial time solution. Being a relatively new area of research, most of the works have focused
on establishing feasibility of network-agnostic protocols. Owing to this, communication ef-
ficiency has not been a parameter at the forefront during the design of these protocols. Fo-
cusing on communication efficient protocols in this setting opens avenues for a large body
of research not just limited to perfect security, but also in other settings of statistical and
computational security.
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