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Abstract

As an alternative to performing analytics in the clear, there is an increasing demand for devel-

oping privacy-preserving solutions that aim to protect sensitive data while still allowing for its

e�cient analysis. Among the various privacy-enhancing technologies, secure multiparty com-

putation (MPC) is a promising approach that enables multiple parties (n) to jointly process

their private inputs while ensuring that no coalition of at most t < n parties, under the control

of an adversary, learns any information other than the intended output. In this thesis, we iden-

tify various such real-world applications that demand privacy-preserving solutions and address

these via MPC. We consider a broad range of applications that span across healthcare, finance

and even social sectors. For each application under consideration, we identify the desirable

MPC setting (e.g., number of computing parties n) and security notion to be achieved when

designing the solution. Based on this, we either design new MPC frameworks that provide

improved security guarantees and e�ciency or enhance the existing frameworks.

Although we make application-specific design choices, the common theme while designing

secure protocols for all is to design as e�cient a solution as possible. In this regard, we make the

following common design choices across all applications. First, we consider an honest majority

among the computing parties (i.e., t < n/2), which is known to render e�cient protocols in

comparison to the dishonest majority (i.e., t < n). Second, we focus on designing secure

protocols in the preprocessing paradigm, where expensive input-independent computations are

pushed onto a preprocessing phase, thereby making way for a fast and e�cient input-dependent

online phase. Finally, our protocols are designed to operate on the ring algebraic structure

to capitalize on the e�ciency gains obtained from utilizing the CPU architecture. We next

elaborate on the specific applications considered in the thesis and the contributions therein.

Secure computation over graphs via traditional security notion Operating on graph-

structured data is ubiquitous due to the modelling capabilities of graphs, and this finds use

in analysing various systems like social networks, biological networks, transportation networks,

etc. However, privacy concerns arise when analysing graphs that model sensitive data. To

iii



Abstract

address this, we design privacy-preserving solutions for two popular graph algorithms—local

clustering and graph convolutional networks.

– Secure local clustering: Identifying a cluster around a target node in a graph, termed local

clustering, finds use in several applications, including fraud detection, targeted advertising,

community detection, etc. We design solutions for privacy-preserving local clustering, which is

done for the first time in the literature. Keeping e�ciency in mind for large graphs, we build

over the best-known honest-majority 3-party framework of SWIFT (USENIX’21) and enhance

it with some of the necessary yet missing primitives. To further enhance e�ciency, we design

the protocols using the GraphSC paradigm, which provides a generic secure framework for

e�ciently evaluating graph algorithms. Since this paradigm relies on a secure shu✏e primitive,

we also design an e�cient secure 3-party shu✏e protocol.

We note that secure shu✏e is a versatile primitive that finds widespread use in various other

applications as well (which may not involve computations over a graph), such as electronic

voting, oblivious RAM, and anonymous broadcast, to name a few. Hence, as a by-product of

our shu✏e protocol, we are also able to securely realise an anonymous broadcast system. As the

name suggests, anonymous broadcast enables a set of N clients to anonymously broadcast their

messages while guaranteeing that none learns about the association between a message and

the identity of its sender. Hence, while anonymous broadcast may not be inherently associated

with graph computations, we diverge slightly to demonstrate how our shu✏e protocol can be

employed to realize anonymous broadcast in the 3-party setting, as considered in prior works.

In the process, not only do we design a more e�cient anonymous broadcast system compared to

the state-of-the-art, but our system also provides improved security guarantees and properties

such as censorship resistance that were missing in the prior solution.

– Secure graph convolutional networks: Graph convolutional networks (GCNs) are gaining pop-

ularity due to their ability to e↵ectively model and learn from complex graph-structured data.

We put forth Entrada, a framework for securely evaluating GCNs. For e�ciency and accuracy

reasons, Entrada builds over the 4-party framework of Tetrad (NDSS’22) and enhances the same

by providing the necessary primitives. Moreover, Entrada leverages the GraphSC paradigm to

further enhance e�ciency and entails designing a secure and e�cient shu✏e protocol specifi-

cally in the 4-party setting. This, to the best of our knowledge, is done for the first time and

may be of independent interest.

Stepping beyond traditional security for financially and socially relevant problems

Most protocols in the small-party setting that are designed to attain the strongest security

notion of guaranteed output delivery (GOD), rely on entrusting an honest party, identified as
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Abstract

the trusted third party (TTP), with inputs in the clear to carry out the computation. However,

this may not be desirable for certain applications that deal with highly sensitive data. Another

drawback of traditional MPC protocols is the view leakage attack, where a malicious adversary

may send its view to an honest party, thereby enabling the latter to obtain the underlying

secret information. To address these drawbacks in the traditional MPC definition, Alon et

al.(CRYPTO’20) propose the notion of MPC with Friends and Foes (FaF). Thus, departing

from the traditional MPC model, we identify the need to design FaF-secure MPC protocols

for applications that deal with highly sensitive information, where information leakage must be

prevented even against quorums of honest parties. Specifically, we consider the applications of

secure dark pools and secure allegation escrow systems. Keeping e�ciency at the centre stage,

we design FaF-secure 5-party computation protocols (5PC) that consider one malicious and one

semi-honest corruption and constitute the optimal setting for attaining an honest majority.

– Secure dark pools: Dark pools are private security exchanges that allow investors to trade

financial instruments outside of the prying eyes of the public and ensure the trade remains

unexposed until it is completed. Dark pools are traditionally operated by centralized trusted

brokers, who, in the past, have been known to misuse insider information. This necessitates

designing solutions that guarantee privacy even against the dark pool operator. Hence, given

the sensitive nature of financial data that is involved in the computation and the drawbacks

present in the traditional MPC solutions, we design FaF secure solutions for the same in the 5PC

setting. We design improved solutions for the continuous double auction (CDA) and volume-

based matching algorithms that are used in dark pools. We benchmark the performance of

these secure matching algorithms and observe improvements in comparison to the prior works.

– Secure allegation escrow system: The rising issues of malpractices have led victims to seek

comfort by acting in unison against common perpetrators (e.g., the #MeToo movement). To

increase trust in the system, cryptographic solutions are being designed to realize secure alle-

gation escrow (SAE) systems. In this regard, we identify privacy issues present in prior works

and put forth an SAE system to arrest all these breaches. Given the highly sensitive nature of

allegation data, we choose to realise the system under FaF security as opposed to traditional

security notions. We also provide additional features which were absent in the state of the

art. We benchmark the proposed system with the FaF secure 5PC protocols to showcase the

practicality of our solution.

Secure computation with a constant number of parties Unlike the applications con-

sidered above that demanded operating with a specific number of parties, the latter may vary

depending on the application. Hence, we provide a generalization which allows instantiating the
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Abstract

MPC protocol with an arbitrary (constant) number of parties (n). Our generalized protocols

continue to operate in the honest majority setting to capitalize on the e�ciency benefits that

this setting provides over the dishonest majority, which thereby facilitates attaining an e�cient

solution for the end application. We design two di↵erent protocols that are secure against a

semi-honest and a malicious adversary, respectively. We also design a wide range of building

blocks that facilitate the secure realization of various applications, including but not limited to

genome sequence matching, biometric matching, and even deep neural networks, and showcase

the practicality of the designed protocols by benchmarking these applications.

In this way, we design a range of building blocks in various MPC settings that can facilitate

secure realizations for the above-mentioned privacy-conscious applications.
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Chapter 1

Introduction

Today’s world is seeing a visible transition from o✏ine services to a heavy dependency on

online platforms for banking, socializing, healthcare, etc. This is leading to an increased user

presence online, which leaves a trail of online activity and personal data over the Internet. The

widespread sharing of such personal information and its collection has led to several high-profile

data breaches and scandals [96, 112]. As a result, individuals and organizations are becoming

more conscious of the potential risks associated with the collection, use, and storage of personal

data. Several data privacy laws are being implemented, such as the European Union’s General

Data Protection Regulation (GDPR) and California’s Consumer Privacy Act (CCPA), which

are helping raise awareness about data privacy. With the steady incline in the awareness of

data privacy, we are witnessing a paradigm shift in healthcare, finance, and various other

sectors involved in processing a large amount of sensitive user data. Various privacy-preserving

practices are being adopted to reassure users and provide them with the highest level of security

guarantees while still allowing for useful insights to be derived from private data. Given the ease

of accommodating multiple users and its computational e�ciency, many real-world applications

are preferring the use of secure multiparty computation (MPC) to perform privacy-preserving

computations.

Informally, MPC enables n mutually distrusting parties to compute a function over their

private inputs while ensuring privacy against a coalition of at most t parties. The distrust

among the parties is captured via the notion of a centralized adversary which controls up to t

parties. These t parties are said to be corrupt while the rest are assumed to be honest. Based

on the number of parties t that the adversary corrupts among the total n parties, the setting

is categorized as honest majority or dishonest majority. In the honest majority setting, the

majority of the parties are honest and t < n/2. On the other hand, in the dishonest majority

setting, the majority of the parties are corrupt (dishonest), i.e. t < n. Further, depending on its
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behaviour, the adversary can be categorized as either semi-honest ormalicious [89]. Semi-honest

adversary models the corruption scenario where the corrupt parties are restricted to follow the

protocol and cannot deviate arbitrarily. On the other hand, in the stronger notion of malicious

corruption, the adversary can arbitrarily deviate from protocol specification. Moreover, in the

malicious adversarial model, various security notions can be attained. These are as follows.

1. Security with abort: This security notion allows the adversary alone to learn the output

of the computation and abort the computation at will.

2. Security with fairness: This security notion ensures that either all parties learn the output

of the computation or none do.

3. Security with guaranteed output delivery (GOD) or robustness: This security notion guar-

antees that regardless of the adversary’s misbehaviour, all honest parties learn the output

of the computation.

There are various applications for which privacy-preserving solutions have been designed via

MPC under the di↵erent settings described above. These include secure auctions [28], privacy-

preserving machine learning [174, 173, 49, 193, 50, 136, 138, 38, 220, 61], secure recommendation

systems [210, 109], real-world deployments such as the Estonian study on the correlation be-

tween tax data and educational records [27], and the study of salary inequities across various

employees in the city of Boston [24], to name a few. In this thesis, we explore various other

applications that are of interest and design privacy-preserving solutions for the same via MPC.

Broadly, these applications range from secure computations on graph-structured data, secure

computation for applications of social relevance, and secure computation in the financial sec-

tor and the healthcare domain. In designing the privacy-preserving solutions for each of these

applications, we identify the desirable MPC setting (e.g., number of computing parties n) and

security notion to be achieved for the application under consideration. Based on this, for each

application, we design new MPC frameworks or improve upon the existing ones. Note, how-

ever, that the secure protocols for the applications are designed to make black-box use of the

underlying MPC. This not only allows the application to inherit the latter’s security guarantees

and e�ciency but also opens up the possibility of utilizing the future advancements of MPC in

a seamless way. Before we elaborate on the considered applications, we note that although we

make application-specific design choices, the common theme while designing secure protocols

for all is to design as e�cient a solution as possible. In this regard, we make the following

common design choices across all applications in an attempt to obtain a practically e�cient

solution.
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1. Corruption threshold: It is well known that an honest majority among the parties en-

ables designing e�cient protocols in comparison to a dishonest majority. Moreover, an

honest majority among the parties is necessary to achieve the strongest security notion of

GOD [55]. Hence, to design e�cient secure solutions for the applications under consider-

ation, we focus on designing maliciously secure protocols in the honest majority setting.

2. Preprocessing paradigm: An essential factor to be considered when designing a practically

e�cient protocol is its response time, which accounts for the time taken from submission

of the input, its processing, to delivery of the output. To minimize response time, we

focus on designing secure protocols in the preprocessing paradigm [64, 65, 127, 128, 21,

66, 58, 200, 129, 193, 50]. Here, expensive data-independent computations are carried out

in a preprocessing phase, thereby making way for a fast data-dependent online phase.

3. Algebraic structure: To further enhance e�ciency by utilizing the underlying CPU archi-

tecture, several protocols work over rings [173, 136, 50, 220, 138, 169]. We follow this

approach and design secure protocols operating over the ring Z2` .

1.1 Overview of the applications considered in the thesis

1.1.1 Secure computation over graphs via traditional security notion

Many real-world applications, such as communication networks, tra�c networks, social net-

works, etc., generate an enormous amount of unstructured data. A natural and conventional

approach to model such data is via graphs [218] owing to their highly expressive capabilities and

ease of processing. Specifically, modelling a system as a graph involves representing each entity

as a node and capturing their interactions as edges. Further, the nodes and edges may also be

associated with data components depending on the underlying system. In a simplistic example

of a friendship network, each node denotes an individual, an edge denotes friendship between

two individuals, and each node may additionally store data associated with the individual, such

as name, age, gender, etc.

There exist various techniques that enable deriving meaningful information about the system

modelled as a graph. Some of these include clustering the nodes of the graph, predicting

new edges to identify relations between nodes, and computing various centrality measures to

determine the importance of the nodes, to name a few. While running these graph-based

algorithms, most of them assume that the topology of the graph is available in its entirety

[133, 214, 160, 215, 86]. This may not always be the case. For example, consider the COVID-
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19 contact network, where users are modelled as nodes, and their interactions are modelled

as edges. Here, the contact network may be held in a distributed fashion where each node is

aware only of its neighbouring nodes. In general, the graph may be distributed across multiple

data owners, such that each of them is aware of only a subset of the edges in the overall graph.

Performing computations on such distributed graphs, thus, requires data owners to disclose their

view of the graph, which may not only comprise the topology of the graph they hold but also

sensitive data associated with the corresponding nodes/edges. However, data privacy concerns

prevent them from doing so. Hence, the distributed nature of the global graph, clubbed with

privacy concerns, makes it challenging to perform computation when accounting for the entire

graph topology. This motivates the need for designing privacy-preserving solutions that allow

computing on the global graph without requiring data owners to reveal their view of the graph.

Having motivated the need to perform privacy-preserving computations on graph-structured

data, we consider two popular graph algorithms which demand designing privacy-preserving

solutions—local clustering and graph convolutional networks. We next discuss these applica-

tions, the need for privacy in these applications and provide an overview of the MPC setting

we consider while designing a secure solution for the same.

1.1.1.1 Secure local clustering

One useful technique to analyse graph-based data is that of clustering, which allows analyzing

the topology of a graph to identify entities that are related to each other [46, 209, 182, 120, 153].

At a high level, clustering is the process of grouping together similar nodes in a graph and finds

use in several applications such as community detection in social networks [134, 225, 181, 149],

behavioural analysis [165, 68], structural characterization of chemical networks [151, 131, 76,

201], etc. Most clustering algorithms are designed to categorize every node into its specific

cluster, termed global clustering. However, more often than not, one may be interested in

identifying a local cluster around a specific node. For example, consider the COVID-19 contact

network. Identifying the close-knit cluster around a user who has recently contracted the

virus is important and enables the implementation of preventive measures. A global clustering

algorithm may not correctly identify such a local cluster. Other examples where identifying

a local cluster is of importance include targeted advertising [20], fraud detection [166], etc.

Graph-based local clustering algorithms in the literature [214, 160, 215, 86] assume that the

topology of the graph is available in its entirety. However, as described earlier, the graph may

be distributed, and together with the privacy concerns, introduces challenges. Hence, our goal

is to perform local clustering in a privacy-preserving manner. This will facilitate multiple data
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owners to perform local clustering on a graph that is held in a distributed fashion while ensuring

that none of them is required to disclose their data in the clear. We realize this goal via MPC,

where the private input is the graph (held distributedly) and a target seed node, while the

output comprises a local cluster around the seed node.

We focus on designing an e�cient solution by relying on the threshold-optimal setting

of 3-party computation (3PC) with honest majority [136], and aim to attain the strongest

security of GOD. In the process, we enhance the framework of [136] by incorporating the

missing primitives. Further, we use the GraphSC paradigm [179, 13], which provides a generic

framework for evaluating graph algorithms securely, to design e�cient solutions. The GraphSC

paradigm [13] heavily relies on a secure shu✏e primitive. This primitive allows randomly

permuting the elements of the ordered set while ensuring that the permutation, as well as the

elements in the ordered set, are not known on clear. Hence, we also design an e�cient secure

3-party shu✏e protocol. The use of our shu✏e protocol helps to further improve the e�ciency

of the designed system.

Anonymous broadcast The secure shu✏e protocol, as mentioned above, finds wide-spread use

as a primitive in various other applications as well (which may not involve computations over

a graph) such as electronic voting [180, 98], oblivious RAM [47, 17], anonymous broadcast [80],

to name a few. Anonymous broadcast is one application where a secure shu✏e protocol forms

an integral part. Elaborately, anonymous broadcast, as the name suggests, enables a set of N

clients to anonymously broadcast their messages while guaranteeing that none learns about the

association between a message and the identity of its sender. A simple solution to realize this

is for the clients to send their messages to a centralized server, which can output the randomly

shu✏ed messages back to the clients. However, to guarantee the privacy of messages against the

server and ensure that the server, too, does not learn about the association between the client

and its message, the shu✏e can be realized via MPC. Elaborately, the clients secret-share their

messages to a set of three servers (the three parties in the 3PC setting considered above while

designing the secure shu✏e protocol), such that no single server can derive any information

about the client messages based on the shares that it receives. The servers then invoke a

secure shu✏e protocol on the received secret-shared messages, and reconstruct the shu✏ed

output towards the clients. In this way, an anonymous broadcast system essentially relies on

a secure shu✏e protocol. Hence, although anonymous broadcast does not inherently compute

over graphs, we digress slightly and showcase how our shu✏e protocol can be used to realize

the application of anonymous broadcast in the 3-party setting, as considered in prior works

[80]. In the process, not only do we design a more e�cient solution to anonymous broadcast
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compared to the state-of-the-art solution of [80], but our system also provides improved security

guarantees and properties such as censorship resistance that were missing in the prior solution.

1.1.1.2 Secure graph convolutional networks

Resuming the discussion on secure computation over graphs, we next study a powerful machine

learning technique for leveraging graph-structured data—graph convolutional networks (GCN).

GCNs are a type of convolutional neural network designed to operate on graph-structured data

such as social networks, citation networks, etc. GCNs find use in a diverse set of applications,

including tra�c prediction, rumour detection, targeted advertising and recommendation sys-

tems, to name a few. The massive size of the input graph and multiple layers of the neural

network results in GCNs being computationally intensive. Hence, various platforms, such as

Neptune ML by Amazon, o↵er GCN training and inference as a service, where a data owner

(client) provides its input data in clear to the hired servers that carry out the computations on

behalf of the client. However, the input may comprise private information, such as the graph

topology, node/edge features, etc., that the client may not wish to disclose to the servers. Such

threats to privacy are evident when dealing with data with respect to health records [157], so-

cial networks [156], financial transactions [119], etc. This necessitates designing techniques that

allow clients to outsource the computation such that their inputs remain private while enabling

servers to operate on the private inputs. Although paradoxical, such privacy-preserving evalua-

tion of GCNs can be achieved via MPC. We specifically consider the task of node classification

via GCNs, where the graph comprises nodes, some of which are labelled, and the task is to

assign labels to the unlabelled nodes.

MPC protocols are known to have an e�ciency overhead in comparison to cleartext compu-

tation. Hence, for compute-intensive GCNs, it is imperative to design e�cient MPC protocols.

We note that works in the literature look at securely computing neural networks (NN) via

MPC [173, 136, 138]; however, GCNs have not been well explored. Prior works that explore

GCNs only consider performing secure inference over relatively older GCN models [208]. Al-

though one may consider extending these works to securely realize GCNs, they either lack the

necessary primitives or the desired level of security, e�ciency and accuracy. Elaborately, several

works trade o↵ accuracy for e�ciency by relying on MPC-friendly alternatives for non-linear

functions [138, 50, 173]. Instead, we strive to design accurate protocols for GCN evaluation

while not compromising on e�ciency. To achieve an e�cient solution, we build Entrada, a se-

cure framework for evaluating GCNs, in the 4-party computation (4PC) setting with an honest

majority. To further enhance the e�ciency, we also use the GraphSC paradigm [179, 13].
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1.1.2 Stepping beyond traditional security for financially and so-

cially relevant problems

While designing privacy-preserving solutions for various applications, it is desirable to achieve

the strongest security notion of robustness or GOD. Recall that robustness ensures that all

parties obtain the output regardless of the adversary’s misbehaviour. Absence of robustness

leads to denial of service and economic losses. Moreover, a robust solution increases the users’

trust in the system and encourages higher user participation. Hence, guaranteeing robustness

is crucial for the seamless adoption of a privacy-preserving solution. With that said, it is worth

noting that most GOD protocols in the literature [36, 30, 31, 136] rely on an honest party

identified as the trusted third party (TTP) to carry out the computation if misbehaviour by

a malicious adversary is detected. Elaborately, the parties entrust the TTP with their inputs,

which carries out the computation and delivers the output to all. According to the standard

security definition, this leakage of inputs towards a TTP is not considered a privacy breach.

This is because the TTP is deemed to be honest, and the goal is to protect against information

leakage towards an adversary. However, entrusting a TTP with all the inputs may not be

acceptable for certain real-world applications that deal with highly sensitive data.

Another drawback of traditional MPC protocols is the view leakage attack. While executing

an MPC protocol, nothing prevents a malicious adversary from sending its view (messages

exchanged during the protocol run), which consists of the view of t corrupt parties, to an

honest party. This is not treated as an attack in the traditional security definition since an

honest party is expected to discard non-protocol messages, unlike a semi-honest one. However,

if this honest party turns rogue in the future, the party can obtain all the information about

the private inputs and the intermediate values generated during the computation. This holds

because it would now possess information with respect to t + 1 parties (t views received from

the adversary and its own view), which su�ces to obtain the underlying secret information.

This, too, goes against the goal of providing privacy in a system.

To address these drawbacks of the traditional MPC security definition, Alon et. al. [5]

proposes a new definition called MPC with Friends and Foes (FaF). This definition requires

honest parties’ inputs to be protected against not only the adversary (foes) but also from

quorums of other honest parties (friends). This is modelled by a decentralized adversary which

comprises two di↵erent non-colluding adversaries—(i) a malicious adversary that corrupts any

subset of at most t out of n parties, (ii) a semi-honest adversary that corrupts any subset of

at most h? out of the remaining n � t parties. A protocol secure against such an adversary is

said to be (t, h?)-FaF secure. Further, the FaF model requires security to hold even when an
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adversary sends its view to other parties. Hence, departing from the traditional MPC model,

we identify the need to design FaF-secure MPC protocols for applications that deal with highly

sensitive information which needs protection from all forms of misuse. Specifically, we consider

the applications of dark pools and allegation escrow systems. Before we elaborate on the

applications, we briefly discuss the number of parties and corruption threshold considered in

our design of FaF-secure protocols.

Small-party honest majority FaF model Alon et. al. [5] show that GOD can be achieved

in the (t, h?)-FaF model i↵ 2t + h
?
< n. Thus, obtaining GOD requires n � 4 for non-zero

values of t and h
?. Focusing on MPC with a small number of parties, observe that instantiating

n = 4 and t = h
? = 1 provides the optimal threshold for 4PC to achieve GOD. However,

two corruptions result in a dishonest majority setting, which renders less e�cient protocols

than their honest majority counterparts. Hence, to design e�cient protocols, we augment this

setting with one additional honest party and design 5-party computation (5PC) protocols which

are (1, 1)-FaF secure. We remark that while (t, h?) can be instantiated with a varied range of

values to attain GOD such that 2t + h
?
< 5, we set t = h

? = 1 because of the following

reasons: (i) this results in an honest majority setting; (ii) we believe that h
? = 1 su�ces for

most practical applications since honest parties (friends) are unlikely to collude with each other

(note that when h
? = 1, the only possible value of t is 1). We note that in the current setting

of n = 5 and t = h
? = 1, one could alternatively avoid the aforementioned weaknesses by

deploying a traditional (5,2) malicious secure protocol since the latter protects against view

leakage and also avoids reliance on a TTP when deployed in the presence of a single malicious

party. However, since the traditional protocol is designed to cater to two malicious parties as

opposed to one in our setting, it may lose out on performance. Hence, keeping e�ciency for

real-world applications at centre stage, the objective is to leverage the presence of a semi-honest

party to design customised e�cient (1, 1)-FaF secure protocols. We note that a traditional (n, t)

malicious protocol is capable of protecting against view leakage attacks and avoids the reliance

on a TTP as long as at most t� 1 parties are malicious.

1.1.2.1 Secure dark pools

Dark pools are private security exchanges that allow investors to trade (buy and/or sell) finan-

cial instruments such as securities (stocks, bonds etc.) outside of the prying eyes of the public

and ensure the trade remains unexposed until it is completed. This allows investors to trade

large blocks of securities privately and ensures the market is not impacted by the knowledge of

such potential large-scale trade. For example, public knowledge of an institution trying to sell a
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large portion of its shares would cause a sudden depreciation of its share value even before the

transaction is completed. On the other hand, the market impact is known to be much smaller

when the trade is reported after it is executed. This is the working principle underlying dark

pools, which makes them a popular choice for trading. Dark pools are traditionally operated

by trusted brokers who are made aware of the trade interests of the clients. They are then

expected to find matching counter-parties within their network of private clients. The clients,

in the process, place complete trust in the broker to not misuse the trade interests disclosed

on clear. However, several instances have showcased misuse of insider information where dark

pool operators have been fined for the same [186, 188, 189, 190, 184, 185, 187].

To guarantee complete privacy, the interest to trade must never be disclosed in the open, not

even to the broker operating the dark pool. Ideally, matches between sellers and buyers must

be found without disclosing this sensitive information. Thus, the problem can be modelled as

an instance of MPC, where the private input is the data related to the trade, and the clients

are interested in securely matching the possible trades. In this setting, rather than the dark

pool being operated by a central trusted broker, it is emulated by an MPC protocol run among

a set of parties. Clients secret-share their trade data to these parties in such a way that no

subset, of at most t of these parties, learns any information. These parties are responsible for

running the MPC protocol designed to identify matching trades securely.

The applicability of MPC for securely operating dark pools has been shown previously

[40, 60, 41, 16]. Although MPC is befitting to the addressed problem, the current solutions

are far from complete. All the proposed protocols only o↵er malicious security with abort.

This could cause denial-of-service attacks and result in the protocol terminating even before

the matched trades are disclosed. Further, such a setting allows an adversary to cause repeated

failures. Since time is of essence in applications such as dark pools, this not only results

in the wastage of valuable compute resources but may also hamper the functionality of the

system. Hence, any security notion that empowers the adversary to abort does not fit the bill.

Instead, a security notion that guarantees the delivery of output regardless of the adversary’s

misbehaviour is desirable. Hence it is imperative to realize robust, secure dark pools. However,

observe that an MPC-based solution for a dark pool that achieves GOD by relying on a TTP,

is equivalent to having a central broker who learns all the inputs and is trusted to perform the

matching. This defeats the purpose of employing an MPC protocol, as one of the goals of a

secure dark pool system is to hide the trade from every single party since it contains highly

sensitive information of the client. Moreover, as described earlier, existing lawsuits against dark

pool operators showcase the temptation to misuse profitable information. Hence, departing from

the traditional approach, we design (1, 1)-FaF secure 5PC solutions for the same.
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1.1.2.2 Secure allegation escrow systems

Another application where FaF-security is desirable is in the allegation escrow system. An alle-

gation escrow is a system that allows victims of crimes such as abuse, corruption, exploitation,

harassment, etc., to file a confidential report about the crime so that necessary actions can be

taken to provide justice to the victim. For instance, institutions are mandated to appoint an

organizational ombudsperson or a Chief Vigilance O�cer (CVO) responsible for the prevention,

detection, and punishment of malpractices. The victims are expected to report the inflicted

crime to the CVO. Observe that the report contains the identities of the accused and victim,

details of the inflicted crime, etc. Hence, it is regarded to be highly sensitive. The profound

harm that can be inflicted on victims if the CVO leaks this sensitive data to the perpetrator,

which is likely when the latter is a person of influence, instils great fear in victims and prevents

many from coming forward. Thus, such a system requires the victims to place enormous trust

in the integrity of the CVO. Instead, a secure platform for reporting crimes is a more reliable

solution. Further, the victims may be more comfortable reporting the crime to a digital plat-

form rather than to a human counterpart [113], and such a platform is more accessible and

scalable. Thus, we aim to design a secure allegation escrow system that empowers victims to

securely report allegations and seek justice.

Desirable properties of secure allegation escrow Having a system that merely records

allegations and reveals them to the concerned authorities (for further action) may not suf-

fice. Instead, the system should reveal allegations to the concerned authorities only when a

su�cient number of allegations are recorded against a common perpetrator. This is because

victims often find it e↵ective and comforting to come out as a group. Further, acting against a

common perpetrator in unison reduces the fear of retribution discussed previously. Some note-

worthy examples of acting in unison are the #MeToo movement [1], and Project Callisto [198],

which was deployed to help report sexual assaults on university campuses. To facilitate the

reporting and processing of collective allegations, an allegation escrow system should have the

following properties– (i) each victim must be able to independently file an allegation against

a perpetrator, (ii) the system must be capable of matching allegations filed against a common

perpetrator, (iii) these matched allegations should be revealed to the concerned authorities only

once a predetermined condition for disclosure is met (e.g., Project Callisto requires at least two

allegations against the same perpetrator before these can be revealed), (iv) the identity of the

accuser, accused, and the details of the allegation must remain hidden until the allegation is

revealed as a part of a collection. Additionally, a centralized solution (i.e., one escrow) for
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the same is a misfit since it forms a single point of failure. Hence, similar to the CVO-based

solution, one may compromise the escrow and learn the sensitive allegation data. Thus, it is

desirable to have several independent escrows which collectively e↵ectuate a secure allegation

escrow (SAE) system with the above-mentioned properties and guarantee that none of the

escrows can individually learn allegations on clear.

The condition for disclosure is one of the most crucial features of an SAE system. It defines

the system’s sensitivity towards handling an alleger’s discomfort. This condition is calibrated

using a parameter called reveal threshold. The parameter captures the minimum size of the

unison the alleger wishes to be a part of (excluding the alleger) when its allegation is revealed

in clear to the concerned authorities. In the literature, the reveal threshold has evolved from

being a parameter that is globally fixed (i.e., common to all allegers) and public (i.e., known on

clear to all the escrows) to an alleger-defined (variable) public parameter. Project Callisto [198]

uses a globally-fixed public reveal threshold of one. The work of [144] extends support for a

reveal threshold of more than one, yet it is globally fixed and public as before. However, not

every alleger may be comfortable in coming out against a common perpetrator with just one

other alleger (or even a system-defined threshold number of allegers). That is, setting a low

(high) system-defined threshold will not allow the participation of victims who prefer more

(few) supporters, making the system non-inclusive. The work of [14] that forms state of the art

recognizes this pressing requirement and allows an alleger the flexibility of deciding its reveal

threshold. Elaborately, each alleger can decide a reveal threshold, t, for its allegation, which

indicates that the allegation can be revealed if there exist at least t other matching allegations

(i.e., those that allege the same perpetrator) which can be revealed. Thus, a subset S of

matching allegations can be revealed if and only if the threshold of each allegation in S is < |S|
(size of S). This is referred to as the reveal criteria of the set S. For example, if there exists a set

of matching allegations with reveal thresholds 2, 3, 3, 4, then no allegation is revealed because

there does not exist any subset S of allegations that satisfies the reveal criteria. However, if

another matching allegation with a reveal threshold of 3 is filed in the system, all the allegations

with thresholds 2, 3, 3, 3, 4 can be revealed. The system must thus allow secure identification of

such a set of revealable matching allegations. We note that allowing a variable threshold is not

the end of the road. Although [14] provides this key feature, it fails to do so while guaranteeing

complete privacy to the victims. We explain our concern with one example below. Consider

the scenario described above when a system has matching allegations with reveal thresholds

2, 3, 3, 4, none of which can be revealed. Observe that if an alleger among these files another

copy of its allegation, [14] treats the copy as a new allegation. Thus, these set of 5 allegations

will satisfy the reveal criteria despite having an insu�cient number of distinct allegers. Note
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that this results in prematurely revealing the genuine (unique) allegations and compromises the

privacy of the allegers. Similarly, there arise other privacy issues owing to the reveal threshold

being public, which are detailed later (§6.2.1).
The user-defined reveal threshold captures the vulnerability of an alleger, and hence, it must

be regarded as highly sensitive information. Thus, we develop the first SAE system that o↵ers

not only a flexible user-defined threshold, but also guarantees to keep thresholds private, and

thereby arrests all concerns raised above. Additionally, we consider the possibility of allegation

modification and deletion. Our MPC-based SAE system is realized via a set of (untrusted)

escrows (acting as parties inside the MPC) who carry out the necessary computations of SAE

via an MPC protocol on the submitted allegations. MPC guarantees the privacy of computation

so that nothing beyond allowed outcomes of the SAE system (a bunch of matched allegations

when reveal criteria are met) is leaked. Moreover, due to the drawbacks present in traditional

MPC, which cannot be tolerated by a system such as that of SAE, our goal is to design (1, 1)-FaF

secure solutions for the same in the 5PC setting.

1.1.3 Secure computation with a constant number of parties

The applications considered so far demanded to be operated with a specific number of parties

to attain the desired level of security and e�ciency. For instance, while 3PC provides the

threshold-optimal setting in the honest majority and su�ces for applications such as anony-

mous broadcast, 4PC is known to outperform 3PC in terms of e�ciency and hence is beneficial

for compute-intensive applications such as GCNs. Further, for applications such as dark pools

and SAE, which deal with highly sensitive user inputs, it is desirable to provide FaF security

where protocols are designed in the 5PC setting tolerating at most 1 malicious and at most

1 semi-honest corruption. In this way, the number of parties to be chosen to securely real-

ize an application may vary across the applications. Hence, we next provide a generalization

which allows instantiating the MPC protocol with an arbitrary (constant) number of parties

(n) that can tolerate up to t < n/2 corruptions. Our generalized protocols continue to op-

erate in the honest majority setting to capitalize on the e�ciency benefits that this setting

provides over the dishonest majority, which thereby facilitates attaining an e�cient solution

for the end application. In such a multiparty setting, for a higher n, the corruption threshold

t is also higher. Hence, this setting is a better fit for applications that demand resiliency to

a higher number of corruptions. The higher tolerance to corruption also increases trust in the

system. Moreover, the multiparty setting allows performing privacy-preserving computations

even in a non-outsourced deployment scenario when outsourcing the computation is not fea-
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sible/preferable. Such scenarios arise a lot in practice, such as when multiple (more than 5)

healthcare institutions want to pool their databases on genome sequences and subsequently

perform analysis on their combined database among themselves. Hence, switching gears, we

focus on designing e�cient protocols in the multiparty computation setting having an honest

majority. In contrast to preceding applications wherein the MPC was tailor-made to the spe-

cific application at hand, our multiparty protocols are generic. We also design a wide range of

building blocks that facilitate the secure realization of various applications, including but not

limited to genome sequence matching, biometric matching, and even deep neural networks.

1.2 Summary of the results in the thesis

Consequent to the above discussion on the applications, we now summarize our contributions.

1. Secure local clustering: We design solutions for privacy-preserving local clustering,

which is addressed for the first time in the literature. Our local clustering algorithm

is based on the heat kernel PageRank (HKPR) metric, which produces the best-known

cluster quality. En route to our final solution, we have two important steps: (i) design-

ing the data-oblivious equivalent of the state-of-the-art algorithms for computing local

clustering and HKPR values (a data-oblivious algorithm is one whose control flow does

not depend on the input data), and (ii) compiling the data-oblivious algorithms into its

secure realisation via an MPC framework that supports operations over fixed-point arith-

metic representation such as multiplication and division. Keeping e�ciency in mind for

large graphs, we choose the best-known honest majority 3PC framework of [136] and en-

hance it with some of the necessary yet missing primitives before using it for our purpose.

Moreover, we operate in the GraphSC paradigm [13] to design e�cient solutions. This

additionally entails designing a secure shu✏e protocol in the 3PC setting. We bench-

mark the performance of our secure protocols, and the reported run time showcases the

practicality of the same. Further, we perform extensive experiments to evaluate the ac-

curacy loss of our protocols. Compared to their cleartext counterparts, we observe that

the results are comparable and, thus, showcase the practicality of the designed protocols.

Anonymous broadcast: Given our improved secure shu✏e protocol, we showcase its use

for the application of anonymous broadcast where shu✏e forms an integral part. In the

process, we also provide improved properties of robustness and censorship resistance,

which were missing in the state-of-the-art anonymous broadcast system of [80]. Our

benchmarks showcase that our solution outperforms [80] in every aspect.
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2. Secure graph convolutional networks: We design Entrada, a framework for securely

evaluating GCNs. For e�ciency and accuracy reasons, Entrada builds over the 4PC frame-

work of [138] and enhances the same by providing the necessary primitives. Moreover,

Entrada leverages the GraphSC paradigm of [13] to further enhance e�ciency. This en-

tails designing a secure and e�cient shu✏e protocol, specifically in 4PC, such that the

random permutation used for shu✏ing is not leaked to anyone. This, to the best of our

knowledge, is done for the first time and may be of independent interest. Through exten-

sive experiments, we showcase that the accuracy of secure GCN evaluated via Entrada is

on par with its cleartext counterpart. We also benchmark the e�ciency of Entrada and

showcase its practicality by benchmarking the GCN-based fraud detection application.

3. Secure dark pools: Given the shortcomings of traditional MPC, the work of [5] defined

a Friends-and-Foes (FaF) security notion to address the same. We showcase the need for

FaF security in applications such as dark pools. This subsequently necessitates designing

concretely e�cient FaF-secure protocols. Towards this, keeping e�ciency at the centre

stage, we design FaF-secure MPC protocols in the small-party honest-majority setting

that operate on the ring algebraic structure. Specifically, we provide (1,1)-FaF secure

5PC protocols that consider one malicious and one semi-honest corruption and constitutes

the optimal setting for attaining an honest majority. To facilitate having FaF-secure

variants for the applications such as dark pools, we design a variety of building blocks

optimized for our FaF setting. The practicality of the designed framework is showcased

by benchmarking dark pools. In the process, we also improve the e�ciency and security

of the dark pool protocols over the existing traditionally secure ones provided in [40].

4. Secure allegation escrow system: In the work of [14], which presents the state-of-

the-art solution, we identify attacks that can leak sensitive information and compromise

victim privacy. We also report issues present in prior works that were left unidentified. To

arrest all these breaches, we put forth an SAE system, Shield, that prevents the identified

attacks and retains the salient features from all prior works. At the heart of our system

lies a new duplicity check protocol and an improved matching protocol. We also provide

additional features such as allegation modification and deletion, which were absent in the

state of the art. To demonstrate feasibility, we benchmark the proposed system with our

FaF-secure protocols, and the reported values showcase the practicality of our solution.

5. Secure multiparty computation: To address privacy concerns and give practical so-

lutions, recent literature on the ring algebraic structure has mostly focused on the small-
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party honest majority setting tolerating a single corruption, noting e�ciency concerns.

We extend the strategies to support higher resiliency in an honest majority setting keeping

the e�ciency of the online phase at the centre stage. Our semi-honest protocol improves

over the state-of-the-art protocol in [62, 29] in terms of online communication without

inflating the overall communication. It also allows shutting down almost half of the par-

ties in the online phase, thereby saving up to 50% in the system’s operational costs. Our

maliciously secure protocol also enjoys similar benefits and requires only half of the par-

ties, except for one-time verification towards the end, and provides security with fairness.

Finally, we showcase the practicality of the designed protocols by benchmarking popu-

lar applications of genome sequence matching via edit distance, biometric matching via

Euclidean distance, and deep neural networks.

1.3 Organization of the thesis

The thesis is structured into multiple chapters, each dedicated to an application outlined pre-

viously, with the penultimate chapter discussing the protocols for the multiparty setting. We

finally conclude with the open questions. The chapters are organized as follows.

– Chapter 3: Secure local clustering

– Chapter 4: Secure graph convolutional networks

– Chapter 5: Secure dark pools

– Chapter 6: Secure allegation escrow system

– Chapter 7: Secure computation with a constant number of parties

– Chapter 8: Conclusion and open questions
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Chapter 2

Preliminaries

This chapter discusses some of the common prerequisites to be used in the subsequent chapters.

This includes notation, definitions, security model, and overview of the 3PC of SWIFT [136], the

4PC of Tetrad [138], and the GraphSC paradigm [179, 13]. The application-specific prerequisites

are discussed within the respective chapters.

2.1 System model and primitives

System and threat model We let P denote the set of parties that carry out the computa-

tions in the MPC protocols. We assume that these parties are connected by pair-wise private

and authentic channels in a synchronous network. There exists a probabilistic polynomial time

adversary A that corrupts some of the parties in P, where the corruption threshold (i.e., the

number of parties corrupted by A), as well as the type of corruption (i.e., semi-honest or ma-

licious), varies depending on the application under consideration and is discussed within the

specific chapter. Our protocols are cast in the preprocessing paradigm, which comprises an

input-independent preprocessing phase and an input-dependent online phase. The protocols are

designed to work over an `-bit ring denoted by Z2` . We consider both, the arithmetic ring Z2` ,

as well as the Boolean ring Z21 . For a bit b 2 {0, 1}, we use b
R to denote the representation

of the bit b over the arithmetic ring Z2` . Specifically, bR has the least significant bit set to b,

with all other bits being 0.

Dealing with decimal values For applications where the inputs are decimal numbers, we

use the fixed-point arithmetic (FPA) [173, 49, 193, 50, 38, 138, 136, 220, 61] representation

to encode the value in the underlying ring Z2` . A decimal value is represented as an `-bit

number in signed 2’s complement notation, where the most significant bit (msb) is the sign bit,
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f least significant bits denote the fractional part, and the input is k bits long. Unless otherwise

specified, we set ` = 64, k = 32 and f = 16. Operations are then performed on the `-bit integer,

treated as an element of Z2` , modulo 2`. We use (x)
f
to denote that x 2 Z2` has f bit precision.

Negligible function A function negl is negligible i↵ 8c 2 N 9n0 2 N such that 8n >

n0, negl(n) < n
�c.

Collision resistant hash function Consider a hash function family H = K ⇥ L ! Y.

The hash function H is said to be collision resistant if, for all probabilistic polynomial-time

adversaries A, given the description of Hk where k 2R K, there exists a negligible function negl()

such that Pr[(x1, x2) A(k) : (x1 6= x2) ^ Hk(x1) = Hk(x2)]  negl(), where m = poly() and

x1, x2 2R {0, 1}m.

Commitment scheme Let Com(x) denote the commitment of a value x. The commitment

scheme Com(x) possesses two properties; hiding and binding. The former ensures privacy of

the value x given just its commitment Com(x), while the latter prevents a corrupt party from

opening the commitment to a di↵erent value x0 6= x. The practical realization of a commitment

scheme is via a hash function H(·) given below, whose security can be proved in the random-

oracle model (ROM)—for (c, o) = (H(x||r), x||r) = Com(x; r).

Threshold secret sharing A t-out-of-n secret sharing scheme allows a dealer with a secret v

to distribute shares of v among a set of n parties P = {P1, . . . , Pn} such that—(i) no subset of t

shares provides any information about the underlying secret v, (ii) any set of t+1 shares or more

allows successful reconstruction of v. Replicated secret sharing (RSS) [114] is one instantiation

of threshold secret sharing which works as follows. A value v 2 Z2` is said to be RSS-shared

with threshold t if for every subset T ⇢ P of n� t parties there exists a share vT 2 Z2` possessed

by all Pi 2 T such that v =
P

T vT. Observe that RSS satisfies condition (i) stated above since

every set of t parties will miss one share of v, and it satisfies condition (ii) since every set of

t+ 1 parties possesses all the shares of v.

2.2 Security model

We prove the security of our protocols using the real-world/ ideal-word simulation paradigm [88,

155]. Informally, here the security is proved by comparing what an adversary can do in the

real-world execution of the protocol with what it can do in an ideal-world execution, where the
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latter is considered to be secure by definition. In an ideal-world execution, there exists a trusted

third party (TTP), to which the parties send their inputs over perfectly secure channels. The

TTP carries out the computation and sends the output to the parties. Informally, a protocol

is said to be secure if whatever an adversary can do in the real-world execution, it can also be

done in the ideal-world execution. We refer the readers to [88, 155] for further details regarding

the security model.

Let A denote the probabilistic polynomial time real-world adversary corrupting at most t

out of n parties in P, let S denote the corresponding ideal-world adversary, and let F denote

the ideal functionality. Let viewideal
S,F (1, zA) be the malicious adversary’s simulated view and

outideal
S,F (1, zA) denote the output of the uncorrupted parties during a random execution of

ideal-world functionality F with respect to the security parameter  and auxiliary input zA.

Similarly, let viewreal
A,⇧ (1, zA) be A’s view and outreal

A,⇧ (1, zA) denote the output of the uncor-

rupted parties during a random execution of a protocol ⇧. We say that the protocol ⇧ securely

realizes F if for every PPT adversary A there exists an ideal-world adversary S corrupting the

same parties such that the joint distribution of the view of S and the output of the honest par-

ties from the ideal world execution, and the joint distribution of the view of A and the output

of the honest parties from the real-world execution, are computationally indistinguishable.

Definition 2.1 For n 2 N, let F be an ideal-world functionality and let ⇧ be the real-world

n-party protocol that operates over private and authenticated point-to-point channels among

the parties. We say that ⇧ securely realizes F if for every PPT real-world adversary A, there

exists a PPT ideal-world adversary S, corrupting the same subset of parties as A, such that the

real-world view and the ideal-world view is indistinguishable, i.e.,

{viewideal
S,F (1, zA),out

ideal
S,F (1, zA)}

c⇡ {viewreal
A,⇧ (1, zA),out

real
A,⇧ (1, zA)}

We analyze the security guarantees of correctness and privacy separately in all our security

proofs since we consider deterministic functionalities alone in this thesis [155].

Security notions We next describe the security notions that a protocol can attain (consid-

ered in this thesis) and the corresponding ideal functionalities for the same.

Security with fairness: Informally, a protocol that attains the security notion of fairness

ensures that either all parties learn the output of the computation or none do. This is captured

by the ideal functionality in Fig. 2.1 when considering P = {P1, . . . , Pn}.
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FFair interacts with the parties in P = {P1, . . . , Pn}, and the adversary S that corrupts a subset of

parties in P. Let f denote the function to be computed. Let xs be the input of party Ps 2 P, and

ys be the corresponding output, i.e ({ys}ns=1) = f({xs}ns=1). Corrupted parties may send arbitrary

inputs as instructed by S. Further, S is allowed to send a special command, abort, which indicates

that none of the parties should receive the output.

Step 1: FFair receives (Input, xs) from Ps 2 P. If (Input, ⇤) is already received from Ps, then ignore

the current message. Otherwise, record x0s = xs internally. If x0s lies outside the input domain of

Ps, then record x0s = abort.

Step 2: If there exists s 2 {1, . . . , n} such that x0s = abort, then set ys = abort for s 2 {1, . . . , n}.
Else, compute ({ys}ns=1) = f({xs}ns=1).

Step 3: Send (Output, ys) to Ps 2 P. Here, ys = abort if S sent (Signal, abort).

Functionality FFair

Figure 2.1: Ideal functionality for evaluating function f with fairness.

Security with guaranteed output delivery (GOD): Informally, a protocol that attains the

security notion of guaranteed output delivery (or robustness) guarantees that regardless of

the adversary’s misbehaviour, all honest parties learn the output of the computation. This is

captured by the ideal functionality in Fig. 2.2.

FGOD interacts with the parties in P = {P1, . . . , Pn}, and the adversary S that corrupts a subset of

parties in P. Let f denote the function to be computed. Let xs be the input of party Ps 2 P, and

ys be the corresponding output, i.e ({ys}ns=1) = f({xs}ns=1). Corrupted parties may send arbitrary

inputs as instructed by S.

Step 1: FGOD receives (Input, xs) from Ps 2 P. If (Input, ⇤) is already received from Ps, then ignore

the current message. Otherwise, record x0s = xs internally. If x0s lies outside the input domain of

Ps, then record x0s as some predetermined default value.

Step 2: Compute ({ys}ns=1) = f({xs}ns=1) and send (Output, ys) to Ps 2 P.

Functionality FGOD

Figure 2.2: Ideal functionality for evaluating function f with GOD.

Friends-and-foes (FaF) security model [5] In the traditional definition, as discussed

above, security is captured by designing an ideal-world adversary (simulator) which can simulate

the view of the real-world adversary corrupting a subset of the parties in P. However, the FaF

security model assumes the presence of decentralized adversaries—a malicious A that corrupts

t out of the n parties maliciously, and a semi-honest adversary AH that corrupts h? out of the
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remaining n� t parties in a semi-honest manner. Hence, in the FaF-security model, there exists

the additional requirement of simulating the view of the semi-honest parties. This necessitates

the use of two simulators. Thus, to prove the security, two simulators are constructed in the

ideal-world execution, one for the malicious adversary and one for the semi-honest adversary.

Further, the malicious adversary is allowed to send its entire view to the semi-honest adversary

in the ideal-world execution (to capture the behaviour where the malicious adversary may send

non-protocol messages to uncorrupted parties in the real-world execution).

Let A denote the PPT real-world malicious adversary corrupting t parties in I ⇢ P, and SA

denote the corresponding ideal-world simulator. Similarly, let AH denote the PPT real-world

semi-honest adversary corrupting h? parties inH ⇢ P\I, and SA,H, be the ideal-world simulator.

Let F be the ideal-world functionality. Let viewreal
A,⇧ (1, zA) be A’s view and outreal

A,⇧ (1, zA)

denote the output of the uncorrupted parties (in P\ I) during a random execution of a protocol

⇧, where zA is A’s auxiliary input. Correspondingly, let viewreal
A,AH,⇧(1


, zA, zAH

) be AH’s view

during an execution of protocol ⇧ running alongside A, where zAH
is the AH’s auxiliary input.

Note that viewreal
A,AH,⇧(1


, zA, zAH

) consists of the non-protocol messages sent by the A to AH.

Similarly, let viewideal
SA,F (1, zA) be the malicious adversary’s simulated view and outideal

SA,F (1, zA)

denote the output of the uncorrupted parties during a random execution of ideal-world func-

tionality F. Further, let viewideal
SA,SA,H,F(1


, zA, zAH

) be the semi-honest adversary’s simulated

view during an execution of F running alongside A.

A protocol ⇧ is said to compute F with (weak) computational (t, h?)-FaF security if

{viewideal
SA,F (1, zA),out

ideal
SA,F (1, zA)}

c⇡ {viewreal
A,⇧ (1, zA),out

real
A,⇧ (1, zA)}

{viewideal
SA,SA,H,F(1


, zA, zAH

),outideal
SA,F (1, zA)}

c⇡ {viewreal
A,AH,⇧(1


, zA, zAH

),outreal
A,⇧ (1, zA)}

2.3 3PC of SWIFT

SWIFT [136] is a robust 3-party computation (3PC) framework with P = {P0, P1, P2} (or

equivalently P = {Pi, Pj, Pk}) tolerating at most 1 malicious corruption. We first explain the

3PC sharing semantics of SWIFT, followed by its protocols that the thesis relies on.

Sharing semantics SWIFT performs computation via masked evaluation and relies on a

variant of replicated secret sharing (RSS) among 3 parties with threshold 1. The following are

the sharing semantics used therein.

– [·]-sharing: A value v 2 Z2` is said to be (3, 1) replicated secret shared (RSS) or [·]-shared, if
there exists [v]01 , [v]02 , [v]12 2 Z2` such that v = [v]01+[v]02+[v]12, and each [v]ij 2 {[v]01 , [v]02 ,
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[v]12} is held by Pi, Pj 2 P.

– J·K-sharing: A value v 2 Z2` is J·K-shared among P, if there exists ↵v 2 Z2` that is [·]-shared,
and there exists �v 2 Z2` such that �v = v + ↵v which is held by all parties in P.

Linear operations such as Jc1x + c2yK given JxK, JyK where c1, c2 2 Z2` are public constants

can be performed non-interactively by computing c1JxK+ c2JyK. The linearity property extends

to [·]-sharing as well. Sharing over Z2` is referred to as arithmetic sharing (J·K) while over Z2 is

referred to as Boolean sharing (J·KB), which is similar to J·K except that addition operation is

replaced with XOR. In general, the Boolean world is analogous to the arithmetic world, with

arithmetic addition and multiplication operations being replaced with Boolean XOR and AND.

Shared key setup Parties can non-interactively generate common random values among

themselves by relying on the common PRF keys established among themselves during a one-

time setup phase. This is abstracted via the ideal functionality FSetup (Fig. 2.3). Several

works [11, 12, 173, 49, 193, 30, 50, 38, 136] rely on such a setup. Thus, the computation starts

with such a setup phase which is done once and for all. Let F : {0, 1} ⇥ {0, 1} ! X be a

secure pseudo-random function (PRF), with co-domainX being Z2` . The set of keys established

between the parties for 3PC is as follows:

– One key shared between every pair—k01, k02, k12 for the parties (P0, P1), (P0, P2) and (P1, P2),

respectively.

– One shared key known to all the parties—kP.

FSetup interacts with the servers in P and the adversary S. FSetup picks random keys kij for

i, j 2 {0, 1, 2} and kP. Let ys denote the keys corresponding to server Ps. Then

– ys = (k01, k02 and kP) when Ps = P0.

– ys = (k01, k12 and kP) when Ps = P1.

– ys = (k02, k12 and kP) when Ps = P2.

Output: Send (Output, ys) to every Ps 2 P.

Functionality FSetup

Figure 2.3: Ideal functionality for shared-key setup in SWIFT [136].

Suppose P0, P1 wish to sample a random value r 2 Z2` non-interactively. To do so they

invoke Fk01(id01) and obtain r. Here, id01 denotes a counter maintained by the parties and is

updated after every PRF invocation. When the appropriate key used to sample the random
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values is implicit from the context, from the identities of the pair that sample or from the fact

that it is sampled by all, the key and the counter will be omitted from the description.

Non-interactively generating [·]-shares of a common v 2 Z2` held by Pl, Pm 2 P To

generate [v], parties need to define three shares [v]01 , [v]02 , [v]12 2 Z2` such that v = [v]01 +

[v]02 + [v]12, where each [v]ij is held by parties Pi, Pj 2 P. Observe that this can be done

non-interactively by setting the share [v]lm = v and the other two [·]-shares of v as 0.

Joint message passing (Jmp) primitive Protocols in SWIFT heavily rely on the joint

message passing primitive to ensure robust computation. This primitive allows two parties

to deliver a common message to a third party, where one sender sends the message while the

other sends its hash to the receiver. In the process, either the recipient receives the correct

message or, if there is an inconsistency in the received messages, parties instead proceed to

identify a trusted third party (TTP)1. The TTP is then responsible for performing the required

computation on clear and guarantee delivery of output. Several works [136, 138, 61] rely on this

primitive or its variation to ensure GOD. We let “Pi, Pj Jmp-send v to Pk” denote invocation

of Jmp with Pi, Pj as senders, Pk as receiver, and v being the message to be sent.

The robust 3PC protocol for ⇧Jmp appears in Figure 2.4. The instantiation of ⇧Jmp can be

viewed as consisting of two phases (send, verify), where the send phase consists of Pi sending v

to Pk and the rest of the protocol steps go to verify phase (which ensures correct send or TTP

identification). This requires 1 round of interaction and ` bits of communication. To leverage

amortization, verify is executed only once, at the end of the computation. The protocol also

relies on a collision-resistant hash function H(·). We refer the reader to [136, 61] for further

details of Jmp.

We note that at any point during the run of the protocol, if the invocation of ⇧Jmp results

in identifying a TTP, parties do not execute the rest of the protocol steps, and the remainder

computation is carried out by the TTP who guarantees the delivery of the correct function

output to all parties. Elaborately, on identifying a TTP, all parties send their inputs on clear to

the TTP, who evaluates the necessary function on these clear inputs. It then sends the computed

output to all the parties. In this way, reliance on ⇧Jmp to send protocol messages ensures that

if any malicious party misbehaves to prevent the parties from obtaining the output, a TTP is

identified, and the output is now obtained via the TTP. We remark that most protocols in the

3-party setting that guarantee output delivery follow the TTP-based approach [30, 36, 136].

1In the case of fair protocol, parties abort.
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Send Phase: Pi sends msgi = v to Pk.

Verify Phase: Pj sends msgj = H(v) to Pk, who checks if the hash is consistent with the value sent

by Pi. If the values are not consistent, parties proceed as follows to identify a TTP.

– Pk broadcasts (Accuse, Pi, Pj ,msgi,msgj)

• If H(msgi) = msgj parties set TTP = Pi

• If msgi is di↵erent from the value sent by Pi, then Pi broadcasts (Accuse, Pk) and parties set

TTP = Pj .

• Similarly if msgj is di↵erent from the value sent by Pj , then Pj broadcasts (Accuse, Pk) and

parties set TTP = Pi.

• If both parties Pi and Pj broadcasts (Accuse, Pk) and parties set TTP = Pi.

• If none of the parties Pi or Pj accuse, then parties set TTP = Pk.

Protocol ⇧Jmp (v, Pi, Pj , Pk)

Figure 2.4: Joint message passing in 3PC.

Input sharing and consistency check Consider the outsourced setting, where a set of

three servers are hired to carry out the 3PC. To enable the client to generate JvK of its input

v 2 Z2` towards the servers, the input sharing protocol proceeds as follows. During the prepro-

cessing phase, the servers generate [·]-shares for a random ↵v 2 Z2` , non-interactively. Observe

that each of [↵v]01 , [↵v]02 , [↵v]12 is held by exactly two servers, at most one of which can be

maliciously corrupt. Making Pi, Pj 2 P send [↵v]ij to the client may lead to uncertainty at the

client if Pi, Pj send di↵erent versions of [↵v]ij to it. Hence, to ensure the correct delivery of

each [↵v]ij towards the client, servers rely on a commitment scheme. Elaborately, each pair of

servers Pi, Pj generate a commitment Com([↵v]ij) of [↵v]ij and Jmp-send it to Pk. This ensures

that all servers are in agreement with commitments generated for each [·]-share of ↵v.

During the online phase, once the client is ready to share its input, each server sends

Com([↵v]01), Com([↵v]02) and Com([↵v]12) to the client. The client retains the values in majority

for each Com([↵v]ij). At the same time, each Pi, Pj send the opening to Com([↵v]ij) towards the

client. The client accepts the opening, which is consistent with the commitment that was in the

majority (the correct opening can be identified owing to the property of the commitment scheme,

which outputs a? for incorrect ones). In this way, the client receives correct [↵v]01 , [↵v]02 , [↵v]12.

Upon receiving these values, the client generates and sends �v = v + [↵v]01 + [↵v]02 + [↵v]12 to

the servers. To ensure that each server receives the same �v and guarantee that a client has

not misbehaved, each server broadcasts the �v received from the client. If there is a majority

among the broadcast values, the client’s message is accepted, and each server sets its �v to be

the majority value. Else, the client’s message is deemed as malformed and discarded.
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Output reconstruction To enable robust reconstruction of a J·K-shared value v 2 Z2` among

the computing parties (or equivalently, the servers hired to carry out the 3PC), they proceed

similar to as described above. During the preprocessing phase, in addition to generating [↵v],

parties also generate commitments on each of the [·]-shares of ↵v. This results in all parties

being in agreement with commitments for each [·]-share of ↵v. Next, in the online phase to

reconstruct v, observe that each party Pk misses the share [↵v]ij which is held by the other two

parties Pi, Pj 2 P \ Pk. Hence, Pi, Pj send the opening of Com([↵v]ij) to Pk. Since at most one

party among Pi, Pj can be malicious, even if the malicious party sends an incorrect opening,

Pk is guaranteed to receive the correct opening from the honest party (the correct opening can

be identified owing to the property of the commitment scheme which outputs a ? for incorrect

ones). Party Pk uses the correct opening to obtain the missing share [↵v]ij and reconstructs v

as v = �v � [↵v]ij � [↵v]ik � [↵v]jk. Thus, reconstruction will not fail if a malicious party tries

to disrupt it by sending an incorrect message, resulting in robust reconstruction.

Protocols from SWIFT The protocols from SWIFT that the thesis relies on, other than

the ones described above, are listed in Table 2.1.

Building block Notation Description

Joint sharing JvK = ⇧JSh(Pi, Pj, v) Enables Pi, Pj 2 P to generate JvK where v 2 Z2` is held by Pi, Pj

Multiplication with truncation JzK = ⇧Mul(JxK, JyK, f) Multiplies x, y and outputs z = x · y by truncated by f bits

3-input multiplication JzKB = ⇧3-Mul(JaKB, JbKB, JcKB) Multiplies (Boolean AND) 3 bits at once

4-input multiplication JzKB = ⇧4-Mul(JaKB, JbKB, JcKB, JdKB) Multiplies (Boolean AND) 4 bits at once

Comparison JbKB = ⇧Comp(JxK, JyK) Outputs b = 1 if x < y, else outputs b = 0

Oblivious select JxbK = ⇧Sel(Jx0K, Jx1K, JbKB) Obliviously selects xb among x0, x1

Bit2A JbK = ⇧Bit2A(JbKB) Converts bit to its arithmetic equivalent

Arithmetic to Boolean JvKB = ⇧A2B(JvK) Converts arithmetic representation of a value to its Boolean equivalent

Boolean to arithmetic JvK = ⇧B2A(JvKB) Converts Boolean representation of a value to its arithmetic equivalent

Negation Jb̄KB = ⇧NOT(JbKB) Outputs b̄ = 1� b where b 2 Z2

Table 2.1: Description of other protocols from SWIFT [136].

On the security of the protocols from SWIFT While SWIFT provides the strongest

security of robustness, we note that depending on the application scenario, one may choose

the desired level of security. Specifically, robustness is attained by relying on a TTP to carry

out the computation on the honest party’s inputs (in the clear) if misbehaviour is detected.

Hence, if the application under consideration cannot tolerate revealing the inputs to a TTP

even though the TTP is known to be honest, the application can settle for the weaker security

notion of fairness (which is stronger than abort security). The fair version of the protocols can
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be derived from the robust version by making the following changes– (i) use of the fair version

of Jmp instead of the robust version, (ii) terminating the protocol when a party aborts instead

of proceeding with TTP identification and, (iii) relying on a fair reconstruction protocol. We

remark that even for this weaker security notion of fairness, the protocols are on par with the

robust protocols in terms of e�ciency.

2.4 4PC of Tetrad

Tetrad [138] is a 4-party computation (4PC) framework with P = {P0, P1, P2, P3} (or equiva-

lently P = {Pi, Pj, Pk, Pl}) tolerating at most 1 malicious corruption. We first explain the 4PC

sharing semantics of Tetrad, followed by its protocols that the thesis relies on.

Sharing semantics Tetrad performs computation via masked evaluation and relies on a

variant of replicated secret sharing (RSS) among 4 parties with threshold 1. The following are

the sharing semantics used therein.

– [·]-sharing: A value v 2 Z2` is said to be (3, 1) replicated secret shared (RSS) or [·]-shared
among parties in {P1, P2, P3}, if there exists ↵v1,↵v2,↵v3,2 Z2` such that ↵v = ↵v1+↵v2+↵v3,

distributed among the parties as follows: P1 holds ↵v1,↵v3; P2 holds ↵v2,↵v3; P3 holds ↵v1,↵v2.

– J·K-sharing: A value v 2 Z2` is said to be J·K-shared if there exists mask ↵v 2 Z2` and masked

value �v 2 Z2` such that �v = v+↵v is held by parties in {P1, P2, P3}, and ↵v is (3, 1) replicated

secret-shared (or [·]-shared) among parties in {P1, P2, P3}, and all its shares are known on clear

to P0. Elaborately, there exist values ↵v1,↵v2,↵v3,2 Z2` such that ↵v = ↵v1 +↵v2 +↵v3, which

together with �v is distributed among the parties as follows: P0 holds ↵v1,↵v2,↵v3; P1 holds

�v,↵v1,↵v3; P2 holds �v,↵v2,↵v3; and P3 holds �v,↵v1,↵v2.

As in the case of SWIFT, all the sharing schemes in Tetrad also satisfy the linearity property.

Boolean secret-sharing over Z2 , denoted as J·KB, is similar to J·K except that the addition

operation is replaced with XOR. In general, the Boolean world is analogous to the arithmetic

world, with arithmetic addition and multiplication operations being replaced with Boolean

XOR and AND. Arithmetic equivalent of a bit b in ring Z2` is denoted as bR.

Shared key setup As in the case of SWIFT [136], Tetrad also enables the non-interactive

generation of common random values among parties by relying on the common PRF keys

established among the parties during a one-time setup phase. This is abstracted via the ideal

functionality FSetup (Fig. 2.5). Elaborately, let F : {0, 1} ⇥ {0, 1} ! X be a secure pseudo-

random function (PRF), with X = Z2` . The following keys are established between parties–
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(i) kij for every pair of parties Pi, Pj, (ii) kijk for every triple of parties Pi, Pj, Pk, and (iii) kP

known to all parties in P. If P0, P1 wish to sample a random value r 2 Z2` non-interactively,

they compute Fk01(id01) and obtain r. Here, id01 denotes a counter maintained by the parties

and is updated after every PRF invocation.

FSetup interacts with the parties in P and the adversary S. FSetup picks random keys kij and kijk

for i, j, k 2 {0, 1, 2, 3} and kP. Let ys denote the keys corresponding to party Ps. Then

– ys = (k01, k02, k03, k012, k013, k023 and kP) when Ps = P0.

– ys = (k01, k12, k13, k012, k013, k123 and kP) when Ps = P1.

– ys = (k02, k12, k23, k012, k023, k123 and kP) when Ps = P2.

– ys = (k03, k13, k23, k013, k023, k123 and kP) when Ps = P3.

Output: Send (Output, ys) to every Ps 2 P.

Functionality FSetup

Figure 2.5: Ideal functionality for shared-key setup in Tetrad [138].

Joint message passing Similar to SWIFT [136], protocols in Tetrad rely on a joint message

passing primitive (Fig. 2.6) to guarantee robust computation. As before, this primitive allows

two senders Pi, Pj to relay a common message, v 2 Z2` , to a recipient Pk, either by ensuring

successful delivery of v, or by establishing a conflicting pair of parties, one among which is

guaranteed to be corrupt. This implies the residual two parties are honest, one of which is then

entrusted to complete the computation by enacting the role of a trusted third party (TTP).

Ps 2 P initializes an inconsistency bit bs = 0. If Ps remains silent instead of sending bs in any of

the following rounds, the recipient sets bs to 1.

– Send: Pi sends v to Pk.

– Verify: Pj sends H(v) to Pk.

� Pk sets bk = 1 if the received values are inconsistent or if the value is not received.

� Pk sends bk to all parties. Ps for s 2 {i, j, l} sets bs = bk.

� Ps for s 2 {i, j, l} mutually exchange their bits. Ps resets bs = b0 where b0 denotes the bit

which appears in majority among bi, bj , bl.

� All parties set TTP = Pl if b0 = 1, terminate otherwise.

Protocol ⇧Jmp(Pi, Pj , v, Pk)

Figure 2.6: Joint message passing in Tetrad.
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Joint sharing Protocol ⇧JSh enables parties Pi, Pj to generate J·K-shares of value v 2 Z2` .

During the preprocessing phase, shares of ↵v are sampled such that both Pi, Pj will get the

entire mask ↵v . During the online phase, Pi, Pj compute and send �v = v + ↵v to parties

P1, P2, P3 via ⇧Jmp.

For joint-sharing a value v possessed by P0 along with one other party in the preprocessing

phase, the communication can be optimized further. The protocol steps based on the (Pi, Pj)

pair are summarised below:

– (P0, P1): Parties in P \ {P2} sample ↵v1 2 Z2` . Parties set ↵v2 = �v = 0. P0, P1 send

↵v3 = �v � ↵v1 to P2 via ⇧Jmp.

– (P0, P2): Parties in P \ {P3} sample ↵v3 2 Z2` . Parties set ↵v1 = �v = 0. P0, P2 send

↵v2 = �v � ↵v3 to P3 via ⇧Jmp.

– (P0, P3): Parties in P \ {P1} sample ↵v2 2 Z2` . Parties set ↵v3 = �v = 0. P0, P3 send

↵v1 = �v � ↵v1 to P1 via ⇧Jmp.

Protocols from Tetrad The list of protocols that the thesis relies on from Tetrad [138],

other than the ones described above, appears in Table 2.2.

Building block Notation Description

Multiplication JzK = ⇧Mul(JxK, JyK, f) Multiplies x, y and outputs z = x · y truncated by f bits

Matrix Multiplication JzK = ⇧MatMul(JAK, JBK, f) Multiplies matrices A,B and outputs C = A · B

3-input multiplication JzKB = ⇧3-Mul(JaKB, JbKB, JcKB) Multiplies (Boolean AND) 3 inputs at once

4-input multiplication JzKB = ⇧4-Mul(JaKB, JbKB, JcKB, JdKB) Multiplies (Boolean AND) 4 inputs at once

MulR [z] = ⇧MulR([x] , [y]) Multiplies x, y and outputs [·]-shares of z = x · y

Arithmetic to Boolean JxKB = ⇧A2B(JxK) Converts arithmetic shares of x 2 Z2` to Boolean shares
of each bit of x

Boolean to arithmetic JxK = ⇧B2A(JxKB) Converts Boolean shares of x 2 Z2` to arithmetic shares

Bit2A JbK = ⇧Bit2A(JbKB) Converts bit to its arithmetic equivalent

Bit extraction JbKB = ⇧Bitext(JxK) Outputs b = 1 if x < 0, else outputs b = 0

Comparison JbKB = ⇧Comp(JxK, JyK) Outputs b = 1 if x < y, else outputs b = 0

Bit injection JzK = ⇧BitInj(JbKB, JxK) Multiplies arithmetic equivalent bR 2 Z2` of b 2 Z2 with
x 2 Z2` and outputs z = b

R · x

Oblivious select JxbK = ⇧Sel(Jx0K, Jx1K, JbKB) Obliviously selects xb among x0, x1

Negation Jx̄KB = ⇧NOT(JxKB) Outputs 1’s complement of Boolean representation of
x 2 Z2`

Table 2.2: Description of other protocols from Tetrad [138].
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2.5 Secure shu✏e

2.5.1 Random permutation

Let N denote the set of integers {1, 2, . . . ,N}. A permutation is any bijective function ⇡ :

N ! N. That is, a permutation ⇡ denotes a mapping of a rearrangement of the elements

in N. The set denoted as SN consists of all possible (bijective functions) rearrangements of

elements in N and hence comprises N! permutations. Note that permutations can be composed

similarly to the composition of functions, and thus SN forms a group with respect to composition

(�) operation. SN satisfies group properties of closure, associativity, and presence of identity.

However, permutations are not commutative under composition but are invertible.

Sampling a random permutation denotes choosing a random ⇡ 2 SN. We next describe how

parties Pi, Pj can sample a common random permutation non-interactively using the shared key

established via FSetup. Pi, Pj non-interactively generate N common random values say v1, v2, . . . ,

vN 2 Z2` where ` >> log2 N. The parties tag each of the values vi with its index to obtain a

list S = {(vi, xi)}Ni=1, where xi = i. Each party then locally sorts this list of tuples based on

the first entry vi of each tuple to obtain a sorted list S 0 = {(v0j, x0j)}Nj=1. The second element in

each tuple of S 0 defines a random permutation where ⇡(xi) = ⇡(i) = x
0
i for i 2 {1, 2, . . . ,N}.

2.5.2 Shu✏e protocol of [13]

Let a table T denote a set of ordered rows where each row consists of an `-bit string. Let N

denote the size of T or the number of rows in T. Here, the table is equivalent to considering

a vector with N elements where each element is an `-bit value. The work of [13] considers

performing a 3PC shu✏e protocol in the honest-majority setting. It takes as input [·]B-shares
of the table T, and outputs [·]B-shares of the table shu✏ed using a random secret permutation

⇡. It also outputs a flag that indicates the correctness of [·]B-shares of the shu✏ed table. Note

here that shu✏ing the table using a random ⇡ denotes the operation of rearranging the rows

in T as per ⇡.

In the semi-honest setting, [13] presents a shu✏e protocol which is an adaption of the

shu✏e protocol of [145] to the 3-party setting. This semi-honest protocol requires three rounds

of interaction and guarantees privacy against a malicious adversary. [13] contributes to making

this semi-honest protocol secure in the presence of a malicious adversary by augmenting with

a verification phase (Set-Equality protocol) to ensure the correctness of the semi-honest shu✏e,

which additionally requires 2 + log2  rounds. Elaborately, the semi-honest shu✏e comprises

three invocations of Shu✏e-Pair protocol. In each instance of Shu✏e-Pair, a random permutation
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is applied to the input (of the Shu✏e-Pair), where the permutation is known to a distinct pair

of parties and is hidden from the third. The output of the current Shu✏e-Pair is fed as input to

the next Shu✏e-Pair. The composition of all three permutations, thus, makes up the random

secret permutation used to shu✏e the input table. Since each party is aware of only two

permutations, the final permutation remains private. Each invocation of Shu✏e-Pair is followed

by a Set-Equality protocol which outputs a flag 2 {0, 1} indicating whether the table output by

the Shu✏e-Pair is indeed a random permutation of the input to this Shu✏e-Pair. In this way,

the output of the shu✏e protocol is guaranteed to be correct if all instances of Shu✏e-Pair are

verified to be correct. In the following, we first provide the Shu✏e-Pair protocol followed by the

Set-Equality protocol.

Shu✏e-Pair Let table T be [·]B-shared. Shu✏e-Pair enables parties to generate [T0]B where

T
0 = ⇡ij (T) and ⇡ij is a random permutation held by Pi, Pj 2 P. Here, ⇡ij (T) denotes the

operation of permuting the elements in T as per ⇡ij. We describe the protocol with respect to

P0, P1 who hold the permutation ⇡01 in Fig. 2.7. The protocol for the other pair of parties can

be worked out analogously.

Preprocessing:

1. P0, P2 randomly sample [T0]B02 2 ZN

2` , and P1, P2 randomly sample [T0]B12 2 ZN

2` , non-interactively

using the common keys established via FSetup.

Online:

1. P0 computes ⇢0 = ⇡01
⇣
[T]B02

⌘
� [T0]B02 and sends it to P1. Similarly, P1 computes ⇢1 =

⇡01
⇣
[T]B12

⌘
� [T0]B12 and sends it to P0.

2. P0 and P1 compute [T0]B01 = ⇡01
⇣
[T]B01

⌘
� ⇢0 � ⇢1.

Protocol Shu✏e-Pair
⇣
[T]B , P0, P1,⇡01

⌘

Figure 2.7: Shu✏e-Pair [13, 145].

Set-Equality The input for the Set-Equality protocol is a pair of tables (T, T0), each comprising

of n rows and an m-bit string in each row. Thus, the table comprises n rows and m columns.

Here, T0 is obtained by randomly shu✏ing T. The protocol returns as output a 1 if the two

tables are di↵erent and a 0 otherwise. The protocol chooses random subsets of rows and columns

and verifies that the bits in the intersection of the chosen rows and columns are the same for
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both the underlying tables. This verification is performed  times to ensure a low probability

of cheating. In order to choose the subset of rows randomly, each row of T is extended by 

random and secret bits before the shu✏e. Consequently, after the shu✏e, every row in T
0 has

the same -sized su�x which it had in T. The rows for the `th test are picked based on the bit

in the `th column of the -sized extension, with the row being chosen if the corresponding bit

is a 1. Let R` be the n bit vector that denotes this selection of rows (i.e., m+ `th column of the

table). Similarly, let C` be the m0 = m+ bit public vector that denotes the choice of columns

picked for the `th test. The verification test compares the XOR of the values in the intersection

of the chosen rows and columns in T and T
0 to check for the correctness of the shu✏e. This is

captured by the operations performed as described in Equation (2.1), where Cj,` denotes the

jth component of the vector C`. The output of the check is a bit V` such that if the tables

are di↵erent, some V`, for ` 2 {1, . . . ,}, is non-zero with high probability. To detect if any

V` is non-zero, a flag is computed, which is the OR of all these V`’s, followed by reconstructing

flag. A non-zero flag indicates misbehaviour in the Shu✏e-Pair instance for which Set-Equality

is performed.

[V`]
B =

nX

i=1

[T0
i,m+`]

B ·
m0X

j=1

Cj,` · [T0
i,j]

B �
nX

i=1

[Ti,m+`]
B ·

m0X

j=1

Cj,` · [Ti,j]
B (2.1)

We note that performing the steps of Set-Equality by relying on a robust MPC yields a

robust Set-Equality protocol, as done in the work of [13].

Regarding the security of [13] As per the discussion above, observe that their protocol

correctly determines the output shares of the shu✏ed table for each party, in case no misbe-

haviour occurs during any of the three Shu✏e-Pairs. However, since Set-Equality is performed

via robust MPC, it guarantees that any malicious activity in the corresponding Shu✏e-Pair is

detected since some V`, for ` 2 {1, . . . ,}, will be non-zero with high probability. Such misbe-

haviour in the Shu✏e-Pair is indicated by a flag bit being set to a 1. In such an event, observe

that parties will not possess the correct output shares, and the protocol cannot proceed further.

Thus, the protocol only provides security with abort (considering the robust ideal functionality

of shu✏e, defined in Fig. 4.10). Moreover, observe that a malicious party can also misbehave

such that it learns the output shares but deprives the honest parties of the correct shares. This

is possible if a malicious party aborts in the last Shu✏e-Pair invocation. Elaborately, consider

the last Shu✏e-Pair among the three invocations used for getting a random shu✏e. Without

loss of generality, the protocol proceeds exactly as given in Fig. 2.7 with P0 and P1 being the

communicating parties. In case P1 is corrupt, it may receive ⇢0 from P0, obtain the output
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shares of the shu✏ed table, and then abort. Since the honest party P0 does not receive ⇢1 from

P1, it does not learn its output shares. Hence, we believe [13]’s protocol gives only security

with abort.

Complexity of [13] Observe that the protocol of [13] requires three invocations of Shu✏e-Pair,

each of which is followed by a Set-Equality protocol that verifies the correctness of the semi-

honest Shu✏e-Pair. While Shu✏e-Pair requires only one round of communication, the Set-Equality

protocol requires 2+ log2  rounds (one round is required for performing multiplications as per

(2.1), followed by log2  rounds for computing OR of  bits, followed by one round of reconstruc-

tion), where  is the security parameter. Thus, the overall round complexity is 3 + 2 + log2 .

With respect to the communication complexity, it requires communicating 6N` bits for the

three Shu✏e-Pair instances, and additional communication for evaluating the Set-Equality pro-

tocol that involves computing 2N Boolean multiplications, computing OR of  bits and a

robust reconstruction.

2.6 GraphSC paradigm

Real-world graphs are known to be sparse. Hence, naively using the adjacency matrix represen-

tation of the graph for computations would be expensive. Thus, designing an e�cient solution

to address the same involves—(i) designing an e↵ective representation of the graph structure,

(ii) ensuring the computation does not leak any private information, (iii) designing solutions

that are highly parallelizable. The work by Nayak et al. [179] is the first to address the above

problem and provides a framework for the same. The framework operates on a data-augmented

directed graph G(V, E, Data) which consists of a directed graph G(V, E) where V is the set of

vertices (or nodes, used interchangeably), E is the set of edges and Data is a set of user-defined

data values associated with each vertex and edge of the graph. The data augmented graph

is expressed as a list of vertices and edges where every vertex v 2 V is encoded as a tuple

(v, v, 1, data) and every edge (u, v) 2 E is encoded as a tuple (u, v, 0, data). The third entry in

each tuple is a bit, isV, which equals 1 for a vertex and 0 otherwise, while data refers to the state

information stored at each vertex and edge. These tuples constitute the data augmented graph

list (DAG list). The DAG list representation of the graph is used to e↵ectively represent the

graph. Note that an undirected graph can be converted into a directed graph by accounting for

each edge twice (incoming and outgoing edge). To perform secure computation over the graph

while hiding its topology, each tuple in the data-augmented graph is secret-shared entry-wise

between the computing parties. This ensures that parties cannot distinguish between shares of
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a tuple corresponding to a vertex from that of an edge.

In principle, the framework of [179] enables securely evaluating message-passing graph al-

gorithms. The latter are graph algorithms that operate in multiple rounds, where in each

round, the nodes in the graph—(i) use their state information to send messages over their

outgoing edges; (ii) receive messages along their incoming edges and aggregate these messages;

(iii) use these messages to update their state. These three operations are abstracted into three

primitives—Scatter, Gather, and Apply, respectively. Assuming that the graph algorithm can

be expressed as a composition of the above primitives, the work of [179] enables its secure eval-

uation via MPC 2. Since designing an MPC protocol naively may leak information regarding

the graph topology, the framework first designs a data-oblivious algorithm for each of these

primitives, followed by a translation of the same using the generic 2-party protocol of [231]. In

general, an algorithm is said to be data-oblivious if the instructions executed and the memory

accesses made during the run of the algorithm are independent of the input and hence leak no

information about the input. To obtain a data-oblivious algorithm for the GraphSC primitives,

it is important to ensure that each entry in the DAG list is visited when realizing these primi-

tives to ensure no information about the association between the entries (such as an edge being

incident on a node) is leaked. Observe that Apply can be computed obliviously by scanning

through the DAG list representation and applying the user-defined function if the element is

a vertex and performing a dummy operation otherwise. To compute Scatter and Gather obliv-

iously, [179] relies on two di↵erent sorted orders of the DAG list representation. The source

order requires the DAG list to be sorted such that every node in the graph is placed before all

edges that originate from it. The destination order requires the DAG list to be sorted such that

all edges that end at a particular node are placed before that node. Let ⇧Sort(JxK, key) denote
an oblivious sort protocol that outputs a sorted list of elements in a secret-shared vector x

based on the key key. Given a data-oblivious sort protocol such as Bitonic sort [195], switching

between the source order and destination order each time a Scatter or Gather is applied, ensures

obliviousness as follows. Scatter can be accomplished obliviously by linearly scanning through

the DAG list sorted in the source order. For this, if the current tuple in the list is a node, the

data value at the node is picked up, and if the current tuple is an edge, then the value picked

up at the most recent tuple is used to update the edges. Gather can also be done obliviously

by a linear scan through the DAG list sorted in the destination order. During the scan, if the

current tuple is an edge, its value is stored in an aggregate variable by applying an aggregation

2The operations within Scatter and Gather will vary across di↵erent graph algorithms. Hence, [179] provides
a generic GraphSC framework, where the operations to be performed within Scatter and Gather are assumed as
a black box.
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(a) GraphSC paradigm of [179].
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(b) GraphSC paradigm of [13].

Figure 2.8: Overview of operations involved in GraphSC.

operation, and if the current tuple is a node, then the aggregate variable is stored along with

the node. This approach of performing Scatter and Gather by performing a linear scan over a

sorted order is oblivious as every node and edge of the graph is operated on, without revealing

the relationship between the nodes and edges. Given that the primitives can be performed

obliviously, as described above, the graph computation can be performed securely using MPC

protocols. To summarize, message-passing graph algorithms can be computed obliviously by

using the following steps in every message-passing round—(i) sort based on source order, (ii)

Scatter, (iii) sort based on destination order, (iv) Gather and (v) Apply. An illustration of the

operations involved in the GraphSC paradigm of [179] is given in Figure 2.8. Further, the

framework in [179] provides a parallel algorithm for each of the individual primitives—Scatter,

Gather, and Apply. In a multiprocessor setting, the parallel variants allow the computations

to be performed in sub-linear complexity rather than the linear complexity of O(|V| + |E|) in
the size of the graph. We remark that this technique of obtaining a sub-linear solution in the

multiprocessor setting also extends to our protocols. An overview of the sub-linear solution of

[179] is provided in §2.6.1.
The work of [13] improves on the work of [179]. First, it combines Gather and Apply primitives

such that both operations can be achieved in a single pass through the DAG list. Moreover,

[13] observes that the approach of [179] has the drawback of requiring an oblivious sort each

time a Scatter or Gather primitive is applied. This amounts to two calls to an oblivious sort in

every message-passing round. Instead, [13] observes that a secret shu✏e followed by an insecure

sort (which reveals the result of the comparisons) can be used to realize an oblivious sort. Let

⇧Shu✏e(JxK) denote an oblivious shu✏e protocol that outputs the elements of the secret-shared

vector x in a random shu✏ed order. Observe that since the list is first shu✏ed, revealing the
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result of comparisons during sort does not break the obliviousness property. On the other

hand, the insecure sort is required to be performed only once in the beginning, subsequent to

which, the public permutation (obtained as output from the insecure sort) can be applied to

sort the DAG list, non-interactively. In summary, in the first message-passing round, a secret

shu✏e followed by an insecure sort (e.g., a comparison sort algorithm) is applied to get the

required source or destination order. The permutations which map from the shu✏ed orders to

the source and destination order are made public, as they do not reveal any information about

the DAG list. In the subsequent rounds, the secret shu✏e, followed by the public permutation,

is applied to get the required sorted order. Since shu✏e can be performed much more e�ciently

than a sort, this change brings in significant e�ciency improvements. An illustration of the

operations involved in the GraphSC paradigm of [13] is given in Figure 2.8. Finally, to perform

secure computation, [13] considers a 3PC setting to further enhance e�ciency. Although the

framework of [179] requires an explicit “Apply” operation, we note that it can be performed

along with the “Gather” operation and hence, is not explicitly depicted in Figure 2.8. Table 2.3

provides a list of most frequently used notations with respect to the GraphSC paradigm.

Notation Description

V Set of vertices
E Set of edges

Data Set of Data values
G(V,E,Data) Data augmented graph
DAG list List representation of data augmented graph

G[i] i
th entry/tuple of the DAG list

G[i].isV Denotes if tuple i corresponds to a vertex
G[i].dt State information stored at tuple i

A Adjacency Matrix
z[v] v

th component of a vector z

Table 2.3: Table of notations pertaining to GraphSC paradigm.

2.6.1 Parallel variant of GraphSC paradigm [179]

We provide an overview of the steps involved in translating the linear round sequential protocols

for computing Scatter and Gather to attain a logarithmic round parallel protocol, in the presence

of multiple processors, as described in the work of [179]. Assuming that there are M = |V|+ |E|
processors, we begin by describing how Gather can be performed in parallel. The parallel variant

of Scatter can also be achieved similarly. We conclude by describing the approach to perform

Scatter-Gather in parallel when there are only P < M processors. We refer an interested reader

to [179] for further details.
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Performing Gather in parallel Let  represent the aggregate operation to be performed

within Gather. Recall that when considering the destination sorted list, the aggregate operation

updates the data associated with every vertex with the data present in the longest consecutive

sequence of edges preceding it. Let LPS[i, j) for 1  i < j  |V| + |E| denote the “sum”

(aggregation with respect to  operator) of the data present in the longest consecutive sequence

of edges before j beginning from (and including) i. Observe that computing LPS[1, j) for

1  j  |V|+ |E| and updating a vertex j with LPS[1, j), is equivalent to updating the data at

the vertices as done in Gather. Thus, to obtain the parallel variant of Gather given M = |V|+ |E|
processors, we assign the task of computing LPS[1, j) to the j

th processor.

To attain the logarithmic round complexity, in each time step ⌧ , the parallel algorithm

computes LPS values for all segments of length 2⌧ . The LPS values of the consecutive 2⌧ -

length segments computed in time step ⌧ are then used to compute LPS values of 2⌧+1-length

segments in the next time step, ⌧ + 1. In this way, since the input is a segment of length

|V| + |E|, the computation of the last LPS entry, LPS[1, |V| + |E|) can thus be accomplished

in log(|V| + |E|) time steps. Concretely, in time step ⌧ , a processor j 2 {1, 2, . . . , |V| + |E|}
computes LPS[j � 2⌧ , j) (a ⌧ -length segment). Thus, in the next time step, it can compute

LPS[j � 2⌧+1
, j) by combining LPS[j � 2⌧+1

, j � 2⌧ ) and LPS[j � 2⌧ , j). A subtle thing to note

here is that a segment can be aggregated with the immediately preceding segment of equal size

only if a vertex has not been encountered in between. At the end of log(|V| + E) time steps,

vertex j’s data for j 2 {1, 2, . . . , |V| + |E|} is updated with LPS[1, j). The formal protocol for

the same appears in Algorithm 1.

Algorithm 1: Parallel Gather(G)

Initialization: Every processor j computes ;

1 LPS[j � 1, j) =

(
G[j � 1].dt, if G[j � 1].isV = 0

0, otherwise

2 isV[j � 1, j) =

(
1, if G[j � 1].isV = 1

0, otherwise

Main Algorithm:
3 For ⌧ = 0 to log (|V|+ |E|)� 2, each processor j computes:

4 LPS[j � 2⌧+1
, j) =

(
LPS[j � 2⌧+1

, j � 2⌧ ) LPS[j � 2⌧ , j), if isV[j � 2⌧ , j) = 0

LPS[j � 2⌧ , j), otherwise

5 isV[j � 2⌧+1
, j) = isV(j � 2⌧+1

, j � 2⌧ ) _ isV[j � 2⌧ , j)
end
⇤_ denotes the OR operation
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Performing Scatter in parallel Recall that in the propagate operation performed as part

of Scatter, each edge updates its data with the data of the nearest vertex preceding it. This

propagate operation can also be performed in parallel, similar to as done in the aggregate

operation. In fact, propagate can be represented as a special case of aggregate as follows.

Initially, each edge either stores the value of the vertex if a vertex immediately precedes it, else

it stores �1. Next, an aggregate operation can be performed where  is the max operator,

i.e., LPS[j�2⌧+1
, j) = max{LPS[j�2⌧+1

, j�2⌧ ), LPS[j�2⌧ , j)}. At the end of log(|V|+E) time

steps, the j
th processor computes LPS[1, j) which is the value of the nearest vertex preceding

j. Thus, if j is an edge, its data can be updated with LPS[1, j).

Performing Gather in parallel with P < M processors In such a scenario, instead of

holding a processor responsible for computing a single cell of LPS, it is assigned a consecutive

range of cells to be computed. Without loss of generality, assume that M is a multiple of P .

Let processor j be assigned the range [sj, tj] where sj = (j � 1) · M
P

+ 1 and tj = j · M
P

.

Each processor first computes LPS[sj, tj +1) sequentially in O(
M

P
) time steps. Then, assuming

that each LPS[sj, tj + 1) is a single value, the processors run the parallel algorithm for Gather

on this segment of length P . Thus, the number of time steps required for this algorithm is

O

✓
M

P
+ logP

◆
.
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Chapter 3

Secure Local Clustering

In this chapter, we discuss our privacy-preserving solution for local clustering. In the process,

we also discuss the additional primitives that are added to the 3PC framework of [136] that

result in making the latter more comprehensive. The results in this chapter have led to two

publications at PoPETs 2023 [211, 212].

3.1 Overview

Our primary objective is to provide a privacy-preserving solution for local clustering (a local

cluster is a cluster of nodes that is centred around a given seed node), which is achieved for the

first time. For this, we design a secure protocol for the state-of-the-art (cleartext) algorithm

in [54]. This local clustering algorithm relies on the heat kernel PageRank (HKPR) metric to

quantify the similarity of nodes and thereby identify the cluster. Thus, a secure protocol for

computing local clustering demands a secure protocol for computing HKPR values, which is

also designed in our work. The state-of-the-art algorithm of [222] forms the basis for our secure

HKPR protocol.

To obtain as e�cient a solution as possible, our protocols are designed in the GraphSC

paradigm [179, 13] that provides a generic framework for evaluating message-passing graph

algorithms securely while ensuring e�ciency through parallel computations. We refer to §2.6
for details of this paradigm. Securely computing local clustering and HKPRmetric via GraphSC

entails the following steps:

1 cleartext ! message-passing algorithm: This involves identifying components of the

relevant cleartext algorithm that can benefit from GraphSC and translating these to the
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message-passing paradigm. This is non-trivial to achieve since the graph algorithm under

consideration may not lend itself as a message-passing one.

2 message-passing ! secure protocol: This entails designing a data-oblivious variant of

the message-passing algorithm by casting it in the GraphSC paradigm by defining the Scatter

and Gather primitives. We emphasize that since GraphSC is a generic framework, it treats the

operations within Scatter-Gather as a black box in the process of designing a data-oblivious

solution. Hence, we define these specific to the considered graph algorithms. Note that our

definitions of Scatter-Gather do not follow trivially and entail challenges as elaborated in §3.5.2,
§3.6.2. Moreover, operations performed within Scatter-Gather should be defined carefully since

these directly impact the e�ciency of the resulting protocol. To design secure protocols for the

data-oblivious variant we rely on the state-of-the-art robust 3PC of SWIFT [136]. However,

the framework of SWIFT lacks several essential primitives, such as secure shu✏e and division,

required for evaluating the local clustering algorithm in the GraphSC paradigm. We design

these primitives, making SWIFT more comprehensive. We elaborate on these results next.

Secure local clustering

Naively translating the local clustering algorithm in [54] via the above steps results in a data-

oblivious algorithm (and thereby a secure protocol) that has O (|V| (|V|+ |E|)) complexity. This

complexity results from the |V| iterations of the clustering algorithm, each of which requires

computing a cluster-specific parameter (as described in §3.6.2) via Scatter-Gather where the lat-

ter has O (|V|+ |E|) complexity. Instead, we introduce a novel approach and design an algorithm

(step 1 ) which can compute this cluster parameter incrementally, by reusing information from

prior iterations without relying on Scatter-Gather. Elaborately, we augment the data associated

with each vertex with a new component (to be computed via Scatter-Gather) that facilitates this

incremental computation. Our reliance on a single call to Scatter-Gather to compute this new

component, enables designing a significantly better data-oblivious algorithm having O(|V|+ |E|)
complexity (step 2 ). This complexity can further be improved to O(log (|V|+ |E|)) relying on

the parallel variant of GraphSC described in [179] (recalled in §2.6.1). Our new message-passing

algorithm (step 1 ) coupled with e�cient definitions of Scatter-Gather for it (step 2 ), aid in

obtaining a more e�cient secure protocol for local clustering.
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Secure HKPR

Although obtaining the message-passing algorithm (step 1 ) for computing HKPR is relatively

simpler compared to the one for local clustering, we note that the resulting algorithm requires

keeping track of several parameters. Thus, keeping e�ciency in mind, we define Scatter and

Gather (step 2 ) such that we eliminate the overheads resulting from additional bookkeeping

present in the message-passing variant. This results in obtaining an e�cient realization of the

secure protocol.

Note that our secure HKPR protocol can also be of independent interest since it finds

use in other applications such as community detection [134], classification [170], etc. As in

the case of the cleartext algorithm in [222], our secure protocol for computing HKPR is also

versatile and allows computing several other graph propagation metrics such as L-hop transition

probability, PageRank [192], personalized PageRank (PPR) [192], single-target PPR [159], Katz

[122] measure, to name few.

Enhancing the 3PC framework of SWIFT

The GraphSC framework [179, 13] treats the underlying MPC as a black box, and hence does

not require explicitly handling fixed-point arithmetic (FPA) operations. However, the algo-

rithm of clustering requires operating over FPA and demands new primitives such as division,

support for which is missing in SWIFT [136]. Hence, we design a secure protocol for divi-

sion, which in turn requires designing a secure protocol for prefix OR. These primitives were

originally missing in the framework of SWIFT. The addition of these makes SWIFT a more

comprehensive framework. While SWIFT originally provided support for privacy-preserving

machine learning (PPML) inference only (for neural networks), the inclusion of secure divi-

sion protocol now also facilitates privacy-preserving training of neural networks. Further, since

SWIFT was originally designed as an MPC framework for PPML, making it compliant with

the GraphSC framework additionally requires a shu✏e protocol. Keeping e�ciency in mind, we

design ring-based maliciously secure shu✏e protocol, Ru✏e, in the 3-party computation setting,

whose highlight is the improved online e�ciency in comparison to both [80] and [13]. In fact,

Ru✏e also has a better overall run time than the shu✏e protocol of [80] owing to our better

round as well as communication complexity. Finally, we note that Ru✏e is designed to o↵er an

improved security guarantee of robustness in comparison to prior works. Further, the existing

secure shu✏e protocols are designed for settings that require a single shu✏e invocation. Thus,

when requiring multiple sequential shu✏es, as in the case of the GraphSC paradigm, the ex-

isting protocols must be invoked as many times as required. While our approach also requires
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multiple invocations, we aim to minimize the overall e�ciency while performing multiple se-

quential shu✏es. In this regard, we identify two di↵erent scenarios, Independent-Shu✏es and

Composed-Shu✏es, that arise while performing sequential shu✏es and cater to both separately

by designing Ru✏eind and Ru✏ecmp, respectively, as discussed in §3.4.3.
We note that SWIFT and its enhanced version provide the strongest security of GOD.

Although GOD may be beneficial for several applications, it is worthwhile to note here that

our protocols allow settling for the weaker security guarantee of fairness or even security with

abort, depending on the application scenario. Moreover, we note that the added security of

GOD is achieved at no extra (amortized) cost over the weakest guarantee of abort security.

Benchmarks

The designed secure protocols for clustering and HKPR operate on FPA, which has limited

precision compared to its floating point counterpart. Further, probabilistic truncation and

approximate division in the secure computation setting result in additional loss of accuracy.

Hence, we perform extensive benchmarks to evaluate the accuracy loss of our secure clustering

and HKPR protocols. Further, recall that the secure protocol for HKPR supports evaluating

other graph propagation metrics. Hence, we also evaluate the accuracy loss involved in securely

realizing all these metrics. We observe that the accuracy loss of our secure protocols is in the

order of 10�5, which makes them on par with their cleartext counterparts.

We also benchmark the secure clustering and HKPR protocols over [136], and report the run

time for the same. Our implementation also accounts for parallelization that can be achieved

in the multiprocessor setting using the techniques described in [179]. The parallel variants

witness improvements of up to 23.4⇥ and 14.4⇥, respectively, in the computation of HKPR and

clustering, when considering a graph of size 106. The reported numbers showcase the practicality

of the designed protocols. We also benchmark the performance of our shu✏e protocols, Ru✏e,

Ru✏eind and Ru✏ecmp. We empirically establish that the protocols, Ru✏eind, Ru✏ecmp are apt for

their respective scenarios involving multiple sequential shu✏e invocations. Further, since the

application of anonymous broadcast builds directly on top of Ru✏eind, we showcase the e�ciency

improvements brought in by our shu✏e protocol for anonymous broadcast in comparison to the

state-of-the-art 3-party anonymous broadcast system of [80].
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3.2 Related work

Local clustering as well as computing HKPR metric via MPC has not been explored. Hence,

we discuss the related works that consider cleartext computation of the same first. Following

this, for completeness, we also describe works that design privacy-preserving solutions for global

clustering and PageRank, followed by the related works for the missing MPC primitives required

for securely realizing local clustering.

Local clustering: Local clustering was initiated in the work of [214, 215], which identified

clusters around a seed node by performing random walks over the graph. Since random walks

starting from the seed node are more likely to visit nodes near the seed node, they help in

identifying the local structure. The random walk-based method was improved in [9, 8] by

relying on approximate PageRank vectors instead. When given a seed node, the PageRank

vector provides a ranking of the nodes such that nodes that are more likely to be the endpoints

of a random walk starting from the seed node get assigned a higher probability. Thus, the set

of nodes with a higher rank constitutes a local cluster around the seed node. The state-of-the-

art works on local clustering [54, 134] are based on heat kernel PageRank (HKPR) [53]. The

advantage of HKPR over PageRank is that shorter random walks are more heavily weighted in

HKPR, resulting in the walks being concentrated around the seed node. Hence, HKPR-based

local clustering algorithms are known to provide a better-quality cluster. Since [54] provides

the state-of-the-art solution in terms of cluster quality, we rely on the same while designing a

secure protocol.

HKPR: Computing the HKPR vector, as required for clustering, has been considered in a

series of works [230, 164, 134, 54, 222] that aim to optimize the computation. Among these,

[222] forms the state-of-the-art, which outputs the most accurate HKPR vector compared to

the prior works while also performing better in terms of e�ciency. Since our goal is to identify

the most accurate local cluster around a given seed node, we rely on the approach of [222] for

computing the HKPR vector.

Privacy-preserving global clustering: Various works [226, 176, 124, 32, 10, 197, 99, 154,

228, 115, 111] have studied privacy-preserving solutions for global clustering with respect to

four di↵erent types—(i) partitioning-based, (ii) distribution-based, (iii) density-based, and (iv)

hierarchical clustering. In partition-based clustering, the goal is to split the input into K

non-overlapping clusters. Popular examples of such clustering algorithms are K-means [217]

and a�nity propagation [83], which have been studied in the privacy-preserving setting in

[226, 176] and [124], respectively. Distribution-based clustering algorithms assume that clus-

ters are drawn from an unknown mixture of distributions and aim at approximating the orig-
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inal distributions as well as the number of di↵erent distributions [103, 116]. A well-known

example of distribution-based clustering algorithm is Gaussian Mixture Model (GMM) using

the Expectation-Maximization (EM) algorithm [72], which has been studied in the privacy-

preserving setting in [99, 154]. In density-based clustering, a density-based neighbourhood

notion is used such that input records that lie together in a dense area are said to constitute

a cluster. A popular example of such clustering algorithm is DBSCAN [81], which has been

studied in the privacy-preserving setting in [32, 10, 197]. Hierarchical clustering algorithms

[228] represent a data set as a binary tree of data points and iteratively merge or divide clusters

based on the derived tree structure and have been studied in the privacy-preserving context

in [69, 115, 111]. We refer an interested reader to [103] for a systematic analysis of privacy-

preserving global clustering algorithms.

Privacy-preserving PageRank computation: Computation of the graph propagation metric

of PageRank has been looked at in the privacy-preserving setting in various works [179, 142,

203, 56]. The work of [179] provides a GraphSC-based solution for the same via garbled circuits.

The work of [142] provides a solution to securely realize PageRank via MPC, whereas the work

of [203] uses additive homomorphic encryption for computing PageRank via the power method.

The e�ciency of [203] was further improved in the work of [56] by relying on their analysis of

termination conditions for the power method.

MPC primitives: Note that other than the MPC primitives provided by [136] (see Table 2.1),

we additionally require a secure realization for division and shu✏e for local clustering. We next

describe the relevant literature pertaining to these. With respect to secure division, note that

this has been studied in various works such as [45, 43, 126, 6, 220, 50, 138, 174]. While

some of them [174, 50, 138] rely on evaluating a division circuit via garbled circuits, others

[45, 43, 126, 220] rely on an iterative method such as the Goldschmidt’s division algorithm [168]

which are more communication-e�cient than garbled circuit based approaches. Due to e�ciency

reasons, we adapt the protocol of [43], which relies on Goldschmidt’s division algorithm, over

the 3PC setting. Further, performing secure division via Goldschmidt’s algorithm additionally

relies on prefixOR computation [44, 43, 132]. It is worthwhile to note that while computing

prefixOR over the field algebraic structure can be accomplished in constant rounds by leveraging

the presence of inverses over a field as done in the work of [43, 44], performing it over the ring

algebraic structure requires a linear number of rounds in the number of bits for which prefixOR

has to be computed [132]. We showcase how to achieve this with logarithmic round complexity

by leveraging the multi-input multiplication gates.

With respect to secure shu✏e, several works explore MPC-based techniques for the same

[145, 178, 125, 167, 90, 177]. Some of these solutions rely on securely performing sort [145, 178],

Jump to Contents 42



while some others consider securely evaluating a permutation network [125, 167, 90, 177]. These

techniques require at least O(log n) rounds for shu✏ing n elements, which proves to be expensive

for time-sensitive applications. The concurrent works of [80, 13] consider a 3PC honest majority

setting. In the semi-honest 3PC honest-majority setting, [13] presents a shu✏e protocol which

is an adaption of the shu✏e protocol of [145] to the 3-party setting. This semi-honest protocol

requires three rounds of interaction. Note that, [13] contributes to making this semi-honest

protocol secure in the presence of a malicious adversary by augmenting with a verification phase

to ensure the correctness of the semi-honest shu✏e, which additionally requires 2+log2  rounds.

Further, [13] also provides a 2 round semi-honest protocol but leaves open the question of

attaining malicious security for the same. Clarion [80] also gives a 2-round 3PC honest-majority

shu✏e protocol which builds on the semi-honest 2-party protocol of [48]. To guarantee malicious

security, they add integrity checks by having MACs appended to the elements to be shu✏ed.

The resulting maliciously secure protocol requires 6 rounds overall. Clarion also extends its

shu✏e protocol to the n-party dishonest majority setting that guarantees malicious security,

which additionally requires maliciously secure OTs (oblivious transfer) in the preprocessing

phase. It improves over the protocol in [162] in terms of e�ciency, however, it lacks in terms

of security guarantees where the latter provides fairness in the preprocessing phase and GOD

only in the online phase, for the setting of t < n/3.

3.2.1 On the choice of cleartext algorithms

Keeping the quality of the output cluster in mind, we rely on the state-of-the-art works in the

literature for computing the HKPR metric as well as for performing clustering using the same.

However, one could question the performance of these algorithms when translated to their secure

variants via MPC, i.e., do there exist other algorithms that can provide better performance in

MPC by trading o↵ the output quality? For this, we note that our solution comes at no extra

cost. For example, consider randomized alternatives to state-of-the-art (in cleartext) that trade

o↵ the quality of the output to obtain a more e�cient solution. The improved e�ciency can

be attributed to operating only on a subset of the nodes (sampled based on nodes that satisfy

some condition) rather than considering the entire graph. However, when translating the same

to a secure variant, it is required that the computations are input-independent. Thus, if the

secure computation algorithm works on a subset of nodes that are sampled based on some

condition, this will leak information about the number of nodes that satisfy the condition by

simply observing which nodes are operated on. The number of such nodes may thereby leak

information about the structure of the input graph, which should otherwise be kept private.
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Hence, to prevent such leakage, it is required that the secure algorithm operates on all nodes,

albeit performing dummy operations on some nodes of the input graph (which ensures that

computations are independent of the graph structure). Thus, the secure variants can no longer

leverage the e�ciency gains obtained by performing computations specific to a chosen subset

of vertices. Hence, a secure variant of a graph algorithm is required to operate on the entire

graph. This results in the asymptotic complexity of all alternatives being similar in the MPC

domain. Hence, the designed secure protocols in no way trade-o↵ output quality for e�ciency.

With respect to the choice of [222] as the basis of our work, we note that the protocols

in [222] outperform the prior protocols for HKPR-based clustering [230, 54] not only in terms

of accuracy but also in terms of e�ciency (see comparisons reported in [222]). Thus, [222]

forms the state-of-the-art. We would further like to note that other solutions [230, 54, 134] are

based on computing random walks, for which, to the best of our knowledge, there do not exist

e�cient MPC protocols. Naively performing the same would be highly expensive as it would

require multiple scans of the edge list (to ensure obliviousness) when identifying each node of

the random walk. Further, random walks only constitute one component of the algorithm, and

hence additional overhead will be incurred due to other algorithmic components. For real-world

graphs with the number of nodes and edges in the order of 106, this is highly ine�cient. Hence,

we conclude that the choice of our algorithm results in an e�cient solution via MPC without

compromising accuracy.

3.3 Preliminaries

3.3.1 System model

Let P = {P0, P1, P2} denote the three compute parties connected via pairwise private and

authentic channels in a synchronous network. We let A denote a static malicious probabilistic

polynomial time adversary which corrupts at most one party in P. We rely on the secret-

sharing-based robust 3PC framework of SWIFT [136] for the underlying MPC. We refer to §2.3
for details of the secret-sharing semantics and for descriptions of the protocols from SWIFT

used in this chapter.

3.3.2 GraphSC paradigm

The designed protocols leverage the GraphSC paradigm [179, 13] for e�ciency reasons. Hence,

we refer readers to §2.6 to familiarize themselves with the necessary background.
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3.3.3 Notations

The notations used in this chapter are summarized in Table 3.1.

Notation Description

bi,j jth bit in a block of bits bi

k bit length of the input

f number of precision bits when considering fixed point arithmetic

Independent-Shu✏es Scenario where multiple independent sequential shu✏es are invoked

Composed-Shu✏es Scenario where multiple sequential shu✏es are composed

T Set of ordered elements

To Output set after permuting the elements in T under a random permutation ⇡

TTP Trusted third party

HKPR Heat kernel PageRank

G = (V,E) Graph with set of vertices V and set of edges E

A Adjacency matrix of G

D Degree matrix of G

v[i] ith element of vector v

⇢[v] HKPR value for vertex v 2 V

wi Weight in the ith iteration of the graph propagation metric computation

Yi Partial weight sum Yi =
P1

k=i wk

r Residue vector used in graph propagation metric computation

q Reserve vector used in graph propagation metric computation

Nbu Neighbouring vertices of vertex u 2 V

degu Degree of vertex u 2 V

volS Volume of S: sum of degrees of vertices in S

val, agg Intermediate variables

�s Cheeger ratio of set of vertices S

@ Number of edges that cross from set S to remaining vertices in V\S when computing �s

& Target cluster volume

G[u].GreaterCount Number of neighbours v of vertex u that have a greater ⇢[v]
deg

v

value than ⇢[u]
deg

u

.

Table 3.1: Notations used in this chapter.

3.4 Primitives for clustering

Most of the primitives required for clustering can be obtained from SWIFT [136] (described

in Table 2.1). However, clustering additionally requires other primitives, which we detail in

this section. These primitives make SWIFT a more comprehensive framework, facilitating

applications beyond PPML. Since primitives such as prefix OR and division are known from

the literature [220, 43, 44], we provide a high-level intuition of realizing them in SWIFT next.
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3.4.1 Prefix OR

On input Boolean shared bits x`�1, . . . , x0, ⇧PreOr outputs Boolean shared bits y`�1, . . . , y0 such

that yi = _`�1
j=ixj. We provide an e�cient instantiation of prefix OR, which works over rings

and leverages the presence of multi-input AND gates provided in [136], to yield a protocol that

requires 3 rounds for 64-bit inputs.

The protocol proceeds as follows. We define an operator  , which operates on a block of bits

and outputs the prefix OR of the bits in the block. The ⇧PreOr protocol is designed to recursively

call the  operator such that in each round, the size of the block increases exponentially, leading

to a protocol with logarithmic rounds. Elaborately, our protocol proceeds in rounds such that

after the jth round, prefix OR of up to 4j bits is computed. To achieve this, we define an operator

 which takes as input a block of bits t (where the number of bits in t is a power of 4), which is a

concatenation of the bits in the four sub-blocks, b3, b2, b1, b0, i.e., t = b3||b2||b1||b0. Here, each
sub-block, b3, b2, b1, b0, is such that it is already the prefix OR of some input sub-block, i.e.,

there exist input sub-blocks a3,a2,a1,a0 such that bi is the prefix OR of ai for i 2 {0, 1, 2, 3}.
The operator  is defined to output the prefix OR, t0, of the bits in t. Computation of  

proceeds as follows. Let the last bit of sub-block bi be denoted as zi and let t0 = b03||b02||b01||b00.
Since each sub-block bi already satisfies the prefix OR requirement, observe that we can set

b03 = b3. To compute the j
th bit in b02, it su�ces to compute the OR of z3 with the j

th bit in

b2, because the latter is already the prefix OR of the bits in a2. Similarly, jth bit in b01 can be

computed as the OR of z3, z2 with the jth bit in in b1. Finally, jth bit in b00 can be computed as

the OR of z3, z2, z1 with the jth bit in in b0. In this way, t0 = b03||b02||b01||b00 can be generated by

performing 2/3/4-input OR, which can be reduced to a combination of NOT and multi-input

AND. Formal details of  appear in Fig. 3.1.

Having defined  , we next describe how to compute prefix OR of {xi}0i=`�1 with the help of

 . The protocol proceeds in rounds, where in the jth round, a processed version of {xi}0i=`�1 is

split into `/4j blocks, ti, each of which consists of 4j bits. Observe that when each ti comprises

four bits (in the initial round), each sub-block bi consists of a single bit and already satisfies

the prefix OR requirement. Thus, applying  on ti ensures that the invariant of each input

sub-block to  being a prefix OR is satisfied. At the end of round 1, the application of  on

each of the four-bit block ti, generates the prefix OR of the first four bits, as well as the prefix

OR for each subsequent block of four bits. Thus, applying  in the second round on each of

the sixteen-bit blocks generates the prefix OR for the first 16 bits, as well as the prefix OR for

each subsequent block of 16 bits. In this way, at the end of j rounds, the prefix OR of 4j bits

can be generated. The protocol for computing prefix OR appears in Fig. 3.2.
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Input: JtKB =
⇣
Jb3KB, Jb2KB, Jb1KB, Jb0KB

⌘
where each bi is a block of d bits and constitutes the

prefix OR of some sub-block of bits. Let the jth bit in bi be denoted as bi,j and its last bit be

denoted as zi.

Output: Jt0KB such that bits in t0 comprise the prefix OR of the bits in t.

– For i 2 {0, 1, . . . , d� 1}, set

� Jb03,iK
B = Jb3,iKB

� Jb02,iK
B = ⇧NOT

⇣
⇧Mul

⇣
Jz̄3KB, Jb̄2,iKB

⌘⌘

� Jb01,iK
B = ⇧NOT

⇣
⇧3-Mul

⇣
Jz̄3KB, Jz̄2KB, Jb̄1,iKB

⌘⌘

� Jb00,iK
B = ⇧NOT

⇣
⇧4-Mul

⇣
Jz̄3KB, Jz̄2KB, Jz̄1KB, Jb̄0,iKB

⌘⌘

– Return Jt0KB =
⇣
Jb03K

B, Jb02K
B, Jb01K

B, Jb00K
B
⌘

Operator  
⇣
JtKB

⌘

Figure 3.1: Operator  .

– Jb0i K
B
= JxiKB for i 2 {0, . . . , `� 1}, and set k = `

– for j = 0 to blog4(`)c do: (j denotes round number)

� for i =
⌅
k
4

⇧
to 1 do: (i denotes block number)

- Jtji K
B

=
⇣
Jbj4i�1K

B

, Jbj4i�2K
B

, Jbj4i�3K
B

, Jbj4i�4K
B
⌘

- Jbj+1
i KB =  

⇣
Jtji K

B
⌘

� k =
⌅
k
4

⇧

– Return Jbblog4(`)c+1
3 K

B

Protocol ⇧PreOr

�
{JxiK}0i=`�1

�

Figure 3.2: Prefix OR.

3.4.2 Division

When computing a/b where the divisor b is publicly known, and a is secret-shared, division

can be performed easily by computing 1/b on clear followed by secure multiplication with a.

On the contrary, division, when b is also secret-shared, is non-trivial. Our division protocol,

⇧Div, takes as input JaK and JbK, and outputs JdK where d ⇡ a/b. It relies on Goldschmidt’s

approximation [168] for obtaining the result.

To design ⇧Div, we follow a similar approach as in [43], which involves computing an initial

guess for 1/b, followed by iteratively computing the approximation of a/b. To ensure a fast

convergence of this iterative method, the choice of the initial guess for w = 1/b is critical. To

Jump to Contents 47



compute w, we proceed along the lines of [43, 44]. We first compute the initial guess w0 for the

normalized input b0, which is then used to obtain the initial guess w for the input b. Elaborately,

if b > 0, it is normalized to b
0 2 [0.5, 1) and w

0 = 1/b0 is approximated as 2.9142 � 2b0. Else,

if b < 0, it is normalized to b
0 2 (�1,�0.5] and w

0 = 1/b0 is approximated to �2.9142 � 2b0.

We refer readers to [44, 168] for the choice of the constant. Given w
0, the initial guess for 1/b

is computed as w = w
0 · v, where v is the scaling factor used to obtain the normalized b

0 = bv.

We let ⇧AppRec denote the protocol that computes the initial guess.

The following is the overview of ⇧AppRec. Observe that given v, computing w follows directly

from the sequence of relations described earlier to compute b
0 and w

0. Thus, the challenge lies

in computing v, which is non-trivial to obtain when b is available only in secret-shared format.

Observe that if |b| 2 [2m�1
, 2m � 1] (|b| denotes magnitude of b), then the scaling factor v is

given by 2k�m�1. Here, k denotes the input length (see §2.1), and m � 1 denotes the index of

the most significant non-zero bit of b if b > 0, and the most significant zero bit of b if b < 0.

Consider the case when b > 0. To determine m, we compute prefix OR of the bits of b to

generate bits {ci}k�2
i=0 such that ci = 0 for i � m, and ci = 1 for i < m. Thus, the bits {ci}k�2

i=0 ,

when composed, yield c = 2m�1. Using this, v = 2k�m�1 can be computed as follows. We XOR

the consecutive bits in {ci}k�2
i=0 to generate {yi}k�2

i=0 which ensures that yi = 1 for i = m, and

yi = 0 otherwise. Thus, composing the bits in {yi}k�1
i=0 in the reverse order generates v = 2k�m�1.

The same steps can be used to compute v even when b < 0, provided we work on the flipped

bits of b. Thus, we obliviously flip/retain the bits of b depending on its sign, before the prefix

OR computation begins. Having computed v, we can compute b0. However, computing w
0 using

b
0 additionally requires an oblivious selection between 2.1942 and �2.1942 depending on the

sign of b. Then, computing w from w
0 follows easily. The formal protocol for computing w

appears in Fig. 3.3. We use (x)
f
to denote that x has a precision of f bits. Note that this initial

guess w of 1/b is known to have a relative error of ✏0 = 1� bw < 1 [45].

Given the initial guess w, ⇧Div (Fig. 3.4) relies on Goldschmidt’s method to output d which

iteratively approximates a/b. The value of d in the ✓th iteration is computed as d✓ = d✓�1 ·
(1 � e✓�1). Here, e✓ denotes the relative error in the ✓th iteration and can be obtained as

e✓ = e✓�1 · e✓�1. The algorithm begins with initializing d0 = a · w and e0 = ✏0. Observe that

after ✓ iterations, d✓ has a relative error of (✏0)2
✓
, indicating that the error reduces exponentially.

Since division by 0 is undefined, ⇧Div additionally outputs a flag bit z (computed as part of

⇧AppRec), which indicates if the divisor b is 0. For the application considered, we note ✓ = 4

su�ces to obtain the desired level of accuracy. We remark that the round optimized (log4(`)

rounds) protocols for prefix OR aid in attaining improved round complexity.
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– ↵ = (2.9142)
k�1

– JbKB = ⇧A2B (JbK)
– for i = 0 to k� 2 do: Jb0iK

B = JbiKB � Jbk�1KB

– {JciKB}0i=k�2 = ⇧PreOr({Jb0iK
B}0i=k�2) and Jck�1KB = J0KB

– for i = k� 2 to 1 do: JciKB = JciKB � Jci+1KB

– JvK = ⇧B2A

⇣
{JciKB}0i=k�1

⌘
(in reverse order)

– JzKB = ⇧NOT

⇣
⇧Mul

⇣
Jbk�1KB, Jc0KB

⌘⌘

– Jw0K = ⇧Sel

⇣
↵,�↵, Jbk�1KB

⌘
� 2 ·⇧Mul(JbK, JvK, 0)

– JwK = ⇧Mul (JvK, Jw0K, 2(k� f � 1))

– return JwK, JzKB

Protocol ⇧AppRec (JbK)

Figure 3.3: Computing the initial approximation of 1/b.

– JwK, JzKB = ⇧AppRec (JbK)
– ↵ = (1)2f and JeK = ↵�⇧Mul (JbK, JwK, 0)
– JdK = ⇧Mul (JaK, JwK, 0)
– for i = 1 to ✓-1 do:

� JdK = ⇧Mul (JdK,↵+ JeK, 2f), JeK = ⇧Mul (JeK, JeK, 2f)
– JdK = ⇧Mul (JdK,↵+ JeK, 2f)
– return JdK, JzKB

Protocol ⇧Div (JaK, JbK)

Figure 3.4: Division.

3.4.3 Shu✏e

We next describe the shu✏e protocol, Ru✏e, that is designed for a single invocation. Note,

however, that there arise scenarios where multiple sequential invocations of shu✏e are required.

For instance, the GraphSC paradigm requires invoking multiple shu✏es in a sequential manner

with the additional constraint that these shu✏es have to be composed sequentially (as elabo-

rated next). Hence, we identify two di↵erent scenarios that arise while performing sequential

shu✏es and design protocols that cater to both separately. We discuss these scenarios first,

followed by the protocols.

Jump to Contents 49



Independent-Shu✏es Let ⇡ (T) denote the operation of permuting the elements in the ordered

set T according to the permutation ⇡. Let T1,T2, . . . ,Tm be m ordered sets that are required

to be shu✏ed under random secret permutations, say ⇡1, ⇡2, . . . , ⇡m, respectively. Consider

the scenario where these shu✏es are performed sequentially such that ⇡i+1 (Ti+1) is invoked

after ⇡i (Ti), and Ti+1 is independent of ⇡i (Ti). We refer to this as the Independent-Shu✏es

scenario where multiple independent shu✏e invocations are required with the constraint that

they are invoked sequentially. Our first variant of shu✏e protocols, Ru✏eind, is tailor-made

for this scenario. Ru✏eind is designed to leverage the independence of m shu✏es to perform

necessary preprocessing steps in parallel. Thus, our improved online phase supplemented by

parallel preprocessing results in improved overall run time, with Ru✏eind outperforming [80, 13]

for multiple shu✏es (i.e., m � 2). Note that for applications such as the anonymous broadcast

(as discussed in §1.1.1.1) that can run perpetually, Ru✏eind is apt. Elaborately, in an anonymous

broadcast system, client messages are received continuously, and the system is responsible for

shu✏ing every consecutive set of N well-formed messages. Hence, an anonymous broadcast

system requires multiple sequential invocations of shu✏e, which can be captured by the case of

Independent-Shu✏es for which Ru✏eind is designed.

Composed-Shu✏es Unlike the previous scenario of m independent shu✏es, in this case, we are

interested in determining the composition of m shu✏es such that Tm = ⇡m (⇡m�1 (. . . ⇡1 (T))),

where T is the input to be shu✏ed. Such a composition of m shu✏es generates a sequence

of intermediate shu✏ed sets, where the i
th ordered set is denoted as Ti = ⇡i (. . . ⇡1 (T)). In

this way, the composition of permutations induces a sequential nature to the shu✏e invoca-

tions with ⇡i+1 (Ti) being invoked after ⇡i (Ti�1) since Ti = ⇡i (Ti�1). We refer to this as the

Composed-Shu✏es scenario, where the permutations are required to be composed such that the

output of one shu✏e invocation is fed as the input to the next. The scenario can indeed be gen-

eralized such that ⇡i+1 can be invoked on some function f of ⇡i (Ti), rather than on ⇡i (Ti) itself.

Such a composition of shu✏es is heavily used in the GraphSC paradigm for secure computation

over graphs.

Recall that Ru✏eind is designed to leverage the independence of the m shu✏es to facilitate

parallel preprocessing. This is in contrast to Composed-Shu✏es, where the shu✏es are no longer

independent. Thus, Ru✏eind is not apt for Composed-Shu✏es, and we design Ru✏ecmp to specif-

ically cater to this scenario. As in the case of Ru✏eind for Independent-Shu✏es, Ru✏ecmp out-

performs [80, 13] with respect to online as well as the overall run time in the Composed-Shu✏es

scenario. This is achieved by designing Ru✏ecmp to strategically break the sequential dependence

on shu✏es in the preprocessing. This enables performing the preprocessing phase in parallel for
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the m shu✏es. Although Ru✏ecmp can be used in the scenario of Independent-Shu✏es, we note

that the design of Ru✏ecmp for breaking the dependency in the preprocessing comes at the cost

of slightly increased preprocessing communication compared to the preprocessing of Ru✏eind.

Hence, the use of Ru✏eind is apt for Independent-Shu✏es and Ru✏ecmp for Composed-Shu✏es.

3.4.3.1 Ru✏e

Without loss of generality, let Pc 2 P denote the party corrupted by adversary S. FShu✏e interacts

with parties in P and S. It receives as input J·KB-shares of the input table T from all parties. Let

To denote the randomly shu✏ed input table. FShu✏e also receives from S its J·KB-shares of To, i.e.

it receives �To
, [↵To

]Bic , [↵To
]Bjc where Pi, Pj , Pc denote parties in P.

FShu✏e proceeds as follows.

– Reconstruct input T using J·KB-shares of the honest parties.

– Sample a random permutation ⇡ from the space of all permutations, SN (see §2.5.1) and
generate To = ⇡(T).

– Set [↵To
]Bij = To � �To

� [↵To
]Bic � [↵To

]Bjc. Let JToKBs denote the J·KB-share of To for Ps 2 P.

– Send (Output, JToKBs ) to Ps.

Functionality FShu✏e

Figure 3.5: Ideal functionality for shu✏e.

We begin with defining the ideal functionality for shu✏e in Fig. 4.10. Let a table T denote

a set of ordered rows where each row consists of an `-bit string. Let N denote the size of T

or the number of rows in T (equivalently, T can also be viewed as a vector comprising N `-bit

elements). Secure shu✏e operation takes as input J·KB-shares of table T, i.e., J·KB-shares of

each of the `-bit string that constitutes a row in T. The output is random J·KB-shares of a table

To, which consists of rows of T in a randomly permuted order. Note that although our shu✏e

protocol is described to work with Boolean-shared inputs, it can easily be extended to work

with arithmetic-shared inputs, as well.

Given that the input table T is J·KB-shared, there exists a �T,↵T 2 ZN

2` such that �T = T�↵T

is held by all parties in P, and ↵T is [·]B-shared, i.e. ↵T = [↵T]
B

01�[↵T]
B

02�[↵T]
B

12 where Pi, Pj 2 P

hold [↵T]
B

ij 2 ZN

2` (see §2.3 for the sharing semantics of [136]). Let ⇡ be the random permutation

used to shu✏e the rows of T. Observe that, To = ⇡ (T) = ⇡ (�T � ↵T) = ⇡ (�T) � ⇡ (↵T). To

respect the J·KB-sharing semantics for To, we require To = �To
� ↵To

. A naive approach is

to thus set �To
= ⇡ (�T) and ↵To

= ⇡ (↵T) since this would satisfy To = �To
� ↵To

= ⇡ (T).

Observe, however, that this approach leaks the secret permutation ⇡ to all the parties since
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they all hold �T and will now also hold ⇡ (�T) on clear, from which one can recover ⇡. To keep

⇡ private, we observe that it su�ces to mask ⇡ (�T) with some randomness R 2 ZN

2` , and hence,

define this masked value as �To
, i.e., �To

= ⇡ (�T) � R. Further, to ensure that the relation

To = �To
� ↵To

holds, we redefine ↵To
= ⇡ (↵T)� R. Thus, given JTKB, our goal is to generate

[·]B-shares of ↵To
, and ensure that all parties hold �To

. Observe that [↵To
]B = [⇡ (↵T)]

B� [R]B.

Looking ahead R gets defined during the generation of �To
. Thus, in what follows, we first

describe steps to generate [⇡ (↵T)]
B, followed by steps to generate �To

and then [R]B.

Generation of [⇡ (↵T)]
B Since ↵T is independent of the input T, it is generated during a

preprocessing phase. Hence, [·]B-shares of ↵0 = ⇡ (↵T) where ⇡ is a random secret permutation

(independent of T), can be generated during preprocessing. For this, we employ the protocol

of [13]. The protocol takes as input [·]B-shares of a table, and outputs [·]B-shares of the

table shu✏ed using a random secret permutation ⇡. It also outputs a flag that indicates the

correctness of [·]B-shares of shu✏ed table1.

Recall from §2.5.2, the protocol of [13] relies on the semi-honest 3PC shu✏e protocol from

[145] which guarantees privacy against a malicious adversary. [13] then augments this with a

robust Set-Equality protocol to verify the correctness of the semi-honest shu✏e. The semi-honest

shu✏e comprises three invocations of Shu✏e-Pair protocol. In each instance of Shu✏e-Pair, a

random permutation is applied to the input (of the Shu✏e-Pair), where the permutation is

known to a distinct pair of parties and is hidden from the third. The output of the current

Shu✏e-Pair is fed as input to the next Shu✏e-Pair. The composition of all three permutations,

thus, makes up the random secret permutation used to shu✏e the input table. Since each party

is aware of only two permutations, the final permutation remains private. Each invocation

of Shu✏e-Pair is followed by a Set-Equality protocol which outputs a flag 2 {0, 1} indicating

whether the table output by the Shu✏e-Pair is indeed a random permutation of the input to

this Shu✏e-Pair. In this way, the output of the shu✏e protocol is guaranteed to be correct if

all instances of Shu✏e-Pair are verified to be correct.

Let ⇡12, ⇡01, ⇡02 denote the three permutations used in the three Shu✏e-Pair instances, where

⇡ij is held by Pi, Pj 2 P. Applying the protocol of [13] on [↵T]
B outputs [⇡ (↵T)]

B and a flag.

Here, we let ⇡ = ⇡12 � ⇡01 � ⇡02 where � denotes composition operation, and flag indicates

correctness of [⇡ (↵T)]
B.

1We choose [13] over [80] since the protocol in [13] follows the same [·]B-sharing semantics as required for
↵, which is not the case in the protocol of [80]. Hence, the use of [13] yields an e�cient preprocessing phase.
Towards the end of §3.4.3.1, we also showcase how to get GOD for the protocol of [13].
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Generation of �To
= ⇡ (�T) � R As part of the Shu✏e-Pair instances performed during

the preprocessing, parties generate ⇡12, ⇡01, ⇡02. The goal now is to generate �To
= ⇡ (�T) � R

where ⇡ = ⇡12 � ⇡01 � ⇡02. Observe that, unlike during preprocessing, the table to be shu✏ed

is now held by all three parties on clear, while the permutation ⇡ is still private. Further,

each party misses exactly one permutation that is held by the other two parties. We leverage

these observations in designing our shu✏e protocol to attain a highly e�cient online phase. We

explain case-by-case how each Pi 2 P obtains �To
.

Generating �To
towards P1 Recall that P1 misses ⇡02. If P1 is given ⇡02 (�T), it can locally

compute ⇡ (�T) = ⇡12 � ⇡01 (⇡02 (�T)) using its knowledge of ⇡12 � ⇡01. However, as mentioned

earlier, since P1 holds �T on clear, knowledge of ⇡02 (�T) leaks the permutation ⇡02 to it. Hence,

we instead provide it with ⇡02 (�T)� R
0, where the randomness R0 masks ⇡02 (�T) and prevents

leakage of ⇡02. For this, observe that ⇡02 is held by both P0, P2. We let P0, P2 sample a random

R02 2 ZN

2` , and compute and send ⇡02 (�T � R02) to P1. Here, ⇡02 (R02) serves as the random

mask R
0. Further, note that since at most one among P0, P2 can be malicious, making both

send the value to P1 enables the latter to check the consistency of the received messages and

detect misbehaviour, if any. Since the message from the second sender only aids in verifying the

consistency of the received messages, to save on communicating an entire table, it su�ces for

one sender to send the value and the other to send the hash of it2 . On receiving a consistent

⇡02 (�T � R02) (which also guarantees its correctness, as otherwise, the received messages would

have been inconsistent), P1 can compute �To
using the received value and the knowledge of

permutations ⇡12, ⇡01. Note that ⇡02 (R02) serves as a mask to hide ⇡ from P1. Looking ahead,

similar masks are required in �To
to keep ⇡ hidden from P2 and P0. This results in additionally

introducing the random masks ⇡12 (⇡01 (R01)) and ⇡12 (R12), respectively. To ensure that all

parties have the same �To
and use the same randomness for masking ⇡ (�T), �To

is defined as

�To
= ⇡12 (⇡01 (⇡02 (�T � R02)� R01)� R12) (3.1)

= ⇡ (�T)� ⇡ (R02)� ⇡12 (⇡01 (R01))� ⇡12 (R12)

where R12,R01 2 ZN

2` , and Rij is jointly sampled by Pi, Pj 2 P. At the end of first round, since

P1 holds R12,R01, ⇡12, ⇡01, and ⇡02 (�T � R02), it can compute �To
using Equation (3.1).

Generating �To
towards P2 Observe that P2 lacks ⇡01 that prevents it from computing

⇡12 (⇡01 (⇡02 (�T � R02))). On the other hand, if provided with the value ⇡01 (⇡02 (�T � R02)),

2When performing multiple shu✏e instances, the cost of sending a hash can be amortized by sending a
single hash for messages corresponding to multiple shu✏es.
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then P2 can obtain ⇡12 (⇡01 (⇡02 (�T � R02))) by applying ⇡12 on it. However, similar to the

case described earlier, this leaks the permutation ⇡01 to P2. To fix this leakage, we first mask

⇡02 (�T � R02) with the random value R01 and then apply ⇡01 on this masked value and com-

municate it to P2. This justifies the need for the term ⇡12 (⇡01 (R01)) in Equation (3.1). The

value to be communicated, �12 = ⇡01 (⇡02 (�T � R02)� R01) can be computed by P0 and sent to

P2, since P0 possesses the required values. Since we want to maintain the invariant that each

message is communicated by two senders to aid in the verification of correctness at the receiver,

we require P1 to also send a hash of this message to P2. Although P1 does not possess R02 and

⇡02 required to compute �12, observe that it receives �02 = ⇡02 (�T � R02) in the first round, and

can compute and send the hash of �12 = ⇡01 (�02 � R01) in the next round to P2. On receiving

these values, P2 can thus verify its correctness and then use Equation (3.1) to compute �To
.

Generating �To
towards P0 Given that �To

is made available to both P1, P2, they can send

it to P0 (one sends the value, the other sends the hash). This completes the generation of

�To
towards all the parties. Observe the need for using R12 as a mask while computing �To

.

Analogous to the cases for P1, P2, absence of R12 leaks the permutation ⇡12 to P0. Further,

note that although P2 can compute the correct �To
only after the second round, it receives �12

required for computing �To
in the first round itself. Hence, communication of �To

from P1, P2

towards P0 can happen in the second round.

A pictorial view of the messages exchanged is given in Fig. 3.6.

Generation of [↵To
]B = [⇡ (↵T)]

B � [R]B Subsequent to the above discussion and as evident

from Equation (3.1), R is defined as R = ⇡ (R02)� ⇡12 (⇡01 (R01))� ⇡12 (R12), whose [·]B-shares
are required to be generated in the preprocessing phase. Observe that

[↵To
]B = [⇡ (↵T)]

B � [R]B

= [⇡12 (⇡01 (⇡02 (↵T)))]
B � [⇡12 (⇡01 (⇡02 (R02)))]

B

� [⇡12 (⇡01 (R01))]
B � [⇡12 (R12)]

B (3.2)

P1, P2 hold ⇡12 (R12) on clear. Hence, as described in §2.3, [⇡12 (R12)]
B can be gener-

ated non-interactively. A naive approach of generating [·]B-shares of remainder terms re-

quires three invocations of Shu✏e-Pair for generating [⇡12 (⇡01 (⇡02 (↵T)))]
B, three for gener-

ating [⇡12 (⇡01 (⇡02 (R02)))]
B, and two for [⇡12 (⇡01 (R01))]

B. However, all these remainder terms

in Equation (3.2), need an application of ⇡01 followed by an application of ⇡12. Hence, instead

of separately computing these terms via multiple Shu✏e-Pair instances, we club these terms
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Figure 3.6: Online phase of Ru✏e.

together in such a way that we require only three Shu✏e-Pair instances to compute [↵To
]B.

Elaborately, given that R02 is held by P0, P2 on clear, parties can non-interactively generate

its [·]B-shares. Further, given [↵T � R02]
B = [↵T]

B � [R02]
B, parties invoke Shu✏e-Pair with

⇡02 as the secret permutation to generate [⇡02 (↵T � R02)]
B. Since [R01]

B can also be generated

non-interactively, the remainder terms in (3.2) can be alternatively expressed as,

⇡12 (⇡01 (⇡02 (↵T)))� ⇡12 (⇡01 (⇡02 (R02)))� ⇡12 (⇡01 (R01))

= ⇡12 (⇡01 (⇡02 (↵T � R02)� R01)) = �

Hence, given [⇡02 (↵T � R02)� R01]
B = [⇡02 (↵T � R02)]

B � [R01]
B, one can apply two invo-

cations of Shu✏e-Pair with ⇡01, ⇡12 to generate [�]B, as required for generating [↵To
]B.

Let [⇢]B = Shu✏e-Pair([T]B , ⇡ij) denote the application of ⇡ij on [T]B to obtain [⇢]B where

⇢ = ⇡ij (T) and the parties Pi, Pj are the pair who knows ⇡ij on clear. If [T1]
B
, [T2]

B denote

the input and output of a Shu✏e-Pair instance, let Set-Equality([T1]
B
, [T2]

B) output flag = 0 if

Shu✏e-Pair was performed correctly, and flag = 1 otherwise. The steps for generating ↵To
is

summarised in Fig. 3.7.
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1. [⇢2]
B = Shu✏e-Pair([⇢1]

B ,⇡02) where ⇢1 = ↵T � R02 and flag02 = Set-Equality([⇢1]
B , [⇢2]

B)

2. [⇢4]
B = Shu✏e-Pair([⇢3]

B ,⇡01) where ⇢3 = ⇢2 � R01 and flag01 = Set-Equality([⇢3]
B , [⇢4]

B)

3. [⇢5]
B = Shu✏e-Pair([⇢4]

B ,⇡12), flag12 = Set-Equality([⇢4]
B , [⇢5]

B)

4. Set [↵To
]B = [⇢5]

B � [⇡12 (R12)]
B

Figure 3.7: Generation of [↵To
]B by parties in P.

Guaranteeing output delivery Note that in the solution described above, an adversary

can misbehave, resulting in an abort (i.e., failure of shu✏e). However, to attain GOD and

obtain as output the randomly shu✏ed input table irrespective of the adversarial behaviour,

one can proceed as follows. Inspired by the techniques of [136, 138, 30, 36], we rely on a trusted

third party (TTP) based approach. Elaborately, if shu✏e fails, we work towards identifying an

honest party in P that is designated as a TTP. Parties robustly reconstruct the input table

to TTP, which performs the shu✏e operation on the clear table and sends the output (shares

of the randomly shu✏ed input table) to all. We next describe how a TTP can be identified in

preprocessing and online phases whenever shu✏e fails.

Identifying a TTP if shu✏e fails during preprocessing phase. The preprocessing phase involves

three sequential invocations of the semi-honest Shu✏e-Pair protocol where in each invocation,

only two parties communicate a message (see §2.5.2 for details). Each invocation of Shu✏e-Pair

is followed by a robust Set-Equality protocol to verify the correctness of the Shu✏e-Pair, which

outputs a flag indicating that shu✏e failed if some misbehaviour was detected in this Shu✏e-Pair

instance. We make the following observation that aids in identifying a TTP: If any invocation

of Set-Equality outputs a flag indicating that Shu✏e-Pair fails, it must be due to misbehaviour

by one of the two (communicating) parties in the corresponding Shu✏e-Pair instance. This

is because Set-Equality protocol is robust against any misbehaviour (owing to the use of a

robust 3PC for the same), and hence, shu✏e can fail only due to misbehaviour in Shu✏e-Pair.

Further, since at most one among the three parties is malicious, this guarantees that the (non-

communicating) residual party is honest and can be designated as the TTP.
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Preprocessing:

– Each pair of parties Pi, Pj 2 P non-interactively sample Rij 2 ZN

2` and random permutations

⇡ij .

– P1, P2 compute ⇡12 (R12), and parties generate its [·]B-shares, non-interactively.

– Parties in P generate [·]B-shares of R01,R02, non-interactively.

– Parties in P follow the steps in Fig. 3.7 to generate [↵To
]B.

– Identifying TTP when shu✏e fails: If flagij indicates a failure, all parties set TTP to be the non-

communicating party in the corresponding Shu✏e-Pair protocol. When multiple flagij indicates

failure, break tie deterministically and use one flagij .

Online:

– Shu✏e (Round 1):

� P0, P2 compute �02 = ⇡02 (�T � R02). P2 sends �02 to P1. P0 sends H(�02) to P1, where H is a

collision-resistant hash function.

� P0 computes and sends �01 = ⇡01 (⇡02 (�T � R02)� R01) to P2.

– Shu✏e (Round 2):

� P1 computes and sends H(�01) = H(⇡01 (�02 � R01)) to P2.

� P1, P2 compute �12 = ⇡12 (�01 � R12).

� P1 sends �12 and P2 sends H(�12) to P0.

– Verification (Round 3)a: For each receiver Pi 2 P, let Pj , Pk denote the senders. Let Pj send the

message and Pk send its hash. Pi checks if the received values are consistent. If not, it broadcasts

(“accuse”, Pj , Pk, cj , ck), where cj = H(x), such that x and ck are the values sent by Pj and Pk,

respectively.

– Verification and TTP Identification (Round 4): Consider the first instance when a party Pi

broadcasts (“accuse”, Pj , Pk, cj , ck).

� If cj = ck, set TTP = Pj .

� Else if cj is di↵erent from the hash of the value sent by Pj to Pi, then Pj broadcasts (“accuse”, Pi).

Set TTP = Pk. The above steps follow analogously for Pk.

� Else if cj 6= ck and neither Pj nor Pk accuses Pi, set TTP = Pi.

– One-time computation through TTP: If TTP is set, all parties robustly reconstruct the input

table towards the TTP, who randomly shu✏es the input and sends the shu✏ed table to all parties.

aNote that these can be performed as soon as the messages required for detecting inconsistency are
available.

Protocol ⇧Shu✏e

⇣
JTKB

⌘

Figure 3.8: Secure shu✏e.
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Identifying a TTP if shu✏e fails during online phase. Each of the three messages that are

exchanged in the online phase have the following communication pattern. There exist two

senders who possess the message to be sent to the receiver, where one sender sends the message

while the other sends the hash of it. Since this resembles the communication pattern of [136, 61],

we use the techniques therein to identify a TTP, if any party receives an inconsistent (message,

hash) pair. At a high level, if the received message and hash do not match at the receiver, it

broadcasts a complaint accusing the senders. It also broadcasts the received messages. This is

followed by the senders broadcasting a complaint against the receiver if the latter’s broadcast

message was inconsistent with the senders’ sent message. Depending on the publicly available

complaints, parties can unanimously determine a pair of parties that are in conflict with each

other, one of which is guaranteed to be corrupt. Due to at most one malicious corruption among

the three parties, the third party that is not a part of this conflict is guaranteed to be honest

and can be designated as the TTP.

The formal steps are provided in Fig. 3.8, and correctness follows from [61]3.

3.4.3.2 Ru✏eind

Ru✏e protocol described in §3.4.3, was for a single invocation of shu✏e. For the scenario of

Independent-Shu✏es, where m independent shu✏es are required to be performed sequentially,

we design Ru✏eind as follows. In its preprocessing phase, Ru✏eind performs m instances of the

preprocessing of Ru✏e in parallel, whereas for its online phase, it sequentially executes the

online phase of Ru✏e m times. As can be seen in Table 3.2, Ru✏eind results in having a better

complexity than that of [80, 13] for multiple sequential shu✏e invocations.

3.4.3.3 Ru✏ecmp

For scenarios that demand the composition of, say m, shu✏es (i.e., Composed-Shu✏es), observe

that the preprocessing phase of Ru✏eind, which comprises m instances of the preprocessing of

Ru✏e, can no longer execute in parallel, but will have to be performed sequentially. This is

because in Composed-Shu✏es, the output of one shu✏e operation, say T1, constitutes the input

to a subsequent shu✏e operation, which, say outputs T2 = ⇡ (T1). Hence, once ↵T1
is generated

as output from the first (preprocessing phase) instance of Ru✏e, only then can ↵T2
= ⇡ (↵T1

)�R

be generated (see §3.4.3.1 for the definition of ↵T). This sequential dependency present in the

preprocessing phase of Ru✏eind, when deployed in the case of Composed-Shu✏es, makes its run

3These steps can be optimized by using the technique described in [136].
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time proportional to the number of sequential shu✏es. However, it is desirable to facilitate

the generation of necessary preprocessing data in parallel and hence, decouple the dependency

between the generation of preprocessing data and the pattern of shu✏e invocations. This can

aid in significantly reducing preprocessing phase’s cost. Hence, in the following, we design

an alternative protocol Ru✏ecmp, that breaks this dependence and is tailor-made to handle

Composed-Shu✏es.

Let T be the input table which has to be shu✏ed to obtain To = ⇡ (T). In Ru✏e (Fig. 3.8),

To = �To
� ↵To

where �To
= ⇡ (�T) � R, ↵To

= ⇡ (↵T) � R, and ⇡ = ⇡12 � ⇡01 � ⇡02,
R = ⇡ (R02) � ⇡12 (⇡01 (R01)) � ⇡12 (R12). To break the dependency and ensure that ↵To

can

be generated independently of ↵T we proceed as follows. Let ↵0
To
, �

0
To

be the newly defined

values such that To = ↵
0
To
� �

0
To
, where ↵0

To
is the decoupled equivalent of ↵To

. We let parties

non-interactively sample [·]B-shares of a random ↵
0
To
2 ZN

2` during preprocessing. Having gener-

ated ↵0
To

this way, we need to define �0
To

to ensure that To = �
0
To
�↵0

To
holds. Hence, we define

�
0
To

= ⇡ (�T)� R� ⇡ (↵T)� R� ↵
0
To
. This is because recall that To = ⇡ (�T)� R� ⇡ (↵T)� R

(where R serves as a random mask for ⇡ (�T)). We next describe how to generate this �0
To
.

Let �0
To

= B1 � B2, where B1 = ⇡ (�T)� R and B2 = ⇡ (↵T)� R� ↵0
To
. In the preprocessing

phase, observe that [·]B-shares of ⇡ (↵T) � R can be generated as described in §3.4.3.1. Thus,

parties can compute [B2]
B = [⇡ (↵T)� R]B �

⇥
↵
0
To

⇤B
and reconstruct B2 towards all parties.

In the online phase, to generate �0
To
, observe that parties can generate B1, as described in

§3.4.3.1. Given B2 generated during preprocessing, parties set �0
To

= B1 � B2. This completes

the generation of JToKB. In comparison to Ru✏eind this protocol, Ru✏ecmp, only requires an

additional reconstruction of B2 (for each shu✏e instance) towards all the parties during the

preprocessing phase.

In summary, when dealing with Composed-Shu✏es, the ↵ and � values need to be redefined,

and the computation proceeds as follows. Assuming that we are interested in computing the

output shu✏ed table Tn defined as Tn = ⇡n (⇡n�1 (. . . ⇡1 (T0))) and T0 is J·KB-shared, let each
intermediate shu✏ed table Ti = ⇡i (. . . ⇡1 (T0)). As per the newly defined values, Ti = ↵

0
Ti
��0

Ti
,

for each i 2 {1, . . . , n}. Each of the ↵0
Ti

are randomly sampled and hence [·]B-shares of each

⇡i

⇣
↵
0
Ti�1

⌘
� Ri can be generated in parallel. Thus, the B2 component of each �

0
Ti

can be

computed as [B2]
B =

h
⇡i

⇣
↵
0
Ti�1

⌘
� R

iB
�
⇥
↵
0
Ti

⇤B
in parallel during the preprocessing phase and

reconstructed towards all the parties. Each �0
Ti
is generated sequentially in the online phase by

computing B1 = ⇡i

⇣
�
0
Ti�1

⌘
� Ri and �0

Ti
= B1 � B2.
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3.4.3.4 Comparison of the shu✏e protocols

When a single shu✏e is required (i.e., m = 1), both Ru✏eind and Ru✏ecmp can be used and both

improve over the existing works with respect to the online cost. Further, Ru✏eind outperforms

Ru✏ecmp due to the latter’s increased communication cost. A comparison of our shu✏e protocols

with that of [80, 13] is given in Table 3.2. Since all protocols have a common structure for the

online phase that comprises steps for semi-honest shu✏e followed by its verification, the cost of

these is reported in Table 3.2. As shown in the table, Ru✏eind becomes prohibitively expensive

for Composed-Shu✏es case, because it incurs an m factor inflation in the preprocessing round

complexity (see highlighted entry). Similarly, Ru✏ecmp is inapt for Independent-Shu✏es, due to

inflation of 3N`m bits in its preprocessing communication complexity (see highlighted entry).

Scenario Protocol
Online

Preprocessing
SecuritySemi-honest shu✏e Verification

Rounds Comm. (bits) Rounds Comm. (bits) Rounds Comm. (bits)

Independent-Shu✏es/
[80]‡ 2m 2N(2`+ 3p)m 4m 2N(`+ 2p)m+ 4pm 2 N(2`+ 9p)m+ 4pm Abort

Composed-Shu✏es

Independent-Shu✏es/
[13] 3m 6N(`+ )m 3(2 + log2 )m (6N+ 3)m * Abort ‡‡

Composed-Shu✏es

Independent-Shu✏es Ru✏eind 2m 3N`m 2 3080†
5 + log2  (6N`+ 12N+ 3)m⇤⇤

GOD
Composed-Shu✏es Ru✏ecmp 6 + log2 

⇤⇤⇤ (9N`+ 12N+ 3)m

N: number of elements to be shu✏ed, where each element is an `-bit string; (= 48): statistical security
parameter; p: order of field. [80] uses a 128-bit field
‡: Although [80] does not have an explicit preprocessing phase, we observe that the shu✏e correlation and
other randomness can be preprocessed. Hence, we explicitly distinguish between preprocessing and online to
provide a fair comparison.
*: The preprocessing for [13] only involves the generation of randomness, non-interactively. ‡‡: See §2.5.2
for a discussion on security guarantees of [13].
†: The communication for verification comprises broadcasting 2 hashes and 2 bits, the cost of which gets
amortized over multiple shu✏e instances.
⇤⇤: Ru✏ecmp for Independent-Shu✏es additionally requires communicating 3N`m bits. ⇤⇤⇤: Ru✏eind for
Composed-Shu✏es instead requires (5 + log2 )m rounds.

Table 3.2: Round complexity and communication (amortized) of various shu✏e protocols for
m invocations.

3.5 Privacy-preserving HKPR

To measure the similarity of nodes prior to performing local clustering, we rely on the graph

propagation metric of heat kernel PageRank (HKPR). The HKPR metric is favourable since it

is known to converge fast and produce good quality cluster [54, 53, 230]. Hence, we provide

a secure local clustering algorithm that uses HKPR as the graph propagation metric (or the

similarity measure) and can be accomplished in two steps. Given a seed node as input, we
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first compute the HKPR values of all vertices in the graph, assuming the seed node to be the

source. The computed HKPR values are then used as input to a clustering algorithm to find

a suitable cluster around the seed vertex. In this section, we describe how HKPR values can

be generated securely, followed by describing the secure clustering algorithm in §3.6. Although
the protocols are described as linear round solutions, they can easily be translated to a sub-

linear round solution following the techniques of [179] (see §2.6.1). We begin by describing the

cleartext algorithm for HKPR, followed by a secure protocol for its data-oblivious variant. Note

that the translation of cleartext to the message-passing algorithm is accounted for implicitly by

identifying (in place) the cleartext algorithm components that can benefit from computation

via GraphSC.

3.5.1 The cleartext algorithm

For a seed node s 2 V, the HKPR value ⇢[v] of a node v, captures the probability of a heat

kernel random walk from s terminating at v. Thus, the graph propagation equation to compute

HKPR of all nodes with respect to a specific seed node can be given as a |V|-dimensional vector

as :

⇢ =
1X

i=0

wi · (AD�1)
i · x, (3.3)

where wi = e�tti

i! is the weight with t being the Poisson distribution parameter, A is the

adjacency matrix of the input graph, D is degree matrix of the input graph with i
th diagonal

entry storing degree of ith vertex in the graph (degi), and x is the signal vector (of dimension

|V|), which is a one-hot encoding of s, that is, entry at position s is set to 1 (i.e., x[s] = 1) and

the rest are set to 0.

We rely on the basic propagation algorithm in [222] that approximates ⇢ for each vertex

by iteratively computing the sum in Equation (3.3) only up to L terms. In fact, the algorithm

in [222] is capable of computing various other graph propagation metrics such as PageRank,

Personalized PageRank, L-hop transition probability, etc. Each of these metrics can be com-

puted using the generalized graph propagation equation (Equation (3.4)) and by appropriately

parameterizing it. Further details regarding this are provided in §3.5.4. Steps for comput-

ing propagation vector ⇢ in Equation (3.4) via graph propagation algorithm are described in

Algorithm 2. The intuition is described next.

⇢ =
1X

i=0

wi · (D�aAD�b)
i · x (3.4)
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Algorithm 2: Graph propagation

Input: Undirected graph G = (V, E), signal vector x of dimension |V|, number of iterations
L, parameters of graph propagation equation a, b, weights {wj}Lj=0, partial weights {Yj}Lj=0

Output: Estimated propagation vector ⇢ of dimension |V|
1 r

(0) = x, ⇢ = 0 (the all zero vector);
2 for i = 0 to L� 1 do
3 for each u 2 V with non-zero r

(i)[u] do
4 for for each v 2 Nbu do

5 r
(i+1)[v] = r

(i+1)[v] +
⇣

Yi+1

Yi

⌘
r(i)[u]

(degv)
a(degu)

b

6 end

7 q
(i)[u] = q

(i)[u] +
⇣

wi
Yi

⌘
r
(i)[u]

8 end
9 ⇢ = ⇢ + q

(i)

10 end

The algorithm requires that the weights add up to 1, and hence the weight entries in the

generalized graph propagation equation (Equation (3.4)) are normalised in such a way that

wi =
wi

⌃1
i=0

wi
. The i

th iteration of the algorithm computes the i
th term in the infinite sum of ⇢.

To compute this e�ciently, the authors in [222] make the following observation that any two

consecutive terms i and i+1 in the infinite sum in Equation (3.4) have a lot of computation in

common. To identify a recursive structure and avoid unnecessary re-computation, two vectors

known as residue vector r and reserve vector q are defined as follows:

r
(i) = Yi · (D�aAD�b)

i · x, q
(i) = wi · (D�aAD�b)

i · x

Here, the partial weight sum, Yi, is defined as Yi = ⌃1
k=iwk. Thus, it is clear that the (i+1)th

residue vector can be derived from the i
th residue vector as given in Equation (3.5). Similarly,

the i
th reserve vector is nothing but the i

th term in the infinite sum of the graph propagation

equation, and it can be expressed in terms of the i
th term of the residue vector as given in

Equation (3.5).

r
(i+1) =

Yi+1

Yi
·D�aAD�b · r (i)

, q
(i) =

wi

Yi
· r (i) (3.5)

By using r
(0) and the relation between r

(i), r (i+1), all residue vectors r(i) for i 2 {0, . . . , L}
can be computed. Each of the reserve vectors can also be obtained from the corresponding

residue vectors, which can then be used to compute the graph propagation vector as ⇢ =

⌃1
i=0q

(i). Given the above background, the steps of Algorithm 2 can be summarised as follows.
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Initially, residue vector r(0) = Y0 · (D�aAD�b)
0 · x is set as the signal vector x with the partial

sum Y0 = ⌃1
k=0wk = 1. The algorithm repeats for L iterations where in each iteration i, the

i
th term of the graph propagation sum is computed. Lines 4-6 in the algorithm compute the

residue vector r
(i+1). Note that the term (D�aAD�b) in r

(i+1) is a square matrix with the

(u, v) entry having the corresponding value of A weighted by a factor of 1
(degu)

a(degv)
b . Hence,

entries in A that are 0 will not contribute in the computation of r (i+1). Thus, the algorithm

makes use of the fact that the index v of the residue vector, r (i+1)[v] is only updated by the

residue entries of all it’s neighbours u such that v 2 Nbu. Here Nbu denotes the neighbours of

node u. In this way, the authors in [222] design a vertex-centric algorithm that operates on

vectors rather than matrices. In line 8, the reserve vector is derived from the residue vector,

and in line 10, the reserve vector is used to update the graph propagation result vector ⇢. Note

that, for the case of HKPR, the above computation is parameterized with a = 0, b = 1.

3.5.2 The data-oblivious variant

We begin by discussing the challenges that arise in naively using MPC to translate Algorithm

2 into a secure variant, followed by discussing the resolutions for the same. Consider the steps

in Algorithm 2. For each node u, step 3 executes for only those nodes in the input graph that

have a non-zero value in the corresponding component of the residue vector r[u]. Hence, step 3

reveals whether a given node u has a non-zero value r[u]. Further, steps 4-6 selectively update

the residue vector components r[v] corresponding to each neighbour v of the current node u.

Hence, the number of times the residue vector r is updated reveals the degree of the node u.

Thus, the algorithm clearly does not qualify to be data-oblivious. Translating Algorithm 2 via

MPC to obtain its secure variant by using secure protocols for operations used in Algorithm 2,

will thus result in leaking the above-mentioned information. Hence, designing a secure variant

of Algorithm 2 first requires designing a data-oblivious equivalent of the same. Since Algorithm

2 adheres to the message-passing paradigm, we obtain its data-oblivious equivalent by relying

on the GraphSC paradigm. This requires defining the Scatter, Gather primitives specific to the

considered algorithm, which we describe next.

To adhere to the GraphSC paradigm, the input graph is expressed using a DAG list repre-

sentation G (see §2.6). The i
th tuple in the list is denoted by G[i]. The data values associated

with each tuple G[i] include—(i) G[i].dt to store messages that are sent across the edges, (ii)

G[i].deg to store the degree of a node, (iii) G[i].r to store the residue vector component of a node,

and (iv) G[i].⇢ to store the propagation vector component of each node (i.e., HKPR values).

Recall that G[i].isV denotes whether a tuple corresponds to a vertex or not. Since the graph
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propagation Algorithm 2 proceeds in an iterative manner, assuming the index of the current

iteration to be j, the GraphSC primitives of Scatter and Gather are defined in Fig. 3.9. Run-

ning one iteration of Scatter followed by Gather accomplishes the same computation as in one

iteration of Algorithm 2, albeit in a data-oblivious manner, as follows. Computing the graph

propagation value ⇢[v] for a node v requires the residue vector component r[u] corresponding

to each of its neighbour u as well as (degu)
b. Hence, the required information is made available

on the edges via Scatter. Since the weights wj and partial sums Yj are public parameters, each

node propagates Yj+1G[i].r

Yj(G[i].deg)
b across its outgoing edges in Scatter. During Gather, these values

over incoming edges are aggregated in agg by summing them up. The residue vector compo-

nent at vertex v is updated as agg

Yj(G[v].deg)
a . However, note that this generates the residue vector

r
(j+1), required for the next iteration. Hence, prior to performing this update, the value stored

in the residue vector r(j) is used to update the graph propagation vector at vertex v as G[v].⇢

= G[v].⇢ + wjG[v].r
(j)

Yj+1

. Our approach to designing Gather in this way does not require explicitly

storing the reserve vector q as well as both, r (j) and r
(j+1).

Scatter(G)

for i = 1 to |V|+ |E| do
if G[i].isV then

val =
⇣
Yj+1

Yj

⌘
G[i].r

(G[i].deg)b

else

G[i].dt = val

Gather(G)
for i = 1 to |V|+ |E| do
if G[i].isV then
G[i].⇢ = G[i].⇢ + wj

Yj
G[i].r

G[i].r = agg

(G[i].deg)a

agg = 0

else
agg = agg + G[i].dt

Figure 3.9: Scatter and Gather for jth iteration of Algorithm 2.

3.5.3 The secure variant

We now describe the MPC protocol ⇧SGP designed to securely evaluate the graph propagation

algorithm in Fig. 3.10. The protocol begins by assuming the required inputs G, x, are already

held in a secret-shared fashion among the parties. It also takes as input the public parameters

of Yj,wj for j 2 {0, . . . , L � 1}. Since the components of the residue vector r are initialized

using the entries in the signal vector x, unlike in the cleartext variant, x is required to be of

the same size as the DAG list G. That is, x must be secretly shared as a vector of dimension

|V|+ |E|, with value 1 at the location of the source vertex and 0 at all other entries. As in the

definition of Scatter in Fig. 3.9, val should be computed only at the tuples corresponding to

nodes. Hence, ⇧SGP computes val0 at each tuple. However, val is obliviously updated to store
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the correct value using ⇧Sel (see Table 2.1). Similarly, for Gather, aggregation is obliviously

performed only at the tuples corresponding to edges using ⇧Sel. Further, note that multiplying

values that are secret-shared requires invoking the ⇧Mul protocol. Finally, note that an explicit

call to division for computing J 1
G[i].degK is avoided by ensuring this value is made available in

shares when obtaining shares of G (and it is set to 0 when G[i] represents an edge). Since public

parameters a, b 2 {0, 1}, no additional multiplications are required.

– for i = 1 to |V|+ |E| do: JG[i].rK = Jx[i]K , JG[i].⇢K = J0K
– for j = 0 to L� 1 do

� JGK = ⇧Shu✏e(JGK); apply public permutation to source sort G. Set JvalK = J0K.
Scatter(G)

� for i = 1 to |V|+ |E| do

- Jval0K =
⇣
Yj+1

Yj

⌘
·⇧Mul

⇣
JG[i].rK, J 1

(G[i].deg)b
K, f
⌘

- JvalK = ⇧Sel(JvalK, Jval0K, JG[i].isVKB)
- JG[i].dtK = JvalK

� JGK = ⇧Shu✏e(JGK); apply public permutation to destination sort G

Gather(G)

� for i = 1 to |V|+ |E| do

- JG[i].⇢K = JG[i].⇢K +
⇣
wj

Yj

⌘
JG[i].rK

- JG[i].rK = ⇧Mul

⇣
JaggK, J 1

(G[i].deg)a K, f
⌘

- JaggK = ⇧Sel(JaggK + JG[i].dtK, J0K, JG.isVKB)

Protocol ⇧SGP

⇣
P, JGK, JxK, {Yj ,wj}Lj=0, a, b

⌘

Figure 3.10: Secure HKPR computation.

3.5.4 Other graph propagation metrics

The graph propagation Algorithm 2 is used to compute the graph propagation result vector

⇢ using the graph propagation equation ⇢ = ⌃1
i=0wi · (D�aAD�b)

i · x. Recall that this graph

propagation equation can also be used to compute many other graph propagation metrics such

as PageRank, personalised PageRank, Katz centrality score etc. These propagation metrics,

as described in the work of [222], are listed in Table 3.3. Given the parameters of the graph

propagation equation, such as a, b, weights w and the initial seed node captured in the signal

vector x, the graph propagation algorithm can be used to find the corresponding information

regarding the nodes of the graph. Hence, using the secure protocol given in Fig. 3.10, several
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graph propagation metrics can be computed without leaking any private information.

Graph propagation metric
Parameters

Graph propagation equation
a b wi

L-hop transition probability 0 1 wi = 0 (i 6= L), wL = 1 ⇢ = (AD�1)L · x
PageRank 0 1 ↵(1� ↵)i ⇢ = ⌃1

i=0↵(1� ↵)i · (AD�1)i · x
Personalised PageRank 0 1 ↵(1� ↵)i ⇢ = ⌃1

i=0↵(1� ↵)i · (AD�1)i · x
Single Target PageRank 1 0 ↵(1� ↵)i ⇢ = ⌃1

i=0↵(1� ↵)i · (D�1A)i · x
Heat Kernel PageRank 0 1 e�tti

i! ⇢ = ⌃1
i=0

e�tti

i! · (AD�1)i · x
Katz 0 0 �

i ⇢ = ⌃1
i=0�

i · (A)i · x

Note that x denotes the signal vector, which is the one-hot encoding of the seed node. However, in the case
of PageRank, x is set as the uniform probability distribution vector with each entry being 1

|V| . Similarly, in
the case of Personalized PageRank, it is set as the teleportation probability distribution vector corresponding
to the seed node.

Table 3.3: Graph propagation metrics.

3.6 Privacy-preserving clustering

Here, we describe the protocol for realizing local clustering in a privacy-preserving manner using

the computed HKPR values.

3.6.1 The cleartext algorithm

We rely on the HKPR-based clustering algorithm described in [54] as it provides state-of-the-

art results for local clustering. The steps for the same are provided in Algorithm 3, which

describes an approximate algorithm to find a local cluster around a given seed node. To find a

suitable local cluster, the algorithm uses heat kernel PageRank values of all vertices in the graph,

computed with respect to the seed node. To assess the quality of the cluster, the algorithm

uses Cheeger ratio as the metric. Cheeger ratio �s with respect to a set of nodes S is defined

as in Equation (3.6) where, @ is the number of edges that cross from the set S to the set of

remaining vertices in the graph V\S, and volume volS of a set S is defined as the sum of degrees

of all vertices present in the set S.

�s =
@

min{volS, volV\S}
(3.6)

Thus, a smaller Cheeger ratio signifies a better cluster, since it minimizes the number of

edges that cross the cluster and maximizes the degree of nodes within the cluster. The clustering

algorithm takes as input the target Cheeger ratio � and the target cluster volume &, with the
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constraint that & must be less than or equal to volG/4. The algorithm identifies Si as a suitable

cluster if it satisfies the following condition:

&/2  volSi  2& and �si 
p
8� (3.7)

Cluster Si with the lowest Cheeger ratio among all suitable clusters, if found, is output. As

clusters are identified based on HKPR, the algorithm also requires the HKPR values ⇢ supplied

as input. The algorithm begins by sorting the vertices in the graph in the descending order

of ⇢[v]
degv

, where degv is the degree of vertex v. This ensures that a higher priority is given to

those vertices having high HKPR values and low degrees when forming the cluster. In lines

3-12, the algorithm performs a linear scan over the sorted vertices such that in each iteration

i, the cluster Si under consideration is the set of vertices
S

ji vj. If the volume of this cluster

is more than 2&, then the protocol can break and consider no further clusters. Since each

subsequent iteration includes more vertices in the considered cluster, the corresponding volume

will continue to increase. Thus, the volume constraint will continue to fail, and hence the larger

clusters can be discounted. We refer an interested reader to [54] for further details on Algorithm

3 and its correctness.

Algorithm 3: HKPR-based graph clustering

Input: Undirected graph G = (V, E), ⇢ : Graph propagation vector of dimension |V|, & : Target
cluster volume, � : Target Cheeger ratio, u : Seed vertex

Output: S = Set of nodes that satisfies constraints in equation 3.7 and have minimum Cheeger
ratio

1 sort vertices of G with respect to ⇢[v]/degv;
2 �min = 1, S = Empty set;
3 for i = 1 to |V| do
4 Si =

S
ji vj ;

5 �si = Cheeger ratio of Si as per Equation (3.6)
6 if volSi > 2& then
7 Break;
8 else if &/2  volSi and �si 

p
8� then

9 if �si < �min then
10 �min = �si; S = Si;
11 end
12 end
13 end
14 if S is not an Empty set then Output S else Output “No Cluster found”;
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3.6.2 The data-oblivious variant

Algorithm 3 does not qualify as a data-oblivious algorithm since many of the steps are input-

dependent. For example, step 1 requires sorting the vertices in the graph with respect to the

ratio ⇢[v]
degv

. The sorted order clearly is dependent on the structure of the graph G. Further, com-

puting the Cheeger ratio in step 5 depends on the current cluster and the overall topology of G,

as evident from equation 3.6. Thus, similar to the graph propagation algorithm, we first design

a data-oblivious algorithm, followed by designing its secure variant. Given that the vertices

are sorted with respect to the ratio ⇢[v]
degv

, note that each iteration of the clustering algorithm

computes the Cheeger ratio specific to the considered set Si. This requires the computation of

@, volSi , volV\Si , which can benefit from translation to the GraphSC paradigm. Taking Algorithm

3 as the input algorithm to GraphSC, computing volSi , volV\Si can be performed in one linear

scan given the degree of the nodes. With respect to the computation of @, a naive approach

via Scatter and Gather would require computing @ for each Si, and thereby require a linear scan

each time. Since performing Scatter and Gather has O(|V| + |E|) complexity, computing @ for

all vertices has a complexity of O(|V|(|V| + |E|)). This is highly ine�cient. We overcome the

ine�ciency and avoid the need for multiple linear scans by carefully modifying the algorithm

such that only a single scan over the DAG list G su�ces for computing @ for all vertices. The

complexity of our resulting data-oblivious algorithm is thus drastically reduced to O(|V|+ |E|)
from O(|V|(|V|+ |E|)) of the naive approach. Recall that this linear complexity in |V|+ |E| can
further be reduced to sub-linear following the technique of [179]. To achieve this, the data val-

ues associated with G[i] (see §3.5.2), are augmented with a new component G[i].GreaterCount.

This component is used to store the number of neighbours v of a given node that have a greater
⇢[v]
degv

value than the current node. As will be described next, GreaterCount is used to determine

the number of edges that cross a cluster of vertices, and thereby compute @ in a single scan of

the DAG list. Thus, Scatter and Gather are defined to populate the GreaterCount component.

We let FindCluster (Algorithm 4) denote the modified version of Algorithm 3 that relies

on GreaterCount to compute local clusters. We now discuss how FindCluster uses GreaterCount

to compute @, and then define the Scatter and Gather primitives to compute GreaterCount.

FindCluster proceeds to sort the DAG list in descending order of ⇢[v]
degv

, assuming that GreaterCount

is computed. This is followed by performing a scan of the DAG list to identify the suitable

cluster with the minimum Cheeger ratio. Each time a vertex vi is encountered, it is added to

the existing cluster, say Si�1, to form a new cluster, say Si. To compute the Cheeger ratio of

the new cluster, we require the number of edges @ that cross the new cluster Si. We observe

that the computation of the same can be simplified by accounting for (i) @ of the previous
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cluster Si�1, (ii) new cross edges (i.e., cross edges between vi and V \ Si�1), and (iii) previous

cross edges that now lie within the new cluster (i.e., cross edges between Si�1 and vi). Since

GreaterCount was defined to count the number of neighbours u of the vertex vi that had a

higher value of ⇢[u]
degu

, it implicitly tracks number of neighbours of vi that were part of previous

cluster Si�1. Thus, GreaterCount keeps track of the number of type (iii) edges. Given that

all the edges of vi are either of type (ii) or type (iii), the number of edges of type (ii) can be

computed as G[v].deg � G[v].GreaterCount. Further, volSi and volV\Si can be updated based on

the degree G[vi].deg of the vertex vi being added to the cluster. Hence, the Cheeger ratio of the

new cluster Si can be calculated using the updated @ and volSi , volV\Si . Further, note that since

G[i].⇢ component for an edge will be 0, when G is sorted in the descending order according to
⇢

deg
, all the vertices will be placed before the edges. Hence, the flag variable is used to keep

track of the number of vertices in the sorted list that constitute the largest cluster that satisfies

the condition in Equation (3.7).

Algorithm 4: FindCluster(G)

Input: Undirected graph G = (V, E)
Output: S = Set of nodes that belong to the local cluster

1 Sort G in source order and perform Scatter as given in Fig. 3.11 ;
2 Sort G in destination order and perform Gather as given in Fig. 3.11 ;
3 Sort G by ⇢[v]/degv and set @ = 0, volS = 0, volV\S =

P
v2V G[v].deg �min = 1, flag = 0 ;

4 for i = 1 to |V|+ |E| do
5 if G[i].isV then
6 @ = @+G[i].deg�2 ·G[i].GreaterCount; volS = volS + G[i].deg; volV\S = volV\S - G[i].deg ;
7 �s =

@
min(volS,volV\S)

;

8 if (&/2  volS  2&)& (�s 
p
8�)&(�s < �min) then

9 �min = �s; flag = i ;
10 end
11 end
12 end
13 if flag > 0 then Output the first flag elements of G else Output “No Cluster found”;

We now define the Scatter and Gather primitives (Fig. 3.11) to compute GreaterCount. Dur-

ing Scatter, the vertices scatter ⇢[v]
degv

across their outgoing edges. To compute GreaterCount,

Gather is defined to first perform a reverse scan of the DAG list, followed by a forward scan.

During the reverse scan, the data value at each edge (u, v) is updated to store the di↵erence
⇢[u]
degu

� ⇢[v]
degv

corresponding to its endpoints. In the forward scan, each vertex counts the number

of incoming edges having data value (i.e., the above di↵erence) greater than zero and stores the

same in GreaterCount. In this way, performing a Scatter followed by Gather allows every node
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v to count the number of neighboring vertices u with a greater ⇢[u]
degu

than ⇢[v]
degv

.

Scatter(G)

for i = 1 to |V|+ |E| do

if G[i].isV then

val = G[i].⇢
G[i].deg

else

G[i].dt = val

Gather(G)
agg = 0

for i = |V|+ |E| to 1 do

if G[i].isV then val = G[i].⇢
G[i].deg

else G[i].dt = G[i].dt� val

for i = 1 to |V|+ |E| do
if G[i].isV then

G[i].GreaterCount = agg

agg = 0
else if G[i].dt > 0 then agg = agg + 1

Figure 3.11: Scatter and Gather to compute GreaterCount.

3.6.3 The secure variant

The secure protocol for computing the local cluster is given in Fig. 3.12.

– ⇧greaterCount(P, JGK, J⇢K) (Fig. 3.13)
– JGK = ⇧Sort(G, JG.⇢K)
– Initialize @ = J0K, JvolSK = J0K, JvolV\SK =

P
v2VJG[v].degK, J�minK = J232K and JflagK = J0K

– for i = 1 to |V|+ |E| do

� J@K = J@K + JG[i].degK - 2·JG[i].GreaterCountK
� JvolSK = JvolSK + JG[i].degK, JvolG\SK = JvolG\SK - JG[i].degK
� JminKB = ⇧Comp(JvolG\SK, JvolSK), JvolminK = ⇧Sel(JvolSK, JvolG\SK, JminKB)
� J�sK = ⇧Div(J@K, JvolminK)
� J✓1KB = 1�⇧Comp(2J&K, JvolSK), J✓2KB = 1�⇧Comp(JvolSK, J&K/2)

J✓3KB = 1�⇧Comp

�
J
p
8�K, J�sK

�

� JminKB = ⇧Comp(J�sK, J�minK)
� J✓KB = ⇧4-Mul(J✓1KB, J✓2KB, J✓3KB, JminKB)
� J�minK = ⇧Sel(J�minK, J�sK, J✓KB), JflagK = ⇧Sel(JflagK, JiK, J✓KB)

– Output JflagK and JGK.

Protocol ⇧SClustering(P, JGK, J⇢K,�)

Figure 3.12: Secure clustering.

⇧SClustering takes as input secret shares of G, ⇢, and the public target Cheeger ratio �. In ad-
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dition to the primitives required for securely computing the HKPR metric, the current protocol

mainly requires ⇧Comp for securely evaluating the conditional statements that require compari-

son and ⇧Div for computing the Cheeger ratio securely. The secure protocol for computing the

local cluster internally relies on the secure protocol to compute GreaterCount via the Scatter,

and Gather. The secure protocol for the latter appears in Fig. 3.13.

– Compute JGK = ⇧Shu✏e(JGK) and apply public permutation to source order DAG list

Scatter(G)

– JvalK = J0K
– for i = 1 to |V|+ |E| do

� JG[i].⇢K = ⇧Mul(JG[i].⇢K, J 1
G[i].degK, f)

� JvK = ⇧Sel(JvK, JG[i].⇢K, JG[i].isVKB)
� JG[i].dtK = JvalK

– Compute JGK = ⇧Shu✏e(JGK) and apply public permutation to destination order DAG list

Gather(G)

– JaggK = J0K
– for i = |V|+ |E| to 1 do

� JvalK = ⇧Sel(JvK, JG[i].⇢K, JG.isVKB)
� JG[i].dtK = JG[i].dtK� JvalK

– for i = 1 to |V|+ |E| do

� JG[i].GreaterCountK = JaggK
� JaggK = ⇧Sel

⇣
JaggK, 0, JG[i].isVKB

⌘

� JcKB = ⇧Comp(0, JG[i].dtK)
� JaggK = ⇧Sel(JaggK, JaggK + 1, JcKB)

Protocol ⇧greaterCount(P, JGK, J⇢K)

Figure 3.13: Computing GreaterCount.

3.7 Benchmarks

In this section, we demonstrate the practicality of our protocols by benchmarking their perfor-

mance. We benchmark the secure HKPR-based clustering protocol on synthetic graphs, and

YouTube social network [172]. We additionally compare the accuracy of our secure protocols

to their cleartext counterparts.
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3.7.1 Accuracy results

Computing the HKPR metric, as well as the Cheeger ratio used in clustering demands operating

on decimal values. Hence, the secure computation of these proceeds via fixed-point arithmetic

(FPA). Since numbers in FPA representation have limited precision, operating over FPA in-

troduces errors in comparison to floating-point arithmetic since the latter allows for higher

precision. This holds true even when performing the computations on cleartext. Further, the

method of probabilistic truncation and approximation of division used for secure computation

introduces additional errors over the cleartext FPA algorithm. To showcase that secure com-

putation via FPA does not result in significant accuracy loss in comparison to computations

performed on cleartext floating-point equivalent, we compare and report the accuracy of both.

Further, to showcase the error introduced when moving from floating-point to fixed-point rep-

resentation, we report the di↵erence in the accuracy of the two when considering the cleartext

algorithm. All the implementations are in Python over a 64-bit ring and use NumPy[102] and

NetworkX[97] libraries. Henceforth, the terms float and fixed denote the floating-point and

fixed-point computation of the cleartext algorithm, respectively. Similarly, the term secure

refers to the secure fixed-point computation. We report the accuracy of the graph propagation

algorithm first, followed by that of clustering.

Datasets: We benchmark the accuracy of algorithms on three di↵erent types of synthetic graphs.

To showcase the accuracy loss when computing over large real-world networks, we also consider

YouTube social network [172]. Table 3.4 summarises details of these graphs.

3.7.1.1 Graph propagation metrics

Recall that our secure graph propagation protocol ⇧SGP allows computing various graph prop-

agation metrics. Since accuracy varies with the propagation metric under consideration, we

account for the following metrics– L-hop transition probability, PageRank, single target PageR-

ank and HKPR. We use MaxError and L1 error to capture accuracy loss. Given two graph

propagation vectors ⇢1 and ⇢2, the MaxError is computed as maxv2V
⇣���⇢1[v]

degv
� ⇢2[v]

degv

���
⌘
. The

MaxError measures the maximum absolute error in ⇢2 with respect to ⇢1. Similarly, the L1

error is given by L1 = 1
|V|
P

v2V

⇣���⇢1[v]
degv

� ⇢2[v]
degv

���
⌘
. The L1 error measures the average absolute

error in ⇢2 with respect to ⇢1 over all vertices of the graph. We compute the MaxError and

L1 error in the fixed-point cleartext as well as secure algorithms, each with respect to the

floating-point cleartext algorithm. The errors are reported with respect to the YouTube graph

in Table 3.5. As evident from the results of Table 3.5, both the MaxError and L1 error are

in the order of ⇥10�5 or smaller with respect to the floating-point algorithm. This implies
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Model |V| d p

Small world

100 5 0.1

500 5 0.1

800 5 0.1

1000 5 0.1

Powerlaw cluster
100 5 0.1

500 5 0.1

800 5 0.1

Preferential Attachment
100 5 -

500 5 -

800 5 -

Youtube 1134890 - -

|V| denotes the number of vertices, d denotes the number of neighbours each vertex is assigned, and p denotes
the probability of switching an edge for the case of a small world graph, or the probability of forming a
triangle for the case of the power-law cluster.

Table 3.4: Graph datasets used for accuracy testing.

that the di↵erence in accuracy is visible only after the 5th decimal digit, and thus, the loss is

very small. Benchmarks on synthetic graphs yield errors in similar orders and hence are not

reported.

Similarity measures
MaxError L1 Error

Fixed Secure Fixed Secure

L-Hop transition 1.3674⇥ 10�5 6.0872⇥ 10�5 1.6719⇥ 10�6 1.6719⇥ 10�6

PageRank(PR)⇤ 1.8223⇥ 10�08 1.8622⇥ 10�8 5.0661⇥ 10�7 3.7420⇥ 10�7

Single target PR 3.2904⇥ 10�5 5.2424⇥ 10�5 1.7061⇥ 10�7 3.0636⇥ 10�7

HKPR 1.3865⇥ 10�5 2.2393⇥ 10�5 0.7911⇥ 10�8 1.0205⇥ 10�8

* Precision is set to 28 bits when operating on fixed-point to accommodate small values of signal vector

Table 3.5: MaxError and L1 error comparison of cleartext FPA and secure FPA algorithms
with cleartext floating-point algorithm for various graph propagation metrics.
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3.7.1.2 Clustering

We perform local clustering on the various graphs described in Table 3.4 and report the accuracy

results. While reporting the accuracy of the secure local clustering algorithm, we also account

for the accuracy loss incurred in securely computing the HKPR propagation vector (⇢), which is

fed as input to our secure clustering algorithm. Although Personalized PageRank has also been

used to perform local clustering, it is known from the literature [230, 134, 54] that HKPR-based

clustering outputs better quality clusters. Hence, we report accuracy results for clustering based

on HKPR only. We take the Cheeger ratio (�s) and intersection di↵erence (dist) as parameters

to analyze the quality of the clusters output by the clustering algorithm. The Cheeger ratio

for a cluster S, as explained in section §3.6.1, is given by �s =
@

min(volS,volG\S)
. Note that a lower

Cheeger ratio implies a cluster of higher quality. We report the Cheeger ratio of the cluster

output by the cleartext algorithm (which operates with floating-point as well as fixed-point

representation) and our secure algorithm (which operates over fixed-point representation) in

Table 3.6. The intersection di↵erence, dist, measures the similarity between two sets. Given

two clusters S and S
0 sorted with respect to ⇢[v]/degv, the intersection di↵erence of S 0 with

respect to S is given by dist(S, S 0) = 1
n

Pn
i=1

|(Si�S0
i)|

2i . Here, Si, S
0
i are sets containing first

i elements of S and S
0, respectively, and Si � S

0
i = (Si \ S

0
i)
S
(S 0

i \ Si). The values of set

intersection di↵erence lie between [0, 1] where it is 0 for absolutely identical sets and 1 for

disjoint sets. We compute the dist of the cluster generated by our secure protocol (operating

over fixed-point representation) with respect to the cluster generated by the floating-point

cleartext algorithm. We also compute the dist of cluster generated by the fixed-point cleartext

algorithm with respect to that generated by the floating-point cleartext algorithm to showcase

the e↵ect of moving from floating-point computation to fixed-point computation. These values

are reported in Table 3.6. As evident from Table 3.6, the Cheeger ratio of the output clusters

in the three variants of the clustering algorithm is small and almost similar. This indicates

that the quality of the cluster output by the secure protocol is similar to that output by the

cleartext algorithm. Further, the set intersection distance is also very close to 0. This, too,

implies the cluster output by the secure protocol is nearly identical to the cluster generated by

the cleartext algorithm.

3.7.2 Secure computation

To show the practicality of our secure protocols, we benchmark and report their performance.

We describe the benchmark environment and parameters first, followed by our observations.
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Model |V| &
Minimum Cheeger ratio Intersection Di↵erence

Float Fixed Secure Fixed Secure

Small world

100 100 0.24223 0.24221 0.24221 0.01149 0.01942

500 500 0.1737 0.17507 0.17466 0.07723 0.03248

800 500 0.14965 0.14964 0.14964 0.02118 0.01312

1000 500 0.17176 0.17224 0.17218 0.01866 0.07169

Powerlaw cluster
100 20 0.63963 0.63963 0.63963 0.03439 0.01587

500 100 0.45454 0.45452 0.45452 0.02120 0.06819

800 100 0.4923 0.49227 0.49227 0.01830 0.04332

Preferential Attachment
100 100 0.45915 0.45913 0.45913 0.01252 0.01234

500 500 0.45213 0.45211 0.45211 0.01761 0.02174

800 500 0.54759 0.54747 0.54757 0.01809 0.02302

YouTube 1134890 500 0.61556 0.61433 0.61433 0.01020 0.01281

Table 3.6: Cluster quality with respect to Cheeger ratio and intersection di↵erence. |V|
denotes the number of vertices and & denotes the target cluster volume. We set the target

Cheeger ratio, �, to 0.1 for all the graphs. The choice of parameters & and � follow from [54].

Benchmark environment and parameters We report results in LAN (16 Gbps band-

width) using n1-standard-64 instances of Google Cloud with 2.3 GHz Intel Xeon E5 v3 (Haswell)

processors, 64 vCPUs, and 240 GB of RAM Memory. Our protocols are implemented in Python

over a 64-bit ring. We instantiate the communication layer between the parties using the Py-

Torch library. We use the pyaes library for AES and hashlib for generating SHA256 hash. Our

code accounts for multithreading. We note that our benchmarking code is not fully optimized

for industry-grade use. We also note that a C++-based implementation can give better per-

formance compared to Python and witness improvements that are at least an order better. We

consider the run time of protocols as the parameter for performance analysis and account for

online as well as preprocessing costs when doing so.

3.7.2.1 Clustering and HKPR metric computation

Since the complexity of graph propagation and clustering algorithms depend on the size of the

edge list (G), we analyze these algorithms by varying |V|+|E| between 100 and 106. We estimate

the performance in a multiprocessor setting with 64 processors and report the maximum time

taken by a processor. GraphSC provides a way to perform Scatter, Gather operations in parallel,

which we use in the multiprocessor setting to ensure that our algorithms do not require linear

complexity in |V| + |E|. To perform the sort operation in parallel, we use bitonic sort, which

can be performed in parallel at the circuit level [195]. However, it is not trivial to perform the
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shu✏e in a parallel setting. Hence, the reported times for multiprocessor setting account for a

non-optimized version of the secure shu✏e.

For secure graph propagation, we estimate the run time for one iteration of the algorithm.

Note that since all the graph propagation metrics can be computed via ⇧SGP, the cost of

evaluation of all these is the same. As expected and is evident from Table 3.7, the run time of the

algorithm increases with increasing |V|+ |E| in the multiprocessor setting. We perform similar

benchmarks for the secure clustering algorithm. Unlike the algorithm in [54], our algorithm

takes the graph propagation vector (⇢) as input, and hence, the run times reported do not

account for the HKPR computation time. We report the results in Table 3.8 and observe

the same trend as seen for secure graph propagation. Further, we note that the protocol for

clustering can be optimized if the number of nodes in the graph is known and the same is

accounted for in our benchmarks.

Fig. 3.14 gives a visual representation of variation in the run time of graph propagation

and clustering algorithm when the number of processors is varied. In comparison to the single

processor setting, the parallel variant of the algorithm in the multiprocessor setting gives up

to 1.38⇥ improvement in the preprocessing time and 23.4⇥ improvement in the online time for

HKPR computation. For clustering, the improvements are up to 1.75⇥ in the preprocessing

and 14.4⇥ in the online phase.

1 4 16 64

50,000

60,000

70,000

80,000
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T
im

e(
s)

HKPR Preproc.
Clustering Preproc.

(a) Preprocessing time.
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(b) Online time.

Figure 3.14: Run times of HKPR and clustering for a graph of size 106 for varying the number
of processors.

3.7.2.2 Shu✏e

Shu✏e being an important primitive, we empirically evaluate its performance under various pa-

rameters and compare them against their state-of-the-art counterparts. Following prior works,

here we consider run time and communication of protocols as the parameters for comparison.
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|V|+ |E| Preprocessing(s) Online(s)

102 4.09 0.199

103 44.07 2.19

104 464.32 22.99

105 4310.00 261.00

106 47088.15 2397.34

Table 3.7: HKPR: Parallel computation for varying |V|+ |E| using 64 processors.

|V|+ |E| Preprocessing(s) Online(s)

102 4.32 0.77

103 44.89 7.01

104 412.43 76.56

105 4681.01 763.83

106 46370.14 7929.82

Table 3.8: Clustering: Parallel computation for varying |V|+ |E| using 64 processors.

We account for online as well as total (preprocessing + online) costs when doing so. To capture

the combined e↵ect of both these parameters, we additionally report online throughput (TP).

We begin by comparing Ru✏e to the shu✏e protocol of [80] and [13] for the case of a single

invocation of shu✏e. Table 3.9 reports the online phase comparisons to capture the fast response

time and the communication involved. Observe that Ru✏e clearly outperforms both [80, 13].

Concretely, we observe improvements up to 15⇥ in run time and 2.5⇥ in communication over

[80]. When compared to [13], Ru✏e has an improvement of up to 11.2⇥ in run time and 2.5⇥
in communication. The improvements in the run time and communication are reflected in a

high throughput, which captures the number of such single invocations that can be performed

in parallel. The improvements in throughput range up to 5.5⇥ and 2.2⇥ with respect to [80]

and [13], respectively. When considering the overall cost, we note that Ru✏e fares better than

[80] but is slightly higher, yet comparable, to that of [13]. We report this in Table 3.10 for

completeness. We remark that Ru✏eind has the same complexity as Ru✏e for a single shu✏e,

while Ru✏ecmp is not apt for single shu✏e invocation due to its higher preprocessing cost.

To capture the improvements of Ru✏eind and Ru✏ecmp, we benchmark their performance for

multiple sequential shu✏e invocations, i.e., scenarios of Independent-Shu✏es and Composed-Shu✏es.

Recall that Ru✏eind is apt for Independent-Shu✏es while Ru✏ecmp for Composed-Shu✏es. Since

[13] outperforms [80] (as evident from Table 3.9 and Table 3.10), we restrict to comparing

Jump to Contents 77



|T| Protocol Time (s) Comm. (MB) TP (per min)

10
3

Ru✏e 0.005 0.092 12000.000

[13] 0.056 0.231 5415.162

[80] 0.075 0.228 2181.421

10
4

Ru✏e 0.046 0.915 1200.000

[13] 0.434 2.318 593.589

[80] 0.718 2.289 218.177

10
5

Ru✏e 0.457 9.155 120.000

[13] 3.959 22.918 59.935

[80] 7.692 22.888 21.818

10
6

Ru✏e 7.033 91.553 12.000

[13] 49.577 228.912 5.999

[80] 95.089 228.881 2.181

Table 3.9: Online complexity of shu✏e for varying table sizes for a single shu✏e invocation.

|T| Protocol Time (s) Comm. (MB)

10
3

Ru✏e 0.062 0.323

[13] 0.056 0.258

[80] 0.079 0.427

10
4

Ru✏e 0.504 3.232

[13] 0.434 2.318

[80] 0.794 4.272

10
5

Ru✏e 4.211 32.074

[13] 3.959 22.919

[80] 8.012 42.724

10
6

Ru✏e 55.559 320.465

[13] 49.577 228.912

[80] 98.576 427.246

Table 3.10: Total complexity of shu✏e for varying table sizes for single shu✏e invocation.

Ru✏eind and Ru✏ecmp in their respective settings against [13]. Further, to capture improve-

ments Ru✏ecmp protocol brings over Ru✏eind, we also report the cost for performing Ru✏eind in

the scenario of Composed-Shu✏es. The comparison for varying number of shu✏e invocations is

Jump to Contents 78



1 20 50 80 100

0

100

200

300

400

Number of shu✏es

T
im

e(
s)

Ru✏eind
[13]

(a) Total time for Independent-Shu✏es.

1 20 50 80 100

0

100

200

300

400

Number of shu✏es

T
im

e(
s)

Ru✏eind
[13]

(b) Online time for Independent-Shu✏es.
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Figure 3.15: Comparison of Ru✏eind,Ru✏ecmp, [13] in terms of online and total time for scenario
of Independent-Shu✏es and Composed-Shu✏es for varying number of shu✏e invocations and
table size of 105.

reported in Fig. 3.15 (and Table 3.11). We make the following observations:

• The cost of [13] remains the same for Independent-Shu✏es and Composed-Shu✏es since it is

indi↵erent to both.

• We infer the following with respect to the online complexity. Irrespective of the scenario

and the number of shu✏e invocations, recall from Table 3.2 that Ru✏eind and Ru✏ecmp are

comparable since their online phase is the same, except for the extra computation required in

Ru✏ecmp. Hence, as expected, Ru✏eind (and thereby Ru✏ecmp) outperforms [13] by up to 10⇥.
• We infer the following with respect to the overall run time. For a single shu✏e invoca-

tion, both Ru✏eind (i.e. Ru✏e for m = 1) and Ru✏ecmp have a slightly higher run time than

[13]. However, starting from as low as two invocations, Ru✏eind begins to outperform [13] for

Independent-Shu✏es. This is justified as follows—since Ru✏eind’s online phase is faster than that

of [13], performing the preprocessing for m shu✏es in parallel results in improving the overall
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Number of

shu✏es
Protocol

Online Total

Time(s) Comm.(MB) TP (per min) Time(s) Comm.(MB) Monetary cost (USD)

1

Ru✏eind(Independent-Shu✏es) 0.38 9.16 120.00 4.21 32.06 0.020

Ru✏eind(Composed-Shu✏es) 0.38 9.16 120.00 4.21 32.06 0.020

Ru✏ecmp(Composed-Shu✏es) 0.46 9.16 120.00 4.35 41.21 0.022

[13] 3.81 22.91 59.93 3.81 22.91 0.016

2

Ru✏eind(Independent-Shu✏es) 0.92 18.31 60.00 5.16 64.13 0.030

Ru✏eind(Composed-Shu✏es) 0.92 18.31 60.00 10.21 64.13 0.044

Ru✏ecmp(Composed-Shu✏es) 0.98 18.31 60.00 5.46 82.44 0.035

[13] 7.58 45.81 29.95 7.62 45.81 0.032

25

Ru✏eind(Independent-Shu✏es) 10.30 228.88 4.80 53.72 801.56 0.349

Ru✏eind(Composed-Shu✏es) 10.30 228.88 4.80 105.25 801.56 0.491

Ru✏ecmp(Composed-Shu✏es) 11.18 228.88 4.80 61.68 1030.44 0.429

[13] 95.24 572.68 2.39 95.74 572.68 0.408

50

Ru✏eind(Independent-Shu✏es) 20.50 457.76 2.40 55.31 1603.33 0.556

Ru✏eind(Composed-Shu✏es) 20.50 457.76 2.40 211.82 1603.33 0.986

Ru✏ecmp(Composed-Shu✏es) 20.53 457.76 2.40 77.76 2060.74 0.733

[13] 192.06 1145.55 1.20 194.29 1145.55 0.817

100

Ru✏eind(Independent-Shu✏es) 40.18 960.01 1.20 62.09 3206.66 0.978

Ru✏eind(Composed-Shu✏es) 40.18 960.01 1.20 421.76 3206.66 1.968

Ru✏ecmp(Composed-Shu✏es) 42.29 960.01 1.20 83.60 3206.66 1.037

[13] 393.82 2402.40 0.59 395.91 2291.11 1.660

Table 3.11: Comparison of Ru✏eind,Ru✏ecmp, [13] with respect to the scenario of
Independent-Shu✏es and Composed-Shu✏es for varying number of shu✏e invocations and table
size of 105. Note that the cost of [13] remains the same for both scenarios.

complexity. This improvement is not seen in [13] since the m shu✏es that can be performed

in parallel during our preprocessing are required to be performed sequentially in case of [13],

which adds to the overhead. We see improvements of up to 6.4⇥ in this case. On the other

hand, for Composed-Shu✏es, [13] continues to outperform Ru✏eind for the following reason.

The composition of shu✏es induces a sequential nature in the preprocessing phase of Ru✏eind

(which indeed is the complete protocol of [13]). The computations performed additionally in

the online phase of Ru✏eind render its overall complexity slightly higher than that of [13]. To

break this chain of sequential shu✏es in the preprocessing phase, Ru✏ecmp was designed to

outperform Ru✏eind (and thereby [13]), where we see improvements of up to 4.7⇥ with respect

to [13].

• To capture the e↵ect of both total run time and total communication, we additionally report

the monetary cost in Table 3.11, which is the price paid for performing the secure shu✏e

computation. This is calculated using the pricing of Google Cloud Platform [205], where for

1GB and 1 hour of usage, the costs are USD 0.12 and USD 3.3025, respectively. With respect to
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the monetary cost, we note that for a small number of shu✏e invocations ( 25), our protocols

have a slightly higher monetary cost in comparison to [13]. However, as the number of shu✏e

invocations increases (> 25), the savings in run time seen in our shu✏e protocols compensate

for the increased communication. Thus, both Ru✏eind, Ru✏ecmp outperform [13] in terms of

monetary cost.

3.7.2.3 Anonymous broadcast

As described earlier, since anonymous broadcast directly builds on Ru✏eind, we next briefly

discuss how this application benefits in terms of e�ciency by relying on Ru✏eind. Recall that

anonymous broadcast, as the name suggests, enables a set of N clients to anonymously broadcast

their messages while guaranteeing that none learns about the association between a message

and the identity of its sender. Instead of requiring the clients to send their messages to a

centralized server, which can output the randomly shu✏ed messages back to the clients, we rely

on a distributed solution to guarantee client privacy. At a high level, to achieve anonymous

broadcast, the clients secret-share their messages to a set of three servers (the three parties in

P, henceforth interchangeably called servers), who invoke a secure shu✏e protocol on the same

and reconstruct the shu✏ed output. The protocol can be described in the following steps.

1. Input sharing and consistency check: Each client wanting to broadcast a message receives

randomness, using which it generates J·K-shares of its message. On receiving shares of a client’s

message, servers verify if these are malformed. If so, they discard the message. Input sharing

can thus be performed via the steps described in §2.3.
2. Shu✏e: Assuming N messages pass the verification, servers securely shu✏e the N-sized table

using Ru✏eind described in §3.4.3.2.
3. Output reconstruction: On receiving the output shares after executing Ru✏eind, servers

reconstruct the shu✏ed table using the steps described in §2.3. The shu✏ed table is then

broadcast to clients.

Comparison of our anonymous broadcast system with [80]’s We first compare the

proposed anonymous broadcast system with the most e�cient shu✏e-based 3-server system in

Clarion [80] in terms of the guarantees provided by the two systems, and then in terms of per-

formance. Note that Clarion provides security with abort while our protocol allows attaining

the strongest security notion of GOD. Further, Clarion provides no way of distinguishing be-

tween a malicious act by a server and a client, and the system rejects the request from a client

whenever the verification for input consistency fails. Specifically, since Clarion only provides

security with abort, it allows a malicious server to make the input consistency check (with re-
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spect to an honest client’s input) fail by aborting the computation. Thus, an honest client may

be dropped due to misbehaviour by a malicious server, and hence Clarion does not guarantee

censorship resistance. Note here that a system is said to provide censorship resistance if a ma-

licious server cannot discard an honest client’s message from the system. On the other hand,

in our system, the only way a malicious server can cheat to discard an honest client’s message

m is by broadcasting an incorrect �m during the input consistency check. Since, at most, one

server among the three is malicious, there will always be agreement among the honest servers

with respect to the correct �m. Thus, our protocol does not allow discarding an honest client’s

messages, thereby attaining censorship resistance.

We now empirically compare the two anonymous broadcast systems. Since the complexity of

anonymous broadcast varies based on the number of clients (N) as well as their message size, we

compare with respect to these parameters. For a fair comparison, we implement all the protocols

in Python, including that of [80]. Thus, costs reported for prior works are higher than that

reported in the original works due to some operations, such as random number generation, which

can be performed much more e�ciently in the Go-based implementation of [80]. Hence, the

concrete improvements over [80] reported next capture the relative improvements with respect

to the underlying protocols. That is, we do not account for the system-level optimizations that

may have been included as a part of the implementations in the original work of [80]. However,

we note that the reported communication costs are invariant with the implementation.

When varying the number of clients, we analyze the server-side complexity and report the

performance in Table 3.12, which accounts for—checking the consistency of clients’ messages

(32 bytes in size) where the check is performed in parallel for N clients, shu✏ing the N-sized

table, and reconstruction of the shu✏ed result. Observe from Table 3.12 that our anonymous

broadcast system outperforms [80] in every aspect. This can be attributed not only to the use of

our e�cient shu✏e protocol but also due to the simplicity of the input sharing and consistency

check, and output reconstruction. On the other hand, [80] relies on several MAC verifications

and encryption operations, which render the system of [80] less e�cient. The improvements we

observe with respect to online and total time is up to 29⇥ and 13⇥, respectively, whereas that
of online and total communication is up to 2⇥.

The e↵ect of varying the client message size on run time and communication with respect to

the server is reported in Table 3.13. Our system outperforms [80] in terms of both. Concretely,

with respect to online and total time, we see improvements up to 39⇥ and 9⇥, respectively.
With respect to online and total communication, we see improvements up to 1.2⇥ and 1.3⇥.

Table 3.12 and Table 3.13 do not account for the time/communication required to share a

client’s input. Hence, to showcase the overhead of input sharing, on both the client and the
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N
Anonymous

broadcast

Online Total

Time (s) Comm. (MB) Time (s) Comm. (MB)

10
3 Ours 0.01 0.36 0.09 0.62

[80] 0.20 0.76 1.11 1.23

10
4 Ours 0.06 3.66 0.69 5.97

[80] 1.88 7.63 10.19 12.34

10
5 Ours 0.61 36.62 6.73 59.53

[80] 20.59 76.29 105.88 123.59

10
6 Ours 8.64 366.21 107.52 595.12

[80] 248.99 762.94 1082.53 1235.96

Table 3.12: Comparison of online run time and communication of servers for varying number
of clients and message size of 32 bytes.

Message

Size

Anonymous

broadcast

Online Total

Time (s) Comm. (MB) Time (s) Comm. (MB)

32B
Ours 0.64 36.62 6.75 59.53

[80] 20.59 76.29 104.55 123.59

160B
Ours 1.40 183.12 11.47 279.25

[80] 49.97 247.96 135.96 395.51

1KB
Ours 6.97 1145.14 66.10 1721.21

[80] 269.26 1373.29 553.28 2224.16

Table 3.13: Comparison of online run time and communication of servers for varying message
size and clients of N = 105.

server, we report the costs in Table 3.14. Since this overhead is dependent on the client message

size, Table 3.14 also account for the same. Recall that our system additionally requires the client

to wait to receive the preprocessing data from the server. Despite this, the time for which a

client has to remain online in our system is 18⇥ lesser in comparison to [80]. The higher cost of

[80] can be attributed to the need for PRG (pseudorandom generator) invocations, encryption

of message followed by MAC tag computation at the client. This is unlike our system, which

relies on simple operations such as XOR. On the other hand, since [80] requires the clients to

communicate to only two servers instead of the three servers as required in our case, they have

lesser communication. The reduced time a client has to remain online comes at the cost of

server-to-client communication, which is absent in [80]. This, we note, is a small price paid.

Thus, our realization of anonymous broadcast not only provides improved e�ciency but also

o↵ers censorship resistance and allows attaining the improved security of GOD.
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Message

Size

Anonymous

broadcast

Client

time (ms)

Client-server

Communication

(KB)

Server-client

Communication

(KB)

32B
Ours 0.13 0.09 0.47

[80] 2.34 0.16 -

160B
Ours 0.12 0.47 1.22

[80] 6.05 0.41 -

1KB
Ours 1.74 3.00 6.97

[80] 30.55 2.06 -

Table 3.14: Comparison of client-side and server-side complexity for input sharing by one client.

3.8 Security proofs

The simulation-based security proofs for the designed primitives and the local clustering pro-

tocol are presented in this section. At a high level, observe that the designed protocols rely on

invoking protocols given in SWIFT [136] whose security was established therein in the stan-

dard real-world/ideal-world simulation paradigm. Hence, the security of the designed protocols

follows directly from the security of the underlying protocols of SWIFT. We let the following

denote the ideal functionalities for the sub-protocols provided by SWIFT.

1. FMul: Takes as input J·K-shares (or equivalently J·KB-shares) of x, y and outputs J·K-shares
(or equivalently J·KB-shares) of z = x · y.

2. FMul-Tr: Takes as input J·K-shares of x, y and outputs J·K-shares of z = x · y by truncated

by f bits using probabilistic truncation.

3. F3-Mul: Takes as input J·KB-shares of a, b, c and outputs J·KB-shares of z = a · b · c.

4. F4-Mul: Takes as input J·KB-shares of a, b, c, d and outputs J·KB-shares of z = a · b · c · d.

5. FNot: Takes as input J·KB-shares of a value x and outputs the J·KB-shares of 1’s complement

of x, denoted as x̄.

6. FSel: Takes as input J·K-shares of x0, x1 and J·KB-shares of a bit b, and outputs JxbK.

7. FA2B: Takes as input J·K-shares of a value x, and outputs J·KB-shares for its equivalent

Boolean representation.

8. FB2A: Takes as input J·KB-shares of the Boolean representation of a value x, and outputs

J·K-shares for its equivalent arithmetic representation.
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9. FComp: Takes as input J·K-shares of x, y and outputs J·KB-shares of b such that b = 1 if

x < y, else b = 0.

We use the simulation strategy as described in SWIFT [136], where we simulate the end-

to-end computation of a function f for which the designed primitives serve as building blocks.

The simulation begins with the simulator S emulating the shared-key setup FSetup functionality

(Fig. 2.3) and giving the respective keys to the adversary A. This is followed by the input

sharing phase in which S extracts the input of A, using the known keys, and sets the inputs of

the honest parties to be 0 (see simulator for input sharing in [136]). This allows S to have access

to the shares of the honest parties. Since S knows all the inputs, it can honestly carry out the

computation and compute all the intermediate values as required for simulating the view of A.

S proceeds to simulate the various sub-protocols required to compute f in topological order

using the aforementioned values. Observe that since S knows A’s inputs, it can detect any

malicious behaviour carried out by A. Finally, depending on A’s behaviour, S invokes the ideal

functionality for the function f with A’s input, obtains the function output and forwards the

same to A during the output reconstruction phase. For simplicity of presentation, we stick to a

modular approach of providing simulation steps for each of the (newly designed) sub-protocols,

as done in [136]. Note that carrying out these simulation steps in respective topological order

(starting from FSetup, the input sharing phase, all the intermediate sub-protocols, and output

reconstruction) results in simulating the computation of the desired function f .

3.8.1 Security of the designed primitives

Prefix OR:

The ideal functionality for prefix OR appears in Fig. 3.16.

FPreOr interacts with parties in P and ideal world adversary S, and proceeds as follows.

– Receive as input the J·KB-shares of bits x`�1, . . . , x0 from all parties.

– Reconstruct x`�1, . . . , x0 using the shares of honest parties.

– Compute yi = _`�1
j=ixj for i 2 {0, . . . , `� 1}.

– Generate J·KB-shares of yi for i 2 {0, . . . , `� 1} and send (Output, JyiKBs ) to Ps 2 P.

Functionality FPreOr

Figure 3.16: Ideal functionality for prefix OR.
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Lemma 3.1 (Security) Protocol ⇧PreOr (Fig. 3.2) securely realizes FPreOr (Fig. 3.16) in the

computational 3PC setting against a malicious adversary S in the (FMul,F3-Mul,F4-Mul,FNot)-

hybrid model.

Proof: The simulator SPreOR appears in Fig. 3.17.

Let P ? 2 P be the party corrupted by A. SPreOR honestly executes the protocol steps and proceeds

as follows.

– Define the shares of the sub-blocks Jb0i K
B
= JxiKB for i 2 {0, . . . , `� 1} on behalf of the honest

parties using their shares of xi, and set k = `.

– for j = 0 to blog4(`)c do: (j denotes round number)

� for i =
⌅
k
4

⇧
to 1 do: (i denotes block number)

- Define shares of the blocks as Jtji K
B

=
⇣
Jbj4i�1K

B

, Jbj4i�2K
B

, Jbj4i�3K
B

, Jbj4i�4K
B
⌘
on behalf of

the honest parties.

- For i 2 {0, 1, . . . , d� 1}, set

� Jb03,iK
B = Jb3,iKB

� Emulate FMul on inputs Jz̄3KB, Jb̄2,iKB where z3 denotes the last bit of b3 and return JvKB

to A where v = z̄3 · b̄2,i. Emulate FNot on input JvKB and return Jb02,iK
B to A.

� Emulate F3-Mul on inputs Jz̄3KB, Jz̄2KB, Jb̄1,iKB where z3, z2 denote the last bits of b3, b2,

respectively, and return JvKB to A where v = z̄3 · z̄2, ·b̄1,i. Emulate FNot on input JvKB and

return Jb01,iK
B to A.

� Emulate F4-Mul on inputs Jz̄3KB, Jz̄2KB, Jz̄1KB, Jb̄0,iKB where z3, z2, z1 denote the last bits of

b3, b2, b1, respectively, and return JvKB to A where v = z̄3 · z̄2 · z̄1 · b̄0,i. Emulate FNot on input

JvKB and return Jb00,iK
B to A.

- Set Jbj+1
i KB =

⇣
Jb03K

B, Jb02K
B, Jb01K

B, Jb00K
B
⌘
.

� k =
⌅
k
4

⇧

– Send Jbblog4(`)c+1
3 K

B

to A.

Simulator SPreOR

Figure 3.17: Simulator for ⇧PreOr.

The simulator begins by defining the blocks and sub-blocks. It then emulates FMul,F3-Mul,

F4-Mul,FNot in the order in which they appear in the protocol. In this way, the simulation

proceeds by simulating the steps of the underlying protocols. Note that since the simulator

carries out the protocol steps honestly, A’s view comprises only random values received from
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the simulator. This is indistinguishable from its view in the real world, where it sees random

values.

2

Division:

The ideal functionality for computing approximate reciprocal appears in Fig. 3.18.

FAppRec interacts with parties in P and ideal world adversary S, and proceeds as follows.

– Receive as input the J·K-shares of b from all parties.

– Reconstruct b using the shares of honest parties.

– Set z = 1 if b = 0, else set z = 0. Compute w = 1/b in fixed-point arithmetic representation as

follows using probabilistic truncation when performing multiplication.

� If b � 0, normalize it to b0 2 [0.5, 1), else if b < 0, normalize it to b0 2 (�1,�0.5] by computing

b0 = bv, where v is the scaling factor used to normalize b.

� If b � 0, approximate w0 = 1/b0 as 2.9142�2b0, else w0 = 1/b0 is approximated to �2.9142�2b0.

� Set w = w0 · v, where v is the scaling factor used to obtain the normalized b0 = bv.

– Generate J·K-shares of w, z and send (Output, JwKs, JzKs) to Ps 2 P.

Functionality FAppRec

Figure 3.18: Ideal functionality for approximate reciprocal.

The ideal functionality for computing division appears in Fig. 3.19.

FDiv interacts with parties in P and ideal world adversary S, and proceeds as follows.

– Receive as input the J·K-shares of a, b from all parties.

– Reconstruct a, b using the shares of honest parties.

– Set z = 1 if b = 0, else set z = 0. Compute d = a/b using Goldschmidt’s approximate division

method in fixed-point arithmetic representation, where 1/b is computed using the approximate

reciprocal approach described in Fig. 3.18.

– Generate J·K-shares of d, z and send (Output, JdKs, JzKs) to Ps 2 P.

Functionality FDiv

Figure 3.19: Ideal functionality for division.
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Lemma 3.2 (Security) Protocol ⇧AppRec (Fig. 3.3) securely realizes FAppRec (Fig. 3.18) in the

computational 3PC setting against a malicious adversary S in the (FA2B,FB2A,FPreOr,FMul,FMul-Tr,

FSel,FNot)-hybrid model.

Proof: The simulator for ⇧AppRec appears in Fig. 3.20.

Let P ? 2 P be the party corrupted by A. SAppRec honestly executes the protocol steps and proceeds

as follows.

– Emulate FA2B on input JbK and return JbKB to A.

– On behalf of the honest parties, honestly compute Jb0iK
B = JbiKB � Jbk�1KB for i = 0 to k� 2.

– Emulate FPreOr on inputs Jb0
k�2K

B, . . . , Jb00K
B and output Jck�2KB, . . . , Jc0KB toA and set Jck�1KB =

J0KB on behalf of the honest parties.

– On behalf of the honest parties, honestly compute JciKB = JciKB � Jci+1KB for i = k� 2 to 1.

– Emulate FB2A on inputs Jc0KB, . . . , Jck�1KB and output JvK.
– Emulate FMul on inputs Jbk�1KB, Jc0KB and output JxKB to A. Emulate FNot on JxKB and output

JzKB to A.

– Emulate FMul on inputs JbK, JvK and output x to A. Emulate FSel on inputs ↵,�↵, Jbk�1KB where

↵ = (2.9142)
k�1, and output JyK to A. Honestly compute Jw0K = JyK� 2 · JxK.

– Emulate FMul-Tr on inputs JvK, Jw0K, 2(k� f� 1) to multiply JvK, Jw0K and truncate the output by

2(k� f � 1) bits to generate JwK. Output JwK to A.

Simulator SAppRec

Figure 3.20: Simulator for ⇧AppRec.

The protocol does not involve any interaction apart from what is required while invoking

the protocols for ⇧A2B,⇧B2A,⇧PreOr,⇧Mul,⇧Sel,⇧NOT. Hence, the simulator emulates FA2B,FB2A,

FPreOr,FMul,FMul-Tr,FSel,FNot in the order in which they appear in the protocol. In this way,

the simulation proceeds by simulating the steps of the underlying protocols. Note that since

the simulator carries out the protocol steps honestly, A’s view comprises only random values

received from the simulator. This is indistinguishable from its view in the real world, where it

sees random values. 2

Lemma 3.3 (Security) Protocol ⇧Div (Fig. 3.4) securely realizes FDiv (Fig. 3.19) in the com-

putational 3PC setting against a malicious adversary S in the (FAppRec,FMul-Tr)-hybrid model.

Proof: The simulator for ⇧Div appears in Fig. 3.21.
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Let P ? 2 P be the party corrupted by A. SDiv honestly executes the protocol steps and proceeds

as follows.

– Emulate FAppRec on input JbK and output JwK, JzKB to A.

– Emulate FMul-Tr on inputs JbK, JwK, 0 and output JvK to A where v = b·w. Compute JeK = ↵�JvK
on behalf of the honest parties, where ↵ = (1)2f .

– Emulate FMul-Tr on inputs JaK, JwK, 0 and output JdK to A.

– Do the following for i = 1 to ✓-1.

� Emulate FMul-Tr on inputs JdK,↵+ JeK, 2f, and output JdK to A.

� Emulate FMul-Tr on inputs (JeK, JeK, 2f) and output JeK to A.

– Emulate FMul-Tr on inputs JdK,↵+ JeK, 2f, and output JdK to A.

Simulator SDiv

Figure 3.21: Simulator for ⇧Div.

The simulator begins by emulating FAppRec. Following this, it emulates FMul-Tr as per its

invocation in the real-world protocol. In this way, the simulation proceeds by simulating the

steps of the underlying protocols. Note that since the simulator carries out the protocol steps

honestly, A’s view comprises only random values received from the simulator. This is indistin-

guishable from its view in the real world, where it sees random values. 2

Shu✏e:

Lemma 3.4 (security) The shu✏e protocol, ⇧Shu✏e (Fig. 3.8) securely realizes the function-

ality FShu✏e (Fig. 4.10) in the computational 3PC setting against a malicious adversary S in

the FSetup-hybrid model.

Proof: At a high level, S begins by first emulating FSetup during which common keys are

established with A that are used to sample the common randomness required throughout the

protocol. Thus, S is aware of all the randomness used by A, using which it can extract the input

of A (specifically, S knows [↵T]
B
, �T held by A) as well as verify the correctness of messages sent

by A. Following this, it simulates the steps of the shu✏e protocol. The simulation steps for a

corrupt P0 are provided next, where the corresponding simulator is denoted as SP0 . Analogously

the corruption of P1, P2 can also be simulated. SP0 proceeds as follows.

Preprocessing:

1. Using the keys commonly held with A (generated as part of FSetup), sample the common

randomness.
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2. Simulate the steps of Shu✏e-Pair pair using ⇡02. Receive the corresponding message from

A. If the received message is incorrect (SP0 can verify the correctness of the received

message since it possesses all the randomness used by A to send this message as SP0

emulates FSetup), set flag02 = 1. Honestly simulate the steps of Set-Equality protocol.

3. Honestly simulate the steps of Shu✏e-Pair using ⇡12 followed by simulating the steps of

Set-Equality.

4. Analogous to the case of Shu✏e-Pair with ⇡02, simulate the steps of Shu✏e-Pair pair using

⇡01. If an incorrect message is received from A, set flag01 = 1.

5. If flag02 = 1, set TTP = P1. Else, if flag01 = 1, TTP = P2.

Online:

1. Let [↵To
]B01 , [↵To

]B02 denote the partial shares of To generated towards A during prepro-

cessing. Let �To
2 ZN

2` be sampled randomly. Invoke the ideal functionality FShu✏e with

A’s J·K-shares of the table–[↵To
]B01 , [↵To

]B02 , �To
.

2. Receive H(�02) from A on behalf of P1. Set flag1 = 1 if the received message is incorrect

(SP0 can verify the correctness of the received message since it possesses all the randomness

used by A to send this message as SP0 emulates FSetup).

3. Receive �01 from A on behalf of P2.

4. If flag1 = 1, broadcast (“accuse”, P2, P0, c2, c0), where c0 = H(�02) as received from A, and

c2 = H(⇡02 (�T � R02)) is honestly computed by SP0 .

– If A broadcasts (“accuse”, P1), set TTP = P2.

– Else set TTP = P1.

5. Else, if flag1 = 0, proceed as follows. Set �12 = �To
(as defined in step 1) and compute

H(�12). Send �12,H(�12) to A on behalf of honest P1, P2, respectively. Compute c1 =

H(⇡01 (⇡02 (�T � R02)� R01)) and compare it with c0 = H(�01) where �01 was received

from A. If c0 6= c1, set flag2 = 1.

6. If flag2 = 1, broadcast (“accuse”, P0, P1, c0, c1).

– If A broadcasts (“accuse”, P2), set TTP = P1.

– Else set TTP = P2.

7. If flag2 = 0, and if A broadcasts (“accuse”, P1, P2, c1, c2), then

Jump to Contents 90



– If c1 = c2, set TTP = P1.

– Else, if only c1 is not the same as H(�12), where �12 was sent by SP0 , broadcast

(“accuse”, P0) on behalf of P1, and set TTP = P2. Analogously for c2.

8. If at any point during the simulation a TTP is identified, then send the output shares

JToK0 =
⇣
�To

, [↵To
]B01 , [↵To

]B02

⌘
to A on behalf of TTP.

Observe that in the real world, during the preprocessing phase, A receives messages that

are computed as part of Shu✏e-Pair and Set-Equality, where the messages are masked using

some randomness to hide the missing permutation as well as information regarding the missing

share at A. During the online phase, A receives �12,H(�12) where �12 is a randomized using

the random mask R12. In this way, observe that the messages received by A in the real world

are random and uniform. In the ideal world, too, observe that A receives messages that are

sampled randomly from the uniform distribution. Moreover, SP0 can verify the correctness of

the messages sent by A, as described earlier. This allows SP0 to also simulate all the accuse

messages as done in the real world. In this way, real-world and ideal-world executions are

indistinguishable. 2

3.8.2 Security of clustering protocols

Observe that our secure protocols for HKPR computation and clustering invoke the underlying

3PC protocols of SWIFT and the newly designed protocols provided in §3.4. Since the designed
3PC protocols invoke the protocols of SWIFT (as described in §2.3), whose security has been

established therein, informally, the security of ⇧SGP and ⇧SClustering follows from the security of

the underlying primitives. While the correctness and obliviousness of the designed protocols

were given in place, an overview is provided next.

Correctness and data obliviosness In §3.5.2, the graph propagation algorithm is given

using the Scatter and Gather primitives of GraphSC. Observe that in each of these primitives,

every entry in the entire DAG list representation (including both nodes and edges) is accessed in

each iteration. Further, the steps within these primitives can be made data-oblivious. Combined

with the fact that Scatter and Gather are data-oblivious due to source and destination sort as

provided by GraphSC, this ensures that the graph propagation algorithm in 3.5.2 is data-

oblivious.

Regarding the algorithm in §3.6.2, the Scatter and Gather primitives are oblivious using the

same arguments given as above. The only other function in §3.5.2 is FindCluster. FindCluster
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makes use of the number of neighbours of a vertex v, u 2 Nbv, that have a greater value of
⇢[u]
degu

than that of vertex v’s ⇢[v]
degv

. This value is called G[v].GreaterCount, and is computed during

the Scatter-Gather step. Then, the function makes a single sweep over the list representation of

the graph. If a vertex satisfying the required constraints is found, it is added to a set S. The

correctness of FindCluster relies on correctly computing the Cheeger ratio �s of set S. For this,

the volumes of sets S, V \ S, denoted as volS and volV\S, respectively, can be computed easily

by adding or subtracting the degree of the vertex v being added to the set S. Next, @, which is

the number of edges crossing the cluster S needs to be computed. A common global variable

is used for computing @ by accumulating edges in it during a sweep over the DAG list that is

sorted according to ⇢[i]
degi

for all G[i] belonging to the DAG list.

The edges incident on a vertex v that is yet to be added to the set S can be categorized as

either (i) having one endpoint within S and the other endpoint outside S, or (ii) having both

endpoints outside S. The number of edges at v of type (i) are G[v].GreaterCount, while those of

type (ii) are G[v].deg - G[v].GreaterCount. Thus, the number of edges that cross the new cluster

S[ v is updated by subtracting the number of edges of type (i) and adding the number of edges

of (ii). Updating @ in this way ensures that the Cheeger ratio is computed correctly. This

ensures the correctness of FindCluster. Observe that during the computation of FindCluster,

all the edges and vertices of the graph are swept through once. Further, since every update

happens depending on only whether the current entry in the DAG list is a vertex or an edge,

and not based on the structure of the graph, the sweep is oblivious. Finally, since the Scatter,

Gather, and FindCluster is oblivious, this ensures that the entire algorithm is oblivious.

Security Ideal functionality for computing graph propagation metric appears in Fig. 3.22.

FSGP interacts with parties in P and ideal world adversary S, and proceeds as follows.

– Receive as input the J·K-shares of G, x and {Yj ,wj}Lj=0, a, b from all parties.

– Reconstruct G, x using the shares of honest parties, and run algorithm 2.

– Generate J·K-shares of the updated G and send (Output, JGKBs ) to Ps 2 P.

Functionality FSGP

Figure 3.22: Ideal functionality for computing graph propagation metric.

Lemma 3.5 (Security) Protocol ⇧SGP (Fig. 3.10) securely realizes FSGP (Fig. 3.22) in com-

putational 3PC setting against a malicious adversary S in (FShu✏e,FMul-Tr,FSel)-hybrid model.

Proof: The simulator for ⇧SGP appears in Fig. 3.23.
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Let P ? 2 P be the party corrupted by A. SSGP honestly executes the protocol steps and proceeds

as follows.

– Set JG[i].rK = Jx[i]K and JG[i].⇢K = J0K for i = 1 to |V|+ |E|, on behalf o the honest parties.

– Do the following for j = 0 to L� 1.

� Emulate FShu✏e on input JGK and output the shu✏ed result to A. Apply public permutation

to source sort G and set JvalK = J0K.
// Scatter(G)

� for i = 1 to |V|+ |E| do

- Emulate FMul-Tr on inputs JG[i].rK, J 1
(G[i].deg)b

K, f and output JvK to A where v = G[i].r· 1
(G[i].deg)b

truncated by f bits. Compute Jval0K =
⇣
Yj+1

Yj

⌘
· JvK on behalf of the honest parties.

- Emulate FSel on inputs JvalK, Jval0K, JG[i].isVKB and output JvalK to A. Set JG[i].dtK = JvalK
on behalf of the honest parties.

� Emulate FShu✏e on input JGK and output the shu✏ed result to A. Apply public permutation

to destination sort G.

// Gather(G)

� for i = 1 to |V|+ |E| do

- Compute JG[i].⇢K = JG[i].⇢K +
⇣
wj

Yj

⌘
JG[i].rK on behalf of the honest parties.

- Emulate FMul-Tr on inputs JaggK, J 1
(G[i].deg)a K, f and output JG[i].rK to A.

- Emulate FSel on inputs JaggK + JG[i].dtK, J0K, JG.isVKB and output JaggK to A.

Simulator SSGP

Figure 3.23: Simulator for ⇧SGP.

The simulator emulates FShu✏e,FMul-Tr,FSel in the order in which they appear in the protocol.

In this way, the simulation proceeds by simulating the steps of the underlying protocols. Note

that since the simulator carries out the protocol steps honestly, A’s view comprises only random

values received from the simulator. This is indistinguishable from its view in the real world,

where it sees random values. 2

The ideal functionality for securely computing greater count appears in Fig. 3.24.
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FGreaterCount interacts with parties in P and ideal world adversary S, and proceeds as follows.

– Receive as input the J·K-shares of G,⇢ from all parties.

– Reconstruct G,⇢ using the shares of honest parties.

– For each node v 2 G, compute the number of neighbors u of v that have a greater ⇢[u]
degu

than
⇢[v]
degv

, and store it in G[v].GreaterCount. Here, the output of multiplication is truncated using the

probabilistic truncation method.

– Generate J·K-shares of the updated G and send (Output, JGKBs ) to Ps 2 P.

Functionality FGreaterCount

Figure 3.24: Ideal functionality for computing greater count.

Lemma 3.6 (Security) ⇧greaterCount securely realizes FGreaterCount in computational 3PC setting

against a malicious adversary S in (FShu✏e,FMul-Tr,FSel,FComp)-hybrid model.

Proof: The simulator for ⇧greaterCount appears in Fig. 3.25.

SgreaterCount honestly executes the protocol steps and proceeds as follows.

– Emulate FShu✏e on input JGK and output the shu✏ed result to A. Apply public permutation to

source sort G and set JvK = J0K on behalf of the honest parties.

– Scatter(G): Do the following for i = 1 to |V|+ |E|.

� Emulate FMul-Tr on inputs JG[i].⇢K, J 1
G[i].degK, f and output JG[i].⇢K to A.

� Emulate FSel on inputs JvK, JG[i].⇢K, JG[i].isVKB and output JvK to A.

� Set JG[i].dtK = JvalK on behalf of the honest parties.

– Emulate FShu✏e on input JGK and output the shu✏ed result to A. Apply public permutation to

destination sort G and set JaggK = J0K on behalf of the honest parties.

– Gather(G): Do the following for i = |V|+ |E| to 1.

� Emulate FSel on inputs (JvK, JG[i].⇢K, JG.isVKB and output JvalK to A.

� Compute JG[i].dtK = JG[i].dtK� JvalK on behalf of the honest parties.

– Do the following for i = 1 to |V|+ |E|.

� Set JG[i].GreaterCountK = JaggK on behalf of the honest parties.

� Emulate FSel on inputs JaggK, 0, JG[i].isVKB and output JaggK to A.

� Emulate FComp on inputs 0, JG[i].dtK and output JcKB to A.

� Emulate FSel on inputs JaggK, JaggK + 1, JcKB and output JaggK to A.

Simulator SgreaterCount

Figure 3.25: Simulator for ⇧greaterCount.

Jump to Contents 94



The simulator emulates FShu✏e,FMul-Tr,FSel,FComp in the order in which they appear in

the protocol. In this way, the simulation proceeds by simulating the steps of the underlying

protocols. Note that since the simulator carries out the protocol steps honestly, A’s view

comprises only random values received from the simulator. This is indistinguishable from its

view in the real world, where it sees random values. 2

The ideal functionality for clustering appears in Fig. 3.26.

FCluster interacts with the parties in P and the ideal world malicious adversary S, and proceeds as

follows.

– Receive as input the J·K-shares of G,⇢, and � from all parties. Here, tuples in G have associated

with them ⇢, which is the HKPR metric computed by taking the target node into account.

– Reconstruct G,⇢ using the shares of honest parties.

– Run algorithm 4 to determine the set S of nodes that belong to a local cluster, and the flag

which indicates the number of nodes in S. Reorder G such that nodes in S appear in the beginning

of G.

– Generate J·K-shares of the updated G and send (Output, JflagKs, JGKs) to Ps 2 P.

Functionality FCluster

Figure 3.26: Ideal functionality for clustering.

Lemma 3.7 (Security) Protocol ⇧SClustering (Fig. 3.12) securely realizes FCluster (Fig. 3.26) in

the computational 3PC setting against a malicious adversary S in the (FGreaterCount,FSort,FDiv,

F4-Mul,FSel,FComp)-hybrid model.

Proof:

The simulator for ⇧SClustering appears in Fig. 3.27.
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Let P ? 2 P be the party corrupted by A. SSCluster honestly executes the protocol steps and proceeds

as follows.

– Emulate FGreaterCount on inputs JGK, J⇢K and output the updated JGK to A that includes shares

of the greater count values.

– Emulate FSort to sort JGK with G.⇢ as the key and output the sorted JGK to A.

– Initialize @ = J0K, JvolSK = J0K, JvolV\SK =
P

v2VJG[v].degK, J�minK = J232K and JflagK = J0K on

behalf of the honest parties.

– Do the following for i = 1 to |V|+ |E|.

� Compute J@K = J@K + JG[i].degK - 2·JG[i].GreaterCountK and JvolSK = JvolSK + JG[i].degK and

JvolG\SK = JvolG\SK - JG[i].degK on behalf of the honest parties.

� Emulate FComp on inputs JvolG\SK, JvolSK and output JminKB to A.

� Emulate FSel on inputs JvolSK, JvolG\SK, JminKB and output JvolminK to A.

� Emulate FDiv on inputs J@K, JvolminK and output J�sK to A.

� Emulate FComp on (2J&K, JvolSK) and (JvolSK, J&K/2) and (J
p
8�K, J�sK) and (J�sK, J�minK) to

output J✓̄1KB, J✓̄2KB, J✓̄3KB, JminKB, respectively, to A.

� Emulate F3-Mul on inputs J✓1KB, J✓2KB, J✓3KB, JminKB and output J✓KB to A.

� Emulate FSel on inputs (J�minK, J�sK, J✓KB) and (JflagK, JiK, J✓KB) to output J�minK, JflagK, re-
spectively, to A.

Simulator SSClustering

Figure 3.27: Simulator for ⇧SClustering.

The simulator emulates FGreaterCount,FSort,FDiv,F4-Mul,FSel,FComp in the order in which they

appear in the protocol. The simulation proceeds by simulating the steps of the underlying

protocols. Note that since the simulator carries out the protocol steps honestly, A’s view

comprises only random values received from the simulator. This is indistinguishable from its

view in the real world, where it sees random values. 2
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Chapter 4

Secure Graph Neural Networks

This chapter discusses the secure framework, Entrada, that allows to e�ciently realize graph

convolutional networks (GCNs).

4.1 Overview

We design Entrada, a secure framework for e�ciently evaluating GCNs. To the best of our

knowledge, this is done for the first time. We build Entrada over the 4-party computation

(4PC) framework of Tetrad [138] since Tetrad is a robust framework and is known to outperform

other frameworks in small-party (honest-majority) setting. Note, however, that Entrada is a

more versatile framework than Tetrad. Entrada provides the following key features.

– Apart from secure inference, Entrada additionally o↵ers secure training of GCN.

– While traditional (cleartext) GCNs [133] consider operating on a graph which comprises a

single type of edge, recent works [158] also design GCNs for graphs which account for multiple

types of edges (heterogeneous GCNs). Thus, we design Entrada to enable operating on both

these types of graphs.

To highlight the performance of Entrada, we carry out extensive experiments. Entrada provides

an improved GCN accuracy of 79.3% in comparison to 74.1% of Tetrad, while cleartext compu-

tations provide an accuracy of 79.9%. We note that the reduced accuracy of Tetrad is due to its

reliance on approximate variants for non-linear functions (e.g., Softmax), as opposed to Entrada,

which uses the accurate versions for the same. With respect to e�ciency, Entrada witnesses

gains of up to 4⇥ in online run time, and three orders of magnitude in preprocessing time over

Tetrad for GCN training. We also showcase the practicality of our solution by benchmarking

fraud detection algorithms of [223], [158].
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These improvements witnessed by Entrada are a result of two-fold contributions. On the first

hand, we enhance Tetrad by adding new primitives and improving existing primitives, which

makes it a more accurate, comprehensive and e�cient framework for privacy-preserving machine

learning (PPML). On the other hand, specific to GCN, we leverage GraphSC framework [179,

13] and bring in new contributions therein, including a secure shu✏e protocol. We elaborate

on these below.

Enhancing Tetrad

Entrada enhances Tetrad by providing support for e�cient realizations of prefix OR, double

bit-injection, exponentiation, division, and inverse square root. While most of these are well-

studied [43, 126, 135, 138], our choice of Tetrad and optimizations thereof aid in obtaining

e�cient realizations for the same.

Tailoring GraphSC for GCN

To further enhance e�ciency, we leverage the GraphSC paradigm [179, 13]. Our contribution

entails:

– cleartext ! message-passing algorithm: Identifying the relevant cleartext computations in

GCNs that can benefit from GraphSC and can be rendered as message-passing algorithms.

– message-passing! secure protocol: Redefining the graph algorithm in terms of Scatter-Gather

primitives as well as defining the GCN specific computations that are required to be performed

within these Scatter-Gather primitives. The Scatter-Gather primitives are then securely realized

via Entrada.

– Secure shu✏e for Entrada: Designing a secure shu✏e protocol in the 4-party setting, as

required for GraphSC, which has an amortized communication of 3N ring elements (where N

denotes the size of the vector to be shu✏ed) and 1 round of interaction in the online phase.

Note that the secure shu✏e protocol forms an integral part of various applications such as

anonymous broadcast [80], secure sorting [13], etc. Hence, the inclusion of the shu✏e protocol

makes Entrada a versatile framework and opens up avenues for exploring its use in other shu✏e-

based application scenarios.

Concretely, while ‘Enhancing Tetrad’ brings in an improvement of 1.7⇥ in the online run

time of GCN training over Tetrad (and 486⇥ in preprocessing run time), additionally ‘Tailoring

GraphSC’ further enhances the e�ciency up to 4⇥ (5782⇥ for preprocessing).
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Input sharing for graph-structured data

To enable multiple clients to e�ciently secret-share their input to the servers, we design a secure

protocol for input sharing. The input comprises the graph represented as an adjacency matrix

and data (features) associated with the vertices of the graph. Recall from §1.1.1 that a client’s

input only comprises a partial view of the entire graph (i.e., a subset of vertices together with

the corresponding data, and their associated edges). Hence, ensuring that the input generated

at the servers indeed corresponds to an adjacency matrix, and the associated data adheres

to the structure as required for a GCN, is challenging. Designed independent of the graph

algorithm, our input-sharing protocol to generate secret shares of the adjacency matrix and the

associated data may find use in other graph-based applications too.

Note that GraphSC operates on a list representation of the graph. Hence, we addition-

ally describe the method to translate the adjacency matrix-based representation of the graph,

generated as part of the input-sharing phase in secret shares, into its list representation. Our

shu✏e protocol also finds use in performing this translation. Note that the adjacency matrix

has |V|2 entries that account for every possible edge, while the list representation only stores

information regarding edges that are actually present. Hence, generating the (|V| + |E|)-sized
list representation of the graph from the |V|2-sized matrix representation while hiding the graph

topology is challenging.

4.2 Related work

We discuss the related work for GCNs in cleartext first, followed by MPC works that consider

designing secure solutions for evaluating neural networks, in general, since secure GCNs via

MPC have not been well explored. Following this, we discuss the di↵erent works that have

studied the primitives that are used in GCNs, such as division, exponentiation, inverse square

root, bit injection, conversions between arithmetic and Boolean sharing, dot products, etc.

Here, note that the primitives of division, exponentiation and inverse square root have been

newly included in the framework of Tetrad [138].

GCNs: The increasing popularity of convolutional neural networks led to the study of

performing convolutions on graph-structured data. This resulted in the design of graph con-

volutional networks (GCNs). There are several works which study GCNs in the cleartext

[133, 70, 100, 219, 229, 227]. These can broadly be classified as spatial-based GCNs [133, 70],

spectral-based GCNs [35, 105], attention-based GCNs [219] and recurrent-based GCNs [150,

232], to name a few. While this categorization is not mutually exclusive, some GCNs combine
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di↵erent types of layers. Among these, spatial-based GCNs have proven to be advantageous

for graph-structured data because they are computationally more e�cient and can incorpo-

rate local neighbourhood information. Hence, they are more e↵ective for applications such as

fraud detection and allow capturing dependencies between nodes of the graph, thereby aiding in

identifying anomalous patterns that are indicative of fraudulent behaviour. Among these, the

work of [133] was the first to propose GCNs for semi-supervised learning on graph-structured

data and serves as the benchmark in the domain of GCNs. Hence, we focus on designing

privacy-preserving solutions for evaluating the GCN described in the work of [133].

Most works in the privacy-preserving literature look at securely computing neural networks

(NN) via MPC [173, 136, 193, 138, 50, 174, 194, 49, 220, 143, 199]. Despite the interest in

securely evaluating neural networks, none consider operating on graph-structured data. Hence,

GCNs have not been well explored. Prior work that explores GCNs only considers performing

secure inference [208]. Moreover, it considers providing inference only for the relatively older

GCN model of [70]. One may consider extending the works that provide secure solutions for

neural networks to securely realize GCNs. However, these works either lack the necessary

primitives required for evaluating GCNs or provide weaker security guarantees, or fare poorly

in terms of accuracy and e�ciency of evaluating GCNs. For instance, several works trade o↵

accuracy for e�ciency by relying on MPC-friendly alternatives for non-linear functions such

as sigmoid and softmax[138, 50, 173]. Instead, we strive to design accurate protocols for GCN

evaluation while not compromising on e�ciency.

MPC primitives: As discussed in the previous chapter, secure division has been studied

in various works such as [45, 43, 126, 6, 220, 50, 138, 174]. When working over the 4PC

setting, we adapt the protocol of [43] that is based on Goldschmidt’s division since it renders

more e�cient protocols. Performing secure division via Goldschmidt’s algorithm additionally

relies on prefixOR computation which has also been explored in several works [44, 43, 132].

Further, secure truncation is a special case of secure division where the divisor is publicly

known. There are two approaches to performing truncation that have been explored in the

literature—probabilistic and deterministic. In probabilistic truncation [174, 173, 61, 136], the

output of the truncation protocol may be di↵erent from the true output by 1 bit with some

probability. [174] proposed a non-interactive probabilistic truncation protocol in the 2-party

setting which was extended to the 3-party setting (and cal also be extended to n parties) in

the work of [173], albeit while requiring interaction among the parties. On the other hand,

deterministic truncation does not have the issue of 1-bit error. The 2-party works of [110, 199]

provide solutions for deterministic truncation, albeit while incurring a high communication

overhead in comparison to probabilistic truncation. We note that we rely on the probabilistic
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truncation approach, as done in [138], since the 1-bit error does not incur significant accuracy

loss in the ML model while being more e�cient than deterministic approaches.

Next, secure exponentiation has been studied in various works [6, 63, 126, 123]. The work

of [123] designs a customised exponentiation protocol in the 2-party setting with the end appli-

cation of secure Poisson regression. The protocol leverages the knowledge of a lower bound on

the exponent and is designed to work only for positive exponents. As opposed to this, [6, 126]

design generic exponentiation protocols that work for negative exponents as well by relying on

the bit decomposition of the exponent. In this regard, the protocol of [6] implicitly relies on

a division protocol to account for negative exponents. A reliance on division is avoided in the

work of [126] which results in an improved e�ciency. We further improve the e�ciency of this

protocol by leveraging the 4-party setting.

Several works have studied the problem of securely computing inverse square root [4, 118,

130, 152, 6, 126, 132, 163] where they approach it by either expressing the output as a Taylor

series, or via some other kind of numerical approximation (e.g. via Goldschmidt or Newton-

Raphson approximation). [6] proposed computing square root using Goldschmidt and Raphson-

Newton iterations. [163] proposed a more direct computation that avoids running two successive

iterations, which was further optimized in the work of [126]. We adapt and optimize the protocol

of [126] when considering the 4-party setting.

A bit injection allows one to multiply a Boolean-shared bit with an arithmetic-shared value.

This primitive has been studied in several works [173, 50, 138]. However, in some scenarios,

there is a need to perform multiplication between two Boolean-shared bits and an arithmetic-

shared value. Hence, we design double bit injection protocol to cater to such scenarios.

With respect to the other primitives, we note that bit decomposition (arithmetic to Boolean

conversion) protocol has been studied in various works [43, 45, 193, 50, 138, 136, 173]. While

[173] provided a Boolean circuit-based approach to obtain the bit decomposition of a secret

shared value, the circuit used for decomposition can be depth-optimized by relying on multi-

input multiplication protocol of [194]. Bit to arithmetic conversion has also been looked at in

several works [173, 50, 138]. Finally, dot product and matrix multiplications are fundamental

building blocks in PPML where matrix multiplication can be reduced to dot products. While

the communication complexity of dot product in the 3PC of [173] was dependent on the vector

size, the online communication was made independent of the vector size in the 3PC of [193]

while the preprocessing phase continued to have a communication complexity dependent on

the vector size. The 3PC of [136] showed how to make the communication cost of dot product

independent of vector size in online as well as the preprocessing phase. This independence of

communication cost from the vector size has also been achieved in 4PC [50, 138, 136].
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4.3 Preliminaries

4.3.1 System model

We consider secure outsourced computation in the 4-party setting of Tetrad [138], where four

hired servers enact the role of parties P = {P0, P1, P2, P3} (or equivalently P = {Pi, Pj, Pk, Pl}).
We let A denote a static malicious probabilistic polynomial time adversary which corrupts at

most one party in P. Each client (possibly malicious) secret-shares its input among servers,

which evaluate the MPC protocol to obtain the secret-shared output. The output is then

reconstructed towards the client. Similar to Tetrad, our constructions are secure in the real-

world/ideal-world simulation paradigm. Further, Entrada, similar to Tetrad, enables achieving

two di↵erent levels of security: (i) fairness—depending on the adversary’s misbehaviour, either

all parties obtain the output of the computation, or none do, and (ii) robustness—regardless of

adversary’s misbehaviour, all parties are guaranteed to obtain the output of the computation.

In the remainder, we focus on describing the robust protocols. However, their fair variants can

be attained easily, following Tetrad. We refer the reader to §2.4 for an overview of Tetrad,

including the functionality FSetup, sharing semantics, and the description of protocols from

Tetrad that this chapter relies on.

4.3.2 GraphSC paradigm

The designed protocols leverage the GraphSC paradigm [179, 13] for e�ciency reasons. Hence,

we refer readers to §2.6 to familiarize themselves with the necessary background.

4.3.3 Graph convolutional networks (GCN)

The celebrated result of Kipf and Welling [133] showcases how convolutions can be generalized

to graphs. Let G = (V,E) denote a graph, where V is the set of n nodes, and E is the set of

edges. Let A denote the adjacency matrix of G of dimension n⇥ n, and X denote the matrix

of node features of dimension n ⇥ f , where f denotes the number of features. The authors

in [133] propose a simple GCN model which allows learning succinct representation of nodes

in the graph. In the case of node classification via GCN, the task is to assign labels to the

unlabelled nodes in G by learning from those nodes that are labelled. To achieve this, the

GCN model is trained using the labelled nodes provided as input, which makes up the training

phase. This entails generating labels for the (already labelled) nodes via the computations in

the forward pass, and updating the model parameters by accounting for the di↵erence in the
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generated labels and the true labels of the nodes via the computations in the backward pass.

The trained model can then be used to perform inference where node classification is performed

for the unlabelled nodes. Each of these is described in detail next.

4.3.3.1 Forward pass

In the forward pass, node representationsH(i), for the ith layer are computed using the following

equation1.

H(i) = g
(i)
⇣
Â ·H(i�1)W(i�1)

⌘
(4.1)

Here g
(i) denotes the activation function for layer i, and H(0) = X, W(i) is the weight matrix

specific to layer i and Â = D̃� 1

2 ÃD̃� 1

2 . Further, Ã = A+ I denotes the adjacency matrix with

self-loops, and D̃ is the degree matrix for Ã (i.e., D̃ stores the number of incident edges in Ã

as the diagonal entry for each node). Matrices Â, Ã, D̃ are all of dimension n⇥n. Specifically,

the work of [133] considers a two-layer instantiation of Equation (4.1), where the GCN model

Z is given as a function of X,A and is parameterised by the weight matrices W(0)
,W(1) as

given in Equation (4.2).

Z =

H
(2)

z }| {
Softmax(Â · ReLU(ÂXW(0))| {z }

H(1)

W(1)) (4.2)

Here, W(0) has a dimension of f ⇥ h, where h denotes the number of feature maps, whereas

W(1) is of dimension h ⇥ c, where c is the number of labels to which the nodes of the graph

will be mapped.

4.3.3.2 Backward pass

Since the weight matrices are trainable parameters, these are updated in the backward pass by

accounting for the error in the computed output representation Z and the true representation

Y, with respect to the labelled nodes in G. This is captured using the cross-entropy error,

denoted as L, as given in Equation (4.3). Here, both Z,Y are of dimension n ⇥ c, and L

denotes the index set of labelled nodes in G and hence is a subset of {1, . . . , n}.

1GCNs have a multilayered architecture. Informally H(i) in the intermediate layers captures the feature
maps (properties) of the nodes, and its dimensions may vary across the layers. For the final layer, it captures
the likelihood of a node being mapped to a particular label and hence has the dimension of n⇥c where c denotes
the number of class labels.
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L = �
X

i2L

cX

j=1

Yij lnZij (4.3)

Given the loss function L, derivative of L with respect to weight matrix W(0), and derivative of

L with respect to W(1) is computed. This is then used to update weight matrices via stochastic

gradient descent optimizer [133]. This completes the backward pass.

4.3.3.3 Traning and inference

Performing the computations in the forward pass, followed by the backward pass, constitutes

one epoch of the training phase. Computations over several such epochs minimize L, thereby

yielding the trained weight matrices. Having generated the trained model, performing GCN

inference for node classification is now possible by computing the forward pass, as described in

Equation (4.2), using the obtained weight matrices2.

4.3.3.4 Heteregeneous GCN

While the GCN of [133] deals with a single type of edge, the work of [158] designs heterogeneous

GCNs. The main di↵erence lies in the fact that the underlying graph now consists of di↵erent

types of edges, D. Specifically, G = (V,E) can now be seen as a collection of |D| subgraphs
{Gd = (V,Ed)}, where each subgraph comprises all the vertices of G, but edges of only type

d 2 D. The heterogeneous graph representation {Gd} leads to |D| adjacency matrices {Ad},
each of dimension n⇥n. Thus, the heterogeneous GCN computation [158] is given as H(0) = 0

and for i = 1, . . . , T :

H(i) = g
(i)

0

@X ·W(i�1) +
1

|D|

|D|X

d=1

Ad ·H(i�1) ·W(i�1)
d

1

A (4.4)

Here, 0 denotes the matrix of all 0s of dimension n ⇥ c where c is the number of labels,

T denotes the number of layers, and g
(i) denotes the non-linear activation function for layer i.

W(i)
,W(i)

d are the i
th layer weight matrices of dimension c ⇥ c, where the latter additionally

depends on the edge type d. To draw an analogy to the GCN of Kipf and Welling [133], note

that the final output Z computed in [133] is equivalent to H(T ) which constitutes the final

output for heterogeneous GCNs. Further, as can be seen from Equation (4.4), heterogeneous

GCNs additionally require summing the values over each of the subgraphs to account for the

2Since Softmax is used to normalize the final result between [0, 1], note that inference can be performed
without it.
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heterogeneity in the edges. The cross-entropy error for the backward pass is computed similarly

to the GCN of [133], as given in Equation (4.3). In our work, we take T = 2 since this su�ces

for obtaining the desired accuracy. We let the activation function g
(1)
, g

(2) be ReLU for the first

layer and Softmax for the second layer, respectively.

4.3.4 Notations

The notations pertaining to GCNs are summarized in Table 4.1. Further, notations with respect

to Tetrad and the graphSC paradigm appear in §2.4 and §2.6, respectively.

Notation Description

G = (V,E) Graph G with set of n vertices V and set of edges E

A Adjacency matrix of G of dimension n⇥ n

Ã Adjacency matrix of G with self loops, i.e., Ã = A+ I

D̃ Degree matrix for Ã

Â Normalized adjacency matrix Â = D̃� 1
2 ÃD̃� 1

2

X Matrix of node features of dimension n⇥ f where f denotes the number of features

H(i) Node representation matrix of ith layer during GCN evaluation

W(i) Weight matrix of ith layer during GCN evaluation

Z GCN model Z = Softmax(Â · ReLU(ÂXW(0))W(1)) (computed output)

L Index set of labelled nodes in G

Y Actual output with respect to the labelled nodes in G

L Cross-entropy error
�L

�W(i) Derivative of loss with respect to the weights in the ith layer

c Number of output classes

D Types of edges in a graph G

Gd = (V,Ed) Subgraph of G with edges of type d 2 D

Ad Adjacency matrix of Gd

v[i] ith element of vector v
J

Element-wise multiplication operator

dReLU Derivative of ReLU

Table 4.1: Notations pertaining to GCNs.

4.4 Secure GCN

Recall that while securely evaluating GCNs, the inputs comprise the matrices D̃, Ã, Â, X and

Y, in secret shares. We begin by describing the input-sharing phase, which comprises the steps
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to obtain these matrices (in secret shares) from the clients. Following this, we discuss the steps

to securely evaluate GCN. Since output reconstruction follows from Tetrad, we do not highlight

the same.

4.4.1 Input sharing

This phase involves generating J·K-shares of A,X,Y. Given these matrices, the other inputs

required for GCN evaluation, i.e., D̃, Ã, Â, can be generated without the involvement of the

client. Recall that in a distributed setting, the client may possess only a partial view of the

input, i.e., information regarding some k nodes in the graph which correspond to k rows of A,X

and Y. Thus, each client secret-shares entries corresponding to the rows they possess towards

the servers. Having received the entries of all rows from the clients, the servers generate the

complete matrices by stacking up the rows (assuming the mapping between clients and rows of

the matrices is known to servers). We give a high-level overview of the challenges in achieving

this and their resolutions next.

Generating J·K-shares of X To ensure that a possibly malicious client, C, has not cheated

while secret-sharing the rows of X, it su�ces to ensure that C consistently secret-shares each

element in the respective rows of X that it possesses. This can be performed similarly to as

done in [136], albeit more e�ciently without relying on commitments. Elaborately, say x 2 Z2`

is an input element to be shared by C. Servers non-interactively generate [·]-shares of the mask

↵x 2 Z2` using FSetup (Fig. 2.5). To obtain �x = x + ↵x from the client, ↵x = ↵x1 + ↵x2 + ↵x3

is sent to C as follows. Since each ↵xi for i 2 {1, 2, 3} is held by three servers, two of them

send ↵xi to C, while the third sends H(↵xi). Note that all servers are required to communicate

↵xi to C to ensure that a corrupt server’s attempt of cheating by sending an incorrect value is

subverted. Moreover, since multiple elements are required to be shared by C, the use of hash

allows computing and sending a single hash value on the concatenation of all these elements,

thereby reducing the communication complexity. Further, note that among the three versions

of the received ↵xi, since at most one can be incorrect (owing to the presence of at most one

corrupt server), taking the value which appears in majority enables C to obtain the correct

value for each ↵xi. C then computes ↵x = ↵x1 + ↵x2 + ↵x3, �x = x+ ↵x , and sends �x to servers

P1, P2, P3. Finally, to ensure that C has sent the consistent �x to P1, P2, P3, they exchange the

value received from C among themselves. Since at most one among P1, P2, P3 can be corrupt,

there will exist a majority in the exchanged values, which is taken as the final value for �x.
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Generating J·K-shares of A In addition to performing the consistency checks as described

above to ensure consistent sharing, servers are also required to ensure that the client’s inputs

correspond to valid rows of an adjacency matrixA, i.e. AT = A. For this, they non-interactively

generate J·K-shares of a random symmetric matrix R, compute JSK = JAK+ JRK, and open the

resultant matrix S. Servers can then locally verify if A is symmetric by checking if Sij = Sji

for i, j 2 {1, 2, . . . , n}. If so, they proceed to verify whether the elements of A as generated

by the clients are either a 0 or a 1. For this, servers use the fact that z
2 � z = 0 only if

z 2 {0, 1}. In order to verify this equation with respect to all the elements shared by a client,

servers compute a random linear combination with respect to each element zi shared by the

client and verify if the combination yields a 0. However, this check still allows a client to cheat

with probability 1/2 when working over the ring algebraic structure [2, 30]. Thus, to reduce the

cheating probability, the check is repeated  times, which bounds the cheating probability by

1/2. If any of the checks fail, depending on the application scenario, one of the following can

be done: (i) entries in i
th row and j

th column can be set to default, (ii) entries pertaining i
th

and j
th nodes can be deleted from the graph (the same should be reflected in the other inputs,

X,Y, as well), (iii) the computation is halted.

Generating J·K-shares of Y Recall that each row of Y has at most one position set as 1

(and all others as 0s). Thus, after verifying the consistency of the received shares, to verify if

the i
th row {Yi1,Yi2, . . . ,Yic} satisfies this condition, we use the idea of [161]. The approach

is to check if
⇣Pc

j=1 Yij · rj
⌘2
�
⇣Pc

j=1 Yij · r2j
⌘
= 0. Here, rj 2 Z2` are random public values,

and the check passes with high probability over a field if at most one Yij is a 1. However,

similar to the case of A, this check also has a failure probability of 1/2 over rings. Hence, we

repeat this check  times to bound the failure probability by 1/2.

Generating J·K-shares of D̃, Ã and Â Having generated JAK, generation of JÃK = JAK+
JIK can happen non-interactively. The J·K-shares of diagonal entries of D̃ can also be generated

non-interactively by summing the entries in the corresponding rows of JÃK. Finally, computing

Â = D̃� 1

2 ÃD̃� 1

2 , involves computing the element-wise inverse square root of the diagonal

element of D̃ via the secure inverse square root protocol.

4.4.2 Secure evaluation of GCN

The steps involved in the secure evaluation of GCN are summarised in Fig. 4.1.
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Training Phase

Input: Â (normalized adjacency matrix of dimension n ⇥ n), X (feature matrix of dimension

n ⇥ f), Y (matrix of true output for labelled nodes of dimension n ⇥ c), #epochs (number of

epochs).

Output: W(0),W(1) (trained weight matrices for layer 0,1, respectively).

//Initialization

– Randomly sample W(0) 2 Rf⇥h, and W(1) 2 Rh⇥c, where R denotes the set of real numbers.

– �1 = 0.9,�2 = 0.999,M(0) = M(1) = 0,V(0) = V(1) = 0, ✏ = 10�8

For t in range(#epochs) do:

//Forward pass

– H(0) = ReLU(ÂXW(0)), In = ÂH(0)W(1), Z = Softmax(In)

//Backward pass

–
⇣

�L
�W(1)

⌘
= (H(1))T(Z�Y)

–
⇣

�L
�W(1)

⌘
= (ÂX)T

⇣
dReLU(In)� Â(Z�Y)(W(1))T

⌘

//Weights update via Adam optimizer

– M(i) = �1M(i) + (1� �1)
⇣

�L
�W(i)

⌘
for layer i 2 {0, 1}

– V(i) = �2V(i) + (1� �2)
⇣

�L
�W(i)

⌘2
for layer i 2 {0, 1}

– M̂(i) = M
(i)

1�(�1)t
and V̂(i) = V

1�(�2)t
, for layer i 2 {0, 1}

– Update W(i) = W(i) � M̂(i)

✓
↵p

V̂(i)+✏

◆
, where ↵ is learning rate.

Inference Phase

Input: Â (normalized adjacency matrix of dimension n ⇥ n), X (feature matrix of dimension

n⇥ f), W(0),W(1) (trained weight matrices of dimensions h⇥ f and f ⇥ c, respectively).

Output: Z (matrix of dimension n⇥ c that captures the likelihood of unlabelled nodes belonging

to each class/label).

– Z = Â · ReLU(ÂXW(0))W(1)

Algorithm GCN evaluation

Figure 4.1: Steps involved in training and inference phase of GCN.

This secure evaluation of GCN entails servers securely computing secret shares of Z via the

forward pass followed by computing the derivative of L with respect to the weight matrices,

as defined in the backward pass and updating the weight matrices. Assuming the inputs

are available in secret shares, servers begin by initializing random weight matrices W(0) and

W(1), which can be done non-interactively using keys established via FSetup (Fig. 2.5). Secure

Jump to Contents 108



protocols are then required for matrix multiplication, ReLU and Softmax to compute shares of

Z. Additionally, a secure protocol for dReLU is required during backpropagation to compute

the derivative of loss with respect to the weights
�

�L
�W

�
. Next, using the secret-shares of Z

and
�

�L
�W

�
, servers update weight matrices. Although [133] relies on gradient descent to update

weights, due to drawbacks such as slow convergence and the possibility of converging to a

local minimum, we rely on the optimized alternative of Adam [132] optimizer. The weight

update computations within Adam, as well as the overall steps required to evaluate a GCN,

are summarised in Fig. 4.1.

To securely evaluate GCN, each step in Fig. 4.1 is realized via its secure counterpart. Elab-

orately, for matrix multiplication and ReLU, we rely on the secure protocols from Tetrad [138].

Although Tetrad does not give an explicit protocol for dReLU, we note that it can be computed

as dReLU(x) = 1(x > 0) using the comparison protocol from Tetrad. For Softmax, we observe

that Tetrad relies on an approximate variant for it. Keeping GCN accuracy as needed for real-

world applications in mind, we instead compute Softmax(x) = e
x
/(
P

i e
xi), which is the more

accurate definition. This computation requires secure protocols for exponentiation and division.

While Tetrad does not support exponentiation, for division, it relies on a garbled circuit (GC)

based approach, which is known to be expensive in terms of communication cost [84, 11]. Hence,

we provide e�cient protocols for exponentiation as well as division. Moreover, Tetrad does not

provide support for using Adam optimizer since it lacks square root primitive. Hence, we also

design secure and e�cient protocols for the same. We elaborate on our additions over Tetrad

in §4.5. Although our approach provides e�ciency and accuracy improvements in comparison

to realizing GCNs via Tetrad (using SGD), we additionally incorporate the GraphSC paradigm

in Entrada to further enhance e�ciency, as described in §4.6.

4.5 Improvements over Tetrad

Here, we provide the building blocks that were either missing in Tetrad (double bit injection,

prefix OR, exponentiation, inverse square root) or had an ine�cient realization (division). The

protocols for exponentiation, division and inverse square root follow from the ones in literature

and are adapted to work over Tetrad while introducing optimizations where possible.

4.5.1 Double bit injection

Similar to single bit injection protocol of Tetrad [138], we design double bit injection or 2-

bit-injection protocol (⇧2�bitInj), which enables computing JabvK given two Boolean shared bits
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JaKB, JbKB and an arithmetic shared value JvK. Combining terms and computing them together

results in our protocol having same online cost as single bit-injection, and improves online

rounds and communication by 2⇥. To achieve this, observe that,

y = (abv)R

= (�a � ↵a)
R (�b � ↵b)

R (v)

= �a
R
�b

R
�v��aR�bR↵v + �a

R
�
1� 2�b

R
� �
↵b

R
�v � ↵b

R
↵v

�
�b

R
�
1� 2�a

R
� �
↵a

R
�v � ↵a

R
↵v

�

+
�
1� 2�a

R
� �

1� 2�b
R
� �
↵a

R
↵b

R
�v � ↵a

R
↵b

R
↵v

�

where, arithmetic equivalent of XOR, (x�y)R is given as xR+y
R(1�2xR). Given that J·K-shares

of ↵ terms (and their products) can be generated during preprocessing (as done in Tetrad via

the protocol for converting bit to its arithmetic equivalent, ⇧Bit2A), the online phase involves

generating J·K-shares of product terms comprising �,↵ via ⇧JSh followed by local addition to

generate JyK. The formal protocol appears in Fig. 4.2.

Preprocessing

– Invoke preprocessing phase of ⇧Bit2A to generate [ua] =
⇥
↵a

R
⇤
and [ub] =

⇥
↵b

R
⇤
.

– Invoke ⇧MulR to compute [uab] =
⇥
↵a

R↵b
R
⇤
, [uav] =

⇥
↵a

R↵v

⇤
, [ubv] =

⇥
↵b

R↵v

⇤
and [uabv] =

⇥
uab↵v

R
⇤
.

Online

Let xa = �a
R, xb = �b

R, xab = (�a�b)R, and xabv = (�a�b)R�v.

– P1, P2 compute y1 = xabv � xabuv1 + xa(1� 2xb)(�vub1 � ubv1) + xb(1� 2xa)(�vua1 � uav1) + (1�
2xa)(1� 2xb)(�vuab1 � uabv1).

– P2, P3 compute y2 = �xabuv2+xa(1�2xb)(�vub2�ubv2)+xb(1�2xa)(�vua2�uav2)+(1�2xa)(1�
2xb)(�vuab2 � uabv2).

– P3, P1 compute y3 = �xabuv3+xa(1�2xb)(�vub3�ubv3)+xb(1�2xa)(�vua3�uav3)+(1�2xa)(1�
2xb)(�vuab3 � uabv3).

– (P1, P2), (P2, P3) and (P3, P1) invoke ⇧JSh on y1, y2 and y3, respectively, to generate Jy1K, Jy2K
and Jy3K.
– Output JyK = Jy1K + Jy2K + Jy3K.

Protocol ⇧2�bitInj

⇣
JaKB, JbKB, JvK

⌘

Figure 4.2: Double bit injection.
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4.5.2 Prefix OR

This protocol, denoted as ⇧PreOr, forms an important building block in the division, square

root, and inverse square root protocols. On input Boolean shared bits x`�1, . . . , x0, it outputs

Boolean shared bits y`�1, . . . , y0 such that yi = _`�1
j=ixj. This protocol proceeds along similar

lines as described in §3.4.1. Hence, we omit the details here.

4.5.3 Exponentiation

Denoted as ⇧Exp, the protocol for exponentiation outputs JexK on input JxK. Although our

protocol is inspired from [6, 63, 126], it is much more e�cient due to avoiding the need for an

explicit division operation, avoiding reliance on edabits [79], and a few intermediate conversions.

In the following, we first give an overview of the protocol of [6] followed by detailing our

improvements over it.

To compute e
x, [6] proceeds as follows. It first computes the absolute value of x, denoted

as |x|, by obliviously selecting between (x,�x), depending on its sign. Then, |x| is split into its

fractional (r) and integer (t) parts. Observe that e|x| = e
t+r = e

t · er. Thus, the task reduces to

computing e
t and e

r, where t, r are J·K-shared. er is computed using polynomial approximation.

To compute e
t, t is decomposed into bits {tk�1, . . . , t0}, and bit-wise exponentiations are used

as follows

e
|t| =

k�2Y

j=f

e
tj ·2j�f

=
k�2Y

j=f

⇣
tj ·
⇣
e
2j�f � 1

⌘
+ 1
⌘

where the value e
tj ·2j�f

is computed by obliviously selecting between 1 and e
2j�f

with tj as

the selection bit.

Observe that if x > 0, one can safely output e|x| = e
t · er. However, if x < 0, the value to be

returned is 1
e|x|

. The latter additionally requires one call to secure division. Further, to ensure

that no information about the sign of x is revealed, the work of [6] computes both the values

e
|x| and 1

e|x|
, and then obliviously selects between them depending on the sign of x. The call to

division increases the complexity of this protocol.

Unlike the approach of [6], we implicitly account for the sign of x while performing the

bit-wise exponentiation. This allows us to explicitly avoid computing 1
e|x|

, and thereby the call

to the secure division protocol. Elaborately, we rely on splitting x into its fractional (r) and

integer (t) parts, rather than splitting |x|, as done in [6]. The goal is to first compute e
t
, e

r

and then e
x = e

t · er. We rely on Taylor series approximation to compute e
r, which implicitly
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accounts for the sign of x. To compute e
t while accounting for the sign, we make the following

observation. Let {ti}k�1
i=0 denote the bits in t. Then,

e
t =

8
<

:

Q
k�2
j=f

e
tj ·2j�f

, if x � 0
Q

k�2
j=f

e
�tj ·2j�f

, otherwise

Note that selection between the two cases in the above equation is handled obliviously using

⇧Sel on inputs e
tj ·2j�f

, e�tj ·2j�f

with the MSB of x as the selection bit. In this way, we avoid

relying on a division protocol. Concretely, the value to be computed boils down to the following.

e
t =

k�2Y

j=f

tj

⇣
s

⇣
e
�2j�f � e

2j�f

⌘
+ e

2j�f � 1
⌘
+ 1

=
k�2Y

j=f

tj

⇣
s

⇣
e
�2j�f � e

2j�f

⌘⌘
+ tj

⇣
e
2j�f � 1

⌘
+ 1

where s denotes the sign bit of x and is a 1 if x < 0. The formal protocol steps are provided

in Fig. 4.3.

– JtK = ⇧trunc (JxK, f) · 2f

– JrK = JxK� JtK, JtKB = ⇧A2B (JtK) and JsKB = Jtk�1KB

– for i = 0 to k� 2 do: JtiKB = JtiKB � JsKB

– for j = f to k� 2 do:

� Je0jK = ⇧BitInj

⇣
JtjKB, e2

j�f � 1
⌘

� JejK = Je0jK +⇧2�bitInj

⇣
JsKB, JtjKB, e�2j�f � e2

j�f

⌘
+ 1

– set JdK = Jef K
– for j = f + 1 to k� 2 do: JdK = ⇧Mul (JdK, JejK, f)
– JzK = ⇧Sel

⇣
1, 1/e, JsKB

⌘
and JdK = ⇧Mul (JdK, JzK, f)

– set Jb0K = 1, Jb1K = JrK
– for i = 2 to ✓ do: JbiK = ⇧Mul (Jbi�1K, Jb1K, f)
– JbK =

P✓
i=0

JbiK
i!

– JgK = ⇧Mul (JdK, JbK, f)
– Return JgK

Protocol ⇧Exp (JxK)

Figure 4.3: Exponentiation.

While the high-level approach of our protocol is similar to that of the one in [126], we note
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that our optimizations, such as reliance on double bit injection, avoiding the need for an explicit

bit extraction circuit for computing the msb of x, etc., further aid in improving the e�ciency

of our exponentiation protocol. In our work, we take ✓ = 4 since a higher value does not aid in

improving the accuracy for GCNs.

4.5.4 Division

The garbled circuit-based division in Tetrad is known to be expensive [11, 12]. Thus, we

propose a division protocol, ⇧Div, that relies on Goldschmidt’s approximation and follows a

similar approach as in [43]. This protocol on input JaK and JbK, outputs JdK where d ⇡ a/b via

an iterative approach. The protocol is similar to as described in §3.4.2, and hence we omit the

details here.

4.5.5 Inverse square root

The protocol ⇧InvSqrt, on input JaK, outputs JyK where y ⇡ 1/
p
a. Our protocol follows on the

lines of [126, 163] and uses a polynomial approximation to compute the inverse square root

of x. Similar to division, to get a good approximation of y, the input a is first normalized to

a
0 2 (0.25, 0.5]. Here, a0 = a · v, and v = 2�(e+1) is the scaling factor (where the most significant

non-zero bit of a appears at index e + f in the bit representation of a, assuming v has f bit

precision). Then 1/
p
a is given by:

1p
a
=

✓
1p
a0

◆
· 2�(e+1)/2 (4.5)

Here, 1/
p
a0 is approximated using a low degree polynomial

g(a0) = 4.63887a02 � 5.77789a0 + 3.14736 (4.6)

The protocol ⇧PreInvSqrt computes the normalized input a
0. Additionally, it computes v

0 =

2�(e+1)/2, as required in Equation (4.5). We now give an overview of how these two components

are generated. To compute the normalized input a
0 = a · v, we first compute v = 2f�(e+1)

(accounting for f bit precision). For this, the input a is decomposed to obtain its bit-wise

Boolean representation. These bits are manipulated using prefix OR and local operations to

compute v. Similarly, v0 = 2f�
(e+1)

2 is also computed with f bits of precision. Observe that v
0

can be computed by shifting the bit at index e+ f +1 to index (e+ f +1)/2. This is performed

obliviously by computing the XOR of every consecutive pair of bits of v. Following this, the v
0
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is multiplied by 2
f

2 to compute 2f�(e+1)/2. Observe that when (e + f + 1) is odd, the value is

computed correctly. However, when (e+ f +1) is even, the value computed is o↵set by a factor

of
p
2. Hence, v0 should be instead multiplied by 2(

f+1

2
) to cancel out the o↵set. To handle both

cases obliviously, we compute r, which denotes the parity of (e+ f+1). This is computed as the

XOR of bits in v indexed with odd numbers. Then, invoking the ⇧Sel(2(
f

2
)
, 2(

f+1

2
)
, JrKB) allows

computing the correct inverse square root of the scaling factor obliviously. Details of ⇧PreInvSqrt

appear in Fig. 4.4.

Given a
0
, v

0, the protocol ⇧InvSqrt computes the inverse square root of the input a as follows.

The approximate inverse square root of the normalized input, denoted as y, is computed using

the polynomial provided in Equation (4.6). Following this, the inverse square root of the input

a is given by 1p
a
= y · v0, which follows from Equation (4.5). The formal protocol appears in

Fig. 4.5.

– JaKB = ⇧A2B (JaK)
– {JciKB}0i=k�2 = ⇧PreOr

⇣
{JaiKB}0i=k�2

⌘
and Jck�1KB = J0KB

– Jvk�1KB = Jck�1KB

– for i = k� 2 to 1 do: JviKB = JciKB � Jci+1KB

– JvK = ⇧B2A

�
{JviK}0i=2f�1

�
(in reverse order)

– Ja0K = ⇧Mul (JaK, JvK, f)
– k0 = k

2 , f
0 = f

2 , c0 = 2
f+1

2 , c1 = 2
f

2

– for i = 0 to k0 do: Jv0iK
B = Jv2iKB � Jv2i+1KB

– JrKB = Jv1KB � Jv3KB � Jv5KB � . . . Jvk�1KB

– Jv0K = ⇧B2A

⇣
{Jv0iK

B}0i=2f0�1

⌘

– Jv0K = ⇧Sel(c0, c1, JrK) · JvK
– return Ja0K, Jv0K

Protocol ⇧PreInvSqrt (JaK)

Figure 4.4: Sub-protocol for inverse square root.

– Ja0K, Jv0K = ⇧PreInvSqrt (JaK)
– Jy0K = Ja0K, Jy1K = ⇧Mul(Ja0K, Ja0K, f)
– JyK = 4.63887Jy1K� 5.77789Jy0K + 3.14736

– return ⇧Mul(JyK, Jv0K, f)

Protocol ⇧InvSqrt (JaK)

Figure 4.5: Inverse square root.
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Security

Since our constructions use primitives from Tetrad, their security follows directly from the

security of the underlying protocols. Formal proofs are provided in §4.8.

Complexity of the designed primitives

In this section, we discuss the complexity of the proposed building blocks and primitives.

Building block Online Preprocessing

Rounds Comm. (in bits) Comm. (in bits)

Joint sharing+ 1 2` -

Multiplication 1 3` 2`

3-input Multiplication 1 3 9

4-input Multiplication 1 3 24

MulR† - - 3`

Multiplication with truncation 1 3` 2`

Bit to arithmetic 1 3` 3`+ 1

Boolean to arithmetic 1 3` 192`+ 1

Arithmetic to Boolean log4 ` u1 `+ u
0
1

Bit extraction log4 ` u2 `+ u
0
2

Bit injection 1 3` 6`+ 1

Comparison log4 ` u2 `+ u
0
2

Oblivious select 1 3` 6`+ 1

- `: size of ring in bits, instantiated with ` = 64 in our work
- u01 = 2n2 + 9n3 + 24n4, u1 = 3 (n2 + n3 + n4) where n2 = 216, n3 = 184, n4 = 179 denote the
number of AND gates in the optimized PPA circuit of [194] with 2, 3, 4 inputs, respectively.
- u02 = 2n2 + 9n3 + 24n4, u2 = 3 (n2 + n3 + n4) where n2 = 41, n3 = 27, n4 = 47 denote the number
of AND gates in the optimized bit extraction circuit of [194] with 2, 3, 4 inputs, respectively.
+ Joint-sharing a value v in the preprocessing phase where v is held by P0 along with another party,
has a communication cost of only ` bits. We refer readers to [138] for further details.
† The protocol MulR is only invoked in the preprocessing phase of ⇧2�bitInj

Table 4.2: Complexity of building blocks of Tetrad [138].

Double bit injection The protocol ⇧2�bitInj requires communication of 3` bits and 1 round

in the online phase and 18` + 2 bits in the preprocessing phase. This cost is explained as

follows. In the online phase of ⇧2�bitInj parties compute y1, y2 and y3 locally. Following this the
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parties (P1, P2), (P2, P3), (P1, P3) joint share y1, y2 and y3 respectively in parallel. This requires

1 round and communication of 3` bits in the online phase. The communication cost for the

preprocessing phase follows from Table 4.2.

Prefix OR The protocol ⇧PreOr requires communication of 432 bits and 3 rounds in the

online phase and 1680 bits in the preprocessing phase. This cost is explained as follows. For

our choice of k = 32, the prefix OR can be computed in log4 (32) = 3 rounds. Observe that

each round has 16 invocations of ⇧Mul, ⇧3-Mul, and ⇧4-Mul that are computed in parallel. Thus,

the communication cost for the online phase is 432 bits, and for the preprocessing phase is 1680

bits.

Exponentiation The protocol ⇧Exp requires communication of 156`+ u1 bits and 10 rounds

in the online phase and 364`+ u
0
1 bits in the preprocessing phase. Here, u01 = 2n2 + 9n3 + 24n4,

u1 = 3 (n2 + n3 + n4) where n2 = 216, n3 = 184, n4 = 179 denote the number of AND gates

in the optimized PPA circuit of [194] with 2, 3, 4 inputs, respectively. This cost is explained

as follows. Parties first truncate the input to compute the sharing of the integer part (JtK) of
the input, followed by a call to ⇧A2B to get the bitwise sharing of the same. This requires 4

(i.e., 1+3) rounds and communication of u1 + 3` bits (see Table 4.2) in the online phase. The

parties then XOR the bits of JtK with the MSB of JtK, which is computed non-interactively.

Following this, the exponentiation for the integer part and the decimal part is computed in

parallel. For the integer part, the bitwise exponentiation is computed in parallel. This requires

one call to ⇧BitInj and ⇧2�bitInj with respect to each bit. For our choice of k = 32 and f = 16,

there are 15 bits that correspond to the integer part. Hence, the total cost for this step is

1 round, and 15 ⇥ (3` + 3`) = 90` bits of communication in the online phase. Following

this, the parties multiply the computed bitwise exponentiation to obtain JetK. This requires

15 multiplications which can be computed in 4 rounds, and communication of 45` bits. To

compute the exponentiation of the decimal part, the Taylor series approximation is used. We

use ✓ = 4 which gives the desired accuracy. Each iteration has one multiplication. Thus, the

communication cost for computing the exponentiation of the decimal part is 12` bits in the

online phase. Finally, the exponentiation of the integer part and the decimal part is multiplied

to get the output which requires 1 round and 3` bits of communication in the online phase.

Thus, the protocol ⇧Exp requires 10 rounds and 364` + u1 bits of communication in the online

phase. The preprocessing cost follows from Table 4.2.
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Division The protocol ⇧AppRec requires communication of 15`+ u1+432 bits and 9 rounds in

the online phase and 205`+u
0
1+1681 bits in the preprocessing phase. Here, u01 = 2n2+9n3+24n4,

u1 = 3 (n2 + n3 + n4) where n2 = 216, n3 = 184, n4 = 179 denote the number of AND gates

in the optimized PPA circuit of [194] with 2, 3, 4 inputs, respectively. This cost is explained

as follows. Parties run one instance of ⇧A2B, which requires communication of u1 bits (ref.

Table 4.2) and 3 rounds in the online phase. This is followed by one instance of ⇧PreOr, which

requires 3 rounds and 432 bits of communication. Next, the parties run one instance of ⇧B2A,

which requires 1 round and 3` communication. Next, the parties run two instances of multi-

plication in parallel to compute JzKB and Jw0K along with one instance of ⇧Sel. This requires

1 round and has a communication cost of 9` bits. Finally, the parties run one instance of

multiplication to compute the initial approximation JwK. This constitutes one round and 3`

bits of communication. Thus the total online cost for ⇧AppRec is 10 rounds and 15` + u1 + 432

bits in the online phase. The preprocessing cost follows from Table 4.2 and the cost of ⇧PreOr.

The protocol ⇧Div requires communication of 42`+u1+432 bits and 14 rounds in the online

phase and 223` + u
0
1 + 1681 bits in the preprocessing phase. This cost is explained as follows.

Parties invoke 1 instance of ⇧AppRec, which has a communication cost of 15` + u1 + 432 and

constitutes 9 rounds. This is followed by Goldschmidt’s approximation. We observe that for

our choice of k = 32 and f = 16, three iterations (i.e ✓ = 4) of Goldschmidt’s approximation are

required to obtain good accuracy. In each iteration, the servers run 2 multiplications in parallel,

which constitutes 1 round and communication of 6` bits per round. Finally, the parties run

another multiplication to get the final result. Thus the total number of rounds required is 14,

and the communication cost is 42` + u1 + 432. The preprocessing cost follows from Table 4.2

and the cost of ⇧AppRec.

Inverse square root The protocol ⇧PreInvSqrt requires communication of 9` + u1 + 432 bits

and 8 rounds in the online phase and 387` + u
0
1 + 1682 bits in the preprocessing phase. Here,

u
0
1 = 2n2 + 9n3 + 24n4, u1 = 3 (n2 + n3 + n4) where n2 = 216, n3 = 184, n4 = 179 denote the

number of AND gates in the optimized PPA circuit of [194] with 2, 3, 4 inputs, respectively.

This cost is explained as follows. Parties invoke ⇧A2B to decompose the input (a) into bits. This

is followed by computing the prefix OR of the bits and XORing the bits with the MSB of the

input, similar to the protocol ⇧AppRec. This requires 4 rounds and communication u1 +432 bits

in the online phase. This is followed by an invocation of ⇧B2A to compute the scaling factor v

and multiplication to compute the scaled input. This requires 2 rounds and communication of

6` bits in the online phase. In parallel, the parties also compute the square root of the scaling

factor(v0), which also requires one call to ⇧B2A, which requires communication of 3` bits. The
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bit r, which denotes the parity of the scaling factor, is computed non-interactively. Thus the

protocol ⇧PreInvSqrt requires 8 rounds and 9`+432+u1 bits of communication. The preprocessing

cost follows from Table 4.2 and the cost of ⇧PreOr.

The protocol ⇧InvSqrt requires a communication of 15` + u1 + 432 bits and 10 rounds in

the online phase and 391` + u
0
1 + 1682 bits in the preprocessing phase. This cost is explained

as follows. Parties invoke ⇧PreInvSqrt to compute the scaled input and the square root of the

scaling factor. Following this, parties compute the square of the scaled input, which requires

one multiplication. Following this, the inverse square root of the scaled input is computed

non-interactively using the polynomial provided in (4.6). Finally, the parties invoke one call

to multiplications to compute the output. Thus the protocol ⇧InvSqrt requires 10 rounds and

15`+ 432 + u1 bits of communication in the online phase. The preprocessing cost follows from

Table 4.2 and the cost of ⇧PreInvSqrt.

4.6 GCN evaluation via GraphSC

Recall that computations via GraphSC require performing shu✏es and invocations of Scatter

and Gather operations across multiple rounds. Since we instantiate the MPC for GraphSC

via Entrada, we first describe our shu✏e protocol over the same. Following this, we discuss

the components of GCN evaluation that can be cast in the message-passing paradigm and

subsequently define the Scatter-Gather primitives for the same. This entails defining GCN

computations in a vertex-centric manner, unlike matrix operations, as described in §4.3.3. While

the forward pass of GCN can be entirely computed within GraphSC, for the backward pass,

the computation of derivatives of the loss function benefits from the GraphSC paradigm. Thus,

other computations, such as updating the weight matrices, are performed outside GraphSC.

We conclude by discussing the steps for generating the shares of the graph list G, as required

for GraphSC, from the matrix representation, which is generated as part of the input sharing

phase.

4.6.1 Secure shu✏e

Consider a J·K-shared N-sized vector v, where each element v[i] 2 v for i 2 {1, . . . ,N} is J·K-
shared. The goal of secure shu✏e protocol is to generate a J·K-shared vector u such that it

comprises the elements in v shu✏ed under a secret random permutation ⇡. We denote this

operation as u = ⇡ (v), where u is the vector of elements v[⇡(1)], v[⇡(2)], . . . , v[⇡(N)]. To ensure

that ⇡ is secret and hidden from all parties, following along the lines of [145], we define ⇡ to
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be a composition of four permutations ⇡ = ⇡0 � ⇡3 � ⇡1 � ⇡2 such that each party Pi misses the

permutation ⇡i, and � denotes the composition operation. The justification for the ordering

among the permutations is made clear later and follows from the construction of our shu✏e

protocol. Since the protocol heavily relies on the sharing semantics of Tetrad and ⇧Jmp (enables

Pi, Pj 2 P to send v to Pk such that Pk receives the correct v, or a conflicting pair of parties

among Pi, Pj, Pk is identified), ⇧JSh (enables Pi, Pj 2 P to generate JvK where v 2 Z2` is held

by Pi, Pj), we refer the readers to §2.4 to familiarize themselves with the same.

As per J·K-sharing semantics, u = �u�↵u, where ↵u is [·]-shared. Thus, to generate JuK, our
goal is to generate �u,↵u 2 ZN

2` such that u = ⇡ (v) = ⇡ (�v � ↵v) = ⇡ (�v)� ⇡ (↵v) = �u � ↵u,

and ↵u is [·]-shared. We explain the generation of JuK into two parts– (1) assuming that parties

have generated J·K-shares of w = ⇡
0 (v) where ⇡0 = ⇡3 � ⇡1 � ⇡2, we explain how J·K-shares of

u = ⇡0 (w) can be generated (observe here that u = ⇡ (v) = ⇡0 (w) holds true since ⇡ = ⇡0 �⇡0),

(2) we then explain how J·K-shares of w = ⇡
0 (v) can be generated where ⇡0 = ⇡3 � ⇡1 � ⇡2.

We now describe how to realize (1) assuming that J·K-shares of w are available, i.e., w =

�w � ↵w where ↵w is [·]-shared and can be written as ↵w = ↵w1 + ↵w2 + ↵w3. Observe that

u = ⇡0 (w) = ⇡0 (�w � ↵w) = ⇡0 (�w)� ⇡0 (↵w1)� ⇡0 (↵w2)� ⇡0 (↵w3). Thus, J·K-shares of u can

be generated by linearly combining the J·K-shares of ⇡0 (�w) , ⇡0 (↵w1) , ⇡0 (↵w2) , ⇡0 (↵w3). To

generate the J·K-shares of ⇡0 (�w), observe that P1, P2, P3 hold ⇡0 as well as �w. Hence, parties

can generate J·K-shares of ⇡0 (�w) non-interactively in the online phase by retaining the masked

value as ⇡0 (�w) and setting the mask as 0 (i.e., [·]-shares of ↵ are set to be 0). On the other

hand, each of the remainder terms ⇡0 (↵wi) for i 2 {1, 2, 3} is held by a distinct pair of parties

in P1, P2, P3. Hence, in the preprocessing phase, the corresponding pair of parties invoke ⇧JSh

to generate J·K-shares of ⇡0 (↵wi) among all the parties. This completes generation of J·K-shares
of u = ⇡0 (w).

We now explain how J·K-shares of w = ⇡
0 (v) are generated where ⇡0 = ⇡3 � ⇡1 � ⇡2 and

v = �v�↵v such that ↵v is [·]-shared. One of our main goals in realizing this is to minimize the

complexity of the online phase. Towards achieving this, our high level approach to generate J·K-
shares of w is to generate [↵w] non-interactively, and define �w as �w = ⇡

0 (�v)� ⇡
0 (↵v) + ↵w.

During the generation of the J·K-shares of w, we maintain the invariant that every message

to be communicated is held by two parties, which allows invoking the ⇧Jmp protocol. This

guarantees the correctness of the generated shares since the invocation of ⇧Jmp ensures that

any misbehaviour by a malicious party can be detected. In the following, we begin by explaining

how [·]-shares of ↵w can be generated followed by generation of �w towards P2, P1, P3. Since

the composition of permutations in ⇡0 = ⇡3 � ⇡1 � ⇡2 is non-commutative, generation of �w is

handled di↵erently towards each party.
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Generation of [·]-shares of ↵w Relying on keys generated via FSetup, parties non-interactively

generate [·]-shares of ↵w in the preprocessing phase, i.e., P0, P1, P3 sample ↵w1 2 ZN

2` , P0, P2, P3

sample ↵w2 2 ZN

2` , and P0, P1, P2 sample ↵w3 2 ZN

2` .

Generation of �w towards P2 We begin with the case of generating �w = ⇡
0 (�v)�⇡0 (↵v)+

↵w towards P2. Consider the first summand ⇡0 (�v) = ⇡3 (⇡1 (⇡2 (�v))). To compute this term, P2

only misses ⇡2. Thus, if ⇡2 (�v) can be made available to P2, it can compute the first summand.

Since ⇡2 (�v) is held by both P1, P3, they can invoke ⇧Jmp to send ⇡2 (�v) to P2. However, it is

required that P2 does not learn anything about ⇡2. Hence, P1, P3 sample a random r2 2 ZN

2` ,

and instead send a2 = ⇡2 (�v + r2) to P2, who can then compute ⇡3 (⇡1 (a2)) = ⇡
0 (�v) + ⇡

0 (r2).

In the computation of �w, to remove ⇡0 (r2) and account for the missing summands ⇡0 (↵v) ,↵w1,

P2 must be provided with b2 = ↵w1 � ⇡
0 (↵v) � ⇡

0 (r2). Obtaining b2 allows P2 to compute

�w = ⇡3 (⇡1 (a2)) + b2 + ↵w2 + ↵w3. Observe that since b2 is independent of the input, it can

be generated towards P2 in the preprocessing phase (as discussed later). Thus, generating �w

towards P2 requires communication of a single message a2 in one round in the online phase.

Generation of �w towards P1 Similar to above, a simple way of generating �w towards

P1 is to now make P2, P3 send ⇡1 (a2 + r1) to P1, where r1 2 ZN

2` is sampled randomly by

P2, P3, and serves as a mask to hide ⇡1 from P1. Party P1 can apply ⇡3 on the received value

and add it with analogous preprocessed terms (similar to b2) as described earlier to obtain

�w. However, this approach requires an additional round of communication since P1 requires

to wait until P2 receives a2 in the prior round. Instead, our approach is to enable P1 to

compute �w in the same round as P2. For this, in the preprocessing phase, we make available

towards P2, P3 the permutation ⇡s �⇡1 �⇡2 where ⇡s is a random permutation known to P1, P3.

Observe that presence of ⇡s in ⇡s � ⇡1 � ⇡2, ensures that ⇡2 remains hidden from P2. Given this

permutation, generation of �w towards P1 proceeds as follows. P2, P3 compute and send a1 =

⇡s (⇡1 (⇡2 (�v + r1))) via ⇧Jmp to P1. Given b1 = ↵w2�⇡0 (↵v)�⇡0 (r1) is generated towards P1 in

the preprocessing phase (as discussed later), P1 can compute �w = ⇡3 (⇡�1
s (a1))+b1+↵w1+↵w3.

Note that P1 can compute ⇡�1
s since it has ⇡s on clear. In this way, generating �w towards P1

requires communicating the message a1 and no additional rounds in the online phase.

Generation of �w towards P3 Having generated �w towards P1, P2, they send it to P3

via ⇧Jmp. Note that in scenarios such as GraphSC, which demand several shu✏e invocations,

sending of �w towards P3 with respect to all shu✏e instances can be performed in a single
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round, thereby amortizing the cost of this round across several shu✏e instances3. In such cases,

our shu✏e protocol requires only a single round of interaction per shu✏e instance in the online

phase. A pictorial representation appears in Fig. 4.6, where arrows capture communication via

⇧Jmp.

P3

P1 P2

Round 1

Round 2 (Amortized)

Inputs

Figure 4.6: Online phase of shu✏e protocol for generating �w where w = ⇡
0(v) and ⇡

0 =
⇡3 � ⇡1 � ⇡2.

Generation of additional preprocessing data To facilitate the one-round online phase,

we now discuss how additional data such as ⇡s � ⇡1 � ⇡2 and the terms b1,b2 can be generated

in the preprocessing phase. For P2, P3 to generate ⇧ = ⇡s � ⇡1 � ⇡2, parties P0, P1, P3 randomly

sample a permutation ⇡s4. P0, P3 can then compute ⇧ locally since they hold ⇡1, ⇡2, and invoke

⇧Jmp to send ⇧ to P2.

For generating b1,b2, we extend the 3-party semi-honest shu✏e protocol of [13] to work in

our 4-party malicious setting. The modified protocol continues to have 2 rounds as in the case

of [13], which is possible due to the following observation. The protocol of [13] takes as input

[·]-shares of a vector v and outputs [·]-shares of ⇡0(v). Here, we can view ⇡
0 = ⇡3 �⇡1 �⇡2 which

is shared among P1, P2, P3 such that parties P2, P3 hold ⇡1, parties P1, P3 hold ⇡2, and parties

P1, P2 hold ⇡3. While extending the protocol of [13] in the preprocessing phase of our 4-party

setting, we note that P0 has all the inputs held by P1, P2, P3. This allows P0 to compute all

3Note that with respect to the framework of Tetrad, any communication towards P3 can be deferred until
output reconstruction. We refer to [138] for further details.

4Steps for randomly sampling a permutation are discussed in §2.5.1.
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protocol messages communicated in [13]. In this way, these messages can be communicated

by two senders, one of which is P0, by invoking ⇧Jmp. The use of ⇧Jmp facilitates attaining

malicious security.

We next describe our concrete protocol steps for generating b2 = ↵w1�⇡0 (↵v � r2) towards

P2. Observe that using the protocol of [13] allows generating [·]-shares of ⇡0 (↵v � r2). However,

the requirement is to generate ↵w1�⇡0 (↵v � r2) on clear towards P2. Hence, we slightly modify

the protocol steps to instead generate this value on clear towards P2, which entails providing P2

its missing [·]-share of ⇡0 (↵v � r2) which is masked with ↵w1. Since the protocol takes as input

[·]-shares of ↵v � r2, we first discuss how this is generated. Let �2 = ↵v � r2, where r2 2 ZN

2` is

sampled randomly by P0, P1, P3. Parties non-interactively generate [·]-shares of r2 by P0, P1, P3

setting their common share as r2, and the other shares being set as 0. Parties then generate

[·]-shares of �2 using [·]-shares of ↵v and r2, and the linearity property of [·]-sharing. Given

[·]-shares of �2, the high-level overview of the protocol is as follows. Parties non-interactively

sample zi 2 ZN

2` for i 2 {1, 2, 3}. Specifically, P0, P1, P3 sample z2, P0, P2, P3 sample z1, while

P0, P1, P2 sample z3. The zi’s serve as a random mask to ensure that parties only see random

values throughout the protocol execution. Parties compute messages xi, yi for i 2 {1, 2, 3} such

that the following invariant is maintained: each xi + yi is always a shu✏e of �2. The protocol

proceeds in rounds as described in Fig. 4.7. Note that all the messages that are communicated

can be computed by P0, and hence are sent via ⇧Jmp, which ensures security against a malicious

adversary. This communication from P0 is omitted in the figure. Correctness of b2 follows by

opening up the corresponding values of xi, yi for i 2 {1, 2, 3}. Observe that generating b2

towards P2 requires communicating 3 messages in 2 rounds.

The protocol proceeds analogously for the generation of b1 towards P1, except that the

computation happens with �1 = ↵v� r1, and in the second round P2 sends y3+↵w2 to P1. Note

that fresh random values zi 2 ZN

2` for i 2 {1, 2, 3} are sampled to carry out this execution which

is independent of the values used while generating b2 towards P2. The protocol appears in

Fig. 4.8. Note that the generation of b1 towards P1 can be performed in parallel to generating

b2 towards P2, and does not incur any additional rounds.

The schematic representation of the various parts involved in the generation of u is provided

in Fig. 4.9. The formal protocol is provided next.
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P3

P1 P2

Local sampling
Inputs

Round 1
Round 2

Figure 4.7: Generating b2 = ↵w1 � ⇡
0 (↵v � r2) towards P2.

P3

P1 P2

Local sampling
Inputs

Round 1
Round 2

Figure 4.8: Generating b1 = ↵w2 � ⇡
0 (↵v � r1) towards P1.
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Generated in online phase

Generated in preprocessing phase

 

Figure 4.9: Overview of steps performed in secure shu✏e.

The complete shu✏e protocol Ideal functionality for secure shu✏e appears in Fig. 4.10.

Without loss of generality, let Pc 2 P denote the party corrupted by adversary S. FShu✏e interacts

with parties in P and S. It receives as input J·K-shares of the input v from all parties. Let u

denote the randomly shu✏ed input. FShu✏e also receives from S its J·K-shares of u.
FShu✏e proceeds as follows.

• Reconstruct input v using J·K-shares of the honest parties.

• Sample a random permutation ⇡ from the space of all permutations and generate u = ⇡(v).

• Generate J·K-shares of u while accounting for shares received from S. Let JuKx denotes the

shares held by Px 2 P. Send (Output, JuKx) to Px.

Functionality FShu✏e

Figure 4.10: Ideal functionality for shu✏e.

The secure protocol for the online phase of shu✏e appears in Fig. 4.11, while the protocol

for the preprocessing phase appears in Fig. 4.12.

Online

– P1, P3 compute and send a2 = ⇡2 (�v + r2) to P2 via ⇧Jmp. In parallel, P2, P3 compute and send

a1 = ⇡s (⇡1 (⇡2 (�v + r1))) via ⇧Jmp to P1.

– P2 computes �w = ⇡3 (⇡1 (a2))+b2+↵w2+↵w3. P1 computes �w = ⇡3
�
⇡�1
s (a1)

�
+b1+↵w1+↵w3.

– P1, P2 send �w to P3 via ⇧Jmp.

– Parties non-interactively generate J·K-shares of �w.
– Compute JuK = J�wK� J⇡0 (↵w1)K� J⇡0 (↵w2)K� J⇡0 (↵w3)K.

Protocol ⇧Shu✏e

Figure 4.11: Online phase of secure shu✏e protocol.
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Preprocessing

– P0, P1, P3 sample ⇡2; P0, P2, P3 sample ⇡2; P0, P1, P2 sample ⇡3; and P1, P2, P3 sample ⇡0, non-

interactively, and define ⇡ = ⇡0 � ⇡3 � ⇡1 � ⇡2.

– P0, P1, P3 sample ↵w1 2 ZN

2` ; P0, P2, P3 sample ↵w2 2 ZN

2` ; and P0, P1, P2 sample ↵w3 2 ZN

2` ,

non-interactively.

– Pi, P3 for i 2 {1, 2} invoke ⇧JSh to generate J·K-shares of ⇡0 (↵wi). Similarly, P1, P2 invoke ⇧JSh

to generate J·K-shares of ⇡0 (↵w3).

//Generation of ⇧ towards P2, P3

– P0, P1, P3 randomly sample a permutation ⇡s.

– P0, P3 compute ⇧ = ⇡s � ⇡1 � ⇡2 locally and invoke ⇧Jmp to send ⇧ to P2.

//Generation of b1 towards P1

– P0, P2, P3 non-interactively sample r1 2 ZN

2` .

– Parties non-interactively generate [r1], and set [�1] = [↵v]� [r1].

– P0, P1, P3 sample z21 2 ZN

2` ; P0, P2, P3 sample z11 2 ZN

2` ; and P0, P1, P2 sample z31 2 ZN

2` , non-

interactively.

– P0, P3 compute x11 = ⇡2(�11 + �12 + z21), and x21 = ⇡1(x11 + z11), where �11,�12 denote two

of the three [·]-shares of �1. In parallel, P0, P1 compute y11 = ⇡2(�13 � z21).

– P0, P3 invoke ⇧Jmp to send x21 to P1, while P0, P1 invoke ⇧Jmp to send y11 to P2.

– P0, P2 compute y21 = ⇡1(y11 � z11), and y31 = ⇡3(y21 + z31).

– P0, P2 invoke ⇧Jmp to send ↵w2 � y31 to P1.

– P1 computes x31 = ⇡2(x21 � z31), and sets b1 = ↵w2 � y31 � x31.

//Generation of b2 towards P2

– P0, P1, P3 non-interactively sample r2 2 ZN

2` .

– Parties non-interactively generate [r2], and set [�2] = [↵v]� [r2].

– P0, P1, P3 sample z22 2 ZN

2` ; P0, P2, P3 sample z12 2 ZN

2` ; and P0, P1, P2 sample z32 2 ZN

2` , non-

interactively.

– P0, P3 compute x12 = ⇡2(�21 + �22 + z22), and x22 = ⇡1(x12 + z12), where �21,�22 denote two

of the three [·]-shares of �2. In parallel, P0, P1 compute y12 = ⇡2(�23 � z22).

– P0, P3 invoke ⇧Jmp to send x22 to P1, while P0, P1 invoke ⇧Jmp to send y12 to P2.

– P0, P1 compute x32 = ⇡3(x22 � z32), and invoke ⇧Jmp to send ↵w1 � x32 to P2.

– P2 computes y22 = ⇡1(y12 � z12), y32 = ⇡3(y22 + z32), and sets b2 = ↵w1 � x32 � y32.

Protocol ⇧Shu✏e

Figure 4.12: Preprocessing phase of secure shu✏e protocol.
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Security of shu✏e ⇡ remains hidden from all parties since each party misses one com-

ponent of ⇡. To ensure correct execution of the computation, observe that each message to

be communicated is held by two parties, and is sent via ⇧Jmp (or its J·K-shares generated via

⇧JSh). Further, all the protocol messages are masked (ri in online and zi in preprocessing),

guaranteeing no information leakage. The formal security proof appears in §4.8.

Communication and round complexity Observe that the online phase involves sending

a message of N` bits towards P1, P2 via ⇧Jmp in a single round of interaction. Since P1, P2

hold the required shares to evaluate the function under consideration, the ⇧Jmp towards P3 can

be deferred. Thus, in applications such as GraphSC that entail multiple shu✏e invocations,

the ⇧Jmp execution towards P3 for the multiple shu✏e instances can be performed in a single

round, where each instance requires communication N` bits. In this way, the amortized online

round complexity of our shu✏e protocol is 1 round and has a communication of 3N` bits. In the

preprocessing phase, observe that generation of J·K-shares of ⇡0 (↵w1) , ⇡0 (↵w2) , ⇡0 (↵w3) requires

a total communication of 3N` bits. Further, generating b1,b2 entails a total communication of

6N` bits. Finally, sending ⇡s � ⇡1 � ⇡2 towards P2 requires communicating N` bits. Thus, the

total communication cost in the preprocessing phase is 10N` bits.

4.6.2 Scatter and gather primitives for GCN evaluation

For better readability, we provide the definitions of Scatter-Gather primitives in cleartext, while

their secure versions can be obtained using the secure protocols for the operations therein.

Recall that the GCN computation in the lth layer during the forward pass is given as H(l) =

g
(l)
⇣
ÂH(l�1)W(l�1)

⌘
, where g

(l)(·) denotes the activation function. H(0) is initialized to X,

and the final output Z = H(2). Although, our goal is to compute H(l) via Scatter-Gather,

we will discuss how H(1) = g
(1)
⇣
ÂXW(0)

⌘
can be computed and define operations within

Scatter-Gather for the same. Computation of H(2) also proceeds analogously. Hence, will omit

the superscript in H(1) and W(0) for ease of presentation.

We begin by describing the data components that are required to be stored at each entry

G[i] in the DAG list G (all in secret shares) to facilitate the computation. For a vertex entry,

G[i].deg stores the degree of the vertex, which also accounts for the self-loop (as defined in D̃)

whereas G[i].deg�
1

2 stores its inverse square root. The i
th row of X (represented as xi), which

denotes the feature vector associated with the i
th vertex, is stored at G[i].x. Note that these

components are 0 if G[i] represents an edge. Additionally, vectors G[i].dt,G[i].agg are used to

store intermediate results. We assume that W is accessible to all nodes in the graph. Given this
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information, the goal of Scatter-Gather is to compute the i
th row hi of matrix H = g

⇣
ÂXW

⌘

and store it at vertex entry G[i].h. The j
th component of hi can be computed as

hi[j] = Hij = g

✓⇣
ÂXW

⌘

ij

◆
= g

 
nX

k=1

Âik (XW)kj

!

= g

 
nX

k=1

Ãik

deg

1

2

i · deg
1

2

k

(XW)kj

!
(4.7)

The matrix operations in Equation (4.7) for computing hi[j] when performed via GraphSC

would involve aggregating (across the various k’s) the j
th component of (xk ·W), scaling the

aggregated value by the degree terms, followed by application of g(·) on the same. Observe that

this aggregation accounts only for the neighbours of node i since Ãik = 0 otherwise. Thus, each

node k can compute
xk ·W

deg

1

2

k

and scatter it across its edges. The node i can then gather these

vectors from its neighbors, scale it using deg
� 1

2

i , and apply g(·) on this vector to generate hi.

In this way, one invocation of Scatter and Gather results in populating G[i].h and accomplishes

the computation of H(1) = g
(1)
⇣
ÂXW(0)

⌘
in a vertex-centric manner. Similarly, Z = H(2) can

also be computed. The formal protocols for Scatter-Gather appear in Fig. 4.13, whose secure

variant can be obtained as described in §4.6.2.1. We remark that although the definitions of

Scatter-Gather have a linear complexity in |V| + |E|, their sub-linear variant can be obtained

using the technique of [179], recalled in §2.6.1.

Scatter(G)

for i = 1 to |V|+ |E| do:

if G[i].isV then

v = (G[i].x) ·W ·(G[i].deg�
1

2 )

else

G[i].dt = v

Gather(G)

for i = 1 to |V|+ |E| do:
if G[i].isV then

G[i].h = g
⇣
(G[i].deg�

1

2 ) · agg
⌘

agg = 0

else

agg = agg + G[i].dt

Figure 4.13: Scatter and Gather to compute H(1) = g
(1)
⇣
ÂXW(0)

⌘
in forward pass.

Recall that in the backward pass, the derivative of the cross-entropy loss with respect to the

weight matrices is computed using the output of the forward pass, Z, as well as the target result

Y for the training data. This is then used to update the weight matrices W(0)
,W(1) via the
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Adam optimizer. We will now showcase how the computation of the derivatives (Equation (4.8),

Equation (4.9)) can be performed e�ciently via GraphSC primitives of Scatter and Gather.

�L

�W(0)
= H(1)TÂ (Z�Y) (4.8)

�L

�W(1)
=
⇣
ÂX

⌘T ⇣
dReLU(In)

K
Â (Z�Y)W(1)T

⌘
(4.9)

Here, In = ÂXW(0), MT denotes the matrix transpose operation, and
J

is the element-

wise multiplication operator. As in the case of the forward pass, we begin by describing the

data components associated with G[i]. Recall that as part of the forward pass, the i
th row of

Z = H(2), denoted as zi is already computed. Let G[i].z denote this component. Similarly,

the i
th row of H(1) as well as In can be made available via the computations performed in the

forward pass. In addition to data components that were a part of forward pass, the i
th row of

Y that corresponds to the label for ith node, can be stored as a data component, G[i].y.

Computing
�L

�W(0)
Note that the computation of Â (Z�Y) in Equation (4.8) can be per-

formed via GraphSC, similar to the forward pass computation. Elaborately, the i
th vertex

computes and scatters v = (G[i].z � G[i].y)G[i].deg�
1

2 over its edges. All the v components

scattered by the neighbours of a node j are then gathered in the node while also accounting

for the scaling factor of G[j].deg�
1

2 to generate the j
th row of Â (Z�Y) stored in G[j].v1.

The Scatter-Gather primitives for computing Â (Z�Y) appear in Fig. 4.14. However, com-

putation of H(1)T
⇣
Â (Z�Y)

⌘
does not render itself well in the message-passing paradigm.

This is because the multiplications performed while computing H(1)T
⇣
Â (Z�Y)

⌘
are inde-

pendent of the structure of the graph, and no longer require the neighbourhood information

(which is otherwise leveraged while defining the Scatter-Gather primitives). Thus, to compute

H(1)T
⇣
Â (Z�Y)

⌘
, we extract the matrices H(1) and Â (Z�Y) from the list representation,

followed by performing matrix multiplication. For this, we proceed as follows: (i) sort G such

that vertex entries appear first, followed by edge entries, and (ii) extract the first |V| entries
of G[i].h,G[i].v1 to generate H(1)

, Â (Z�Y), respectively. Subsequently, we compute H(1)T

followed by multiplication with Â (Z�Y) to generate
�L

�W(0)
.
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Scatter(G)

for i = 1 to |V|+ |E| do:

if G[i].isV then

v1 = G[i].z � G[i].y

v2 = G[i].x

v3 = (G[i].z � G[i].y) ·W(1)T

else

G[i].v1 = v1

G[i].v2 = v2

G[i].v3 = v3

Gather(G)

agg = 0

for i = 1 to |V|+ |E| do:
if G[i].isV then

G[i].v1 =
⇣
G[i].deg�

1

2

⌘
agg1

G[i].v2 =
⇣
G[i].deg�

1

2

⌘
agg2

G[i].v3 = dReLU (G[i].In)
J⇣

G[i].deg�
1

2

⌘
agg3

for j = 1 to 3 do:

aggj = 0

else

for j = 1 to 3 do:

aggj = aggj + G[i].vj

Figure 4.14: Scatter and Gather to compute Â (Z�Y), ÂX, and dReLU (In)
J

Â (Z�Y) in
backward pass.

Computing
�L

�W(1)
With respect to the computation of Equation (4.9), we note that ÂX can

be computed via GraphSC primitives. For this vertex i scatters G[i].x which is gathered in data

component v2 of G. Similarly, Â (Z�Y)W(1)T can be computed via GraphSC by scattering

v = (G[i].z � G[i].y)·W(1)T followed by gathering it in data component v3 of G. Moreover, since

Equation (4.9) requires computation of dReLU(In)
J

Â (Z�Y)W(1)T, after gathering v from

the neighbors, its element-wise multiplication with dReLU (G[i].In) can be performed because

the ith row of In is held with the ith vertex in G. The formal details of Scatter-Gather appear in

Fig. 4.14. Next, to multiply
⇣
ÂX

⌘T
with dReLU(In)

J
Â (Z�Y)W(1)T, we proceed as done

in the previous case, where we extract the matrices from their list representations, followed by

matrix multiplication. This computation is performed outside GraphSC due to similar reasons

as provided for the case of
�L

�W(0)
.

4.6.2.1 Securely realizing Scatter-Gather

The secure variants of the Scatter-Gather primitives can be obtained using the secure protocols

for the operations therein. We note that the primitives are defined such that the number of

iterations in each looping construct is dependent on a publicly known value (|V| + |E| in this
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case). Further, all the private values, such as the entries in G and other intermediate variables

used in Scatter-Gather, are operated on as secret shares. The primitives additionally have

branching statements such as the if-else construct. We rely on the ⇧Sel primitive (see Table 2.2)

to obliviously evaluate only those steps within the correct branch of the construct. More

specifically, every assignment operation within both branches is evaluated via ⇧Sel. However,

based on the branch condition provided as input to ⇧Sel, only those assignment statements

where the condition is met are updated, while the others will remain unchanged.

4.6.3 Generation of shares of G

Given J·K-shares of A,X and Y, generating G, entails generating J·K-shares of (i) G[i].isV to

denote if the i
th tuple is a vertex or an edge, (ii) G[i].deg and G[i].deg�

1

2 to store the degree

and inverse degree, and (iii) G[i].dt to store the data elements, some of which comprise a row

of the feature matrix, a row of Y, intermediate results, etc. For this, we proceed as follows.

When the i
th entry is a vertex, we set JG[i].isVK = J1K, JG[i].xK as the i

th row of X, JG[i].degK
and JG[i].deg� 1

2 K as the (i, i)th entry of D̃ and D̃� 1

2 , respectively, while remaining G[i].dt are

initialized to 0 vectors. Since there may only be |E| edges but JAK consists of |V|2 possibilities,
the challenge arises in generating their corresponding entries in G while leaking no information.

For this, we generate a list JG0K comprising of all possible edges (i.e. every element in A). We

set JG0[i].isVK = JAijK, and all other data components to J0K. To extract the valid |E| edges
from |V|2 entries in G

0, we sort JG0K based on the values in JisVK in descending order, extract

the first |E| entries, and append these to JGK. Since, isV should be 1 only for vertices, values of

JisVK are set 1� JisVK for edges before appending them to JGK.

4.7 Benchmarks

Benchmark environment and parameters Benchmarks are performed over LAN using

Google Cloud instances with 2.3 GHz Intel Xeon E5 v3 (Haswell) processors, 64vCPUs, 120GB

of RAM memory and a bandwidth of 16Gbps. We implement all protocols in Python. We

use the Crypto library for AES and hashlib for generating SHA256 hash. We note that our

code is developed for benchmarking, is not optimized for industry-grade use, and a C++-

based implementation can give better performance. We consider run time for one epoch as a

benchmark parameter for e�ciency comparison and report the online and preprocessing cost.

However, when reporting accuracy, we consider a maximum of 200 epochs and stop the training

earlier if the test loss does not change for 10 consecutive epochs.
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4.7.1 Comparison of primitives

The overall performance of Entrada is heavily dependent on the underlying primitives. Hence, we

first analyze the same to showcase the e�ciency and accuracy improvements brought in by the

new primitives in comparison to the ones in the literature. For a fair comparison, all algorithms

are realized using the MPC of Tetrad. Since our improvements are in exponentiation and

division, which are also brought in by our improved double bit injection and prefix OR protocols

in addition to other optimizations described in §7.3.4, we focus on comparing exponentiation

with the protocol of [126], and division with GC-based division of Tetrad, in Table 4.3. We also

report the relative error in the accuracy of the secure protocols with respect to floating-point

operations. We note that for both, exponentiation and division, our e�ciency improvements

come without compromising accuracy.

Operation Reference
Communication(KB) Run time(ms) Relative

Error (%)

Preprocessing online Preprocessing Online

Exp
[126] 3.91 0.91 8.21 15.29 0.24

Entrada 1.33 0.66 5.47 11.90 0.24

Div
Tetrad [138] 11028.61 125.44 1704.09 1665.66 3.72

Entrada 2.94 1.99 48.57 136.45 3.72

Table 4.3: Comparison of primitives.

4.7.2 GCN

Since the secure computation framework relies on fixed-point arithmetic (FPA), which is known

to have lesser accuracy than the floating-point counterpart, we first demonstrate how much is

the accuracy loss of the GCN in moving from cleartext floating-point to FPA. Moreover, due

to operations such as truncation, and the approximations used within the secure protocols

for exponentiation, division, and inverse square root, the accuracy of the secure GCN model

may be a↵ected. Hence, we analyze the accuracy of secure GCN (FPA) and demonstrate

that it is on par with the cleartext (FPA) variant and that it improves in comparison to

Tetrad. We also showcase that Entrada outperforms Tetrad in terms of e�ciency. Note that

we do not compare against the protocol of [208] since it does not consider the GCN of [133],

and only provides support for inference for a relatively old graph neural network. Moreover,

[208] operates in a 3PC setting and provides semi-honest security (with only privacy against a

malicious adversary), as opposed to our setting where we consider 4PC for e�ciency reasons
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and attain stronger security notions of fairness/robustness. Finally, we showcase improvements

brought in via GraphSC.

Dataset We use the Cora dataset to benchmark the performance. It contains 2708 documents

that are treated as nodes, and 4732 citation links between documents, that are treated as

undirected edges. Each document has a bag of words which is treated as the feature vector

associated with the node. The documents are considered to be classified into seven classes (or

labels).

Accuracy We report the accuracy of GCN using the Cora dataset in Table 4.4. A pictorial

representation of variation in accuracy and test loss with the number of epochs appears in

Fig. 4.15. As evident from Table 4.4, moving from cleartext floating-point to cleartext FPA

representation witnesses a slight drop in accuracy. Keeping the cleartext FPA accuracy as the

benchmark for the secure variants, we observe that our protocol loses out on accuracy by only

0.4%. This is very small compared to the loss in accuracy witnessed by Tetrad, which is around

5.6%. On the contrary, realizing secure GCN via SGD in Terad results in an accuracy which is

76.6%. We note that the drop in accuracy in Tetrad while using Adam stems due to the use of

the approximate softmax function (ASM), which degrades the accuracy of the overall model.

Model
Cleartext Secure

Float Fixed Tetrad (fixed) Entrada (fixed)

GCN [133] 80.2% 79.7% 74.1% 79.3%

Table 4.4: GCN accuracy on Cora using Adam—Tetrad is enhanced with inverse square root
protocol to support Adam.

To showcase improvement brought in by Entrada over Tetrad, Table 4.5 reports impact on

accuracy when sequentially replacing each of the following primitives—division, square root,

exponentiation—in Tetrad with the newly designed ones. Elaborately, we begin with reporting

the accuracy of GCN via Tetrad (version v1), which relies on GC-based division, ASM, and the

SGD optimizer. In the next version, v2, we replace the GC-based division with our division

protocol. As noted earlier in Table 4.3, our division protocol has the same relative error as the

GC-based division of Tetrad and hence does not impact the accuracy of GCN. This is followed

by version v3, where ASM in v2 is replaced by the accurate computation of softmax, resulting

in improved accuracy. Finally, in version v4, which constitutes our framework Entrada, SGD in

v3 is replaced with Adam optimizer, which drastically improves accuracy by over 2%.
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(a) Test accuracy.
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(b) Test accuracy.
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(c) Test loss.
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(d) Test loss.

Figure 4.15: Variation in GCN test accuracy and loss with number of epochs on Cora dataset.
float and fixed denote cleartext variants. (a),(c) use Adam and (b),(d) use SGD.

Version Accuracy
v1:= Tetrad (GC division + ASM + SGD) 76.6%
v2:= v1 - GC division + our division 76.6%
v3:= v2 - ASM + accurate softmax 77.4%
v4:= Entrada (v3 - SGD + Adam optimizer ) 79.3%

Table 4.5: GCN accuracy improvements (Cora dataset) when replacing primitives in Tetrad in
a step-by-step manner.

E�ciency We compare the e�ciency of evaluating GCN via Entrada and Tetrad. We first

report the performance of Entrada for GCN inference. Note that the performance of Entrada

is on par with Tetrad’s, since inference does not require any of the newly designed primitives.

Specifically, it has a run time of 2.4 seconds and 5.6 seconds in the preprocessing and online
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phase, respectively, when evaluated on the Cora dataset.

With respect to GCN training, recall that Entrada is designed to support the Adam op-

timizer, and to also leverage the GraphSC paradigm to yield an e�cient solution. However,

Entrada can be modified to use SGD instead of the Adam optimizer. One can also avoid reliance

on GraphSC, depending on the application scenario. Further, recall as discussed in §4.7.2, that
Tetrad originally only supports SGD evaluation. Hence, to provide a fair comparison, we also

report the performance Entrada when using only the SGD optimizer. In fact, we begin by

analyzing Entrada’s performance in comparison to Tetrad, while excluding GraphSC. As seen

from Table 4.6, Entrada (SGD, w/o GraphSC) outperforms Tetrad in training. The overhead in

Tetrad can be mainly attributed to the use of the GC. Entrada (SGD, w/o GraphSC) not only

has better e�ciency, but also outperforms Tetrad in terms of accuracy (see v3 in Table 4.5).

To further improve the accuracy, we switch to the Adam optimizer, which results in Entrada

having an increased online time in comparison to Tetrad. This is due to its reliance on addi-

tional operations required for supporting Adam. Interestingly, the overall e�ciency of Entrada

is still better than Tetrad’s by a factor of around 30⇥. The use of GraphSC helps to further

improve the e�ciency of GCN training, as evident from Table 4.6.

Variant Preprocessing Online

Tetrad 7285.076 121.577

Entrada (SGD, w/o GraphSC) 14.988 71.578

Entrada (w/o GraphSC) 30.915 211.160

Entrada (SGD) 1.269 29.601

Entrada 19.572 189.885

Table 4.6: Comparison of GCN performance (training).

GCN evaluation via GraphSC Observe that it is only the training of GCNs that leverages

the GraphSC paradigm. One may be misled to believe that performing inference via GraphSC

may also lead to improved e�ciency. However, the justification for why this is not the case is as

follows. Recall that inference is the forward pass sans the Softmax, which comprises matrix mul-

tiplications. Hence, relying on the matrix representation allows performing inference in 1 round

of interaction. This is because the dot products that are required for matrix multiplication can

all be performed in parallel and require just 1 round of computation. On the contrary, this

round-e�cient approach comes at the cost of prohibitively high memory, as required to store

the underlying adjacency matrix. For instance, operating on the Yelp dataset (see §4.7.3) would
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require 50GB of memory at a processor when executing the MPC protocol for matrix multi-

plication. This being the case, leveraging the multiprocessor setting to enhance the e�ciency

by performing the computations in parallel via m processors would require m⇥ 50GB memory

which is prohibitively high. In fact, we observe that for the system configuration specified in

the benchmarks, evaluating the GCN under the matrix representation for even two processors

runs into insu�cient memory issues. Thus, to capitalize on the multiprocessor setting, it is

important to have a memory-e�cient representation of the underlying graph. Moreover, the

representation must also facilitate leveraging the multiprocessor setting. Since the GraphSC

paradigm satisfies both the above requirements, we can rely on the same. That is, operating

over the list representation of the graph as required by GraphSC only needs 47MB of memory

at each processor when executing the MPC protocol. This amounts to a total of 3GB for the

64 vCPUs considered in the current setting. Further, GraphSC provides a way to translate

matrix operations into Scatter-Gather operations on the list that are designed to leverage the

multiprocessor setting. However, unlike the matrix representation that allows matrix multipli-

cations to be performed in a single round, the GraphSC framework requires O(log(|V| + |E|))
number of rounds. Thus, performing inference via GraphSC would incur additional overhead

in comparison to directly operating on the matrices. On the contrary, training witnesses im-

provements via GraphSC (see Table 4.6, Table 4.10). The reason for the same is as follows.

Recall that training comprises invocations of Softmax and the backward pass in addition to

the steps of inference. The improvements brought in by the multiprocessor setting of GraphSC

in the computation of Softmax significantly overpower the ine�ciencies introduced during the

inference phase. This is corroborated by the numbers reported in Table 4.6, Table 4.10.

GCN evaluation with 3PC Depending on the application scenario, one may wish to eval-

uate GCNs in the 3PC setting. Hence, for completeness, we also showcase the practicality of

GCN evaluation in the 3PC setting by relying on the state-of-the-art robust framework of [136].

For this, we adapt the primitives designed in this chapter (exponentiation and inverse square

root) as well as rely on the primitives from Chapter 3 (prefix OR, division and shu✏e) to en-

hance the 3PC of [136] to support GCN evaluation. The performance is reported in Table 4.7.

As expected, observe that Entrada fares better than 3PC.

4.7.3 Fraud detection

We use Entrada to securely realize the application of fraud detection via GCN from the work

of [223] and [158], where the former performs fraud detection in online review platforms us-
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Variant Preprocessing (s) Online (s)

Inference 4.16 7.88

Training w/ Adam w/o GraphSC 57.97 277.04

Training w/ Adam w/ GraphSC 29.60 240.23

Table 4.7: GCN performance in 3PC.

ing the dataset from Tencent App Store, and the latter detects fraudulent accounts in online

payment network of Alipay. Given the unavailability of the datasets considered in each of the

works, we benchmark their performance on alternative datasets, i.e. [223] is evaluated on the

Yelp dataset while [158] is evaluated on the DBLP dataset. As done for the case of vanilla

GCN, we first evaluate the accuracy loss, followed by analyzing the performance of the secure

protocols. Note that our analysis of these alternative datasets is meant to establish the relative

accuracy/performance of Entrada in comparison to the cleartext computation. We believe sim-

ilar accuracy/performance trends will hold true when Entrada is evaluated on the actual fraud

detection datasets. Further, a comparison with Tetrad is omitted since §4.7.2 establishes that

we outperform it.

Dataset The work of [223] is evaluated on the Yelp dataset that contains 45,954 reviews, each

of which is treated as a node. An edge between two nodes indicates that the corresponding

reviews were posted by the same user, and there exist 3,846,979 edges. Each node/review

is classified as fake or real. Since the work of [158] operates on a heterogeneous graph, we

consider the DBLP dataset that is known to be similar to the original dataset of Alipay since

both consider graphs having heterogeneous edges (i.e., multiple edges between the same two

nodes may indicate di↵erent relations between these nodes). The DBLP dataset consists of

14,328 papers that are treated as nodes. There are three di↵erent types of edges, each of

which relates two papers (nodes) if they– (i) appear in the same conference, (ii) have the same

authors, and (iii) use common terms. There are 1,70,794 edges in total. Further, each node

has an associated bag of words that are treated as its feature vector. Each paper/node is

classified into 4 di↵erent classes (labels) that include database, data mining, machine learning,

and information retrieval.

Accuracy and e�ciency comparison The results appear in Table 4.8, Table 4.9 and

Table 4.10. For accuracy, we observe similar trends as seen in the case of vanilla GCN, where

the accuracy of secure variant is comparable to that of cleartext. Regarding e�ciency, we
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observe up to 4⇥ gain when adapting GCNs to work with GraphSC, thereby corroborating our

claim of witnessing e�ciency improvements when using GraphSC.

Algorithm Metric
Cleartext Secure variant

Float Fixed Entrada (Fixed)

[223]

Recall 0.513 0.507 0.507

Precision 0.681 0.676 0.669

F1 0.585 0.579 0.576

[158] Accuracy 68.5% 67.1% 66.3%

Table 4.8: Accuracy comparison of fraud detection algorithms.

Algorithm Preprocessing Online

[223] 34.574 73.678

[158] 21.350 55.511

Table 4.9: Fraud detection algorithms on Entrada (inference).

Algorithm Preprocessing Online

[223] (w/o GraphSC) 131.433 686.272

[158] (w/o GraphSC) 73.329 350.468

[223] 32.753 431.398

[158] 32.756 425.707

Table 4.10: Fraud detection algorithms on Entrada (training).

4.8 Security proofs

The simulation-based security proofs for the designed primitives are presented in this sec-

tion. At a high level, observe that the designed protocols rely on invoking protocols given in

Tetrad [138] whose security was established therein in the standard real-world/ideal-world simu-

lation paradigm. Hence, the security of the designed protocols follows directly from the security

of the underlying protocols of Tetrad. We let the following denote the ideal functionalities for

the protocols provided by Tetrad.
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1. FMul-Tr: This functionality takes as input J·K-shares of x, y and outputs J·K-shares of z = x·y
by truncated by f bits using probabilistic truncation.

2. FA2B: This functionality takes as input J·K-shares of a value x, and outputs J·KB-shares
for its equivalent Boolean representation.

3. FB2A: This functionality takes as input J·KB-shares of the Boolean representation of a

value x, and outputs J·K-shares for its equivalent arithmetic representation.

4. FBitInj: This functionality takes as input J·K-shares of x and J·KB-shares of a bit b and

outputs J·K-shares of b · x.

5. FSel: This functionality takes as input J·K-shares of x0, x1 and J·KB-shares of a bit b, and

outputs J·K-shares of xb.

We use the simulation strategy as described in Tetrad [138], where we simulate the end-

to-end computation of a function f for which the designed primitives serve as building blocks.

The simulation begins with the simulator S emulating the shared-key setup FSetup functionality

(Fig. 2.5) and giving the respective keys to the adversary A. This is followed by the input

sharing phase in which S extracts the input of A, using the known keys, and sets the inputs of

the honest parties to be 0 (see simulator for input sharing in [138]). This allows S to have access

to the shares of the honest parties. Since S knows all the inputs, it can honestly carry out the

computation and compute all the intermediate values as required for simulating the view of A.

S proceeds to simulate the various sub-protocols required to compute f in topological order

using the aforementioned values. Observe that since S knows A’s inputs, it can detect any

malicious behaviour carried out by A. Finally, depending on A’s behaviour, S invokes the ideal

functionality for the function f with A’s input, obtains the function output and forwards the

same to A during the output reconstruction phase. For simplicity of presentation, we stick to a

modular approach of providing simulation steps for each of the (newly designed) sub-protocols,

as done in [138]. Note that carrying out these simulation steps in respective topological order

(starting from FSetup, the input sharing phase, all the intermediate sub-protocols, and output

reconstruction) results in simulating the computation of the desired function f .
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Exponentiation:

The ideal functionalities for exponentiation appears in Fig. 4.16.

FExp interacts with parties in P and ideal world adversary S, and proceeds as follows.

– Receive as input the J·K-shares of x from all parties.

– Reconstruct x using the shares of honest parties.

– Split x into its integer part t and the fractional part r such that x = t+ r.

– Compute er using Taylor series approximation up to ✓ terms.

– Let {ti}k�1
i=0 denote the bits in |t| (absolute value of t). Compute the following using probabilistic

truncation after multiplication.

et =

8
<

:

Qk�2
j=f

etj ·2
j�f

, if x � 0
Qk�2

j=f
e�tj ·2j�f

, otherwise

– Compute g = ex = et · er.

– Generate J·K-shares of g and send (Output, JgKs) to Ps 2 P.

Functionality FExp

Figure 4.16: Ideal functionality for exponentiation.

Lemma 4.1 (Security) Protocol ⇧Exp (Fig. 4.3) securely realizes FExp (Fig. 4.16) in compu-

tational 4PC setting against a malicious adversary S in (FA2B,FBitInj,FSel,FMul-Tr)-hybrid model.

Proof: The simulator for⇧Exp appears in Fig. 4.17. The simulator emulates FA2B,FBitInj,FSel,FMul-Tr

in the order in which they appear in the protocol. In this way, the simulation proceeds by sim-

ulating the steps of the underlying protocols. Note that since the simulator carries out the

protocol steps honestly, A’s view comprises only random values received from the simulator.

This is indistinguishable from its view in the real world, where it sees random values.
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Let P ? 2 P be the party corrupted by A. SExp honestly executes the protocol steps and proceeds

as follows.

– Generate J·K-shares of the integer part of x, denoted as t, on behalf of the honest parties.

– Set JrK = JxK� JtK on behalf of the honest parties.

– Emulate FA2B on input JtK and output JtKB to A.

– Set JsKB = Jtk�1KB on behalf of the honest parties.

– Compute JtiKB = JtiKB � JsKB for i = 0 to k� 2 on behalf of the honest parties.

– for j = f to k� 2 do:

� Emulate FBitInj on inputs JtjKB, e2
j�f � 1 and output Je0jK to A.

� Emulate F2�bitInj on inputs JsKB, JtjKB, e�2j�f � e2
j�f

and output JvjK to A. Compute JejK =

Je0jK + JvjK + 1 on behalf of the honest parties.

– Set JdK = Jef K on behalf of the honest parties.

– For j = f + 1 to k� 2: emulate FMul-Tr on inputs JdK, JejK, f and output JdK to A.

– Emulate FSel on inputs 1, 1/e, JsKB and output JzK to A.

– Emulate FMul-Tr on inputs JdK, JzK, f and output JdK to A.

– Set Jb0K = 1, Jb1K = JrK on behalf of teh honest parties.

– Emulate FMul-Tr on inputs Jbi�1K, Jb1K, f and output JbiK to A for i = 2 to ✓.

– Set JbK =
P✓

i=0
JbiK
i! on behalf of the honest parties.

– Emulate FMul-Tr on inputs JdK, JbK, f and output JgK to A.

Simulator SExp

Figure 4.17: Simulator for ⇧Exp.

2

Inverse square root:

The ideal functionalities for ⇧PreInvSqrt and inverse square root appear in Fig. 4.18, Fig. 4.19,

respectively.
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FPreInvSqrt interacts with parties in P and ideal world adversary S, and proceeds as follows.

– Receive as input the J·K-shares of a from all parties.

– Reconstruct a using the shares of honest parties.

– Compute a0 = a · v, which is a normalized to lie in (0.25,�.5] in fixed-point arithmetic represen-

tation as follows using probabilistic truncation when performing multiplication.

� Compute the scaling factor v = 2�(e+1), where the most significant non-zero bit of a appears

at index e+ f in the bit representation of a, (with v having f bit precision).

� Compute a0 = a · v.
� Set v0 = 2�(e+1)/2.

– Generate J·K-shares of a0, v0 and send (Output, Ja0Ks, Jv0Ks) to Ps 2 P.

Functionality FPreInvSqrt

Figure 4.18: Ideal functionality for ⇧PreInvSqrt.

FInvSqrt interacts with parties in P and ideal world adversary S, and proceeds as follows.

– Receive as input the J·K-shares of a from all parties.

– Reconstruct a using the shares of honest parties.

– Normalize a to a0 2 (0.25, 0.5] and compute square root of the scaling factor v0 as described in

Fig. 4.18.

– Compute y0 = 4.63887a02�5.77789a0+3.14736 and y = y0 ·v0 using probabilistic truncation after

multiplication.

– Generate J·K-shares of y and send (Output, JyKs) to Ps 2 P.

Functionality FInvSqrt

Figure 4.19: Ideal functionality for inverse square root.

Lemma 4.2 (Security) Protocol ⇧PreInvSqrt (Fig. 4.4) securely realizes FPreInvSqrt (Fig. 4.18) in

the computational 4PC setting against a malicious adversary S in the (FA2B,FB2A,FPreOr,FMul-Tr,

FSel)-hybrid model.

Proof: The simulator for ⇧PreInvSqrt appears in Fig. 4.20. The simulator emulates FA2B,FB2A,

FPreOr,FMul-Tr,FSel in the order in which they appear in the protocol. In this way, the simulation

proceeds by simulating the steps of the underlying protocols. Note that since the simulator

carries out the protocol steps honestly, A’s view comprises only random values received from
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the simulator. This is indistinguishable from its view in the real world, where it sees random

values.

Let P ? 2 P be the party corrupted by A. SPreInvSqrt honestly executes the protocol steps and

proceeds as follows.

– Emulate FA2B on input JaK and output JaKB to A.

– Emulate FPreOr on input Jak�2KB, . . . , Ja0KB and outputs Jck�2KB, . . . , Jc0KB toA and set Jck�1KB =

J0KB and Jvk�1KB = Jck�1KB on behalf of the honest parties.

– Set JviKB = JciKB � Jci+1KB for i = k� 2 to 1 on behalf of the honest parties.

– Emulate FB2A on input {JviK}0i=2f�1 and output JvK to A.

– Emulate FMul-Tr on inputs JaK, JvK, f and output Ja0K to A.

– Set k0 = k

2 , f
0 = f

2 , c0 = 2
f+1

2 , c1 = 2
f

2 on behalf of the honest parties.

– Compute Jv0iK
B = Jv2iKB � Jv2i+1KB for i = 0 to k0 on behalf of the honest parties.

– Compute JrKB = Jv1KB � Jv3KB � Jv5KB � . . . Jvk�1KB on behalf of the honest parties

– Emulate FB2A on inputs {Jv0iK
B}0i=2f0�1 and output Jv0K to A.

– Emulate FSel on inputs c0, c1, JrK and output JxK to A.

– Emulate FMul on inputs JxK, JvK and output Jv0K to A.

Simulator SPreInvSqrt

Figure 4.20: Simulator for ⇧PreInvSqrt.

2

Lemma 4.3 (Security) Protocol ⇧InvSqrt (Fig. 4.5) securely realizes FInvSqrt (Fig. 4.19) in the

computational 4PC setting against a malicious adversary S in the (FInvSqrt,FMul-Tr)-hybrid model.

Proof: The simulator for ⇧InvSqrt appears in Fig. 4.21.

Let P ? 2 P be the party corrupted by A. SInvSqrt honestly executes the protocol steps and proceeds

as follows.

– Emulate FInvSqrt on input JaK and output Ja0K, Jv0K to A.

– Emulate FMul-Tr on inputs Ja0K, Ja0K, f and output Jy1K to A.

– Set Jy0K = Ja0K and compute JyK = 4.63887Jy1K � 5.77789Jy0K + 3.14736 on behalf of honest

parties.

Simulator SInvSqrt

Figure 4.21: Simulator for ⇧InvSqrt.

The simulator begins by emulating FPreInvSqrt. Following this, it emulates FMul-Tr as per

its invocation in the real-world protocol. In this way, the simulation proceeds by simulating
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the steps of the underlying protocols. Note that since the simulator carries out the protocol

steps honestly, A’s view comprises only random values received from the simulator. This is

indistinguishable from its view in the real world, where it sees random values. 2

Lemma 4.4 (Security) The shu✏e protocol, ⇧Shu✏e (Fig. 4.12, Fig. 4.11) securely realizes

the functionality FShu✏e (Fig. 4.10) against a malicious adversary that corrupts at most one

party in P, in the FSetup-hybrid model.

Proof: Let S represent the ideal-world adversary and A represent the adversary in the real

world. On a high level, S starts by simulating FSetup, where common keys are established with

A. These keys are used to sample the common randomness needed throughout the protocol.

As a result, S is aware of all the randomness that A uses (more precisely, S is aware of shares

of ↵v , and �v held by A) and can extract the input from A as well as to confirm the correctness

of messages sent by A. After this, it simulates the steps of the shu✏e protocol. Since P0 is

active only in the preprocessing phase and it possesses all the input-independent data, security

against P0 follows easily. The simulation steps for a corrupt P2 are provided below, where the

corresponding simulator is denoted as SP2 . The simulation for a corrupt P1 follows along the

same lines as P2.

SP2 proceeds as follows.

Preprocessing:

– Using the keys established via FSetup, sample the common randomness with A.

– Simulate the steps of ⇧JSh acting as the sender together with A to generate J·K-shares of

⇡0 (↵wi) for i 2 {2, 3}.
– Simulate the steps of ⇧JSh with A as the receiver to generate J·K-shares of ⇡0 (↵w1).

Simulation of generation of b1 towards P1

– Sample a random ⇡s, ⇡2 and compute ⇧ = ⇡s � ⇡1 � ⇡2, where ⇡1 is held by A. Simulate the

steps of ⇧JSh acting as the sender to send ⇧ to A.

– Sample a random z21 2 ZN

2` and compute y11 = ⇡2(�13 � z21) as per the protocol. Simulate

steps of ⇧Jmp acting as the sender to send y11 to A.

– Compute y21 = ⇡1(y11 � z11) and y31 = ⇡3(y21 + z31) as per the protocol. Simulate steps of

⇧Jmp acting as the sender together with A to send ↵w2 � y31 to P1.

Simulation of generation of b2 towards P2

– Sample a random z22 2 ZN

2` and compute y12 = ⇡2(�23 � z22) as per the protocol. Simulate

steps of ⇧Jmp acting as the sender to send y12 to A.
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– Compute x32 = ⇡3(x22 � z32) as per the protocol. Sample a random ↵w1 2 ZN

2` and simulate

steps of ⇧Jmp acting as the sender to send ↵w1 � x32 to A.

Online:

– Sample a random r2 2 ZN

2` and compute a2 = ⇡2 (�v + r2). Simulate the steps of ⇧Jmp acting

as the sender to send a2 to A.

– Compute a1 = ⇡s (⇡1 (⇡2 (�v + r1))) as per the protocol, and simulate steps of ⇧Jmp acting as

the sender together with A to send a1 to P1.

– Compute �w as per the protocol, and simulate steps of ⇧Jmp acting as the sender together

with A to send �w to P3.

Observe that the messages received by A in the real-world comprise of the random a2 in

the online phase. In the preprocessing phase, P2 receives a random permutation ⇧, and y11,

y12, ↵w1 � x32 which come from a uniform random distribution. Observe that in the above

simulation, these messages received by A continue to come from a uniform distribution. This

is because each of these messages is generated by using randomness sampled from a uniform

distribution by SP2 . Hence, the real-world and ideal world views for A are indistinguishable.

The simulation steps for a corrupt P3 are provided below. SP3 proceeds as follows.

Preprocessing:

– Using the keys established via FSetup, sample the common randomness with A.

– Simulate the steps of ⇧JSh acting as the sender together with A to generate J·K-shares of

⇡0 (↵wi) for i 2 {1, 2}.
– Simulate the steps of ⇧JSh with A as the receiver to generate J·K-shares of ⇡0 (↵w3).

Simulation of generation of ⇧ towards P2

– Compute ⇧ = ⇡s �⇡1 �⇡2 as per the protocol. Simulate the steps of ⇧Jmp acting as the sender

together wit A to send ⇧ to P1.

Simulation of generation of b1 towards P1

– Compute x21 = ⇡1(x11 + z11) as per the protocol. Simulate steps of ⇧Jmp acting as the sender

along with A to send x21 to P1.

Simulation of generation of b2 towards P2

– Compute x22 = ⇡1(x12 + z12) as per the protocol. Simulate steps of ⇧Jmp acting as the sender

along with A to send x22 to P1.
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Online:

– Compute a1 = ⇡s (⇡1 (⇡2 (�v + r1))) as per the protocol, and simulate steps of ⇧Jmp acting as

the sender together with A to send a1 to P1.

– Compute a2 = ⇡2 (�v + r2) as per the protocol, and simulate steps of ⇧Jmp acting as the other

sender together with A to send a2 to P2.

– Compute �w as per the protocol, and simulate steps of ⇧Jmp acting as the sender to send �w

to A.

Observe that the messages received by A in the real-world comprise of the random �w in the

online phase. In the preprocessing phase, P3 does not receive any values. Observe that in the

above simulation, these messages received by A continue to come from a uniform distribution.

This is because each of these messages is generated by using randomness sampled from a uniform

distribution by SP3 . Hence, the real-world and ideal world views for A are indistinguishable.

2
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Chapter 5

Secure Dark Pools

This chapter discusses (1,1)-FaF secure 5-party computation (5PC) protocols that consider one

malicious and one semi-honest corruption and constitutes the optimal setting for attaining an

honest majority. We then discuss the application of a secure dark pool which is realized using

the (1,1)-FaF secure 5PC protocols. The results in this chapter have led to a publication at

ACM CCS 2022 [137].

5.1 Overview

The recent work of [5] identified the shortcomings of traditional MPC and defined a Friends-

and-Foes (FaF) security notion to address the same. We showcase the need for FaF security in

real-world applications such as dark pools. This subsequently necessitates designing concretely

e�cient FaF-secure protocols. Towards this, keeping e�ciency at the centre stage, we design

ring-based FaF-secure MPC protocols in the small-party honest-majority setting. Specifically,

we provide (1,1)-FaF secure 5PC protocols that consider one malicious and one semi-honest

corruption and constitutes the optimal setting for attaining an honest majority. To facilitate

having FaF-secure variants for several applications, we design a variety of building blocks opti-

mized for our FaF setting. The practicality of the designed (1,1)-FaF secure 5PC framework is

showcased via the application of dark pools, where not only do our protocols improve in terms of

security guarantees provided but also in terms of e�ciency over the existing traditionally secure

protocols for the same. This improvement is witnessed as a gain of up to 62⇥ in throughput

compared to the existing ones. Finally, to demonstrate the versatility of our framework, we

also benchmark popular deep neural networks. Detailed results in this chapter are as follows.
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(1, 1)-FaF secure 5PC

Departing from traditionally secure MPC protocols providing GOD, we design GOD protocols

in the FaF-secure model. Towards this, with e�ciency in mind, we work over the ring Z2` , both

arithmetic and Boolean (` = 1) and design (1,1)-FaF secure 5PC protocols. The protocols are

cast in the preprocessing model since it o✏oads heavy input-independent computations to a

preprocessing phase, resulting in a fast input-dependent online phase. The highlight here is the

multiplication which requires—(i) just three parties to be online for most of the computation

and (ii) requires one round (amortized) and eight ring elements of communication in the online

phase. The e�ciency and resource management (involvement of only 3 parties for most of

the computation) of the multiplication results in a concretely e�cient 5PC framework. We

concretely showcase the benefit of having a reduced number of online parties over a naive

solution (all parties online) as well as the traditional (5, 2) maliciously secure protocol.

Building blocks and generality

We resort to a modular approach to design various building blocks, as shown in Fig. 5.1,

where protocols in each layer build on those in the previous layers. Layer 0 forms the core

MPC, with layers above it providing the building blocks. This constitutes our generic and

comprehensive framework since it provides support for a wide range of building blocks that

su�ce for various applications. While these building blocks have been well studied in the

literature, our contribution lies in designing and optimizing these for the 5PC (1,1)-FaF setting.

Figure 5.1: Designed (1, 1) FaF-secure 5PC framework.

The designed building blocks have been extensively used in realizing privacy-preserving

machine learning (PPML) [49, 193, 50, 38, 136, 173, 174], albeit in the traditional security

model. Since PPML in itself is suitable for a wide range of application scenarios, we demonstrate

the versatility and practicality of the designed (1,1)-FaF secure 5PC by also considering PPML
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as another application. For this, we benchmark the performance of the designed protocols for

secure inference using popular deep neural networks such as LeNet [147] and VGG16 [213].

Secure dark pools

Although secure dark pools have been considered in the traditional MPC setting, we design

improved protocols for the same in the (1, 1)-FaF setting for 5PC. We optimize the continuous

double auction (CDA) and volume-based matching algorithms. We identify several aspects of

the matching algorithms that can be performed in parallel, which improves the e�ciency of the

designed protocols. We benchmark the performance of these secure matching algorithms and

observe a throughput improvement of up to 62⇥ in comparison to [40].

5.2 Related work

The work of [5] focuses on extending the standard security notion of MPC to the FaF-setting.

In this regard, they provide both, a full-security as well as fairness variants in this new setting.

They further provide a detailed investigation of various feasibility results and limitations in the

FaF-setting. The (1,1)-FaF secure 5PC protocol designed in this chapter forms the first concrete

instantiation of a FaF-secure protocol, particularly as the optimal case for an honest-majority

setting for a small number of parties. We, therefore, next discuss relevant secret sharing-based

MPC works that provide GOD in a small-party setting under the traditional security model.

A concretely e�cient protocol for achieving GOD was provided in [136], both for 3PC and

4PC setting, which improved over the 4PC of [38] and the 3PC of [30]. Note that [38], in turn,

improved upon the GOD protocols in [91]. The work in [61] proposed 4PC protocols on par with

[136], albeit with the security of private robustness. However, the security guarantees of both

SWIFT and [61] are known to be theoretically equivalent. The recent work of [138] provides

an improved multiplication protocol over [136] in the 4PC setting. The improvement is seen

in the preprocessing phase, where [138] requires only 2 ring elements as opposed to 3. While

there are no protocols explicitly designed for 5PC that attain GOD, [31] provides protocols for

the n-party setting, from which a 5PC protocol can be derived. The work of [37] attains GOD

in the 5PC setting, albeit relying on garbled circuits. With respect to the primitives, note

that these have been extensively studied in the literature and our contribution lies in adapting

these for the FaF setting, while incorporating improvements wherever possible. The relevant

literature with respect to the primitives appears in §3.2, §4.2.

Jump to Contents 148



5.3 Preliminaries

5.3.1 System model

We design protocols that comprise five parties P = {P1, P2, . . . , P5} that are connected via

pairwise private and authentic channels in a synchronous network. Our protocols are FaF-

secure with a static, malicious probabilistic polynomial time (PPT) adversary that can corrupt

up to one party, and a di↵erent semi-honest adversary that can corrupt at most one other party.

The set of computing parties P may be equivalently represented as P = {Pi, Pj, Pk, Pl, Pm} for

ease of presentation.

5.3.2 Joint message passing (Jmp)

This primitive enables two parties to send a common message to a third party such that the

recipient either receives the correct message or in case of an inconsistency in the received

messages, a trusted third party (TTP) is identified [136]. The protocol involves one sender

sending the value, while the other sending the hash to the receiver, who then compares the

received values; in case of an inconsistency, the parties proceed to identify a TTP, who then

completes the computation of MPC on the clear after receiving inputs from the parties. As

opposed to the protocol of SWIFT [136], we cannot use TTP in the same way in the (1, 1)-FaF

setting as the TTP learns all the inputs. Thus, we modify the Jmp protocol in [136] to adapt

it to the (1, 1)-FaF setting as follows—in case of an inconsistency, we modify Jmp to output

a pair of parties in conflict, one of which is guaranteed to be maliciously corrupt, instead of

identifying a TTP. Note that the Jmp protocol consists of two phases (send, verify). The send

phase consists of one of the two senders, denoted as the speaker party sending the message

to the receiver, while the other sender party, referred to as the silent party, keeps quiet. This

distinction between the speaker and a silent party is made only for the send phase. Verify phase

comprises all the other steps of the Jmp protocol, and either confirms that message delivery

to the recipient was a success or identifies a conflict pair, CP. Looking ahead, our protocols

rely on several invocations of Jmp. Hence, to leverage amortization, in most cases, the send

phase is executed on the flow, and the verify phase is deferred to a later stage. This deferring

of verify brings significant challenges in our protocols, such as multiplication. A part of our

novelty comes from handling these challenges.

We say Pi, Pj Jmp-send msg to Pk when they invoke the send phase of ⇧Jmp(Pi, Pj, Pk,msg).

Without loss of generality, we let Pi be the speaker and Pj be the silent party. Since verification

can be deferred, we say that Pi, Pj Jmp-vrfy towards Pk when they invoke only the deferred
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verify phase corresponding to ⇧Jmp(Pi, Pj, Pk,msg). Finally, we say Pi, Pj Jmp-sv msg to Pk

when they invoke the complete ⇧Jmp(Pi, Pj, Pk,msg) protocol and execute both the send and

verify phases together.

The modified protocol for Jmp appears in Fig. 5.2. The protocol is described with respect

to a single message v for a fixed-ordered pair of senders and a given receiver. However, we note

that verify phase across several messages for the same ordered pair of senders and receiver can

be bundled together, thereby amortizing this cost. This would involve party Pj (silent party)

sending a single hash corresponding to all the messages under consideration and performing

the verification accordingly.

Each party Ps for s 2 {i, j, k} initializes bit bs = 0. Let CP denote the conflict pair, which is the

pair of parties in conflict, one of which is guaranteed to be corrupt. Let Pi, Pj denote the senders

who wish to send v to receiver Pk. Let H denote a collision-resistant hash function.

Send Phase: Pi sends v to Pk.

Verify Phase: Pj sends H(v) to Pk.

– Pk broadcasts (accuse, Pi), if Pi is silent, and all take CP = (Pi, Pk) as the conflict pair. Anal-

ogously for Pj . If Pk accuses both Pi, Pj , then CP = (Pi, Pk). Otherwise, Pk receives some ṽ, and

either sets bk = 0 when the value and the hash are consistent or sets bk = 1. Pk then sends bk to

Pi, Pj and terminates if bk = 0.

– If Pi does not receive a bit from Pk, it broadcasts (accuse, Pk) and CP = (Pi, Pk). Analogously

for Pj . If both Pi, Pj accuse Pk, then CP = (Pi, Pk). Otherwise, Ps for s 2 {i, j} sets bs = bk.

– Pi, Pj exchange their bits with each other. If Pi does not receive bj from Pj , it broadcasts

(accuse, Pj) and CP = (Pi, Pj). Analogously for Pj . Otherwise, Pi resets its bit to bi _ bj and

likewise Pj resets its bit to bj _ bi.

– Ps for s 2 {i, j, k} broadcasts Hs = H(v⇤) if bs = 1, where v⇤ = v for s 2 {i, j} and v⇤ = ṽ

otherwise. If Pk does not broadcast, terminate. If either Pi or Pj does not broadcast, then

CP = (Pi, Pj). Otherwise,

� If Hi 6= Hj : CP = (Pi, Pj).

� Else if Hi 6= Hk: CP = (Pi, Pk).

� Else if Hi = Hj = Hk: CP = (Pj , Pk).

Protocol ⇧Jmp(Pi, Pj , Pk, v)

Figure 5.2: Joint message passing.
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5.3.3 Secret sharing semantics

In the 5PC (1, 1)-FaF setting, a (semi-honest) adversary may be entitled to the view of at

most two parties (itself and the malicious party). Thus, to ensure that the view of the two

parties does not leak any additional information, we rely on a (5, 2) replicated secret sharing

(RSS) scheme and its variants. A value v 2 Z2` is said to be RSS-shared among 5 parties with

threshold 2 if for every subset of two parties, say {Pi, Pj}, the residual three parties hold share

vij 2 Z2` such that v =
P

1i<j5 vij. Observe that since any set of two parties in P always miss

one share of v, they cannot reconstruct the value, whereas any three parties can. The total

number of shares of a value is thus
�
5
2

�
= 10 and the RSS-share possessed by Ps 2 P is a tuple

of
�
4
2

�
= 6 shares vij where s 6= i, s 6= j and 1  i < j  5. With this background, we define

our sharing semantics below.

– [·]-sharing: A value v 2 Z2` is [·]-shared among parties in P if it is (5, 2) RSS-shared among

them. We let [v]s denote Ps’s [·]-shares of v. Note that [v]s is a tuple of 6 elements, and [v] is a

tuple of 10 elements.

– h·i-sharing: A value v 2 Z2` is h·i-shared among parties in P if there exists v1, v2, v3, v4, v5 2 Z2`

such that v = v1 + v2 + v3 + v4 + v5 and Ps 2 P possess vs. Let hvi = (v1, v2, v3, v4, v5).

– J·K-sharing: A value v 2 Z2` is J·K-shared among P, if

� there exists ↵v 2 Z2` that is [·]-shared among parties in P, and

� there exists �v 2 Z2` such that �v = v + ↵v is held by all parties in P.

For a set of n values {v1, . . . vn}, we let �v1...vn = ⇧
n
i=1�vi and ↵v1...vn = ⇧

n
i=1↵vi

. We use the

superscript B to denote the Boolean sharing over Z2 , while the absence of it implies arithmetic

sharing over Z2` . All the above sharing schemes are linear, i.e., given shares of v1, v2, and public

constants c1, c2, parties can locally compute the shares of c1v1 + c2v2.

Conversion between J·K and [·] shares during preprocessing. Given [v], protocol ⇧[·]!J·K

generates JvK from it by setting �v = 0 and [↵v] = � [v]. Conversely, ⇧J·K![·] generates [v] from

JvK. For this, parties set v12 = �v � ↵v12 while vij = �↵vij for 1  i < j  5, (i, j) 6= (1, 2).

Shared key setup Following several recent works [11, 12, 173, 50, 38, 193, 136], to enable non-

interactive communication between the parties, a one-time setup is performed that establishes

common random keys for a pseudo-random function (PRF) F . Here F : {0, 1}⇥{0, 1} ! X is

a secure PRF, with co-domain X being Z2` . The key setup is modelled via a functionality FSetup

(Fig. 5.3) that can be realized using any FaF-secure MPC protocol. The goal is to establish a

common key between every set of 2, 3, 4, and all parties. To sample a random value r 2 Z2`
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among a set of 3 parties Pi, Pj, Pk non-interactively, each of these parties invoke Fkijk(idijk)

and obtain r. Here, idijk denotes a counter maintained by these three parties and is updated

after every PRF invocation. The appropriate keys used to sample the common randomness are

implicit from the context and from the identities of the parties that sample.

FSetup interacts with parties in P and adversaries SA, SA,H. FSetup picks the following keys.

• A common random key kP for all the parties.

• A common key kij between every pair of parties Pi, Pj where 1  i < j  5.

• A common key kijk between every set of 3 parties Pi, Pj , Pk where 1  i < j < k  5.

• A common key kijkl between every set of 4 parties Pi, Pj , Pk, Pl where 1  i < j < k < l  5.

Output: Keys {kP, ksi, kjs, ksjk, kisk, kijs, ksjkl, kiskl, kijsl, kijks}, generated as above, are output

to every Ps 2 P.

Functionality FSetup

Figure 5.3: Ideal functionality for shared-key setup.

5.3.4 Notations

The notations used in this chapter are summarized in Table 5.1.

Notation Description

TTP Trusted third party

CP Conflicting pair of parties

Jmp Joint message passing primitive

Jmp-send Send phase of Jmp

Jmp-vrfy Deferred verification phase of Jmp

Jmp-sv Send phase together with verify phase of Jmp

B Sorted list of M buy orders

S Sorted list of N sell orders

nameb Name of the client in a buy order

b Number of units to be bought in a buy order

q Buying price in a buy order, also known as ‘bid’

names Name of the client in a sell order

s Number of units to be sold in a sell order

p Selling price in a sell order, also know as ‘o↵er’

Table 5.1: Notations used in this chapter.
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5.4 Input sharing

Protocol ⇧Sh (Fig. 5.4) enables Pi 2 P holding a value v 2 Z2` to generate JvK. For this, parties
generate [·]-shares of a random value ↵v 2 Z2` in the preprocessing phase, non-interactively,

using their shared key setup such that the dealer Pi learns all the [·]-shares of ↵v. This enables

Pi to compute �v = v + ↵v in the online phase and Jmp-sv it to all the parties.

Preprocessing:

– Parties non-interactively generate [·]-shares of a random ↵v 2 Z2` such that Pi learns all shares

of ↵v, using the shared-keys.

Online:

– Pi computes and sends �v = v + ↵v to one other party, say Pj .

– Pi, Pj then Jmp-sv �v to all other parties.

Protocol ⇧Sh(Pi, v)

Figure 5.4: Generating JvK by party Pi.

The protocol for generating [·]-shares of v 2 Z2` is similar to above and formal details appear

in Fig. 5.5.

Let vlm be a share of v held by Pi, Pj , Pk 2 P.

– Parties in P \ {Pp, Pq} for 1  p < q  5 and p 6= l, q 6= m, non-interactively generate vpq 2 Z2`

together with Pi, using the shared-key setup.

– Pi computes and sends vlm = v�
P

1p<q5,p 6=l,q 6=m vpq to Pj , following which Pi, Pj Jmp-sv vlm

to Pk.

Protocol ⇧RSS�Sh(Pi, v)

Figure 5.5: Generating [v] by party Pi.

Protocol ⇧JSh2 is a variant of input sharing ⇧Sh, which enables two parties Pi, Pj to jointly

generate J·K-shares of a value v 2 Z2` known to both. Looking ahead, this protocol is heavily

used in designing the building blocks and is similar to ⇧Sh. Here, during the preprocessing

phase parties generate [↵v] for ↵v 2 Z2` such that Pi, Pj learn all its shares. Following this,

Pi, Pj generate and Jmp-send �v = v+↵v towards all the other parties with its Jmp-vrfy deferred.

The protocol appears in Fig. 5.6. We next describe a few optimizations that can be performed

on ⇧JSh2.
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Preprocessing:

– Parties non-interactively generate [·]-shares of a random ↵v 2 Z2` such that Pi, Pj learn all

shares of ↵v, using the shared keys.

Online:

– Pi, Pj compute and Jmp-sv �v = v + ↵v to all other parties.

Protocol ⇧JSh2(Pi, Pj , v)

Figure 5.6: Joint sharing of v by Pi, Pj .

When the value to be shared is available with Pi, Pj in the preprocessing phase, the protocol

can be optimized as follows. All parties set �v = 0. Pi, Pj, Pk non-interactively sample a random

rlm 2 Z2` and set the common [·]-share of ↵v they possess as ↵vlm
= rlm. Similarly, Pi, Pj, Pl

non-interactively sample a random rkm 2 Z2` and set the common [·]-share of ↵v they possess as

↵vkm
= rkm. Pi, Pj set the common share of ↵v held together with Pm as ↵vkl

= �(v+ rlm + rkm)

and Jmp-sv ↵vkl
to Pm. The other [·]-shares of ↵v are set as 0.

When the value to be shared is held by three parties, say Pi, Pj, Pk, the protocol proceeds

similarly to ⇧JSh2, with the following di↵erence—in the preprocessing phase, ↵v will be also be

learned by Pk, and in the online phase, only two Jmp-sv are required. We call the resultant

protocol ⇧JSh3, and omit the formal protocol due to its close resemblance to ⇧JSh2. Moreover,

when the value is available with these three parties in the preprocessing phase, the protocol

can be made completely non-interactive. For this, similar to the previous case, �v is set as 0,

and the common [·]-share of ↵v held by Pi, Pj, Pk is set as �v and all other shares are set as 0.

Finally, when all parties hold a value v 2 Z2` , they can generate JvK by setting �v = v and

all [·]-shares of ↵v as 0.

5.5 Reconstruction

Protocol ⇧Rec enables robust reconstruction of a J·K-shared value v towards Pi. For this, observe

that each party misses 4 shares, and each such share is held by three other parties. Thus, to

reconstruct v towards Pi, parties can send the missing shares to Pi. For each share, Pi uses the

value which appears in the majority to reconstruct v. As on optimization, we let two parties

send the value while the third send its hash to Pi. The protocol appears in Fig. 5.7.
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Let the missing shares at Pi be vij , vik, vil, vim.

– Let Pk, Pl, Pm possess vij . Pk, Pl send vij to Pi while Pm sends its hash to Pi. Analogous steps

are carried out for the other three shares.

– Pi uses the value which appears in the majority for the received missing shares, together with

its own shares, for reconstructing v as v =
P

1p<q5 vpq.

Protocol ⇧Rec(Pi, v)

Figure 5.7: Reconstruction of v towards Pi.

5.6 Multiplication

The multiplication protocol ⇧Mul allows parties to compute JzK = Ja · bK, where a, b 2 Z2` are

J·K-shared. The highlight of our protocol is that it requires a single online round for evaluating

a multiplication gate and requires active participation from only three parties for most of

the computation. The protocol proceeds as follows. In the preprocessing phase, parties first

generate [↵z] 2 Z2` , non-interactively, using their shared key setup. To generate JzK, parties need
to compute �z which can be written as follows: �z = z+↵z = ab+↵z = (�a�↵a)(�b�↵b)+↵z =

�ab � �a↵b � �b↵a + ↵ab + ↵z, where �ab = �a�b and ↵ab = ↵a↵b . Observe that parties already

possess �a, �b and [·]-shares of ↵a,↵b,↵z. Assuming that [↵ab] is also made available, parties

can compute [�z], leveraging the linearity of [·]-sharing. We discuss how to generate [↵ab] in the

preprocessing phase later and focus on the remaining steps assuming that [↵ab] is given. Now,

�z can be reconstructed towards all the parties, thereby generating JzK. This reconstruction

towards Pi 2 P can be performed using just two invocations of ⇧Jmp as follows. The four shares

missing at Pi, which include {�zij , �zik , �zil , �zim} are sent to it as—Pj, Pk Jmp-sv {�zil+�zim} while

Pl, Pm Jmp-sv {�zij + �zik}.

5.6.1 Towards an e�cient online phase

The above approach requires all parties to be online. However, observe that P1, P2, P3 possess

the required shares to compute the entire function. Hence, to reduce the number of active

parties in the online phase, whenever multiplication is invoked, we restrict the reconstruc-

tion of �z only towards the online parties, P1, P2, P3 (but without the correctness guarantee),

and defer reconstruction towards P4, P5 to a later point. Thus, only the Jmp-send with re-

spect to following 6 Jmps are invoked—⇧Jmp(P2, P4, P1, �z13+�z15), ⇧Jmp(P3, P5, P1, �z12+�z14),

⇧Jmp(P1, P4, P2, �z23 + �z25), ⇧Jmp(P3, P5, P2, �z12 + �z24), ⇧Jmp(P1, P4, P3, �z23 + �z35),

⇧Jmp(P2, P5, P3, �z13 + �z34). Recall that since only the send of Jmp is performed, the silent
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parties, P4, P5, can remain o✏ine. To complete the generation of JzK, and enable P4, P5 to

obtain �z, we let P1, P2 Jmp-sv �z to P4, P5. We can defer this step until the output recon-

struction stage, where �s corresponding to all the invocations of multiplication until output

reconstruction are sent in a single round. Deferring the send of �z to after output reconstruc-

tion, may result in incorrectly reconstructing z. With this approach, evaluating multiplications

requires participation from only the online parties (P1, P2, P3) for most of the computation and

o✏ine parties (P4, P5) become active only before output reconstruction. Further, only a single

round (owing to the send phase of Jmp where only speaker party communicates) is needed for

reconstructing each � among the online parties. Observe that the following two issues may

arise while executing the above approach

(a) correctness: �z reconstructed among online parties P1, P2, P3 may be incorrect;

(b) agreement: online parties may not be in agreement with respect to the �z they hold, let

alone hold the correct �z.

Both issues arise since only the send phase of Jmp is executed among the online parties while

reconstructing �z, which may lead to incorrect reconstruction among them. We next describe

how both these issues can be addressed in the verification phase. Looking ahead, resolution for

both issues either results in successfully completing the protocol or identification of CP. In the

latter case, parties switch to 3PC (after share conversion) for the rest of the computation.

(a) Ensuring correctness. Correctness of the �z reconstructed towards the online parties

can be enforced by executing the Jmp-vrfy towards them, and requires P4, P5. For this, P4, P5

should possess the correct inputs used for generating �z, which may themselves be outputs,

�a, �b, of multiplications. As mentioned earlier, P4, P5 receive all these �s in a single invoca-

tion of Jmp-sv from P1, P2 just before output reconstruction. However, P1, P2 may not be in

agreement with respect to these �s due to incorrect reconstruction of the same. Performing

Jmp when the senders are not in agreement with respect to the value being sent may result in

incorrectly identifying a pair of honest parties as a CP (conflict pair). This necessitates a con-

sistency check to ensure that P1, P2 are in agreement, and is discussed later. Hence, assuming

P1, P2 are in agreement after this consistency check, they proceed to Jmp-sv �s for all these

multiplications to P4, P5. If this Jmp-sv towards P4, P5 succeeds (i.e., no CP identified), verifi-

cation of �s, reconstructed among the online parties, is performed. This is done by invoking

deferred Jmp-vrfy corresponding to all the Jmp-send performed among the online parties. The

success of all the verify phases guarantees the correctness of �s. In case if any verify fails, a CP

is identified.
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(b) Ensuring agreement. We now describe the consistency check mentioned above. In

order to ensure agreement among online parties P1, P2, P3, they exchange the hash of �s for

all the multiplications among themselves. If these are consistent, then they proceed with the

correctness check as described above. If the consistency check fails, the goal is to identify a

CP. Observe that the check may fail due to one of the following reasons: (i) an incorrect �

was reconstructed towards some honest online party which led to sending an incorrect hash

during the check, or (ii) an incorrect hash was deliberately sent. Note that case (i) arises

if a malicious online party misbehaved during a Jmp-send performed at some level (layer in

the circuit comprising addition and multiplication gates.) during circuit evaluation. Hence,

performing the Jmp-vrfy of this particular Jmp-send can identify a CP and address case (i). A

keen observer would note the circularity involved in addressing the agreement issue by relying

on verify of Jmp (to identify a CP). The circularity arises due to the following reason. Jmp-vrfy

towards P1, P2, P3 requires P4, P5 to hold consistent �. Since P4, P5 receive the � via Jmp-sv

from P1, P2, it requires the latter to already be in agreement, and hence the circularity. To

break the circularity, online parties rely on a binary search of levels within the circuit. The

search identifies consecutive levels Lp, Lp+1 such that all �s up to level Lp are consistently held

among P1, P2, P3 while Lp+1 onwards they are inconsistent. The consistency of �s up to Lp

thus enables usage of Jmp. For the binary search, parties exchange the hash with respect to

�s in the first (top) half of the circuit, say max/2 levels (where max denotes the maximum

levels in the circuit). If the hash is inconsistent, they recursively proceed with the first half

(L1 to Lmax/2), else if consistent, they proceed with the second half (Lmax/2+1 to Lmax). In this

way, they recursively operate on the appropriate half that has inconsistent hash to identify

Lp, Lp+1. Note that one is guaranteed to identify such a Lp, Lp+1 since the above recursion

would terminate and, at least at the first level in the circuit, is guaranteed to be consistent and

correct, owing to the correctness of the input sharing.

On identifying levels Lp and Lp+1, P1, P2 Jmp-sv all the �s up to level Lp to P4, P5. This

is followed by the deferred Jmp-vrfy towards P1, P2, P3 for all �s up to level Lp+1. If no CP is

identified during any of the verify phases, it implies case (ii), and hence, honest online parties

will be guaranteed to be in agreement with respect to the correct �s up to level Lp+1. Thus,

the correct hash that should have been sent at level Lp+1 in the binary search can be computed

locally (using the �) and matched against the hash received from others. This determines

the corrupt party that deliberately sent an incorrect hash. This corrupt party, together with

another honest party, is identified as a CP. Note that the binary search can terminate with

the last level being identified as Lp. This happens when circuit evaluation is correct, but the

malicious party deliberately sends an incorrect hash in consistency check and behaves honestly
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in binary search. Lp being the last level implies that honest parties are guaranteed to be in

agreement with respect to all �s. Hence, a corrupt party can be identified as the party who sent

the incorrect hash in the consistency check. Similar to the above, the CP can thus be formed.

5.6.2 Generating [↵ab]

Since [↵a] , [↵b] are available in the preprocessing phase, [↵ab] can be computed there. For

obtaining [↵ab], we rely on a robust (1, 1)-FaF secure multiplication protocol for 5PC which

works on [·]-shares (RSS shares), and is abstracted out as a functionality, FMulPre, in Fig. 5.15.

To leverage amortization, we preprocess several multiplication triples in a single shot. Hence,

FMulPre is defined with respect to several triples. We instantiate FMulPre using a variant of the

protocol of [31] for the 5-party setting. Similar to the original protocol, the modified protocol

involves performing a 5PC semi-honest multiplication followed by a verification phase to check

the correctness of the semi-honest execution. The di↵erence lies in the steps performed when

verification fails, and it outputs a pair of conflicting parties. In such a case, we eliminate the

pair of parties, and the computation proceeds via semi-honest 3PC,unlike the malicious 3PC

used in the original protocol. The verification phase relies on distributed zero-knowledge proof

system [29] and is designed such that its communication cost gets amortized over multiple

instances of multiplication. Thus, amortized communication cost of this 5PC protocol is same

as that of the semi-honest protocol. [31] is secure as per standard security definition. We

prove that the modified variant, for 5PC, is secure in the (1, 1)-FaF model in §5.6.3. Our

multiplication protocol appears in Fig. 5.8.

Preprocessing: Non-interactively generate [·]-shares of a random ↵z 2 Z2` , using the shared-key

setup. Invoke FMulPre on [↵a] , [↵b] (Fig. 5.15) to generate [↵ab].

Online:

– Compute [�0] = ��a [↵b]� �b [↵a] + [↵ab] + [↵z].

– Send missing [�0]-shares to P1, P2, P3: (a) P2, P5 Jmp-send �013+�
0
14 to P1, while P3, P4 Jmp-send

�012 + �015 to P1, (b) P1, P5 Jmp-send �023 + �024 to P2, while P3, P4 Jmp-send �012 + �025 to P2,

(c) P1, P4 Jmp-send �023 + �035 to P3, while P2, P5 Jmp-send �013 + �034 to P3.

– P1, P2, P3 reconstruct �0 and compute �z = �0 + �ab.

One-time Verification (for entire circuit): Follow the steps described in Fig. 5.9.

Protocol ⇧Mul(P, JaK, JbK)

Figure 5.8: Multiplication.
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Let M be the set of all �zs where each z is the output of multiplication in the circuit. Parties do

the following.

– Pi 2 {P1, P2, P3} computes the hash, Hi = H
⇣
�z1 , . . . ,�z|M|

⌘
where �zj 2 M and mutually

exchange it among themselves.

– Pi 2 {P1, P2, P3} broadcasts an inconsistency bit b to indicate whether all the obtained

hashes are consistent (b = 0) or not (b = 1).

– If all parties in {P1, P2, P3} broadcast b = 0, then–(a) P1, P2 Jmp-sv all �z 2 M to P4, P5. (b)

If this Jmp-sv succeeds, (i.e., no CP is identified), then parties perform the deferred Jmp-vrfy

with with respect to all �z 2 M.

– Else, if some Pi 2 {P1, P2, P3} broadcasts b = 1, then

� Each Pi 2 {P1, P2, P3} broadcasts Hi.

� If for any Pi 2 {P1, P2, P3}, the hash sent via broadcast does not match the hash received on

point-to-point communication by some Pj , then Pi broadcasts its complaint against Pj . Parties

set CP = (Pi, Pj) where Pi is party with the least index that complained, and terminate.

� If a CP was not identified via a complaint, then

- Let HLs
i denote the hash computed by Pi 2 {P1, P2, P3} on all �z up to level Ls in circuit.

- P1, P2, P3 perform a binary search to identify a pair of consecutive levels Lp, Lp+1 in the

circuit such that H
Lp

i is consistent, but H
Lp+1

i is inconsistent.

- P1, P2 Jmp-sv �z up to level Lp to P4, P5.

If the Jmp-sv is a success, then parties perform deferred Jmp-vrfy with respect to all �z up to

level Lp+1. If the Jmp-vrfy is a success, Pi matches its hash H
Lp+1

i against the hashes

received to identify the party that sent an incorrect HLp+1 . Pi broadcasts the identity of this

corrupted party P ? to all parties in P. All parties set CP = (Pi, P ?) where Pi is the party

with the least index.

- If Lp is the same as the last level in the segment, then Pi 2 {P1, P2, P3} matches its hash

Hi against the hashes received to identify the party that sent an incorrect H in the first

consistency check. Pi broadcasts the identity of this corrupted party P ? to all parties in P.

All parties set CP = (Pi, P ?) where Pi is the party with the least index.

Figure 5.9: One-time Verification (for entire circuit).

To showcase all the cases handled and improve the readability of our algorithm, we also

provide a flowchart of the verification phase in Fig. 5.10. The green arrows denote the steps

that lead to successful circuit evaluation and also showcase the correctness of our protocol. The

flow where one of the o✏ine parties is malicious is trivial and follows from the verify of jmp

towards parties P1, P2, P3 in the verification phase.
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Consistency check  
To ensure P1 P2 are in

agreement

Updating P4 P5 
P1 P2 jmp-sv all   

Check Success

jmp-vrfy Fail

CP identified 
via jmp-vrfy  

Deferred jmp-vrfy 
verify all  used by

P1 P2 P3 

jmp-vrfy Success

CP identified 
via jmp-vrfy  

jmp-vrfy Fail

Circuit evaluation
successful 

jmp-vrfy Success

Broadcast hash  
To check if hash sent on

P2P is a match

Check Fail

Mismatch

CP identified 
via complaint

Binary search 
To find Lp and Lp+1 

No Mismatch

Updating P4 P5 
P1 P2 jmp-sv all  up to Lp

Found

CP identified 
via broadcast

corrupt P★ 

Lp is last level

jmp-vrfy Fail

CP identified 
via jmp-vrfy   

Deferred jmp-vrfy 
verify all  used by P1 P2

P3 up to level Lp+1

jmp-vrfy Success

CP identified 
via jmp-vrfy  

jmp-vrfy Fail

CP identified 
via broadcast

corrupt P★ 

jmp-vrfy Success

Figure 5.10: Flow of verification phase when the online party is malicious.

5.6.3 Preprocessing phase of multiplication

We next discuss the protocol carried out in the preprocessing phase to perform multiplication.

The protocol is similar to the one proposed in [31], where first, the semi-honest protocol is

executed, followed by verifying the correctness of the semi-honest execution. The di↵erence lies

in the steps performed when the verification fails, and a pair of conflicting parties is output. In

such a case, owing to the presence of at most one malicious party in our setting, we eliminate

the pair of parties in conflict, and the computation proceeds via semi-honest 3PC, unlike the

malicious 3PC used in the original protocol. Further, we do not require the use of tags (or

message authentication codes) to ensure a consistent share conversion, due to the presence

of only a single malicious party. The verification protocol has a communication cost which

is sublinear in the number of multiplication triples to be verified, and thus, its cost can be

amortized away for multiple multiplications. Thus, the cost of the preprocessing phase boils
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down to the cost of the semi-honest 5PC protocol, which is 6 ring elements. While the protocol

of [31] is proven to be secure according to the standard security definition, we prove that the

variant described above is (1, 1)-FaF secure in the 5PC setting. We provide the details of the

protocol here (mostly follows from [31]) for ease of understanding of the proof.

The verification of the semi-honest execution can be reduced to the problem of verifying

the correctness of multiplications (several degree-2 equations). We begin with discussing the

protocol for verifying the correctness of degree-2 equations (realized by the ideal functionality

FCheatIdentify). This protocol serves as the basis for the verification protocol (realized by the

ideal functionality FVerify), which is discussed subsequently. The verification protocol relies on 5

invocations (one for each party in P) of FCheatIdentify to verify the correctness of the multiplication

triples. Due to the top-down approach of explaining the functionalities, the use of FCheatIdentify

may not be evident until the details of FVerify are described. We request a reader to read

§5.6.3.1 as an independent section. Finally, we discuss the main protocol ⇧MulPre, which involves

executing a semi-honest 5PC protocol followed by an invocation of FVerify. We prove that these

protocols are (1, 1)-FaF secure in the 5PC setting in §5.12.

5.6.3.1 Checking correctness of degree-2 relations

We first discuss a protocol that allows parties to prove the correctness of a degree-2 computation

carried out on their shares. The protocol follows along the lines of the protocol in [31] and we

demonstrate that it is secure in the (1, 1)-FaF model for 5PC. We begin with the protocol for

fields and discuss how it can be extended to work over rings, as shown in [31]. Specifically,

party Pi wants to prove the correctness of the following equation:

c�
LX

k=1

(ak ⇧ bk) = 0 (5.1)

where c, {ak}Lk=1, {bk}Lk=1 are known to Pi and [·]-shared among parties in P. Further, we

assume that Pi knows all [·]-shares of c. Looking ahead, {ak}Lk=1, {bk}Lk=1 represent Pi’s [·]-
shares of {ak}Lk=1, {bk}Lk=1, while c represents Pi’s additive share (h·i-share) of

PL
k=1 ak · bk

obtained by operating on its shares {ak}Lk=1, {bk}Lk=1, which is denoted by the operation ⇧1.
Note here that we abuse the vector notation to mean [·]-sharing. By virtue of [·]-sharing,
given [·]-sharing of {ak, bk}Lk=1 (which will be the case in the final protocol), parties can locally

1[a] consists of 10 shares {a1,2, a1,3, . . . , a4,5}. Similar is the case with [b]. The product c = a · b can thus
be written as the sum of products of the form ai,jbk,l 81  i  j  5 and 1  k  l  5. Thus, the additive
shares of c can be obtained by splitting each term ai,jbk,l contributed by some party who has both shares. This
operation of obtaining additive shares of c using local shares of a, b is captured by the ⇧ operator.
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generate [·]-sharing of the [·]-shares ({ak}Lk=1, {bk}Lk=1) held by Pi. This holds because for every

share held by Pi, 2 other parties also possess it. Hence, it is possible to define a sharing

where the share of one subset of 3 parties is Pi’s share itself, while the other shares are 0. For

instance, if v is [·]-shared and v = (v23, v24, v25, v34, v35, v45) denote the tuple of shares held by

P1 (where the subscript denotes the pair of parties which does not possess this share), then

[v] = ([v23] , [v24] , [v25] , [v34] , [v35] , [v45]), where [vjk] is generated by setting all but one of its

shares as 0, and the non-zero share being vjk (which is held by all 3 parties in P \ {Pj, Pk}).
Relying on the distributed zero-knowledge proof system from [29] allows to prove the cor-

rectness of Equation (5.1) with sublinear communication complexity. Note that in the scenario

that the proof is rejected due to one of the parties’ misbehaviour, the prover will be able to

identify the cheating party. In this case, the prover, together with this party, are regarded as

a pair of conflicting parties, one of which is guaranteed to be corrupt. This is captured by

the ideal functionality FCheatIdentify, which checks for correctness of Equation (5.1) and either

outputs an accept, or a pair of parties that are in conflict with each other (one among which is

guaranteed to be corrupt). The functionality is defined in Fig. 5.11.

Let SA be an ideal world malicious adversary and SA,H be the ideal world, semi-honest adversary.

Let honest parties hold consistent [·]-sharings [c] , {[ak]}Lk=1 , {[bk]}
L
k=1. The functionality is invoked

by an index i sent by honest parties and works as follows.

1. FCheatIdentify receives from honest parties their shares of c, {ak}Lk=1 , {bk}
L
k=1.

2. FCheatIdentify computes c, {ak}Lk=1 , {bk}
L
k=1. It computes the corrupted party’s shares of these

values and sends them to SA. If Pi is corrupted, then it also sends [·]-shares of c, and

{ak}Lk=1 , {bk}
L
k=1 to SA. FCheatIdentify sends PH’s shares of c, {ak}Lk=1 , {bk}

L
k=1 to SA,H, where

PH is controlled by SA,H.

3. FCheatIdentify checks that Equation (5.1) holds.

– If it holds then FCheatIdentify sends accept to SA, and receives out 2 {accept, reject} from

it. FCheatIdentify forwards out to honest parties.

– If it does not hold then FCheatIdentify sends reject to honest parties.

4. If honest parties received reject:

– If Pi is corrupt, SA sends an index j 2 {1, 2, . . . , 5} to FCheatIdentify.

– If Pi is honest, SA sends an index j 2 {1, 2, . . . , 5} to FCheatIdentify, where Pj is corrupt.

– FCheatIdentify sends the pair (i, j) to honest parties.

5. SA sends its view to SA,H.

Functionality FCheatIdentify

Figure 5.11: Ideal functionality for proving correctness of degree-2 equation by prover Pi.
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The concrete protocol for FCheatIdentify We begin with a high-level idea of the protocol. Given

a g-gate which is defined as follows:

g(v1, . . . ,vL) =
L/2X

l=1

v2l�1 ⇧ v2l

where ⇧ denotes the operation of obtaining additive shares of vi ·vj given their [·]-shares (vi,vj).

Equation (5.1) can be written as: c�g(a1, b1, . . . ,aL/2, bL/2)�g(aL/2+1, bL/2+1, . . . ,aL, bL) =

0. The prover, knowing all inputs, can compute the output of the two g-gates and [·]-share them
among parties in P. Let g1 = g(a1, b1, . . . ,aL/2, bL/2) and g2 = g(aL/2+1, bL/2+1, . . . ,aL, bL).

Thus, parties can compute [b] = [c]� [g1]� [g2] and check if b = 0 by reconstructing b. To ensure

that a corrupt Pi did not cheat while generating [·]-shares of g1, g2, parties perform an additional

test. For this, parties define polynomials f1, . . . ,fL as follows: for each e 2 {1, 2, . . . , L}, f e(1)

is the eth input vector to the 1st g-gate and f e(2) is the eth input vector to the 2nd g-

gate. f e is thus a linear function. Next, define polynomial q(x) = g(f 1(x), . . . ,fL(x)). Thus,

q(1), q(2) are the outputs of the first and second g-gate, respectively, and q is of degree 2 (since

the multiplicative depth of g-gate is 1 and degree of f e is 1). To ensure that Pi shared the

correct g(1), g(2), it su�ces for the parties to check if q(r) = g(f 1(r), . . . ,fL(r)) for a random

r in the ring/field. For this, parties compute [·]-shares of q(r),f 1(r), . . . ,fL(r) via Lagrange

interpolation on their local shares and check for the equality on clear. This also requires Pi to

share q(3) so that parties have su�cient points on q. To reduce the cost from L shares which

is linear in L, to logarithmic in L, Pi is made to prove that

q(r)� g(f 1(r), . . . ,fL(r)) = 0 (5.2)

by repeating the same process (since Equation (5.2) has the same form as that of Equa-

tion (5.1)). Parties repeat the process logL times until a constant number of inputs are left,

which are verified on clear. Since f e(r) is a linear combination of the inputs, to avoid leaking

any information about the inputs, in the final step, the f polynomials are randomized by adding

one additional random point one each polynomial. This increases the degree of f to 2 and that

of q to 4, and requires Pi to generate and share additional points on q. In case parties reject

the proof, the prover is asked to identify the cheating party. The pair of parties, including the

prover and the party identified by the prover, are then regarded as the corrupted pair of parties.

For this, observe that every message sent by a party other than the prover is a function of (i)

the messages received from the prover, (ii) the inputs to the protocol, and (iii) the randomness

used. Since the prover knows all these, it can compute the message that should have been sent

by other parties and identify inconsistencies, if any. Formal protocol steps appear in Fig. 5.12.
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1. Parties set L̄ = L and for l = 1 to log L̄� 1 do the following:

– Parties define linear polynomials f1,f2, . . . ,fL such that for each e 2 {1, 2, . . . , L}, polyno-
mial f e is defined by the following two points:

fe(1) =

8
<

:
ade/2e if e mod 2 = 1

be/2 if e mod 2 = 0
fe(2) =

8
<

:
aL/2+de/2e if e mod 2 = 1

bL/2+e/2 if e mod 2 = 0

– Let q(x) = g(f1(x),f2(x), . . . ,fL(x)) be a degree-2 polynomial where

g(f1(x),f2(x), . . . ,fL(x)) =

L/2X

j=1

f2j�1(x) ⇧ f2j(x)

Pi computes q(1), q(2), q(3) and shares them among parties in P (via the field equivalent of

⇧RSS�Sh protocol in Fig. 5.5).

– Parties locally compute [bl] = [c]� [q(1)]� [q(2)] and store the result.

– Parties generate a random r 2 F non-interactively using their shared key setup.

– Parties locally compute [q(r)] and [f1(r)] , [f2(r)] , . . . , [fL(r)] via Lagrange interpolation.

– Parties set c q(r), and 8k 2 {1, 2, . . . , L/2} : ak  f2k�1(r),

bk  f2k(r) and L L/2.

2. Parties exit the loop with L = 2 and inputs c,a1,a2, b1, b2 that are known to Pi and secret

shared among other parties. Next,

– Parties non-interactively generate [w1] , [w2] where w1,w2 2 Fg are known to Pi. Here, g is

the number of components in [·]-sharing held by each party. Parties define polynomials f1,f2

of degree 2 such that f1(0) = w1,f1(1) = a1,f1(2) = a2, f2(0) = w2,f2(1) = b1,f2(2) = b2.

– Pi defines the degree-4 polynomial q(x) = g(f1(x),f2(x)) where g(f1(x),f2(x)) = f1(x) ⇧
f2(x), and computes q(0), q(1), . . . , q(4).

- Pi shares q(0), q(1), . . . , q(4) among parties in P (via ⇧RSS�Sh protocol in Fig. 5.5).

– Parties locally compute [blogL] = [c]� [q(1)]� [q(2)].

– Parties non-interactively generate r, �1, . . . , �logL 2 F, and compute [b] =
PlogL

l=1 �l · [bl].
– Parties locally compute [f1(r)] , [f2(r)] and [q(r)] via Lagrange interpolation.

– Parties reconstruct b, q(r),f1(r),f2(r) towards each party where each missing share is broad-

cast. If reconstruction has an inconsistency, or if q(r) 6= g(f1(r),f2(r)) of if b 6= 0, then parties

output reject. Else, parties output accept.

– If parties output reject, Pi identifies a party Pj who sent incorrect messages in the previous

step, and broadcasts j to all the parties. Parties output the conflict pair (i, j).

Protocol ⇧CheatIdentify

⇣
P, Pi, [c] , {[a]k}

L
k=1 , {[b]k}

L
k=1

⌘

Figure 5.12: Realizing FCheatIdentify.
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Cheating probability over finite fields There are two cases which lead to the parties

outputting accept even when Equation (5.1) does not hold—(i) the linear combination of the b

values yields a 0, and (ii) when Pi cheats during sharing points on q and thus q 6= g(f 1, . . . ,fL)

and h(x) = q(x) � g(f 1(x), . . . ,fL(x)) is a non-zero polynomial. While (i) happens with

probability 1
F , for (ii), the probability that h(r) = 0 for a random r 2 F \ {1, 2, 3} is bounded by

2
F�2 (since degree of polynomial h is 2) in the first logL � 1 rounds and 4

F�5 in the last round

(since degree of h is now 4). Thus, the overall cheating probability is bounded by

2(logL� 1)

F� 3
+

4

F� 5
<

2 logL+ 4

F� 5

Extension to rings While the protocol described works over fields, using the extension

techniques from [29, 30, 31], the protocol can be extended to work over rings. The challenge

lies in performing interpolation where not all elements have an inverse over the ring Z2` . To

overcome this, the solution is to work over the extended ring Z2` [x]/f(x), i.e. the ring of all

polynomials with coe�cients in Z2` working modulo a polynomial f that is of the right degree

and irreducible over Z2 . When working over these extension rings, the number of roots of a

polynomial is greater than its degree and thus changes the error probability. For a protocol

which verifies L values, the error is roughly 2 logL+4
2d , where d is the extension degree. We refer

readers to [30, 29] for more details.

Communication cost In the first logL � 1 iterations, the prover shares 3 elements each.

In the last round, it shares 5 elements, followed by public reconstruction of 4 elements via

broadcast. Generation of randomness can be done non-interactively and does not incur any

cost. Thus, the total communication cost is

6(logL� 1) + 10 + 7 elements.

Thus, the per-party cost is approximately logL+ 3 elements.

5.6.3.2 The verification protocol

Using FCheatIdentify, we next provide the protocol for verification of m multiplication triples with

sublinear communication complexity in the number of multiplication triples. A multiplication

triple is a shared triple [x] , [y] , [z] such that z = x·y. The ideal functionality for the same appears

in Fig. 5.13. When verification fails, the functionality either obtains a pair of conflicting parties,

one of which is guaranteed to be corrupt, from the adversary, or it identifies this pair by itself.
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In the latter case, the functionality obtains the inputs, randomness and views of honest parties

when computing some incorrect multiplication triple, and uses this information to identify a

pair of conflicting parties.

Let SA be an ideal world malicious adversary and SA,H be the ideal world, semi-honest adversary.

The functionality is invoked by honest parties sending their [·]-shares of m multiplication triples

{(xk, yk, zk)mk=1} to FVerify.

1. FVerify computes all secrets and corrupted party’s shares and sends these shares to SA. FVerify

sends PH’s shares to SA,H, where PH is controlled by SA,H.

2. FVerify verifies if zk = xk · yk for all k 2 {1, 2, . . . ,m}.

– If it holds, it sends accept to SA.

– Else, it sends reject to SA and dk = zk � xk · yk for each k 2 {1, 2, . . . ,m} such that dk 6= 0.

3. If FVerify sent accept, it receives out 2 {accept, reject} from SA, which is forwarded to the honest

parties and SA,H.

– If out = reject, SA send a pair of indices (i, j) to FVerify, where at least one among Pi, Pj is

corrupt.

– FVerify forwards (i, j) to honest parties and SA,H.

4. If FVerify sent reject, then SA does one of the following.

(1) SA sends a pair of indices (i, j) to FVerify, where at least one among Pi, Pj is corrupt. FVerify

forwards (i, j) to honest parties and SA,H.

(2) SA asks FVerify to find a pair of conflicting parties in k̄th multiplication, 1  k̄  m. Next,

FVerify asks the honest parties to send their inputs, randomness and views in the execution

to compute the k̄th triple. Based on the received information, FVerify computes the messages

that should have been sent by the corrupted party and finds a pair of parties Pi, Pj , where Pj

received an incorrect message. FVerify sends (i, j) to honest parties, SA and SA,H.

5. SA sends its view to SA,H.

Functionality FVerify

Figure 5.13: Ideal functionality for verifying semi-honest protocol.
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The protocol for FVerify To compute the functionality, the parties take a random linear

combination

� =
mX

k=1

✓k · (zk � xk · yk)

where ✓k is randomly chosen by all the parties and want to check if � = 0. Since � is a degree-

2 function of {(xk, yk, zk)mk=1} which are [·]-shared, parties can compute an additive sharing

(h·i-sharing) of �. Using the h·i-shares, parties can reconstruct � and check for equality with

0. However, since h·i-sharing does not allow for robust reconstruction, the parties first [·]-share
their additive shares of  =

Pm
k=1 ✓k · xk · yk. Let  i denote the additive share of  held by Pi.

The consistency check in the [·]-sharing protocol ensures that all receive consistent [·]-shares of
 

i. In case of a failure, the dealer broadcasts the share for which pairwise inconsistency exits.

Given [ i] for i 2 {1, . . . , 5}, parties can compute

[�] =
mX

k=1

✓k · [zk]�
5X

i=1

⇥
 

i
⇤

and reconstruct �. It is, however, required to ensure that every party Pi shares the correct

value  i. Towards realizing this, the property of [·]-sharing, which allows parties to locally

convert from [xk] , [yk] to [xi
k] , [y

i
k], where x

i
k,y

i
k are the vector of [·]-shares of xk, yk, held by Pi,

respectively, is used. Parties now want to verify if

8i 2 {1, . . . , 5} :
mX

k=1

✓k ·
�⇥
xi
k

⇤
⇧
⇥
yi
k

⇤�
�
⇥
 

i
⇤
= 0

Letting [ci] = [ i] , [ai
k] = ✓k · [xi

k] and
⇥
bik
⇤
= [yi

k], one needs to verify that [ci]�
Pm

k=1 [a
i
k]⇧⇥

bik
⇤
= 0 for i 2 {1, . . . , 5}. This can be verified using FCheatIdentify. In case of a reject, FCheatIdentify

outputs a pair of conflicting parties. Otherwise, parties proceed with reconstructing �. If

reconstruction fails due to inconsistency, a pairwise consistency check of [·]-sharing is used to

identify a pair of conflicting parties, where the consistency check is carried out over a broadcast

channel. Finally, if � 6= 0, then it implies that no one cheated in the verification protocol (with

high probability), and one of the multiplication triples is incorrect. Parties localize the fault by

running a binary search on the multiplication triples to identify a triple where zk 6= xk · yk. In
each search step, the verification protocol is carried out on half the number of triples until one

incorrect triple is identified. Finally, parties check the execution of the multiplication protocol

for this triple to find a pair of disputing parties. This is done by invoking a functionality
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FMiniMPC, which takes the inputs, randomness and view of parties in the multiplication protocol

as input and outputs the pair of parties for which the incoming and outgoing messages do not

match. The protocol appears in Fig. 5.14.

1. Parties generate random values ✓1, . . . , ✓m 2 F, and locally compute

h i =
*

mX

k=1

✓k · xk · yk

+
=

mX

k=1

✓k · ([xk] ⇧ [yk])

2. Let the h·i-share of  held by Pi be  i. Each party Pi shares  i among other parties.

3. For each i 2 {1, 2, . . . , 5}:

– Parties locally convert [xk] , [yk] to
⇥
x
i
k

⇤
,
⇥
y
i
k

⇤
for each k 2 {1, 2, . . . ,m}.

– Parties define
⇥
ci
⇤
=
⇥
 i
⇤
,
⇥
ai
k

⇤
= ✓k ·

⇥
x
i
k

⇤
and

⇥
bik
⇤
= ✓k ·

⇥
y
i
k

⇤
.

– Parties send
⇥
ci
⇤
and

�⇥
ai
k

⇤
,
⇥
bik
⇤�m

k=1
to FCheatIdentify.

– If parties receive reject, (i, j) from FCheatIdentify, then they output it and halt.

4. If parties received accept from FCheatIdentify in all five invocations, they proceed to the next step.

5. Parties locally compute [�] =
Pm

k=1 ✓k · [zk]�
P5

i=1

⇥
 i
⇤
.

6. Parties robustly reconstruct � by sending their shares via broadcast.

– If parties see inconsistent shares, they output reject, (i, j), where Pi, Pj is the first pair of

parties for which pair-wise inconsistency exists.

– If � = 0, parties output accept.

– If � 6= 0, parties perform a fault localization procedure to identify the first incorrect triple

by running a binary search on the input triples. For this search, parties run the above protocol

on two half-sized sets of input triples and proceed as follows.

- If parties output accept in both executions, they output accept and halt.

- If any execution ends with parties holding a pair of conflicting parties (i, j), parties output

reject, (i, j) and halt.

- If � 6= 0 in both executions, they continue the search on one of the sets.

- If � 6= 0 in one of the executions, they continue the search on the set for which � 6= 0.

If parties didn’t receive any output, then they reach a triple k for which zk 6= xk · yk. Then,

parties send their inputs, randomness and view when computing zk to FMiniMPC, which returns

a pair of conflicting parties (i, j) with conflicting views. Parties output reject, (i, j).

Protocol ⇧Verify (P, {([xk] , [yk] , [zk])}mk=1)

Figure 5.14: Realizing FVerify.
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Cheating probability over finite fields Assume that there is an incorrect triple. If the

adversary does not cheat in the verification protocol, then there will be at most logm executions.

In each execution, the probability that the test will pass is 1
F , which happens when the random

linear combination outputs a value 0. Thus, the overall cheating probability is bounded by

logm · 1
F .

Communication cost Protocol ⇧Verify is recursive. In the jth step, parties secret share one

element each, reconstruct one element and call FCheatIdentify for every party over a set of triples

of size m/2j. Thus, the total communication cost in the jth step is

5 · 2 + 7 + 5 ·
�
6(log(m/2j)� 1) + 17

�

= 97 + 30 · log(m/2j) elements.

In the worst case, there are logm steps, and the total cost is

97 · logm+ 30 ·
logmX

j=1

log(m/2j)

Since
Plogm

j=1 log(m/2j)  logm · log
p
m, the total communication cost is

97 · logm+ 30 · logm · log
p
m elements. (5.3)

Note that while working over extended rings, the cost gets multiplied by a factor d, which is

the degree of the extension.

Similar to ⇧CheatIdentify, the protocol ⇧Verify can also be extended to work over the ring Z2`

(see 5.6.3.1).

5.6.3.3 The main protocol

We now provide details of the main protocol for computing the multiplication triples in the

preprocessing phase. The ideal functionality for the same appears in Fig. 5.15. We remark

that operating in the preprocessing model, we can generate a large number of multiplication

triples at the same time, which also helps in amortizing the cost due to verification. The main

protocol begins with executing a semi-honest 5PC protocol, followed by a verification phase to

check the correctness of the multiplication triples generated during the semi-honest execution.
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Verification completes with it either being a success or outputting a pair of conflicting parties

(in which case a semi-honest 3PC is executed). The protocol appears in Fig. 5.16.

Let SA be an ideal world malicious adversary and SA,H be the ideal world, semi-honest adversary.

1. FMulPre interacts with the parties in P and the adversaries SA, SA,H. FMulPre receives [·]-shares
of {(xk, yk)mk=1} from honest parties.

2. FMulPre receives ([xk · yk]i)
m
k=1 from SA where Pi is controlled by SA. It also receives continue

or (abort, j) from SA. If received abort, FMulPre sends (i, j) to all. Else, it does the follow-

ing.

• FMulPre reconstructs xk, yk using the honest parties’ shares and computes xk · yk for k 2
{1, . . . ,m}.

• FMulPre generates [xk · yk], for k 2 {1, 2, . . . ,m}, using xk · yk and [xk · yk]i received from SA.

• FMulPre sends (Output, [xk · yk]s) to Ps 2 P.

3. SA sends its view to SA,H.

Functionality FMulPre

Figure 5.15: Ideal functionality for computing multiplication triples in the preprocessing.

1. Parties generate [·]-shares of random values r1, r2, . . . , rm, non-interactively using their shared

key setup. They locally convert [·]-shares to h·i-shares.

2. Parties locally compute hxk · yk � rki = [xk] ⇧ [yk]� hrki for each k 2 {1, 2, . . . ,m} and send it to

P1.

3. P1 reconstructs xk · yk � rk for each k 2 {1, 2, . . . ,m} and generates [xk · yk � rk] using ⇧RSS�Sh

(Fig. 5.5).

4. Parties compute [xk · yk] = [xk · yk � rk] + [rk] for k 2 {1, 2, . . . ,m}.

5. Parties invoke ⇧Verify (P, {([xk] , [yk] , [xk · yk])}mk=1) to verify the correctness of the multiplication

triples.

6. If parties receive accept from ⇧Verify, they proceed with the online phase. Else, parties obtain a

pair of parties (Pi, Pj) to eliminate from ⇧Verify.

Protocol ⇧MulPre (P, {[xk] , [yk]}mk=1)

Figure 5.16: (1, 1)-FaF secure protocol for 5PC preprocessing phase of multiplication.
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Communication cost The communication cost follows from the cost of the semi-honest

protocol and the cost of the verification protocol. The semi-honest protocol requires communi-

cating 6 ring elements. The cost due to the verification phase can be amortized by preprocessing

a large number of multiplication triples. Concretely, for verifying 225 multiplication triples, the

cost for verification is only 0.003 ring elements for an extension degree d = 46 (see Table 4

of full (eprint) version of [31]). Table 5.2 summarizes the communication cost for a various

number of multiplication triples to be verified.

m Cost (per party per multiplication)

210 22.1914

220 0.0696

225 0.0032

230 0.0001

Table 5.2: Cost of verification in terms of the number of ring elements communicated per party
per multiplication, and 40 bits of statistical security. Here, m - #multiplication triples to be
verified and degree of extension d = 46 to achieve statistical security of 2�40.

5.7 The complete 5PC

We give an overview of the execution of 5PC for computing any function. The complete protocol

can be divided into three stages: input sharing, evaluation, and output reconstruction. Each

stage is further cast in the preprocessing model, which comprises a preprocessing phase and an

online phase. The protocol execution is preceded by a one-time shared key setup and begins by

executing the preprocessing phase for each of the three stages. Note that protocols in each of

these stages rely on several invocations of Jmp. Thus, they either complete successfully or, in

case of misbehaviour, a conflict pair CP is identified. To leverage amortization, only the send

of all Jmps are run on the flow while all verify steps are deferred until output reconstruction.

Recall that identification of CP calls for rerunning of the protocol via 3PC. Thus, deferring

verification until output reconstruction would result in the worst-case cost of executing 5PC

and 3PC. To avoid this, a possible optimization is to divide the computation of the circuit into

segments2, with a checkpoint placed at the end of each segment. Computation carried out in

a segment can be verified at each checkpoint. In this way, if a CP is identified in any segment,

2A circuit is sliced depth-wise into segments comprising multiple levels/layers.
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the computation of this segment restarts with a 3PC execution. For this, a share conversion is

performed to convert shares from 5PC to 3PC. The details of the same are provided next. All

the subsequent segments can now be evaluated via the 3PC. The complete protocol appears in

Fig. 5.17 and proofs in §5.12.

A one-time shared key setup is performed to generate common PRF keys, which can be used to

generate correlated randomness.

Preprocessing Phase:

– For each input gate u, parties execute preprocessing phase of ⇧Sh to obtain [↵u].

– For each addition gate with input wires u, v and output wire w, parties locally compute [↵w] =

[↵u] + [↵v].

– For each multiplication gate with input wires u, v and output wire w, parties execute prepro-

cessing phase of ⇧Mul to obtain [↵w] , [↵uv].

Online Phase:

– For each input v held by a party, parties invoke the online phase of ⇧Sh to generate JvK.
– For each addition gate with input wires u, v and output wire w, parties locally compute JwK =

JuK + JvK.
– For each multiplication gate with input wires u, v and output wire w, parties execute the online

phase of ⇧Mul to generate JwK.
– For each output gate, parties execute ⇧Rec to reconstruct output w towards the designated party.

Semi-honest 3PC: If a CP is identified at any step, perform share conversion and continue com-

putation with semi-honest 3PC.

Protocol 5PC� FaF

Figure 5.17: 5PC FaF Protocol.

Share conversion We describe the (3, 1) replicated secret sharing (RSS) semantics for a

3PC protocol followed by the steps for share conversion, where the latter is similar to that

described in [31] optimized for our setting. Let P0 = {P 0
0, P

0
1, P

0
2} denote the three parties. Let

v = v0 + v1 + v2 where (vi, v(i+1)%3) are the shares held by P
0
i that define a (3, 1) RSS scheme.

Observe here that a value is split into three shares, each of which is held by two parties. Our

goal is to convert from the 5PC J·K-sharing (which is an augmented (5, 2)-RSS sharing with an

additional � held by all parties) to a (3, 1)-RSS sharing. The conversion proceeds as follows.

Let Pi, Pj be parties to be eliminated. The residual three parties are arbitrarily assigned roles

of P 0
0, P

0
1, P

0
2. To generate the (3, 1)-RSS shares among parties in P0 = P \ {Pi, Pj}, consider
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the following types of shares.

1. Shares that are known to either Pi or Pj: Such shares are already held by two other

parties in P \ {Pi, Pj}, which is what is needed for the (3, 1)-RSS sharing.

2. Shares that are not known to both Pi, Pj: Such shares are known to all the three residual

parties. Since exactly two parties should hold each share, we let the party with the lowest

index remove this share from its possession.

3. Shares that are known to both Pi and Pj: Such shares are known to exactly one other

party, say Pk, in P \ {Pi, Pj}. To enable one other party to hold this share to complete

the (3, 1)-RSS sharing, we let Pk send this share to the remainder party, say Pl.

4. Shares that are held by all (�): We let parties enacting the role of P 0
1, P

0
2 incorporate this

share in its set of common shares, and let P 0
0 remove this share from its possession.

We explain the share conversion steps with a concrete example. Let P1, P2 be the parties to

be eliminated, and let P 0
0 = P3, P

0
1 = P4, P

0
2 = P5. Consider the conversion of JvK to a (3,1)-RSS

share. For type 1 shares, shares that are held by P1 or P2 include ↵v13
,↵v23

,↵v14
,↵v24

,↵v15
,↵v25

,

where every consecutive pair of shares is held by {P4, P5}, {P3, P5}, {P3, P4}, respectively. With

respect to type 2 shares, shares that are not known to both P1, P2 include ↵v12
. These are

included by {P4, P5} in their set of shares. For type 3 shares, shares that are known to both

P1, P2 include ↵v34
,↵v35

,↵v45
, which are held by P5, P4, P3, respectively. Let P3 send ↵v45

to

P4, let P4 send ↵v35
to P5, and let P5 send ↵v34

to P3. Finally, for the last type of share,

we let P4, P5 include �v in its set of shares. The (3, 1)-RSS shares of v are now defined as

v0 = �↵v25
�↵v15

�↵v45
which is held by P3, P4, v2 = �↵v24

�↵v14
�↵v34

which is held by P3, P5,

and v1 = �v � ↵v23
� ↵v13

� ↵v35
� ↵v12

which is held by P4, P5. This generates the (3, 1)-RSS

shares of v from JvK.

5.8 Building blocks

In this section, we discuss 5PC (1, 1)-FaF realizations of building blocks (Table 5.3) required for

the applications considered. Most of these are well studied in the literature [173, 194, 136, 138].

Hence, we only highlight those which were challenging to achieve in the 5PC (1, 1)-FaF setting.

Multi-input multiplication To reduce the online communication cost as well as the round

complexity, we design protocols to enable the multiplication of 3 and 4 inputs in a single
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shot [138, 194, 191]. Compared to the naive approach of performing sequential multiplications

to multiply 3 and 4 inputs, the multi-input multiplication protocol enjoys the benefit of having

the same online phase complexity as that of the 2-input multiplication protocol. This brings in a

2⇥ improvement in the online round complexity, while also improving the online communication

cost. We extend the ideas of [138] to achieve this in our setting. For instance, the goal of 3-

input multiplication is to generate JzK given J·K-shares of a, b, c 2 Z2` where z = abc. Observe

that, �z = abc+ ↵z = �abc � �ac↵b � �bc↵a � �ab↵c + �a↵bc + �b↵ac + �c↵ab � ↵abc + ↵z. Thus,

parties generate [↵ab] , [↵ac] , [↵bc] , [↵abc] during preprocessing by invoking FMulPre (Fig. 5.15),

and proceed with a similar online phase as in 2-input multiplication. Similarly, for 4-input

multiplication [·]-shares of ↵ab,↵ac,↵ad,↵bc,↵bd,↵cd,↵abc,↵abd,↵acd,↵bcd,↵abcd are needed.

Dot product Given J·K-shares of vectors x,y where each element of the vector is J·K-shared,
protocol ⇧DotP, enables generation of J·K-shares of z = x� y, where � denotes the dot product

operation. For this, observe that �z can be written as

�z = z+ ↵z = x� y + ↵z =
nX

i=1

xiyi + ↵z =
nX

i=1

(�xiyi � �xi↵yi
� �yi↵xi

+ ↵xiyi
) + ↵z (5.4)

Thus, the goal of preprocessing phase is to generate [·]-shares of � =
Pn

i=1 ↵xiyi
, which is

a dot product of {↵xi
}ni=1, {↵yi

}ni=1. Given [�], parties proceed with a similar online phase as

that in multiplication to compute �z (Equation (5.4)), where the terms are locally added before

being sent, making the online communication independent of n [193, 136]. Similar to [136], to

make the preprocessing communication for generating [�] independent of n, parties execute a

semi-honest dot-product protocol [62] whose communication cost is independent of n. This is

followed by a verification phase, similar to the one in [31], where parties invoke ⇧Verify
3 (see

Fig. 5.14) on the dot product triple, [{↵xi
}ni=1] , [{↵yi

}ni=1], [�], to verify correctness of [�]. As

opposed to verification of m multiplication triples, which requires a communication cost of

O(log(m)) elements, the cost for verifying the correctness of m dot products with vectors of

size n now becomes O(log(mn)) elements. Due to its similarity to multiplication, we omit formal

protocol for dot product.

Matrix multiplication and convolution Matrix multiplication can easily be reduced to a

dot product where each element in the resultant matrix can be computed via a dot product.

Convolutions can also be reduced to matrix multiplication following standard techniques [216].

3Note that computations in ⇧Verify remain unchanged except that its input parameters now correspond to
dot product triples.
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Truncation Repeated multiplications in fixed point arithmetic (FPA) cause an overflow.

This necessitates the need for truncation, which truncates the last d bits from the result of

multiplication, to retain FPA semantics. We follow a similar approach as in [174, 173] for

probabilistic truncation. Here, to truncate a value v, we rely on a (r, rd)-pair, where r 2 Z2`

and r
d is the truncated value of r (i.e. rd = r/2d). The truncated value v

d of v, is computed as

v
d = (v � r)d + r

d.

Given JrK, JrdK can be generated in the preprocessing phase, our multiplication protocol

can be modified to incorporate truncation without incurring any overhead in the online phase

as follows. Use r instead of ↵z while computing �z. Parties truncate �z locally to generate

�z
d = (z+ r)d and generate J(z+ r)dK non-interactively (see §5.4), followed by computing JzdK =

J(z+ r)dK � JrdK. To generate J·K-shares of the truncation pair (r, rd), we extend ideas in [173]

to our setting, and the resultant protocol is called ⇧TrPair. For this, parties non-interactively

generate JrKB using their shared-key setup, and truncate the last d bits of each of its share to

generate JrdKB. To obtain JrK from JrKB, parties proceed as follows. Analogous steps enable

generation of JrdK from JrdKB. Set �r = 0 in JrK. Let the other shares of JrK be denoted as rij for

1  i < j  5. Without loss of generality, parties non-interactively sample all rij but r12, as per

the J·K-sharing. Enabling P3, P4, P5 obtain r12 = r �
P

ij 6=12 rij will complete generation of JrK.
For this, observe that we can write r = v1+v2+v3+v4 where v1 = r34+r35+r45 is held by P1, P2,

v2 = r45 + r25 is held by P1, P3, v3 = r14 + r15 is held by P2, P3 and v4 = r12 + r13 + r23 is held by

P4, P5. Thus, revealing v4 = r�v1�v2�v3 to P4, P5 enables them to compute r12 = v4� r13� r23

which they can send to P3 by invoking ⇧Jmp, thereby generating JrK. For this, given JrKB, parties
compute Jv4KB = JrKB +

P3
i=1 J�viKB by evaluating Boolean addition circuit. Elaborately,

P1, P2 generate J�v1KB, P1, P3 generate J�v2KB, and P2, P3 generate J�v3KB by invoking the

joint sharing protocol, ⇧JSh2 (§5.4). Note that this joint sharing generates J�vi[k]KB for each

bit �vi[k] of �vi for i 2 {1, 2, 3}, k 2 {0, . . . , ` � 1}. Parties proceed to compute the sum

Jv4[k]KB = Jr[k]KB +
P3

i=1 J�vi[k]KB for each bit using a full adder (FA) circuit, as described

in [173]. It follows from [173] that x = x1 + x2 + x3 can be expressed as x = 2c + s where

FA(x1[k], x2[k], x3[k]) ! (c[k], s[k]) for k 2 {0, . . . , ` � 1}. Here, s and c denote the sum and

carry bits, respectively. Thus, parties compute Jv4[k]KB for k 2 {0, . . . , `� 1}, simultaneously,

by executing the FA’s as given below.

– FA(r[k],�v1[k],�v2[k])! (c1[k], s1[k])

– FA(�v3[k], c1[k � 1], s1[k])! (c2[k], s2[k])

– PPA(2c2, s2)! v4

After the FA is executed, Jv4KB is computed using the 2-input Parallel Prefix Adder (PPA)

circuit [173] on inputs 2Jc2KB, Js2KB. The computations above are carried out on the J·KB-
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shares, and 2c1[k] = c1[k � 1] and c[�1] = 0. Having obtained Jv4KB, parties reconstruct v4

towards P4, P5, who compute r12 = v4 � r13 � r23, and invoke ⇧Jmp to send it to P3. This

completes the generation of JrK.

Bit to arithmetic Protocol ⇧Bit2A allows computation of arithmetic shares, JbRK of a bit

b 2 Z2 from its Boolean shares, JbKB, where b
R denotes arithmetic equivalent of b over Z2` .

Observe that, following [138], bR = (�b � ↵b)R = �b
R + ↵b

R � 2�b
R
↵b

R. Given
⇥
↵b

R
⇤
and [r]

for r 2 Z2` can be generated in the preprocessing phase, parties can compute
⇥
b
R + r

⇤
in the

online phase and reconstruct it towards all. Possession of bR + r by all enables non-interactive

generation of its J·K-shares (§5.4), from which JbRK = JbR + rK � JrK can be computed. To

generate
⇥
↵b

R
⇤
, parties first generate J↵b

RK, and convert it to [·]-shares via ⇧J·K![·] (§5.3.3). To
generate J↵b

RK, observe that the [·]B-shares of ↵b can be written as ↵b = ⌫1�⌫2�⌫3�⌫4 where
⌫1 = ↵b34

� ↵b35
� ↵b45

, ⌫2 = ↵b24
� ↵b25

, ⌫3 = ↵b14
� ↵b15

and ⌫4 = ↵b12
� ↵b13

� ↵b23
. As seen

in truncation pair generation, P1, P2 hold ⌫1, P1, P3 hold ⌫2, P2, P3 hold ⌫3 and P4, P5 hold ⌫4.

Given J·KB-shares of each of ⌫1, ⌫2, ⌫3, ⌫4 can be generated via ⇧JSh2, parties generate J·K-shares
of p = ⌫1 � ⌫2 and q = ⌫3 � ⌫4 using the arithmetic equivalent of XOR and use these values to

generate J↵b
RK = J(p� q)RK. The protocol appears in Fig. 5.18.

Preprocessing:

– P1, P2 jointly share ⌫1 = (↵b34
� ↵b35

� ↵b45
), P1, P3 jointly share ⌫2 = (↵b24

� ↵b25
), P2, P3

jointly share ⌫3 = (↵b14
� ↵b15

) and P4, P5 jointly share ⌫4 = (↵b12
� ↵b13

� ↵b23
) to generate

J⌫R1 K, J⌫R2 K, J⌫R3 K, J⌫R4 K, respectively.
– Parties execute ⇧Mul on (J⌫R1 K, J⌫R2 K), (J⌫R3 K, J⌫R4 K) to generate J⌫R1 ·⌫R2 K and J⌫R3 ·⌫R4 K, respectively.
– Parties non-interactively compute JpRK = J(⌫1 � ⌫2)RK = J⌫R1 K + J⌫R2 K� 2 · J⌫R1 · ⌫R2 K and JqRK =
J(⌫3 � ⌫4)RK = J⌫R3 K + J⌫R4 K� 2 · J⌫R3 · ⌫R4 K.
– Parties execute ⇧Mul on JpRK, JqRK to generate JpR · qRK, and compute J↵b

RK = J(p � q)RK =

JpRK + JqRK� 2 · JpR · qRK.
– Parties non-interactively generate JrK for r 2 Z2` , and invoke ⇧J·K![·] to generate

⇥
↵b

R
⇤
, [r].

Online:

– Compute
⇥
bR + r

⇤
= �b

R +
⇥
↵b

R
⇤
� 2�b

R
⇥
↵b

R
⇤
+ [r], and reconstruct bR + r towards all, similar

to multiplication.

– Non-interactively generate JbR + rK (§5.4), followed by JbRK = JbR + rK� JrK.

Protocol ⇧Bit2A(P, JbKB)

Figure 5.18: Bit to arithmetic conversion
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Note that the preprocessing phase can be optimized further. Instead of invoking the entire

⇧Mul in the preprocessing phase which requires communicating 14` elements, we can generate

the required multiplicative terms by invoking FMulPre (whose current realization via the modified

variant of [31] as described in §5.6.3, requires 6` elements). For this, J·K-shares of ⌫1, ⌫2, ⌫3, ⌫4
are converted to [·]-shares by invoking ⇧J·K![·], followed by invoking FMulPre on the respective

terms. The result of multiplication, generated as [·]-shares, can be converted to J·K-shares by

invoking ⇧[·]!J·K.

Bit extraction Bit extraction (⇧Bitext) enables generation of J·KB-shares of the most signifi-

cant bit (msb) of a value v 2 Z2` given JvK. Support for multi-input multiplication enables usage

of the optimized bit extraction circuit proposed in [194], which takes two values as inputs and

outputs the msb of the sum of these values. Given JvK, we generate the Boolean shares of the

two inputs to the bit extraction circuit as follows. Observe that v can be written v = �v+(�↵v).

Thus, �v and �↵v serve as the two inputs. J�vKB can be generated non-interactively in the on-

line phase since all parties hold �v (see §5.4). To generate J�↵vKB from [↵v], parties proceed

as follows in the preprocessing phase. Parties first generate �↵v by locally negating all their

shares of ↵v. For ease of presentation, let ↵ = �↵v and [↵] = [�↵v] = (↵ij)1i<j5. Recall

that ↵ = ⌫1 + ⌫2 + ⌫3 + ⌫4 where ⌫1 = ↵34 + ↵35 + ↵45, ⌫2 = ↵24 + ↵25, ⌫3 = ↵14 + ↵15 and

⌫4 = ↵12 + ↵13 + ↵23, and each term is held by a pair of parties. Similar to ⇧TrPair, after

the di↵erent pairs of parties generate J⌫1KB, J⌫2KB, J⌫3KB, J⌫4KB, evaluating two sequential full

adders followed by a PPA circuit generates J↵KB. Having obtained J↵KB and J�vKB, parties
execute the optimized bit extraction circuit to extract the msb(v).

Arithmetic to Boolean Protocol ⇧A2B generates J·KB-shares for each bit of v 2 Z2` , denoted

as JvKB, from JvK. For this, observe that v = �v + (�↵v). Thus, evaluating the optimized PPA

circuit [194] on J�vKB, J�↵vKB generates JvKB. For this, J�vKB can be generated non-interactively

since all parties hold �v (see §5.4). To generate J�↵vKB from [↵v], parties follow the steps as

described in ⇧Bitext.

Bit injection Given JbKB, JvK where b 2 Z2 , v 2 Z2` , bit injection (⇧BitInj) generates JbR · vK.
For this, parties run ⇧Bit2A to generate JbRK, followed by ⇧Mul to generate JbR · vK.

Oblivious select Protocol ⇧Sel takes as input Jx1K, Jx2K, JbKB, where x1, x2 2 Z2` and b 2 Z2 ,

and outputs re-randomized J·K-shares of z = xb. Since z = xb = b(x1 � x0) + x0, computing JzK
requires one invocation of ⇧BitInj and addition operations.
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Equality check On input JxK, JyK, equality check protocol (⇧Eq) outputs JbKB where b = 1, if

x = y, and b = 0, otherwise. Similar to [194], the approach is to compute v = x� y and check if

all bits of v are 0. Concretely, parties first obtain JvKB by invoking ⇧A2B on JvK, compute Jv̄KB

(v̄ denotes bit complement of v) non-interactively, followed by invoking the 4-input (Boolean)

multiplication, recursively, to generate JbKB.

Comparison On input JxK, JyK, ⇧Comp outputs JbKB where b = 1, if x < y, and b = 0,

otherwise. This reduces to checking msb of v = x� y, and hence, ⇧Bitext can be used.

Maxpool/minpool Maxpool allows computing the maximum element from a set of m ele-

ments. We follow a similar approach as in [138], where the elements are recursively compared

in a pair-wise manner to obtain the maximum element. Minpool can also be computed analo-

gously.

ReLU The ReLU function computes the maximum between 0 and a value v, and can be

computed as ReLU(v) = b̄ · v, where b = 1 if v < 0 and b = 0, otherwise. Here, b̄ denotes the

complement of bit b. Given JvK, b can be computed via ⇧Bitext, followed by non-interactively

computing b̄, followed by ⇧BitInj to compute Jb̄R · vK.

Complexity of building blocks Table 5.3 lists the complexities of the designed building

blocks.

5.9 Benefit of having fewer parties online

As described in §5.6, rather than having a multiplication protocol with all parties online, consid-

erable e↵ort was spent in reducing the number of online parties to only 3. We now showcase the

concrete improvements brought in by this approach. The results corroborate that the reduction

in online parties is indeed beneficial.

Benchmark environment and parameters We report results in LAN (1 Gbps bandwidth)

with 2.3 GHz Quad-Core Intel Core i7 machines having 16GB RAM. The average round trip

time (rtt) for communicating 1KB of data between a pair of machines is 0.29 milliseconds

(ms). The protocols build on the ENCRYPTO library [59] in C++17 over a 64-bit ring. We

use multi-threading, wherever possible, to facilitate e�cient computation and communication

among the parties. Since there is no defined way to capture an adversary’s misbehaviour,
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Preprocessing

Rounds Comm. (in bits) Comm. (in bits)

Multiplication 1 8` 6`

3-input Multiplication 1 8` 24`

4-input Multiplication 1 8` 66`

Dot product 1 8` 6`

Matrix Multiplication 1 8pq` 6pq`

Multiplication with Truncation 1 8` 27`+ 6` log2 `

Bit to arithmetic 1 8` 22`

Bit extraction log4 ` u
0
2 16`+ 6` log2 `+ u

0
1

Arithmetic to Boolean log4 ` u2 16`+ 6` log2 `+ u1

Bit Injection 2 16` 28`

Oblivious Select 2 16` 28`

Equality log4 ` u2 + 168 16`+ 6` log2 `+ u1 + 1386

Comparison log4 ` u
0
2 16`+ 6` log2 `+ u

0
1

Maxpool/minpool log2 m(log4 `+ 2) (m� 1)(u02 + 16`) (m� 1)(44`+ 6` log2 `+ u
0
1)

ReLU log4 `+ 2 u
0
2 + 16` 44`+ 6` log2 `+ u

0
1

Building block
Online

`: size of ring in bits, instantiated with ` = 64; p⇥ q denotes the dimension of the resultant matrix after
matrix multiplication; u01 = 6n2 + 24n3 + 66n4, u02 = 8 (n2 + n3 + n4) where n2 = 41, n3 = 27, n4 = 47
denote the number of AND gates in the optimized bit extraction circuit of [194] with 2, 3, 4 inputs,
respectively; u1 = 6n2+24n3+66n4, u2 = 8 (n2 + n3 + n4) where n2 = 216, n3 = 184, n4 = 179 denote the
number of AND gates in the optimized PPA circuit of [194] with 2, 3, 4 inputs, respectively; m denotes
number of elements to be compared via maxpool.

Table 5.3: Building blocks with their complexity.

following standard practice [173, 193, 38, 136], we benchmark honest executions of the protocols,

including the verification required to attain GOD. Hence the reported run time does not account

for the 3PC execution. Note, however, that 5PC execution itself accounts for the worst-case

computation because it has a higher number of parties, including one malicious corruption,

as opposed to 3PC. We use the time taken for the protocol to complete and communication

between parties as the two parameters for benchmarks. We report these values separately for

the online and preprocessing phases. Further, we also report online throughput (TP), which is

the number of circuit executions that can be processed in a second.

Comparison We compare our optimized multiplication protocol, which requires only 3 out

of the 5 parties for most of the online phase, with the non-optimized variant, which requires

all parties to remain online. We also compare our protocol with the traditional (5, 2) protocol

obtained from [31], which also requires all parties to be online. To showcase the improvement
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achieved in the optimized variant, we benchmark synthetic circuits of varying depths (10, 100,

1000, 10000) with 100 multiplication gates at each layer. For all the variants, Table 5.4 reports

the time, throughput and monetary cost of the system. While throughput simultaneously

captures the improvements in communication and round complexity, we additionally report

monetary costs to showcase the e↵ect of the number of parties on the operational cost of the

system. We report these values only for the online phase. We estimate the monetary cost

following standard Google Cloud pricing [205].

Circuit depth Protocol type Online time (s) TP (⇥102) Monetary cost (⇥10�3 USD)

10
Optimized 0.005 121.189 0.002

Non-optimized 0.011 59.435 0.006

[31] 0.008 78.259 0.002

100
Optimized 0.034 19.037 0.018

Non-optimized 0.107 6.006 0.057

[31] 0.0543 11.783 0.031

1000
Optimized 0.329 1.948 0.178

Non-optimized 1.059 0.604 0.571

[31] 0.530 1.206 0.253

10000
Optimized 3.152 0.203 1.758

Non-optimized 10.638 0.060 5.711

[31] 5.154 0.124 2.452

Table 5.4: Comparison for synthetic circuits.

The round complexity of the non-optimized variant is roughly 3⇥ that of the optimized

variant, assuming that the time taken for Jmp-vrfy gets amortized. This is evident from the

reported online time, for circuit depth 100 and beyond. This is, however, not the case for the

circuit of depth 10. This is because the time taken for the Jmp-vrfy in the optimized variant (2

rounds) is comparable to that of circuit evaluation (10 rounds for Jmp-send) and hence does not

get amortized. The improved online time is reflected as improvements in throughput as well,

where the gain is up to 3⇥. Finally, the reduction in the number of online parties is clearly

evident in monetary cost, since it captures the price paid to host the required number of parties

(inclusive of its computation and communication). The optimized variant witnesses up to 69%

savings in monetary cost compared to the non-optimized variant.

With respect to [31], our optimized variant has an improvement of up to 1.6⇥ in run time

and throughput. While the monetary cost reported in Table 5.4 is for the online phase, to draw

a fair comparison between our (optimized) protocol and [31], we also account for the monetary

cost of preprocessing phase. In doing so, we observe that even for a circuit of depth 10000, the
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overall monetary cost of our protocol is 2.57 ⇥ 10�3 USD, which is only slightly higher than

that of [31].

5.10 Dark pools algorithms

We consider two popular matching algorithms used in dark pools—continuous double auction

(CDA) algorithm and volume-based matching algorithm. While the former processes orders

in a continuous manner, the latter does so in scheduled intervals, and both algorithms rely on

di↵erent parameters for matching orders. Both these matching algorithms have been considered

in prior works, albeit in the traditional MPC setting [40, 60]. Although the functionality of these

algorithms remains the same as described in [40], we take advantage of possible parallelization

and tweak the algorithms to improve their round complexity. This, in turn, improves the run

time of the protocols and the number of orders that can be processed in unit time (throughput).

We next detail each of these algorithms and their overall performance.

5.10.1 Continuous double auction

The CDA algorithm maintains a sorted list of buy orders (B) and sell orders (S) that are yet to

be matched. A buy order comprises the client’s identity, name
b, the units to be bought, b, and

the buying price, also known as bid, q. Analogously, a sell order comprises the client’s identity

name
s, the units to be sold s, and the selling price, also known as o↵er p. All the unmatched

buy orders in the list B (where |B| = M) are sorted in descending order of their bid. Similarly,

sell orders in list S (where |S| = N) are sorted in ascending order of o↵er. The CDA algorithm

maintains this as an invariant.

The CDA algorithm for processing a new order has two phases–(i) matching, and (ii) in-

sertion. In the matching phase, the incoming order is matched with orders of the opposite

type. Elaborately, a buy order is said to match a sell order if the following criteria are met–

(i) Price criteria: the bid of the buy order must be greater than or equal to the o↵er of the

sell order and, (ii) Volume criteria: the units of one order must be able to satisfy the units of

the other. Thus, when a new buy order arrives, it is matched with the first order in S based

on the matching criteria. The buy order may continue to be matched with other sell orders in

S, until either of the criteria for matching fails. Hence matches need not be one-to-one. An

incoming sell order can also be processed analogously. The matching phase concludes with the

incoming order being in one of the following two states. The order may be satisfied if all of its

units are exhausted by getting matched to opposite orders, or, it may be partially satisfied if
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some of its units are still unmatched. If the incoming order is partially satisfied, the algorithm

enters the insertion phase that involves inserting this order into the corresponding list B or S

while respecting the sorted order maintained within it. We refer to the algorithm in [40] for

further details.

A secure variant of the CDA algorithm was given in [40], where all orders remain hidden until

they are satisfied. However, the order type (buy or sell) and hence the size of S and B are not

regarded as sensitive information. We describe an improved secure protocol for CDA algorithm

to process an incoming buy order. An incoming sell order can be processed analogously.

In [40], the protocol identifies matching sell orders in S sequentially and terminates when

the incoming order can no longer be matched. Instead, we perform additional bookkeeping

to identify all the matching sell orders in a single shot. This was not possible in [40] because

the number of unmatched units remaining was tracked sequentially. However, we compute

the cumulative sum wi of the units of the first i sell orders in S, which facilitates single-shot

identification of matching sell orders. While the satisfaction of the price criteria for all sell

orders in S can be determined in parallel, w allows determining satisfaction of the volume

criteria also, for all sell orders in parallel. Thus, one does not require to wait for the i
th order

to be matched before processing the i + 1th order. Hence, all those sell orders where both

conditions are met can be executed and revealed in public. Note that the last sell order to be

matched could either be fully satisfied or partially satisfied and hence needs extra care. The

protocol for the above matching phase is given in Fig. 5.19, where the changes made over the

existing protocol are highlighted.

– Set Jw0K = J0K
– For each i = 1 to N do in parallel: JwiK =

Pi
j=1JsjK

– For each i = 1 to N do in parallel:

� JziKB = ⇧Comp(P, Jwi�1K, Jb0K), Jz0iK
B = ⇧Comp(P, JpiK, Jq0K + 1)

– For i = 1 to N do in parallel: JfiKB = ⇧Mul(P, JziKB, Jz0iK
B)

– Reconstruct fi’s and set k = i such that fi = 1 and fi+1 = 0 for i 2 {1, . . . , N}. Else set k = 0.

– For each i = 1 to k � 1 do in parallel: Reconstruct (Jnamesi K, JsiK, JpiK)
– Js0kK = ⇧Sel(Jb0K� Jwk�1K, JskK, Jzk+1KB)
– Reconstruct (JnameskK, Js0kK, JpkK), set JskK = JskK� Js0kK
– Delete first k � 1 elements from S.

Protocol ⇧PSL

�
P, (Jnameb0K, Jb0K, Jq0K), S

�

Figure 5.19: CDA matching phase: processing sell list.
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The insertion phase follows the matching phase, where the incoming buy order is obliviously

inserted into B in the correct slot that respects the ordering maintained as an invariant. Since

the steps of the protocol for the insertion phase as well as the overall CDA algorithm, remain

the same as in [40], we do not elaborate on them. However, we continue to execute independent

instructions in parallel within these protocols, too, and render the overall execution as e�cient

as possible. The protocols for the insertion phase and overall CDA are given in Fig. 5.20 and

Fig. 5.21. In protocol, ⇧Insert (Fig. 5.20), for the insertion phase of CDA, we note that each of

the fi’s for i 2 {1, 2, . . . } can be computed in parallel. Subsequently, so can f
0
i ’s followed by

f
00
i ’s. Note that the instructions in ⇧CDA are all sequential.

– Insert (J0K, J0K, J0K) to the end of B

– Compute Jf0KB = ⇧Comp(P, Jq0K, Jq1K)), followed by Jf0K = ⇧Bit2A(Jf0KB)
– For i = 1 to M + 1 do

� JfiKB = ⇧Comp(P, Jq0K, JqiK + 1))

� JfiK = ⇧Bit2A(JfiKB), Jf 0
iK = (1� JfiK) · Jfi�1K), Jf 00

i K = (1� JfiK) · (1� Jf 0
iK)

– For i = 1 to M + 1 do in parallel

� Jname0bi K = JfiK · JnamebiK + Jf 0
iK · Jnameb0K + Jf 00

i K · Jnamebi�1K
� Jb0iK = JfiK · JbiK + Jf 0

iK · Jb0K + Jf 00
i K · Jbi�1K, Jq0iK = JfiK · JqiK + Jf 0

iK · Jq0K + Jf 00
i K · Jqi�1K

Protocol ⇧Insert

�
P, (Jnameb0K, Jb0K, Jq0K),B

�

Figure 5.20: Obliviously inserting into buy list.

– Invoke ⇧PSL on (Jnameb0K, Jb0K, Jq0K)
– Compute JeKB = ⇧Eq(P, Jb0K, 0) and Jq0K = ⇧Sel(Jq0K, J0K, JeKB)
– Invoke ⇧Insert to insert (Jnameb0K, Jb0K, Jq0K) into buy list

Protocol ⇧CDA

�
P, (Jnameb0K, Jb0K, Jq0K),B, S

�

Figure 5.21: Overall CDA.

5.10.2 Volume matching

Unlike the CDA algorithm, where orders are processed in a continuous manner, volume-based

matching processes all the requests at fixed intervals. The algorithm matches orders based only

on the volume. Hence, the ith client only submits the number of units it wishes to buy bi or sell

si, and the matching is done on a first-come-first-serve basis. Similar to CDA, the buy orders

and sell orders are maintained in a separate list (queue), ordered by their arrival. Since the
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algorithm only accounts for volume, one is guaranteed that either all the sell orders or all buy

orders are satisfied. That is, the type of orders whose total volume is lesser will be satisfied

completely. After processing the orders, the algorithm outputs the sequence of updated buy/sell

orders such that the value now at b0i or s
0
i denotes the number of units traded out of the original

bi or si request. Although the algorithm is the same as in [40], we provide a parallel variant of

the same in Fig. 5.22 and highlight the changes made over the existing protocol. Unlike in [40],

the algorithm can be improved to process each sell/buy order in parallel by some additional

bookkeeping, as done in §5.10.1.

1. Compute JSK =
PN

i=1JsiK and JBK =
PM

j=1JbjK
2. Compute JfKB = ⇧Comp(P, JBK, JSK)
3. Set JT K = ⇧Sel(JSK, JBK, JfKB), Js0K = 0 and Jb0K = 0

4. For i from 1 to N do in parallel: JLs
i K = JT K�

Pi�1
j=0JsjK

5. For i from 1 to M do in parallel: JLb
iK = JT K�

Pi�1
j=0JbjK

6. For i from 1 to N do in parallel:

� Jz1KB = ⇧Comp(P, JLs
i K, J1K)) and Jz2KB = ⇧Comp(P, (JLs

i K, JsiK)
� Jz1K = ⇧Bit2A(P, Jz1KB) and Jz2K = ⇧Bit2A(P, Jz2KB)
� JsiK = ((JLs

i K� JsiK) · Jz2K + JsiK) · (1� Jz1K)
7. For j from 1 to M do in parallel:

� Jz1KB = ⇧Comp(P, JLb
jK, J1K)) and Jz2KB = ⇧Comp(P, (JLb

jK, JbjK)
� Jz1K = ⇧Bit2A(P, Jz1KB) and Jz2K = ⇧Bit2A(P, Jz2KB)
� JbiK = ((JLb

jK� JbiK) · Jz2K + JbjK) · (1� Jz1K)
8. Reconstruct JsiK and JbjK for all i and j

Protocol ⇧VM

⇣
P, {JsiK}Ni=1, {JbjK}Mj=1

⌘

Figure 5.22: Volume matching.

5.10.3 Benchmarks

We benchmark the performance of the proposed protocols in the same environment as described

in §5.9. Since the complexity of dark pool algorithms depends on the size of buy list (N) and

sell list (M), following [40], we analyze these algorithms by varying N and M between 10 and

500. Moreover, since the complexity of the CDA algorithm additionally depends on the number

of executed sell orders (s), we set this to be 10% of the maximum of N and M
4. For CDA, these

4Dark pools are not obligated to report the detailed information regarding volumes and types of transactions.
Hence, we can only speculate the parameters such as s,N,M . Further, accounting for the recent trend of smaller
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results are reported in Table 5.5. As expected and evident from Fig. 5.23a, the run time of the

algorithms increases with increasing N and M . However, this increase is more pronounced in

the algorithm of [40] due to its sequential nature and heavy dependence on s. To capture this

e↵ect more clearly, we perform experiments with fixed N = M = 100 and vary s between 1 to

50 and report these results in Table 5.6.

N M Ref
Preprocessing Online

Time (ms) Com (KB) Time (ms) Com (KB) TP (orders/s)

10 10
Ours 1.67 37.36 13.76 26.61 72.65

[40] 1.62 24.15 15.70 15.41 63.71

20 10
Ours 1.73 52.28 14.41 36.52 69.38

[40] 1.70 41.97 23.88 27.95 41.87

20 20
Ours 1.82 70.19 14.63 47.58 68.37

[40] 1.70 41.97 22.69 27.95 44.06

40 20
Ours 1.94 100.02 14.60 67.39 68.52

[40] 1.87 77.61 37.19 53.56 26.89

50 50
Ours 2.28 168.68 14.34 110.47 69.74

[40] 1.98 95.44 42.64 66.62 23.45

100 50
Ours 2.73 243.27 15.10 159.99 66.23

[40] 2.43 184.56 75.54 134.58 13.24

100 100
Ours 3.25 333.19 15.80 215.40 63.28

[40] 2.66 184.57 75.61 134.58 13.23

200 100
Ours 4.09 482.37 16.73 314.45 59.78

[40] 3.53 363.10 143.25 283.62 6.98

200 200
Ours 5.74 662.14 16.89 425.26 59.22

[40] 4.26 363.14 141.81 283.62 7.05

400 200
Ours 7.73 960.83 17.58 623.36 56.90

[40] 7.04 720.10 281.36 634.16 3.55

500 500
Ours 18.95 1648.69 17.67 1054.63 56.59

[40] 10.87 898.78 354.43 835.64 2.82

Table 5.5: Comparison for CDA for varying N, M, and s = 1/10(max(N, M)).

As explained earlier and as is evident from Table 5.6, observe that the run time of CDA

linearly depends on s for the algorithm of [40]. On the contrary, the parallelizations in our

algorithm help in making the run time independent of s, and thereby bring up to 20⇥ saving

in run time. The poor run time of [40] in comparison to ours can also be attributed to the

large number of reconstructions in the former’s CDA algorithm that necessitate performing

traders entering into dark pools, we consider the possibility of a large volume order matched against several
small volume orders and set s to be 10%. This is in contrast to the unrealistic case of s 2 {0, 1, 2, 3} as in [40].
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s Ref
Preprocessing Online

Time (ms) Com (KB) Time (ms) Com (KB) TP (orders/s)

1
Ours 3.41 333.19 17.13 190.09 58.37

[40] 2.42 158.41 16.58 79.24 60.30

2
Ours 3.25 333.19 15.98 192.90 62.57

[40] 2.56 161.32 24.50 84.68 40.81

4
Ours 3.28 333.19 15.38 198.53 65.00

[40] 2.55 167.13 37.22 96.11 26.87

5
Ours 3.37 333.19 15.40 201.34 64.95

[40] 2.48 170.04 42.73 102.08 23.40

10
Ours 3.26 333.19 15.46 215.40 64.67

[40] 2.59 184.57 75.20 134.58 13.30

40
Ours 3.33 333.19 17.16 299.78 58.26

[40] 3.06 271.77 281.21 421.39 3.56

50
Ours 3.18 333.19 15.77 327.90 63.40

[40] 3.13 301.12 350.70 551.95 2.85

Table 5.6: Comparison for CDA for varying s and N=M=100.

verification each time a value is reconstructed (in our (1, 1)-FaF setting). The improvement of

our algorithm is also reflected in throughput (TP), where our algorithm’s TP remains almost

constant, whereas the algorithm of [40] sees a steady fall. Here, TP is computed as 1/to where

to is the online run time of the protocol.

The results for volume matching appear in Table 5.7. As expected, the throughput (TP)

of volume matching is better than CDA. Further, due to the parallelizations introduced by our

work, our algorithm’s runtime increases very slowly compared to that of [40] with increasing

N,M . This is visually represented in Fig. 5.23a, which compares the online runtime of volume

matching and CDA algorithm. Since TP for volume matching is computed as N + M/to,

where to denotes the online run time of the protocol, the slow increase in our run time helps in

obtaining higher TP as N,M increase. This is not the case for [40], whose TP remains almost

constant. The gain in TP for us thus turns out to be up to 62⇥ over the work of [40]. A visual

comparison of TP for CDA and volume matching appears in Fig. 5.23b and Fig. 5.23c.
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Figure 5.23: Online time (a) and TP (orders/sec) comparison (b, c) of our algorithm with [40]

N M Ref
Preprocessing Online

Time (ms) Com (KB) Time (ms) Com (KB) TP (⇥103 orders/s)

10 10
Ours 1.72 47.82 7.13 32.70 2.81

[40] 1.70 45.94 18.93 9.31 1.06

20 10
Ours 1.81 71.06 7.83 48.45 3.83

[40] 1.89 90.54 37.61 17.96 0.80

20 20
Ours 1.92 94.30 7.86 64.20 5.09

[40] 1.89 90.54 34.83 17.96 1.15

40 20
Ours 2.11 140.78 7.79 95.69 7.70

[40] 2.28 179.74 66.50 35.26 0.90

50 50
Ours 2.65 233.78 9.10 158.68 10.99

[40] 2.56 224.37 83.28 43.91 1.20

100 50
Ours 3.11 350.27 9.29 237.42 16.14

[40] 3.50 447.69 163.73 87.17 0.92

100 100
Ours 4.03 466.55 10.77 316.15 18.57

[40] 3.74 447.73 167.17 87.17 1.20

200 100
Ours 5.04 699.44 10.02 473.62 29.95

[40] 6.64 875.48 326.77 173.67 0.92

200 200
Ours 7.89 932.34 10.18 631.09 39.31

[40] 7.19 894.37 323.33 173.67 1.24

400 200
Ours 10.73 1397.75 12.20 946.03 49.18

[40] 12.30 1787.73 640.70 346.66 0.94

500 500
Ours 26.98 2329.07 12.99 1575.92 76.98

[40] 23.34 2234.94 803.91 433.17 1.24

Table 5.7: Comparison for volume matching for varying N, M.

5.11 Privacy-preserving machine learning

To showcase that our FaF-secure protocols have wide applicability, we also benchmark the

performance of popular neural networks in our setting. We consider a variety of network archi-
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tectures, the accuracy of which follows from [174, 173, 220]. We begin with a fully connected

3-layer network (NN-1) that considers around 118K model parameters. We also consider a

convolutional neural network (NN-2) comprising 2 hidden layers, with 100 and 10 nodes, re-

spectively. Lastly, we consider the two popular deep neural networks of LeNet [147] and VGG16

[213]. LeNet comprises 2 convolutional and fully connected layers, followed by max pool for

convolutional layers, with approximately 431K parameters. On the other hand, VGG16 has

16 layers and contains fully-connected, convolutional, ReLU activation and max pool layers

with around 138 million parameters. We rely on the standard MNIST [146] dataset to per-

form secure inference using NN-1 and LeNet, while the CIFAR-10 [141] dataset for NN-2 and

VGG16 networks. Following prior works, here we operate on ` = 64 bit rings where 13 bits are

reserved for the fractional part of the number, the msb indicates the sign bit, and the rest of

the bits represent the integer part of the number. We only estimate the performance of these

NN algorithms here since their accuracy follows from prior works [174, 220]. The benchmarks

for the di↵erent NNs appear in Table 5.8. As expected, the run time and communication of

our protocols increase as the depth of the NNs increases from NN-1 to VGG16.

NN type
Preprocessing Online

Time (s) Com (MB) Time (s) Com (MB) TP (queries/s)

NN-1 0.011 0.417 0.008 0.071 1010.86

NN-2 0.037 1.708 0.010 0.290 814.99

LeNet 0.560 35.898 0.053 6.298 152.21

VGG16 9.676 549.664 0.473 94.951 16.89

Table 5.8: NN inference.

5.12 Security proofs

The simulation-based security proofs for our protocols are presented in this section. The sim-

ulations for 5PC are provided in the (FSetup,FJmp)-hybrid model. The ideal functionality, FJmp

appears in Fig. 5.24. The two simulators considered are SA and SA,H, which denote the ideal-

world malicious adversary and the ideal-world semi-honest adversary, respectively. We let SPi
A

denote the malicious simulator when party Pi is maliciously corrupt and S
Pj

A,H denote the simu-

lator for the semi-honest corruption of party Pj. We omit the superscript when it is understood

from the context.

We use the following strategy for simulating the computation of a function f . The simulation
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begins with the simulator emulating the shared-key setup FSetup functionality and giving the

respective keys to the adversary. This is followed by the input sharing phase in which SA obtains

the input of A, using the known keys, and sets the inputs of the honest parties to be 0. Note

that SA,H already knows the inputs of AH. Since SA knows all the inputs, it can honestly carry

out the computation and obtain all the intermediate values as required for simulating the view

of A. Further, on invoking the ideal functionality F5PC�FaF with A’s input (and AH’s input),

SA can obtain the output of the function. SA proceeds to simulate the various sub-protocols in

topological order using the aforementioned values (inputs of A (AH), intermediate values and

circuit output). A similar approach is taken by SA,H while ensuring that the messages sent to

AH are consistent with that in the view received from SA.

The simulation steps are provided separately for the sub-protocols to ensure modularity.

Carrying out these simulation steps in the respective order results in simulating the computation

of the desired function f . While emulating FJmp, if a CP is identified, the simulator stops the

simulation at that step and continues with the simulation of 3PC using the respective semi-

honest 3PC simulator.

FJmp interacts with parties in P and adversary SA and SA,H.

– FJmp receives (Input, vs) from Ps for s 2 {i, j}, while it receives (Select,CP) from SA. Here, CP

denotes the pair of parties that SA wishes to choose as the conflict pair. Let P ? 2 P denote the

party corrupted by SA.

– If vi = vj and CP = ?, then set msgi = msgj = ?,msgk = vi.

– Else, if P ? 2 CP, then set msgi = msgj = msgk = CP.

– Else, set CP = {P ?, P} where P 2 CP. Set msgi = msgj = msgk = CP

– Send (Output,msgs) to Ps 2 P.

SA sends its view to SA,H.

Functionality FJmp

Figure 5.24: Ideal functionality for Jmp.

5.12.1 Simulations for 5PC protocols

In this section, we describe the simulation steps for input sharing, multiplication and recon-

struction, followed by the complete 5PC.
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5.12.1.1 Sharing

The ideal functionality for ⇧Sh (Fig. 5.4) appears in Fig. 5.25.

FSh interacts with parties in P and the adversaries SA, SA,H.

– Receive (Input, v) from dealer Pd 2 P. Let P ? be the party corrupted by SA.

– Receive continue or abort with (Select,C) from SA. Here, C denotes pair of parties that SA

wants to choose as conflict pair.

– If received continue, randomly pick ↵vij
2 Z2` , for 1  i < j  5 and compute �v = v +

P
1i<j5 ↵vij

. Set msgs = (�v, {↵vij
}i 6=s,j 6=s), for each Ps 2 P.

– Else if received abort, then:

– If P ? 2 C, then set CP = C and msgs = CP for each Ps 2 P.

– Else set CP to include P ? and one other party from P, and msgs = CP for each Ps 2 P.

Output: Send (Output,msgs) to Ps 2 P.

– SA sends it’s view to SA,H.

Functionality FSh

Figure 5.25: Ideal functionality for ⇧Sh.

The simulator for the sharing protocol appears in Fig. 5.26.

Lemma 5.1 (Security) Protocol ⇧Sh (Fig. 5.4) realizes FSh (Fig. 5.25) with computational

security in the (FSetup,FJmp)-hybrid model against FaF adversaries SA, SA,H controlling Pi, Pj

respectively.

Proof: Claim 1: the view generated by SPi
A is indistinguishable from A’s real-world view.

This is argued as follows. When Pi is the dealer, A’s view consists of the random shares

of ↵v generated using the random keys provided by SPi
A while emulating FSetup. This is indis-

tinguishable from A’s view in the real-world. When Pi is a non-dealer, A’s view consists of

a subset of the random shares of ↵v generated using the random keys provided by SPi
A while

emulating FSetup. Additionally, it also sees �v = 0 + ↵v. Since, the missing shares of ↵v at A

are chosen randomly by SPi
A , �v remains random, and hence the views are indistinguishable.

Claim 2: the view generated by S
Pj

A,H is indistinguishable from AH’s real-world view, where

SA,H knows the input and output of AH, and view sent by SPi
A .

This is argued as follows. If Pj is the dealer, the argument follows similar to before, and

S
Pj

A,H’s view is indistinguishable from AH’s view. If Pj is a non-dealer, then AH’s view consists
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of �v, the six random shares of ↵v, and among the four missing shares of ↵v, it also sees three

shares which are received as part of the view sent by A to AH. Since AH still misses the share

↵vij
, the �v sent by S

Pj

A,H remains random, and hence the views are indistinguishable. 2

Malicious Simulation:

Preprocessing:

– SA emulates FSetup and gives the respective keys to A. The shares of ↵v that are held by A are

sampled non-interactively using the shared keys. Other values (↵vij
for 1  i < j  5 and ↵vji

for

1  j < i  5), not known to Pi, are sampled randomly.

Online:

– If Pi is the dealer, SA receives �v from A. Given the knowledge of all shares of ↵v, SA obtains

A’s input as v = �v�↵v. Following this, SA emulates FJmp with A as one of the senders, to deliver

�v to all parties. Depending on A’s behaviour, SA sets CP and invokes FSh with (Input, v), and

continue/abort and (Select,CP).

– Else, SA honestly generates �v by setting the input, v, of honest dealer as v = 0. SA either

sends �v to A and/or emulates FJmp to deliver �v to all, with A either as the sender or receiver,

depending on the identity of Pi. Depending on A’s behaviour, SA sets CP and invokes FSh with

continue or abort, and (Select,CP).

Semi-Honest Simulation:

Preprocessing:

– SA,H receives the shared keys generated during FSetup from SA, and the corresponding shares

of ↵v. The shares of ↵v that are held by AH, other than the ones held by A, are sampled non-

interactively using the shared keys. Shares not known to Pj are sampled randomly.

Online:

– If Pi is the dealer, SA,H sends the �v received from SA to AH and/or emulates FJmp. Else, it

performs these steps with a �v generated by setting v = 0.

Simulator SPi
A , S

Pj

A,H

Figure 5.26: Simulator for ⇧Sh for sharing v.

5.12.1.2 Joint sharing

The simulator for the joint sharing protocol where two parties jointly share a value v in the

preprocessing phase appears in Fig. 5.27. The simulations for joint sharing when the value to

be shared is available in the online phase is similar.
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Malicious Simulation:

– If Pi is one among the two dealers, SA emulates FJmp with A as one of the senders to send one

share of ↵v to one other party.

– Else if Pi is the recipient of the share of ↵v, then SA emulates FJmp with A as the receiver.

– Else, there is nothing to simulate.

Semi-Honest Simulation:

– If Pj is one of the dealers, SA,H emulates FJmp with AH as one of the senders to send the share

of ↵v to one other honest party.

– Else, if Pj is the recipient of the share of ↵v, then SA,H emulates FJmp with AH as the receiver.

– Else if Pj is neither the dealer nor the receiver, there is nothing to simulate.

Simulator SPi
A , S

Pj

A,H

Figure 5.27: Simulator for ⇧JSh for sharing v.

Observe that view generated by SPi
A is indistinguishable from A’s real-world view. This is

because values received by A are random which is as per the real-world protocol. Similarly,

view of AH generated by S
Pj

A,H is indistinguishable from real-world view.

5.12.1.3 Reconstruction

The ideal functionality for ⇧Rec (Fig. 5.7) appears in Fig. 5.28.

FRec interacts with parties in P and the adversaries SA, SA,H.

– Receive (Input, JvKs, Pi) from each Ps 2 P.

– Set msgi = �v �
P

1i<j5 ↵vij
and msgs = ? for Ps 2 P \ {Pi}.

Output: Send (Output,msgs) to Ps 2 P.

– SA sends it’s view to SA,H.

Functionality FRec

Figure 5.28: Ideal functionality for ⇧Rec.

The simulator for the reconstruction protocol appears in Fig. 5.29.

Lemma 5.2 (Security) Protocol ⇧Rec (Fig. 5.7) realizes FRec (Fig. 5.28) with computational

security in the FSetup-hybrid model against FaF adversaries SA, SA,H controlling Pi, Pj respec-

tively.
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Proof: The view generated by SPi
A is indistinguishable from A’s real-world view. This is

argued as follows. A’s view consists of random ↵vpq for 1  p < q  5, p 6= i, q 6= i such that

one share, say, ↵vij
(unknown to A) is adjusted as ↵vij

= �v� v�
P

1p<q5,p 6=i,q 6=j ↵vpq to ensure

reconstruction of correct output. Since these missing shares are chosen randomly by SPi
A , the �v

remains random and, the views are indistinguishable. Similarly, the view generated by S
Pj

A,H is

indistinguishable from AH’s real-world view, since AH still misses one random share ↵vij
, which

keeps �v random. 2

Malicious Simulation:

– To simulate reconstruction towards A:

- Invoke FRec with (Input, JvKi).
- SA sets a missing share of ↵vij

of v, not held by Pi (and Pj) as ↵vij
= �v�v�

P
1p<q5,p 6=i,q 6=j ↵vpq ,

where ↵vpq were sampled using the shared keys, and v is the output obtained by SA from the

ideal functionality.

- SA sends ↵vij
and its hash to A on behalf of the honest parties that hold ↵vij

. SA sends the

other shares of ↵v which include ↵vik,↵vil,↵vim (and were sampled randomly), together with its

hash to A on behalf of honest parties that hold these shares.

Semi-Honest Simulation:

– SA,H receives the view from SA. To simulate reconstruction towards AH, SA,H sends the missing

shares and their hashes to AH on behalf of the honest parties by using these values as present in

the view received from SA.

Simulator SPi
A , S

Pj

A,H

Figure 5.29: Simulator for ⇧Rec of output JvK.

5.12.1.4 Multiplication

The ideal functionality for ⇧Mul (Fig. 5.8) appears in Fig. 5.30. Due to the asymmetry in

our multiplication protocol, we consider the following two cases for simulation– (i) when the

maliciously corrupt Pi is one among P1, P2, P3, and (ii) when the maliciously corrupt Pi is one

among P4, P5. The simulator for case(i) appears in Fig. 5.31.
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FMul interacts with parties in P and the adversaries SA, SA,H.

– Receive (Input, JaKs, JbKs, [↵z]s) from Ps 2 P. Let P ? be the malicious party controlled by SA.

– Receive continue or abort with (Select,C) from SA. Here, C denotes pair of parties that SA

wants to choose as conflict pair.

– If received continue, compute JzK where z = ab+ ↵z. Set msgs = JzKs, for each Ps 2 P.

– Else if received abort, then:

– If P ? 2 C, then set CP = C and msgs = CP for each Ps 2 P.

– Else set CP to include P ? and one other party from P, and msgs = CP for each Ps 2 P.

Output: Send (Output,msgs) to Ps 2 P.

– SA sends it’s view to SA,H.

Functionality FMul

Figure 5.30: Ideal functionality for ⇧Mul.

Malicious Simulation:

Preprocessing: SA emulates FMulPre.

Online:

– SA honestly generates shares of �z on behalf of honest parties.

– SA simulates send of Jmp with A as one of the senders to send the missing share of �z to the

other two online parties (P1, P2, P3). SA simulates send of Jmp with A as the receiver to send the

missing shares of �z to A on behalf of the honest parties.

Verification:

– SA honestly generates hash on all �zs involved in verification on behalf of the honest online

parties, and sends the hash to A.

– If A sends an inconsistency bit b = 0, SA simulates send and verify of Jmp with A as one of the

senders to send �z to the o✏ine parties (P4, P5), if Pi 2 {P1, P2}. This is followed by simulation of

verify of Jmp towards A.

– Else, if A sends an inconsistency bit b = 1, SA simulates the binary search where hashes are sent

until A broadcasts an inconsistency bit with b = 0 and levels Lp, Lp+1 are identified. SA simulates

send and verify of Jmp with A as one of the senders if Pi 2 {P1, P2} to send �z up to level Lp. This

is followed by simulation of verify of Jmp towards A for �zs up to level Lp+1. If the simulation of

verify of latter Jmp did not output a CP, SA sends the identity of Pj to A.

– Depending on A’s behaviour, SA sets CP and invokes FMul with (Input, JaKi, JbKi, [↵z]i), and

Simulator SPi
A , S

Pj

A,H
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continue/abort and (Select,CP).

Semi-Honest Simulation:

Preprocessing: SA,H emulates FMulPre.

Online: If Pj is one of the online parties, then SA,H simulates send of Jmp with AH as one of

the senders to send the missing share of �z to the remainder honest online party. SA,H simulates

send of Jmp with AH as the receiver to send the missing share of �z to AH on behalf of the honest

party.

Verification: If Pj is one of the online parties, then

– SA,H honestly generates hash on all �zs involved in verification on behalf of the honest online

parties, and sends the hash to AH.

– Depending on the bit obtained in the view from SA, SA,H either proceeds with simulating Jmp

with AH as one of the senders if Pj 2 {P1, P2} for sending �z towards o✏ine parties, or it simulates

the hash-based consistency check. For the latter, SA,H recursively performs the hash exchange

until levels Lp, Lp+1 as present in the view of SA are identified. Following this, SA,H simulates send

and verify of Jmp with AH as one of the senders if Pj is one among P1 or P2 for sending �z up to

level Lp to o✏ine parties. Then, simulation of verify of Jmp towards AH for �zs up to level Lp+1

is performed.

If Pj is one of the o✏ine parties, then SA,H simulates the similar steps as above which are

carried out after the hash-based consistency check.

Figure 5.31: Simulator for ⇧Mul when Pi 2 {P1, P2, P3}.

The simulator for case(ii) appears in Fig. 5.32.

Malicious Simulation:

Preprocessing: SA emulates FMulPre.

Online: There is nothing to simulate.

Verification:

– SA honestly generates �z on behalf of honest parties.

– SA emulates FJmp with A as the receiver to send �z to A on behalf of the honest parties.

– Depending on A’s behaviour, SA sets CP and invokes FMul with (Input, JaKi, JbKi, [↵z]i), and

continue/abort and (Select,CP).

Semi-Honest Simulation:

Preprocessing: SA,H emulates FMulPre.

Online:

Simulator SPi
A , S

Pj

A,H
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– If Pj is one of the online parties:

- SA,H emulates FJmp with AH as one of the senders to send the missing share of �z (generated

honestly) to the other two online parties. SA,H emulates FJmp with AH as the receiver to send

the missing shares of �z to AH on behalf of the honest parties.

– If Pj is one of the o✏ine parties, there is nothing to simulate.

Verification:

– If Pj is one of the online parties, SA,H sends the hash of all �z in this segment to AH and

emulates FJmp with AH as one of the senders to send �z to the honest o✏ine party.

– If Pj is one of the o✏ine parties, then SA,H emulates FJmp with AH as receiver to send �z (reused

from the view received from SA) to AH on behalf of honest parties.

Figure 5.32: Simulator for ⇧Mul when Pi 2 {P4, P5}.

Lemma 5.3 (Security) Protocol ⇧Mul (Fig. 5.8) realizes FMul (Fig. 5.30) with computational

security in the (FSetup,FJmp,FMulPre)-hybrid model against FaF adversaries SA, SA,H controlling

Pi, Pj respectively.

Proof: We argue indistinguishability in the following two cases.

Case 1: When the maliciously corrupt Pi is one among P1, P2, P3. Observe that the view

generated in this case by SPi
A is indistinguishable from A’s real-world view. This is because

A receives random shares of �z which are generated honestly by the simulator. Since A still

misses one share of the mask ↵z, the �z received via FJmp remains random. Hence, the views

are indistinguishable. A similar argument applies to AH’s view being indistinguishable.

Case 2: When the maliciously corrupt Pi is one among P4, P5. Similar to case 1, the real-

world view of A is indistinguishable from the view generated by SA since A misses one share of

the ↵z which keeps �z random. A similar argument, as before, holds for the indistinguishability

of the view of AH. 2

Preprocessing We next prove that ⇧MulPre securely computes FMulPre in the (1, 1)-FaF model

in 5PC setting.

Lemma 5.4 Protocol ⇧CheatIdentify (Fig. 5.12) securely computes FCheatIdentify (Fig. 5.11) over

field F in the (1, 1)-FaF model with error  2 logL+4
F�5 in the 5PC setting .

Proof: Let SA be the ideal world malicious simulator, SA,H be the ideal world semi-honest

simulator, A be the real-world malicious adversary and AH be the semi-honest real-world ad-

versary. Consider the following cases.
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Case 1: Pi is corrupt. In this case SA receives Pi’s inputs and honest parties [·]-shares of
c. This implies that SA can perfectly simulate the opening of [b] and q(r) since it has the honest

parties’ [·]-shares of c, and receives honest parties’ [·]-shares of points on q(·) from A during the

simulation. We next show how to simulate the opening of f 1(r),f 2(r). For this, since SA knows

the inputs of Pi, it knows the actual values of f 1(r),f 2(r). Thus, SA is only required to choose

random values for shares of the honest parties while ensuring that together with Pi’s shares, it

opens to the correct values.

To see that the view of A is the same here as in the real execution, observe that for each

e 2 {1, 2},
f e(r) = �0(r) ⇧ f e(0) + �1(r) ⇧ f e(1) + �2(r) ⇧ f e(2) (5.5)

where �0(r),�1(r),�2(r) are the Lagrange coe�cients. Since shares of f e(0) held by honest

parties are random under the constraint that together with Pi’s shares they open to f e(0),

so are the shares of f e(r). Thus, the distribution is the same in both executions. If some

honest party outputs reject, then A broadcasts an index j, which SA forwards to FCheatIdentify.

If out = reject, but honest parties output accept, then SA outputs fail and halts. Observe that

when SA does not output fail, the simulation is perfect. The main di↵erence is when SA outputs

fail. This event occurs when Equation (5.1) does not hold, yet honest parties output accept.

This occurs with probability  2 logL+4
F�5 , which is the error probability of the simulation. Finally,

SA sends its view to SA,H.

Subcase: Pj is semi-honest. Pj’s view consists of (i) shares of q(1), q(2), q(3) received in

each of the log L̄ � 1 iterations, (ii) shares of q(0), q(1), . . . , q(4) received in the last iteration,

and, (iii) the shares received for reconstructing b, q(r),f 1(r),f 2(r). While (i), (ii) are received

as part of the view of SA, (iii) can be simulated by sending random shares under the constraint

that the reconstructed values are consistent with the ones in the view received from SA. Thus

the simulation is perfect.

Case 2: Pi is honest and Pj is corrupt. In this case, SA receives accept from FCheatIdentify.

This implies that although SA does not know the input, it knows that b should be 0 in each

iteration and q(r) should equal g(f 1(r),f 2(r)) in the last iteration, unless Pj misbehaves. Since

SA knows Pj’s shares of the inputs, it can simulate the openings correctly. Elaborately, for

each sharing of q(1), q(2) and q(3) (and f 1(0),f 2(0), q(0), . . . , q(4) in the last step) in the

simulation, SA sends random shares on behalf of Pi to A. Since SA knows Pj’s shares of

c, q(1), q(2), it can computes its shares of bl = c � q(1) � q(2). It then chooses the honest

parties shares under the constraint that b =
PlogL

l=1 �lbl will reconstruct to 0. Following this, SA

uses Pj’s shares of f 1(e), . . . ,fL(e) for e 2 {1, 2}, and q(1), q(2), q(3) to compute Pj’s shares of
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f 1(r), . . . ,fL(r) and q(r). Then, it can simulate the next iteration as before. Finally, SA uses

Pj’s shares of f 1(0),f 1(1),f 1(2),f 2(0),f 2(1),f 2(2) and q(0), . . . , q(4) to compute Pj’s shares

of f 1(r),f 2(r), q(r). SA simulates the opening of b,f 1(r),f 2(r), q(r) as follows.

– To simulate the opening of b, SA chooses random shares for the honest parties under the

constraint that all the shares together will reconstruct to 0.

– To simulate the opening of f 1(r),f 2(r), SA chooses random shares for the honest parties.

– To simulate the opening of q(r), SA chooses random shares for the honest parties under the

constraint that the reconstructed q(r) will satisfy the equation: q(r) = g(f 1(r),f 2(r)).

If A sends consistent shares, SA sends out = accept to FCheatIdentify. Else, since SA knows Pi’s

shares, it can compute the message that should have been sent by A, and identifies the cheater

on behalf of Pi. SA sends reject with index j to FCheatIdentify in this case.

We claim that A’s view in the real and ideal execution is identically distributed. A’s view

consists of (i) shares sent by Pi for points on q, (ii) shares for points f 1(0),f 2(0), (iii) the

opened b, and (iv) the opened f 1(r),f 2(r), q(r). Shares in (i) and (ii) are uniformly distributed,

with respect to (iii), A sees random shares which open to 0 in both worlds. Finally, the claim in

(iv) follows from Equation (5.5), similar to that in case 1, where f e(r) for e 2 {1, 2} is randomly

distributed in the ideal as well as the real world. Given that f e(r) for e 2 {1, 2} is random, we

obtain q(r) being random as long as q(r) = g(f 1(r),f 2(r)) holds.

Subcase: Pi is semi-honest. SA,H has all inputs of Pi. Thus, the simulation can be carried

out honestly, taking into consideration the view received from SA. Thus, the simulation is

perfect.

Subcase: Pk is semi-honest. This is similar to case 2. Since Pi is honest, b should be 0 in

each iteration and q(r) should equal g(f 1(r),f 2(r)) in the last iteration. Since SA,H knows Pk’s

shares of the inputs, it can simulate the openings correctly. Thus, the simulation is perfect.

2

Lemma 5.5 Protocol ⇧Verify (Fig. 5.14) securely computes FVerify (Fig. 5.13) over field F in

the (1, 1)-FaF model with error logm · 1
F in the (FMiniMPC,FCheatIdentify)-hybrid model in the 5PC

setting.

Proof: Let SA be the ideal world malicious simulator, SA,H be the ideal world semi-honest

simulator and let A be the real world malicious adversary and AH be the real world semi-honest

adversary. SA is invoked by FVerify which sends it the corrupted party’s shares of (xk, yk, zk)mk=1

and out 2 {accept, reject} and dk = zk � xk · yk for k 2 {1, 2, . . . ,m}. Further, FVerify sends SA,H

the shares for PH, which is the semi-honest party.
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Random ✓1, . . . , ✓m 2 F are generated. SA plays the role of FCheatIdentify and FMiniMPC. Similar

to the proof of Theorem 5.4, SA chooses random shares for corrupted party for each  j, where

Pj is honest and hands these to A. Then, SA receives the honest parties’ shares for  i, where Pi

is the maliciously corrupt party. If the shares dealt by A are inconsistent, then the consistency

check takes care of this. The presence of honest majority enables SA to use the honest parties’

shares to compute  i for the corrupt Pi and its shares. Thus, for each i 2 {1, 2, . . . , 5}, SA

can simulate FCheatIdentify, handing accept or reject to A, accordingly. If the output is reject for

any i 2 {1, 2, . . . , 5}, then A sends index of a party Pj to SA, which together with Pi forms a

disputed pair of parties. Then, SA sends reject, (i, j) to FVerify, outputs whatever A outputs and

halts.

If the simulation has not ended with a reject, then it means that all  i’s are correct. Thus,

SA can compute � =
Pm

k=1 ✓k · (zk � xk · yk) =
Pm

k=1 ✓k · dk and choose random shares for the

honest parties, given the value of � and the corrupted party’s shares (known to SA). Using

these shares, SA simulates the reconstruction procedure. Consider the following cases.

– If A sent incorrect shares, causing the opening of � to fail, then SA takes the first pair

of parties Pi, Pj for which pair-wise inconsistency occurred, and sends reject, (i, j) to FVerify,

outputs whatever A outputs and halts.

– If � = 0: if out = reject (honest parties output accept in this case), SA outputs fail and halts;

if out = accept, SA sends accept to FVerify, outputs whatever A outputs and halts.

– If � 6= 0, simulation proceeds to the binary search, where SA simulates each steps as described

so far. If a pair of disputed parties is located, then it is sent to FVerify. If honest parties output

accept, then SA outputs fail (here it must hold that out = reject, since otherwise the simulation

would not have reached the binary search phase). If parties found an incorrect triple xk̄, yk̄, zk̄

such that zk̄ 6= xk̄ · yk̄ without identifying a disputed pair, then SA asks FVerify to find such a

pair by sending it k̄. Upon receiving (i, j) from FVerify, SA simulates FMiniMPC, handing (i, j) to

A. Finally, SA outputs whatever A outputs. Note that an event where the k̄
th triple is correct

is not possible, because in this case � must be equal to 0.

A’s view consists of (i) random shares of �j for each honest party Pj, (ii) message sent by

FCheatIdentify, (iii) the revealed �, and (iv) message from FMiniMPC. The argument for identical

distribution of A’s view in (i), (ii), (iii) follows from the proof of Theorem 5.4. For (iv), since SA

receives a pair of parties with conflicting views in the computation of the k̄th triple from FVerify, it

can simulate the role of FMiniMPC perfectly. Thus, the only di↵erence between the simulation and

real-execution is the event where SA outputs fail. This happens when 9k 2 {1, 2, . . . ,m} : dk 6= 0

(which is why out = reject) but the parties eventually output accept. This occurs when � = 0
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in one of binary search steps. Since there are logm steps and Pr[� = 0] = 1
F in each step, we

have that Pr[fail]  logm
F , which is the error in the simulation.

Following this, SA sends its view to SA,H to simulate the view for AH. SA,H chooses random

shares for corrupted party for each  j, where Pj is honest and hands these to AH. Then, SA,H

receives the honest parties’ shares for  H, where PH is the semi-honest party. The presence

of honest majority enables SA,H to use the honest parties’ shares to compute  H for PH and

its shares. Thus, for each i 2 {1, 2, . . . , 5}, SA simulates FCheatIdentify, handing accept or reject

to AH according to SA’s view. If the output is reject for any i 2 {1, 2, . . . , 5}, then SA,H sends

reject, (i, j) to AH, as present in SA’s view. SA,H simulates the reconstruction procedure for �

using shares received from AH. Now, depending on the view received from SA, SA,H sends (i, j)

or accept to AH. The argument for indisntinguishability of the views of AH in real and ideal

world follows similar to the argument for A. 2

Lemma 5.6 Protocol ⇧MulPre (Fig. 5.16) securely computes FMulPre (Fig. 5.15) over the field F
or ring Z2` in the (1, 1)-FaF model in the FVerify-hybrid model in the 5PC setting.

Proof: Consider the case of a corrupt P1. SA generates [·]-shares for {xk, yk, rk}mk=1, and learns

these values on clear. Step 3 of the protocol is simulated by sending random values to A. SA

also computes the secret xk · yk for k 2 {1, 2, . . . ,m}. If inconsistent shares are received in step

4 from A, then SA detects the inconsistency, and the simulation outputs a pair of conflicting

parties. Else, if the shares are consistent but the correct output is not received, SA computes

the di↵erence between these values and simulates FVerify. If cheating took place, then it sens

reject and dk 6= 0 to A. Then, it waits to receive from A either a pair of conflicting parties or a

request to FVerify to find such a pair. In the latter case, SA finds such a pair of conflicting parties

by computing the messages that should have been sent by the corrupted party and compares

it with what was received from A. Then, SA sends the obtained pair to A. If no cheating took

place, then SA sends accept to A. Following this, A can decide to reject, in which case a pair of

conflicting parties is sent as output. Observe that since A’s view consists of random shares in

both the worlds, the views are identical. Then, SA sends its view to SA,H. Simulation by SA,H

for a semi-honest party follows trivially as there are no messages to simulate other than those

from P1 which are already received as part of A’s view.

Cases where other parties are corrupt can be simulated trivially. Simulation for semi-honest

P1 also follows. 2
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5.12.1.5 The complete 5PC

The ideal functionality for computing a function f via (1, 1)-FaF secure 5PC appears in

Fig. 5.33.

Overview of the simulation steps Observe that the complete 5PC protocol begins with

the input sharing phase, followed by an evaluation phase where addition and multiplication

gates are evaluated and concludes with a reconstruction phase. For each of these phases, we

use the simulation steps described above depending on the identity of the maliciously corrupt

Pi and a semi-honest Pj. The simulation proceeds as follows. The simulator is able to extract

malicious A’s input while performing the simulation steps for input sharing, and knows AH’s

input. Thus, it can invoke the ideal functionality, F5PC�FaF (Fig. 5.33), to obtain the output

of the function being simulated. Simulation is not required for addition gates as it is a local

operation. For multiplication gates, the simulation steps as described for multiplication are

invoked. Observe that in all steps, the view of A, as generated by SPi
A , is indistinguishable

from its real-world view. Similar is the case for AH. If at any step, FJmp outputs a CP, 5PC

simulation stops and the rest of the steps are simulated using the semi-honest 3PC simulator.

Steps for share conversion have to be simulated towards AH, where the simulator carries out

steps as per the honest protocol execution, reusing the shares held by A, wherever necessary.

Finally, for reconstructing the output, the simulator uses the output received from F5PC�FaF to

adjust the value of the missing share that has to be sent to A and AH. Indistinguishability of

the views follows from the indistinguishability of the views for each of the phases. Thus, the

view generated by SPi
A is indistinguishable from A’s real-world view, and the view generated by

S
Pj

A,H is indistinguishable from AH’s real-world view.

F5PC�FaF interacts with the parties in P and the adversaries SA and SA,H. Let xs, ys be the input and

output corresponding to a party Ps respectively, i.e. (y1, y2, y3, y4, y5) = f(x1, x2, x3, x4, x5).

– F5PC�FaF receives (Input, xs) from Ps 2 P and computes (y1, y2, y3, y4, y5) = f(x1, x2, x3, x4, x5).

Output: Send (Output, ys) to Ps 2 P.

SA sends its view to SA,H.

Functionality F5PC�FaF

Figure 5.33: Ideal functionality for evaluating f in 5PC (1, 1)-FaF Model.

Jump to Contents 201



Malicious Simulation:

– SA emulates FSetup to generate common PRF keys.

– SA invokes the simulator for input sharing and extracts A’s input. SA invokes F5PC�FaF on A’s

input to obtain the function output v.

– For addition operations, there is nothing to simulate. For multiplications, SA invokes the simu-

lator for multiplication.

– SA invokes the reconstruction simulator to reconstruct output v.

– SA sends its view to SA,H.

Semi-Honest Simulation:

– SA,H invokes the simulator for input sharing.

– For addition operations, there is nothing to simulate. For multiplications, SA,H invokes the

simulator for multiplication.

– SA,H invokes the reconstruction simulator to reconstruct output v.

Simulator SPi
A , SA,H

Figure 5.34: Simulator SPi
A for 5PC� FaF.

Theorem 5.1 Assuming collision resistant hash functions exist, protocol 5PC� FaF (Fig. 5.17)

realizes F5PC�FaF (Fig. 5.33) with computational security in the FSetup-hybrid model with (1, 1)-

FaF security.

Proof: The view of the adversaries generated by the simulators is indistinguishable from their

real-world views. The indistinguishability of the views from input sharing and multiplication

follows from Lemma 5.1 and Lemma 5.3, respectively. With respect to reconstruction, on

obtaining the output from F5PC�FaF, the simulators either simulate the reconstruction steps

(see Lemma 5.2 for indistinguishability argument), or execute the simulator for semi-honest

3PC. In both cases, the simulated view is indistinguishable from the real-world view. 2

5.12.2 Simulations for building blocks

In this section, we describe the simulation steps for the building blocks described in §5.8. We

begin with the simulation steps for multi-input multiplication, dot product, bit to arithmetic,

bit injection, bit extraction and arithmetic to Boolean.

Since the multi-input multiplication and dot product protocol are very similar to the mul-

tiplication protocol, we omit simulation steps for the same. Further, observe that the protocol

for bit to arithmetic essentially invokes the joint sharing and multiplication protocols. Hence,
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simulation steps for bit to arithmetic involves executing the simulation steps for joint sharing

and multiplication in the order in which they appear in the protocol. Indistinguishability fol-

lows from the indistinguishability of the simulation steps in the underlying protocols. Similar

to bit to arithmetic, bit injection involves an invocation of bit to arithmetic followed by a mul-

tiplication. Hence, the simulation steps follow from the simulation of the underlying protocols.

Finally, bit extraction, truncation as well as arithmetic to Boolean rely on the invocation of

joint sharing followed by evaluating the bit extraction or the PPA circuit. Both the circuit eval-

uations rely on invoking the multiplication protocol. Hence, similar to the previous protocols,

simulation steps for bit extraction, truncation and arithmetic to Boolean can be obtained by

following the steps for simulating joint sharing and multiplication, in the order in which they

appear in the resultant protocol.

Similarly, it is easy to observe that the protocols for oblivious select, equality check, com-

parison, maxpool and ReLU build on top of the prior building blocks. Hence, their simulation

follows from the simulation of the underlying protocols.

5.12.3 Security against a (1, 1)-mixed adversary

A closely related notion to FaF is that of mixed adversarial model [19, 51, 75, 82, 87, 108, 107],

where a single (centralized) adversary is allowed to corrupt t parties maliciously and a disjoint

subset of h? parties semi-honestly. A protocol secure against such an adversary is said to be

(t, h?)-mixed secure. It may seem that the mixed notion subsumes the FaF notion, but [5] shows

otherwise. However, we show that our designed protocols are also secure in the (1, 1) mixed

adversarial model. The intuition for our protocols being secure in the mixed adversarial model

as well is as follows. Observe that since the mixed model comprises a centralized adversary,

as opposed to the decentralized one in the FaF model, the view of the semi-honest parties is

available to the adversary while deciding the attack strategy for the malicious parties. The

design of our protocols is such that it inherently is capable of withstanding such attacks due

to the threshold of our secret-sharing scheme being set as t + h
?, thus lending our protocols

secure against the centralized (1, 1)-mixed adversary as well. We next provide the simulation

proof for the same. Since the proofs follow easily from the simulation proofs for FaF security,

in our case, we restrict to discussing the mixed-secure simulation for the sharing protocol.

The ideal functionality for the sharing protocol secure against a mixed adversary appears

in Fig. 5.35.
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Fmixed

Sh
interacts with parties in P and the adversary Smixed.

– Receive (Input, v) from dealer Pd 2 P. Let P ? be the malicious party corrupted by Smixed.

– Receive continue or abort with (Select,C) from Smixed. Here, C denotes pair of parties that

Smixed wants to choose as conflict pair.

– If received continue, randomly pick ↵vij
2 Z2` , for 1  i < j  5 and compute �v = v +

P
1i<j5 ↵vij

. Set msgs = (�v, {↵vij
}i 6=s,j 6=s), for each Ps 2 P.

– Else if received abort, then:

– If P ? 2 C, then set CP = C and msgs = CP for each Ps 2 P.

– Else set CP to include P ? and one other party from P, and msgs = CP for each Ps 2 P.

Output: Send (Output,msgs) to Ps 2 P.

Functionality Fmixed

Sh

Figure 5.35: Mixed-secure ideal functionality for input sharing.

The simulator for the sharing protocol secure against a mixed adversary appears in Fig. 5.36.

Let Pl be the malicious party and Pm be the semi-honest party controlled by adversary A.

Preprocessing

– Smixed emulates FSetup and gives the respective keys to A. The shares of ↵v that are held by A

are sampled non-interactively using the shared keys. Other values (↵vij
for 1  i < j  5 and ↵vji

for 1  j < i  5), not known to A, are sampled randomly.

Online

– If Pl or Pm is the dealer, Smixed receives �v from A. Given the knowledge of all shares of ↵v,

Smixed obtains A’s input as v = �v � ↵v. Following this, Smixed emulates FJmp with A as one of the

senders, to deliver �v to all parties. Depending on A’s behaviour, Smixed sets CP and invokes Fmixed

Sh

with (Input, v), and continue/abort and (Select,CP).

– Else, Smixed honestly generates �v by setting the input, v, of honest dealer as v = 0. Smixed either

sends �v to A and/or emulates FJmp to deliver �v to all, with A either as the sender or receiver,

depending on the identity of Pi. Depending on A’s behaviour, Smixed sets CP and invokes Fmixed

Sh

with continue or abort, and (Select,CP).

Simulator Smixed

Figure 5.36: Simulator corresponding to Fmixed

Sh
.

Observe that the view generated by the simulator is indistinguishable from the real-world

view, and the argument follows similar to as given in Lemma 5.1.
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Chapter 6

Secure Allegation Escrow System

This chapter discusses the application of allegation escrow systems. The results in this chapter

have led to a publication at The Web Conference 2023 [139].

6.1 Overview

Recall that an allegation escrow is a system that allows victims of crimes to file a confidential

report about the crime, so that necessary actions can be taken to provide justice to the victim

(§1.1.2.2). However, users hesitate to participate in these systems due to the fear of retribution.

Thus, to increase trust in the system, cryptographic solutions are being designed to realize web-

based secure allegation escrow (SAE) systems. We identify shortcomings in the prior allegation

escrow systems. This also includes identifying attacks on the state-of-the-art system of [14],

that can compromise a victim’s privacy. To address these privacy breaches, we design a secure

allegation escrow system called Shield, while retaining the salient features from prior works.

The features provided by Shield, in comparison to the prior works, appear in Table 6.1. As

evident from the table, [14] focuses on providing an O(1) complexity solution, which comes at

the expense of privacy. On the contrary, we prioritize user privacy over system e�ciency since

privacy is essential for an SAE system. Hence, our protocol aims at achieving as e�cient a

solution as possible while guaranteeing no privacy breach. A new replacement to the secure

matching protocol that identifies a revealable set of matching allegations and the inclusion of

a new duplicity check protocol that prevents users from filing duplicate allegations lies at the

heart of Shield. The challenge in designing the matching protocol lies in handling a user-defined

and private reveal threshold. The subtlety in designing the duplicity check is in ensuring that

a genuine alleger is allowed to complain against multiple perpetrators if required. This should
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be done while simultaneously guaranteeing that a corrupt alleger cannot forge the identity of

another honest alleger to file duplicates (unless these two allegers collude). For completeness,

we additionally provide features such as allegation modification and deletion, which were absent

in the state of the art. Note that these can optionally be included in the system, depending

on the deployment scenario. We refer the reader to §1.1.2.2 for a quick overview and desirable

properties of an SAE system.

Protocol
Flexible
reveal

threshold

Private
reveal

threshold

Duplicity
complexity

Matching
complexity

[198] 8 8 NA a O(N)b

[144] 8 8 O(N) O(N · q)
[14] 4 8 8 O(1)

Ours 4 4 O(N) O(N ·maxths)

q: fixed reveal threshold, maxths: upper bound on flexible reveal
threshold, N: number of allegations in the system.
aDuplicity check is not applicable here. Filing a duplicate alle-
gation, to prematurely reveal a genuine one, requires a threshold
of at least 2 as opposed to 1 in Callisto. bDue to missing de-
tails in Callisto, the complexity reported assumes requirement
of a linear scan to identify matching allegations.

Table 6.1: Comparison of SAE protocols.

We resort to a modular approach to design the protocols, as shown in Fig. 6.1, by identifying

the MPC building blocks that would be required and their interdependence. These building

blocks have been extensively used in realizing privacy-preserving machine learning (PPML) [49,

193, 50, 38, 136, 173, 174]. Importantly, we allow Shield to make black-box use of the MPC

building blocks. This not only allows Shield to inherit the latter’s security guarantees and

e�ciency, but also opens up the possibility of utilizing the future advancements of MPC in a

seamless way. We focus on benchmarking the complexity of allegation processing in our system

and report the overhead involved in the enhancement. We realize Shield using the FaF-secure

MPC designed in Chapter 5. Finally, we elaborately discuss the design choices that such a

system should incorporate when attempting to achieve an ideal solution.

6.2 Related work

Callisto [198] provides a first-step solution to guarantee user privacy when filing allegations.

However, it can be greatly improved to better cater to user privacy. Callisto does not provide
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Layer 1:

Layer 2:

Oblivious Selection

Duplicity CheckMatching

ComparisonBit to
Arithmetic Equality Check Dot Product

Primitives categorized into layers where higher layer primitives build over lower layer ones. These
implicitly build over Layer 0 - input sharing, reconstruction, addition, multiplication - provided by
underlying MPC.

Figure 6.1: Hierarchy of primitives.

a formal threat model and selectively accounts for misbehaviour from a malicious user. It

also requires placing trust in the various entities involved. For instance, the DB server in

Callisto, which stores perpetrator-id (pid) and the encrypted allegation text, is not modelled as

a trusted entity, even when compromising the same allows an adversary to learn the number of

allegations against a specific pid (probing attack). Additionally, during allegation modification,

the DB server can learn whether pid is modified or if the allegation text was modified. Thus,

the DB server cannot be modelled as an untrusted entity. Moreover, Callisto only has an

invitation-based registration of users, and a policy-based solution to ensure explicit tracking

of users (via mapping the real-world identity to the unique ID provided during registration)

is not done. Further, unlike stated in Callisto, trivially extending support to the mentioned

features results in privacy issues: (i) support for higher reveal thresholds leads to premature

allegation revealing due to duplicates and (ii) support for allegation matching when users are

given the flexibility to file using di↵erent identifying attributes (name, email-id, phone number,

etc.) of a perpetrator leads to unidentified matching allegations due to mismatch in perpetrator

attributes. We elaborate on the issues in each case next. Since Callisto has a reveal threshold

of 1 (see §1.1.2.2 for a discussion on reveal threshold), it does not have to explicitly check for

duplicate allegations being filed. However, the check for duplicity is indispensable for higher

thresholds. Since Callisto does not hold its users accountable for the filed allegations, the

current framework is not equipped to check for duplicates. Similarly, we see possible issues in

matching allegations using multiple identifiers for a given perpetrator. Callisto suggests viewing

the pid as a vector issued by the key server, with each component of the vector corresponding

to an identifier of the perpetrator, as submitted by the victim. The DB server would then

identify a match if the vectors have a common component. However, we would like to note

that such a solution can, in fact, hinder the correctness of the system. The flexibility of having

victims query on di↵erent identifiers for the same victim could result in two allegations being

filed with non-overlapping identifiers. This would result in the DB server failing to match the

allegations, despite both being against the same perpetrator.
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In an attempt to overcome the issues present in Callisto, the work in [144] relies on the

cryptographic technique of MPC. It provides a distributed escrow system referred to as WhoToo

for reporting sexual misconduct. This distributed variant of the system ensures that the entities

in the system are no longer required to be treated as a single point of trust. The authors

in [144] identify the following issues with Callisto—(i) Callisto fails to bind the alleger identity

to the allegation (i.e., alleger is not accountable for its allegation), which facilitates attacks

that prematurely reveal allegations to the LOC, (ii) Callisto is susceptible to probing attack as

stated earlier, and (iii) Callisto leaks the user’s identity to the key server, each time the former

authenticates itself to the latter, in the process of querying for a pid. The authors in [144]

propose a solution that specifically addresses these three attacks.

The recent work in [14] not only addresses the issues pointed in [144] but also enhances

WhoToo by identifying and addressing the limitations present therein. First, the authors in [14]

make a strong argument in favour of empowering the users with the flexibility of having a

user-defined reveal threshold instead of enforcing a globally predetermined reveal threshold,

as in WhoToo. Second, they focus on providing a computationally more e�cient and hence

scalable solution. Unlike the solution in WhoToo that requires O(qN) computations to process

a newly filed allegation, the solution presented in [14] requires O(1) computations. Here, q

is the globally-fixed public threshold and N denotes the total number of allegations in the

system. Additionally, the authors in [14] showcase how the system can be generalized to handle

allegations against di↵erent types of crimes, rather than limit to sexual misconduct alone.

Thus, [14] presents the state-of-the-art solution to realizing a secure allegation escrow system.

Similar to WhoToo, [14] distributes the trust among multiple parties via MPC. However, in

an attempt to achieve O(1) computational e�ciency, it loses out on guaranteeing user privacy.

Attacks that breach user privacy are given in §6.2.1.
Finally, to reduce the trust placed on escrows, the work of [101] uses secure enclaves (built

on Intel SGX) as an additional defence mechanism. However, due to the backlash faced by

SGX-based solutions, we do not delve into it [224, 148, 33].

6.2.1 Attacks on [14]

Before we discuss the attacks that can be launched on [14], we give a quick overview of their

bucketing algorithm that is used to identify matching allegations.

Bucketing algorithm of [14] The bucketing algorithm is used to identify a set of revealable

allegations, if any, in the system when a new allegation is filed. For this, the allegations present
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in the system are grouped together as collections and are stored in a data structure that consists

of numbered buckets. The invariant maintained by the data structure is such that an allegation

a, waiting for j more matching allegations before it can be revealed, is present in bucket j.

Thus, when a new allegation a with threshold t is filed, it is included in bucket t1. Additionally,

the SAE protocol ensures that the escrows can compare and match allegations only within the

same bucket. This is achieved by the escrows associating a unique private key skJ with respect

to each bucket j where the key is known to them in J·K-shared form. The escrows jointly

compute the verifiable pseudorandom function (PRF) value for each allegation in bucket j

(using a distributed protocol). Specifically, the escrows invoke a PRF with shares of the bucket

key JskJK on the shares of the input JH(pid)K (H(·) is a collision-resistant hash function) for

each allegation. The PRF output is revealed on clear to all escrows. This allows the escrows

to locally determine the matching allegations within the bucket (two allegations match if they

have the same PRF value implying that they have the same meta-data or perpetrator-id). Such

matching allegations are grouped together as a collection. As a collection grows in size, it is

copied onto lower buckets to ensure the above-mentioned invariant is maintained. During this

process, if two di↵erent (non-intersecting) collections C1, C2 with matching meta-data happen

to overlap (i.e., they span across a common bucket), then the collections are coalesced into a

single collection C. The collection C consists of the union of all the allegations in C1, C2 and is

said to span the union of the buckets spanned by C1 and C2. Thus, a collection may span across

many (consecutive) buckets. It is interesting to note that all the allegations in a collection have

matching meta-data, but all allegations with matching meta-data need not belong to the same

collection (as they may belong to di↵erent collections spanning non-overlapping buckets)! In

the life cycle of an allegation (i.e. from its filing to its revelation), it starts o↵ as a singleton

collection; a collection grows in size when more matching allegations are found within the same

bucket; the collection is propagated to lower buckets when its size increases (i.e. to maintain

the invariant); the collection is revealed when it reaches bucket-0, indicative of the fact that the

allegations in the collection are waiting for no (0) more allegations before it can be revealed.

The exact bucketing rules are given below.

Bucketing Rules: Apply the following rules repeatedly (in any order) till no further rules

apply. Rules 2,3, and 4 only apply to collections that haven’t been revealed.

1. When an allegation with threshold t is filed, it forms a singleton collection and is added

to bucket t.

2. If Min(A) is the smallest bucket occupied by a collection A and every allegation in A has

1Note that the interpretation of threshold in [14] is slightly di↵erent and hence we modify the SAE protocol
description to keep the interpretation of t consistent with ours.
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a threshold < Min(A) + |A| � 1, A is copied to bucket Min(A) � 1. Note that A still

occupies the buckets it used to occupy. Copying adds the collection to a new bucket.

3. When two collections overlap and occupy the same bucket and their allegations are found

to match, they coalesce into one collection.

4. When a collection reaches bucket-0, all of its allegations are revealed.

5. If a collection A is revealed, we make sure it occupies buckets 1, . . . , |A|, even as A grows.

This enables future matching allegations to be revealed.

We next elaborate on the attacks that can be launched on this system.

Attack by filing fake allegations. To determine matching allegations, the protocol in

[14] only compares allegations that are waiting for the same number of additional allegations

required to satisfy their public reveal threshold. Whenever a comparison results in a match,

such allegations are grouped (collections) and processed as a single unit from then on. Although

the allegation remains hidden, each escrow learns the lifecycle of an allegation, which includes

the time of allegation filing, whether a comparison results in a match, grouping of matched

allegations, and the number of additional allegations that each filed allegation awaits. Consider

now a scenario where a perpetrator colludes with an escrow and has access to the view of

the escrow. Based on the information of when the perpetrator launched the assault and the

timing of a filed allegation, it may be suspicious that this allegation is indeed against it. To

confirm the suspicion, the perpetrator can file a fake allegation against itself by setting the

same (publicly known) threshold as that of the suspected one. The colluding escrow can thus

learn if the suspected allegation and the fake allegation are a match. [14] argues that such

adversarial behaviour would result in leaving a non-repudiable paper trail (i.e. each alleger is

held accountable for its allegation), and hence an adversary would not take such risks. However,

the counterargument is that the adversary will be at risk only when its fake allegation is revealed,

which may not always be the case. Given access to information such as the number of users

victimized, the timing of the assault, etc., and the view of the escrow, an adversary (perpetrator)

can take a well-educated risk and file such fake allegations with the confidence that it will not

be revealed. For instance, let an allegation be filed with threshold t > 2 after a perpetrator

launched an assault. A suspicious perpetrator can launch the above attack with the confidence

that it will not be revealed if it had harmed only a single victim, implying the absence of other

matching allegations. This makes it disadvantageous for a user to set high thresholds, and thus,

the whole purpose of having a system with a flexible reveal threshold is lost. To avoid such

attacks, we design protocols that keep the reveal threshold private and leak no intermediate

information to the escrows. We also bound the highest threshold that can be set to increase
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the probability of an allegation being matched and revealed. This also tackles the issue of an

adversary trying to overload the system by flooding it with fake allegations with a very high

threshold that will remain unrevealed if the threshold is unbounded.

Attack by filing duplicate allegations. Recall that a duplicate allegation is one that is

filed by the same alleger against the same perpetrator more than once. Since the system allows

each user to file multiple allegations, a corrupt user can file duplicate allegations against a

targeted perpetrator. Thus, duplicate allegations together with genuine allegations may form

a revealable set, leading to the possibility of prematurely revealing genuine allegations against

the same perpetrator (see example in the §1.1.2.2). Clearly, the privacy of an honest user is

breached since its allegation may be revealed even when its threshold criteria are not met by

other genuine allegations. One may argue that the above attack may be deterred because the

system maintains a non-repudiable paper trail, and the filer of duplicates will eventually be

penalized. The counterargument, however, is that despite the corrupt user being punished, the

damage to a genuine victim is irrevocable. The presence of such an attack lowers the trust

of genuine victims in the system and may discourage them from using it. Hence, we design a

duplicity check protocol to prevent this.

6.3 Design of Shield

6.3.1 System model

We design Shield to comprise 5 escrows (e.g., computationally powerful hired servers) P =

{P1, P2, . . . , P5} that are connected via pairwise private and authentic channels in a synchronous

network. These escrows enact the role of parties in the underlying MPC protocol. Protocols

are designed in the FaF model with a static, malicious probabilistic polynomial time (PPT)

adversary that can corrupt up to one party and a di↵erent semi-honest adversary that can

corrupt at most one other party. We assume that an arbitrary number of system users may

collude with the maliciously corrupt escrows.

6.3.2 Shield functionality

In this section, we design an ideal functionality FShield for our Shield system (Fig. 6.2) that follows

on similar lines to [14]. For ease of readability, we describe the functionality for a robust system

here. At a high-level, FShield aims to achieve alleger’s anonymity and allegation secrecy. That is,
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an alleger’s identity and its allegation should remain hidden from the escrows until the allegation

is revealed as a part of a revealable collection. FShield consists of six phases—(i) initialization,

(ii) user registration, (iii) allegation filing, (iv) duplicity check, (v) allegation matching and

(vi) allegation revealing. Throughout the phases, it maintains a few data structures—R: the

registered users of the system; A: all the allegations filed in the system, S: a collection of

revealable allegations; and P: details of the revealed perpetrators. The ith entry in A is denoted

as ai, which mainly has three attributes pid (perpetrator’s id), t (reveal threshold) and Text

(crime details). Similarly, the i
th entry of P is denoted as pi, and it has two attributes pid

(perpetrator’s id) and ac (count of allegations revealed against this perpetrator).

FShield interacts with escrows (P), user, ideal world malicious adversary SA and ideal world semi-

honest adversary SA,H and works as follows:

– Initialization Initialize empty lists R, A, S and P.

– Registration On receiving a message (“Register”, c, ID) from a user with identifier ID, send the

message (“Registered”, c, ID) to all escrows if the certificate c verifies. Include ID in list R and set

ID.count = maxalg.

– Allegation Filing On receiving a message (“Allege”, ID, anew) from a user ID and allegation

anew, send the message (“Failed attempt”) to escrows if ID /2 R or if ID.count = 0. Else send

message (“Allege”), reduce ID.count by 1, and enter the next phase.

– Duplicity Check Check if (anew.pid, ID) is part of some ai in A. If found, ignore and send the

message (“Duplicate”) to escrows. Else, include (anew,ID) in A, send the message (“File allegation”)

to all escrows, and enter the matching phase.

– Matching If anew.pid = pi.pid, then set anew.t = anew.t � pi.ac. Determine if there exists a

revealable subset S in A. If found, do as follows and continue to the next phase

� Delete each ai 2 S from A and send (“Found”, I) to escrows where I denotes indices of allegations

in S with respect to A.

� If ai.pid = anew.pid and ai 62 S, set ai.t = ai.t� |S|.
� If pi.pid = anew.pid, set pi.ac = pi.ac + |S|. Else include a new entry (anew.pid, |S|) in P and

send message (“New P entry”) to the escrows.

– Allegation Revealing Reveal allegations S to the escrows. Reset list S to be empty.

SA sends its view to SA,H.

Functionality FShield

Figure 6.2: Ideal functionality for Shield.

In the initialization phase, FShield initializes these data structures to empty lists. During
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the registration phase, a user sends a request to get registered, and the functionality adds the

entry to R and notifies the escrows. Here, FShield must ensure that every allegation should be

associated with an authentic, real-world identity, which ensures accountability. To tie up with

a real-world identity, a user must submit a certificate c, obtained earlier from a certification

authority (CA), along with its request, which FShield verifies before registering the user. This

helps in tracing back an allegation to its alleger in the case of misbehaviour, which discourages

fake allegations. Additionally, it can be used to discourage duplicate allegations. For every

registered user, FShield sets the maximum number of allowed allegations to maxalg. This count

is decreased every time the user files an allegation in the allegation filing phase.

Next, during the allegation filing phase, a user submits a new allegation anew. If the user is

not registered or the user’s quota of the maximum allowed allegation count is 0, FShield ignores

this allegation. Else, it decreases the corresponding user’s allowed allegation count by 1. It

notifies the escrows of a failed/successful incoming allegation (but nothing beyond) and moves

on to the next phase, where duplicity of anew is checked with respect to the allegations in A.

If found to be a non-duplicate, anew is added in A (and accordingly, a message is sent to the

escrows indicating duplicate/non-duplicate). Next, the matching phase is started. Here, FShield

first checks if pid of anew matches with any entry pi of P. If this is true, then anew’s reveal

threshold is reduced by the number of allegations against pi. This ensures that the alleger of

anew only has to find this reduced number of supporters from the unrevealed ones in A. Next,

FShield finds if there is a revealable subset S in A. If so, it performs a series of adjustments

in the maintained lists before publishing S in the next phase—(a) the allegations in S to be

revealed are erased from A, (b) it reduces the threshold of each matched, yet not to be revealed,

allegation ai (pid of ai equals to that of anew) by |S|, (c) it increases the allegation count of the

perpetrator of anew in list P or includes an entry for anew’s pid in P if it was not present earlier

in the list. In the reveal phase, FShield reveals S.

6.3.3 Shield overview

6.3.3.1 Primitives used to realize Shield

Here, we elaborate on the primitives relied upon by Shield.

Verifiable pseudorandom function (VRF) [73] Informally, a VRF is a pseudorandom

function Fskv(·) along with a proof generation function ⇡skv(·) such that a PPT adversary cannot

distinguish Fskv(x) from an output of a random function without the access to the VRF secret

key skv or ⇡skv(x). The correct computation of Fskv(x) can be verified given a matching public
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key pkv and proof ⇡skv(x). Let ⇧vrf be a protocol that inputs JskvK and JxK, and outputs JFskv(x)K
and J⇡skv(x)K.

Message authentication code (MAC) Informally, a MAC is a function which takes as

input a secret key skm and a message x. The output, denoted bymac, can be used to authenticate

x and confirm its origin from the entity holding skm. Let ⇧mac be the protocol that inputs JskmK,
JxK, and outputs JmacK.

Following [14], we instantiate ⇧vrf , ⇧mac using the PRF construction of [73]. For the VRF, we

restrict the output to only ⇡skv(x) since Fskv(x) can be generated using ⇡skv(x) and public key

pkv, in our instantiation.

MPC building blocks The designed protocols rely on MPC building blocks described in

Fig. 6.1. Their description and semantics of the inputs and outputs are provided in Table 6.2.

Building block Notation Description

Comparison JbKB = ⇧Comp(JxK, JyK) Outputs b = 1 if x < y, else outputs b = 0

Equality JbKB = ⇧Eq(JxK, JyK) Outputs b = 1 if x = y, else outputs b = 0

Oblivious Select JxbK = ⇧Sel(Jx0K, Jx1K, JbKB) Obliviously selects xb among x0, x1

Bit2A JbK = ⇧Bit2A(JbKB) Converts bit to its arithmetic equivalent

Dot product JzKB = ⇧DotP(JxKB, JyKB) Computes z =
L

n

i=1 xi ^ yi
†

† xi: ith element of vector x; n: vector size;
L

: XOR; ^: AND.

Table 6.2: Description of building blocks

6.3.3.2 The Shield system

Shield is designed to realize the FShield ideal functionality described above. The designed system

continues to have six phases, and the details of realizing each of these phases are described

next. These follow similar to [14] and set the stage for our new duplicity check and matching

protocol described next.

Escrow initialization This allows the escrows to establish the necessary setup required for

the underlying MPC and for securely processing a filed allegation. Escrows establish authen-

ticated communication links between themselves. They generate J·K-shares of the secret keys

required for a VRF (JskvK) and a MAC (JskmK) primitive. The public key (pkv) of the VRF is,
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however, known on clear to all the escrows. The use of these primitives during the later phases

(registration, filing, and duplicity check) is discussed in place.

User registration Here, escrows perform initialization with respect to users in preparation

for them to securely participate in the system. A high-level overview is discussed next.

(i) Escrows must be able to verify and register only valid users of the system. For this, a

user contacts the CA, who verifies its real-world identity and supplies a certificate, c. Escrows

register the user in the system after verifying c.

(ii) To empower only registered users to file an allegation, the system relies on digital signa-

ture schemes. To file an allegation later (with accountability), a user U needs to authenticate its

allegation using a digital signature (DS) secret key sk
U, and the escrows verify an allegation’s

authenticity using the corresponding public verification key pk
U. Additionally, the escrows

must be able to validate that the used pk
U belongs to a registered user. Hence, it is required

that each registered user records its verification key with the escrows during registration itself.

However, the knowledge of the verification key on clear allows the escrows to link an allegation

to a user. To validate a user’s allegation without linking to its identity, the escrows issue to the

user a VRF proof on its verification key, without learning the latter. This is enabled by having

the user secret-share its key, and the escrows (jointly) compute J⇡skvK = ⇧vrf

�
JskvK, JpkUK

�
and

reconstruct ⇡skv towards the user. During registration, since the escrows hold pk
U and ⇡

skv
in

shared format, they cannot associate these to the user, even though they know the user identity

via CA certificate in the current phase. Hence, when a user presents pkU and ⇡
skv

on clear dur-

ing allegation filing, user identity remains hidden while the escrows can validate the user. This

mechanism also prevents an outsider from faking its registration as it cannot generate valid

proof even while colluding with the corrupt escrows since no subset of them knows skv. Next,

we must allow a user to file multiple allegations2, if required, without the escrows learning that

the two allegations have originated from the same user. To tackle this, user U generates maxalg

pairs of keys (pkUi , sk
U

i ) corresponding to a DS scheme, where a unique pair is to be consumed

for each allegation, and J·K-shares these towards the escrows. The escrows compute VRF proof

J⇡i
skv

K = ⇧vrf

�
JskvK, JpkUi K

�
for i 2 {1, . . . ,maxalg}, which is reconstructed towards the user.

Here, maxalg denotes the maximum number of allegations that a user is allowed to file.

(iii) The escrows must be able to identify if the same user is filing a duplicate allegation

against the same perpetrator ID, pid. For this, the user and the escrows rely on a MAC to

2Multiple allegations should be against di↵erent perpetrators. If a user allegation is yet to be revealed, it
must be disallowed to allege the same perpetrator (duplicate). However, a revealed alleger victimized by the
same perpetrator at a later time must be allowed to file the allegation (non-duplicate).
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generate a unique unforgeable user identity, uid to be given in shares along with each allegation.

This is achieved by the user J·K-sharing a random r 2 G among the escrows. The escrows

compute JuidK = ⇧mac(JskmK, JrK), and reconstruct it towards the user. Since the escrows hold

skm, r in shared format, they learn nothing. Further, a user is unable to generate a valid uid

for itself or forge another user’s uid due to (i) r being unique and secret to each user, and (ii)

lack of knowledge about skm. Details of how uid facilitates the detection of duplicates appear

in §6.3.4. We note that this step is a new addition and is required to detect duplicates.

(iv) The escrows must also be able to learn the user’s identity when its submitted allegation

needs to be revealed. For this, the escrows rely on the MAC. The escrows compute Jmac
U

i K =

⇧mac(JskmK, JpkUi K) and reconstruct it. This allows the escrows to store the association between

a user and mac(s) generated on all its DS verification keys in a local map. Looking ahead,

during the allegation revealing, the escrows recompute the MAC on the DS verification key

used in an allegation. The recomputed MAC is matched against entries in the local map to

trace the user of the allegation. Observe the duality in the need for anonymization in (ii) and

traceability in (iv).

Allegation filing User U connects to all the escrows via an anonymous communication chan-

nel. It files i
th new allegation by submitting pk

U

i , ⇡skV(pk
U

i ) on clear, and shares of allegation

denoted JanewK = (JuidK, JrK, JpidK, JtK, JTextK), all signed using sk
U

i . That is, j
th escrow receives

pk
U

i , ⇡skV(pk
U

i ) and signed jth share of anew. Escrows check that the submitted pk
U

i was not used

previously, followed by verifying the proof ⇡skv(pk
U

i ). Upon success, they proceed to verify the

signature on anew components using pk
U

i . If any verification fails, escrows ignore anew. Else,

escrows proceed to the next phase.

Duplicity check The duplicity check protocol (§6.3.4) is run by the escrows to discard a new

allegation if it is a duplicate.

Allegation matching This involves running our new matching protocol (§6.3.5) to identify

a revealable set S of matching allegations.

Allegation revealing If a revealable set S is found during matching, this phase reveals S

(together with the identity of the allegers) to the escrows3. Since the pk
U (submitted during

3Note that Shield supports an alternative model where the shared S is directly reconstructed to an external
authority (designated to deliver justice) and thus hiding this crucial information from escrows, which may be
simply hired for compute-service.
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allegation filing) associated with allegations in S is known to the escrows, they recompute

Jmac
UK = ⇧mac(JskmK, JpkUK), and reconstruct it. Using the local map of valid mac(s) generated

during registration, they can de-anonymize the user.

A schematic representation of Shield appears in Fig. 6.3. For ease of reading the upcoming

sections, Table 6.3 enlists commonly-used notations in this chapter.

Escrow 1 Escrow 2

Escrow 4 Escrow 3

MPC protocols run using  
private authentic channels  

between escrows Certificate Authority (CA)
User Higher Authorities 

Eg. LOCs 

Proof of real-world identity

Certificate

 

  1. MPC setup
  2. Generate         
  secret keys for   
  MAC & VRF

Initialization
  1. Verify CA certificate
  2. Generate shares of VRF proof on   
  submitted public keys of DS scheme
  3. Compute shares of MAC on           
  unique user-ID
  4. Generate the local map of userID   
  and possible MACs

Registration
Validate User

Allegation Filing

  1. Send revealable       
  subset of allegations to 
  higher authorities 
  2. Delete revealed         
  allegations 

Allegation Revealing

The Shield System

 Reconstruct 
revealed
allegations

Reconstruct VRF 
proof on DS keys, 
and unique user-ID

Request to register: 
1. CA certificate, 

2. shares of public keys of DS scheme,
3. shares of randomness for generating user-ID 

Shares of new
allegation

Duplicity Check 

Matching 

Figure 6.3: Schematic Diagram of Shield.

Notation Description

N Number of allegations in the system

maxalg Maximum number of allegations that can be filed by a user

maxths Upper bound on the reveal threshold

a Allegation with attributes (uid, r, pid, t, Text)⇤

a.x Refers to attribute x of a

A List of non-duplicate allegations filed in the system: {a1, . . . , aN}
P =

{p1, p2, ..}
List of revealed perpetrators, pi = (pid, ac)†

S Set of revealable allegations

skm Secret key for MAC

pkv, skv Public key and secret key for VRF

(pkUi , sk
U

i ) ith public key and secret key of user U for digital signature

⇤ uid, r: unique id, pid: perpetrator id; t: reveal threshold, Text: crime description
† pid: perpetrator id; ac: count of allegations revealed against the perpetrator

Table 6.3: Notations used in this chapter.
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6.3.4 Duplicity check protocol

To prevent the filing of duplicate allegations, two measures are taken. First, every user U is

associated with a unique unforgeable user identity (uid) during the registration, which is verified

when an allegation is filed. Second, the unique identity and the perpetrator identity of the new

allegation is matched with that of the existing allegations. While the latter is the obvious

test for duplicity, the former test ensures that a user cannot submit an allegation without

registering and impersonating another user due to the unforgeability of the unique identity.

Note that a user U cannot impersonate user U
0 unless it obtains U

0
.uid by colluding with U

0.

Due to accountability property, such collusions are deterred. The protocol overview is given

next.

To check if a valid uid has been submitted, escrows recompute Juid0K = ⇧mac(JskmK, Janew.rK)
using the secret-shared r submitted as part of the new allegation, anew, and check equality of uid0

and anew.uid. If the submitted uid is valid, escrows proceed to verify if there exists an allegation

in the system ai 2 A such that ai.uid = anew.uid and ai.pid = anew.pid. To determine this, for

each allegation in the system, escrows invoke ⇧Eq (Table 6.2) protocol to check for equality of

pids and equality of uids. To determine if ai is a duplicate, escrows check if both equalities hold.

Formal details appear in Fig. 6.4.

– Juid0K = ⇧mac(JskmK, Janew.rK) and JchkKB = ⇧Eq(Juid0K, Janew.uidK)
– Reconstruct chk. If chk = 1, then for each allegation ai 2 A,

• Jchki1K
B
= ⇧Eq(Jai.pidK, Janew.pidK)

• Jchki2K
B
= ⇧Eq(Jai.uidK, Janew.uidK)

– Reconstruct chk3 = ⇧DotP({Jchki1K
B
, Jchki2K

B}Ni=1).

– If chk3 = 1, ignore the processing of anew and discard it.

Protocol ⇧Dup({a1, . . . , aN}, anew, skm)

Figure 6.4: Duplicity check.

Finally, observe that escrows essentially perform a linear scan over the list of all allegations

in the system. Hence duplicity check has the complexity of O(N).
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6.3.5 Matching protocol

Let anew be a newly filed allegation. The objective of the matching protocol is to determine the

largest set S, if any, of matching allegations against anew.pid, whose reveal criteria are met, i.e.,

reveal threshold of each allegation in S must be less than |S|.
A cleartext algorithm for identifying S is as follows: (a) sort the matching allegations in

A (associated with anew.pid) in decreasing order of threshold; let A0 = {a10, a20, . . . , ah0} be the

sorted list of matched allegations, (b) let Si = {ai0, ai+1
0
, . . . , ah

0}, and check if ai
0
.t < |Si|,

starting from i = 1 to h, (c) the lowest value of i (i.e., largest Si) for which (b) is satisfied

determines the largest revealable subset Si.

To preserve privacy, it is not enough to do the above computation on secret-shared data

(that include anew and A). The sequence of operations carried out during the computation must

also not leak private information. In particular, in the cleartext algorithm described above, the

length of the list |A0| = h leaks information on the number of matching allegations against

anew.pid in the system. Further, during the construction of Si, the inclusion or exclusion of an

allegation in Si reveals information about the relative ordering of the allegations with respect

to the threshold. Thus, the sequence of operations (selection, comparison, equality, etc.) on

secret-shared data also needs to be carried out obliviously. A protocol is data-oblivious if the

sequence of operations and memory accesses made during the protocol run are independent of

the input. Thus, our objective is to design a data-oblivious matching protocol that operates on

secret shared data. As an example, we note that this would mean we must operate on A rather

than identifying A
0 during matching. Our matching protocol thus consists of the following four

steps.

Step 1: Updating anew’s threshold based on perpetrators revealed so far When a

new allegation, anew, is filed in the system, its threshold should be reduced by the number of

allegations that have already been revealed against anew.pid. This ensures that the alleger of anew

only has to find this reduced number of supporters from the unrevealed ones in A. The first step

checks if there exists an entry for perpetrator anew.pid in P. If true, then the threshold anew.t is

reduced by pi.ac, where anew.pid = pi.pid. Note that these steps should be performed obliviously.

For this, we first compute a secret-shared bit via ⇧Eq that determines if anew.pid = pi.pid, for

each pi 2 P. Then, the oblivious select protocol ⇧Sel (Table 6.2) is invoked to obliviously

determine if the threshold remains unchanged (anew.t) or is updated (anew.t� pi.ac).

Step 2: Searching for largest S Determining the largest set of revealable matching

allegations translates to finding the highest threshold tmax (among the filed allegations) such
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that the number of matching allegations aj with aj.t  tmax is greater than tmax. Let maxths

denote the maximum reveal threshold allowed in Shield. To determine such a tmax, we examine

each possible threshold from maxths down to 1 iteratively. The order ensures we stop with the

largest set S. Starting with i = maxths iteration, we scan through the list of all allegations to

determine the count (= |S|) of matching allegations having threshold less than i+1 (=tmax+1).

The ith loop terminates if and when the determined count value is greater than i and a flag is set.

In each iteration, to avoid repeated comparison between allegations ai and anew to determine

if there is a match, we store this information, generated during the first scan, in a Boolean

array M of length N+ 1 (including anew). The array entries are secret shared bits where the ith

entry, JMiKB is a 1 if ai.pid = anew.pid, and 0 otherwise. To prevent leaking information about

whether an allegation satisfies the above threshold conditions or not, steps of updating count

are performed obliviously via ⇧Sel.

Step 3: Update A This step is executed only when flag is set in some iteration i in step 2,

indicating the existence of S, with count number of matching allegations and with the highest

threshold equal to i. The goal here is to identify the allegations in this set, delete these from

A, and update the threshold of non-revealable yet matching allegations to reflect the newly

revealed number of allegations—all of these without leaking any additional information. To

determine if an allegation belongs to S, we scan through the list of all allegations aj 2 A,

and identify if a matching aj is revealable, i.e., aj.t  i < count. This is done by reducing

the thresholds of all matching allegations in A by count, followed by checking if the updated

threshold is < 0 (which will be the case if it is a revealable allegation). This operation implicitly

updates the threshold of non-revealable yet matching allegations. The operation of whether aj

is a match and, consequently, whether the threshold is updated or not, is made oblivious, as in

step 1. That is, we compute a secret-shared bit that implies if aj.pid = anew.pid, and use it to

update the threshold (aj.t� count or aj.t) via ⇧Sel. Next, delete S from A.

Step 4: Updating P when S is found If anew.pid does not exist in P, then a new entry

in P is added with its allegation count ac = count. Else, the corresponding entry, say, pi is

updated to reflect the number of newly revealed allegations, i.e., pi.ac = pi.ac + count. This

step is performed via ⇧Sel, as described earlier.

The formal matching protocol appears in Fig. 6.5. The matching protocol entails performing

multiple scans over the list of all allegations. The number of times the scan is performed may

vary. However, note that the protocol terminates after at most maxths iterations, where maxths

is the upper bound on the reveal threshold. Hence, matching has a complexity of O(N ·maxths).
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STEP 1:

– for each pi in P do:

� Jchk1KB = ⇧Eq (Janew.pidK, Jpi.pidK)
� Janew.tK = ⇧Sel(Janew.tK, Janew.t� pi.acK, Jchk1KB)

– Add anew as the N+ 1th allegation in the system

STEP 2:

– for i = 1 to N do: JMiKB = ⇧Eq (Janew.pidK, Jai.pidK)
– Set JMN+1KB = J1KB

– for each possible threshold i = maxths to 1 do:

� JcountK = J0K
� for each allegation aj for j = 1 to N+ 1 do

- Jchk2KB = ⇧Comp (Jaj.tK, i+ 1)

- JcountK = JcountK +⇧Bit2A

⇣
JMjKB · Jchk2KB

⌘

� Reconstruct flag = ⇧Comp(JiK, JcountK). If flag is set to 1, break from the loop

STEP 3:

– If the flag is set to 0, Terminate the protocol. Else, for each allegation aj for j = 1 to N + 1

do:

� Jaj.tK = ⇧Sel

⇣
Jaj.tK, Jaj.t� countK, JMjKB

⌘

� Reconstruct chk3 = ⇧Comp (Jaj.tK, J0K)
� If chk3 = 1, include aj in S and delete from A Else, continue.

STEP 4:

– Initialize JflagKB = 0

– for each record pi in P do:

� Jchk1KB = ⇧Eq (Janew.pidK, Jpi.pidK)
� JflagKB = ⇧Sel

⇣
JflagKB, J1KB, Jchk1KB

⌘

� Jpi.acK = ⇧Sel

⇣
Jpi.acK, Jpi.acK + JcountK, Jchk1KB

⌘

– Reconstruct flag. If not set, then create a new record pi+1 in list defined as Jpi+1.pidK = Janew.pidK
and Jpi+1.acK = JcountK.

Protocol ⇧Mat({a1, . . . , aN}, anew,P)

Figure 6.5: Allegation matching.
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6.4 Additional features

Our system can easily be extended to support the modification and deletion of filed allegations.

The protocols for the same follow on similar lines as that of the duplicity check protocol and

entail performing a linear scan of the allegations in the system. The details are described next.

6.4.1 Allegation modification

Unlike in Callisto, where any aspect of the allegation can be modified, we only allow U to modify

the reveal threshold t and/or allegation text Text. Allowing modifications to other components

such as the user-ID uid, randomness r and perpetrator-ID pid of an allegation a is absurd and

hampers the functionality of the system. This is because modifying uid, r is equivalent to a user

claiming to be someone else. Similarly, modifying the pid is equivalent to the user alleging a

di↵erent perpetrator when it has already alleged someone else. Hence, there are several checks

that the escrows must perform before modifying an allegation to restrict the modification to

the above components.

First, the escrows must verify that a registered user of the system is submitting the request.

Second, the escrows must verify that the user submitting the (updated) allegation is not imper-

sonating another user. The first check is addressed by the escrows and the user carrying out the

same steps as in the allegation filing phase, where the user is now expected to instead submit

the updated allegation by consuming a new DS key pair (pkU, skU). For the second check, to

ensure the user is attempting to modify its own allegation, the escrows verify the validity of the

submitted uid by recomputing it as done in the duplicity check protocol. Once validated, the

escrows obliviously identify and update the allegation a 2 A in question. Note that knowing

which allegation was updated may leak sensitive data based on auxiliary information such as

the time of the filed allegation and the time of the modification. Hence, similar to the duplicity

check protocol, escrows scan through each allegation ai in the system and check for equality

of uid and pid of ai and submitted a
0. Whenever these components are a match, the escrows

obliviously update the components t and Text via ⇧Sel. The escrows additionally maintain a

flag to detect if an allegation was modified successfully or not. This is done to ensure that a

valid yet malicious user does not burden the system with fake requests to modify an allegation.

If all the checks pass and yet the flag is not set, it indicates that no allegation was modified.

Hence, the submitted pk
U can be used to trace back the user, as done in the allegation revealing

phase, and penalize it accordingly. That is, the escrows compute the MAC on the submitted

pk
U and de-anonymize the user through the local map of mac(s). The formal protocol for the

same is provided in Fig. 6.6.
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– Initiate allegation filing phase with a0 as the submitted allegation. If any verification fails, ignore

processing of a0, discard it and halt. Else set JflagK = 0 and continue.

– Juid0K = ⇧mac(JskmK, Ja0.rK) and JchkKB = ⇧Eq(Juid0K, Ja0.uidK)
– Reconstruct chk. If chk = 1, then for each allegation ai 2 A,

� Jchki1K
B
= ⇧Eq(Jai.uidK, Ja0.uidK)

� Jchki2K
B
= ⇧Eq(Jai.pidK, Ja0.pidK)

� Jchki3K
B
= Jchki1 · chki2K

B

� Jai.tK = ⇧Sel(Jai.tK, Ja0.tK, Jchki3K
B
)

� Jai.TextK = ⇧Sel(Jai.TextK, Ja0.TextK, Jchki3K
B
)

– Reconstruct flag = ⇧DotP({Jchki1K
B
, Jchki2K

B}Ni=1). If flag = 1, report success. Else trace mali-

cious user via a map of mac(s) on verification keys.

Protocol ⇧Mod({a1, . . . , aN}, a0, skm)

Figure 6.6: Allegation modification.

Note that each successful request of allegation modification must be followed by the al-

legation matching phase since updating the threshold can trigger the possibility of having a

revealable subset.

6.4.2 Allegation deletion

Not only must a user U be allowed to modify an allegation, but the system must also facilitate

U to delete the same. The designed system facilitates deletion and works on similar lines of

allegation modification. U places the request for deletion by resubmitting the allegation to

be deleted, albeit under a new pair of DS key pair (pkU, skU). The escrows perform the same

verification as done in the allegation filing phase. If all the verification succeeds, the escrows

recompute the uid
0 using r and match it against the submitted uid, as done in the allegation

modification. If the check passes, the escrows identify the allegation to be deleted. Unlike in

the case of the allegation modification protocol, where it was necessary to hide the allegation

being modified, we note that for deleting an allegation, the escrows must learn which allegation

it is. Hence, the identification of the allegation in question need not be performed obliviously.

This also avoids explicitly maintaining a flag variable. Thus, escrows perform a linear scan over

the list of all allegations to determine the ai that has uid (using chk
i
1) and pid (using chk

i
2) equal

to that of the submitted allegation a
0. The escrows determine if both the equalities hold (using

chk
i
3) and delete their shares of ai if this is the case. If no such allegation ai is found, then the

escrows determine the malicious user by tracing the identity of the user using the submitted

pk
U. The formal protocol for the same is given in Fig. 6.7.
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– Initiate allegation filing phase with a0 as the submitted allegation. If any verification fails, ignore

processing of a0, discard it and halt. Else continue.

– Juid0K = ⇧mac(JskmK, Ja0.rK) and JchkKB = ⇧Eq(Juid0K, Ja0.uidK)
– Reconstruct chk. If chk = 1, then for each allegation ai 2 A,

� Jchki1K
B
= ⇧Eq(Jai.uidK, Ja0.uidK)

� Jchki2K
B
= ⇧Eq(Jai.pidK, Ja0.pidK)

� Jchki3K
B
= Jchki1 · chki2K

B

� Reconstruct chki3. If chk
i
3 = 1 delete ai, report success, halt.

– If no ai was deleted, then trace the malicious user using the local map of mac(s) on verification

keys.

Protocol ⇧Del({a1, . . . , aN}, a0, skm)

Figure 6.7: Allegation deletion.

A possible optimization is to associate a public token with every allegation and enforce the

user to also submit the corresponding token when requesting deletion. This allows the escrows

to identify the requested allegation to be deleted without relying on MPC. However, the escrows

are required to use MPC to verify that the requested allegation is, in fact, filed by the user.

Hence, all checks performed previously remain the same, except they are performed specific to

the identified allegation directly. This avoids the linear scan across A.

We finally would like to note that our system can be extended to handle di↵erent types

of crimes. Towards this, the allegation can include an additional field indicating the type.

Note that this would a↵ect the duplicity check and matching protocols and require careful

re-definitions of the same.

6.5 Discussions

Here we address some concerns that may arise with respect to the design of Shield.

Privacy vs. e�ciency The inception of SAE systems was to protect user privacy and

thereby encourage user participation. Hence, for a user-centric system such as SAE, privacy

should be given utmost importance and must not be compromised at any cost. Further, a user

who filed an allegation is inherently bound to wait until matching allegations are found and can

be revealed. Given that this waiting period can vary from days to months [198, 14], improving

the e�ciency of the system (complexity of processing a filed allegation) has an insignificant

e↵ect on the wait time of the user. Thus, choosing e�ciency over privacy is ill-advised for an
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SAE system.

Pessimistic view of the world Our design decisions are made considering the worst-case

scenario. Specifically, we assume malicious capabilities of users and escrows and their collusion.

The protocols in Shield allow the escrows to detect misbehaviour by a malicious user. Relying on

the accountability property o↵ered by Shield, the escrows (or higher authorities) can trace back

the user’s real-world identity and punish the same. Thus, the accountability property plays an

important role in deterring malicious users. Further, the choice of a variable threshold instead

of a globally fixed one is made to cater to the victims’ varying levels of vulnerability, thereby

making the system more inclusive. The presence of a flexible reveal threshold further demands

empowering a victim to change the reveal threshold of its allegation, which may be necessary

to ensure the allegation is revealed sooner. This is facilitated by the allegation modification

protocol. Note that our design choices in no way make us loose-out on any feature provided by

prior systems, rather only improve upon them.

Choice of MPC Note that an allegation escrow system has highly sensitive information

and is required to run perpetually. Realization of the system cannot a↵ord to cease providing

the service due to malicious activities. Thus, employing any MPC protocol that enables the

adversary to abort would be a misfit. However, previous works rely on MPC with identifiable

abort (i.e., the protocol aborts and reveals the identity of the corrupt party upon misbehaviour)

but restart the computation with one less party when a corrupt party is identified. Although

this is a possibility, it comes at the cost of re-sharing the state of the corrupt party (escrow) that

is thrown out of the computation, which is expensive. Hence, it is imperative to design protocols

that attain the strongest security of guaranteed output delivery. GOD prevents an adversary

from wasting honest escrow’s valuable compute resources by preventing repeated failures, which

is otherwise possible in the weaker security notions that allow an adversary to abort. Thus,

the presence of GOD uplifts the trust in the system and encourages user participation. It

is well known that an honest majority among the computing parties is necessary to achieve

GOD [55]. Moreover, due to the challenges in identifying a large number of compute parties

for real-world deployments and e�ciency reasons, MPC for a small number of parties is gaining

huge interest [175, 11, 84, 12, 36, 183, 49, 193, 29, 193, 50, 38, 30]. Hence, to realize an SAE

system, we focus on benchmarking honest majority MPC protocols with a small number of

parties providing the strongest security of GOD. Specifically, we consider the 5PC (1,1)-FaF

setting discussed in Chapter 5.
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Other challenges Several details, such as the requirement of anonymous communication

channels for alleger anonymity, trust in the user’s client-side software, and other deployment

considerations, which apply to our solution, are not emphasized. These follow from prior works,

as described in the deployment considerations of [14]. Our goal was to identify privacy breaches

in the existing works and formalize the security desirable in such a system. Thus, we only

provide an algorithmic solution that achieves the desired security. Addressing the system-level

challenges that may arise in the actual deployment of the solution and designing a user-friendly

interface is the necessary next step and is left as future work.

6.6 Benchmarks

Shield, can be realized using any MPC protocol that provides the identified primitives in Ta-

ble 6.2. Although we prioritize privacy over e�ciency, we strive to achieve as e�cient a solution

as possible. We instantiate our (1, 1)-FaF secure 5PC protocols described in §5. The protocols
are implemented in Python. Our code accounts for multithreading. We instantiate the com-

munication layer between the parties using the PyTorch library. We use the Crypto library for

AES and hashlib for generating SHA256 hash. Our code was developed for benchmarking and

not optimized for industry-grade use. We note that a C++-based implementation can give bet-

ter performance. Our protocols are benchmarked over LAN, instantiated using n1-standard-64

instances of Google Cloud with 2.3 GHz Intel Xeon E5 v3 (Haswell) processors, and 240 GB of

RAM. The machines have a bandwidth of 16Gbps. We use latency (time taken for the protocol

to complete) and communication between escrows as the two parameters for benchmarks. We

report values separately for the online phase and total (= preprocessing+online). Our protocols

are benchmarked over the ring Z2` (` = 64), except for computing MAC and VRF, the security

of which demands operating on a 1024-bit prime-order field.

Recall the six phases that comprise the Shield system. Observe that initialization is a one-

time process, and hence does not contribute to the cost of keeping the system running. However,

the escrows may be challenged to register multiple users at once. Hence, we report the cost of

registering a single user in Table 6.4, where we fix the number of digital signature keys being

registered by the user as 50 following [14].

Allegation filing involves escrows locally performing operations (without any interaction).

Hence, we do not explicitly report the cost of this phase. Duplicity check and allegation

matching make up the compute-intensive phases for running the system. Unlike registration,

these phases can only process one allegation at a time. Hence, we report costs for processing one

filed allegation in these phases. These costs were not reported in [14] since it had a constant-
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#Escrows
Online Total

Latency (s) Com (MB) Latency (s) Com (MB)

5 6.87 164.81 12.11 368.46

Table 6.4: Communication and latency for registering a user.

time matching (and a duplicity check was missing). Hence, the costs reported here capture the

overhead in comparison to [14], which is the price paid for obtaining full privacy.

The complexity of our duplicity check is dependent on the number of allegations in the

system and hence is benchmarked for a varying number of allegations. For this, we consider

a system where the number of filed allegations ranges from 100-100,000, which is su�cient

to account for deployment in any institution (e.g., universities, private or government work-

places, etc.). We note that 105 filed (unrevealed) allegations account for a pessimistic view,

so real-world deployment may be faster. The variations in latency and communication for on-

line and preprocessing phases appear in Table 6.5. The reported online latency is roughly 22

minutes, even in the presence of 105 allegations, which showcases its practicality. As expected,

communication scales linearly with the number of allegations.

#Escrows |A|
Online Total

Latency (s) Com (MB) Latency (s) Com (GB)

5

102 2.45 2.46 5.27 0.05
103 8.45 14.63 20.86 0.36
104 128.16 91.48 179.65 3.83
105 1325.54 913.67 1559.91 38.37

Table 6.5: Communication and latency for duplicity check.

The above analysis also holds for matching since it too depends on the number of allegations

in the system. Additionally, the matching protocol depends on the size of the revealed perpe-

trator list P, and the upper bound on the reveal threshold. To analyze the e↵ect of this, we

benchmark cases where |P| may be linear (1/10) or sub-linear (
p
·) in the number of allegations

and bound the reveal threshold by 10. These results are reported in Table 6.6. |P| is chosen to

be linear and sub-linear in the number of allegations to account for a large band of variation

in the possible number of revealed perpetrators. As evident from Table 6.6, in the presence of

105 allegations in the system, processing a new allegation requires < 21 minutes in the online

phase. Thus, the online run time of the matching protocol showcases its practicality despite

having a dependence on the number of allegations in the system. This can be attributed to

the use of the preprocessing model. Moreover, for 105 allegations, changing |P| from 300 to 104
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has an overhead of not more than 3 minutes in online runtime, and less than 3 MB overhead in

online communication. This shows the minimal e↵ect |P| has on the complexity of matching.

Further, to showcase the e↵ect of threshold bound on the complexity of matching, we vary

the bound from 10 to 50 with fixed |A| = 105, |P| = 104 and report results in Table 6.7. An

increase in bound from 10 to 50 results in an overhead of 2.14⇥, 4.65⇥ in online latency and

online communication, respectively. A pictorial comparison of matching and duplicity appears

in Fig. 6.8.

#Escrows |A| |P|
Online Total

Latency (s) Com (MB) Latency (s) Com (MB)

5

102 10 1.13 0.31 3.48 2.25

103
30 15.09 3.04 32.5 18.35
102 25.24 3.12 47.89 20.06

104
102 116.34 31.11 281.04 195.59
103 179.17 30.8 342.51 196.35

105
300 1109.22 312.48 2464.68 1947.45
104 1256.66 310.46 2972.86 1956.80

Table 6.6: Overhead of matching for varying number of allegations and number of revealed
perpetrators.

#Escrows Max. threshold
Online Total

Latency (s) Com (MB) Latency (s) Com (MB)

5

10 1256.66 310.46 2972.86 1956.80
20 1910.33 590.28 3797.48 1966.61
30 2371.89 889.77 4329.94 2885.84
40 2428.67 1164.79 5041.09 3804.45
50 2656.61 1444.27 5777.38 4723.02

Table 6.7: Communication and latency for matching with varying upper bounds on threshold
for |A| = 105, |P| = 104.

Since the operations in the allegation modification are similar to those in the duplicity check,

its cost is the same as that reported for the duplicity check. The same holds true for deletion.

6.7 Security proofs

The simulation-based (1, 1)-FaF secure proofs for Shield are presented in this section. Let SA

and SA,H denote the ideal-world malicious adversary and the ideal-world semi-honest adversary,
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Figure 6.8: Variation in latency and communication for varying number of allegations for
duplicity and matching protocol. For matching, S1 indicates the setting where #perpetrators
revealed are sublinear in #allegations, while S2 indicates a setting where #perpetrators revealed
is 10% of #allegations. Plots are log-log plots with x-axis logarithmic in base 10 and y-axis
logarithmic in base 2.

respectively. Let A and AH denote the real-world malicious adversary and the real-world semi-

honest adversary, respectively. We begin by discussing the security of ⇧Dup and ⇧Mat, followed

by proving the security of Shield.

We give the ideal functionality for duplicity check and matching in Fig. 6.9 and Fig. 6.10,

respectively. Owing to the modular architecture (see Fig. 6.1), it is easy to observe that the

duplicity and matching protocols in layer 2 build on top of protocols in layer 1 and layer 0.

Hence, their simulation follows from the simulation of underlying protocols.
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FDup interacts with the escrows in P, the ideal world malicious adversary SA and the ideal world

semi-honest adversary SA,H.

– It receives as input the shares of the following from the parties: the newly filed allegation anew,

allegations in the system {a1, . . . , aN}, and the MAC key skm.

– Reconstruct anew, {a1, . . . , aN} and skm using the shares of honest parties.

– Recompute the user ID uid0 = MAC(skm, anew.r) and check if uid0 = anew.uid.

– If it is not equal, send ignore message to escrows and terminate.

– Else check if there exists ai 2 {a1, . . . , aN} such that ai.uid = anew.uid and ai.pid = anew.pid.

– If ai as described above exists, output 1 to all the escrows. Else, it outputs 0.

SA sends its view to SA,H.

Functionality FDup

Figure 6.9: Ideal functionality for duplicity check.

FMat interacts with the escrows in P, the ideal world malicious adversary SA and the ideal world

semi-honest adversary SA,H.

– Receive the shares of the following from the parties: anew, {a1, . . . , aN}, and all entries pi in P.

– Reconstruct anew, {a1, . . . , aN} and P using received shares of honest parties.

– (Step 1) Check if there exists entry pi in P such that pi.pid matches anew.pid. If found, reduce

anew.t by pi.ac.

– Include anew as the N+ 1th allegation.

– (Step 2) Consider all subsets of matching allegations to anew and check if any of them satisfy

their reveal criteria. Let S denote such a set, if found.

– If no such set is found send ignore message to escrows and terminate.

– Else (Step 3) consider all those matching allegations in {a1, . . . , aN} but not in S. For each

such allegation ai, update its threshold to ai.t� |S|.

– (Step 4) Check if there exists a record pi such that pi.pid = anew.pid. If such a entry is found,

update pi.ac by adding |S| to it. Else, create a new entry in P as (pid, ac) = (anew.pid, |S|) and send

message (“New P entry”) to all escrows.

– Send the index i for all allegations ai in {a1, . . . , aN} that are now included in S to the escrows.

Delete these entries from the list of all allegations.

SA sends its view to SA,H.

Functionality FMat

Figure 6.10: Ideal functionality for matching.
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Lemma 6.1 (Security) Protocol ⇧Dup (Fig. 6.4) securely realizes FDup (Fig. 6.9) in the com-

putational setting against FaF adversaries SA, SA,H.

Proof: Simulation proceeds via the simulation steps of the underlying protocols. Thus,

the indistinguishability of the simulated and real-world view of the adversary follows from the

indistinguishability of the simulation steps of the underlying protocols. Note that since the

simulator receives from the ideal functionality the values that are reconstructed during the

protocol execution, the simulator can also successfully reconstruct this towards the adversary.

2

Lemma 6.2 (Security) Protocol ⇧Mat (Fig. 6.5) securely realizes FMat (Fig. 6.10) in the com-

putational setting against FaF adversaries SA, SA,H.

Proof: Simulation proceeds via the simulation steps of the underlying protocols. Thus,

the indistinguishability of the simulated and real-world view of the adversary follows from the

indistinguishability of the simulation steps of the underlying protocols. Further, regarding the

simulation of break, note that the simulator receives from the ideal functionality the values

that are reconstructed during the protocol execution. This allows the simulator to reconstruct

the values towards the adversary, thereby enabling the simulation of the break statements too.

Further, note that the point at which protocol breaks discloses the number of allegations that

can be revealed, if any. Else, the loop breaks after a public number of iterations (equals maxths).

In either case, escrows always learn this information depending on if they reveal/not reveal a

set of allegations. Hence, it is not a breach of privacy. 2

We now prove the security of the Shield.

Theorem 6.1 Let VRF be a secure distributed input VRF protocol, let MAC be a secure MAC,

and let the employed signature scheme be strongly existentially unforgeable. Then Shield realizes

FShield (Fig. 6.2) with computational security in the (FDup,FMat)-hybrid model with (1, 1)-FaF

security.

Proof: We provide the description of a simulator SA designed to simulate the view of the

malicious adversary A in the real-world and a simulator SA,H to simulate the view of a semi-

honest adversary AH. We assume A can corrupt at most one escrow and any number of users.

We begin with steps followed by SA and then SA,H.

The initialization phase involves interaction only among the escrows. SA emulates the

distributed key generation4 to generate the public key pkv and secret key skv required to evaluate

4A distributed key generation functionality outputs J·K-shares of a secret key skv, and the public key pkv,
on clear, to the escrows. A secure protocol for this can be realized using the (1, 1)-FaF secure 5PC.
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VRF. It also generates the secret key skm required to evaluateMAC. It sends the corrupt escrow’s

shares of skv, skm to A while the public key is sent in clear. Note that SA is aware of all the

keys generated so far. The simulator also emulates the CA.

Since the registration and allegation filing phases require interaction between escrows and

users, we consider the following two cases:

Case 1: Honest user and corrupt escrow

Upon receiving the message (“Register”, c, ID) from FShield, SA generates maxalg new public

keys pk
U

1 , . . . , pk
U

maxalg
for a user U, a random r and provides the secret-shares of these, corre-

sponding to the corrupt escrow, to A. SA then participates in the distributed computation of

the VRF on the received public keys and the computation of MAC on r to generate secret-shares

of the VRF on the supplied public keys and shares of uid, respectively . This computation is

simulated by running simulation steps with respect to ⇧vrf and ⇧mac, which outputs random

shares of VRF on the public keys and random shares of uid. SA simulates generation and re-

construction of mac
U

i = MAC(skm, pk
U

i ) for i 2 {1, . . . ,maxalg} towards A (SA can simulate this

since it has the key skm and pk
U

i ). So far the view generated by SA is indistinguishable from

A’s real world view.

Upon receiving the message (“Allege”) from FShield regarding the attempt to file a new

allegation, SA chooses a pk
U which has been authenticated in the registration steps and chooses

random shares for each component in the allegation, signs these under pk
U and sends it to

A. On receiving the message about duplicity check from FShield, SA emulates FDup accordingly

and proceeds to the matching phase. Similarly, depending on the message received from FShield

for the matching phase, SA emulates FMat. Finally, to simulate the revealing of an allegation

depending on the user identifier ID received from FShield, SA picks a pk that was filed with

respect to ID. Since SA knows the key skm, it simulates steps of MAC computation such that

it leads to reconstructing MAC(skm, pk) towards A. The allegation components received from

FShield are reconstructed towards A. Observe that in all the above steps, since SA follows the

simulation steps of the underlying protocols, the indistinguishability of the simulation follows

from the indistinguishability of the underlying simulations.

Case 2: Corrupt user and corrupt escrow

During registration, A sends the proof of ID, c obtained from the CA for a corrupt user U

to SA. It also sends the honest escrows’ shares of the maxalg public keys pkU1 , . . . , pk
U

maxalg
and

a random r to SA. If the proof of ID is invalid or the shares are inconsistent, SA sends ? to A.

Else, it sends (“Register”, c, ID) to FShield from the corrupted alleger’s ID. Since SA knows the

shares with respect to all honest escrows, it can reconstruct the underlying values (pkUi and r).

SA then participates in the distributed computation of the VRF and MAC on the keys and on
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r, submitted by A, to generate shares of the VRF on the public keys and shares of uid. This

computation is simulated by running simulation steps with respect to ⇧vrf and ⇧mac. Further,

SA simulates generation and reconstruction of mac
U

i = MAC(skm, pk
U

i ), for i 2 {1, . . . ,maxalg}
towards A.

While filing an allegation, A sends honest escrow’s shares of the allegation components to

SA, who checks if the submitted pk
U is valid and if had not been used earlier. If the check fails,

SA sends ? to A. Else, SA determines the ID with which pk
U is registered (recall that SA is

able to do it since it can reconstruct all pkU’s submitted during registration) and connects to

FShield on ID’s channel.

Following this, on receiving the message about duplicity check from FShield, SA emulates FDup

accordingly and proceeds to the matching phase. Similarly, depending on the message received

from FShield for the matching phase, SA emulates FMat. On receiving a message from FShield to

reveal an allegation filed by a corrupt user U with identity ID, SA does the following. Since SA

knows the key skm, it simulates steps of ⇧mac such that it leads to reconstructing MAC(skm, pk
U)

towards A, where pkU is the key used by the corrupt user for filing the allegation. The allegation

components received from FShield are reconstructed towards A. Observe that in all the above

steps, since SA follows the simulation steps of the underlying protocols, the indistinguishability

of the simulation follows from the indistinguishability of the underlying simulations.

Finally, SA sends its view to SA,H. Observe that SA,H only has to simulate semi-honest

escrow, which is similar to the steps carried out above, with the di↵erence that, SA,H will

invoke the semi-honest simulator of the underlying protocols and reuse the messages present in

the view provided by SA, wherever required. Further, only the case with the honest user and

corrupt escrow has to be simulated. Due to the close resemblance, we omit the details.

2
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Chapter 7

Secure Computation with Constant

Number of Parties

In this chapter, we discuss the secure protocols that allow performing computation with multiple

(constant) parties. The results in this chapter have led to a publication in the Journal of

Cryptology 2023 [140].

7.1 Overview

We extend the strategies of the small-party computation protocols that tolerate at most one

corruption to support higher resiliency in an honest-majority setting while keeping the e�ciency

of the online phase at the centre stage. In this regard, we design secure multiparty protocols (for

a constant number of parties) in the honest-majority setting. We begin with a quick overview

of the results, followed by the details.

– We construct an n-party semi-honest protocol, tolerating at most t < n/2 corruptions, in the

preprocessing paradigm, which o↵ers an improved online phase than the (optimized) protocol of

[62] that appears in [29], without inflating its total cost. Henceforth, we refer to the optimized

protocol of [62], that appears in [29], as DN07?. Moreover, our protocol reduces the number of

active parties in the online phase, thereby improving the system’s operational cost.

– We extend our semi-honest protocol to the malicious setting while retaining the benefits of

requiring a reduced number of parties in the online phase for the majority of the computation.

Our o↵er over the state-of-the-art protocol of [78] is a stronger security guarantee of fairness

and at least 2⇥ improvement in round complexity via a one-time verification at the end of

protocol evaluation.
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– We provide support for 3 and 4 input multiplication at the same online complexity as that of

the 2 input multiplication. In addition to improving the communication cost over the approach

of sequential multiplications, multi-input multiplication o↵ers a 2⇥ improvement in the round

complexity, which is beneficial for high-latency networks. Moreover, the approach can be

extended to an arbitrary number of inputs while retaining the same online communication,

albeit requiring exponential communication in the preprocessing phase [194].

– We design building blocks for a range of applications, such as deep neural networks and genome

sequence matching based on edit distance and Euclidean distance. When the applications are

benchmarked, our semi-honest protocol witnesses a saving of up to 69% in monetary cost and

has 3.5⇥ to 4.6⇥ improvements in online run time and throughput over DN07?. Interestingly,

our maliciously secure protocols outperform the semi-honest protocol of DN07? in terms of

online run time and throughput for the applications under consideration, achieving the goal of

a fast online phase.

We now elaborate on the contributions and highlight the technical details and novelty.

Figure 7.1: Hierarchy of primitives in our 3-tier framework.

The designed multiparty framework follows a 3-tier architecture (Fig. 7.1) to attain the final

goal of privacy-conscious computations. The first tier comprises fundamental primitives such as

input sharing, reconstruction, multiplication (with truncation), and multi-input multiplication.

The second tier includes building blocks such as dot product, matrix multiplication, conver-

sion between Boolean and arithmetic worlds, comparison, equality, and non-linear activation

functions, to name a few, as required in the applications considered. Finally, the third tier is

applications. Our main contributions lie in Tier I, and these are detailed below. Going ahead,

we use ‘multiparty protocols’ to mean honest majority n-party protocols that tolerate t > 1

corruptions and thus do not include the tailor-made protocols in the 3 and 4-party settings.
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Tier I - MPC protocols

Our goal is to design protocols with a fast online phase. Thus, working over Z2` and relying on

replicated secret sharing (RSS), we design a semi-honest MPC protocol in the computational

setting assuming a one-time shared-key setup for correlated randomness.

Note that the straightforward extension of the semi-honest multiplication protocol of DN07?

to the preprocessing model, which can also be derived from the recent work of [78], incurs a

communication of 3t elements in the preprocessing phase while communicating 2t elements in

the online. This amounts to a 1.6⇥ overhead in the total cost over DN07?. Our contribution lies

in ensuring a fast online phase without inflating the total communication cost of the protocol.

Specifically, our protocol requires communicating only 2t ring elements in the online phase and

t in the preprocessing for a multiplication gate. Thus, in the honest majority multiparty setting

over rings, we are the first to achieve a communication cost of 2t in the online phase (unlike 3t

in the prior works [62, 85]) without incurring any overhead in the total cost, i.e., our total cost

still matches that of the best known (optimized) semi-honest honest-majority protocol [62, 85].

We extend our protocol to provide malicious security with fairness at the cost of additionally

communicating t elements in the online phase and 2t in the preprocessing phase. Although

(abort) protocol of [78] has the same communication as our maliciously secure protocol, we

achieve a stronger security notion of fairness. Moreover, [78] requires an additional round

of communication for consistency checks after each level, the absence of which results in a

privacy breach (described in [94] and elaborated in §7.5.3), and necessitates participation from

all parties. However, by relying on a variant of RSS, our protocol avoids the consistency check

after each level of circuit evaluation and ensures privacy. Notably, we only require participation

from all parties for a one-time verification at the end of the evaluation, thus reducing the

number of rounds by d (d denotes circuit depth).

3 and 4 input multiplications. Following [194, 191, 138], to reduce the online communication

cost and round complexity, we design protocols to enable the multiplication of 3 and 4 inputs

in a single shot. Compared to the naive approach of performing sequential multiplications to

multiply 3/4 inputs, the multi-input multiplication protocol enjoys the benefit of having the

same online phase complexity as that of the 2-input multiplication protocol. This brings in

a 2⇥ improvement in the online round complexity and improves the online communication

cost. Support for multi-input multiplication enables usage of optimized adder circuits [194] for

secure comparison and Boolean addition, thereby resulting in a faster online phase. The recent

work of [95] also proposes a method to improve the round complexity of circuit evaluation by

evaluating all gates in two consecutive layers in a circuit in parallel. We observe that their
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method can be viewed as a variant of multi-input multiplication with 3 and 4 inputs. Thus, our

protocols need not be limited to facilitating faster comparison and Boolean additions alone (as

described above) but can be used to reduce the round and communication complexity of any

general circuit evaluation. Note that [95] only improves the round complexity (2⇥) without

inflating the communication cost when compared to DN07?. However, we focus on improving

round complexity (2⇥) as well as communication of the online phase by trading o↵ an increase

in preprocessing.

Tier II - Building blocks

We design e�cient protocols for several building blocks in semi-honest and malicious settings,

which are stepping stones for Tier III applications. These are extensions from the small party

setting [173, 193, 136, 194].

Tier III - Applications

To showcase the practicality of our framework and improvements of our protocols, we bench-

mark a range of applications that find use in the medical sector, such as neural networks (NN),

which also includes the popular deep NN called VGG16 [213], genome sequence matching via

edit distance and Euclidean distance, and are considered for the first time in the n-party

honest-majority setting. We benchmark the applications in the WAN setting using Google

Cloud instances. Owing to the inherent restrictions of RSS and keeping the focus on practical

scenarios, we showcase the performance of our protocols for n = 5, 7, and 9 and compare them

with the state-of-the-art semi-honest protocol of DN07?.

1. Deep neural networks. We benchmark inference phases of deep neural networks such as

LeNet [147] and VGG16 [213]. We observe savings of up to 69% in monetary cost and

improvements of up to 4.3⇥ in online run-time and throughput, in comparison to DN07?.

2. Genome sequence matching via edit distance. We demonstrate an e�cient protocol for

similar sequence queries (SSQ), which can be used to perform secure genome matching.

Our protocol is based on the protocol of [204], which works for 2 parties and uses an

edit distance approximation [15]. We extend and optimize the protocol for the multiparty

setting. In comparison to DN07?, we witness improvements of up to 4⇥ in online run-time

and throughput and savings of 66% in monetary cost.
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3. Biometric matching. We propose e�cient protocols for computing Euclidean distance

(ED), which forms the basis for performing biometric matching. Continuing the trend,

we witness a 4.6⇥ improvement in online run-time and throughput over DN07? and savings

of up to 85% in monetary cost.

7.2 Related work

Despite the interest in MPC for small population [11, 12, 84, 52, 3, 49, 193, 50, 38, 136, 220,

61, 138], MPC protocols for arbitrary number of parties (n) have been studied largely [78, 62,

93, 18, 23, 22, 31, 29, 34, 202, 7, 39, 25, 92] in the honest-majority (t < n/2) as well as the

dishonest-majority (t < n) setting, where t denotes the maximum amount of allowed corruption.

We restrict the related work to MPC protocols in the honest-majority setting, which is the focus

of this work. In the honest majority setting, protocols can be categorized as working over the

field algebraic structure [62, 85, 93, 95] or rings [29, 31, 78, 25, 18]. The field-based protocols,

which mostly operate over Shamir secret sharing [206] scheme, have the advantage of having the

share size linear in the number of parties. On the other hand, ring-based protocols are proven

to be practically more e�cient since they can leverage CPU optimizations [26, 66, 71, 67, 207].

In the following, we cover the field-based protocols first, followed by ring-based ones.

Field-based protocols: In the semi-honest case, [62, 85] provide MPC protocols over fields

in the information-theoretic setting. ATLAS [95] further improves upon the communication

complexity of [62] in the information-theoretic setting from 12t field elements to 8t field elements

per multiplication gate. ATLAS [95] also provides another protocol variant, which improves

the round complexity of [62] by 2⇥ but requires slightly higher communication of 9t field

elements. In the computational setting, the two protocol variants in ATLAS [95] roughly

require communication of 4t and 5t field elements, respectively. The work of [78] demonstrates

MPC protocols in the computational setting in the preprocessing model with malicious security.

We observe that the semi-honest protocol derived from [78] requires communicating 2t elements

in the online and 3t elements in the preprocessing phase.

In the malicious setting, the semi-honest protocol of [62] has served as the basis for ob-

taining malicious security for free (i.e. amortized communication cost of 3t field elements per

multiplication gate) in the computational setting [31] as well as in the information-theoretic set-

ting [93, 95]. These works follow the approach of executing a semi-honest protocol, followed by

a verification phase to check the correctness of multiplication which involves heavy polynomial

interpolation operations. As mentioned earlier, the work of [78] focuses on maliciously secure
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protocols for honest majority setting in the preprocessing model. Their protocol relies on an

instantiation of [93] in the preprocessing phase that requires communicating 3t field elements

while requiring another 3t field elements communication in the online phase. However, their

protocol is ine�cient due to a consistency check required after each level of multiplication and

introduces depth-dependent overhead in communication complexity. The absence of this check

results in a privacy breach as described in [94] and is elaborated in §7.5.3.

Ring-based protocols: Operating over rings is challenging because they do not have inverses

for every element, which fields do. One way to work with rings is to adapt a field-based protocol

to work over rings, but this can be computationally intensive due to the use of an extension

field [2, 78]. Another option is to use replicated secret shares (RSS) [114], which allows for

direct operation over a ring without the need for extensions. However, this method results in

share size becoming exponential in the number of parties due to the replication but can be

more e�cient when the number of parties is constant.

The work of [29] shows how the honest-majority semi-honest field-based MPC protocol

of [62] can be optimized to work over rings using RSS. Operating in the computational setting

using a one-time setup for correlated randomness, this optimized version of [62] has a com-

munication cost of 3t ring elements per multiplication gate. This optimized honest-majority

semi-honest protocol given in [29] is referred to as DN07? in the rest of the chapter. This

protocol forms the state-of-the-art semi-honest protocol for the honest majority in the compu-

tational setting over rings and uses RSS. The work of [25, 18] also provides semi-honest MPC

protocols over rings in the computational setting, which require each party to communicate

roughly t elements per multiplication gate, resulting in quadratic communication in the num-

ber of parties. The work of [78], as described earlier, showcases how their field protocols can

be extended to work over rings using Galois ring extensions. The semi-honest protocol derived

from their maliciously secure variant requires communicating 2t and 3t extended ring elements

in the online and preprocessing phases, respectively. In the malicious setting, [78] su↵ers from

the privacy breach over rings as well (see §7.5.3 for details). Further, both [29, 31] provide

protocols over rings. However, they rely on computationally heavy zero-knowledge machinery

where expensive polynomial interpolation operations are carried out in the online phase.

Primitives: With respect to the primitives, note that these have been extensively studied in

the literature and our contribution lies in adapting these for n-party setting, while incorporating

improvements wherever possible. The relevant literature with respect to the primitives appears

in §3.2, §4.2.
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7.3 Preliminaries

7.3.1 System model

We consider both semi-honest and malicious adversarial models with static and, at most t < n/2

corruptions. For the rest of the chapter, we assume maximal corruption in this setting and thus

n = 2t+1. Let P = {P1, P2, . . . , Pn} denote the set of n parties which are connected by pair-wise

private and authentic channels in a synchronous network. Additionally, our fair reconstruction

protocol in the malicious setting relies on a broadcast channel, which can be instantiated using

an existing broadcast protocol such as [74]. Set E = {P1, P2, . . . , Pt+1}, termed as the evaluator

set, comprises parties that are active during the online phase. Set D = {Pt+2, Pt+3, . . . , Pn},
termed as the helper set, comprises parties which help in the preprocessing phase, and in the

online verification in the malicious setting. Parties agree on a Pking 2 E. Without loss of

generality, let Pking = Pt+1.

7.3.2 Sharing semantics

We use the following sharing semantics, based on replicated secret sharing (RSS) and additive

sharing schemes, which facilitate a fast online phase.

1. [·]-sharing: This denotes the replicated secret sharing of a value with threshold t. A value

a 2 Z2` is said to be RSS-shared with threshold t if for every subset T ⇢ P of n� t parties

there exists [a]T 2 Z2` possessed by all Pi 2 T such that a =
P

T [a]T.

Alternatively, for every set of t parties, the residual h = n� t parties forming the set T,

hold the share [a]T. Let T1,T2, . . . ,Tq ⇢ P be the distinct subsets of size h, where q =
�
n
h

�

represents the total number of shares. Since Pi belongs to
�
n�1
h�1

�
such sets, it holds a tuple

of
�
n�1
h�1

�
shares, {[a]T}. We denote this tuple of shares that it possesses as [a]i.

2. h·i-sharing: A value a 2 Z2` is said to be h·i-shared (additively shared) among parties in

P if Pi 2 P possesses haii 2 Z2` such that a = hai1 + hai2 + . . .+ hain.

3. Th·i-sharing: A value a 2 Z2` is said to be Th·i-shared among t + 1 parties in T, if each

Pi 2 T holds Thaii such that a =
P

Pi2T
Thaii. We refer to this sharing scheme as (t+ 1)-

additive sharing and use Ehai to denote such a sharing among parties in E.

4. J·K-sharing: A value a 2 Z2` is said to be J·K-shared in the semi-honest setting if there

exist values ↵a, �a 2 Z2` such that �a = a+ ↵a where ↵a is [·]-shared among P and every
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Pi 2 E holds �a. We denote the shares of Pi 2 D by JaKi = [↵a]i and that of Pi 2 E as

JaKi = (�a, [↵a]i). In the malicious setting, �a is held by all parties, and JaKi = (�a, [↵a]i)

for all Pi 2 P.

It is easy to see that all the sharing schemes mentioned above are linear. This allows parties

to compute linear operations such as addition and multiplication with constants locally. The

Boolean world operates over Z2 , and we denote the corresponding Boolean sharing with a

superscript B.

7.3.2.1 Shared key setup

FSetup [11, 173, 193, 136] enables the establishment of common random keys for a pseudo-

random function (PRF) F among parties. This aids in non-interactively generating correlated

randomness. Here F : {0, 1} ⇥ {0, 1} ! X is a secure PRF, with co-domain X being Z2` .

The semi-honest functionality, FSetup appears in Fig. 7.2. The functionality for the malicious

case is similar, except that the adversary now has the capability to abort.

To sample a random value r 2 Z2` among a set of t + 1 parties T = {P1, . . . , Pt+1} non-

interactively, each Pi 2 T invokes FkT(idT) and obtains r. Here, idT denotes a counter maintained

by the parties in T, and is updated after every PRF invocation. The appropriate keys used to

sample are implicit from the context, from the identities of the parties that sample.

FSetup interacts with the parties in P and the adversary S. FSetup picks random keys kT, kT0 for

every set T,T0 ✓ P of t+ 1, t+ 2 parties, respectively. FSetup picks random keys kij for every pair

of parties Pi, Pj 2 P and i < j.

– Set xs = {ksi, kjs}8i:s<in,8j:1j<s.

– Set ys = {kT}8T⇢P:|T|=t+1 when Ps 2 T.

– Set zs = {kT0}8T0✓P|T|0=t+2 when Ps 2 T0.

Output: Send (Output, xs, ys, zs) to every Ps 2 P.

Functionality FSetup

Figure 7.2: Ideal functionality for shared-key setup.

7.3.3 Notations

Notations used in this chapter are summarized in Table 7.1.
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Notation Description

n = 2t+ 1 Total number of parties with t corrupt and h = t + 1
honest

T1, . . . ,Tq q =
�
n
h

�
distinct subsets of P with t+ 1 parties each

q Number of replicated secret shares (RSS) of a value

g =
�
n�1
h�1

�
Number of RSS shares of a value held by a party

E Evaluator parties (P1, . . . , Pt+1) that actively carry out
the computation

D Helper parties (Pt+2, . . . , Pn)

ai i
th element of vector a

a� b dot product of vectors a and b

A
J

B Multiplication of matrices A and B

b
R Arithmetic (Ring) equivalent over Z2` of bit b 2 Z2

v[i] i
th bit of `-bit value v 2 Z2`

�a = a + ↵a Masked value �a for a 2 Z2` with mask ↵a 2 Z2`

Ma1a2...ak

Qk
i=1 �ai ; Product of masked values �a1 , . . . , �ak

⇤a1a2...ak

Qk
i=1 ↵ai

; Product of masks ↵a1
, . . . ,↵ak

Table 7.1: Notations used in this chapter.

7.3.4 Helper primitives

We use the primitives described in Table 7.2 from literature [29, 31, 193, 57] in our protocols,

and their details are presented next. The Boolean variants of corresponding primitives are

denoted with a superscript B.

Primitive Input Output

⇧h0i - h·i-sharing of 0
⇧rand - [·]-sharing of a random value r 2 Z2`

⇧pRand Identity of a party Ps [·]-sharing of a random value r 2 Z2` s.t. Ps learns all shares
⇧·!J·K a 2 Z2` held by at least t+ 1 parties JaK-sharing
⇧[·]!Th·i [a]-sharing, T ⇢ P s.t. |T| = t+ 1 Thai-sharing
⇧[·]!h·i [a]-sharing hai-sharing
⇧J·K!Th·i JaK-sharing, T ⇢ P s.t. |T| = t+ 1 Thai-sharing
⇧J·K!h·i JaK-sharing hai-sharing
⇧J·K![·] JaK-sharing [a]-sharing
⇧[·]·[·]!h·i [a]-sharing, [b]-sharing habi-sharing
⇧agree P, v1, . . . , vn ‘continue’ if vi = vj for all Pi, Pj 2 P, ‘abort’ otherwise
⇧[·] private input a 2 Z2` held by party Ps [a]-sharing

Table 7.2: Description of helper primitives – all are non-interactive, except ⇧agree.
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1. ⇧h0i ! h0i (Fig. 7.3): To generate h·i-shares of 0, each party non-interactively samples two

values, each with one of its neighbouring parties. A party’s shares of 0 are defined as the

di↵erence between these values.

1. Pi, Pi+1, for i 2 {1, . . . , n � 1}, sample a random value ri 2R Z2` , while P1, Pn sample a

random value rn 2R Z2` , using their respective common PRF keys.

2. Pi for i 2 {2, . . . , n} sets h0ii = ri � ri�1, while P1 sets h0i1 = r1 � rn.

Protocol ⇧h0i

Figure 7.3: Generating h·i-shares of 0.

2. ⇧rand ! [r] (Fig. 7.4): To generate [·]-shares of a random r 2 Z2` , every set of t+ 1 parties

non-interactively sample a random value using keys established during the setup phase

and define r to be the sum of these values.

1. Every Pi 2 Tj for j 2 {1, . . . , q}, samples [r]Tj 2R Z2` using the common PRF key.

2. Define r =
P

q

j=1 [r]Tj .

Protocol ⇧rand

Figure 7.4: Generating [·]-shares of a random value.

3. ⇧pRand(Ps)! [r] (Fig. 7.5): This protocol generates [·]-shares of a random value r such that

Ps learns all the shares. Every set of t + 1 parties non-interactively samples a random

value together with Ps, using the keys established (for every set of t + 2 parties) during

the setup phase.

1. Every Pi 2 Tj for j 2 {1, . . . , q}, samples [r]Tj 2R Z2` , together with Ps, using the common

PRF key.

2. Define r =
P

q

j=1 [r]Tj .

Protocol ⇧pRand(Ps)

Figure 7.5: Generating [·]-shares of a random value along with Ps.

4. ⇧·!J·K(a)! JaK: This protocol generates JaK when a 2 Z2` is held by at least t+1 parties,

say parties in E. For this, Pi 2 E sets �a = a and [·]-shares of ↵a as 0. To generate JaK in

the malicious case where all parties hold a, parties set �a = a and shares of ↵a as 0.

5. ⇧[·]!Th·i([a]) ! Thai (Fig. 7.6): This protocol enables parties in T = {E1, E2, . . . , Et+1} to

generate Thai from [a]. To generate Thaii, the idea is to sum up the shares in [a]T1 , . . . , [a]Tq ,

while ensuring that every share is accounted for and no share is incorporated more than

once. Concretely, for share [a]Tj held by parties in Tj for j 2 {1, . . . , q}, Ei 2 Tj incorpo-
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rates [a]Tj in its share of Thaii if Ei has the least index in Tj.

1. Let T = {E1, . . . , Et+1}.

2. Ei 2 T computes Thaii =
P

q

j=1 [a]Tj · e
i
j , where eij = 1 if Ei has the least index in Tj , and

0, otherwise.

Protocol ⇧[·]!Th·i([a])

Figure 7.6: Conversion from [·]-share to Th·i-share.

6. ⇧[·]!h·i([a]) ! hai: [·]-share can be converted to h·i-share following similar procedure as

⇧[·]!Th·i, and is denoted as ⇧[·]!h·i([a]). We omit the details due to similarity.

7. ⇧J·K!Th·i(JaK) ! Thai: Parties in T invoke ⇧[·]!Th·i on �↵a to generate Th�↵ai, followed
by a designated Pi 2 T that holds �a setting Thaii = �a + Th�↵aii.

8. ⇧J·K!h·i(JaK) ! hai: hai can be generated from JaK similar to ⇧J·K!Th·i, and is denoted as

⇧J·K!h·i(JaK).
9. ⇧[·]!J·K([a])! JaK: To convert [a] to JaK, set �a = 0 and set [↵a] = � [a].

10. ⇧J·K![·](JaK) ! [a]: To convert JaK to [a], set [a]Tj = � [↵a]Tj for j 2 {1, . . . , q � 1} and

[a]Tq = �a � [↵a]Tq , where Tq = E.

11. ⇧[·]·[·]!h·i([a] , [b])! habi (Fig. 7.7): Given [a] , [b], parties non-interactively compute habi as
follows. Observe that habi =

P
q

j=1h[a]Tj bi. To generate h[a]Tj bi, the idea is to generate
Tjh[a]Tj bi and perform a conversion. Parties in Tj generate Tjh[a]Tj bi as Tjh[a]Tj bi =⇣
[a]Tj

⌘
·
�
Tjhbi

�
. To obtain h[a]Tj bi from

Tjh[a]Tj bi, Pi 2 P sets h[a]Tj bii =
Tjh[a]Tj bii if

Pi 2 Tj and h[a]Tj bii = 0, otherwise.

1. For j 2 {1, . . . , q}:

– Pi 2 Tj invokes ⇧[·]!Th·i on [b] to generate Tj hbii.

– Set h[a]Tj bii =
⇣
[a]Tj

⌘
·
�
Tj hbii

�
if Pi 2 Tj , and h[a]Tj bii = 0, otherwise.

2. Pi 2 P computes habii =
P

q

j=1h[a]Tj bii.

Protocol ⇧[·]·[·]!h·i(P, [a] , [b])

Figure 7.7: [a] , [b] to habi.

12. ⇧agree(P, {v1, . . . , vn}) ! continue/abort: Allows parties to check if they hold the same

set of values v = (v1, . . . , vm), where parties continue if the values are same, and abort

otherwise. We denote the version of v held by Pi 2 P as vi. To check for consistency of

v, parties compute hash, H = H(v1|| . . . ||vm), of the concatenation of all values v1, . . . , vm,

and exchange H among themselves. If any party receives inconsistent hashes, it aborts;
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else, it continues.

13. ⇧[·](Ps, a)! [a]: To enable Ps to generate [a], parties generate [a]Tj for j 2 {1, . . . , q� 1}
using ⇧pRand, with Ps learning [a]Tj (i.e., [a]Tj are sampled using common key amongst

t+2 parties). Ps sets [a]Tq = a�
P

q�1
j=1 [a]Tj and sends [a]Tq to parties in Tq. For malicious

case, this is followed by invoking ⇧agree(P, {[a]Tq}) to check consistency of values sent by

Ps.

7.4 Semi-honest protocol

The ideal functionality Ff for evaluating function f in the n-party setting with semi-honest

security appears in Fig. 7.8. Details of its instantiation over the ring Z2` that comprises

three phases—input sharing, evaluation (linear operations and multiplication), and output

reconstruction—appear next.

Ff interacts with the parties in P and the adversary Ssh. Let f denote the function to be com-

puted. Let xs be the input corresponding to the party Ps, and ys be the corresponding output, i.e

({ys}ns=1) = f({xs}ns=1).

Step 1: Ff receives (Input, xs) from Ps 2 P, and computes ({ys}ns=1) = f({xs}ns=1).

Step 2: Ff sends (Output, ys) to Ps 2 P.

Functionality Ff

Figure 7.8: Semi-honest: Ideal functionality for function f .

7.4.1 Input sharing and output reconstruction

To enable Ps 2 P to J·K-share a value v 2 Z2` , parties first non-interactively sample [·]-shares of
↵v, relying on the shared-key setup, such that Ps learns all these shares in clear (via ⇧pRand).

This enables Ps to compute and send �v = v + ↵v to parties in E, thereby generating JvK. The
protocol for input sharing appears in Fig. 7.9.

Preprocessing: Invoke ⇧pRand(Ps) to generate [↵a], with Ps learning ↵a 2 Z2` .

Online: Ps computes and sends �a = a+ ↵a to all Pi 2 E.

Protocol ⇧Sh(Ps, a)

Figure 7.9: Semi-honest: Input sharing protocol.
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To reconstruct v towards all parties given JvK, observe that parties in E possess su�cient

shares to facilitate the same. Elaborately, parties in E can non-interactively generate additive

shares, Ehvi, among themselves (via ⇧J·K!Eh·i). These parties can then send their additive shares

to Pking, who computes and sends v to all parties. Reconstruction towards a single party, say Ps,

can proceed similarly except that the protocol terminates after parties in E send their additive

shares of v to Pking = Ps, who then computes v.

7.4.2 Evaluation

The evaluation comprises linear operations of addition and multiplication with public constant

and non-linear operations such as multiplication. Parties can non-interactively compute lin-

ear operations owing to the linearity of the J·K-sharing. Concretely, given JaK, JbK and public

constants c1, c2, parties can non-interactively compute Jc1a+ c2bK as c1JaK + c2JbK.

 

 

 

 

 

 

 

 

 

1

2 3

4 5

6

1 Generation of random r 2 Z2` 2 Computing hri&JrK 3 Computing Eh↵ai, Eh↵bi 4 D sending
{hz� ri}D to Pking 5 E sending {hz� ri}E to Pking and receiving result from Pking 6 Computing
JzK

Figure 7.10: Steps of semi-honest multiplication protocol.

To compute J·K-shares for non-linear operations such as multiplication, say z = ab given

JaK, JbK, parties proceed as follows. At a high level, the approach is to enable the generation

of Jz � rK and JrK for a random r 2 Z2` , which enables parties to non-interactively compute

JzK = Jz � rK + JrK. Observe that JrK can be generated non-interactively by locally sampling
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each of its shares. To generate Jz� rK, we let parties in E obtain z� r, following which Jz� rK
can be generated non-interactively (this is achieved via ⇧·!J·K where all parties set their shares

of [↵z�r] as 0, and parties in E set �z�r = z� r). Observe that z remains private while revealing

z� r to parties in E since r is a random mask not known to the adversary.

To enable parties in E to obtain z�r, we let z�r = D+E, where D is additively shared among

parties in D while E is additively shared among parties in E (D,E are defined in the following

paragraphs). Thus, to reconstruct z � r towards parties in E, parties send their respective

additive shares of D or E towards Pking 2 P. Pking reconstructs D,E, and sends z� r = D+ E to

parties in E. Elaborately, as seen in [49, 138], z� r can be computed as

z� r = ab� r = (�a � ↵a) (�b � ↵b)� r = Mab � �a↵b � �b↵a + ⇤ab � r (7.1)

= Mab � �a↵b � �b↵a + (⇤ab � r)E| {z }
E

+(⇤ab � r)D| {z }
D

where ⇤ab� r = (⇤ab� r)D+(⇤ab� r)E. The multiplication protocol ⇧Mul (Fig. 7.11) is detailed

next, and its schematic representation is provided in Fig. 7.10.

– Step 1 : Parties non-interactively generate [r] by locally sampling each of its shares (via

⇧rand). Parties locally compute hri and JrK from [r] using ⇧[·]!h·i and ⇧[·]!J·K, respectively.

Looking ahead, hri aids in generating additive shares of D,E, while JrK aids in computing JzK
from Jz� rK.
– Step 2 : This step involves computing additive shares of ⇤ab � r among all parties. For this,

parties non-interactively generate h⇤abi from [↵a] , [↵b] (via ⇧[·]·[·]!h·i). Pi 2 P sets its additive

share of ⇤ab� r as h⇤ab� rii = h⇤abii�hrii. Observe that the shares h⇤ab� rii of Pi 2 D define

the additive shares of D = (⇤ab � r)D among parties in D. Similarly, the shares h⇤ab � rii of
Pi 2 E define the additive shares of (⇤ab � r)E among parties in E (i.e. Eh(⇤ab � r)Ei ).
– Step 3 : Parties in E generate additive shares of ↵a,↵b among themselves (Eh·i-shares, via
⇧[·]!Eh·i). Looking ahead, Eh↵ai, Eh↵bi aid in generating additive shares of E among E.

– Step 4 : Parties in D send their additive shares of D (as defined in step 2 ) to Pking, where

the latter reconstructs D.

– Step 5 : Pi 2 E \ {Pking} non-interactively generates additive share, EhEii, of E among parties

in E as EhEii = ��aEh↵bii��bEh↵aii+Eh(⇤ab � r)Eii. Note that it su�ces for only one designated

party in E to add Mab in its share of EhEi, and without loss of generality we let this designated

party be Pking. For Pking = Pt+1 in our case, EhEit+1 = Mab � �a
Eh↵bit+1 � �b

Eh↵ait+1 +
Eh(⇤ab � r)Eit+1. Parties send their additive shares of E to Pking, who reconstructs E, and sends

z� r = D+ E to parties in E.
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– Step 6 : Parties non-interactively generate Jz� rK (via ⇧·!J·K) as explained earlier. Using JrK
generated in step 1 , parties compute JzK = Jz� rK + JrK, as required.

isTr = 1 denotes perform truncation, isTr = 0 denotes otherwise.

Preprocessing:

1 If isTr = 0: invoke ⇧rand to generate [r] where r 2 Z2` . Invoke ⇧[·]!h·i and ⇧[·]!J·K on [r] to

generate hri and JrK, respectively.
– Else, invoke ⇧dsBits(P, 1) (Fig. 7.14) to generate JrK, JrdK, and ⇧J·K!h·i on JrK to generate hri .

2 Invoke ⇧[·]·[·]!h·i on [↵a] , [↵b] to generate h⇤abi, and compute h⇤ab � ri = h⇤abi � hri. Pi 2 E

sets Eh(⇤ab � r)Eii = h⇤ab � rii.

3 Pi 2 E invokes ⇧[·]!Eh·i on [↵a] , [↵b] to generate Eh↵aii, Eh↵bii, respectively.

4 Pi 2 D sends h⇤ab � rii to Pking, who sets D =
P

i:Pi2Dh⇤ab � rii.

Online:

5 Pi 2 E computes Eh⇣ii = ��aEh↵bii � �bEh↵aii + Eh(⇤ab � r)Eii, and sends Eh⇣ii to Pking. Pking

computes E = Mab +
P

i:Pi2E
Eh⇣ii and sends z� r = D+ E to all parties in E.

6 If isTr = 0: invoke ⇧·!J·K on z� r to generate Jz� rK, and compute JzK = Jz� rK + JrK.
– Else, invoke ⇧·!J·K on (z� r)d to generate J(z� r)dK, and compute JzdK = J(z� r)dK + JrdK.

Protocol ⇧Mul(P, JaK, JbK, isTr)

Figure 7.11: Semi-honest: Multiplication protocol.

Lemma 7.1 Protocol ⇧Mul (Fig. 7.11) incurs a communication of t elements in the preprocess-

ing phase and 2t elements in 2 rounds in the online phase for multiplication when isTr = 0.

Analysis: Observe that the communication towards Pking in steps 4 and 5 , can be performed

in parallel, resulting in the overall round complexity of the protocol being two. Further, commu-

nication of t elements is required in step 4 , and 2t elements are required in 5 (since Pking 2 E),

thereby having a total communication complexity of 3t ring elements. This complexity resem-

bles that of DN07?. However, our sharing semantics enables us to push some of the steps

mentioned above to a preprocessing phase, resulting in a fast online phase, which is non-trivial

to achieve in the case of DN07?. Elaborately, observe that since r,↵a,↵b are independent of the

input (owing to our sharing semantics), computation involving these terms ranging from steps

1 to 4 can thus be moved to a preprocessing phase. This improves the online communication

complexity by slashing the inward communication towards Pking by half. Thus, the online phase
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requires only 2t ring elements of communication while o✏oading t elements of communication

to the preprocessing phase.

Note that a straightforward extension of the semi-honest multiplication of DN07? to the

preprocessing model, which can be derived from [78], does not provide an e�cient solution.

Although such a protocol has the same online complexity (2t elements) as our online phase, it

has the drawback of inflating the overall communication cost by a factor of 1.6⇥ over DN07?.

Elaborately, the online communication cost of 2t elements can be attained by appropriately

defining the sharing semantics and using the Pking approach, similar to our protocol. However,

this requires parties to generate the sharing of ⇤ab = ↵a · ↵b from the shares of ↵a and ↵b

during the preprocessing phase, and requires a full-fledged multiplication, incurring a cost of

3t elements. This yields a protocol with a total cost of 5t elements in comparison to the 3t

cost of the all-online DN07? protocol. Thus, departing from this approach, the novelty of our

protocol lies in leveraging the interplay between the sharing semantics and redesigning the

communication pattern among the parties to ensure that the total cost of 3t does not change.

Furthermore, our protocol design allows parties in D to remain shut in the online phase,

thereby reducing the system’s operational load. This is because parties in D only contribute

towards the computation of D, which can be completed in the preprocessing phase. However,

the preprocessing phase becomes function-dependent due to the linear gates, for which the ↵

value for the output wires cannot be chosen randomly. Concretely, if c is the output of a linear

gate, say addition, with inputs a, b, then ↵c cannot be chosen randomly and should be defined

as ↵c = ↵a + ↵b.

Online-only mode: Note that in instances where the function description is not known before-

hand, our protocol can be run as an all-online protocol with a cost matching that of DN07?.

There are two approaches in which this can be achieved. The first approach is as described

in steps 1 – 6 discussed above, with the communication towards Pking in steps 4 and 5 ex-

ecuted simultaneously. The second approach is to begin by performing steps comprising the

preprocessing phase, followed by the online phase steps. Although the second approach requires

an additional round in the beginning to perform the preprocessing steps, it has the advantage

that after completing the preprocessing phase, parties in D can be shut down. This helps in

improving the operational cost of the system.

7.4.3 The complete MPC protocol

The complete semi-honest secure MPC protocol, ⇧sh

MPC
, evaluating a function f(·) appears in

Fig. 7.12.
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Let f(·) denote the function to be computed, which is represented as a circuit with linear gates (with

inputs a, b 2 Z2` and output c = c1a+c2b, for constants c1, c2 2 Z2`) and multiplication gates (with

inputs a, b 2 Z2` , and output c = a · b). The circuit evaluation proceeds by evaluating the gates in

a predetermined topological order. isTr = 1 denotes perform truncation, isTr = 0 denotes otherwise.

Preprocessing:

1. For each circuit input a held by Ps, parties execute the preprocessing steps of ⇧Sh(Ps, a).

2. For each linear gate with input wires a, b, output c, and constants c1, c2, parties locally compute

[↵c] = c1 [↵a] + c2 [↵b].

3. For each multiplication gate with input wires a, b and output c, parties execute the preprocessing

steps of ⇧Mul(P, JaK, JbK, isTr).
Online:

1. For each input wire, parties execute the online steps of ⇧Sh(Ps, a), where Ps is the party

designated to provide the input a.

2. For each linear gate with input wires a, b, output c, and constants c1, c2, parties locally compute

�c = c1�a + c2�b.

3. For each multiplication gate with input wires a, b and output c, parties execute the online steps

of ⇧Mul(P, JaK, JbK, isTr).
4. For each output wire a in the circuit, parties execute the steps for reconstruction towards each

party Ps which is designated to receive the corresponding output.

Protocol ⇧sh

MPC
(P, f(·))

Figure 7.12: Semi-honest: The complete MPC protocol.

7.4.4 Incorporating truncation

To deal with decimal values that arise in several applications, including the ones considered in

this work, we operate on the fixed-point arithmetic (FPA) representation [44, 45], as described

in §7.3. In this case, performing multiplication, z = ab, results in increasing the number of

fractional bits in the result of multiplication, z, from d to 2d. To retain FPA semantics, it is

required to truncate z by d bits, i.e. compute z
d = z/2d. For this, we extend the probabilistic

truncation technique of [173, 136, 138] proposed in the small party domain to the n-party

setting. Given (r, rd)-pair, with r
d = r/2d, the truncated value of z can be obtained as z

d =

(z� r)d + r
d. The accuracy and correctness of this method follow from [173, 169].
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– Samples random r 2 Z2` , and computes rd = r/2d.

– Generates J·K-shares of r, rd and set output share for Ps 2 P as ys = {JrKs, JrdKs}.
Output: Send (Output, ys) to Ps 2 P.

Functionality FTrGen

Figure 7.13: Ideal functionality FTrGen.

Our multiplication protocol can be modified to additionally perform truncation by incor-

porating the following two changes—(i) generate JrdK in step 1 , and (ii) compute JzdK =

J(z� r)dK+JrdK, instead, in step 6 . For (i), we rely on the ideal functionality, FTrGen (Fig. 7.13),

for computing JrK, JrdK. In our work, we instantiate FTrGen using ⇧dsBits (Fig. 7.14), which is a

slightly modified version of the doubly-shared random bit generation protocol of [67], adapted

to our n-party setting. Concretely, ⇧dsBits generates ` doubly-shared random bits instead of a

single bit, as done in the protocol of [67]. Here, a doubly-shared random bit is a bit which is

arithmetic as well as Boolean shared. With respect to (ii), observe that it is a local operation,

and hence performing truncation does not incur any additional overhead in the online phase.

The details of ⇧dsBits, which follow from the protocol of [67], are presented next.

Truncation - Instantiating FTrGen We rely on a modified version of the doubly shared

random bit (a bit that is arithmetic as well as Boolean shared) generation protocol of [67],

extended to our n-party setting, to generate JrK, JrdK as required to perform truncation. The

resulting protocol is referred to as ⇧dsBits (Fig. 7.14).

If isTr = 1, set k = ` else set k = 1. For i 2 {0, . . . , k� 1}:

1. Invoke ⇧rand to generate [ui]
`+2 for ui 2 Z2`+2 , and ⇧h0i to generate h0i`+2.

2. Compute [ai]
`+2 = 2 [ui]

`+2 + 1.

3. Invoke ⇧[·]·[·]!h·i on [ai]
`+2 to generate heii`+2 where ei = a2i .

4. Send heii`+2 + h0i`+2 to Pking, who reconstructs ei + 0 = ei and sends to all.

5. Let ci be smallest root of ei modulo 2`+2, and c�1
i its inverse. Compute [di]

`+2 = c�1
i [ai]

`+2+1.

6. Pj sets [bi]
`+2
j = [di]

`+2
j /2, and

⇥
bRi
⇤
j
, [bi]

B

j as the least significant ` bits and the least significant

bit of [bi]
`+2
j , respectively.

7. Invoke ⇧[·]!J·K on
⇥
bRi
⇤
, [bi]

B to generate JbRi K, JbiKB.
If isTr = 1, set (JrK, JrdK) =

⇣P
k�1
i=0 2

iJbRi K,
P

k�1
i=d 2

i�dJbRi K
⌘

Protocol ⇧dsBits(P, isTr)

Figure 7.14: Semi-honest: Doubly shared bits.
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At a high-level, generation of doubly shared bits relies on the property that every non-zero

quadratic residue has exactly one root when working over fields. The work of [67], operating over

rings, shows that something similar holds over rings as well. Concretely, according to lemma 4.1

of [67]: if a is such that a2 ⌘` 1, then a is congruent mod 2` to either 1,�1,�1 + 2`�1
, 1 + 2`�1

. Thus, the doubly shared bit generation protocol of [67] proceeds as follows. Generate a
2 for

a 2 Z2`+2 such that a2 ⌘`+2 1, and compute its smallest root c mod 2`+2. Compute (c�1
a), and

by lemma 4.1 of [67] it follows that c�1
a 2 {±1,±1+ 2`+1}. That is, (c�1

a) is congruent to ±1

modulo 2`+1. Thus, d = c
�1
a + 1 is congruent to 0 or 2 modulo 2`+1 with equal probability.

Hence, setting b = d/2 outputs bit b = 0 or bit b = 1 with equal probability. Observe that the

computation has to be performed over Z2`+2 . Hence, in the protocol description, we use ` + 2

in the superscript to distinguish shares of x over Z2`+2 from its shares over Z2` .

The main change in ⇧dsBits from that of the protocol in [67] is that to generate JrK, JrdK ⇧dsBits

generates ` random doubly shared bits b0, . . . , b`�1 2 Z2 instead of a single one, and composes

these ` bits to generate r, and composes the higher `� d bits to generate r
d, as follows.

�
JrK, JrdK

�
=

 
`�1X

i=0

2iJbRi K,
`�1X

i=d

2i�dJbRi K
!

(7.2)

Looking ahead, ⇧dsBits can also be used only to generate a single doubly shared random bit,

which finds use in other building blocks such as bit to arithmetic conversion and arithmetic to

Boolean conversion. Thus, to distinguish the case when (JrK, JrdK) has to be generated versus

when only a single doubly shared bit is to be generated, ⇧dsBits takes a bit isTr as input and

gives as output a doubly shared bit JbRK, JbKB if isTr = 0, and (JrK, JrdK) otherwise. The protocol
appears in Fig. 7.14.

A final thing to note is that the computation in ⇧dsBits proceeds over secret-shared data.

Thus, to generate shares of the doubly shared bit b, one should be able to divide each share

of d by 2, which necessitates d and its shares to be even. This holds true since [d]`+2 =

c
�1 [a]`+2 + 1 = c

�1
⇣
2 [u]`+2 + 1

⌘
+ 1 = 2c�1 [u]`+2 + c

�1 + 1. Here, 2c�1 [u]`+2 is even due to

multiplication by 2, while c
�1 + 1 is even since c

�1 is odd by definition.

7.4.5 Dot product

Given J·K-shares of vectors x and y of size n, dot product outputs JzK where z = x � y =
P

n

k=1 xkyk and � denotes the dot product operation. The design of our multiplication protocol

enables the easy extension to support dot product computation without incurring any overhead.
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Concretely, similar to multiplication,

z� r = (x� y)� r

=
nX

k=1

Mxkyk
�

nX

k=1

�xk↵yk
�

nX

k=1

�yk↵xk
+

nX

k=1

⇤xkyk
� r (7.3)

In each of the summands of z� r, each of the n product terms can be generated similar to that

in the multiplication protocol, which can then be locally summed up before sending it towards

Pking. The formal protocol details appear in Fig. 7.15. Looking ahead, for matrix multiplication,

each element of the resultant matrix can be computed via a dot product.

Preprocessing:

1. Invoke ⇧rand to generate [r] where r 2 Z2` , followed by ⇧[·]!h·i to generate hri.

2. Invoke⇧[·]·[·]!h·i on [↵xk
] , [↵yk

] to generate h⇤xkyki for k 2 {1, . . . , n}, and compute h
P

n

k=1 ⇤xkyk�
ri =

P
n

k=1h⇤xkyki � hri.

3. Pi 2 E invokes ⇧[·]!Eh·i on [↵xk
] , [↵yk

] to generate Eh↵xk
ii, Eh↵yk

ii, respectively, for k 2 {1, . . . , n}.

4. Pi 2 D sends h
P

n

k=1 ⇤xkyk � rii to Pking, who sets D =
P

i:Pi2Dh
P

n

k=1 ⇤xkyk � rii.

Online:

1. Pi 2 E computes Eh⇣ii =
P

n

k=1

�
��xkEh↵yk

ii � �yk
Eh↵xk

ii
�
+ h
P

n

k=1 ⇤xkyk � rii, and sends Eh⇣ii
to Pking.

2. Pking computes E =
P

n

k=1Mxkyk +
P

i:Pi2E
Eh⇣ii and sends z� r = D+ E to all parties in E.

3. Invoke ⇧·!J·K on z� r to generate Jz� rK, and compute JzK = Jz� rK + JrK.

Protocol ⇧DotP(P, JxK, JyK)

Figure 7.15: Semi-honest: Dot product protocol.

7.4.6 Multi input multiplication

3-input and 4-input multiplication protocols have showcased their wide applicability in improv-

ing the online phase complexity [138, 194, 191]. Concretely, computing z = abc (3-input) or

z = abcd (4-input) naively requires at least two sequential invocations of 2-input multiplication

protocol in the online phase. Instead, 3-input and 4-input multiplication protocol, respectively,

enables performing this computation with the same online complexity as that of a single 2-input

multiplication. Thus, we design 3-input and 4-input multiplication protocols by extending the

techniques of [194, 138] to the n-party setting. Designing these protocols require modifications

in the preprocessing steps. Consider 3-input multiplication (Fig. 7.16) where the goal is to
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generate J·K-sharing of z = abc given JaK, JbK, JcK. Note that

z� r = abc� r = (�a � ↵a)(�b � ↵b)(�c � ↵c)� r

= Mabc �Mac↵b �Mbc↵a �Mab↵c + �a⇤bc + �b⇤ac + �c⇤ab � ⇤abc � r

We follow an approach closely related to 2-input multiplication, with the di↵erence being

that parties additionally require to generate the additive sharing of ⇤bc,⇤ac and ⇤abc during

preprocessing. Given these sharings, parties proceed with a similar online phase as in ⇧Mul to

compute the 3-input multiplication without inflating the online cost. Specifically, the following

steps are performed in the preprocessing phase.

– For generating Eh⇤aci, Eh⇤bci parties first compute the respective additive sharings (h·i)
using [↵a] , [↵b] and [↵c] (via two invocations of ⇧[·]·[·]!h·i). Following this parties in D com-

municate their share of h⇤aci and h⇤bci to Pking, each masked with a random h·i-sharing of 0

(generated using ⇧h0i). This establishes Eh⇤aci, Eh⇤bci among parties in E.

– For generating Eh⇤abi, a slightly di↵erent approach is taken where parties first generate

[⇤ab] using [↵a] , [↵b] (as explained later), followed by non-interactively generating Eh⇤abi (via
⇧[·]!Th·i). The reason for generating [⇤ab] (instead of directly generating Eh⇤abi) is to facilitate

the generation of Eh⇤abc � ri from [⇤ab], [↵c] and hri, which closely follows the preprocessing

phase of the 2-input multiplication. Specifically, parties can generate h⇤abci using ⇧[·]·[·]!h·i on

[⇤ab], [↵c], followed by parties in D communicating their h⇤abci shares masked with h·i-sharing
of a random r to Pking. This generates Eh⇤abc + ri-sharing required during online phase.

– Regarding generation of [⇤ab], all parties generate [·]-sharing of a random � 2 Z2` non-

interactively and convert it to h�i. Parties then compute h⇤ab + �i by computing h⇤abi from
[↵a] , [↵b] followed by summing it up with h�i. Parties reconstruct this value towards Pking, who

then generates [⇤ab + �], from which parties compute [⇤ab] = [⇤ab + �] � [�]. On obtaining

[⇤ab], parties generate Eh⇤abi by invoking ⇧[·]!Eh·i.

Similarly, for 4-input multiplication, parties need to generate the additive sharing of ⇤ad,⇤bd,

⇤cd,⇤abd,⇤acd,⇤bcd,⇤abcd in addition to those required in the case of 3-input multiplication.

Specifically, generation of Eh·i-shares (additive shares) of ⇤ac,⇤ad,⇤bc,⇤bd can proceed similar

to generation of Eh⇤aci in ⇧3-Mul. Generation of Eh·i-shares of ⇤ab,⇤cd is carried out by first

generating its [·]-shares. This enables generation of Eh·i-shares of ⇤abc,⇤abd,⇤acd,⇤bcd following

steps similar to generation of Eh⇤aci in ⇧3-Mul. Finally, Eh⇤abcd � ri is generated similar to

generating Eh⇤abc + ri in ⇧3-Mul. We omit formal details of the 4-input multiplication protocol,

⇧4-Mul, as it is very close to ⇧3-Mul. Table 7.3 compares the cost of computing z = abc and

z = abcd via a 2-input, 3-input and 4-input multiplication.
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Preprocessing:

1. Invoke ⇧rand to generate [r] and [�] where r, � 2 Z2` . Invoke ⇧[·]!h·i to generate hri, h�i.

2. Invoke ⇧h0i to generate two di↵erent h·i-shares of 0: h01i, h02i.

3. Generation of Eh⇤aci, Eh⇤bci.

– Invoke ⇧[·]·[·]!h·i on [↵a] , [↵c] to generate h⇤acii, and compute h⇤ac + 01ii = h⇤acii + h01ii.
– Pi 2 D sends h⇤ac + 01ii to Pking(= Pt+1).

– Analogous steps are carried out to generate h⇤bc + 02i.
– Pi 2 E \ Pt+1 sets Eh⇤bcii = h⇤bc + 02ii and Eh⇤acii = h⇤ac + 01ii.
– Pt+1 sets Eh⇤bcit+1 = h⇤bc + 02it+1 +

P
i:Pi2Dh⇤bc + 02ii and

Eh⇤acit+1 = h⇤ac + 01it+1 +
P

i:Pi2Dh⇤ac + 01ii.

4. Generation of Eh⇤abi.

– Invoke ⇧[·]·[·]!h·i on [↵a] , [↵b] to generate h⇤abii, set h⇤ab + �ii = h⇤abii + h�ii, and send

h⇤ab + �ii to Pking.

– Pking reconstructs ⇤ab + �, and sends ⇤ab + � to Pi 2 E. Parties non-interactively generate

[⇤ab + �] via ⇧·!J·K and ⇧J·K![·].

– Compute [⇤ab] = [⇤ab + �]� [�] and invoke ⇧[·]!Eh·i on [⇤ab] to generate Eh⇤abi.

5. Generation of Eh⇤abc + ri.

– Invoke ⇧[·]·[·]!h·i on [⇤ab] , [↵c] to generate h⇤abcii, and compute h⇤abc + rii = h⇤abcii + hrii.
– Pi 2 D sends h⇤abc + rii to Pking.

– Pi 2 E \ Pt+1 sets Eh⇤abc + rii = h⇤abc + rii.
– Pt+1 sets Eh⇤abc + rit+1 = h⇤abc + rit+1 +

P
i:Pi2Dh⇤abc + rii.

6. Pi 2 E invoke ⇧[·]!Eh·i on [↵a] , [↵b] and [↵c] to generate Eh↵aii, Eh↵bii, Eh↵cii, respectively.

Online:

1. Pi 2 E computes and sends Eh⇣ii = �Mac
Eh↵bii�Mbc

Eh↵aii�Mab
Eh↵cii+�aEh⇤bcii+�bEh⇤acii+

�cEh⇤abii � Eh⇤abc + rii to Pking.

2. Pking computes and sends z� r = Mabc +
P

i:Pi2E
Eh⇣ii to Pi 2 E.

3. Invoke ⇧·!J·K on z� r to generate Jz� rK, and compute JzK = J(z� r)K + JrK.

Protocol ⇧3-Mul(P, JaK, JbK, JcK)

Figure 7.16: Semi-honest: 3-input multiplication protocol.

The recent work of [95] provides a method to reduce the round complexity of circuit eval-

uation. They group the (distinct) consecutive layers in the circuit into pairs and perform a

parallel evaluation of all gates in the two layers in a group. Consider a multiplication gate with

inputs x, y (obtained as output from a previous layer) and output z. Their approach considers
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Prep. Online

2-input mult. 2t` 4t` 4
3-input mult. 6t` 2t` 2

2-input mult. 3t` 6t` 4
4-input mult. 15t` 2t` 2

Multiplication
type

Building
Block

Communication Online
Rounds

z = abc

z = abcd

Table 7.3: Semi-honest: Communication and rounds for multi-input multiplications.

three cases: (i) if x and y are not the outputs of a multiplication gate, (ii) exactly one among

x, y is the output of a multiplication gate, and (iii) both x, y are outputs of a multiplication gate.

We observe that case (ii) and (iii) in their approach resembles multi-input multiplication, which

allows evaluating the second layer of multiplication (z = x · y) non-interactively, thereby saving

on rounds. For instance, consider a 2-layer sub-circuit as in Fig. 7.17 where x = a · b, y = c · d
are outputs of a multiplication gate which are fed as input to a multiplication gate in the next

level. The approach of [95] allows computation of z = (a · b) · (c · d) in a single shot, which is

equivalent to computing z via a 4-input multiplication in our case. Similarly, when only one of

the inputs (either x or y) is the output of multiplication, computation of z = x · y resembles a

3-input multiplication. Thus, cases (i), (ii), and (iii) correspond to 2-input, 3-input, and 4-input

multiplication, respectively, in our work and are su�cient to reduce the round complexity of

any circuit evaluation by half. Hence, we restrict our focus to 3 and 4-input multiplication,

although our technique can be generalized to gates with arbitrarily large fan-in.

Figure 7.17: 4-input multiplication.
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7.5 Extending to malicious security

The ideal functionality Ff for evaluating a function f in the n-party setting while providing

malicious security (with fairness) appears in Fig. 7.18.

Ff interacts with the parties in P and the adversary Smal. Let f denote the function to be computed.

Let xs be the input of party Ps, and ys be the corresponding output, i.e ({ys}ns=1) = f({xs}ns=1).

Smal is also allowed to send a special command, abort, which indicates that none of the parties

should receive the output.

Step 1: Ff receives (Input, xs) from Ps 2 P. If (Input, ⇤) is already received from Ps, then ignore

the current message. Otherwise, record x0s = xs internally.

Step 2: Compute ({ys}ns=1) = f({xs}ns=1).

Step 3: Send (Output, ys) to Ps 2 P. Here, ys = abort for Ps 2 P if Smal sent (Signal, abort).

Functionality Fmal

n-PC

Figure 7.18: Malicious: Ideal functionality for evaluating function f with fairness.

The input sharing and output reconstruction protocols for the malicious setting can be

obtained e�ciently from the semi-honest protocol following standard approaches [193, 136, 78].

However, the same cannot be said about multiplication. Note that although a maliciously secure

multiplication protocol can be achieved by compiling our semi-honest protocol using compiler

techniques such as [3, 31], the resultant protocol has an expensive online phase. For instance,

using the compiler of [3] yields a protocol that requires computation over extended rings and

communicating 4t extended ring elements in the online phase. This is not favourable compared

to working over plain rings, especially in the online phase. Further, compilers such as that

in [31] require heavy computational machinery like reliance on zero-knowledge proofs in the

online phase, which is also not desirable. Thus, to attain a computation and communication

e�cient online phase, departing from the aforementioned compiler-based approaches, we design

a maliciously secure multiplication protocol that requires communicating 3t ring elements in

each phase. It is worth noting that we can do this while retaining the benefits of requiring only

t + 1 parties in the online phase (for most of the computation). The remaining t parties are

required to come online only for a short one-time verification phase, which is deferred to the

end of the computation. Deferring verification may result in a privacy breach [94]. However,

we describe later why the privacy breach does not arise in our protocol. With this background,

in what follows next, we begin with describing the input sharing and output reconstruction

protocols and then focus on discussing the challenges encountered and their resolutions for
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obtaining a maliciously secure multiplication protocol.

7.5.1 Input sharing

This protocol is similar to the semi-honest one, where to enable Ps to generate JaK, parties
generate [↵a] such that Ps learns ↵a, followed by Ps sending the masked value �a = a + ↵a

to all. However, note that a corrupt Ps can cause inconsistency among the honest parties by

sending di↵erent masked values. To ensure the same value is received by all, parties perform

a hash-based consistency check, denoted by ⇧agree (§7.3), where each party sends a hash of

the received masked value(s) to every other party and aborts if it receives inconsistent hashes.

Note that this check for all the inputs can be combined, thereby amortizing the cost. The

formal protocol appears in Fig. 7.19.

Preprocessing: Invoke ⇧pRand(Ps) to generate [↵a], with Ps learning ↵a 2 Z2` .

Online: Ps computes and sends �a = a+ ↵a to all Pi 2 P.

Verification: Invoke ⇧agree on {�a}.

Protocol ⇧M

Sh
(Ps, a)

Figure 7.19: Malicious: Input sharing protocol.

7.5.2 Reconstruction

To reconstruct J·K-shared value a towards Ps 2 P, observe that each share that Ps misses is held

by t+1 other parties. Each of these parties sends the missing share to Ps. If the received values

for a share are consistent, Ps uses this value to perform reconstruction, and aborts otherwise.

As an optimization, one party can send the missing share while reconstructing several values,

and t others can send its hash.

Fairness is a stronger security notion than security with abort, where, during reconstruction,

either all parties learn the output or none do. For fair reconstruction, we extend the techniques

in [193] to the n-party setting, where commitments are generated on each share of the mask of

the output z (required to reconstruct z) by t+1 parties in the preprocessing phase. During the

online phase, these commitments are opened towards the respective parties if all the parties are

alive (did not abort). Since each share of the mask is held by t+1 parties and there is at least

one honest party among every set of t+ 1 parties, it is guaranteed that parties will obtain the

correct opening for the commitment of the missing share from the honest party, and all honest
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parties can reconstruct the output. Else, if the adversary misbehaved at some step during the

protocol, none of the honest parties will share the opening information, and none will obtain

the output. The formal protocol ⇧fair

Rec
appears in Fig. 7.20.

Preprocessing:

1. For j 2 {1, . . . , q}:

– Each Pi 2 Tj generates commitments on [↵z]Tj using the common randomness, and sends to

all other parties.

– Pi /2 Tj aborts if commitments for [↵z]Tj are inconsistent.

Online:

1. Each party Pi 2 P which has not aborted broadcasts a bit alive = 1.

2. If all the parties broadcast alive = 1, Pi 2 P sends the opening of the commitments to the

shares in [↵z]i to the respective parties.

3. Parties use the valid decommitment to obtain the missing share of ↵z, reconstruct ↵z, and

compute z = �z � ↵z.

Protocol ⇧fair

Rec
(JzK)

Figure 7.20: Malicious: Fair reconstruction protocol.

7.5.3 Multiplication

To enable generation of JzK = JabK from JaK and JbK, we retain the high-level ideas from the

semi-honest protocol. Our task reduces to (i) generating additive shares of ⇤ab among parties

in E (i.e. Eh⇤abi) given [↵a] and [↵b], in the preprocessing phase, and (ii) reconstructing z� r in

the online phase. Given (i), computing Ehz� ri in the online phase is a local operation. Given

(ii), parties can invoke ⇧·!J·K to generate Jz� rK, and compute JzK = Jz� rK + JrK, where JrK is

generated in the preprocessing phase, as discussed in the semi-honest case.

For task (i), our idea for the semi-honest case, of making parties in D send their shares to

Pking, does not work in the presence of a malicious adversary. To address this, we make black-

box use of a maliciously secure multiplication protocol, abstracted as a functionality FMulPre in

Fig. 7.21, that computes [⇤ab] from [↵a] , [↵b]. In this work, we instantiate FMulPre with the state-

of-the-art multiplication protocol of [31] that provides abort security and requires 3t elements

of (amortized) communication. Note that although the protocol of [31] relies on zero-knowledge

proofs, this computation is carried out in the preprocessing phase of our multiplication protocol.

Moreover, since preprocessing is done for many instances in one shot, the zero-knowledge proof
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can benefit from amortization. The parties then invoke ⇧[·]!Eh·i to obtain Eh⇤abi from [⇤ab].

Looking ahead, [⇤ab] also aids in performing the online verification check.

FMulPre interacts with the parties in P and the adversary Smal. Let Ti be the set of the honest

parties.

Input: FMulPre receives the [·]-shares of a, b from the parties. It also receives [·]-shares of z = ab

of corrupt parties from Smal. Smal is also allowed to send a special command, (abort,P), which

indicates that parties in P with indices in P should abort.

FMulPre proceeds as follows.

– Reconstruct a, b using the shares received from honest parties, and compute z = ab.

– Compute the [·]-share of z to be held by the set of honest parties as the di↵erence between z

and the sum of [·]-shares of z received from corrupt parties.

– Let ys denote the [·]-shares of z for party Ps 2 P. If received (abort,P) from Smal, set ys = abort

for Ps, where s 2 P.

Output: Send (Output, ys) to every Ps 2 P.

Functionality FMulPre

Figure 7.21: Ideal functionality FMulPre.

For task (ii), in the online phase, we retain the idea of parties in E optimistically recon-

structing z� r from their additive shares (Eh·i-share) to ensure that only the parties in E remain

active for most of the computation. Moreover, this optimistic reconstruction requires only O(t)-

element communication rather than the O(t2) required for reconstruction from [·]-shares (which
is what will be used later for performing verification, albeit to perform only one such recon-

struction). Thus, similar to the semi-honest protocol, parties in E optimistically reconstruct

z � r towards Pking, who further sends the reconstructed value to the parties in E. In the

malicious setting, this approach requires additional care since a malicious party may send a

wrong Eh·i-share of z � r to Pking or a malicious Pking may send an incorrectly reconstructed

(inconsistent) z� r to the parties. To account for these behaviours, the protocol is augmented

with a short one-o↵ verification phase to verify the consistency and correctness of z � r. This

phase is executed at the end of the protocol and requires the presence of all parties, and hence

the possession of z � r by all. This is in contrast to the semi-honest protocol where z � r is

given to only parties in E. To keep D disengaged for most of the online phase, sending z� r to

them is deferred till the end of the protocol. This send is a one-o↵ and can be combined for all

multiplication gates. Details of verification protocol ⇧Vrfy (Fig. 7.22) are given next.
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Let (a1, b1, z1), . . . , (am, bm, zm) denote the inputs and outputs of the m multiplication gates to be

verified.

1. Consistency Check. Invoke ⇧agree on {z1 � r1, . . . , zm � rm}.

2. Correctness Check. Repeat the following  times.
– Generate random ✓1, . . . , ✓m 2 Z2` and compute

[⌦] =
mX

i=1

✓i
�
zi � ri �

�
Maibi

� �ai

⇥
↵bi

⇤
� �bi

[↵ai
] +

⇥
⇤aibi

⇤
� [ri]

��

– For each [·]-share of ⌦, the t+1 parties possessing this share send it to every party that misses

this share. If the recipient party receives inconsistent values for any missing share, it aborts.

– Reconstruct ⌦ and abort if ⌦ 6= 0.

Protocol ⇧Vrfy (P, {JaiK, JbiK, zi � ri, [⇤aibi ] , [ri]}mi=1)

Figure 7.22: Malicious: Verification protocol for all multiplication gates.

Verification comprises two checks—a consistency check to first verify that Pking has indeed

sent the same z� r to all the parties, followed by a correctness check to verify the correctness

of the z� r. For the former, parties perform a hash-based consistency check of z� r, and abort

in case of any inconsistency. If z� r is consistent, parties verify its correctness. The high-level

idea for verifying correctness is to robustly reconstruct z � r, but now from its [·]-shares (can

be computed given [↵a] , [↵a] , [⇤ab] that are generated in the preprocessing phase). Parties can

then verify if this reconstructed value equals the value received from Pking. Concretely, this

is equivalent to robustly reconstructing [⌦] = [z� r � (Mab � �a↵b � �b↵a + ⇤ab � r)], where

z � r is the value received from Pking, and verifying if ⌦ = 0. For robust reconstruction of

[⌦], every party sends its [·]-share to every other party who misses this share, and aborts in

case of inconsistencies in the received values. Elaborately, reconstruction of ⌦ towards Ps 2 P

proceeds as follows. For each missing [·]-share of ⌦ at Ps, each of the t+ 1 parties holding this

share sends it to Ps. Ps uses this share for reconstruction if all the t + 1 received values are

consistent, else it aborts. Presence of at least one honest party among the t + 1 guarantees

that inconsistency, if any, can be detected. Since each share in [⌦] is held by t + 1 parties,

comprising at least one honest party, any cheating by up to t corrupt parties is guaranteed to

be detected. Since reconstruction should happen towards at least t+1 parties, communicating

a missing share towards all these t + 1 parties requires O(t2) communication in total, and

there are m =
�
n
h

�
�
�
n�1
h�1

�
such missing shares. Note that the cost of this reconstruction can

be optimized using standard optimization techniques [3, 52], where the correctness of z � r

for several multiplication gates can be verified with a single reconstruction by reconstructing

a linear combination of ⌦ for several gates and verifying equality with 0. Thus, only one
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robust reconstruction from [·]-shares is required for several multiplication gates, whose cost

gets amortized due to verification across multiple gates.

It is worth noting that this random linear combination technique does not trivially work over

rings. This is due to the existence of zero divisors which results in the linear combination being

0 with a probability 1/2 (which denotes the cheating probability of the adversary) [3]. Hence,

to obtain the desired security, the verification check is repeated  times where  is the security

parameter. This bounds the cheating probability of adversary to 1/2. Another approach is

to perform the verification over extended rings [29, 30]. Specifically, verification operations

are carried out over a ring Z2`/f(x), which is a ring of all polynomials with coe�cients in Z2`

modulo a degree d polynomial f(x) that is irreducible over Z2 . Each element of Z2` is lifted to

a degree d polynomial in Z2` [x]/f(x), which increases the communication required to perform

verification by a factor of d.

isTr = 1 denotes that truncation is required and isTr = 0 denotes otherwise.

Preprocessing:

1. If isTr = 0: invoke ⇧rand to generate [r] where r 2 Z2` . Invoke ⇧[·]!h·i and ⇧[·]!J·K on [r] to

generate hri and JrK, respectively.
– Else, invoke ⇧M

dsBits
(P, 1) (Fig. 7.14) to generate JrK, JrdK, and ⇧J·K!h·i on JrK to generate hri .

2. Invoke ⇧multPre on [↵a] , [↵b] to generate [⇤ab].

3. Pi 2 E invokes ⇧[·]!Eh·i on [⇤ab], [↵a], [↵b] and [r] to generate Eh⇤abi, Eh↵ai, Eh↵bi and Ehri,
respectively.

Online:

1. Pi 2 E computes Eh⇣ii = ��aEh↵bii � �bEh↵aii + Eh⇤ab � rii, and sends Eh⇣ii to Pking.

2. Pking reconstructs ⇣, computes and sends z� r = ⇣ +Mab to all partiesa.

3. If isTr = 0: invoke ⇧·!J·K on z� r to generate Jz� rK, and compute JzK = Jz� rK + JrK.
– Else, invoke ⇧·!J·K on (z� r)d to generate J(z� r)dK, and compute JzdK = J(z� r)dK + JrdK.

Verification for all multiplication gates: Invoke⇧Vrfy on J·K-shares of (a1, b1, z1), . . . , (am, bm, zm)

which denote the inputs and outputs of the m multiplication gates whose correctness is to be ver-

ified.
az� r is sent to parties in E during the online phase computation whereas it is sent to parties in D in a

single shot before verification begins.

Protocol ⇧M

mult
(P, JaK, JbK, isTr)

Figure 7.23: Malicious: Multiplication protocol.

The maliciously secure multiplication protocol (Fig. 7.23) can be broken down into the following:
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– Preprocessing phase which involves generation of [⇤ab] by invoking FMulPre. Malicious be-

haviour, if any, will be caught by FMulPre. [⇤ab] is non-interactively converted into Eh·i-shares
of ↵ab. Eh↵ai, Eh↵bi is also generated non-interactively.

– Generation of Eh·i-shares of ↵a,↵b,⇤ab during preprocessing enables computation of Ehz� ri
in the online phase, and thereby reconstruction of z� r via Pking. The crucial point to note here

is that this requires the presence of only parties in E in the online phase. This is followed by

non-interactive generation of Jz � rK from which JzK is computed as JzK = Jz � rK + JrK, where
JrK is generated during preprocessing.

– Finally, to catch malicious behaviour in the online phase, if any, in the verification phase,

the correctness of the generated JzK is checked simultaneously, for each z that is the output of

a multiplication gate. This is done by invoking ⇧Vrfy. Note that before this verification begins,

Pking sends z� r corresponding to all multiplication gates to parties in D in a single shot.

As pointed out in [94], deferring the correctness check to later may result in a privacy breach

when using a sharing scheme that allows for redundancy (such as RSS or Shamir sharing). We

next discuss this breach and explain how it is overcome in our case. We begin with explaining

the attack that a malicious adversary can launch if reconstruction towards Pking is performed

by relying on RSS (or Shamir sharing), naively. Consider a circuit with two sequential mul-

tiplication gates with the output of the first gate, say a, going as input to the second gate.

Let b denote the other input to the second multiplication gate, and z denote its output. In a

Pking based approach for multiplication, t parties send their respective (RSS/Shamir) share of

a masked value to Pking. In particular, for the first multiplication gate in the circuit mentioned

above, t parties send their corresponding share of a� ra to Pking, which reconstructs it and sends

it back to all. Delaying the verification allows a malicious Pking to send an inconsistent value of

a� ra to the parties, using which it can learn the private input b, as follows. Suppose Pking sends

the correct a� ra to all but one out of the remaining t online parties, to which it sends a� ra+�.

Owing to this, for the next multiplication gate Pking receives the shares of z� rz from the former

t�1 parties and a share of (a+�)b�rz = z+�b�rz from the latter party. Having obtained these

and additionally using the shares of z� rz and z+ �b� rz corresponding to the t corrupt parties

including itself, a malicious Pking can reconstruct z� rz as well as z+ �b� rz, thus learning b in

clear. The crux of this attack lies in the fact that a malicious adversary corrupting t parties,

including Pking, already possesses t shares each of z � rz and z + �b � rz. Thus, an additional

share of these obtained from the online parties allows it to carry out the attack successfully.

However, this attack does not hold when working with additive (Eh·i) sharing, which is what
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prevents our protocol from falling prey to this attack.

Elaborately, recall that in our protocol, during reconstruction towards Pking, any redundancy

due to J·K-sharing is eliminated with parties switching to Eh·i-sharing (additive sharing among

parties in E). Due to this, even if Pking sends inconsistent values to the parties, the Eh·i-share
of z � rz or z + �b � rz that it receives, corresponds to an additive share defined with respect

to parties in E. Hence, this additionally received additive share cannot be combined with the

shares held by the t corrupt parties to perform the reconstruction. Thus, the earlier strategy

of Pking of using these additional shares in conjunction with the t corrupt shares to reconstruct

z � rz and z + �b � rz does not hold. The primary reason which prevents the attack is the

elimination of redundancy in the sharing scheme by switching to (t+ 1)-out-of-(t+ 1) additive

sharing (Eh·i-sharing) for the set of parties in E, which is known to withstand this attack [94].

However, this privacy breach persists in the protocol of [78].

Discussion about [78]: The above attack can be circumvented by making Pking broadcast

the reconstructed value to all the parties, as discussed in [78]. To further optimize the protocol

by requiring only t+1 parties to be active in the online phase, they rely on broadcast with abort,

which comprises two phases—(i) send : where Pking sends the value to the recipients, and (ii)

verification: where the recipients exchange hash of the received value among themselves, and

abort in case of inconsistency. However, for amortization, they defer the verification (even with

respect to broadcast) towards the end of the protocol, thus making their protocol susceptible to

the aforementioned attack. We observe that one fix is to perform the verification with respect

to broadcast after each level in the circuit. This, however, requires all the parties to be online.

An optimization to let only the t+1 parties in the online phase to perform this verification after

each level, thereby allowing the remaining t parties to be shut o↵. Specifically, this involves

performing verification where the online parties exchange the hash of the received value and

abort in case of inconsistency. When the remainder t (o✏ine) parties come online towards the

end of the protocol for verifying the correctness of the multiplication gates, this verification

should be preceded by first verifying the consistency of the values broadcast by Pking to the

o✏ine parties (and involves the participation of all n parties). Since the online phase involves

broadcasting the reconstructed value to t other online parties, this amounts to an exchange

of O(t2) hashes after each level, thereby incurring a circuit depth-dependent overhead in the

communication cost as well as the rounds. In order for the communication cost to get amortized,

it is required that the circuit has O(t2) gates at each level. However, the overhead in terms of

the number of rounds persists.

Lemma 7.2 Protocol ⇧M

mult
(Fig. 7.23) incurs a communication of 3t elements in the prepro-
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cessing phase and 3t elements in 2 rounds in the online phase for multiplication when isTr = 0.

7.5.4 The complete MPC protocol

The complete maliciously secure MPC protocol, ⇧mal

MPC
, evaluating a function f(·) appears in

Fig. 7.24.

Let f(·) denote the function to be computed, which is represented as a circuit with linear gates (with

inputs a, b 2 Z2` and output c = c1a+c2b, for constants c1, c2 2 Z2`) and multiplication gates (with

inputs a, b 2 Z2` , and output c = a · b). The circuit evaluation proceeds by evaluating the gates in

a predetermined topological order. isTr = 1 denotes perform truncation, isTr = 0 denotes otherwise.

Preprocessing:

1. For each circuit input a held by Ps, parties execute the preprocessing steps of ⇧M

Sh
(Ps, a).

2. For each linear gate with input wires a, b, output c, and constants c1, c2, parties locally compute

[↵c] = c1 [↵a] + c2 [↵b].

3. For each multiplication gate with input wires a, b and output c, parties execute the preprocessing

steps of ⇧M

mult
(P, JaK, JbK, isTr).

4. For each output gate z, execute the preprocessing steps of ⇧fair

Rec
(JzK).

Online:

1. For each input wire, parties execute the online steps of ⇧M

Sh
(Ps, a), where Ps is the party

designated to provide the input a.

2. For each linear gate with input wires a, b, output c, and constants c1, c2, parties locally compute

�c = c1�a + c2�b.

3. For each multiplication gate with input wires a, b and output c, parties execute the online steps

of ⇧Mul(P, JaK, JbK, isTr).
4. For each output wire z in the circuit, parties execute the online steps ⇧fair

Rec
(JzK).

Protocol ⇧mal

MPC
(P, f(·))

Figure 7.24: Malicious: The complete MPC protocol.

7.5.5 Multiplication with truncation

Similar to the semi-honest protocol, truncation can be incorporated in the malicious multiplica-

tion as well without inflating the online communication. For this, we rely on maliciously secure

ideal functionality, FM

TrGen
(Fig. 7.25), to generate the J·K-shares of (r, rd).
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FM

TrGen
interacts with the parties in P and the adversary Smal.

Input: FM

TrGen
optionally receives a special command, (abort,P), from Smal indicating that honest

parties in P with indices in P should abort.

FM

TrGen
proceeds as follows.

– Samples random r 2 Z2` , and computes rd = r/2d.

– Generates J·K-shares of r, rd.
– Let ys denote the J·K-shares of r, rd for party Ps 2 P. If received (abort,P) from Smal, set

ys = abort for Ps, where s 2 P.

Output: Send (Output, ys) to every Ps 2 P.

Functionality FM

TrGen

Figure 7.25: Ideal functionality FM

TrGen
.

FM

TrGen
(Fig. 7.25) can be realized using the maliciously secure variant of ⇧dsBits (Fig. 7.14),

denoted as ⇧M

dsBits
[67]. This protocol is similar to the semi-honest protocol except with the

following di↵erences to account for malicious behaviour. The [·]-shares of ei = a
2 are generated

by invoking ⇧multPre instead of relying on ⇧[·]·[·]!h·i. This ensures the generation of correct [·]-
shares of ei, and malicious behaviour, if any, will lead to an abort. Following this, ei is either

correctly reconstructed towards all, or parties abort. This ensures that an adversary cannot lead

to the reconstruction of an incorrect ei. Concretely, for reconstruction, similar to multiplication,

every party sends its [·]-share to every other party, and aborts in case of inconsistencies in the

received values1. The rest of the protocol steps (which are non-interactive) remain unchanged,

and hence a formal protocol is omitted.

7.5.6 Dot product

To generate JzK for z = x � y where x and y are vectors of size n and are J·K-shared, protocol
⇧M

dp
proceeds similar to the semi-honest variant ⇧dp (Fig. 7.15). During the preprocessing

phase, parties in E obtain Eh·i-shares of ⇤x�y =
P

n

k=1 ↵xk
↵yk

and ↵xk
,↵yk

for k 2 {1, . . . , n}.
Although the latter two can be computed by parties locally with an invocation of ⇧[·]!Eh·i

(Fig. 7.6), computation of the former di↵ers significantly from the semi-honest protocol. For

this, we extend the ideas from [136] and generate [⇤x�y], by executing a maliciously secure

dot product protocol ⇧dotPre over [·]-shares (abstracted as a functionality FDotPPre in Fig. 7.26).

1This can be optimized similar to the online phase of the multiplication protocol, where the value is first
reconstructed towards Pking who sends the reconstructed value to all, followed by verifying its correctness via
the verification check.
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Specifically, parties invoke ⇧dotPre on [·]-shares of ↵x = (↵x1
, . . . ,↵xn) and ↵y = (↵y1

, . . . ,↵yn) to

compute [⇤x�y], followed by an invocation of ⇧[·]!Eh·i to obtain Eh⇤x�yi. Having computed the

necessary preprocessing data, the online phase proceeds similarly to the semi-honest protocol

⇧dp (Fig. 7.15), where parties reconstruct z� r via Pking as per equation (7.3). To account for

misbehaviour, the protocol is augmented with a verification phase similar to that in malicious

multiplication.

FDotPPre interacts with the parties in P and the adversary Smal. Let Ti be the set of the honest

parties.

Input: FDotPPre receives the [·]-shares of the vectors a = (a1, . . . , an) and b = (b1, . . . , bn) from

the parties. FDotPPre also receives [·]-shares of z = a � b of corrupt parties from Smal. Smal is also

allowed to send a special command, (abort,P), which indicates that parties in P with indices in P

should abort.

FDotPPre proceeds as follows.

– Reconstruct ak, bk for k 2 {1, . . . , n} using the shares received from honest parties and compute

z =
P

n

k=1 ak · bk.

– Compute the [·]-share of z to be held by the set of honest parties as the di↵erence between z

and the sum of [·]-shares of z received from corrupt parties.

– Let ys denote the [·]-shares of z for party Ps 2 P. If received (abort,P) from Smal, set ys = abort

for Ps, where s 2 P.

Output: Send (Output, ys) to every Ps 2 P.

Functionality FDotPPre

Figure 7.26: Ideal functionality for ⇧dotPre.

Observe that a trivial realization of FDotPPre can be reduced to n instances of multiplica-

tion. However, we extend the ideas from [30, 31, 136] and rely on a distributed zero-knowledge

proof [31] to eliminate the vector-size dependency in the preprocessing phase. Concretely, we

instantiate FDotPPre using a semi-honest dot product protocol [93] whose cost matches that of

semi-honest multiplication [62] (and thus is independent of the vector-size), followed by a ver-

ification phase to verify the correctness of the dot product computation. For the verification,

we extend the verification technique for multiplication in [31], to now verify the correctness of

the dot product, such that the cost due to verification can be amortized away for multiple dot

products, thereby resulting in vector-size independent preprocessing.

Elaborately, the semi-honest dot product protocol in [93] takes as input [x] , [y] where x,y
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are vectors of size n, and outputs [z] = [x� y]. For this, parties invoke ⇧[·]·[·]!h·i on each

element in x,y and sum these up to generate h⇢i = hx � yi. These shares are randomized

by summing with hri (converted from [r]) for a random r, and the sum z + r = (x � y) + r is

reconstructed towards Pking, who sends the reconstructed z+ r to parties in E. All parties then

non-interactively generate [z+ r] by setting one of its shares as z+ r and the others as 0. Given

[z+ r] , [r], parties can compute [z] = [z+ r]� [r]. Observe that communication of hz+ ri to Pking

requires 2t elements, while communicating z + r to parties in E requires t elements, resulting

in a matching cost of 3t elements as that required for semi-honest multiplication [62]. The

correctness of m dot product triples (x1,y1, z1), . . . , (xm,ym, zm), can be verified by taking a

random linear combination,

� =
mX

k=1

✓k ·
 
zk �

nX

j=1

xkj · ykj

!

where {✓k}mk=1 is randomly chosen by all the parties and checking if � = 0. Given [·]-shares of
xk,yk, zk for k 2 {1, . . . ,m}, parties can compute an additive share (h·i-share) of � by invoking

⇧[·]·[·]!h·i. However, since h·i-sharing does not allow for robust reconstruction, the approach is

to generate [�] and then robustly reconstruct it and check equality with 0. To generate [�],

parties first [·]-share (via ⇧[·], §7.3.4) their h·i-share of

 =
mX

k=1

✓k ·
nX

j=1

xkj · ykj.

Let  i denote the h·i-share of  held by Pi. Given [ i] for i 2 {1, . . . , n}, parties can compute

[�] =
mX

k=1

✓k · [zk]�
nX

i=1

⇥
 

i
⇤

and reconstruct �. It is, however, required to ensure that every party Pi [·]-shares the correct

 
i. To check the correctness of  i, parties need to verify if

 
i �

mX

k=1

✓k

 
nX

j=1

x
i
kj · yikj

!
= 0 (7.4)

where x
i
kj, y

i
kj denote the [·]-share of xkj, ykj held by Pi. Note that following along the lines of

⇧·!J·K, parties can generate these [·]-share of xikj, yikj from [·]-shares of xkj, ykj, non-interactively.
Now, setting akj = ✓kx

i
kj, bkj = y

i
kj, c =  

i, for k 2 {1, . . . ,m}, Equation (7.4), can re-written
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as

c�
mX

k=1

nX

j=1

akjbkj = 0 =) c�
mnX

l=1

ãlb̃l = 0 (7.5)

The correctness of Equation (7.5) can be verified by invoking Fabort
proveDeg2Rel

(see section 3 of [31] for

the definition and its instantiation), which takes as input [·]-shares of ãl, b̃l, c for l 2 {1, . . . ,mn},
which are known in clear to party Pi, and verifies if Equation (7.5) holds. The protocol realizing

Fabort
proveDeg2Rel

for all n parties requires communicating O(n log(mn) + n) extended ring elements

per party. Further, since steps other than Fabort
proveDeg2Rel

require sharing and reconstructing one

element, it adds a small constant cost, resulting in the communication cost for verifying m dot

products for vector size n being O(n log(mn) + n) extended ring elements per party.

7.5.7 Multi input multiplication

This protocol is similar to its semi-honest counterpart with the di↵erence that the preprocessing

phase relies on invoking FMulPre for generating the required multiplicative terms. At a high

level, the malicious variant of the multi-input multiplication protocol can be viewed as an

amalgamation of the semi-honest multi-input multiplication and the malicious multiplication

protocol. For the case of 3-input multiplication, recall that the semi-honest protocol to compute

JzK given JaK, JbK and JcK where z = abc requires parties to obtain Eh⇤abi, Eh⇤aci, Eh⇤bci and
Eh⇤abci in the preprocessing phase, which is then used to reconstruct �z in the online phase.

Since parties in E are required to hold the correct Eh·i-sharings before the online phase

begins, as in the case of multiplication, the techniques from the semi-honest protocol fail in this

setting. Hence, our protocol uses 4 instances of FMulPre in the preprocessing phase, one each to

compute [⇤ab] , [⇤ac] , [⇤bc] and [⇤abc]. Each of the [·]-sharing is further converted to Eh·i-sharing
using ⇧[·]!Eh·i to ensure active participation of only t + 1 parties in the online phase for the

reconstruction of z � r. Further, to detect malicious behaviour during the reconstruction of

z� r, a verification check similar to the multiplication protocol is performed such that parties

abort if the check fails. For 4-input multiplication, parties obtain J·K-sharing of z = abcd using

z� r = (�a � ↵a)(�b � ↵b)(�c � ↵c)(�d � ↵d)� r. The protocol proceeds in a similar manner as

the 3-input case by delegating the computation of product terms to the preprocessing phase.

7.6 Building blocks

For completeness, we discuss the building blocks used in our framework. These blocks are

known from the literature [138, 194], and we show how these can be extended to our setting.
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7.6.1 Semi-honest building blocks

7.6.1.1 Bit to arithmetic

Given Boolean shares JbKB of bit b, protocol ⇧Bit2A generates its arithmetic shares, JbRK over

Z2` (Fig. 7.27). Here, bR denotes the arithmetic value of b over the ring Z2` . The approach

is to generate a randomized version, ⇣ = b � r of b, and then recover arithmetic shares of

b by performing the arithmetic equivalent of XOR of b = ⇣ � r. Specifically, the arithmetic

equivalent of x� y is given as xR + y
R � 2xRyR.

Preprocessing:

1. Invoke ⇧dsBits to generate JrRK, JrKB for r 2 Z2 .

2. Invoke the preprocessing phase of ⇧Mul.

Online:

1. Compute J⇣KB = JbKB � JrKB.
2. Pi 2 E invokes ⇧B

J·K!Eh·i to generate Eh⇣iBi and sends Eh⇣iBi to Pking, who reconstructs ⇣ and

generates J⇣RK.
3. Invoke the online phase of ⇧Mul to generate J⇣RrRK, and compute JbRK = J⇣RK+ JrRK� 2J⇣RrRK.

Protocol ⇧Bit2A(P, JbKB)

Figure 7.27: Semi-honest: Bit to arithmetic.

7.6.1.2 Bit injection

This protocol, denoted as ⇧BitInj, facilitates generation of JbR · vK given JbKB, JvK for b 2 Z2 and

v 2 Z2` . As seen in [138],

b
R
v = (�b � ↵b)

R(�v � ↵v) = �b
R
�v � �b

R
↵v + (2�b

R � 1)(↵b
R
↵v � �v↵b

R)

Given Eh·i-shares of ↵v,↵b
R
,↵b

R
↵v, r, together with JrK where r 2 Z2` , and the knowledge that

�v, �b
R is held by all parties in E, parties can non-interactively compute EhbRv + ri, reconstruct

it via Pking and generate JbRv+ rK. JbRvK can then be computed as JbRvK = JbRv+ rK� JrK. To
facilitate this, in the preprocessing phase parties generate Eh·i-shares of r,↵v,↵b

R
,↵b

R
↵v, and

JrK. Here, Ehri, Eh↵vi and JrK are generated as in the preprocessing of multiplication, and Eh↵b
Ri

is generated via ⇧Bit2A followed by invoking ⇧J·K!Eh·i. Following this, Eh↵b
R
↵vi is generated as

done in the preprocessing of multiplication.
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7.6.1.3 Arithmetic to Boolean sharing

Extending the techniques from [138], protocol ⇧A2B generates JxKB from JxK for x 2 Z2` . For

this, given arithmetic and Boolean shares of r 2 Z2` , Boolean shares of x are computed as

(x + r) � r by evaluating a parallel prefix adder (PPA) circuit [194, 173]. The PPA circuit

takes as input two Boolean values (x+ r, �r in this case) and outputs their sum. The protocol

appears in Fig. 7.28. Looking ahead, ⇧A2B is used in the preprocessing phase in the applications

considered. Hence, we rely on the PPA circuit from [173] as it provides a good trade-o↵ between

rounds and communication as opposed to the circuit from [194] which is optimized to provide

a fast online phase at the expense of a higher preprocessing cost (yielding a higher total cost

than [173]).

Preprocessing:

1. Invoke ⇧dsBits(P, 0) to generate J(r[i])RK and Jr[i]KB where r[i] 2 Z2 for i 2 {0, . . . , ` � 1}, and
set JrK =

P`�1
i=0 2

iJ(r[i])RK.
2. Execute the preprocessing phase for the PPA circuit which computes JxKB = Jx+ rKB � JrKB.

Online:

1. Compute Jx+ rK = JxK + JrK
2. Parties in E invoke ⇧[·]!Eh·i on Jx+ rK to generate Ehx+ ri and send their share to Pking.

3. Pking reconstructs and sends x+ r to all parties in E.

4. Invoke ⇧B

·!J·K to generate Jx+ rKB, and execute the online phase of the PPA circuit to compute

JxKB = Jx+ rKB � JrKB.

Protocol ⇧A2B(P, JxK)

Figure 7.28: Semi-honest: Arithmetic to Boolean.

7.6.1.4 Boolean to arithmetic sharing

This protocol generates JxK from JxKB where x 2 Z2` . Inspired from [138, 136], observe that

x =
P`�1

i=0 2
i(x[i])R. Thus, we invoke ⇧Bit2A on x[i] for i 2 {0, . . . , ` � 1} to generate Jx[i]RK

followed by locally combining it as per the above equation to generate JxK. Optimizations

in [138] carry forward to our setting as well.

7.6.1.5 Comparison

To compare x, y 2 Z2` in FPA, we extend the technique of [173, 193, 136, 50, 138, 194], where

checking x < y is equivalent to checking if the most significant bit (msb) of v = x � y is 1. To
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extract the msb from JvK, we rely on ⇧Bitext which takes as input JvK and outputs the J·KB-share
of the msb of v, denoted as Jmsb(v)KB. The optimized bit extraction circuit from [194] is used

for computing the msb whose inputs are two J·KB-shared values and output is the J·KB-shared
msb of the sum of these two inputs. Observe that, given JvK, v can be written as v = �v � ↵v,

and hence J·KB-shares of �v and ↵v constitute the two inputs to the circuit. While J�vKB can

be generated non-interactively by invoking ⇧B

·!J·K in the online phase, J↵vKB is generated by

performing arithmetic to boolean conversion in the preprocessing phase. Evaluation of the bit

extraction circuit then gives Jmsb(v)KB.

7.6.1.6 Equality check

Given J·K-shared x, y 2 Z2` , this protocol outputs a J·KB-shared bit, which is set to 1 if x = y, and

0 otherwise. The approach is to obtain the bit decomposition of v = x� y by performing ⇧A2B,

and checking if all bits of v are 0. For this, parties non-interactively obtain 1’s complement

of the bits of v, denoted as v̄, by setting the corresponding �v̄ = 1 � �v and ↵v̄ = ↵v. Parties

proceed to compute an AND of all the bits in v̄ following the standard tree-based approach

where we use the 4-input multiplication to save on rounds and communication. If v = 0, then

the AND outputs 1 else it outputs a 0. The protocol appears in Fig. 7.29.

Preprocessing:

1. Perform preprocessing phase of ⇧A2B and the preprocessing of ⇧4-Mul.

Online:

1. Compute JvK = JxK� JyK and invoke ⇧A2B to generate JvKB.
2. Generate Jv̄KB by setting �v̄ = 1� �v and ↵v̄ = ↵v.

3. Set JbKB = ^`
i=1v̄i by relying on a tree-based approach for computing AND and online phase

of ⇧4-Mul.

Protocol ⇧Eq(P, JxK, JyK)

Figure 7.29: Semi-honest: Equality check protocol.

7.6.1.7 Maxpool / Minpool

Maxpool allows parties to compute J·K-share of the maximum value xmax among a vector of

values x = (x1, . . . , xn). For this, we proceed along the lines of [138]. Observe that the maximum

among two values xi, xj can be computed by first using the secure comparison protocol to obtain

JbKB such that b = 0 if xi � xj and 1 otherwise. Following this, parties can compute b(xj�xi)+xi

using the bit injection protocol, to obtain the maximum value as the output. To compute the
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maximum among a vector of values, parties follow the standard binary tree-based approach

where consecutive pairs of values are compared in a level-by-level manner. We refer to the

resulting protocol as ⇧max. A protocol ⇧min for minpool can be worked out similarly.

7.6.1.8 ReLU

The ReLU function, ReLU(v) = max(0, v), can be written as ReLU(v) = b · v, where bit b = 1 if

v < 0 and 0 otherwise. Here b denotes the complement of b. Given JvK, parties invoke ⇧Bitext

on JvK to obtain JbKB. The J·KB-sharing of b is then computed, non-interactively, by setting

�
b
= 1� �b. Given JbKB and JvK, ReLU can be computed using ⇧BitInj.

7.6.2 Malicious building blocks

Note that the malicious variants for the building blocks, such as bit to arithmetic, Boolean

to arithmetic, and arithmetic to Boolean conversion, bit extraction, secure comparison, secure

equality check, ReLU, maxpool, and convolutions, follow along similar lines to that of the

semi-honest protocols with the di↵erence that the underlying protocols used are replaced with

their maliciously secure variants. Moreover, for steps that involve opening values via Pking, the

reconstructed values are sent to all and are accompanied by a verification check similar to the

one in the multiplication protocol.

7.6.3 Communication cost

Table 7.4 summarises the communication cost and online round complexity of the semi-honest

and maliciously secure protocols.

7.7 Applications & benchmarks

To evaluate the performance of our protocols, we benchmark some of the popular applications

such as deep neural networks (NN), similar sequence queries (SSQ), and biometric matching

where MPC is used to achieve privacy. While these applications have been looked at in the

small party setting [174, 136, 208, 15, 204, 220, 194, 173], we believe the n-party setting is a

better fit for reasons described in the introduction. To the best of our knowledge, we are the

first to benchmark these in the multiparty honest-majority setting for more than four parties.
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Preprocessing Online Preprocessing Online

Sharing – (t+ 1)` 1 – 2t` 1
Reconstructiona – 3t` 2 – n(q� g)` 1
Multiplication t` 2t` 2 3t` 3t` 2

3-input multiplication 6t` 2t` 2 12t` 3t` 2
4-input multiplication 15t` 2t` 2 33t` 3t` 2

Doubly shared bits 4t(`+ 2) – – 6t(`+ 2) – –

4t(`+ 2)`+ t` 2t` 2 3t`+ 6t(`+ 2)` 3t` 2

Dot product t` 2t` 2 3t` 3t` 2
Bit to arithmetic 4t(`+ 2) + t` 4t` 4 6t(`+ 2) + 3t` 6t` 4

Bit injection 4t(`+ 2) + 6t` 2t` 2 6t(`+ 2) + 12t` 3t` 2

Arithmetic to Boolean
4t(`+ 2)`
+t` log2 `

2t`(1 + log2 `) 2 + 2 log2 `
6t(`+ 2)`
+3t` log2 `

3t`(1 + log2 `) 2 + 2 log2 `

Boolean to arithmetic 4t(`+ 2)` 2t` 2 6t(`+ 2)` 3t` 2

Comparisonb u1 + 4t(`+ 2)`+
3t` log2 `+ 2t`

2tu2 2 log4 `
6t(`+ 2)`+ 6t` log2 `

+3t`+ u1
3tu2 2 log4 `

Building
Block

Semi-honest Malicious

Communication Rounds
Online

Communication Rounds
Online

Multiplication
with truncation

` - size of ring in bits.
aAccounts for reconstruction towards all; q =

�
n
h

�
, g =

�
n�1
h�1

�
. b

u1 = 3tn2 + 12tn3 + 33tn4, u2 = n2 + n3 + n4,
n2 = 41, n3 = 27, n4 = 47 denote the number of AND gates in the bit extraction circuit of ABY2 [194] with 2, 3, 4 inputs,
respectively.

Table 7.4: Communication and round complexity of protocols: semi-honest and malicious.

Benchmark environment

The performance of our protocols is analyzed using a prototype implementation building over

the ENCRYPTO library [59] in C++17. We chose 64 bit ring (Z264) for our arithmetic world,

and the operations over extended ring were carried out using the NTL library2. Since the

correctness and accuracy of the applications considered in the secure computation setting are

already established, our benchmark aims to demonstrate our protocols’ performance and is not

fully functional. Moreover, we believe that incorporating state-of-the-art code optimizations

like GPU-assisted computing can enhance the e�ciency of our protocols, which is left as future

work. Since there is no defined way to capture an adversary’s misbehaviour, following standard

practice [173, 136, 61], we benchmark honest executions of the protocols, which also include

the steps performed for verification in the malicious case. We use multi-threading, wherever

possible, to facilitate e�cient computation and communication among the parties. The parties

in the computation are emulated using Google Cloud (n1-standard-64 instances, 2.0 GHz Intel

Xeon Skylake, 64 vCPUs, 240 GB RAM) with machines located in East Australia, South Asia,

South East Asia, and West Europe. All our experiments are run for 5, 7, and 9 parties, each.

We would like to note that our protocols can be scaled to a larger number of parties. However,

2https://libntl.org
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Figure 7.30: Round trip time (rtt).

recall that reliance on RSS will result in increasing the share size with an increasing number

of parties. Further, we note that the performance of our semi-honest protocol in the special

setting of t = 1 is on par with tailor-made protocols such as [49]. For the malicious setting,

note that customized protocols with t = 1 such as [136, 50, 138] are tailor-made for their setting

and hence are more e�cient. Specifically, they benefit from a single online round of interaction

per multiplication gate, as opposed to two in our case, while having the same communication

cost. We estimate this will roughly double the latency of our malicious protocol in this setting

of t = 1. While a single-round protocol can be designed for the multiparty case, the two-round

protocol ensures that communication complexity remains linear in the number of parties, as

opposed to quadratic in the former. Since our focus is on attaining protocols that tolerate

t > 1, we omit to provide performance comparisons for these customized protocols in the t = 1

setting.

Benchmark parameters

We report the run-time and communication of the online phase and total (= preprocessing +

online). Note that the reported costs only consider the evaluation phase and do not account for

the cost of input sharing and output reconstruction phases (because the latter phases amount

to a one-time cost). Hence, for the malicious setting, the reported numbers do not account for

the cost of broadcast required for the fair reconstruction. To capture the e↵ect of online round

complexity and communication in one go, we also report the throughput (TP [11, 173, 136]) of

the online phase. TP denotes the number of operations that can be performed in one minute.

Finally, when deployed in the outsourced setting, one pays the price for the communication

and up-time of the hired servers. To demonstrate how our protocols fare in this scenario, we

additionally report the monetary cost (Cost) [171, 138] for the applications considered. This

cost is estimated using Google Cloud Platform [205] pricing, where 1 GB and 1 hour of usage
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costs USD 0.08 and USD 3.04, respectively.

7.7.1 Comparison with DN07?

In this section, we benchmark our semi-honest and malicious protocols over synthetic circuits

comprising one million multiplications with varying depths of 1, 100, and 1000, and compare

them against the optimized ring variant of DN07? [29]. The gates are distributed equally across

each level in the circuit.

7.7.1.1 Communication

The communication cost for 1 million multiplications is tabulated in Table 7.5 for the 5, 7, and

9 party settings. As can be observed, the online phase of our semi-honest protocol enjoys the

benefits of pushing 33% communication to a preprocessing phase compared to DN07?. The

observed values corroborate the claimed improvement in the online complexity of our protocol.

Our malicious protocol retains the online communication cost of DN07? while incurring a similar

overhead in the preprocessing phase.

Ref. n = 5 n = 7 n = 9

DN07? (semi) (0, 45.78) (0, 68.66) (0, 91.55)
This (semi) (15.26, 30.52) (22.88, 45.78) (30.51, 61.04)
This (mal) (45.79, 45.78) (68.67, 68.67) (91.57, 91.57)

Table 7.5: Communication (Preprocessing, Online) in MB for 1 million multiplications.

Note that pushing the communication to the preprocessing phase has several benefits. First,

communication with respect to several instances can happen in a single shot and leverage the

benefit of serialization. Second, with respect to resource-constrained devices such as mobile

phones, preprocessing communication can occur whenever they have access to a high-bandwidth

Wi-Fi network (for instance, when the device is at home overnight). These benefits facilitate a

fast online phase, as observed, that may happen over a low-bandwidth network.

7.7.1.2 Run time

The time taken to evaluate circuits of di↵erent depths appears in Table 7.6. Since the time

for the 5, 7, and 9 party settings vary within the range [0, 0.5], we report values only for the

7-party setting in Table 7.6. With respect to the online run-time, our semi-honest protocol’s

time is expected to be similar to that of DN07?. However, DN07? demonstrates around 1.5⇥
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higher run-time. This di↵erence can be attributed to the asymmetry in the rtt among parties,

which vanished when benchmarked over a symmetric rtt setting. Compared to the semi-honest

protocol, the malicious variant incurs a minimal overhead of less than one second in the online

run-time due to the one-time verification phase. However, the overhead is higher for the case

of the overall run-time. Concretely, it is around 10 seconds and is due to the distributed

zero-knowledge proof computation in the preprocessing phase. Note that this overhead is

independent of the circuit depth and gets amortized for deeper circuits as evident from Table 7.6

(depth 1 vs. 1000).

Ref. d = 1 d = 100 d = 1000

DN07? (semi) (0, 0.65) (0, 54.97) (0, 549.69)
This (semi) (0.47, 0.45) (0.47, 30.75) (0.47, 307.48)
This (mal) (10.52, 1.36) (10.53, 68.67) (10.54, 308.39)

Table 7.6: Latency in seconds (Preprocessing, Online) for varying depth (d) circuits with 1
million multiplications for n = 7.

7.7.1.3 Monetary cost

Another key highlight of our protocols is their improved monetary cost, as evident from

Fig. 7.313. Concretely, for 9 parties (semi-honest), we observe a saving of 17% over DN07?

for a depth-1 circuit, and it increases up to 72% for circuits with depth 1000. This is primarily

due to the reduction in the number of online parties over DN07?. Comparing our semi-honest

and malicious variants, the latter has an overhead of 8⇥ for a depth-1 circuit, and it reduces to

1.14⇥ for a depth-1000 circuit. This is justified because the verification cost is amortized for

deeper circuits, as mentioned earlier. Interestingly, our malicious variant outperforms even the

semi-honest DN07? upon reaching circuit depths of 100 and above. A similar analysis holds in

the symmetric rtt setting as well, where the saving is up to 56% (for d = 1000).

7.7.1.4 Online throughput (TP):

Owing to the asymmetric rtt as described earlier, our semi-honest variant witnesses up to 1.78⇥
improvements in TP (for a single execution) over DN07?, which vanishes in the symmetric rtt

setting. However, recall that our protocol requires only t+1 active parties in the online phase,

3Bars in solid colours denote computation over network given in Fig. 7.30, while the area represented via
crosshatch pattern denotes the additional cost incurred in the symmetric rtt setting (356 ms).
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Figure 7.31: Monetary cost (in USD) for evaluating circuits (1000 instances) of various depths
(d) for n = 9 parties. The values are reported in log2 scale.

which leaves several channels among the parties underutilized. Hence, we can leverage the load-

balancing technique where parties’ roles are interchanged across various parallel executions. For

instance, one approach is to make every party act as Pking, i.e., in 5PC, in one execution, Pking =

P1,E = {P1, P2, P3},D = {P4, P5}, while in another execution Pking = P2,E = {P2, P3, P4},D =

{P5, P1}, and so on. To analyse the e↵ect of load balancing, we performed experiments with

similar rtt among the parties and observed a 1.5⇥ improvement in our semi-honest variant over

DN07?. This is justified as we communicate over four channels among the parties as opposed

to six in DN07?. We note that while enhancing the security from semi-honest to malicious, we

observe a significant drop in TP, which is about 3⇥ for the depth-1 circuit. This is primarily

due to increased run time owing to the verification in the online phase for malicious setting.

However, this drop tends to zero for deeper circuits (as verification cost gets amortized), making

the online phase of our maliciously secure protocol on par with the semi-honest one.

7.7.2 Deep neural networks (DNN)

We begin by discussing the architectural details of the neural networks under consideration,

followed by the benchmarks.

7.7.2.1 Neural network architecture

We benchmark three di↵erent neural networks (NN) [173, 193, 220] with an increasing number

of parameters—(i) NN-1: a 3-layer fully connected network with ReLU activation after each

layer, as considered in [174, 173, 193, 136], (ii) NN-2: the LeNet [147] architecture, which

contains two convolutional layers and two fully connected layers with ReLU activation after

each layer, and maxpool operation after convolutional layers, and (iii) NN-3: VGG16 [213]
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architecture, that comprises 16 layers in total, which includes fully connected, convolutional,

ReLU activation, and maxpool layers. The last 2 NNs were considered in [220]. We benchmark

the inference phase of the above NNs, which comprises computing activation matrices, followed

by applying an activation function or pooling operation, depending on the network architecture.

NN-1 and NN-2 are benchmarked over MNIST dataset [146] while NN-3 is benchmarked using

CIFAR-10 dataset [141].

7.7.2.2 Analysis

To analyse the improvement of our protocols, we also benchmark (semi-honest) DN07? for the

applications by adapting our building blocks to their setting. The semi-honest benchmarks for

the di↵erent NNs appear in Table 7.7 while the malicious ones appear in Table 7.8. Fig. 7.32

gives a pictorial view of the trends observed while comparing the semi-honest variants and are

described next.
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Figure 7.32: Comparison for deep NN between our semi-honest protocol and DN07? (values
plotted are logarithmic in base 2).

We incur a very minimal overhead in the run-time of our protocols when moving from five

to nine parties over all the networks considered. Hence, we use ±� to denote this variation

in the table. The trends witnessed in synthetic circuit benchmarks (§7.7.1) carry forward to

neural networks as well due to reasons discussed previously. For instance, the improvement

in the online run-time for our semi-honest variant is up to 4.3⇥ over DN07?. The e↵ect of

reduced run-time and improved communication results in a significant improvement in the

online throughput of our protocol over DN07?. Concretely, the gain ranges up to 4.3⇥. Further,
the improved run-time coupled with the reduced number of online parties for our case brings

in a saving of up to 69% in monetary cost for NN-1. However, the improvement drops to 33%

for deep network NN-3. The reduction in savings is due to improved run-time getting nullified
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by increased communication from NN-1 to NN-3, making communication the dominant factor

in determining monetary cost.

Comm Time TP
a Comm Time TP Comm Time TP

5 0.16 211.69 15.58 46.20 83.12 228.07 152.95 25.11
7 0.24 202.48 23.39 48.39 79.35 342.24 160.10 23.99
9 0.33 202.49 31.18 48.40 79.35 456.33 160.14 23.99

5 0.02 1.92 29.70
7 0.03 2.88 44.55
9 0.05 3.84 59.40

Comm Time Costb Comm Time Cost Comm Time Cost

5 3.41 21.46 0.06 269.23 56.44 0.21 4288.26 213.77 1.34
7 5.11 22.29 0.10 403.85 59.60 0.32 6432.39 227.28 1.96
9 6.81 22.31 0.13 538.47 59.61 0.42 8576.52 227.33 2.56

5 3.41 0.02 269.50 0.10 4292.06 0.91
7 5.11 0.03 404.25 0.14 6438.09 1.08
9 6.81 0.04 539.00 0.18 8584.12 1.71

Ref. n
NN-1 NN-2 NN-3

Online

DN07?
18.55
±.4

This
4.61
±.02

832.61
±.04

11.08
±.02

346.60
±.3

36.92
±.02

104.01
±.04

End-to-end

DN07?

This
11.09
±.02

25.34
±.03

104.09
±.03

Communication in MB and time in seconds.
a
TP denotes throughput bmonetary cost in USD

Table 7.7: Semi-honest: Benchmarks for deep NN.

Observe that, unlike the case in synthetic circuits (Table 7.5), the total communication

here is an order of magnitude higher. This is primarily due to the higher communication cost

incurred for performing the truncation operation—specifically, the generation of the doubly-

shared bits (⇧dsBits) in the preprocessing phase. It is worth noting that ⇧dsBits is used as a black

box, and an improved instantiation for it will lower the communication.

Comm Time TP
a Comm Time TP Comm Time TP

5 0.04 2.88 44.56
7 0.06 4.32 66.84
9 0.08 5.77 89.12

Comm Time Costb Comm Time Cost Comm Time Cost

5 3.59 0.07 286.18 0.15 4535.95 124.54 1.04
7 5.39 0.10 429.28 0.22 6804.06 126.69 1.53
9 7.20 0.11 571.98 0.27 9066.43 129.42 1.94

n
NN-1 NN-2 NN-3

Online
5.44
±.02

706.40
±.04

11.93
±.03

322.63
±.2

37.91
±.02

101.27
±.04

End-to-end
22.96
±.02

37.71
±.04

Communication in MB and time in seconds.
a
TP denotes throughput bmonetary cost in USD

Table 7.8: Malicious: Benchmarks for deep NN.
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Compared to our semi-honest variant for evaluating NNs, the malicious variant incurs a

2⇥ higher online communication cost for NN-1 and NN-2. However, this di↵erence closes in

with deeper NNs, with the communication being 1.5⇥ for NN-3. The drop in the di↵erence

can be attributed to the one-time cost of verification required in the malicious variant, which

gets amortized over deeper circuits. Due to the same reason, in comparison to the semi-honest

case, the malicious variant has an overhead of around 1 second in the online run-time, which

in turn reflects in the reduced throughput. Similar to the semi-honest evaluation of NNs, the

overall communication is an order of magnitude higher than the online communication due to

the cost incurred for truncation during preprocessing. Also, analogous to the trend observed

for synthetic circuits, the overhead in overall run-time is approximately 11 seconds owing to

the distributed zero-knowledge proof verification required in the preprocessing phase.

7.7.3 Genome sequence matching

Given a genome sequence as a query, genome matching aims to identify the most similar se-

quence from a database of sequences. This task is also known as similar sequence query (SSQ).

An SSQ algorithm on two sequences s and q, requires the computation of Edit Distance (ED),

which quantifies how di↵erent two sequences are by identifying the minimum number of addi-

tions, deletions, and substitutions needed to transform one sequence to the other. To compute

the ED, we extend the (2-party) protocol from [204], which builds on top of the approximation

from [15], to the n-party setting. We proceed to describe the high-level idea of the approxi-

mation algorithm for ED computation for a query sequence q against a database of sequences

{s1, . . . , sm}.
The ED approximation algorithm has a non-interactive phase, during which the database

owner with the sequences s1, . . . , sm, generates a Look-Up-Table (LUT) for each sequence. These

LUTs are then secret-shared among all the parties. To generate the LUT, the sequences in the

database are aligned with respect to a common reference genome sequence (using the Wagner-

Fischer algorithm [221]), and divided into blocks of a fixed, predetermined size. Based on the

most frequently occurring block sequences in the database, an LUT is constructed consisting

of these block values and their distance from each other. Specifically, for a database of m

sequences {s1, . . . , sm}, each of length ! blocks, an LUTi is constructed for each si. Each LUT

has m columns, one corresponding to each si in the database, and ! rows, one corresponding to

each block of a sequence, where LUTs[i][j] corresponds to the ED between block i of the sequence

s and sj. This completes the non-interactive phase of the ED approximation algorithm.

Given the LUTs, when a new query q has to be processed, its ED must be computed from
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every sequence s in the database. For this, similar to the non-interactive phase, the query is

first aligned with the reference sequence and broken down into blocks of the same fixed size.

Then, the i
th block from the query is matched with the i

th block of each sequence in the LUT

for a sequence s. If the block values match, then the precomputed distance is taken as the

output for that block; otherwise, the output is taken to be 0. Finally, the resultant sum of

distances for all the blocks is taken to be the approximated ED between q and the sequence

s. Computing the ED to all such sequences s in the database then allows the identification

of the most similar sequence for the query using the minpool operation. Algorithms for ED

computation between two sequences, and SSQ appear in Fig. 7.33, Fig. 7.34, respectively,

where accuracy and correctness follow from [15]. Since the generation of LUTs happens non-

interactively, we only focus on the computation of ED with respect to the new query q, which

requires interaction, and benchmark the same.

1. For i = 1 to !

– For j = 1 to m

– Invoke ⇧Eq on JLUTs[i][j]K and Jq[i]K to generate JbjKB.
– Invoke ⇧Bit2A on JbjKB and generate JbjK.

– Let b = {b1, . . . , bm}. Compute JdistiK = ⇧dp(JbK, JLUTs[i][·]K).
2. Compute JdistK =

P!
i=1JdistiK.

Protocol ⇧ED(P, JLUTsK, JqK)

Figure 7.33: Edit distance between query q and sequence s with respect to a database of m sequences
and ! blocks.

1. For s = 1 to m

– Invoke ⇧ED on JLUTsK and JqK to generate JdistsK.
2. Invoke ⇧min on Jdist1K, . . . , JdistmK to generate JsminK 2 {dist1, . . . , distm}.

Protocol ⇧SSQ(P, {JLUTsK}ms=1, JqK)

Figure 7.34: Similar sequence queries.

The benchmarks for genome sequence matching appear in Table 7.9. Following [204], we

consider three cases with di↵erent numbers of sequences in the database (m) and di↵erent block

lengths (!). We witness similar trends here, where our semi-honest protocol has improvements

of up to 4⇥ in both online run-time and throughput over DN07?. Our malicious variant incurs

a minimal overhead in the range of 5-6% in online run-time and total communication over the

semi-honest counterpart.
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Comma Time TP
b Comm Time TP Comm Time TP

5 10.85 60.58 63.39 25.82 66.33 57.89 59.87 72.08 53.27
7 16.28 63.60 60.38 38.75 69.63 55.15 89.86 75.65 50.76
9 21.71 63.62 60.37 51.67 69.66 55.09 119.81 75.67 50.72

5 6.42 15.39 35.87
7 9.63 23.08 53.80
9 12.84 30.78 71.74

5 9.51 228.71 22.79 209.84 53.11
7 14.14 228.44 33.88 209.49 78.96
9 18.40 226.82 44.06 207.23 102.68

Commc Timed Coste Comm Time Cost Comm Time Cost

5 0.17 74.13 0.25 0.40 82.24 0.31 0.92 92.04 0.43
7 0.25 77.76 0.37 0.60 86.99 0.47 1.39 98.90 0.64
9 0.33 77.79 0.50 0.80 87.39 0.62 1.85 98.93 0.84

5 0.17 0.07 0.40 0.11 0.92 0.21
7 0.25 0.10 0.60 0.16 1.39 0.31
9 0.33 0.13 0.80 0.21 1.85 0.39

5 0.18 0.12 0.42 0.17 0.99 0.29
7 0.27 0.16 0.64 0.25 1.48 0.42
9 0.36 0.21 0.85 0.30 1.97 0.52

Ref. n
m = 1000,! = 25 m = 2000,! = 30 m = 4000,! = 35

Online

DN07?

This

(semi)
16.12
±.01

236.21
±.15

17.61
±.02

217.93
±0.2

19.34
±.02

198.55
±.35

This

(mal)
16.8
±.1

18.3
±.2

20.11
±.06

190.95
±.4

End-to-End

DN07?

This

(semi)
19.08
±.02

21.69
±.02

25.97
±.03

This

(mal)
31.21
±.08

34.52
±.2

41.83
±.06

acommunication in MB b
TP denotes throughput ccommunication in GB dTime in seconds emonetary

cost in USD

Table 7.9: Benchmarks for genome sequence matching.

For the monetary cost (Fig. 7.35), our semi-honest protocol has up to 66% saving over

DN07?, and malicious variant has around 42%-54% overhead over the semi-honest counterpart.

This (semi)
This (mal)

(1000, 25) (2000, 30) (4000, 35)
0

200

400

600

800

1,000

(number of sequences, block length)

DN07? (semi)

Figure 7.35: Monetary cost for SSQ evaluation for varying number of sequences and block
lengths ((1000,25), (2000, 30), (4000,35)) for n = 9 parties. Costs for 1000 instances are
reported in USD.
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7.7.4 Biometric matching

We extend support for biometric matching, which finds application in many real-world tasks

such as face recognition [77] and fingerprint matching [106]. Given a database of m biometric

samples (s1, . . . , sm) each of size n, and a user holding its sample u, the goal of biometric

matching is to identify the sample from the database that is “closest” to u. The notion of

“closeness” can be formalized by various distance metrics, of which Euclidean Distance (EuD)

is the most widely used. Following the general trend, we reduce our biometric matching problem

to that of finding the sample from the database which has least EuD with user’s sample u.

We follow [174, 194] where the EuD between two vectors x,y each of length n is given as

EuDxy =
i=nX

i=1

(xi � yi)
2 = z � z (7.6)

where z = ((x1 � y1), . . . , (xn � yn)).

To achieve this goal of performing biometric matching securely, each si, for all i 2 {1, . . . ,m}
in the database is J·K-shared among the n parties participating in the computation. Specifically,

each component sij , for all j 2 {1, . . . , n} is J·K-shared among all the parties. Similarly, the

user also J·K-shares its sample u. The parties compute a J·K-shared distance vector DV of

size m, where the i
th component corresponds to the EuD between u and si. For this, each

party locally obtains JziK = JsiK� JuK and computes JDViK according to Eq. 7.6 using the dot

product operation. The final step is then to identify the minimum of these m components of

DV, which can be performed using the protocol ⇧min for minpool operation.

The benchmarks for biometric matching appear in Table 7.10 for a varying number of se-

quences. As is evident from Table 7.10, our semi-honest protocol witnesses a 4.6⇥ improvement

over DN07? in both online run-time and throughput. Further, in terms of monetary cost, we

observe a saving of around 85%. With respect to our maliciously secure protocol, we incur

a minimal overhead of around 9.5% in terms of total communication and around 4% in on-

line throughput over our semi-honest variant. We note that our malicious variant outperforms

semi-honest DN07? in both online run-time and throughput, thereby achieving our goal of a

fast online phase.

7.8 Security proofs

Security proofs are given in the real-world/ideal-world simulation-based paradigm [155]. Let

Ash
,Amal denote the real-world semi-honest, malicious adversary, respectively, corrupting at
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Comm Time TP
a Comm Time TP Comm Time TP Comm Time TP

5 0.63 55.52 69.17 2.51 66.51 57.73 10.03 77.51 49.54 40.14 88.64 43.32
7 0.94 58.27 65.90 3.76 69.81 55.00 15.06 81.35 47.20 60.23 93.04 41.27
9 1.25 58.30 65.88 5.02 69.87 54.97 20.07 81.36 47.14 80.31 93.10 41.16

5 0.09 0.35 1.41 5.62
7 0.13 0.53 2.11 8.44
9 0.18 0.70 2.81 11.25

5 0.14 0.53 2.11 8.44
7 0.21 0.80 3.17 12.67
9 0.28 1.07 4.23 16.89

Comm Time Costb Comm Time Cost Comm Time Cost Comm Time Cost

5 6.92 66.55 0.20 27.70 79.85 0.24 110.83 93.47 0.29 443.34 108.53 0.40
7 10.38 69.32 0.30 41.55 83.24 0.36 166.24 97.70 0.45 665.00 114.45 0.59
9 13.84 69.35 0.40 55.40 83.30 0.48 221.66 97.71 0.59 886.67 114.55 0.79

5 6.93 0.03 27.74 0.04 110.99 0.06 443.99 0.13
7 10.40 0.05 41.61 0.06 166.49 0.09 665.99 0.18
9 13.86 0.06 55.49 0.08 221.99 0.11 887.99 0.23

5 7.61 0.08 30.43 0.09 121.71 0.11 486.85 0.18
7 11.42 0.11 45.65 0.13 182.58 0.16 730.28 0.26
9 15.22 0.14 60.81 0.16 243.19 0.20 972.72 0.33

Ref. n
#seq = 1024 #seq = 4096 #seq = 16384 #seq = 65536

Online

DN07?

This

(semi)
12.61
±.02

304.62
±.03

15.07
±.02

254.86
±.03

17.53
±.02

219.16
±.04

19.99
±.02

192.09
±.04

This

(mal)
13.43
±.02

285.93
±.2

15.89
±.02

241.66
±.1

18.35
±.02

209.24
±.06

20.86
±.02

183.88
±.07

End-to-End

DN07?

This

(semi)
14.79
±.02

17.35
±.03

20.24
±.05

24.62
±.1

This

(mal)
26.67
±.02

29.27
±.02

32.30
±.03

37.33
±.05

Communication in MB and time in seconds.
a
TP denotes throughput bmonetary cost in USD

Table 7.10: Benchmarks for biometric matching.

most t parties in P, denoted by C. Let Ssh
, Smal denote the corresponding ideal world semi-

honest, malicious adversary, respectively. Security proofs are given in the {FSetup,FTrGen}-hybrid
(and {FBroadcast,F

M

TrGen
,FMulPre,FDotPPre}-hybrid for malicious setting) model. For modularity,

we provide simulation steps for each protocol separately.

7.8.1 Semi-honest security

The following is the strategy for simulating the computation of function f (represented by a

circuit ckt). The simulator Ssh knows the input and output of the adversary Ash, and sets

the inputs of the honest parties to be 0. Ssh emulates FSetup and gives the respective keys to

the Ash. Knowing all the inputs and randomness, Ssh can compute all the intermediate values

for each building block in the clear. Thus, Ssh proceeds to simulate each building block in

topological order using the aforementioned values (input and output of Ash, randomness and

intermediate values). We provide the simulation steps for each of the sub-protocols separately

for modularity. When carried out in the respective order, these steps result in the simulation

steps for the entire computation. To distinguish the simulators for various protocols, we use

the corresponding protocol name as the subscript of Ssh.
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Sharing and Reconstruction Simulation for input sharing (Fig. 7.9) and reconstruction

appears in Fig. 7.36, Fig. 7.37, respectively.

Preprocessing:

– Emulate FSetup and give the respective shared keys to Ash.

– Sample shares of ↵a commonly held with Ash using the respective PRF keys while other values

are sampled randomly.

Online:

– If Ps 2 C, receive �a from Ash on behalf of honest parties in E. Else, set a = 0, �a = ↵a and

sends �a to Ash on behalf of Ps if there exists a corrupt party in E.

Simulator Ssh
Sh

Figure 7.36: Semi-honest: Simulation for the input sharing protocol ⇧Sh by Ps.

– If Pking 2 C, use the output a, and �a and Eh↵aij held by corrupt Pj 2 C \ E to compute the

shares Eh↵aii of each honest Pi 2 E such that �a � a =
P

Pi2E\C
Eh↵aii +

P
Pj2C\E

Eh↵aij . Send

the shares of the honest parties in E to Ash.

– If Pking is honest, send output a to Ash on behalf of Pking.

Simulator Ssh
Rec

Figure 7.37: Semi-honest: Simulation for the reconstruction protocol towards all the parties.

Multiplication Simulation steps for multiplication (Fig. 7.11) are provided in Fig. 7.38.

Preprocessing:

– If isTr = 0: Sample [·]-shares of r commonly held with Ash using the respective shared keys

while other values are sampled randomly.

– Else if isTr = 1: Emulate FTrGen to generate JrK, JrdK.
– On behalf of every honest Pi 2 D, send a random value for h⇤ab � rii to Ash if Pking 2 C.

Online:

– If Pking 2 C, send random value for Eh⇣ii to Ash on behalf of the honest Pi 2 E.

– If Pking /2 C, send a random z� r to Ash, if there exists a corrupt party in E.

Simulator Ssh
mult

Figure 7.38: Semi-honest: Simulation for the multiplication protocol ⇧Mul.
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Observe that the adversary’s view in the simulation is indistinguishable from its view in the

real world since it only receives random value in each step of the protocol.

Other building blocks Simulation steps for the remaining building blocks can be obtained

analogously by simulating the steps for the respective underlying protocols in their order of

invocations.

Complete MPC protocol Simulation for the complete semi-honest MPC protocol ⇧sh

MPC

(Fig. 7.12) appears in Fig. 7.39.

Preprocessing:

– Execute the preprocessing steps of simulators Ssh
Sh
, Ssh

mult
in the sequence of the gates in the

circuit. For each addition gate with input wires a and b and output wire c, compute [↵c]T =

[↵a]T + [↵b]T for each T such that some honest Pi 2 T.

Online:

– Execute the online steps of simulators Ssh
Sh
. For each input wire xs for which Ps 2 C provides

the input, using the [↵xs ] shares of honest parties chosen during preprocessing and �xs received

from Ps in the online, compute the value xs.

– Invoke Ff with (Input, xs) for each Ps 2 C. Receive from Ff the output of each Ps 2 C.

– Execute the online steps of Ssh
mult

for all multiplication gates excluding those in the last layer.

– Execute the steps of Ssh
Rec

for each output wire in the circuit.

Simulator Ssh
MPC

Figure 7.39: Semi-honest: Simulation for the complete MPC protocol ⇧sh

MPC
.

Theorem 7.1 Protocol ⇧sh

MPC
(Fig. 7.12) realises Ff (Fig. 7.8) with computational security

against a semi-honest adversary Ash in the {FSetup,FTrGen}-hybrid model.

Proof: We prove that the adversary’s view in the simulation is indistinguishable from its view

in the real world via a sequence of hybrids.

Hybrid0: Execution of protocol ⇧sh

MPC
in the real world.

Hybrid1: In this hybrid, the execution of ⇧Sh is replaced by the simulation of Ssh

Sh
. The two

hybrids di↵er only in the case of inputs xs of each honest Ps. Note that for the input of an

honest Ps, the adversary’s view consists of (�xs , [↵xs ]i) for each Pi 2 C. Of these, [↵xs ]i consists of

random values selected using the shared key setup among parties and hence is indistinguishable

in both the hybrids. Moreover, �xs remains a random value from the adversary’s view in both
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the hybrids due to the share [↵xs ]T where T ✓ P \ C unknown to the adversary. Hence the

distributions of Hybrid0 and Hybrid1 are indistinguishable.

Hybrid2: In this hybrid, the execution of ⇧Mul is replaced with the simulation of Ssh

mult
for all

the multiplication gates. The adversary’s view here may consist of the reconstructed value z� r

if some corrupt party belongs to E. However, note that it remains a random value from the

adversary’s view in both the hybrids due to the randomly chosen r. Moreover, r is unknown to

the adversary due to the common share held by n� t honest parties. Hence, the distributions

of Hybrid1 and Hybrid2 are indistinguishable.

Hybrid3: In this hybrid, the reconstruction protocol is replaced with the simulation of Ssh

Rec
.

Note that this is exactly the execution in the ideal world. The transcript of a corrupt party for

an output wire a consists of shares of [↵a] and a. As described in Ssh

Rec
, the simulator obtains

the output wire value a from the functionality and adjusts the shares of ↵a held only by the

honest parties to ensure a sharing that is consistent with the output a. Since ↵a is random and

unknown to the adversary, �a is also random. Hence, the adversary’s view is indistinguishable

in both these executions.

Thus we conclude that the view of the adversary is indistinguishable in Hybrid0, which is the

execution of the protocol in the real world and Hybrid3 corresponding to the execution in the

ideal world. 2

7.8.2 Malicious security

The following is the strategy for simulating the computation of function f (represented by

a circuit ckt). The simulator emulates FSetup and gives the respective keys to the malicious

adversary, Amal. This is followed by the input sharing phase in which Smal extracts the input

of Amal, using the known keys, and sets the inputs of the honest parties to be 0. Knowing all

the inputs, Smal can compute all the intermediate values for each building block in the clear.

Smal proceeds to simulate each building block in topological order using the aforementioned

values (inputs of Amal, intermediate values). Finally, depending on whether Amal misbehaved,

which Smal can detect using the aforementioned information, Smal invokes Fmal

n-PC to obtain the

function output and forwards it to Amal. As before, we provide the simulation steps for each

of the sub-protocols separately for modularity. When carried out in the respective order, these

steps result in the simulation steps for the entire computation. To distinguish the simulators

for various protocols, the corresponding protocol name appears as the subscript of Smal.

Sharing Simulation for input sharing appears in Fig. 7.40.
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Preprocessing:

– Emulate FSetup and give the respective shared keys to Amal.

– Sample shares of ↵a commonly held with Amal using the respective PRF keys while other

values are sampled randomly.

Online:

– For Ps 2 C, receive �a from Amal on behalf of honest parties in E, and obtain a = �a � ↵a

(since Smal knows all the PRF keys, it knows ↵a). Invoke Fmal

n-PC with (Input, a) on behalf of Amal.

– On behalf of the honest parties, set its input a = 0, �a = ↵a and send �a to Amal if there

exists a corrupt party in E.

Verification: Send H(�a) to Amal on behalf of the honest parties. If inconsistent �as were received

with respect to a corrupt party, invoke Fmal

n-PC with (Signal, abort).

Simulator Smal

Sh

Figure 7.40: Malicious: Simulation for the input sharing protocol ⇧M

Sh
by Ps.

Reconstruction Simulation for reconstruction (with fairness) appears in Fig. 7.41.

Preprocessing:

– Smal generates commitments on [↵z]Tj , for j 2 {1, . . . , q}, and sends to Amal on behalf of

honest parties.

– If Amal sends inconsistent commitment, send (Signal, abort) to Fmal

n-PC.

Online:

– Smal emulates FBroadcast as a sender to broadcast an alive bit on behalf of each honest party

that has not aborted the computation so far. Smal emulates FBroadcast as a receiver to receive the

alive bits broadcast by Amal on behalf of corrupt parties.

– If there exists some corrupt party for which Amal does not broadcast an alive bit, then Smal

invokes Fmal

n-PC with (Signal, abort). Else, use output z obtained from Fmal

n-PC, to adjust the masked

value �x as �x = z + ↵x with respect to the output multiplication gatea. Send opening of the

commitments with respect to the shares of the output on behalf of the honest parties to Amal.

aWithout loss of generality, here the output gate is assumed to be multiplication gate. If not, the mask
corresponding to the last multiplication gate, whose output goes as inputs to the output gate, should be
adjusted to ensure that the final output matches z.

Simulator Smal

fairRec

Figure 7.41: Malicious: Simulation for the fair reconstruction protocol ⇧fair

Rec
towards all the parties.
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Multiplication Simulation steps for multiplication (Fig. 7.23) are provided in Fig. 7.42.

Preprocessing:

– If isTr = 0: Sample [·]-shares of r commonly held with Amal using the respective shared keys

while other values are sampled randomly.

– Else if isTr = 1: Emulate FM

TrGen
to generate JrK, JrdK.

– Emulate FMulPre to generate [·]-shares of ⇤ab.

Online:

– If Pking 2 C, send random value for Eh⇣ii to Amal on behalf of the honest Pi 2 E.

– If Pking /2 C, send a random z� r to Amal.

Verification:

– Send H(z1�r1|| . . . ||zm�rm) with respect to m multiplications, to Amal on behalf of the honest

parties. If the hash values received from Amal are inconsistent, invoke Fmal

n-PC with (Signal, abort).

– If Amal has sent incorrect z � r for any multiplication (Smal can detect this since it knows all

inputs and randomness that should be used by Amal), generate random shares for ⌦ and simulate

reconstruction steps of Smal

Rec
. Invoke Fmal

n-PC with (Signal, abort).

– Else, if Amal has behaved honestly throughout, simulate reconstruction of ⌦ = 0 using steps

from Smal

Rec
. Invoke Fmal

n-PC with (Signal, abort).

Simulator Smal

mult

Figure 7.42: Malicious: Simulation for the multiplication protocol ⇧M

mult
.

Observe that since Amal sees random shares in both the real-world protocol and in the

simulation, the indistinguishability of the simulation follows.

Other building blocks Simulations for the remaining building blocks can be obtained anal-

ogously using the steps for the underlying protocols.

Complete MPC protocol Simulation for the complete malicious MPC protocol⇧mal

MPC
(Fig. 7.24)

appears in Fig. 7.43.
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Preprocessing:

– Execute the preprocessing steps of simulators Smal

Sh
, Smal

mult
and Smal

fairRec
in the sequence of the

gates in the circuit. For each addition gate with input wires a and b and output wire c, compute

[↵c]T = [↵a]T + [↵b]T for each T such that some honest Pi 2 T. If an inconsistency is identified in

any of the steps, then invoke Fmal

n-PC with (Signal, abort) and terminate.

Online:

– Execute the online steps of simulators Smal

Sh
. For each input wire xs for which Ps 2 C provides

the input, using the [↵xs ] shares of honest parties chosen during preprocessing and �xs received

from Ps in the online, compute the value xs.

– Execute the online and verification steps of Smal

mult
for all multiplication gates excluding those

in the last layer.

– If an inconsistency is identified in any of the steps, then invoke Fmal

n-PC with (Signal, abort)

and terminate. Otherwise, invoke Fmal

n-PC with (Input, xs) for each Ps 2 C. Receive from Fmal

n-PC the

output of each Ps 2 C.

– Execute the steps of Smal

fairRec
for each output wire in the circuit.

Simulator Smal

MPC

Figure 7.43: Malicious: Simulation for the complete MPC protocol ⇧mal

MPC
.

Theorem 7.2 Protocol ⇧mal

MPC
(Fig. 7.24) realises Fmal

n-PC (Fig. 7.18) with computational security

against a malicious adversary Amal in the {FBroadcast,FSetup,FMulPre,F
M

TrGen
}-hybrid model.

Proof: We prove that the adversary’s view in the simulation is indistinguishable from its view

in the real world via a sequence of hybrids.

Hybrid0: Execution of protocol ⇧mal

MPC
in the real world.

Hybrid1: In this hybrid, the execution of ⇧M

Sh
is replaced by the simulation of Smal

Sh
. Similar

to the semi-honest protocol, the two hybrids di↵er only in the case of inputs xs of each honest

Ps. Note that for the input of an honest Ps, the adversary’s view consists of (�xs , [↵xs ]i) for

each Pi 2 C. Of these, [↵xs ]i consists of random values selected using the shared key setup

among parties and hence is indistinguishable in both the hybrids. Moreover, �xs remains a

random value from the adversary’s view in both the hybrids due to the share [↵xs ]T where

T ✓ P \ C unknown to the adversary. Hence the distributions of Hybrid0 and Hybrid1 are

indistinguishable.

Hybrid2: In this hybrid, the execution of ⇧M

mult
is replaced with the simulation of Smal

mult
for all

the multiplication gates. The adversary’s view here may consist of the reconstructed value z�r.

For multiplication gates in the last layer of the circuit, the simulation di↵ers from the gates in
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the other layers only for the reconstructed value z � r. Specifically, the simulator receives the

output wire value of the multiplication gate by functionality Ff and adjusts z� r (by adjusting

shares held by honest parties) accordingly. However, note that it remains a random value from

the adversary’s view in both the hybrids due to the randomly chosen r. Moreover, r is unknown

to the adversary due to the common share held by n � t honest parties in T ✓ P \ C. Hence,

the distributions of Hybrid1 and Hybrid2 are indistinguishable.

Hybrid3: In this hybrid, the fair reconstruction protocol ⇧fair

Rec
is replaced with the simulation

of Smal

fairRec
. Note that this is exactly the execution in the ideal world. The transcript of a corrupt

party for an output wire a consists of shares of [↵a] and a. Assume without loss of generality

that the output wire is the output of a multiplication gate. As described earlier, the simulator

obtains the output wire value a from the functionality and adjusts the shares of �a held only

by the honest parties to ensure a sharing that is consistent with the output a. Since ↵a is

random and unknown to the adversary, �a is also random. Therefore, the adversary’s view is

indistinguishable in both these executions.

Thus we conclude that the view of the adversary is indistinguishable in Hybrid0, which is the

execution of the protocol in the real world and Hybrid3 corresponding to the execution in the

ideal world. 2
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Chapter 8

Conclusion and Open Problems

The thesis identifies various real-world applications where privacy is of utmost importance and

designs privacy-preserving solutions for the same. Elaborately, the applications considered

were in the realm of secure graph computation—secure local clustering and secure graph neural

network—, secure computation for financial applications such as dark pools, and secure alle-

gation escrow systems. To design secure and e�cient solutions for these, the desirable MPC

setting was identified with a focus on a small number of parties. In the process of designing se-

cure solutions for graph-based computations, the secure frameworks of SWIFT [136] and Tetrad

[138] were enhanced by incorporating missing primitives such as division, prefix OR, shu✏e,

etc., which makes these a more comprehensive framework. Next, to address the drawbacks

present in traditional security definition, the work of [5] proposed the friends-and-foes (FaF)

security model. The thesis identified the need to depart from this traditional security notion,

which may not be desirable for certain applications that deal with highly sensitive data, and

designed concretely e�cient (1, 1)-FaF secure protocols in the 5-party setting. Specifically, the

applications considered were dark pools and an allegation escrow system. Finally, given that dif-

ferent applications may demand operating with a varying number of parties, a generalized MPC

protocol was provided that allows operating with an arbitrary (constant) number of parties (n)

and can tolerate up to t < n/2 corruptions. A wide range of building blocks in this multiparty

setting were also designed that facilitate the secure realization of various applications, including

but not limited to genome sequence matching, biometric matching, and even deep neural net-

works. All the designed solutions were benchmarked using Google Cloud instances, and their

performance was analyzed using various metrics to showcase their practicality.

It is also worthwhile to note that the considered model of small-party honest majority for

the various applications is indeed relevant in practice. This is because the small-party honest

majority setting is gaining traction lately due to the simplicity and e�ciency of the resulting
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protocols. Elaborately, honest majority protocols are more e�cient than their dishonest ma-

jority counterparts since the former allows the use of e�cient information-theoretic tools as

opposed to more expensive cryptographic methods in the latter. In general, MPC protocols

are known to have an overhead in comparison to the cleartext solutions. Hence, it is of utmost

importance to design protocols that have good e�ciency. Another reason why the small-party

honest majority setting is practically relevant is because of the following. When working in the

secure outsourced computation (SOC) setting, powerful servers are hired to enact the role of

parties in the MPC protocol, and these servers belong to reputed organizations. Any cheating

or malicious behaviour by these servers will put the reputation of these organizations at stake.

Hence, these servers do not have an incentive to cheat or collude with others. Assuming an

honest majority among a small set of parties (3 or 4) translates to the fact that these parties do

not collude among themselves. This non-collusion assumption aligns seamlessly with the SOC

scenario and, hence, is a reasonable assumption to make in practice.

For the aforementioned reasons, several real-world deployments of MPC have indeed consid-

ered the 3-party honest-majority setting, thereby substantiating the practical usability of the

considered model. We briefly describe a few of these below.

1. The Danish sugar beet auction [28] was carried out in 3-party honest-majority setting

between representatives from Danisco (sugar beet processor), Danish sugar beet grower’s

association and the research group responsible for implementing the auction computation.

2. Prime Match [196] is a privacy-preserving inventory matching solution that is in production

at J.P Morgan, a large US bank, that includes a 3-party honest majority solution to

facilitate trading of goods between two clients where the bank acts as third party.

3. Another example is that of interoperable private attribution (IPA) [42], which is a privacy-

preserving framework that is proposed by Meta and Mozilla for attribution measurement

in digital advertising and is being implemented with a 3-party honest majority setting.

In this way, for the applications considered in the thesis, such as secure local clustering and

anonymous broadcast, to name a few, we believe that our choice of a 3-party honest majority

setting will facilitate attaining e�cient protocols in practice. Further, we would like to note

that while 3-party solutions are being adopted in practice, the 4-party honest majority has also

been shown to be more e�cient than its 3-party counterpart. We believe that the adoption of

4-party solutions in practice is imminent. Hence, for compute-intensive applications such as

GNNs, we believe the 4-party honest majority setting is justified. Even for applications such

as dark pools, the Security Exchange Commission (SEC), which is responsible for ensuring

the integrity of the dark pool, can be modelled as the semi-honest party, while the dark pool
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operator can be modelled as the malicious one. Given this, the (1, 1)-FaF solution fits the bill,

allowing us to achieve the desired security as well as e�ciency. Finally, note that the choice of

the number of parties is dependent on the application scenario. Hence, we also design in the

thesis generic MPC solutions that cater to an arbitrary number of parties.

Open problems While improving the e�ciency of the designed solutions is a direct follow-up

question for further exploration, other questions that are left open are as follows.

1. Applications. The 3PC and 4PC frameworks of SWIFT [136] and Tetrad [138] were en-

hanced to include missing primitives, which makes it a more comprehensive framework.

Although these frameworks were designed keeping PPML applications in mind, the addi-

tion of shu✏e opens up new avenues for realizing various other applications. Extending

these enhanced frameworks to realize other applications e�ciently, such as secure auc-

tions, private heavy hitters, and privacy-preserving contextual bandits, to name a few,

is an interesting direction to pursue. This may require designing new primitives such

as secure sort, compaction, etc. Moreover, the thesis provides e�cient realizations for a

secure shu✏e protocol in the 3PC and 4PC settings. Given that shu✏e is an important

primitive that finds use in a plethora of applications, it will be interesting to design secure

shu✏e protocols in the FaF-model as well as the general multiparty settings considered

in the thesis. This will open up a wide avenue of shu✏e-based applications that can be

realized securely.

2. Security notion. All the protocols designed in the thesis for the 3PC, 4PC, and 5PC set-

tings allow attaining the strongest security of guaranteed output delivery in the presence

of a malicious adversary. However, the generalized protocols for an arbitrary number

of parties can tolerate up to t < n/2 corruptions in two di↵erent corruption models—

semi-honest and malicious. In the malicious model, these protocols provide security with

fairness. Uplifting this security to guaranteed output delivery without hampering the

protocol e�ciency is left as an interesting open question.

3. Adversarial setting. The protocols in the thesis were designed primarily in the honest-

majority setting. It is an interesting question to explore the dishonest majority setting

as well, which allows tolerating up to n � 1 corruptions in the n-party setting. Further,

as opposed to the synchronous network model with static corruptions considered in the

thesis, designing protocols in the asynchronous network model and against a stronger

adaptive adversary is left as an open question.
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