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Abstract

Zero-Knowledge Proofs (ZKPs) are fundamental cryptographic tools enabling a prover to con-
vince a verifier about the knowledge of a secret witness related to a public statement, without
revealing any information beyond the validity of the claim. zk-SNARKS, acronym for zero-
knowledge Succinct Non-interactive ARguments of Knowledge, offer efficient ZKPs with suc-
cinct communication, prover, and verifier complexities. Additionally, contrary to traditional
ZKPs that tackles privacy concerns, there exists applications where privacy is not a require-
ment and efficiency is the primary concern - for instance to enable powerful (and potentially
untrusted) server(s) to perform computationally expensive tasks and provide efficiently verifi-
able proofs of correct computation of the specified function. Furthermore, there are applications
where proof generation being distributed enhances trust and security.

This thesis explores various efficiency dimensions in the context of zero-knowledge proofs.
First, we study compressed sigma protocols, enhancing a core ZKP building block of sigma
protocols, to achieve logarithmic verification complexity while maintaining logarithmic proof
size. Second, we explore applications where privacy is a requirement in an event of distribution
of proof generation. In particular, we elevate the building blocks for ZKPs for scenarios where
the prover wishes to distribute the proof generation to a set of workers by secret-sharing its
private witness; and explore its significance on the application of providing efficient framework
for authentication of inputs used inside secure Multi-Party Computation (MPC). Finally, we
investigate applications like scalable blockchain rollups, where the primary goal is obtaining
efficiently verifiable proofs. We present a batching-efficient Random Access Memory (RAM)
framework that proves the correctness of m updates on a RAM of size N (where m is significantly
smaller than N), where we improve efficiency of proof generation while further improving
proof size and preserving optimal verification complexity. This is achieved by realising efficient
updatable lookup arguments, that helps us perform m lookups on a N-size table, even after

the table has been updated at a few positions.
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Chapter 1
Introduction

Zero-Knowledge Proofs (ZKP) enable a party, known as the prover, to convince another party,
known as the verifier, of the validity of a statement without revealing anything else about the
witness beyond the validity of the statement. Introduced by Goldwasser, Micali and Rackoff in
[71], ZKPs are a powerful cryptographic tool that are used as fundamental building blocks in
various real-world applications, e.g. facilitating decentralized anonymous payments like Zero-
cash by Ben Sasson et al. [20]. The efficiency of a ZKP is determined by various parameters,
such as communication complexity, verification complexity, prover complexity, and round com-

plexity.

1.1 Zero-Knowledge Proofs

Zero-knowledge proofs typically refer to an interactive proof that satisfies three fundamental
properties: completeness, soundness and zero-knowledge, and we will expand on these properties
next. An interactive proof is said to satisfy completeness, if an honest prover always succeeds
in convincing an honest verifier of a valid claim. Similarly, interactive proof is said to satisfy
soundness, if a cheating prover always fails to convince an honest verifier of an invalid claim
with high probability. Interactive arguments are proofs that provide soundness guarantees
only against cheating prover strategies that run in polynomial time. Note that we use the
term arguments and proofs interchangeably throughout the thesis since we only work with
algorithms that run in polynomial time. In an interactive proof, the prover does not wish
to send the witness to the verifier, either due to privacy concerns or due to communication
constraints. To facilitate privacy, an interactive proof is said to satisfy zero-knowledge property,
if a malicious verifier learns nothing beyond the validity of the statement. Beyond traditional

guarantee of ensuring that a cheating prover fails to convince the verifier of an invalid claim, it



is sometimes imperative for the prover to convince the verifier that it ‘knows’ the witness for
a public statement — for instance the prover may want to prove that its attributes are certified
by a credential issuer by proving it knows a signature (eg. PS signature [97]) on its attributes.
For such scenarios, an interactive proof is said to satisfy knowledge-soundness if the prover
can convince the verifier that it ‘knows’ the secret witness, and the interactive proof is known
as proof of knowledge. Intuitively, this property is ensured by proving the existence of a PPT
algorithm that can ‘extract’ the witness from the prover, in the event that the prover succeeds
in convincing the verifier with high probability. We call an interactive proof public-coin if the

verifier’s randomness is uniformly sampled and sent to the prover during the proof.

NIZKs. So far we have discussed interactive proofs, but there are applications of ZKPs where
we require one-shot proofs that can be sent across to the verifier — for instance, in blockchain
where the proof of valid state update needs to be ‘posted’ in a public forum; or electronic voting
where the proof of valid ballot submission is required per vote. The class of ZKPs that offers
non-interactivity is known as non-interactive zero-knowledge proofs (NIZKs). From here on, we

also refer to communication complexity as the proof size.

Succinct Arguments. ZKPs are often deployed in applications like blockchain — to ensure
that state updates are consistent with the public ledger and perform verifiable off-chain com-
putations, and in verifiable credentials — to enable selective disclosure of personal attributes.
In all such real-world applications, the prover is computationally bounded. If the soundness
guarantee holds against a PPT prover, i.e. if we can ensure that a PPT prover cannot convince
a verifier of a false claim, then such protocols are known as arguments. Considering practical
applications of ZKPs, for instance, in blockchain applications where a prover submits crypto-
graphic evidence of a valid state transition, or in electronic voting systems where proof of a
legitimate ballot submission is required, the generated proofs being very short is a critical fac-
tor for efficiency. To facilitate efficient communication for such use cases, an interactive proof
is said to have a succinct proof, if the proof size is logarithmic in the size of the witness or
constant. Similarly, to facilitate efficient verification, we define interactive proofs with succinct

verification complexity as proofs that require logarithmic/constant verifier computation.

zkSNARKSs. Building upon the fundamental concepts of ZKPs and the efficiency gains of-
fered by succinct arguments, we now discuss zkSNARKs — a class of ZKPs that inherits and
amplifies such attractive efficiency benefits. zkSNARKs stands for zero-knowledge Succinct
Non-interactive ARguments of Knowledge, and we expand on each property below. Here zk
in zkSNARKSs stands for the classical zero-knowledge property that ensures that the verifier

would not learn anything ‘extra’ from the proofs. Succinct in zkSNARKSs stands for succinct



proofs with succinct verification, which ensures that the proof is significantly smaller in size
than the computation being verified and that the verification is much faster than re-executing
the computation. Non-interactive in zkSNARKSs stands for one-shot proofs that can be sent
across to the verifier in a single round, which is facilitated by a one-time setup (preprocessing)
phase. This is particularly required in applications like blockchain, where the proof of correct
state updates needs to be posted in the public ledger for public verifiability (i.e. anyone in-
terested should be able to verify), and cannot be reliant on interaction with every potential
verifier. Recall that arguments are proofs with computational soundness. Hence, A Rguments of
Knowledge in zkSNARKSs refers to the proof of knowledge protocols with knowledge-soundness
property against a computationally bounded prover. On a related note, if the proof only sat-
isfies the traditional soundness as opposed to the stronger knowledge-soundness property, it is

known as a zkSNARG that refers to zero-knowledge Succinct Non-interactive ARGument.

1.2 Summary of the contributions of this Thesis

As part of this thesis, we primarily explore several well-studied theoretical primitives that
are often used as foundational building blocks. We then examine the applications of some of
these primitives in practical real-world applications. The primary objective of this thesis is to
analyze these theoretical primitives through the lens of various dimensions of efficiency known
in the context of ZKP constructions — specifically proof size, verification complexity, and prover

complexity.

1.2.1 Swuccinct Verification

Kilian provided the first construction of succinct arguments based on probabilistically checkable
proofs (PCP) in [80], where the proof size is logarithmic in the size of the statement. Micali made
this non-interactive in the random oracle model (ROM) in [90] — where we assume existence of a
common random function RO. Traditionally, non-interactivity in the standard model is achieved
by assuming a Common Reference String (CRS) generated during a one-time setup phase.
Depending on how the CRS is generated, the setup is known as trusted (where the randomness
used to generate the CRS is a ‘toxic waste’ and is required to be discarded for the security to
hold), transparent (where the CRS consists of public randomness) or updatable (where the CRS
can be updated by anyone, and the security guarantees only assume the existence of at least one
honest update). If the CRS is structured, it is known as a structured reference string (SRS).
There has been a series of works on constructing zkSNARKs [73, 84, 25, 69, 93, 85, 21, 74],
which have very short proofs with efficient verification complexity.

Sigma protocols are well-understood class of zero-knowledge proof of knowledge (ZKPoK)



that is also public-coin (where the verifier’s randomness is sent to the prover). A public-coin
interactive proof can be made non-interactive in the Random Oracle Model using the Fiat-
Shamir transformation [59]. Earlier work of Bulletproofs [36] uses a split-and-fold technique to
achieve logarithmic communication complexity, which is extended by Attema and Cramer [8]
to the sigma protocol framework for the discrete log relation (which proves that a party knows
x for public group elements P, g such that P = g¢*). This split-and-fold technique involves
splitting the witness in two halves and taking a random linear combination to construct a new
smaller witness for a similar relation, and it integrates well with scenarios where hiding the
smaller witness is not a requirement. To use this technique to obtain a ZKPoK that hides
the witness, we first need to run a ‘pivot’ ZKPoK protocol (in our case, a sigma protocol) as
a starting point, which ensures zero-knowledge. The split-and-fold technique is then used to
compress the final message of the pivot sigma protocol, which was initially being sent in clear
(leading to linear communication complexity). Using this technique of applying the split-and-
fold compression mechanism on a pivot sigma-protocol has led to a series of works on compressed
sigma protocols, such as for lattices [10], bilinear group arithmetic circuit [11], and k-out-of-n
proofs [9]. When we refer to compressed sigma protocol (CSP), we would consider CSP for
discrete log relation from here on, unless specified otherwise. CSP for discrete log relation
extends the well-understood and deployed framework for sigma protocols to have logarithmic

proof size in the transparent setup.

Our Contributions. In Chapter 3, we lift Attema and Cramer’s CSP [8] to have logarithmic
verification in addition to logarithmic proof size, by increasing the degree of trust in the setup
phase and using structured reference string (SRS). This is done by relying on an updatable
setup as opposed to the earlier transparent setup. Note that translating to this setup is not
prohibitive, since this setup only relies on existence of at least one honest update to the SRS
during the setup phase.

On this front, we first construct an inner product argument with logarithmic proof size and
logarithmic verification complexity by relying on an updatable SRS and discrete log assumption
in bilinear groups. Specifically, this lets the prover convince the verifier that (a,b) = y for
committed vectors a, b and public value .

Using our above construction, we provide a ZKPoK for arithmetic circuit satisfiability with
logarithmic proof size and logarithmic verification complexity — that has concretely better
proof size, prover or verifier complexity than the state-of-the-art constructions under similar
assumptions and setup. Note that our aforementioned succinct inner product argument can
help us tackle addition gates in the arithmetic circuit. Since arithmetic circuits also consist

of multiplication gates, we need additional primitives with succinct verification. Both of these
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constructions are public-coin and can be made non-interactive in the ROM using the Fiat-
Shamir transformation [59].

Next, we use our techniques discussed above to provide construction for an inner-product-
like relation in groups, against a designated verifier. Specifically, this allows the prover to ‘open’
a group homomorphism f on a particular vector — i.e. prover can convince the verifier that
f(x) = y for committed homomorphism f, committed vector @ of field elements, and public
group element y.

Our technique for achieving logarithmic verification in the compression framework is of

independent interest.

1.2.2 Distributed Proofs

We motivate our next question with the following scenario — a party wishes to know the industry
average salary for its role, for which it uses a job portal (eg. glassdoor) that computes the same
in a privacy-preserving manner. This privacy preserving computation can be done using the
powerful and well-explored tool of secure multiparty computation (MPC). However, if a party
participating in the computation decides to participate with a monthly salary of 100 crore
rupees, then the computed average would not be close to the true reflection of the industry
average. This kind of data-poisoning attacks can be avoided by ensuring that only authentic
inputs are being used inside the MPC execution.

MPC allows n parties to compute a joint function on their private inputs, while ensuring
that (1) the privacy of their inputs is maintained and (2) the correctness of the computed output
is guaranteed. In such a framework, if each party wishes to prove to every other party that its
input is authentic leveraging well-known ZKP tools, the traditional ZKP would require each
pair of parties to run a proof of authentication among themselves. This would lead to a total of
O(n?) proofs — which would incur significant computation and communication overhead, while
also requiring additional checks to ensure the same input — that is authenticated with proof
— is being used inside the MPC execution, rendering such a direct application impractical.
With such applications in mind, we propose usage of distributed ZKPs that considers multiple
provers.

Different notions of distributed ZKPs have appeared in recent works [95, 16, 102, 91, 51]
that explores unconventional usage of ZKPs. Pedersen’s distributed ZKP [95] aims to ensure
that a signature can be verified when the signature is publicly available and the secret key is
held distributively by multiple provers. Another extensive line of work [102, 91, 51] focuses on
distributed proof generation, where multiple provers interact with each other to jointly generate

a non-interactive publicly verifiable proof, when the witness is secret-shared across the provers.



Our Contributions. In Chapter 4, we put forward a notion of distributed proof of knowledge
(DPoK). In DPoK, we separate the notion of classical prover that holds the complete witness,
and call these parties workers — which holds the secret-shares of the witness and interacts with
the verifier on behalf of the prover to convince the verifier of the claim. In particular, prover
holds the witness w and secret-shares the witness by sending the ¥ share to the i"* worker
W;, and all the workers then interact with the verifier over broadcast channel to convince the
verifier of the claim. Our setting ensures that workers require no private communication and
the verifier is public-coin and only needs to share its random challenges over broadcast, making
the proof publicly verifiable.

Our DPoK ensures that if the prover and the workers are honest, the proof succeeds and if
any of them is corrupt, the proof fails. This is analogous to the traditional completeness prop-
erty in classical ZKPs. Additionally, we have zero-knowledge, ensuring that the verifier learns
nothing beyond the validity of the claim, Finally, we also have knowledge-soundness where we
establish that the prover knows a valid witness if the proof succeeds with high probability. We
also provide a variant of DPoK that has robust completeness, that can ensure an honest prover
succeeds even if some of the workers participate with dishonest shares. We call such variants
Robust Complete DPoKs or Robust DPoKs. Next we provide constructions of these DPoKs
for discrete log relation, using which we also provide DPoKs for algebraic signatures schemes,
namely BBS+ [29, 41] and PS [97]. These DPoKs have logarithmic round complexity, and
hence we also provide constructions of round-efficient versions of these DPoKs (with constant

rounds) that are secure in the Random Oracle Model.

Application of DPoKs in input authentication in MPC. Using our DPoKs for BBS+ (or PS)
signature schemes, we provide a compiler that transforms any honest majority secret-sharing
based MPC to an honest majority secret-sharing based MPC that supports input authentica-
tion. The output MPC retains the security guarantees of the input MPC, eg. identifiable abort
(id-abort) or guaranteed output delivery (if default input is allowed). The input authentication
phase of our compiler can be instantiated with (i) our regular DPoK whose n-parallel executions
can be efficient batched into a single instance — providing enhanced efficiency and security with
abort; or (ii) our robust complete DPoK providing enhanced security against dishonest usage
of share, but against lower corruption threshold. Our robust complete DPoK preserves id-abort
guarantees of the underlying MPC, which was not achieved by any of the prior works irrespec-
tive of the corruption threshold. Our compiler avoids protocol-specific techniques, unlike prior
works for input authentication in MPC [27, 5], and provides a generic compiler with improved
computational overhead.

The prior works of [27, 5] focus on generating authenticated shares and therefore would
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require additional checks to ensure the same authenticated shares are used in a later MPC
execution. On the contrary, our work focuses on authenticating existing shares held by the

parties (workers).

1.2.3 Lookup Arguments

To motivate the next part of the thesis, let us consider a simple real-world scenario. A cryp-
tocurrency blockchain maintains a public digest (commitment) of the account ledger, and one
of the customers wishes to provide a proof of coin ownership with respect to the public digest
to avail an external service, by proving that it holds two accounts — the i** and j** accounts in
the ledger.

Lookup arguments allow us to prove that a large vector T = (T}, ..., Tx) contains the small
vector S = (51, ..., S5,) in the indices specified by the index vector @ = (a4, ..., an,) C [N], i.e.
S; = T,, for all i € [m] where m << N. This version considers the indexed variant of sub-vector
relation, and is a stronger statement than just proving S C T. It is important to note in this
context that we often consider these vectors as tables, and use the terms interchangeably. The
series of works in lookup arguments [98, 111, 56, 43, 110] already achieves constant proof size
and constant verification complexity and the primary goal of these works is to lessen the prover
complexity. These works are in the preprocessing paradigm, where the prover precomputes the
potentially expensive terms in an offline phase, to ensure that less prover computation is re-
quired in the online phase. In particular, state-of-the-art lookup arguments require O(N log V)
preprocessing (dependent on the large table) to ensure the prover effort in the online phase is
independent of V.

Now looking at our earlier example from the perspective of real-world application, it is
evident that the cryptocurrency’s public commitment shall periodically change due to updates
in the underlying account ledger from currency transfer transactions. However, all recent works
in the field of lookup arguments consider a static table — which implies that we can do multiple
lookups on a static table T efficiently, but if even one of the 7; is changed then the precomputed
parameters are no longer useful and cannot be used in the online phase. All preprocessed
parameters need to be recomputed with O(N log N) effort in the event of any updates to the
large table T.

Our Contributions. In Chapter 5, we provide updatable lookup arguments which supports
efficient lookup arguments for tables that have undergone some update after the precomputation
of preprocessed parameters is done. In essence, we remove the strict dependence of the lookup
arguments on the table-specific preprocessing, and enable the prover to provide efficient proof

for S € TV when T’ is within certain Hamming distance of the preprocessed table T.



We also provide construction for committed index lookup arguments that — given the com-
mitment to three vectors T, S, a — allows us to prove that S is equivalent to looking up T at
indices specified by a, i.e. S; = T,, for all 7. We also provide a construction to lift any proof
of sub-vector relation S C T using homomorphic commitment scheme to support committed
index lookup argument.

Next, using our updatable lookup argument as a building block, along with additional prim-
itives, we construct a batching-efficient RAM (Random Access Memory), which can efficiently
prove that a RAM of size N has undergone m updates when m << N. Here, RAM is mod-
eled as a table, and RAM updates refer to READ/WRITE operations. Recent works of [92, 42]
based on RSA accumulators also present efficient constructions for batching-efficient RAM with
constant proof size and constant verification complexity; however, their prover complexity is
linear in N. We use our updatable lookup argument to ensure our batching-efficient RAM
incurs constant proof size and constant verification complexity, while having improved prover
complexity that is sublinear in the size of the RAM. This has application in achieving verifiable
outsourcing of state updates in blockchain, in particular for blockchain rollups that aims to
offload expensive computation off the blockchain while ensuring correctness of the expensive
off-chain computation.

In our above constructions of lookup arguments and batching-efficient RAM, we primarily
focus on succinctness and do not necessarily require privacy, and we believe it to be achievable

through slight modification to our constructions.

1.3 Roadmap of the Thesis

First, we present some preliminary tools required for this thesis in Chapter 2. Additional foun-
dational concepts are integrated into later chapters as they become relevant to the discussion.
In Chapter 3, we present constructions of zero-knowledge proofs of knowledge with succinct
proof size and succinct verification complexity. Then, in Chapter 4, we discuss distributed
proofs of knowledge and present constructions of the same for discrete log relation and some
algebraic signature schemes, and thereafter we see how to use it to ensure input authentication
in secure Multiparty Computation (MPC). Finally, in Chapter 5, we discuss how to perform effi-
cient lookups on tables undergoing continuous updates and its application in providing efficient
proofs of correct update on large RAMs (where the number of updates are small). The results
in this thesis are based on the works in [53], [54], and [55], and some passages are presented

verbatim.



Chapter 2
Preliminaries

In this section, we present some of the required background for Zero-Knowledge Proofs. Further

concepts are deferred to the ’preliminaries’ section of later chapters as per their relevance.

Notations. Let N be the set of all natural numbers. Let (G, o) denote a group G correspond-
ing to the binary operation o. We drop the operation o from the group description when it is
evident from the context. Let (F,+,-) denote a field with respect to the two binary operations
+ (addition) and - (multiplication). For z € X let x <—r X denote uniformly random sampling
of an element x from the set X. Let [n] denote the set {1,...,n}, such that [n] C N.

Let F, denote a finite field of order ¢, also denoted by I when the order is not specified or
is clear from context. Let G be a group of prime order q. We refer to A € N as the security
parameter, and denote by poly(\) and negl(\) any generic (unspecified) polynomial function
and negligible function in A, respectively. A function f: N — N is said to be negligible in A if
for every positive polynomial p, f(A) < 1/p(A) when A is sufficiently large. The output x of a
deterministic algorithm A is denoted by = = A and the output 2’ of a randomized algorithm
A’ is denoted by 2’ < A'.

We denote vectors by boldface letters. For vectors g = (g1,...,9,) € G" and x =
(T1,...,x,) € [y, where G is a group of prime order g, the multi-exponentiation g* is de-
fined by g* = gi"---gi*. Also, for ¢ € G and & = (z1,...,7,) € F, g* is defined by
g*=(g", -, 9™)

Bilinear Group. We assume a bilinear group generator BG on input A outputs parameters
for the protocols, i.e. BG(1*) outputs (¢, F, Gy, G, Gr, e, g1, g2). Here, F = F, is a prime field of
order ¢, G1, Gy and G are groups of order ¢, and e is an efficiently computable non-degenerate
bilinear pairing e : G; X Gy — Gp. g1, 9> are uniformly chosen generators of G; and G,

respectively, and e(gy, go) is the generator for Gr.



2.1 Interactive Proofs

Let R = {(x,w)} be arelation and £ be the corresponding NP language. We consider interactive
proofs for relations, where a prover P convinces the verifier that it knows a witness w such
that for a public statement z, (z,w) € R. For a pair of PPT interactive algorithms P,V
(P(w),V)(x) denotes the output of V' on its interaction with P, where w is P’s private input

and z is a common input.

Proof of Knowledge. An interactive protocol is known as a proof of knowledge (PoK) for
a relation R if it consists of a PPT algorithm Setup(1*) that takes a security parameter \ and
outputs public parameters srs; and a pair of PPT interactive algorithms (P,V). The triple

(Setup, P, V) satisfy the following properties of completeness and knowledge-soundness.

Definition 1 (Completeness) For all A € N, (z,w) € R,
Pr ((P(w), V)(srs,) = 1 : s15 ¢ Setup(1%)) = 1.

Definition 2 (Knowledge Soundness) An interactive protocol (P, V) for a relation R is
knowledge sound with error k if there exists an expected polynomial time extractor Ext such
that for every efficient adversary P, for every x € {0,1}*, whenever P makes V accept with
probability € > k, Extj)(x) outputs w* such that (z,w*) € R with probability at least e for

some polynomial q.

Zero-Knowledge Proof of Knowledge. An interactive protocol is known as a Zero-Knowledge
Proof of Knowledge (ZKPoK) if it is a Proof of Knowledge which satisfies the following zero-
knowledge property.

Definition 3 (Zero-Knowledge) An interactive protocol is said to satisfy zero-knowledge
property if for every polynomial time verifier V, there exists an efficient simulator algorithm
Sim(s) such that for every (v,w) € R, the distribution Sim(x) is identical to View iy, .\ §(2))-
where View<?(mu)’\~7(m)> 15 the distribution of the view of the verifier in the protocol on common

mput x and prover’s witness w.

Honest Verifier Zero-Knowledge. An interactive protocol is said to be Honest Verifier Zero-
Knowledge (HVZK) if there exists an efficient simulator Sim such that for every (z,w) € R, the
distribution Sim(x) is identical to View p(z,w),v(z)), Where View p(, ) v is the distribution of
the view of the verifier in the protocol on common input z and prover’s witness w. Contrary to
the earlier zero-knowledge property, this version assumes that the verifier follows the prescribed

algorithm.
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SNARKSs. A proof of knowledge protocol is also known as an argument of knowledge (AoK)
if the knowledge-soundness property holds against a PPT prover, i.e. if it has computational
knowledge-soundness. An interactive protocol is said to have a succinct proof, if the communi-
cation complexity between the prover and the verifier is bounded by poly()), and is said to have
a succinct verification complexity if the running time of the verifier is bounded by poly(A+|z|).
A succinct argument of knowledge which is also non-interactive is known as a SNARK, which

is an acronym for Succinct Non-Interactive ARgument of Knowledge.

Updatable SRS model. In common reference string (CRS) model, we assume the presence
of a trusted setup phase, where a random string is generated and made available to both the
prover and the verifier. If the CRS is structured, then it is known as a structured reference
string (SRS), and the model is known as an SRS model. An SRS is known as an updatable
universal SRS if it enables parties to update the parameters, while retaining computational
soundness against any probabilistic-polynomial time adversary, as long as at least one honest
update is performed, and such a model is known as an updatable SRS model. [28] introduced
non-interactive zero-knowledge proofs (NIZKs) in the CRS model, and later [75] introduced
updatable SRS with its application to SNARKSs.

Fiat-Shamir and Random Oracle Model. An interactive protocol is public-coin if the
verifier’s messages are uniformly random strings. Public-coin protocols can be transformed into
non-interactive arguments in the Random Oracle Model (ROM) by using the Fiat-Shamir [59]
heuristic to derive the verifier’'s messages as the output of a Random Oracle.

Note that all of our protocols are public-coin, hence we are only required to prove that
our protocols satisfy knowledge-soundness (or special-soundness, which also implies knowledge-
soundness) for our interactive protocols, and thereafter rely on the Fiat-Shamir transform to

obtain the non-interactive version of our protocols.

Algebraic Group Model. An adversary A is called algebraic if every group element output
by A is accompanied by a representation of that group element in terms of all the group
elements that A has seen so far (input and output). Introduced in [61], the Algebraic Group
Model (AGM) restricts the adversary A to be algebraic.

2.2 Sigma Protocols

Sigma protocols are three-round public-coin zero-knowledge proof of knowledge protocols. The
structure of a sigma protocol for (z,w) € R for a relation R is as follows, where x is the common

input and w is the private witness:

— In the first round, the prover sends a message a.
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— In the second round, the verifier responds with a randomly sampled challenge c.

— In the third round, the prover computes and sends a response z based on the witness w,

its first message a, and the random challenge c.

— The verifier then performs local checks based on the public x, prover’s first message a, its

challenge ¢, and the prover’s response z, and outputs if it accepts/rejects.

Here, (a, ¢, z) is known as the transcript, and it is known as an accepting transcript if the verifier
accepts at the end of the protocol.

An interactive protocol is known as Sigma protocol if it is a three-round public-coin protocol
that satisfies the following properties of completeness, special-soundness and special honest

verifier zero-knowledge.

Definition 4 (Completeness) If (x,w) € R, and P and 'V follow the protocol specification,
then Pr ((ﬂ’(w),\?>(x) = 1) = 1.

Definition 5 (Special Soundness) There exists a PPT extractor Ext that takes as input two
accepting transcripts (a,c, z) and (a,c, 2") for a given x, such that ¢ # ¢ and the first message

a is identical, and outputs a witness w* such that (z,w*) € R.

Definition 6 (Special Honest Verifier Zero-Knowledge) There exists a PPT simulator
Sim, such that for every (z,w) € R and any given c, the distribution Sim(z,c) is identical
to View(p(qw)v(z,r)), where Sim(z,c) is the output of the simulator with input x and c, and
View p(z,w),v(z,r) @5 the distribution of the view of the verifier in the protocol on common input

x and prover’s witness w.

Now, we briefly recall the sigma protocol for proving knowledge of discrete logarithm € Fy
of a vector of group elements g € G", such that g* = 2. Here, a prover P with knowledge of
the secret vector @, samples a random vector of scalars r <—g F}, and sends o = g" to the
verifier V. 'V then samples a challenge ¢ <—g F, and sends it to P and in the next round P
replies with & = cax + r. V considers the transcript (o, ¢, z), and checks if g* = z°a. Note
that the last message of the prover is linear in the size of the witness, and hence the traditional
sigma protocol has linear communication complexity. [8] presents compressed sigma protocol
with logarithmic communication complexity, albeit with logarithmic round complexity, which
can be compressed to obtain NIZK with logarithmic proof size by relying on the Fiat-Shamir
heuristic [59] in the Random Oracle Model.
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2.3 Polynomial Commitment Scheme

The notion of a polynomial commitment scheme (PCS) that allows the prover to open evalua-
tions of the committed polynomial succinctly was introduced in [77] who gave a construction
under the trusted setup assumption. A polynomial commitment scheme over F is a tuple

PC = (Setup, Commit, open, eval) where:

— pp + Setup(1*, D). On input security parameter \, and an upper bound D € N on the

degree, Setup generates public parameters pp.

— (C,¢) < Commit(pp, f(X),d). On input the public parameters pp, and a univariate
polynomial f(X) € F[X] with degree at most d < D, Commit outputs a commitment to
the polynomial ', and additionally an opening hint c.

— b+ open(pp, f(X),d,C,¢€). On input the public parameters pp, the commitment C and
the opening hint ¢, a polynomial f(X) of degree d < D, open outputs a bit indicating

accept or reject.

— b < eval(pp,C,d, z,v; f(X)). A public coin interactive protocol
(Peval(f (X)), Veval) (pp, C, d, z,v) between a PPT prover and a PPT verifier. The parties
have as common input public parameters pp, commitment C, degree d, evaluation point
x, and claimed evaluation v. The prover has, in addition, the opening f(X) of C, with
deg(f) < d. At the end of the protocol, the verifier outputs 1 indicating accepting the
proof that f(x) = v, or outputs 0 indicating rejecting the proof.

A polynomial commitment scheme must satisfy the following properties of completeness, bind-

ing and extractability.

Definition 2.1 (Completeness) For all polynomials f(X) € F[X] of degree d < D, for all
r eF,
pp < Setup(1*, D)
(C,¢) < Commit(pp, f(X),d)
v f(x)
b+ eval(pp, C,d, z,v; f(X))

Prlb=1": =1.
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Definition 2.2 (Binding) A polynomial commitment scheme PC is binding if for all PPT A,
the following probability is negligible in \:

Open(ppa anda Ca 60) = 1A
Pr open(pp, f17d7 C) E1) =1A:
fo# f1

pp + Setup(1*, D)
(C, fo, f1,€o,€1,d) < A(pp)

Definition 2.3 (Knowledge Soundness) For any PPT adversary A = (A, A,), there ex-
ists a PPT algorithm Ext such that the following probability is negligible in \:

pp + Setup(1*, D)
b=1A . (C,d,z,v,st) « A(pp)
Reval(pp, Cy 2,03 f,8) =0 (f,€) « Ext*(pp)
b (Ay(st), Veval) (pp, C, d, z,v)

Pr

where the relation Reyar is defined as follows:

Reval = {((pp, C € G, x € F, v € F); (f(X),0)) :
(open(pp, f,d,C,¢) = 1) Nv = f(z)}

We denote by Prove, Verify, the non-interactive prover and verifier algorithms obtained by
applying F'S to the eval public-coin interactive protocol, giving a non-interactive PCS scheme

(Setup, Commit, Prove, Verify).

Definition 2.4 (Succinctness) We require the commitments and the evaluation proofs to be
of size independent of the degree of the polynomial, that is the scheme is proof succinct if |C| is
poly(A), || is poly(X) where 7 is the transcript obtained by applying F'S to eval. Additionally,

the scheme is verifier succinct if eval runs in time poly(\) - log(d) for the verifier.
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Chapter 3

Succinct Verification of Compressed

Sigma Protocols using Updatable SRS

In this chapter!, we explore a class of zero-knowledge proofs of knowledge that has succinct
communication complexity to additionally support succinct verification complexity. In partic-
ular, we lift compressed sigma protocols, introduced by Attema and Cramer in [8], to achieve
logarithmic verification complexity while retaining their logarithmic proof size, by using a struc-

tured reference string (SRS).

3.1 Introduction

NIZKs can be facilitated by having oracle access to a common function which in an idealised
setting is modeled as a random function (known as Random Oracle or RO), which makes the
protocol secure in the idealised setting known as the Random Oracle Model (ROM). The setup
phase generally consists of having a Common Reference String (CRS) shared across the prover
and the verifier. The setup is known as transparent if the CRS consists of a truly random
string. Note that a structured CRS is often referred to as Structured Reference String (SRS).
The construction with better concrete efficiency with respect to communication complexity are
based on trusted SRS, where the randomness used to generate the SRS is akin to toxic waste
(also known as the trapdoor) which is required to be discarded upon the generation of SRS,
and the security guarantees hold only if the randomness is not known.

A line of work aims to reduce the degree of trust required in the generation of the CRS, by
having an updatable SRS, giving rise to SNARKSs in an updatable setup model [75, 88, 63, 45].
The updatable SRS can be updated by any of the involved parties, ensuring that the security

!This chapter is based on the joint work [53] with Chaya Ganesh and Neha Jawalkar, that appeared in PKC
2024.
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guarantees hold as long as there has been at least one honest update to the SRS. Intuitively,
an update to the SRS is done by having the party contribute additional randomness, and the
trapdoor for a given ‘updatable’ SRS is hidden due to re-randomization of the trapdoor from
each contribution of randomness.

Bulletproofs [36], building on the work of [32] introduced techniques that achieve logarithmic
communication complexity in discrete logarithm (DL) based zero-knowledge proofs. Thereafter,
Attema and Cramer [8] introduced compressed sigma protocol theory by using a blackbox com-
pression technique, which also places Bulletproofs in the framework of Sigma protocol theory.
These protocols relies on the compression mechanism of the split-and-fold technique, which
uses a ‘pivot’” ZKPoK protocol as a starting point to ensure zero-knowledge, and thereafter
compresses the linear-sized messages of the pivot sigma protocol. The split-and-fold technique
involves splitting the message in half, and then folding it using a randomly sampled challenge,
to attain a new (smaller) witness satisfying a similar relation. The idea of employing a compres-
sion mechanism on a pivot protocol has become a versatile tool, leading to compressed sigma
protocol theory for lattices [10], and compressed sigma protocols for bilinear group arithmetic
circuits [11].

Compressed Sigma Protocols (CSP) are attractive in applications due to their reliance on
weaker assumptions (DL), conceptual simplicity, logarithmic proof size and transparent setup.
One downside of this class of protocols is that they are only proof-succinct but not verifier-
succinct — the verification is linear. In this chapter, we focus on studying succinct verification

of compressed sigma protocols while retaining the succinct proof size.

3.1.1 Owur Contributions

In this chapter, we present compressed sigma protocols that are both proof and verifier-succinct
in the updatable SRS model. CSP compresses a pivot >-protocol for proving knowledge of a long
vector & while revealing a public linear form L(x), given a Pedersen commitment, resulting in a
protocol for opening linear forms on committed vectors with proof size O(log n) and verification

complexity O(n) where n is the size of x.

Protocol for opening a committed linear form. A core building block of our succinct
verifier constructions is a protocol to open a committed linear form on a committed vector.
That is, we can prove knowledge of a long vector x € Fy given a commitment to a linear form
L and a public element y € F,, such that L(x) = y. Here, L can be equivalently represented by a
vector of group elements (ay, ..., a,) such that L(x) = a1x1+- - -+ a,x,, where & = (x1,...,1,)
is a vector of field elements. In essence, since both L and « are vectors of field elements, we

are proving that an inner product of two elements has been computed correctly. It is an inner
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product argument, but in the spirit of CSP, one of the vectors — the linear form, is public and not
a witness. This vector is committed to only for the sake of succinctness, and looking ahead, this
commitment encodes the structure of the circuit and is computed during preprocessing. We use
a commitment scheme with a structured key introduced by [52]. This protocol with logarithmic
proof size and logarithmic verification complexity is secure under the DL assumption (same as
CSP), albeit in a bilinear group and at the cost of moving to an updatable SRS setting. We
compare our inner product protocol with [52] and [83] in Table 3.1.

Succinct verifier protocol for circuit satisfiability. We construct a succinct argument
of knowledge for circuit satisfiability in the universal updatable SRS model. The proof size
and verifier are logarithmic in the size of the circuit. This is secure under DL and can be
made non-interactive in the ROM using the Fiat-Shamir transform [59] since our protocols are
public-coin. We compare the concrete costs of our protocol, with that of [52] in Table 3.2
Since we use the same structure of SRS, the complexity of updating the SRS and verifying
the updates remain the same as in [52]. Dory’s [83] polynomial commitment can be used
to obtain a protocol for circuit-satisfiability. The exact costs will depend on the underlying
information-theoretic object (Polynomial interactive oracle proof) that is compiled using Dory.
For univariate polynomials of degree n, and opening one evaluation, Dory’s costs are: proof
size of (4logn + 10)G + (logn + 8)F, , prover’s computation of (n +logn)E + n'/2P, verifier’s
computation of 4lognE 4+ O(1)P. Note that Dory’s prover requires pairing operations and the

security relies on a decisional assumption.

Protocol Setup Assumption | Proof size | P complexity | V complexity
[52] Updatable DL sllsgggﬁ (8n —4) E* i}giz g
[83] Transparent SXDH 11201(;)5 TILF;G O(n'/?) P ) lolg; E

T e | o | gl © TG T e

A el I B s

Table 3.1: Comparison of our Linear Form opening protocols (or equivalently inner product
arguments) for vectors of length n. We compare in terms of most expensive operations, i.e.
multi-exponentiations F, pairings P and exponentiations E* (to provide aggregate values for
non-constant multi-exponentiations).

'We note that other SNARKSs in the universal, updatable setting that have better communication and/ver-
ifier complexity (Ox(1)) rely on the Algebraic Group Model or Knowledge Type assumptions in addition to
the Random Oracle Model. In this work, we are interested in constructions in the Random Oracle Model, and
relying on standard assumptions.
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Table 3.2: Circuit SAT protocol for a preprocessed circuit of size n (which is roughly 3m for m
multiplication gates). Both protocols are updatable zkSNARKs that rely on the DL assumption.
Similar to [52], we only compare in terms of the most expensive operations, exponentiations
FE and pairings P, and omit constant terms. M is a parameter that determines the processed
circuit’s fan-in and fan-out upper bound, and can be fine-tuned to balance the prover/verifier
computations.

Protocol for opening a committed homomorphism. We then construct a protocol for
opening a homomorphism, where both the vector and the homomorphism are committed to.
That is, we can prove knowledge of a long vector & € Fy given a commitment to a homomor-
phism f and a public group element y, such that f(x) = y. Throughout this thesis, we consider
group homomorphisms of the form f : [ — G, and f can be equivalently represented by a
vector of group elements (gi, ..., g,) such that f(x) = gi*--- g, where & = (x1,...,12,) is a
vector of field elements. We extend commitment schemes to group elements from [81, 11] to
one that uses a structured key and show binding based on SXDH. Succinct verifier protocols
for opening homomorphisms are useful in constructing proofs of partial knowledge with suc-
cinct verifier. We then extend our protocol to general homomorphisms (on commitments to
F,, Gy, Go, Gy elements simultaneously) motivated by applications to bilinear group arithmetic
circuit zero-knowledge protocols. Our constructions for opening homomorphisms are in the
designated-verifier setting. In applications like verification of structure preserving signatures
and attribute-based authentication, public verifiability might not be necessary since there is a
designated credential verifier, and indeed the homomorphism itself is given by the statement
to prove (signature verification algorithm) that can be committed to in a preprocessing phase.
Therefore, our protocols can be used in similar applications as in [81], like proving knowledge
of signature for complex access structures. While [81] has proof that scales logarithmically with
the size of the statement, our protocol additionally yields logarithmic verification (albeit for

designated verifier, which we believe is not a limitation for credential verification).
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3.1.2 Related Work

Daza et al. [52] constructs inner product argument with logarithmic verifier by replacing the
unstructured CRS or commitment key with a structured one. This also yields a protocol for
circuit satisfiability with logarithmic verification in the updatable setting. Our construction
and the protocols of [52] achieve the same result asymptotically. However, while we crucially
rely on a structured commitment key to make the verifier logarithmic like in [52], our techniques
are different. The work of [52] extend the protocols of [32, 36], while we take the approach of
CSP. This has the advantage of applying compression mechanism on standard protocols for
linear relations (or non-linear relations after linearization). The CSP approach also allows us
to extend our techniques to other applications where compression applies in a black-box way.
Second, our protocols are concretely better than [52] with smaller constants (See Table 3.2).

Dory [83] presents a transparent protocol for inner products between committed vectors
with logarithmic proof size and logarithmic verification. Dory relies on a decisional assumption
(SXDH) whereas our inner product protocol relies on DL. Additionally, our prover work is only
group operations as opposed to (O(n'/?)) pairing operations required by the prover in Dory,
and our constants in the proof size are better.

Other SNARKSs in the updatable setting [88, 63, 45, 86] rely on knowledge-type assumptions
or Algebraic Group Model (AGM), and constructions in the transparent setting with similar and
better asymptotics [37, 6] require unknown order groups with concretely expensive operations.

Lai et al. [81] show a generalization of Bulletproof’s circuit zero-knowledge protocol to work
for bilinear group arithmetic circuits directly, without requiring these circuits to be translated
into arithmetic circuits. Attema et al. [11] generalize compressed sigma protocols for bilinear
group arithmetic circuits. Both these constructions rely on a protocol for opening a group
homomorphism where the verifier is linear. Using our protocol for opening a committed homo-
morphism will yield a succinct verifier at the expense of making it a designated verifier system.
We provide the comparison in Table 3.4. Note that for application like Threshold Signature
Schemes (following Algorithm 4 of [11]), we retain the logarithmic size of the signature similar
to prior works, however we improve the verification complexity from linear to logarithmic.
Performace Comparison for MiMC and Poseidon Hash. We report the timing using a third
party implementation calculator https://zka.lc, where we estimate using BLS12-381 curve
implemented in arkworks-rs provided using Amazon Linux 2 8-core Intel(R) Xeon(R) Platinum
8259CL CPU @ 2.50GHz, 32GB. In Table 3.3, we use the reported number of gates for MiMC
in [3], having 1293 multiplication gates and 646 addition gates. We achieve 1.77x improvement

in prover time and more than 7x improvement in verification time as compared to Daza et al.
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[52]. Similarly, we achieve 1.79x improvement in prover time and more than 7x improvement in
verification time compared to Daza et al. for Poseidon (assuming number of R1CS constraints
is equal to the number of multiplication gates, with 276 R1CS constraints [1]).

Similarly, we obtain 1.42x improvement in prover time as compared to Dory [83] for MiMC
hash instantiation and 2.69x improvement in prover time for Poseidon hash instantiation, at a
slight cost of verifier time. Note that for circuits of smaller sizes, we do fairly better than Dory
in prover time complexity, while not losing much in verifier time complexity. Also, for both

comparisons we assume that Dory has at least 6n'/?

pairings computation by prover, and 3
pairing checks performed by the verifier. For statements that show up in practice, like proving
knowledge of opening of a Merkle tree leaf using MiMC/Poseidon Hash functions, the reported

number for the prover increases by a factor of depth d of the tree.

Hash Protocol | Prover Time | Verifier Time
[52] 729,272 151,831
MiMC [83] 586,381 7,054
Us 411,809 19,319
[52] 181,058 123,610
Poseidon [83] 270,912 6,769
Us 100,636 15,780

Table 3.3: Performance of MiMC and Poseidon Hash Instantiation using https://zka.lc and
in us.

3.1.3 Technical Overview

An inner product argument allows us to prove that an inner product of two vectors has been
computed correctly, that is (a,b) = z, for two vectors @ and b, and a public value z. The
high-level idea behind the inner product argument of [32] and the compressed sigma protocol
of [8] is to compress a vector using a Pedersen commitment, and then in each round reduce
the instance and the commitment key to another one of half the size by using the verifier’s
challenge. At a high level, the source of the verifier’s linear complexity is in having to compute
the new keys at every step.

We use a structured commitment key proposed in [52] that consists of encodings of multilin-

ear monomials of a secret vector of logarithmic length. That is, for vectors of length n, we first

T

set £ = logn and consider the vector @ = (ay,...,a;) to construct @ = <Hi:1 ; and

B > b;€{0,1}
finally, the commitment key is set as ¢g* where g* = (¢™',. .., g") for a vector & = (z1,...,z,).
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. Prover Verifier
Protocol | Proof size Complexity | Complexity
O(n) Gr
O(logn) Gy
[81] O(logn) Go On) B o) 5
O(logn) F,
O(logn) Gr
[11] O(logn) F, Oln) E Otn) &
O(logn) Gr
O(logn) G, O(logn) E
Us | Oflogn) Gy O(n) E O(logn) P
O(logn) F,

Table 3.4: Comparison of protocols for opening homomorphism for vectors of length n. We
compare in terms of most expensive operations, i.e. pairings P and exponentiations E and
dominant communication cost with respect to elements of the field F, and groups G, G2 and
Gr. Note that our verifier complexity is 2logn £ + logn P.

The commitment to a vector & under key ¢® is ¢‘®*'. This key is updatable, a party can sample
new ¢ secrets and update the encoding in a verifiable way. A compressed version of this key,

g% € G¢ allows the verifier to be logarithmic.

Linear Form Opening with Succinct Verifier. We build on the inner product arguments
of [32] and [52]. The verifier’s work in [32] involves computing an updated key in each round,
and in [52], the verifier is only given a compressed key (of logarithmic size) and the prover
convinces the verifier that the reduced statement in each round is with respect to a new key
that is correctly updated. New commitment keys with size half of the original one are created by
splitting them in half and then combining them based on the verifier’s challenge. A logarithmic
verifier can check that a structured key has been updated correctly using a pairing operation.
The source of the verifier’s linear complexity in the compressed sigma protocol of [8] was due
to computation of the new keys at every step. On the contrary, our verifier remains logarithmic
as the verifier is only required to parse a compressed key of logarithmic size, which is used for
performing constant number of checks per round, and we only require logarithmic number of
rounds which does not involve updating the shared key.

While our protocol uses the same structured key, we take a slightly different approach: we
exploit the fact that we can go from ‘a commitment to a vector with respect to the second half
of the original basis’ to ‘a commitment to the same vector with respect to the first half of the
original basis’. Now, if a prover produces commitment to both halves of a vector with respect to

the first half of the basis, the verifier can perform one multiplication in the exponent to check the
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consistency. Consider, @ = (a1, ...,a,) and @ = <Hi:1 ; for n = 2¢, the commitment

),

key is g* = (g®¢||¢g®“), the verification key is H%, and ngeim(}jOMa (x). In each step, for
x = (x| xr), if the prover produces A; = COMg, (x1), A2 = COMg, (xg), the verifier can
perform the check e(A%, H) = e(Ay, H%) to ensure consistency. Thus, the commitment key
updates are done implicitly by simply dropping off the last element @, and using the challenge
only to fold the instance vectors @’ = x;, + cxp. This observation allows us to shave off about
4 group elements in each round from the Daza et al.’s inner product argument. Our protocol
also has the advantage of allowing efficient batching, i.e., for vectors of length n, the prover
can prove, for distinct Ly, ..., L, and x,...,x,, that Li(x1) = y1,..., Lyn(®n) = ym while

incurring a cost that is O(m + logn) as opposed to O(mlogn).

Succinct ZK Argument for Circuit Satisfiability. We construct an improved protocol
for arithmetic circuit satisfiability in the universal updatable SRS setting. The CSP approach
to handle multiplication gates by linearizing them renders the verifier linear. We propose a
protocol for computing a commitment to the linear form that captures the multiplication gates
in the circuit in a verifiable way while keeping the verifier succinct. We use the ideas from [52]
to preprocess a circuit, and obtain a commitment to the linear constraints. Now, all relations
are linearized, we have commitments to all linear forms, and we show how to batch all linear
form openings into one protocol for opening a committed linear form on a committed vector.
The following are two key new ideas to make a CSP-like proof have succinct verification.
(i) The first relates to how we handle multiplication gates. For linearizing multiplication con-
straints, CSP uses a linear combination of polynomial evaluations at 1,...,m to evaluate a
polynomial at a new random value z rendering the verifier linear. We handle multiplication in
the same way as CSP, but instead of computing the public linear form for multiplication, the
verifier instead succinctly verifies a commitment to it. We construct a succinct-verifier protocol
for obtaining a commitment to the linear form used for verifying multiplication constraints. In
order to do this, we impose some structure; specifically, we use a linear combination of polyno-
mial evaluations at 2,22,...,2™. This choice allows us to compute the value of a polynomial at
any point z while keeping the verifier succinct. This idea gives a protocol where the prover com-
putes a commitment to the linear form that the verifier can efficiently check. The linearization
is now done via a committed linear form. (ii) The second idea relates to how we handle linear
gates. Here, we employ the ideas of Daza et al., by reducing the problem of verifying linear
gates to checking that two committed vectors are permutations of each other; and a Hadamard
product argument. We deviate from [52] by first reducing the permutation argument to the

CSP pivot of opening linear forms on committed vectors. We then use our techniques from (i)
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to obtain commitments to these linear forms. Finally, we take advantage of our ability to batch
the openings of linear forms, which allows us to prove circuit constraints while paying the cost

of essentially a single invocation of our linear form protocol.

Homomorphism Opening with Succinct Verifier. Our ideas for succinct verifier in lin-
ear form openings do not extend to opening homomorphism. First, we need to commit to a
homomorphism, and we extend the commitment scheme for group elements used in [81, 11] to a
commitment scheme with a structured key, in order to make the verifier logarithmic. We show
that binding is implied by SXDH (same assumption as the scheme with uniform key). Since we
rely on SXDH, we cannot encode the commitment key randomness in the second group as the
verification key. Thus a pairing check to verify correct key updates is not possible anymore,
making our constructions designated verifier. A second hurdle is that the commitment itself
lives in the target group. This means that our idea to check correct updation of the key in
each round of split-and-fold (which involved a pairing operation) does not work anymore. We
tackle this by having the commitment key in both G; and Gr. Now, the prover updates the
commitment key in G; and proves that this has been done correctly. The verifier can check
this using a pairing, move this updated commitment key in G; to G, and then finally at the

end of the recursion verify the commitment with respect to the updated key in Gr.

3.2 Preliminaries
In this section, we present the required notation ! and relevant background for this chapter.

Notation. Let F, denote a finite field of order ¢, also denoted by F when the order is not
specified or is clear from context. Let G be a group of order ¢. A denotes the security parameter,
and negl denotes a negligible function, i.e. for any integer ¢ > 0, there exists n € N, such that
YV x > n, negl(x) < 1/n°. We denote vectors by boldface letters, and the inner product between
a and b by (a,b).

We define L(Fy) as L(F}) = {L : L is a linear map from F} to F,}. A linear map L € L(F})
is equivalently represented by a vector, i.e. L(xy,...,z,) = a1x1+- -+ a,x, (for (x1,...,2,) €
Fy) is equivalently represented by L = (ai,...,a,) € Fy. For v = (71,...,2,) € Fy, rev(x)
denotes its reversal and is defined as rev(z) = (z,,...,z1).

A vector @ = (ay,...,a,) naturally defines a (n — 1)-degree polynomial by considering the
vector a as the vector of coefficients, which gives us the polynomial a(X) = a; +as X + az X? +
-+ a, X" 1. Also, a commitment to a polynomial a(X) = a; + @ X +azX*+ -+ +a, X" !is

provided by a commitment to the vector of coefficient @ = (aq, ..., a,). We use the vector and

INote that some of the notations are redefined here for ease of access.
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polynomial notation interchangeably throughout the first chapter for ease of notation.

For vectors g = (g1,...,9,) € G" and © = (zy,...,7,) € Fy, the multi-exponentiation
g® is defined by g* = gi"' ---gi". Also, for g € G and = (z1,...,2,) € Fy, g® is defined
by g = (¢g™,---,9"). The inner product between elements of F, a = (as,...,a,) and
b = (b1,...,bn), is denoted by (a,b) = a;by + -+ + a,b,. For a € F;*,b € ¥y, allb € Fy'*"
denotes concatenation of a and b in the respective order, and the notation is used similarly for

the vectors in a group G to denote concatenation of two vectors. For a = (ay,...,a,) € G”
and b = (by,...,b,) € G", the hadamard product a o b is defined by @ o b = (a1by, ..., a,b,).
For v,n € F,, v™ denotes the vector v™ = (1,...,v").

A bilinear group is denoted by the tuple (¢, Gy, Go, G, e, G, H) +pr G(1%), where Gy, G,
and Gy are groups of prime order ¢, G and H are generators of G; and Gy, and e : G; xGy — Gy
is an efficiently computable bilinear map.

We define MLy € Fy to be the set of all n-length multilinear vectors of the form
(1,aq,as,...,a1---a), determined by f-mutually independent scalars ay, . .., a,. We denote the
set of £ scalars by @ = (a4, . .., a¢) and the n-length vector by @ = (1, a4, as,...,a; -+ - as). More
formally, ML,, = {a:a = (a,...,a) € Ffl, a= (Hle a7 )zsc{o1} }-

3.2.1 Interactive Arguments

We consider interactive arguments for relations, where a prover P convinces the verifier that it
knows a witness w such that for a public statement z, (x, w) € R. For a pair of PPT interactive
algorithms P, V', we denote by (P(w),V)(z), the output of V on its interaction with P, where
w is P’s private input and x is a common input. Let R = {(z,w)} be a relation and £ be the

corresponding NP language.

Definition 7 (Argument of Knowledge) An interactive argument of knowledge (AoK) for
a relation R consists of a PPT algorithm Setup(1*) that takes a security parameter \ and outputs
public parameters srs, and a pair of PPT interactive algorithms (P,V). The triple (Setup, P, V)
satisfy the following properties.

1. Completeness. For all A € N, (z,w) € R,

Pr (((P(w),\?)(srs,x) =1 : srs« Setup(lA)> =1

2. Knowledge Soundness. An argument system (P,V) for a relation R is knowledge sound
with error k if there exists an expected polynomial time extractor Ext such that for every

efficient adversary j’, for every x € {0,1}*, whenever P makes V accept with probability
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€ > R, Ext” (z outputs w* such that (x,w*) € R with probability at least <= for some
y q

polynomial q.

Definition 8 (Honest verifier zero-knowledge (HVZK)) An argument system (P,V) for
a relation R is HVZK if there exists an efficient simulator Sim such that for every (x,w) € R,
the distribution Sim(z) is identical to View p(z.w),v(z)), Where VIew g w) () 5 the distribution

of the view of the verifier in the protocol on common input x and prover’s witness w.

We now recall the special soundness property, which is typically simpler than knowledge

soundness.

Definition 9 (Tree of transcripts) A set of k = Hle k; accepting transcripts for an argu-
ment system (P, V) is a (kq, ..., k¢)-tree of accepting transcripts if they are in the following tree
structure: The nodes of the tree are formed by P’s messages, and the edges correspond to V’s
messages. Fach node at depth v has exactly k; children corresponding to k; distinct messages

from the verifier. Each transcript is given by a path from a leaf node to the root.

Definition 10 (Special Soundness) A (2¢+ 1) move protocol is said to be (ki, ..., k) spe-
cial sound if there ezists an extractor Ext that takes as input a (ki,...,ke)-tree of accepting

transcripts for an instance x, and outputs w such that (x,w) € R.

Definition 11 (Succinct Argument of knowledge) An argument system is proof-succinct
if the communication complexity between prover and verifier is bounded by poly(\), and verifier-
succinct if the running time of 'V is bounded by poly(\ + |x|) and independent of the size of the

circuit computing R.

Fiat Shamir and Non-Interactive AoK. An argument system is said to be public-coin if the ver-
ifier’s messages are uniformly random strings. Public-coin interactive protocols can be heuris-
tically compiled into non-interactive arguments by applying the Fiat-Shamir [59] transform
(FS) in the Random Oracle Model (ROM). Building on the above fundamental ZKP concepts,
SNARKSs stands for the Succinct Non-interactive ARguments of Knowledge.

Note that all of our protocols are public-coin, hence we are only required to prove that our
protocols satisfy special soundness for our interactive protocols, and thereafter rely on the FS

transform to obtain the non-interactive version of our protocols.
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SNARKs in the updatable SRS model. A common reference string (CRS) model assumes the
presence of a trusted setup phase before the onset of the protocol execution, which generates a
truly random string and makes it available to both the prover and the verifier at the beginning
of the protocol. If the CRS has a structure that is leveraged in the protocol to obtain efficient
ZKP, then the CRS is known as a structured reference string (SRS). Additionally, an SRS which
enables parties to update the parameters during the setup phase, while retaining computational
soundness against any probabilistic polynomial time adversary as long as at least one honest
update is performed, is known as a universal updatable SRS. In the updatable SRS model, we
assume that the setup phase has generated the universal updatable SRS [75] securely, and then
the protocol leverages the structure of the SRS shared between the prover and the verifier to
enable efficient ZKPs.

We follow the model used by Daza et al. [52], based on [75], where anyone can deter-
ministically compute the circuit-specific preprocessing material given the (updated) universal
SRS, which ensures that the circuit-specific preprocessing is performed publicly without any

involvement of secrets.

3.2.2 Assumptions

Definition 12 (DLOG Assumption ) The discrete logarithm (DLOG) assumption for a group
G states that, given a generator g of the group G, for all PPT adversaries A we have

Pr(r=7r"|r«rF,Ar" < A(g")) < negl(\)

For structured keys following multilinear distribution (MXL,,), the following Find-rep as-
sumption holds in bilinear groups, which is known to follow from asymmetric DLOG Assump-
tion [52] (a natural extension of DLOG to accommodate bilinear groups). In the asymmetric
DLOG assumption, the adversary receives each element in both groups, that is, for generators
g € Gy, h € Gy and for all a € F,, any g% as an input to the adversary will be accompanied by

h®, and vice versa.

Definition 13 (Find-rep Assumption) Find-rep assumption holds with respect to a bilinear

group generator BG for all PPT adversaries A we have

g<“’$> = 1([;1 VAN ?é 0
Pr (Q7 G17G2JGT767g7h) <R BG(l/\) S negl(/\)
a <+ ML,z A(g* h*)

Definition 14 (DDH Assumption) For a group G, the decisional Diffie-Hellman (DDH)
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problem is to determine, when given a tuple (g,g% ¢°, g¢) for some g € G, whether ¢ = ab.
Decisional Diffie-Hellman (DDH) assumption in a group G states that DDH problem is hard in
that group.

Definition 15 (SXDH Assumption) For (¢, Gy, G,,Gr,e,g,h) < G(17), the Symmetric
Ezternal Diffie-Hellman (SXDH) assumption states that the decisional Diffie-Hellman (DDH)
assumption holds for both Gy and Gs.

3.3 Compressed Sigma Protocol for Committed Linear

Forms

We construct a protocol to reveal the value L(x) for a committed vector  and committed linear
form L, i.e. a public value y satisfies the constraint y = L(x). The key idea is to honestly
generate a commitment to the (public) linear form in a preprocessing phase. Once generated,
a commitment to a linear form L can be used to open L on any committed vector. Note that
while using this as a subprotocol for arithmetic circuit SAT, we generate these commitments

during a one-time circuit-specific setup phase.

Definition 3.1 (Commitment to F -vectors [52]) Let (¢, Gy, Gz, Gr,e,9, H) be a bilinear
group and letn > 0. We define a commitment scheme for vectors in Iy with the following setup

and commitment phase:

- Setup: Let a = (a1, ...,a;) < F, where { =log (n+1). Leta = (ay,...,a,) € FJ* be

defined as a; = HZ v ,where (bj1,...,bje) is the binary representation of j. Output

i=1""

(g%, H®), where ¢g® € G is the commitment key, and H* € GY is the verification key.

— Commit: COM :F*' — Gy, v <—r Fy and define

Lemma 3.1 The above scheme is perfectly hiding and computationally binding under the DLOG

assumption [52].

Proof: The prover is given the (public) commitment key ¢* where @ = {ay,...,a,41}, i.e.
g% = (9™, ....g"+).
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Proof of Hiding. We note that, given a commitment P to any [, vector, any vector of elements
of Fy, € = (z1,...,2,) € [y, could have been the element that is chosen to compute P,
if the uniformly randomly chosen randomness + for obtaining the commitment is such that

¢ @@ = Pie. v satisfies :

P
(g@)* - (g)™

Hence, the aforementioned scheme is perfectly hiding.

(ga"+1)7 _

Proof of Binding. If the binding of this commitment scheme is broken, then we have x =

(x1,...,2n),y and y = (y1,...,Yn), 0 such that x # y and

COMg (x;v) = COMg (y;9)

— gl @@ = gl@wllo)
— g{®@=yl=9) — 1g,

ar) (@1 an) (Tn=vn an —0) _
— (gl)(lyl)---(g )( y).(g +1>(“/ )—1(@1

which breaks the (extended) discrete logarithm assumption.
O

We start with a X-Protocol for opening a linear form which is similar to the initial protocol
in [8] but using structured keys instead of uniformly random keys for the commitments. We

consider the following relation
R={(PeG,LeLF,),ycF;xclk;,yeF,): P=COMg (x;7) A L(z)=y}}

which corresponds to showing opening of a public commitment P and a public value y, obtained
by operating a linear form L on a secret Fy vector . This is the same relation as in [8] but using
the commitment COM with structured commitment key (g%, H%) (Definition 3.1). We rely

on the SXDH assumption for providing the structured key (g%, H%) while maintaining security.

Theorem 3.1 Il is a 3-move protocol for relation R. It is perfectly complete, special honest-

verifier zero-knowledge and computationally special sound.

Proof: Completeness. If protocol steps by the prover is executed correctly, then we have
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Parameters
— Common parameters : (P € G, L € L(F}),y € F;), P = COMg (x;7),y = L(x)
~ P’sinput : (z € F},v €F,)
Protocol
1. P samples r <—p Fy, p <~ Fy, computes A = COMg (r;p), t = L(r) and sends A,t to 'V
2. 'V samples ¢ < [F, and sends ¢ to P
3. P computes z = cx + r and ¢ = ¢y + p and sends z, ¢ to V

4. V checks if COMg (z;¢) = AP and L(z) = cy + t, outputs 1 if it holds, outputs 0
otherwise.

Figure 3.1: Protocol Il for relation R

z = cx + r, and it satisfies the final two checks by the verifier

COMg (z; ¢) = g9, L(2) = Licz + )
— g<av(0$+”'HCV+P)> — CL(ZB) + L(,,,.)
— 90(57(93||7)>g<57("’||ﬂ)) —cy+t
— PeA

Special Honest-Verifier Zero-Knowledge. We construct a simulator Sim, which pro-
duces a transcript indistinguishable from the transcript of the real execution of the protocol,
provided a challenge ¢ € F,. (i) Sim samples z,¢ (ii) Sim computes COMg (z;¢) and sets
A:%W and t = L(z) — cy.

The transcript produced by the simulator Sim is indistinguishable from the transcript of the
real execution of the protocol due to the hiding property of the commitment scheme COM, (.),
which ensures that a commitment sampled uniformly at random from the set of all possible com-
mitments is indistinguishable from a commitment computed from a message chosen uniformly
at random.

Special Soundness. We consider 2 accepting transcripts (A, t, c1, 21, ¢1) and (A, t, ca, 22, P2),

such that ¢; # ¢o. Then we have,

COMg (z1;01) = AP, L(z1) = c1y + ¢, and
COMg (22;¢2) = AP?, L(22) = coy +1
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— @G0 — AP [(2)) = ey + 1, and
g(@E210) = Ape [(25) = cyy + 1

Dividing the first two equations, and subtracting the second equations, we get
gl@Fmzlomo) — pare [(z) - z5) = (a1 — )y

We define & = (21 — 22)/(c1 — ¢2) and v = (¢1 — ¢2)/(c1 — ¢3), and this gives us (@@ =
COMg (x,v) = P, and L(x) = y. O

3.3.1 Opening a Committed Linear Form

In IIy, the communication complexity as well as the verifier complexity is linear due to the
last message sent by the prover and the last check performed by the verifier. To improve both
complexities, we replace the message sent in the last step of IIy with a proof of knowledge. We
define a relation that captures this and reduce the verifier’s work by committing to the linear
form and compressing the check using split-and-fold technique used in [8]. The protocol II; is
in Fig 3.2. We compress recursively until the size of instance is constant and can be sent in the

clear.

We now consider the new relation Repr with respect to an updated linear form, where the
new linear form L is defined as L(z, ¢) := L(z) and hence, the check performed by the verifier
in step 4 of Iy (Fig 3.1) corresponds to the new relation, where the message sent by the prover

P to the verifier V in step 3 corresponds to a witness in the new relation.

JQCLF:{(PEG,QEG,ye]Fq;we]F;‘,LeL(]FZ)):
P=COM; () AN @ =COMg (L) A L(x) =y}}

This corresponds to showing opening of a public commitment P and a public value y, which is
the output of a linear form L on a secret Iy vector @, given a commitment to the linear form
L. We present the >-Protocol II; for Repr in Fig 3.2, and use this protocol instead of step 4 of

1y to improve the communication and verifier complexity.

Finally, we define II;-¢ as II;-¢ = II; o Il for relation R, whose communication and compu-
tational complexity are dominated by that of II;. The concatenation of the protocols II; and
[Ty proceeds by replacing the last message sent in clear by the prover in Iy with a proof of

knowledge using II;.
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Parameters
~ Common parameters : (P € G,Q € G,y e F,, H* € GY),

~ P = COM; (z),Q = COMg (L),y = L(x),
—n=2a=(a,... )@= (Hf:1 i

— A bilinear group description (¢, G, Gq,Gr,e,g,H), where e : G X Gy — Gy is an
efficient bilinear map and g, H and e(g, H) are generators of groups G, G, and G,
respectively, each of order q.

)biE{O,l}

~ P’sinput : (9° € G",x € F}, L € L(F}))
Protocol

1. P parses @ = (zr||xg), L = (LL||Lr) and g* = (¢°¢[|g%“r), and computes and sends the
following to V:

(a) Ay = COMg, (xr), A2 = COMg, (zr)

(b) B1 = COMg, (Lr),B; = COMg, (Lg)

(¢) y1 = (Lr,xr),y2 = (L1, TR)
2. 'V checks the following, proceeds to step 3 if it holds, and aborts otherwise

P . .
c (A—l,H) e (Ay H?) A e (B%H) — ¢ (By, HY)

3. V samples ¢ < F, and sends c to P
4. Psets @' = xp + cxr, L' = cLy + Li and implicitly sets @’ = (ay,...,a,_1) and @ = a;.
5. P and V both compute the following : P’ = A1 AS, Q" = BBy, y' = y1 + cy + 2y

6. If ' ¢ ]Fg : P runs PoK II; to prove knowledge of @', I’ such that COMg (x') = P/,
COMgy (L) =Q" and (L', x') =y
Hence, P and V run the protocol II; with updated common parameters (P, Q', ', %)
and prover’s input (¢%, «’, L'), for (P',Q",y;x') € Rewr

7.2 e Fg :
(a) P sends «', L' to 'V
(b) V outputs 1 if the following checks hold, and 0 otherwise:

COMy (2') = P' A COMg (L) =Q' A (L,@') =y

Figure 3.2: Protocol II; for relation Repp
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Theorem 3.2 11 is a (k1, ..., k¢)-move protocol for relation Repp, where k; = 3, Vi € [{],{ =
logn. It is perfectly complete and computationally special sound. It incurs total communication

of 4logn group elements and 4 + 3logn field elements.

Proof Sketch. Here we present the proof sketch for the special soundness of II;. Given 3
accepting transcripts (Ay, Aa, By, Ba, y1, Yo, ¢i, &}, L) for one iteration of I1; (where one iteration
consists of steps 1-5, and step 6 follows by sending @', L’ instead of providing a PoK) for
three distinct challenges c;, co and c3, extractor proceeds as follows. It computes aq, as, az as
(ay,as,a3)” = V71(0,1,0)T, where V is the Vandermonde matrix defined by the the challenges,
and sets w = ), a;(c;x}||x;) to be the extracted value. We show that COMg (w) = P; and
similarly we extract a valid opening m of the commitment Q).

We then show that the extracted w, m satisfy «, = w, + c;wpg and L, = m + ¢;mp for all
i = 1,2,3, which when substituted in the verification equation (L, &}) =y} (Step 7(b)) gives
us (mp,wr) + ¢;(m,w) + (M, wg) = y1 + ¢;y + c}ys, for the distinct challenges ¢y, ¢, and
c3. Hence, (m,w) = y holds, which shows that (w, m) is a valid witness for (P,Q,y) € RcLr.

We now present the full proof.

Proof: Completeness. If the protocol is correctly executed by the prover P, then we have
1. Ay = COMg, (@) = g'®=) Ay = COMg, (wg) = g@=®
2. B; = COMg, (L;) = g%t} By = COMg, (Lg) = g'@Lr)
3. y1 = (@, Lr), y» = (@, L)
4. ' = xp +cxp, L' =cLy + Lg

Hence, the following verifier checks are satisfied as shown below :

P @) 0 4@ D
¢ (A_17H> =¢ <g<aL,wL>’H> <Bl H g(ﬁL,LL>7H

= e(g'@m™r) H) = e(g'®mIr) H)
= e(gme), ) = e(glm-t), )
= e(g@r =, H ) = e(g @b, 1Y)
:e(AQ,,H“‘) :e(BQ,,H“")

For each iteration of PoK II; (where one iteration consists of steps 1-5, and step 6 follows by

sending ', L’ instead of providing a PoK), we have
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COME/ (w/) — g(a/’m/>
- g(aLuxL'i‘C:BR)

_ g(EL7wL)gC<aL7$R>

— A A

COMg (L)) = g*&t"
— g<EL7CLL+LR>
— gc<aL,LL>g<ﬁL,LR>

— BB,

(L',x'y = (cLp + Lg,x + cxR)
C<LL7 33L> + 02 <LL7 mR) + <LR7 33L> + C<LR7 mR)
(Lg,®r) +c((Ly,@L) + (Lg, xg)) + (L, xR)

= (Lp, L) + (L, x) + (L1, zp)

=y +cy + Yo

Special Soundness. We first illustrate the extraction of the witness, and thereafter proceed
with the argument of the correctness of the extracted value. We begin with three accepting
transcripts for one iteration of PoK II; (where one iteration consists of steps 1-5, and step 6
follows by sending @', L’ instead of providing a PoK) as follows, where ¢y, ¢y, c3 are all distinct

challenges:

(Ah A27 Bl7 BQ? Y1, Y2, C1, w?l? Lll)
(Ah AQ; Bla BZa Y1, Y2, C2, w/27 LIZ)
(Aly A27 B17 B27 Y1, Y2, C3, w/37 Lé’))

Extraction. The extraction proceeds as follows. We aim to find w, m such that (m,w) =y,
and w, m are openings of P and (). We note that, as ¢, c; and c3 are such that ¢; # ¢; for all
(1 #7) 1,5 € {1,2,3}, the Vandermonde matrix V' described below is invertible.

1 1 1
Cy C3

2 2
€l & G

T
Hence, we can compute aq, as, az as (ay, as, az)

= V~Y0,1,0)T. The computed ay, as, a3 satisfy
Soiai =0, a;c; =1and Y, a;c? = 0. Define z; = (¢;}||2}). Now let w = a121 +aszs +azzs
be the extracted value. Following a similar procedure, we extract m and output (w, m) as the
witness for Repp.

Proof of correctness of extracted value. We first prove that the extracted w and m are

openings of commitments P and (), respectively. Then we prove that w and m also satisfies the
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constraint (m,w) = y. This shows that the extracted (w, m) is a valid witness for (P, Q,y) €
Revr.
We recall that w = a1z1 + aszs + azzs by definition, and COMg (x}) = A1 A holds from

verification equation in step 6.

COMg (w) = g@w
_ g<ﬁ7a1z1+a2z2+a3z3>

— g<aLHaRval(Clmll||$/1)+a2(02$/2Hmé)"’aii(c3m,3“w,3)>

<EL ,a1C1 13/1 +a262:1:/2+a3 Cg:l:é> <ER,a1 .’.l:/l “+aso .’.l:/2+a3.’.l:é>

=g g(dea,,alwllJraQw/QJragwé)
= (AlAgl)alcl (A1A§2)a2c2 (A1A§3)a303 (AlAgl)(lldé (AlAgz)azdz (AlAS?,)agdg (from step 6)

o A(alc1+a2cz+a3cg)+dz(a1+a2+a3)A(a10%+azc§+a30§)+dz(a161+a202+a303)
= 2

(@, a1c12) +azcoxh+azczxh)

— A A%

P . .
= P (since we have e (A—, H) =e (AQ, H““) which ensures P = A; A%")
1

Hence, the extracted w is an opening of the commitment P. Similarly, we can prove that
m is an opening of the commitment ¢). From the binding of the commitment scheme, we can

ensure that w = « and m = L except with negligible probability.

Let b € [ be such that x, = by + ¢;bg holds for all i« = 1,2,3. Then our defined z;
can be interpreted as z; = (¢@i||z)) = (0||br) + ¢i(br||lbr) + ¢Z(bg||0) for all i = 1,2,3.
Now, given aj,as,as that satisfy > .a; = 0,> . a,c; = 1 and Y ,a;¢7 = 0, we have w =
Soiaizi =>4, (0]|br) + >, aici(br||br) + >, aic?(bgr||0) = b. Hence, the extracted w satisfies

x, = wy + cwg. Similarly, the extracted value m also satisfies L, = mj 4+ ¢;mp for all

i=1,2,3.

Since the transcripts are accepting, step 7(b) of the verification equation, (L, ;) = y. holds;
that is (L}, ) = y1 + c;y + ?yo, for all # = 1,2, 3. Substituting the values of L} and !, we get
that (mp,wr) + ¢;(m, w) + cZ{(mp,wgr) = y1 + c;y + ¢y, holds for all 7 = 1,2,3. Hence, we
obtain that (m,w) = y. O

3.3.2 Improved Protocol for Opening a Committed Linear Form

We recall that for x = (z1,...,2,) € Fy,

an alternative protocol that achieves better communication complexity at the cost of degrading

rev(x) is defined as rev(z) = (x,,...,21). We present

soundness; it needs 2n transcripts to extract. Consider a modified version of the relation Repp
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defined earlier, where instead of committing to the linear form we now commit to the reverse

of the linear form, and define the new relation R¢pp_ey as follows :

Rovkaey = {(P €G,Q € Gy e F;z € Fy, L € L(FY))
P=COMg; () A @ =COMg (rev(L)) N L(x) =y}}

where the relation Repp.rey corresponds to showing opening of a public commitment P and a
public value y, obtained by operating a linear form L on a secret Fy vector @, where we also
have a commitment to the reverse of linear form L which is represented as a vector. We note
that the randomness used for the commitments is implicitly assumed from here onwards. We
have the following protocol for the relation Roppey (Fig 3.3).

The protocol aims to reduce the verification of the statement (P,Q,y;x) € RcLprey by

prover P and verifier V, to a polynomial check where we have the equation
z(U) -rev(L)(U) = pr(U)- Ut +y- U +pr(U)-U"

and we have commitment to each polynomial. The polynomials are then evaluated at the
random challenge sent by the verifier V, and the consistency of the evaluations with the equation

satisfied by the polynomial is checked.

Theorem 3.3 Il; is a protocol for relation Reopp.rey. It is perfectly complete and computation-

ally special sound.

Proof: Completeness follows directly.
Special Soundness. We consider 4 accepting transcripts for one iteration of PoK II, with

different challenges ¢;,7 € {1,2,3} as follows, where t1, t5, {3 are all distinct challenges:

(Ala A?a C, 21, %2, 23, 24, tla wl)
<A17 A27 C, 21,29, 23, 24, t?a w2>
(A1, Az, ¢, 21, 29, 23, 24, t3, W3)

Al; A27 C, 21,22, 23, 24, t47 wy

We note that, as t1, s, ¢35 and ¢, are such that t; # ¢; for all (i # j) 4,j € {1,2,3,4}, the
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Parameters
— Common parameters : (P € G,Q € G,y € F,, H* € G*),
— P=COMgz (x),Q = COMgz (rev(L)),y = L(x),

' ‘ . . ¢ - b;
w2 as (),

~ P’s input : (¢9* € G",x € F}, L € L(F}))
Protocol

1. Let us define B € F) as B = rev(L). Let x(U) be a polynomial of degree (n — 1) defined
with coefficient vector & = (21,...,2,), such that x(U) = S0 ;1 U%. Similarly, we
define the polynomial B(U) of degree (n — 1) for the vector B.

2. P defines a (2n — 2) degree polynomial p by

p(U)=a(U) -B(U) =Y _ ;1 BjU"",

2%
and parses the computed polynomial as
p(U) =p,(U)-U ' +y- U +pgp(U)-U",

where py, is a polynomial of degree (n— 1) and pg is a polynomial of degree (n—2) (which
is trivially extended to a vector of length n by appending 0 appropriately).

3. P computes A} = COMg (p;) and Ay = COMg (py), and sends A;, A to 'V
4. V samples ¢ < F, and sends ¢ to P

5. P computes the evaluations of the polynomials on the random challenge ¢ as follows, and
then sends 21, 29, 23 and z4 to V: 23 = x(c), 22 = B(¢), 23 = pr(c), z4 = pr(c).

6. 'V checks if the following relation holds, aborts if the check fails, and continues to the next
step otherwise.
za ety -z =22

7. 'V samples t < [F, and sends ¢ to P

Figure 3.3: Protocol Il for relation Repp_rev
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8. Psetsw=x+1t-B+1*> p, +t> pp and sends w to V

9. P and V both compute the following :

R:P-Qt-Af-At; and z=2 +t -z +t2 -z +13- 2

10. V outputs 1 if for et = (1,...,c" ') € PW, the following relation holds, and outputs
0 otherwise:
COMg (w)=R A (w,c" Y=z

Figure 3.3: Protocol Il for relation Repprev

matrix V described below is invertible.

11 1 1
oty by ty
o6ty t

RN

Let us denote e;,1 € {1,2,3,4} where j* entry of ¢; is 1 for j = i, and 0 otherwise. Let us
consider a vector p’ = (p{,pg,pé,pi) for j =1,2,3,4. Hence, we can compute (p’)T = VflejT.
The computed pi, p3, p3, pi satisfy . pf = 1,5 . pHt; = 0,3, pit? = 0 and >, pHt? = 0.
Similarly, it holds for j = 2, 3, 4.

We define r, to be the extracted value of & and compute it as r, = p%wl + p%’wg + péwg +
piwy, given that COMg (w;) = P - Q% - Atf? : At; then we consider

COMg (r,) = ¢'*™

_ g<ﬁ,p%w1+p§W2+P§’w3+Piw4>
t1 t% t:f P1 t2 t% t% 02 t3 t% tg 3 tq ti ti P4

= (PQ" AV A ) (PQP AP AZ ) (PQP AT A ) (PQ™ A Ay)

— Pzi P}in letzAlzz letgA;z pit}

=P
Hence, the extracted r, is an opening of the commitment P.
Similarly, we define rg,r,, and r,, to be the extracted value of B, p; and pp ,and compute

them as rp = plw; + piws + plws + plw,y, r,, = pdw; + pdws + piw; + plw, and r,, =

plw + pywsy + piws + plw,. We also know that w(c) = z; +t; - 20 + 7 - 23 + 3 - 24 holds for
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all 1 = 1,2, 3,4, since the transcripts are accepting transcripts.

r.(c) = prwi(c) + pywa(c) + p3ws(c) + piwa(c)
= 20321 —|—Zp§ti-z2+2p§t?-23+2pgt?'24 =2z
rp(c) = piw (c) + pjws(c) + psws(c) + piws(c)
=D ptat Y gttty ot sty pitt o =2z
T, (€) = prwi(c) + paws(c) + piws(c) + piwa(c)
= Zpg’zl ~|—Zp§’ti - 29 —i—Zpg’t? - 23 —i—prtf’ - 2

Tpg(€) = prwi(c) + prws(c) + psws(c) + pywa(c)

:ij‘zﬁ—z,of‘ti-@%—z,o?t?-23+prt?-z4 =24

Hence, we have that the extracted polynomials r,, 75,7, and r,, satisfies the following

z3

constraint :

ety =2 2 (from accepting transcripts)

= r,,(C) - cl4y- " rp(c) - " =1ry(c)-rp(c)

Now, we consider 2n such transcripts with different verifier challenges ¢;,i € {1,...,2n},
each with 4 different challenges t;;,j € {1,...,4},7 € {1,...,2n}. Hence, the above constraint
is satisfied by 2n — 1 random challenges, i.e. the polynomial evaluations are consistent with the
constraint at 2n evaluation points, where the highest degree of the polynomial is 2n — 1. Hence,
polynomials identically satisfy the constraints at all points, which implies that (r,,rev(rg)) =y
holds for the aforementioned polynomials.

O

Now we note that the last message w sent by the prover to the verifier in Il (Fig 3.3)
is a witness for the relation R, where R = {(P € G,L € L(F}),y € F;z € F}) : P =
COMg () A L(x) = y}}, and the check computed by the verifier in step 10 of I, corresponds
to ensuring that (R, "1, z;w) € R.

We state the following protocol for relation R which is the compressed proof of knowledge
protocol stated in [8] with the following key differences: the linear form evaluation is checked in
clear, commitment uses structured commitment key and commitment to the left and right half

of the witness sent in the protocol being used to establish consistency with the commitment
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to the whole key which is only possible due to the usage of structure in commitment key with

keys being hidden in the exponent.

We note that even with the same protocol technique as [8] which inherently incurs linear
computational complexity for verifier, we manage to retain a logarithmic computational com-
plexity. This is due to the usage of structured commitment key, which does not require the
verifier to compute a challenge dependent commitment key for the next iteration, and having a
nicely-structured linear form which ensures that verifier can compute the challenge dependent
linear form required for the next iteration efficiently. This suffices for our cause as we aim to
use this protocol for providing proof of knowledge of the last message sent in step 8 of 1I; such
that it satisfies the verifier check in the step 10, which provides us a witness of the relation XR.

We note that the last message vector (polynomial) sent by the prover to the verifier of Il
is aimed to convince the verifier that the vector is consistent with opening of a group element
computed by the verifier and evaluation of the polynomial at a random field element is consistent
with a public field element computed by the verifier. We provide protocol II, for this.

We treat the evaluation of the polynomial w at a fixed point, denoted by w(c), as an

n—1

n=1) " where ¢ =

inner-product relation with a univariate polynomial, denoted by (w,c
(1,¢,...,¢" ). Now, provided that the evaluation point is fixed at ¢ € F,, this inner product
relation can be thought of as a linear form evaluation, where the public linear form ¢!
evaluation at a secret vector w is equal to the public value z € F,. Now, we note that, the
claim in step 10 is equivalent to providing a Proof of Knowledge of witness w in the following

relation :
R={(PeG,LeL(F,),ycFxzecF,): P=COMg (x) N L(x)=y}}
where we have that (R,c" ™!, z;w) € R.

Theorem 3.4 11, is a (ky,. .., ki)-move protocol for relation (R,c™ 1, z;w) € R, where k; =

3, Vi € [(]. It is perfectly complete and computationally special sound.

Proof: Completeness follows directly.
Special Soundness. We consider 3 accepting transcripts for one iteration of PoK IT}, (where

one iteration consists of steps 1-5, and step 6 follows by sending «’, L’ instead of providing a
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Parameters
— Common parameters : (R € G, L. € Fy,z € Fy, He ¢ Gé)
— R=COMjg (w), L. =c" ' =(1l,¢,...,c" 1), 2 = L.(w),

' ‘ . . ¢ - b;
w2 aas (),

~ P’sinput : (¢° € G",wcF}, L. =c* ' € F})
Protocol
1. P computes and sends A;, Ag, 2/ to V
(a) Ay = COMg, (wyr)
(b) AQ = COM@L (’UJR)
(¢) 2/ = (wi, (L)) = (wr,e"7)

2.V checks if
R

€ (A_lag) =e€ (AQJ.qdé)
If the check fails, V aborts, otherwise V continues.

3. V samples s <—r F, and sends s to P

4. P sets w' = wy + s wg, L, = s(L)r + (L)r = (s + ¢¥?)c™?27t and implicitly sets
a/ = (dl, Ce ,dg_l) and 6’ = EL

5. P and V both compute the following :

R =AA5 and d=c"?-2' +s- 2+ ¢ (2 -2

6. If w' ¢ F2 : P runs PoK IIj to prove knowledge of w’, L, such that COMg (w') = P’
and (L., x') = d.
Hence, P and 'V run the protocol IT}, with updated common parameters (P’, L., d, ga') and
prover’s input (¢% ,w’), for (P, L, d;w') € R

7. Ifw' € Fg :
(a) P sends w', L, toV
(b) 'V outputs 1 if the following holds, and outputs 0 otherwise:

COMy (w') =R A (L. w)=d

Figure 3.4: Protocol IIj, for (R, L., z;w) € R
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PoK) as follows, where s1, $9, s3 are all distinct challenges. :

(Ala A2a Z/> S1, wll)
(Ala A27 Zl: 52, wl2>

(Ala A27 Zl? 53, wg)

Let us consider z; = (s;,w}||w}). We note that, as s, 52 and s3 are such that s; # s; for all
(i #7) 4,5 € {1,2,3}, the matrix V described below is invertible.

1 1 1
V= S1 S2 83
st S5 83
Hence, we can compute (a1, as, a3)” = V71(0,1,0)". The computed a1, as, az satisfy Y, a; =

0,%;aic; =1 and Y, a;c? = 0.

Let us consider & = a1z + a25 + azzs, given that COMg (w)) = A; A3 then we consider

COME (a:) = g(a,w>
(@,a1z14+a222+a3zs)

=9
=g

(@rll@r,a1(s1w) ||w))+az(s2wh|lwh)+az(szwslws))
_ g(EL,alslw’l+a252w’2+a353wé)g(ER,a1wﬁ+a2w’2+a3wg>

_ g(ﬁ/,ms1w’1+a252w’2+a353w’3)g(agﬁ’,alw’l—l-agw’?—&-agwg)

_ S1\a1s81 $2\a252 $3\a3s3 S1\a1ayg $2\az2ay $3\asayg
= (A1 A3 )" (A1 AP )72 (A1 AP )% (A1 A ) (A1 AF?) 2 (A1 AT)

_ A(a181+a282+a383)+de(a1+a2+a3)A(a185+azs§+assg)+dg(a151+a282+a383)
| 2

— A AY

= R (since we have e <A£’ H> = e (A, H*) which ensures R = A A%
1

Hence, the extracted x is an opening of the commitment R. From the binding of the
commitment scheme, we can ensure that * = w except with negligible probability.
From the accepting transcripts, we have that ((L.);,@}) = y1 + s;y + sys for i = 1,2,3 .

Now, we consider the following :
(Lo)i,wi) = (si(Le)r + (Le)r, wi + s;wp) Vi e {1,2,3}
= 1+ 5y + 5792 = (L) r, wi) + 5i((Le), w) + 57((Le)n, wr) Vi e {1,2,3}
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= y = (L., w)
O

Theorem 3.5 (IIy), = 501l is a (2n,4, k1, .. ., k¢)-move protocol for relation Ropp.rey, where
k; = 3, Vi € [{]. It is perfectly complete and computationally special sound. It incurs total

communication of (24 2logn) group elements and 6 + 2logn field elements.

We note that (Ilp). performs better than II; for the relation Ropp.rey, however the pre-
processing step needs a commitment to reverse of the linear forms. This is fine in our application
to construct proofs for circuit satisfiability, since the commitments to the reverse of these linear
forms is computed in the preprocessing phase. In case we only a commitment to the linear form,
we can still use our protocol by having the prover send the commitment to the reversed linear
form, together with a proof that it is indeed correct. This can be achieved by the observation

that for L € L(IF) considered as a polynomial, being evaluated at c has equal value as that of

1 n—1

its reverse being evaluated at ¢™" and the result being multiplied with ¢

L(c) = "1 (rev(L)) (c_l) — (L, =" (rev(L), (c_l)"_l)

Hence, if P = COMg (L) is computed in the preprocessing phase, then the prover can compute
@ = COMg (rev(L)) and send @ along with the proof that opening of P evaluated at a random

1 at the onset of the protocol and proceed with

challenge ¢ is ¢"~! times @ evaluated at ¢~
(ITy).. This gives us an overhead of 1 group element and 2 field elements. Finally, we define
[r-x = (Ily). o Iy for relation R, whose communication and computational complexity are

dominated by that of (Ily)..

3.4 Updatable SRS zkSNARK for Circuit Satisfiability

In this section, we construct a zkSNARK with updatable SRS for circuit satisfiability by re-
ducing a statement about a circuit with respect to a public input to opening a linear form.
We take the approach of Attema et al. [8] to handle multiplication gates by linearizing them,
but we need to employ some new ideas to keep the verifier succinct. We recall the technique
for handling multiplication gates in the work of Attema et al. [8], where we have the left input
wire values w,, the right input wire values w;, and the output wire values w,, secret shared
via packed secret sharing, where the randomness is embedded in the constant term. Let f,g
and h be the polynomials with the packed secret sharing of w,, w, and w, respectively,such
that f(X)-g(X) = h(X). Attema et al. [8] handles it by sending a commitment to the wire
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values in a long vector and opening them at a random point ¢, and then using Schwartz Zippel
lemma to argue that the polynomials are identical if f(c) - g(¢) = h(c) holds. However, the
protocol to check f(c) - g(c) = h(c) renders the verifier linear, since the linear form for opening
the polynomials at the random value is linear in the size of the witness. We circumvent this
drawback of linear verification complexity from having to read the linear form by obtaining
commitments to the linear form. The goal is to commit to linear forms required for openings
of f,g, and h, and then invoke our succinct-verifier linear form protocol. We then proceed to
prove that, given A, B and C' as commitment to some secret vectors a,b and ¢ respectively
from IF;‘, the committed vectors satisfies the hadamard relation a o b = ¢, i.e. a;b; = ¢; for all
i€ n].

Following that, we show how to prove that given commitments A, B to two vectors s, 7 € F,
they are some committed permutation of each other. Concretely, s,r € Fy are such that
s = o(r) for some known permutation o. Finally, we show how to put together these building
blocks to construct a protocol for circuit satisfiability with logarithmic proof size and verification

complexity.

3.4.1 Committing to a Linear Form for Multiplication Gates

Let p.=V1(1cc? -+ ¢ HT for a random challenge ¢ chosen by the verifier, where V is the
Vandermonde matrix of the public evaluation points «;,i € [n]. This enables us to compute
fe)=f-V-pe=(f(ar)...f(an)) - pc for a polynomial f € F,_ [X]. Now, instead of having
the verifier compute a commitment to p. (which would render it linear), we instead offload the
computation of p. to the prover and have the verifier check this computation in logarithmic
time.

To check if a group element is indeed a commitment to p. in logarithmic time, our key idea

is to instantiate V as follows

1 e 1
2 2! 2"
V = 22 22i 2271 (3 1)
otn=1) .. 9r=1)i . . 9-1)n

This enables us to reduce the verification of p. to a series of n linear form checks, where the
linear forms correspond to the rows of V. We then use the structure of V' to express a random

linear combination of the rows of V' in a way that is easily checkable.

43



Parameters

— Parameters from preprocessing:

— X := COMg (x) where  := (2,...,2") € Fy,
— lcom := COMg (1) where 1 = (1,...,1) € F}

— Common input:

— V' is the Vandermonde matrix defined in equation 3.1.

Protocol

1. V samples ¢ <—r [, and sends it to P.

2. P sets p, where pe = (pey,+ 1 pey) = V(L e N and p = (0, pers s pen)s
and computes A = COMgz (rev(p.)), A’ = COMgz (rev(p.')).

3. Psends A, A" to V.

4. V samples t +—r F,\ {27,--- ,27% -+~ 27"} and sends ¢ to P.

5. P sets the j row of V as Vj, ie. V; = (2771, 220=1 ... 2= ... 9n(=D) vj ¢
{1,---,n}, and computes B := COMg (V (t)), where V (t) := (t"~1)"V = 370 "'V}

6. P sends B to V.

7. The verifier samples y < F, \ {1,271}, d < F, and sends y, d to P.

8. P sets z = (2t — 1)icpn), ¥ = (pe, ™~ ") and sends 7 to V.

9. P and V independently computes Z = COMg (y" 1o 2) = X' (1com) ™, a =
grn Gt — Vol and g = L5

10. P and V interact to prove the following relation:

(a> run (H2>c for (B, A?ﬁ; (V<t)>T7 pc) € IRCLF—rev
(b) run Ily-g for (A, d™ 1, 7; pe), (A, d™ 1 dy; p.!) € R
(c) run Iy-g for (B,y" 1oz, a;V(t)) € R

Figure 3.5: Protocol Ilcom-muie for obtaining commitment to linear form for multiplication gates.
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Let us define the relation Reom-muit as follows:

Reom-mute = { (A € G, A e G,V eF " "t €Ty pe, pc)
vl = (le... c”’l),pC =Vt p) = 0||pe,
A1 = COMH (pc), A2 = COMG (pcl)} (32)

This relation captures obtaining commitment to a linear form consisting of public linear com-
bination coefficients to obtain the evaluation of an n-degree polynomial at a randomly chosen
point ¢ by the verifier. We note that p.” here denotes the vector (linear form) p,. shifted to the

right by one, which is used in the protocols in subsequent sections to open polynomials defined

by evaluations at the vector (1,¢1,...,¢,) as (1,¢1,...,¢,-1) and (¢4, . .., ¢,) with the same vec-
tor description. That is, given a vector (1,¢y,...,¢,), we can use our relation to capture linear
forms to evaluate polynomials defined by both (1,¢,...,¢,—1) and (cq,. .., ¢,) simultaneously.

Figure 3.5 presents the protocol Ilcom-muit for the relation Reom-mult-

Note that it is easy to add zero checks to the protocol in Figure 3.5 to get a commitment
to pnl|l0 € ]Fj;'. Let n” > n be the length of the commitment key. The verifier samples a
challenge ¢t <—r F, and checks that the commitment P, claimed to be to p, € Fy satisfies
(P, 0" ||t" =™, 0; pa||0) € R. Moreover, it is also easy to get a commitment to the reverse of p,.
For this, the verifier samples a challenge v and asks the prover to make a claim of the form
(pn,u™) = v. It then checks if the commitments P,, @), claimed to be to be to p, and its reverse
satisfy (P, u™,v), (Qn, rev(u™),v) € Repp-rey-

Theorem 3.6 Iom-mur 25 @ (7,4, k1, ..., k¢)-move protocol for relation Reom-mure (€quation 3.2).

It is perfectly complete and computationally special sound.

Proof: Completeness. The prover P computes V(t) = "'V = 37" #/7'V; and B =
COMg (V(t)), where V; is the j* row of V (equation 3.1) and t # 1,...,27% ..., 2-("=D,
Then,

_ (@21 (2')"—1 (2rt)r—1
V(t) = (W SEEE o R W)
Let us define 2 = (2t — 1,..., 2% —1,...,2" — 1), then we have V() o z = ((2t)" —

L...,(2¢)"—1,...,(2")™ — 1), which ensures that, for any y € F,, we have (y" 1o 2z, V(t)) =
(ymtV(t)oz) = &L _ w"=L — This ensures that (B,y" o z,a;V(t) €
{

2ny—1 y—1
R. Also, (V)T p.) = (VTtn=1 V-len=1) = (gn=1 en=1) = (DL _ 3 ongures that
(37 A)B; (V<t>)T7pc) € RCLF—rev-

ct—1
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Since (p./,d™™ 1) = d{p., d™™ "), we have that (A, d"*,v;p.) € R, and (A", d"" ', dvy;p.)) €
R for v = (p.,d" ") € F,.

Special Soundness. Our extractor uses the extractor for (Ily). and IIa-, invoked in step
10 of Meom-mult; as a subroutine. Given (2n,4,3,...,3) tree of accepting transcripts for (Il,),.
invoked for relation (B, A, B;V(t),p.) € Rcrprev, We run the extractor for (Ily). to obtain
openings of B, A and the binding of the commitments and soundness of the protocol ensures
that the extracted openings are V() and p. such that (p., (V(¢))T) = B. Similarly, given
(2,2n,4,3,...,3) tree of accepting transcripts for Il,-¢ invoked for relations (A,d™ ", ~v; p.),
(A", d™ ' dvy;p.), and (B,y" t o z,a;V(t)) € R, we run the extractor for (IIy). to obtain
openings of A, A’, B and the binding of the commitments and soundness of the protocol ensures
that the extracted openings are p,, p.’ and V/(¢) such that (d" ", p.) =7, (d™~ ', p./) = d~y and
(y" 1oz, V(t)) = a. Hence, we get that the following relations hold:

L (y" L V(t)oz) = (y" oz V() =a=2mrEu L vl

2my—1 y—1
_ nan on n_1 mn__
— (Y"1 V() oz) = 2 G vl

2. (Vpe, 71 = (Vp)Tt™=1 = p, T (VTtr=1) = p TV ()T = (p, V()T) = D2 —

ct—1
n—1

Vp.=rc

3. {p,d"™Y) = dy = d{pe,d™™ ")
= <pc/7 dn_1> = d<:067 dn_1>

The last relation provides us, that given two polynomials p. and p. defined by their vector
of coefficients, we have p.(d) = d- p./(d) for some d € F, sampled completely at random. Hence,
given accepting transcripts with n-different challenges vy, d and t each, following relations hold

from Schwartz Zippel Lemma:

L V(t)oz = ((20)" — L,...,(2t)" — 1,...,(2")" — 1), where 2 = (2 — L)icpy
— v<t> = Z?:O tn_l‘/j, where ‘/} = (2j_17 22(j_1)7 . ’Qi(j_l)’ ce 72n(j—l)>

2. Vp.=c*1

3. pC/ = OHPC = (Oapcla Tt 7pcn> when Pec = (pcla Tt 7pcn)

which ensures that our extracted vectors are such that p. is a linear form whose commitment
is provided, and p. contains the coefficient linear combinations for obtaining evaluation at c.
Also, p. is a linear form which is p. shifted by one place to the right.

]
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3.4.2 Hadamard Product Argument

Let a,b € Fy, recall that the hadamard product is defined as aob = (arby, ..., anb,) € Fy.
Our goal is to prove knowledge of three vectors that satisfy the hadamard product relation,
given succinct commitment to the vectors.

Concretely, given three vectors a, b, ¢ € Iy such that aob = ¢, we define pq (X ), pp(X), pe(X)
F?[X] such that pa(2') = a;, ps(2') = b; for all i € [n] and pe(X) := pa(X) - pp(X). We define
hiey = (pe(2™th), ..., pe(22"71)). The protocol proceeds as follows. The prover computes com-
mitments A, B,C to the vectors a,b and ¢’ := cl||h() respectively. The verifier then samples
a challenge z, and the prover responds with commitments P,,, P, to the reverse of p, and p,,,
where p, and py, are defined as p, = V=11 2 22 -+ 2" DT poy = VL 2 22 ... 22721,
Then the prover opens the polynomial evaluations of pg(X), pe(X), pe(X) at a random point
chosen by the verifier, using the commitments to the vectors and the linear forms.

The hadamard relation R;.q with suitable modification to incorporate the commitments to
the vectors is defined below, and the protocol Il;.q presents the protocol for relation Ry.g4. Note

that to ensure zero-knowledge property of the protocol Il;.4, to prove a o b = ¢, we invoke the
protocol for (A, B,C;al|d, b|le, c||de) € Rhag Where d, e <5 F,.

thad:{(AGG,BeG,CeG;ae]F’;,beIFg,ceFZ):
A= COMg (a), B= COMg (b),c = c||h),C = COMg (c)}

Theorem 3.7 Il,.q is a protocol for Rnaq. It is perfectly complete, special honest-verifier zero-

knowledge and computationally special sound.

Proof: The proof of completeness is straightforward to argue.

Special Soundness. Let y, 1y’ be defined as y = u+ra+7?b, y' = u' +rc, ¢ = vi +rw, +
r?wq and ¢’ = vy + rwyws. Now we note that the we invoke (Ily),. for (UA’”BTZ, P,,v1 + rw; +
r?wy; u+ra+r2b, p,) and (U'C", Py, va+1wiwe; w' +1¢, pon) € RoLrrey.- Our extractor invokes
the extractor for (Ily). to extract y, y', p, and pa, such that (p,, y) = ¢, (pan, ¥') = ¢'. Extracting
Y1, Y1 Yas Yo, Ys, Y5 for three distincet challenges e, es, 3, our extractor additionally computes
w,u',a,b,c such that (p,,u) = vy, (pon, W) = va, (pn, @) = w1, {pn, b) = wo, (pan, ') = wyiws.
Note that the binding of the commitment ensures that the correct w, ', a, b, ¢, p, and p,, have
been extracted.

Our extractor again invokes the knowledge extractor of Il om-muix to extract p,, pan such that

o=V 1z2% - 2T and po, = V711 2 2% .-+ 22"")T and the binding of the commitment
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Parameters
— Common input:

— V is the Vandermonde matrix defined in equation 3.1.
— A= COMg (a),B=COMg (b),C = COMgz ('), such that ¢’ = ¢||h(qop)

— P’s input: a = a*||d,b = b*||e, ¢ = ¢*||de such that a* o b* = ¢* and d,e < F,
Protocol

1. P computes the polynomials pa, py € F}[X] as pa(2°) := a;, pp(2°) := b; Vi € [n]. It defines
Pe(X) = pa(X) - pp(X).

2. P samples u 5 F',u' < F2"~! and defines p, € F}[X], pu/F2"[X] as pu(2°) := u; Vi €
(n], pu(2") := u} Vi € [2n]. P computes U = COMjg (u), U’ = COMg (u') and sends
U U toV.

3. V samples z <—p F, and sends z to P.

4. Define p, =V 1222 -+ 2T and po, = V711 2 2% --+ 2272)T. P and V run Meom-mult
to obtain commitments P,, P, to the reverse of p,, pan.

5. P sets wy,wy as wy = pa(z), and wy = pp(2). P also sets vy, vy as v1 = Py (2), Ve = pur(2).
6. P sends wq, ws, v1, vy to V.
7. 'V samples r <—r F, and sends r to P.

8. P and V independently computes Y = UA™B™, Y’ = U'C", y = u+ra+r2b, y' = v +re,
q = v + rwy + r’wy and ¢’ = vy + rwyws.

9. P and V run (Il,). for

(a) <Y7 PTw q; Y, pn) € :RCLF-rev-
(b) (Y/> P2n7 C]/; yla p2n) € :RCLF—reV'

Figure 3.6: Protocol Ilp,q for Rpaq

48




ensures the consistency of the extracted openings. Hence, it follows that the extracted witnesses

satisfies pu(2) = vi, pw (2) = v2,pa(2) = w1, pp(2) = w2, pe(z) = wiws.

We can extract a;, by, ¢; for i € [2n+2] distinct challenges z; such that pe (2;) = pa, (2:)pe, (2:)-
If any of the extracted a;, b;, ¢; differ, we will have broken binding and so we have that except
with negligible probability, all the extracted a;, b;, ¢, are identical. Thus, we have extracted
a,b, c that satisfy po(z) = pa(2)pe(2) for 2n 4 2 distinct z. This allows us to conclude (from
the Schwartz-Zippel Lemma) that pe (X) = pa(X)ps(X).

Zero-Knowledge. Given access to verifier’s randomness z, r, the simulator 8,4 proceeds

as follows:

COMg
1. 8pag samples wy, wy =g Fy, y < Fy Ty <5 F2" and sends wy, wa, U = ﬁﬂ(y), U =

CcO la !
l\é—r(y)avl = <pn>y> —Trwy — 7"21,U2,'U2 = <p2n>yl> — Tw1Wa to V.

2. Shad sets Y = COMg (y),Y' = COMg (V'),q = (pn,¥). ¢ = (pon Y')-

3. Shad then honestly executes (Ilz). to show that (Y, P, q; Y, pn),
(Yla P?Tw q/a y/7 p2n) € :RCLF-rev in Step 9.

We now argue that the distribution of the simulated transcript is indistinguishable from
the transcript obtained from real protocol execution. Since the underlying vector y,y’, w,
and wy are sampled uniformly at random, the computed U, U’, v1, vo subject to the constraints
COMg; (y) = UA™B™, COMg, (y') =U'C", ¢ = vy +rwy +r?°wsy, and ¢ = vy + rwwy outlined
in Step 9, where r <—p F,, are distributed uniformly at random in the transcript. The remaining
computations are performed honestly and are thus indistinguishable from an actual protocol
execution.

O

3.4.3 Permutation Argument

Our starting point is the Bayer-Groth protocol [17] for the permutation argument. Let PERM,, =
{f : f:[n] = [n] such that f is a permutation} and ¢ € PERM,. For two vectors r =
(r1,-.,7m) € F} and 8 = (s1,...,8,) € F7,
known o. To prove the same, we leverage the technique introduced by Bayer and Groth of
proving [[;_,(ri +i8 + ) = [[i_ (si + (i) + ) for verifier’s choice of 3,7 € F, sampled

uniformly at random.

we aim to prove that o(r) = s for some publicly

The proof is instantiated by having the verifier choose two challenges 3,7 € I, and the
prover constructing two vectors @ = (aq, ...,a,) and b= (by,...,b,) defined as a; = r; +if+~
and b; = s; +0(i)f+ for all i = 1,...,n, and providing a proof that []}"_, a; = [[;_, b; holds.
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The proof for [}, a; = [}, b; proceeds by constructing two vectors ¢, d’ € F;*! such that
g = 1,dy = 1 and ¢} := ngl(n- +if +7),d; = le(si +0(i)B + ), for all j € [n]. Now
we consider two circuits consisting of n multiplication gates, first circuit with vector of left
inputs @ = (ay,...,a,), vector of right inputs e = (ey,...,e,) = (1,¢1,...,¢,1) and vector
of outputs ¢ = (cq,...,¢,), and second circuit with left input b = (by,...,b,), vector of right
inputs f = (f1,...,fn) = (1,dy,...,d,—1) and vector of outputs d = (dy,...,d,). Our idea
now is to check the hadamard product relations a o e = ¢ and bo f = d by leveraging the
shifted structure of the vectors in the hadamard products; and using protocol Icom-mut vielding
a succinct verifier permutation argument.

We consider the following relation R,em for the permutation argument.

Rperm = { (R, S, P;7,5,0) : R = COMg (r), S = COMg (s), P = COMg (o(1),
I=(1,...,n),s=o0(r)}

We present the protocol Ilperm for the same in Fig 3.7. We define pn, pon, 0, and oo,
as pn = VIl 2 222", pon = VL 2 2202270, 6, = V(1 w w?...w" ) and
don = V711 w w?...w? 1) where V is a Vandermonde matrix defined by the public evaluation
points. We recall that the linear forms p,, po, are for computing evaluation at a random point
z, and the linear forms ¢,, d,, are for computing evaluation at a random point w. We note that
we can batch the invocations of (Iy). for Roppaev in each of the steps (a),(b) and (c) in Step

11 of I erm using the techniques of Attema et al. [8].

Theorem 3.8 Il,em s a protocol for Rpem. It is perfectly complete, special honest-verifier

zero-knowledge and computationally special sound.

Proof: The proof of completeness is straightforward to argue.

Special Soundness. We rely on the sub-routine II5-3 invoked in step 10 to obtain openings
of A,B,C and D provided appropriate (2,2n,4,3,...,3) tree of accepting transcripts. We
denote f,, f, f. and f, to denote the openings of A, B,C' and D respectively which satisfies

the following constraints, (pn, £,) - (pn, fe) = (020, fe) and (6n, £1) - (O, Fa) = (020, Fa)-

The binding of the commitment scheme ensures that f, = a, f, = b, f, = c" and f, = d".
The constraints of the linear forms from (A, P, z1;a, pn),(C, Py, z2;¢”, pn), (B, Qn,w1; b, 6y),
(D, Qn,wa;d", 6,), (C, Pap,z120;¢", pby), (D, Qanywiwe; d”,85) € Rerr and the verifier check
in step 9 further ensure that the polynomials satisfy p. = ps - pe at a random point, i.e.
the polynomials are identical with high probability via Schwartz-Zippel Lemma. Hence, the

evaluations at each point satisfy the relation with high probability, which gives us ¢; = a; - ¢; =
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Parameters

— Parameters from preprocessing:

— P =COMg (o(I)), P'= COMj (I) for I = (1,...,n)

— left = COMg (rev(1]/0]|0)) and right = COMg (rev(0]|1]|0)) for linear forms (1//0]|0)
and (0(|1|0), where 0 = (0,...,0) € F}

~ T=COMg (1),1=(1,...,1) € F?

— Common Input: R = COMgz (7),S = COMgz (s)

~ P’s input : (r, s,0,9%)

Protocol

1. V samples 3,v <—r F, and sends 3,7 to P.

2. P computes x := [[\_,(r; +i6 + ) and sends z to V.

3. P computes the vectors a,b € Fy such that a; = r; +i8 + v and b; = s; + ()5 + v
for all 6 [n] P additionally computes ¢/,d" € F}*' such that ¢f = 1,d; = 1 and

=TI ai, d; = T[] b, for all j € [n+ 1]\ {1}, and defines ¢, d, e, f € F} such that

cl- cHl,d dzﬂ,ei =d, fi = d, for all i€ [ ], ie. ¢j = [[_yai,d; = [[_, b, for all
j€[n],and e; =1, fi =1 and e; := HJ L a;,d; Hg;llbl-, for all j € [n].

4. P computes the polynomials pg, pe and p. as pa(2i) = a;,pe(2) := €; and p. == pq * Pe,
and similarly computes pp, py and pg as pp(2°) := b;, pp(2°) := f; and pgq := pp - py.

5. P and V independently computes A = R(P')T” and B = SP?T".

6. P computes ¢’ = ||(pc(2"), ..., pc(2?")) and d” = d'[|(pa(2"), ..., pa(2%")), C =
COMg; (¢”) and D = COMg (d") and sends C, D to V.

7. 'V samples z,w <—p F, and sends z,w to P.

8. P computes p, = V1 z 22...2" Y, pon = V1 2 22...22"72%), §, =
V1 ww?. . cw™ ) and ay = V1L w w? .. w??).

9. P and V run Ileom-mure to obtain commitments P,, Ps,, (), and ()s, to the reverse of

PrsPans0n and 05 where ph = 0]|pan and 65, = 0]|d2n.

Figure 3.7: Protocol Il,em for Permutation Argument
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10. P sets 21, 2o, wy, and wy as 21 = Pa(2), 22 = Pe(2), w1 = pp(w), and wy = pg(w).
11. P and V run (Ily). to prove the following:
(a) (C.left, 1: . (1]0]0)). (C.right, z: ¢, (0] 1[0)), (D, left, 1:d”, (1]0]0)).
D, right, z;d”, (0]|1]|0)) € ReLprev

(
(
( ) (A P?’Lazla 7;0n) (Ca PnazQ;Cvan)a (B7Qn7w1;b7 5”)7
(D Qnaw%d” 5 ) € :RCLF rev
(

(c) (C, Py, z120:¢", phy), (D, Q2n7w1w2,d// n) € ReLprey-

Figure 3.7: Protocol Il,em for Permutation Argument

a; - ¢;—1 (considering ¢y = 1). We get a(2) o Ceft(2) = Cright(2) and b(w) o dies(w) = dright(w)
where ¢ = (1, ¢, c”_l) = e, c,;ght =(¢,...,c") = ¢, dier = (1,d,...,d" ™), and dyighe =
(d,...,d"), thatis a;-c/_; = ¢! and b;-d}_, = d} holds for all i € [n]. Additionally, the constraints
of the linear forms from (C, |eft, 1;¢”,(1]]0]|0)), (C, right, z; ¢”, (0]|1]|0)), (D, left, 1;d", (1]|0]|0)),
(D, right, z;d", (0]|1]|0)) € Rcrr ensures that the ¢f = 1 and df = 1. The constraints of the
linear forms from (C,right,x;c”), (D, right,z;d") € R ensures that the ¢! = d’ = x which
provides us [, a; =z =[], b;.

We define r,s € F as r; = a; — i3 — 7,8 = bi — 0(i)3 — 7 for all i € [n], for the public
permutation 0. We rely on the [17] to ensure that given [[}_, a; = = = [[;_, b; holds which
implies [}, (r; +i8 + ) = [[;—,(si + o(i)8 + 7) holds, we can ensure that the computed
(extracted) vectors r, s are such that o(r) = s. The argument follows provided we have O(n)

accepting transcripts of Ilem. O

3.4.4 zkSNARK for Circuit SAT

Given an upper bound on the circuit size n, the universal updatable SRS is generated by running

COM .Setup to commit to 2n + 2-length vectors to obtain the commitment key (g%, H%). Here

g
a circuit-dependent setup phase so the verifier will read the circuit only once. We omit the

is the proving key and H? is the verification key. Since the SRS is universal, we need

description of algorithms for updating and verifying the SRS since this corresponds to updating
and verifying the commitment key, and is the same as in Daza et al. [52]. We note that the
circuit-specific preprocessing material can be deterministically computed from the universal
SRS and the circuit description, without any secrets.

We describe the protocol as an interactive public-coin argument. The final zkSNARK
construction is in the Random Oracle model using the Fiat-Shamir heuristic.

Preprocessing. We use the preprocessing phase used by Daza et al. [52] to obtain a commit-
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ment to the linear gates. They establish the existence of a circuit preprocessing methodology
that effectively imposes constraints on the fan-in and fan-out of each gate in the circuit to a
maximum value of M, which only incurs a linear expansion in the size of the circuit.

Let x1,...,x, be the public inputs of the circuit. Let m be the number of multiplication

gates in the circuit. We then require a commitment key of size n = 2m+2. Let z¥, 2, 29 denote
the left input, right input and output of the ¥ multiplication gate. Let ¥ = (a:f)ie[m], xft =

(2 )icim), £ = (20)igfm). Then x* o 2 = 2. Additionally, there exist vectors w}, w}’ € F7"
with at most M non-zero entries such that (wl, ) + 2f = ;, Vi € [v], (wk, z°) = 2F Vi €
{v+1,...,m} and (wf,x®) = zf Vi € [m]. Let W5, W € F/"*™ be matrices with their i""
rows equal to w’ and w’ respectively. Then W% and W% have < M entries in each row and
each column. The following applies to W* for k € {L, R}. W* can be written as the sum of M
permutation matrices, i.e. W* = Zf\il WP where each WF is a permutation matrix.

In addition to the preprocessing of [52], additional preprocessing material is generated that
is required by our sub-protocols, Ilcom-muit Ilhad, and Iyem. The verifier obtains commitments
to WE, I and o(I), where I = (1,...,n), WF and of : [n] — [n] are as defined above. The
verifier also obtains commitments to 1, 2, (0[/1][0), (0]|0f|1) where 0 = (0,...,0) € Fy,
1=(1,...,1) € F?, 2y = (2,...,2") € F™.

Protocol Overview. Post circuit preprocessing, our circuit is now fully defined by '&)f ok,
where " is the vector containing the non-zero entry (if there is one) in each column of W}
and oF : [n] — [n] is the permutation that takes as input a column number j and outputs
the row to which the j** entry of w; belongs. Our goal is to get a commitment to a random
linear combination of the rows of W¥, i.e. a commitment to W¥*(c) = S0 wkF o oF(c™). To
do this, we first demand commitments to o¥(c™) from the prover, for a random challenge ¢
chosen by the verifier. We can check that these commitments are honestly generated using
Mperm- We additionally ask the prover to provide us with commitments to w o ¢¥(¢™) and a

proof iy ) that attests to the correct computation of a Hadamard product. To check

k

i

wFo o;(c™
this Hadamar(d product, we deploy our Il,.q protocol. Since ﬁ)f,a are public, II,,q can be
invoked without requiring zero-knowledge.

The above protocol allows us to get commitments to W (c) and W¥(c), but to show that
the constraints of the circuit are satisfied, we need to prove that (WZ(c) + uWE(c), %) =
(e™ 2ty = S0 i 4+ ule™, 2ty = (™ a2t +uxf)y — Y7 ¢y for u <+ F,. We cannot
test for equality directly since that would require the prover to send out linear combinations of
xl, xf and 9, violating zero-knowledge. Set K = Y7 ¢~ ly;, Ly = WE(c) + uWF(c), Ly =
™y, = 9 and y, = " + ux®. Let L, be the m — 1 vector comprising of the first m — 1

elements of Ls. Let (Ly), be the last element of Ly. The above constraint can then be
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written as (L1,y,) = (La,y,) — K. To prove this in zero-knowledge, we have the prover
sample 7y « F™ 7y + F"~1 and set ro = #o||((L1,71) — (La, 72))(L2);,!. This ensures that
(Ly,71) = (Ls, 7). The protocol now proceeds as follows: the verifier samples a challenge z
and the prover proves that (Ly,zy, + r1) = (Ls, 2y, + m2) — 2K. We can directly test for
equality here since the prover now needs to reveal (L, zy, + 1), which is a random value that
reveals nothing about the input.

This allows us to conclude that the commitments to x%, £® and z© satisfy the linear
combination constraints imposed by the circuit. Testing for multiplication, i.e. checking if
xl o xf* = © can be done by invoking our protocol Il,.g by adding randomness to the input
vectors in order to preserve zero-knowledge.

Since we reduce circuit satisfiability to opening a series of committed linear forms on com-
mitted vectors, we can optimize by batching the opening of several linear forms together.
Consider two instances (P;, Q1,y1) and (Ps, Q2,y2) claimed by the prover to belong to Repp_rey-
To prove this, we modify the protocol in Figure 3 as follows: let @y, xs be the vectors to
which P; and P, are commitments. Let By, By be the linear forms to which ¢); and s
are commitments. We first demand that the prover send us commitments to pr1,pr1,Dr2
and ppro as it would in the original protocol. We then ask the prover to make claims about
x1(c), Bi(c),pr1(c),Pra(c) and ®5(c), Ba(c), P o(c), Pra(c) with respect to the same chal-
lenge c. This allows us to combine the prover’s claims to open ¢®~! on a single vector given by
@y + By +t°py, + ’pp, + t'@y + 1°By + 19p; , + t'pp, for a random challenge . Thus, we
can open O(M) linear forms while incurring the communication overhead of opening a single

linear form. We present the complete protocol Il.,; in Fig. 3.8.

Theorem 3.9 Il is a public-coin, Honest Verifier Zero-Knowledge Argument of Knowledge
for CSAT with O(logm) round complexity, Ox(m) prover complexity, and Oy(logm) communi-
cation and verification complexity, where m is the number of multiplication gates in the prepro-

cessed circuit.

Proof: Completeness follows directly.

Special soundness. We invoke the extractor of (Ily). to extract witnesses for 2m+-2 distinct
ts in Step 10(a). Given these witnesses, we can either conclude that ¥y is a commitment to
c™||0 or break binding of the commitment scheme. Further, we can invoke the extractor of
Hperm to extract Vk € {L, R} Vi € [M] vectors uf such that u} = oF(c™). We invoke the

7

extractor of Iln.g to extract Vk € {L, R} Vi € [M] vectors t} = oF(c™) o W} ||h(yk(em)omt) In

i owk)

steps 10(d) and 10(e), given witnesses for 2m + 2 distinct challenges, we either extract vectors
Ly, L such that L = "M tF+uth and LY = (O] (L3 )m—i+1)ieim)) = rev(Ly) or break binding.

i=1 "1
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Universal updatable SRS: (g%, H%)
Preprocessing Compute commitments to the following circuit-dependent vectors:

~ SF=COMg (wF|0) Vi € [M] k € {L, R}
= COMg (ck||0) Vi € [M] k € {L, R}
— ones = COMgz (1™]|0), Py = COMg (m]|0), where m = (1,2,--- ,m).
Input
— Public input x1,...,X»

— P’s input is the satisfying assignment z”, 2%, 2¢ ¢ [y P samples d, e «—g [, and defines
" =ab|d, &" = x|, ° = x°||de||hzr5m) € F?mﬂ

15015

~ V’s inputs are the commitments X* = COMg (2*;7*F) for k¥ € {L,R},X° =
COMg (29;79) with 7%, 7% 70 <, F,

Protocol
1. V sends ¢ «—r F, to P.
2. P computes for k € {L, R}:

(a) Sy = COMg (c™0)
(b) 3 = COMg (07 (c™)||0) Vi € [M]
(c) Wf = COMg (w0 05 (™) | Aot (emy) Vi € [M]

P sends all the computed commitments to V.
3. Vsends u < F, to P.

4. P samples r,7 <5 F}', 5,5 <= Fy such that (W5 (c) + uWF(c),r) = (™, 7) and sends
R = COMg (r; )andR—COMa( 7;8) to V.

5. Vsends z <—r F, to P.

6. Psets L1 = WE(c) +uWh(c), Ly =™ K =37 ¢ 'x; and sends vy = (L, 22 +7) =
(Ly, zxl + 2ux® 4+ 7) — 2K and L7® = COMg (rev(L;)) to V.

7. Vsends t # ¢t th, tperm <1 Fy to P.

Figure 3.8: Protocol Il for Circuit Satisfiability
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10.

11.

P and V invoke Ilcom-muir to obtain commitments to the reverse of p,, 11, pam+2 With respect
to the challenge t;, and to py,, p2m With respect to the challenge tperm,-

P sends w = (Ly,t™) to V, where t™ = (1 t' t* ... t'™71]|0).

V sets £4 = (TTX, WE(ITX, W/)*. Eventually, we need a commitment to the reverse of
the first m elements of the vector underlying £/. This is accomplished in steps 11(d) and

11(e).
Set V = (XO)*R,V = (XE)*(X®)*R. 'V checks if

(a
(b

)" —1
E t2m+27 (Ccl—l) S RCLF—I"GV

) (

) (20, 3K, SF) € Rperm Vi € [M] VE € {L, R}
(c) (SF,xF WE) € RpaaVi € [M] Vk € {L, R}
(d> (Lllu t/mHO U)) € :RCLF rev

(e) (L7, rev(t?™*2), w) € RoLprev
(f) (V, L5 v1) € R

(2) (V,e™ v +2K) € R

(h) ( XR X()) € Rhad

The checks in steps (c¢) and (h) use the commitments to p,, 11, pam+2 Obtained in Step 8,
while the checks in step (b) use the commitments to py,, pam. We don’t need commitments
to t2™T2 ™ ™ in steps (a), (e) and (g) because the verifier can compute a random linear
combination of these vectors without help from the prover. Moreover, all the claims about

the openings of linear forms made by the prover in Steps 8 and 11 can be aggregated using
our protocol for batched linear form openings.

Figure 3.8: Protocol Il,: for Circuit Satisfiability
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In steps 10(f) and 10(g), given witnesses for distinct 21, 2o that satisfy the given constraints,
we can extract vectors y, 2%, 7, 7 such that Vi € [2], (L, 2% +7) = (c™, zy + 7) — %K.
This implies that (L, 2°) = (¢™,y) — K. Given accepting y for distinct challenges uy, uy, we
can extract W¥(c), W (c), &%, & such that (W%(c), &%) = (™, &%) — K and (W%(c),z°) =
(e™, &), If the ¥ &7, 9 obtained in this way are different from the ones extracted by the
extractor of Ilj,g in Step (h), we will have broken binding of the commitment scheme.

Given &%, 2" &° for 2m + 1 distinct ¢, we either break binding or conclude that &%, &, ¢
satisfy the linear constraints of the circuit as well as the multiplicative constraints, and so
x0 = (&:O)ie[m] must be a satisfying assignment.

Special HVZK. We describe a simulator that, given commitments to a satisfying assign-
ment and the randomness of the verifier, computes a transcript which is perfectly indistinguish-

able from the transcript of a real execution. The simulator & acts as follows:
— It computes all commitments honestly in Step 2.
— In Step 4, it samples r, 7 < Fi', 5,5 < Fy such that (W (c) + ulW¥(c),r) = (c™, ) —
K. Tt sots R — SOMa (rs) p_ COMg (7.3)

oy U= ooy

— In Step 6, it sets v; = (Lq, ).

It honestly executes Step 8.

It honestly executes Steps 10(a)-10(e), and invokes the simulator 8, 8yaq of IIy with the

corresponding verifier randomness in Steps 10(f)-(h).

We analyze the distribution of the transcript. In both executions, the elements R, R, v, are
distributed uniformly at random. The indistinguishability of steps 10(f)-(h) follows from the
simulators of Iy and Il,,40marq. All other computations are honestly executed.

(I

3.5 Compressed Sigma Protocol for opening of Commit-

ted Homomorphism

A bilinear group arithmetic circuit is a circuit in which the wire values are from Gy, Gg, Gr
or F,, and the gates are group operations, F, -scalar multiplication, or bilinear pairings. Bi-
linear circuits are of interest since they directly capture relations arising in identity-based and
attribute-based encryption [99, 72], structure-preserving signatures [2] etc. Handling bilinear
circuits directly in a ZK system avoids expensive NP reductions or arithmetizations to repre-

sent group operations as an arithmetic circuit. The work of Attema et al. [11], building on the
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work of Lai et al. [81], gives a succinct argument system for bilinear group arithmetic circuits,
by generalizing the compressed sigma protocol framework. A key building block is a protocol
for opening a homomorphism on a committed vector. However, as in the case of arithmetic
circuits, the verifier remains linear.

We construct a designated-verifier succinct argument for opening a committed homomor-

phism on a committed vector, where the verifier is logarithmic.

3.5.1 Commitment Scheme

In this section, we use additive notation for groups in line with prior works for bilinear cir-
cuits. We begin by generalizing the homomorphic commitment scheme of [81], to work with
logarithmic amount of randomness. We note that @ denotes @ = (ay,...,a,) and for g € G
and € = (21,...,2,) € Fy, gx denotes gx = (ga1,...,92,) for g = (g1,...,9,) € G" and
x = (r1,...,7,) € Fy, inner product with scalar (g, x) denotes (g,x) = gi171 + ... gnTn
s for g = (g1,...,9,) € G} and h = (hy,...,h,) € GY, inner product e(g,h) denotes
e(g,h) = e(gi, h1) + e(ga, ha) + ... + €(gn, hy). Recall the key distribution ML, for n = 2¢

L
ML, ={a:a=(a,...,a) <r Fg,a = (H dfi)rie{o,l}}

i=1
We now consider a similar distribution over group elements,

¢
Mﬁn(G) = MLQZ(G) = {ga g <R G, a= (dl, . ,dg) <R Fg,a = (H C'lixi>xi6{071}}
i=1
We define a new commitment scheme which differs from the one proposed in [81] (and

subsequently used in [11]) only in that we sample the commitment key from MZL,,(G).

Definition 3.2 (Commitment to (F,, Gy, Gs)-vectors) Let (¢,G1, G2, Gr,e,G, H) be a bi-
linear group and ng,ni,ne > 0. We define a commitment scheme COM® for vectors in

Fyo x GY* x Gy?, given by the following setup and commitment phase:

~ Setup : (h,g) <MLL ,1(Gr), H < ML (Gs), G 5 ML. (Gy)
Here, (h,g,H,G) = (ah,bg,eH,dG) for some structured F, vectors @, b, €, d, where h, g
is sampled to be h = e(hy,H),g = e(g1,H) for some hi,g1 <r G1.' Then, (cko =

1We note that the distribution remains the same even when ag; is sampled from ML, (G1) and g is then
set to g = e(g1, H), making the final commitment key for Fg-vector to be g = @ag, as opposed to when g is
directly sampled from ML, (Gr).
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((@hy,@h), (bg1,bg)), cky = €H, cky = dG) are the commitment keys and
(cko = (@H,bH), ck; = €G, cky = dH) is the verification key.

~ Commit : COM® :F x G}* x G* x F, — G3,
(z,y,2;7) = hy+(g,x) + e(y, H) + (G, 2),

iy + (gy. ) + e(y, Hy) + e(G, z>>

where hy + (g, z) + e(y, H) + e(G, z) =
hQ’y + <927 13> + €<y, H2> + €<G2, Z)

The verification key is used to check that the commitment key has been updated by the
prover, by having the prover send the first element of the commitment key ck to the verifier,
and the verifier using the pairing check to ensure that the split-and-fold technique has been
used correctly to update the commitment key and check that the updated commitment (sent

by the prover) with respect to the updated commitment key is consistent.

We define an assumption called eGDLR assumption 3.4 along the lines of GDLR assumption
in [81] (restated in 3.3), show that it is implied by SXDH (Lemma 3.5) and prove binding of
COM® under eGDLR.

Lemma 3.2 COM? is computationally hiding under DDH in Gy, and computationally binding
under SXDH.

We now formally present our hardness assumption eGDLR 3.4 and then present the proof

of Lemma 3.2 in Lemma 3.3 (binding) and Lemma 3.4 (hiding).

3.5.2 Hardness Assumptions

Here, we first recall the GDLR assumption presented in [81], and then we introduce our eGDLR

assumption that extends the guarantees of GDLR to structured strings.

Definition 3.3 (Generalized Discrete Logarithm Representation Assumption [81]) Let
m > 1 and ny,ng,ny >0 (not all zero). (m,nr,ny,ny)-GDLR assumption holds in
(¢,G1,Go,Grp,e,G, H), if for any PPT adversary A, we have

e(ay,B2) + ¢(By,as) + (Br,ar) = 07 A (a1, a2, ar) # (0,0,0)
by g FI7"2 by <= FI™ by <—p FIxnr
B, = Gb;,B, = Hby,,B; = Kby
(a1, as,ar) < A(q, Gy, Gy, Gr,e,G, H, By, By, Br)

Pr < negl(A)

where a; € GY?, a3 € Gy, ar € FT.
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We now introduce the eGDLR assumption.

Definition 3.4 (extended Generalized Discrete Logarithm Representation Assumption)
Let m > 1 and ny,ng,ny > 0 (not all zero). (m,np,ni,ne)—eGDLR assumption holds in
(q¢,G1,Go,Grp,e,G, H), if for any PPT adversary A, we have

C(al, BQ) + e(Bla a’2) + <BTa a’T> = OT A (a’la as, a’T) 7é (07 07 0)
by ML by =g ML by +—p ML
1 R 2 R ngy T R_ no S neg|(>\)
B1 == thBQ == HbQ,BT == KbT

(a’b as, a’T) — *A(qa Gla GQ7 GT» €, G7 H7 Bla B27 BT)

Pr

where a; € GY?,ay € Gy, ar € F)7.
Lemma 3.3 COM® (Definition 3.2) is computationally binding under eGDLR assumption.

Proof: If binding of the aforementioned commitment scheme is broken, then we get x,y, 2,y

and @',y , 2/, where & # ' or y # y' or z # 2z’ or v # , such that COM®(x,y, z;7) =
COM®(2',y', 2';7")

hy+ (g1 @) + e(y, Ha) +¢(Gi, 2 >> _ (m’ +{gr.@) + e

hay + (ga, @) + ey, Ha) + e(Ga,2) ) \hoy/ + (9o, @) + e

hi(y =7") + (g1, (x — ) T e((y —¢), H1) + e(G1, (2 — 2)

)

ha(y =7") + (g2 (. — @) + e((y — ¢), Ha) 4+ €(G, (2 — 2
which breaks the (2,n¢ + 1,11, n2)-eGDLR assumption. O

Lemma 3.4 COM® (Definition 3.2) is computationally hiding under DDH assumption in Gr.

Proof: Hiding of COM?® follows from the fact that (hy, he, h],hJ), where hy, hy € Gp and
v g F,, is computationally indistinguishable from (hq, he, h{,7), where hy,hy € G and
v «rF,, v <r Gy, when DDH holds in Gr.

We construct a DDH adversary A for Gr given that we have a distinguisher B which
distinguishes (hy, ho, h{, h3) from (hy, ho, b, ), where hy, hy € Gr and v < F,, 1 <r Gr.

1. A receives a DDH challenge ch = (g, g, ¢°, g¢)
2. A sends the challenge vector ch to B

3. If B outputs that ch is of the form (hq, he, h, h]), then A outputs ¢ = ab; otherwise A
outputs ¢ # ab.

60



A succeeds with overwhelming probability, if B does, which follows from the following

observation :

— if ¢ = ab, then the challenge vector ch = (g, g%, g°, g°) = (h1, ha, h], h3) where hy = g, hy =
g%, v =>b, and

— if ¢ # ab and ¢ €g F, then ch = (g, g% ¢°, g°) = (h1, ha, h], 1),
where hy = g, ho = g%, v = b and r = ¢°.

Hence, we have that (hy, ho, h, h3) and (hy, ho, h,r) are computationally indistinguishable
under DDH in Gy, where hy,hy € Gr and v < F,, r <r Gp. From the above property,
we note that use of h], h) to re-randomize the two components of COMPE is indistinguishable
from using completely random elements to re-randomize the same, and hence COMZE is hiding
under DDH in Gr.

([

We now show that eGDLR is implied by SXDH.

Lemma 3.5 Let g be such that 1/q = negl. Let m = 2; n; > 0,i = 0,1,2 are not all zero.
Then, the (m,ng,ny,ne)-eGDLR assumption holds if the SXDH assumption holds.

Proof: We know that, for ¢ where 1/¢ = negl and m > 2; n; > 0,i = 0,1,2 are not
all zero, (m,ng,ny,n2)-GDLR assumption holds, if the SXDH assumption holds [81]. From
the previous statement, we can infer that SXDH assumption implies that (2,1,1,1)-GDLR
assumption holds. Now, we wish to prove that, for m = 2, (m,ng, ny,n2)-eGDLR assump-
tion holds if (2,1,1,1)-GDLR assumption holds. We additionally note that the distribu-
tions {(¢, G1, Gy, Gr, e, G, H, (9171, am2)) : 7 < Fy} and {(q, Gy, Go, Gr, e, G, H, (17, 7)) :
T1,T2 <R IFZ} are identical when SXDH assumption holds.

We construct an adversary A for (2,1,1,1)-GDLR assumption, given an adversary B for

(2,n9,n1,n2)-eGDLR assumption, as follows :

1. A receives a challenge for (2,1,1,1)-GDLR assumption,

(Q7 G1,Ge,Gr,e,G, H, (91, hl); (92, hz)y (QT, hT))
such that ¢;, h; € G;,i € {1,2,T}

2. A samples the keys for obtaining challenges for B : 7 <—r ML, , § < ML,,, and
t <R MLnQ

3. A sends B the challenge (¢, Gy, Gy, Gr, e, G, H, (17, hiT), (9238, ho3), (grt, hrt))
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4. B((L Glu G27 GT7 €, Ga H7 (glFa th)u (92§7 h2§)7 (gTZ, hTz)) — (a’h as, a’T)

5. A computes z; = (a1,7), 15 = (a3, 8) and zr = (t,ar) and outputs (z1, z2, v7), where
the first two operations are inner product with scalar for groups G, and Gq, and the third

operation is inner product of elements of F,.

We claim that A succeeds with overwhelming probability, if B does.
We note that, if B succeeds, then its output (aq, aq, ar) is such that (a1, aq, ar) # (0,0,0)

and
gr(t,ar) + e(17,a1) + e(as, g28) = 0, and hr(t, ar) + e(hiT, a1) + e(as, ho8) =0
hence we have, for r; = (a1,T), 15 = (as,T) and z7 = (¢, ar) :
gror + (g1, 71) + e(r2, 92) = 0, and hpxr + e(hy, v1) + e(za, ha) = 0

We analyse that, A’s breaks the assumption if B does, by showing that along with the
satisfied equation, (a1, as,ar) # (0,0,0) ensures (z1,x2, z7) # (0,0,0), except with negligible
probability.

If ar # 0, then we have z7 = (t,ar) # 0 w.h.p. as otherwise we have gr(t, ar) = 0 which
breaks dlog in G, hence it ensures (z1,z2, z7) # (0,0,0).

If a1 # 0, and if 1 = (a1, T) = ey, then we have e((g1,7),a1) = e(g1, (a1,7)) = e(g1,e2) =
e(g1,qea) = e(qg1, e2) = e(eq, ea) = er, which breaks the (e)n-BP assumption that holds when
SXDH holds, as DDH is hard in G;.

Similarly, we can argue for x5 being non-zero, when as is non-zero.

Definition 3.5 (n-BP Assumption) For all non-uniform PPT Adversary A,

o(X,Y)=er, X €G,Y € G}
Pr <+, X =Gz,Y # e = negl(\)
Y %‘A(Q7leG27GT767G7H7X)

Definition 3.6 ((e¢)n-BP Assumption) For all non-uniform PPT Adversary A,

e(X,)Y)=er,X €eGLY € G}
Pr| z+zrML, X =Gx,Y # ey = negl(}\)
Y %‘A(CLGDGQ,GTaeaGa H7X)
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Lemma 3.6 Let q be such that 1/q = negl. n-BP Assumption, for n € N, holds when DDH is
hard in G;.

Proof: We construct a DDH adversary A of Gy, given a n-BP adversary B, as follows:
1. A receives a DDH-challenge (g,9-a,g-b,g-c) of Gy

2. Asamples j «<—r {0,...,n—1}andr = (r1,...,ry_1) R Fg_l, and sets & = (xq, ..., Tp_1),

where z; = ¢, z; =ar;p for e =0,...,j—land z; =ar; fori =5 +1,... ,n—1
3. A computes X = Gz and sends (¢, Gy, Gq, Gr,e,G,H, X) to B
4. A receives Y from B
5. Asets z=(z0,...,2,_1), where zo =band z; =r;,i=1,... ,n—1, and sets Z = Gz
6. f e(X,Y) =er and e(Z,Y) = er, then A outputs 1, otherwise it outputs 0.

We claim that A succeeds with overwhelming probability, if B does.
We note that if B succeeds then we have e(X,Y’) = er, which implies, assuming Y = Hy,
where y = (Yo, y1,- -, Un-1) € Fy

e(Ge, Hy) = er = e(G-x1, Hy1) - e(Gxpq, Hy, 1) =er = e(G,H){x,y) =er

which gives us (z,y) = 0.

If ¢ = ab, then we have that aryyo + -+ + arjy;—1 + cy; + arj11yjp1 + -+ arp_1Yn—1 =
0 = aryo+---+arjyj—1+aby; +arjpyjp +--+arp_1yp—1 =0 = riyo+---+ry-1+
byj +rjs1yit1 + -+ rac1Yn1 =0 = e(Z,Y) = e, then the adversary outputs 1.

If ¢ # ab, then the adversary outputs 0 with high probability, as ¢ # ab and output
1 by adversary = aryyo + --- + arjy;j—1 + cy; + arjiyjp1 + -+ arp_1yp—1 = 0 and
1Yo + -+ 1iyi—1 +by; + riYie + oo+ a1y = 0, both equations are independently
satisfied by y, which happens with probability O(1/q).

Additionally, since the position of embedding of the challenge is sampled at random, the
probability that the adversary guesses the position j of embedding of the challenge and sets its
own response such that y; = 0 to remove the dependency of the solution from the challenge is
1/n.
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Definition 3.7 ((P,Q)-DDH Assumption [35]) Let q be a prime number. Let G be a group
of order q, g a generator of G, and (P, Q) C F [ X1, ..., X,] two sets of polynomials. We define
the oracles Realpg) and Fakepq) as follows. Both oracles first select uniformly at random
x; < Fy, fori € [n]. Then they answer two types of queries. In input (info, i) for 1 <i <|P|,

T1:e2,%n) yhereas oracle Fake(pg) selects

for some 1 < j < |Q|, oracle Real(pg) answers with g%
rj g Fq and answers with g'7. The adversary can intertwine the info and chal queries. The

goal of the adversary is to distinguish between these two oracles.

[35] proves that when the challenge (P, () is non-trivial, i.e. if span(P) N span(Q) = {0}
and the polynomials in @) are linearly independent, that satisfies two conditions specified in
Definition 3 of [35], then the (P, Q)-DDH Assumption hold whenever DDH holds. Additionally,
we note that if we consider P = {X;,..., X,} and Q = {[]["_, X} pct0.y, then it satisfies the
above criteria and hence, this particular variant of (P, Q)-DDH holds whenever DDH holds.
Now, since DDH holds, we prove that our (e)n-BP assumption holds whenever (P, (Q)-DDH

assumption holds, given that n-BP assumption holds as well.

Lemma 3.7 Let g be such that 1/q = negl. (e)n-BP Assumption holds when (P,()-DDH
Assumption and n-BP Assumption holds, for all n € N.

Proof: Let n = 2°. Let us consider that, if possible, there exists an (e)n-BP adversary that
breaks the (e)n-BP assumption. We construct an adversary A for (P,Q)-DDH Assumption
in Gy, given an adversary B for the (e)n-BP Assumption as follows, where we consider P =

{(X1,..., X} and Q = {[]\_, X} ,eq01y, such that |P| = ¢ and |Q| =n — ¢.

— A queries the (P,Q)-DDH challenger with (info,7) for all i € {1,...,¢} and receives

response wy, . . ., Wy

— A then queries the (P,Q)-DDH challenger with (chal,) for all i € {1,...,n — ¢} and

receives response zi, ..., Zn_s

— A defines X = (z1,...,2,) asx; = w; for all i € [(] and x; = z;_, for alli € {{+1,...,n},
and sends X along with the bilinear group (¢, G, Go, Gr,e,G, H) to B

— Breturns Y to A

— A checks if Y # ey and e(X,Y) = ep
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— If the above are satisfied, A concludes that X is a Realpq) challenge and outputs 1, and

outputs 0 otherwise.

We claim that A succeeds with non-negligible advantage if B succeeds with non-negligible
probability. Now, let us consider the (P,Q)-DDH challenges when P = {Xi,..., X,} and
Q = {1, X7 }eq01). Note that a Real(pg) challenge inherits the M£,, distribution in the
exponent, which is the required distribution for a structured (e)n-BP challenge, whereas a
Fake(p ) challenge inherits the random distribution. Hence, we can denote a Realpg) challenge
vector X as X < ML,(G) and we can denote a Fake(p) challenge vector X as X <5 G".

Let us assume that B succeeds with probability €; for a structured (e)n-BP challenge, i.e.
Pr[B succeeds | X <r ML, (G)] = €. Note that B succeeds for a (e)n-BP challenge X if
it outputs Y such that Y # e; and e(X,Y) = ep. Let Additionally, we note that if n-BP
holds and Pr[B succeeds | X <r G"| = €3, since the challenge X < G™ follows the required
distribution for a n-BP challenge e¢; must be negligible. Then we compute the probability of

success of A.

Pr[A guesses correctly]

= Pr[A outputs 1 | Real(p )] Pr[Realpg)] + Pr[A outputs 0 | Fake(p )] Pr[Fakep )]
= Pr[A outputs 1 | Real(pg)] x 1/2 4+ Pr[A outputs 0 | Fakep | x 1/2

= Pr[A outputs 1 | X <5 ML, (G)] x 1/2 + Pr[A outputs 0 | X +—r G"] x 1/2

= Pr[B succeeds | X < ML,(G)] x 1/2 4 Pr[B fails | X +r G"] x 1/2
=€,/2 + Pr[B fails | X <5 G"] x 1/2

=¢€1/24 (1 — Pr[B succeeds | X < G"]) x 1/2

=6/2+(1—€)/2=1/2+ (1 —€3)/2

Now, since ¢; = Pr[B succeeds | X <—r ML, (G)] is non-negligible and
ea = Pr[B succeeds | X <—x G"| is negligible, €; — €5 is non-negligible. Hence, A succeeds with

a non-negligible advantage, which is a contradiction. O
3.5.3 Succinct Verifier >-Protocol for Opening Committed Homo-
morphism

Notation. Let (q,Gy, Gy, Gz, e, G, H) be a bilinear group. Let ¢* € G; be the commitment
key used to commit to a vector of F, elements in COMgz () = (@,z)g € Gy, where & €
Fy,@ € F;. We consider the group homomorphism f : F} — Gy, and define HOM(IFy, G2) =
{f : f is a homomorphism from [y to Gsy}. We use COME® given in definition 3.2 and use a
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modified version to commit to element of only one source group of bilinear pairing as follows
: COM® : G} — Gy, where COM®(x) = (G, ), for n = 2°,h 5 Gp,a = (ay,...,a4) <r
F!, @ = ( ¢ b)

q a Hz:l a; bie{0,1} ’
commitment key for ease of exposition, and define it as COME(x) = COM®(z) = ¢(G, z),
where G = aG.

G = aG, and we use the notation to COME to explicitly specify the

Opening group homomorphism. We aim to prove that a committed vector € F} is
opening of an element y € G with respect to group homomorphism defined by f : Fy — Go,
i.e. the opening of a given commitment COMg (x), € F} is such that f(x) = y for some
y € Gy. We note that the homomorphism f : Fy — G can be defined as f € Gy, and
we extend the techniques discussed in Section 3.3. We use the commitment scheme from
Definition 3.2 COM® : F, x G x G4*> — G2 to succinctly commit to f = (f1,..., f,) € G}
and rev(f) = (fn, ..., f1) € G} using the structured commitment key ¢* € G; used to commit
to the vector.

We note that while techniques of Section 3.3.2 for committed linear forms can extend to
a committed homomorphism, there are some differences that we need to handle. First, the
representation of a group homomorphism is given by group elements as opposed to field elements
in linear forms, and this requires a commitment to group elements. Since the commitment
scheme relies on SXDH, we cannot encode the commitment randomness in the second group
anymore. This is, however, crucial to verify that the commitment key is updated correctly in
each step of split-and-fold. This makes our protocol designated-verifier since the encoding of
the randomness is available only to the verifier and binding still holds under SXDH. We define
the relation R for opening a group homomorphism f below, and then present the protocol

ITp-hom for relation R.

R={(P € Gy, fec HOM(F,G2),y € Gy;x € F},v € F,) : P = COMg (x;7) A f(x) =y}}

Theorem 3.10 Iy-hom (Fig 3.9) is a 3-move protocol for relation R. It is perfectly complete,

special honest-verifier zero-knowledge and computationally special sound.

Proof Sketch. Note that this theorem follows from the fact that this protocol is identical to
the one introduced in [11], and the properties of the protocol relies on the hiding and binding

of the commitment scheme which are satisfied by our commitment scheme 3.2 used here.

Now, we note that the last message sent in step 4 of Ilp-pom (Fig 3.9) along with the check

computed by the verifier can be captured by the relations defined below, and we provide a
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Parameters

— Common parameters : (P € Gy, f € HOM(F},Gy),y € G2), P = COMg (x;7),y =
f(x)

~ Psinput : (x € F},v €F,)
Protocol
1. P samples r <—r G, p < F,, computes A = COMgz (7;p), t = f(r) and sends A, ¢ to V.
2. 'V samples ¢ <—p [F, and sends ¢ to P
3. P computes z = cx + r and ¢ = ¢y + p and sends z, ¢ to V

4. V checks if COMg (z;¢) = A+ cP and f(z) = cy + t, outputs 1 if it holds, outputs 0
otherwise.

Figure 3.9: Protocol Ily-pom for relation R

Proof of Knowledge of the last message instead with the protocols for the following relation.

RCH:{(PGGl,QEGT,yGGQ,QEGl;f,m G]FZ)Z
P =COMg (z) A Q=COMg(f) A f(x) =y}

Note that in the above, P = (a@,x)g N Q = e(ga, f)

We provide the protocol Ili-pem for handling Ry in Fig 3.10. Note that the protocol starts
with having value of the common parameter intended as the first element of the commitment
key as equal to the generator of the group, i.e. ¢ = G, and it is later updated accordingly to
encompass the commitment key updates in the protocol.

Proof: Special Soundness. We consider 3 accepting transcripts for one iteration of PoK
IT1-hom (Where one iteration consists of steps 1-5, and step 6 follows by sending @', L’ instead of

providing a PoK) as follows, where ¢y, ¢, ¢3 are all distinct challenges. :

(A1, As, B1, B, y1, Yo, €1, g1, &7, f1)
(Ala AQa Bla BQa Y1, Y2, Co, 957 w/Qa fé)
(A1, Ay, By, B, y1, Y2, 3, 93, X5, [3)

Let us consider z; = (¢;x}||x;). We note that, as ¢, ¢, and ¢z are such that ¢; # ¢; for all
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(i #7) 4,5 € {1,2,3}, the matrix V described below is invertible.

1 1 1
V=1lc¢ ¢ c
i &
Hence, we can compute (a1, as, az)” = V71(0,1,0)". The computed a1, as, az satisfy Y, a; =
0,%;aic; =1 and Y, a;c? = 0.
We define w to be the extracted value of & and compute it as w = a121 + a229 + a32s3,

given that COMy (x}) = Ay 4+ ¢;P + ¢? Ay then we consider

Ql

COMg (w) w))g

a1z1 + aszs + aszs))g

@l

tl@r, ar(arx||x)) + as(coxsl|y) + as(cszs||zs)))g

@l

,A1C1T) + aaCoy + azcsxy))g + ((@r, a1y + asxh + azxy))g

—/

((@,
((@,
((
((ar
((@

,a101&) + ascamy + azcsxy))g({a@’, a1y + asxh + azxy))g

= (a1{(c1 + ae)@’, @) + az((c2 + an)@', @y) + as((cs + ar)a’, w3))g
= (a1(@’, 1)) (g)) + (a2(@’, @3))(93) + (as(a’, 5))(g5) (from Step 4)
= (A1 +c P+ C%AQ) + aq (Al + P + chg) + as (Al + e3P + c%Ag)

(from last check)

= (a1 -+ a9 + CL3)A1 -+ (a101 -+ a9Co + ClgCg)P + (&10? —+ GQC% + ClgC%)Ag =P

Hence, the extracted w is an opening of the commitment P. Similarly we can extract an
opening m of the commitment (). From the binding of the commitment scheme, we have that
w = x and m = rev(f) except with negligible probability.

From the accepting transcripts, we have that f/(x}) = y; + c;y + c?ys for i = 1,2,3. Now,

we consider the following :

fi(x;) = (cife + fr) (xL + cizR) Vie {1,2,3}
= Yy +ay+cy = frlxr) +cif (@) + S frlzr) Vi€ {1,2,3}
O
Theorem 3.11 Ilj_pom is a (ky,. .., ke¢)-move protocol for relation Rey, where k; = 3, Vi €
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Parameters
— Common parameters : (P € G1,Q € Gp,y € Gg, g € Gy),
— P = COMg (x),Q = COMg(rev(f)),y = (=)

‘ . . . ¢ - by
—n= QE,CL = (ah tet ’af)’a - (Hi:l i >bi6{0’1}

— (¢, Gy, Go,Gp,e,G, H) is a bilinear map.
— P’s input : (ag € G}, z € F, f € HOM(F7, Gy))
— V’s input : aH € G
Protocol

1. Let us define k as k = rev(f). P parses € = (xr||lxzr),f = (fo||fr) and ag =
(argl|(arar)g) and computes and sends the following to V:

(a) Ay = COMg, (x), Ay = COMg, (zr)
(b) By = COMg (kz), By = COMS, (kg)
(c) 1 = fr(®L),12 = fL(®R)

2. V samples ¢ < F, and sends c to P

3. Psets ' =z +cxp, [ =cfrofr, ¢ = (c+ a)g and implicitly sets @’ = (ay,...,ar_1)
and @ = a;. Note that this also implicity sets k' = k, o ckpg.

4. P sends ¢’ to V and V checks the following, proceeds to step 5 if it holds, and aborts
otherwise

gl
e (—,H) =e(g,a,H)
5. P and V both compute the following :

P =A+cP+cAy, Q =B +cQ+cBs, v =y +cy+ Py

6. If ' ¢ F2 : P runs PoK II; to prove knowledge of ', f' such that COMg (') = P,
COMSE/(K) = Q" and f'(x') =y
Hence, P and V run the protocol II; with updated common parameters (P, Q’,v',¢'),
prover’s input (@' (¢'), ', f'), and verifier’s input (a'H) for (P',Q’,y’; ') € Rcu

Figure 3.10: Protocol Ili-pom for relation Rey
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7. Ifa' € F2:

(a) P sends o', f' to 'V
(b) 'V computes k' = rev(f’) and checks the following :

COMy (2') = P' A COMG(K) = Q' A f'(a)) =y

and outputs 1 if it holds, and outputs 0 otherwise.

Figure 3.10: Protocol Ili_pon for relation Rey

[0],¢ = logn. It is perfectly complete and computationally special sound. It incurs total com-
munication of 3logn G; elements, 2logn + 2 Go elements, 2logn Gr elements, and logn + 2
field elements.

We note that since we run the protocol Ili-pom as an alternative for steps 4 and 5 of Ilp-pom
to avoid having to send a linear-sized vector, II;-hom does not require zero-knowledge property
as the final message of the protocol IIy-pom is intended to be sent in clear. The compressed
sigma protocol for proving knowledge of homomorphism on a committed vector is given by
the compressed protocol Il .-pom, which is defined by Ie-hom = I1-hom © Ip-hom. The compressed
protocol for relation R is given by I1.-pom, whose communication and computational complexities
are dominated by that of Il _,om, and hence we obtain a designated verifier succinct argument

of knowledge for the relation R.

Proof of Knowledge of k-out-of-n discrete logarithms. The fundamental contribution
of [9] of proving Proof of Knowledge of k-out-of-n discrete logarithms (Protocol 3 of [9]) relies
on its ability to provide a compressed sigma protocol for opening a general homomorphism
as a building block in a black box manner, and our techniques show how to do this with a
succinct verifier. We expect that by relying on their techniques to amortize the protocol for
opening multiple homomorphisms (which is done by using a challenge provided by the verifier
to perform the check on a random linear combination of the homomorphisms) which is then
deployed as a black box for the protocol to obtain proof of knowledge of k-out-of-n discrete

logarithms, we can obtain a succinct verifier version of the proof in [9].

3.5.4 Compressed X-Protocol for Opening General Homomorphisms

We now extend our protocol to opening homomorphisms on committed vectors with coefficients
in multiple groups. We believe that using our protocols in applications of CSP to Threshold

Signature Schemes and circuit zero-knowledge protocols with bilinear gates [11] will result in
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analogs with succinct verifier after an appropriate preprocessing phase.

We first describe the 3-Protocol of [11], while using our updated commitment scheme with
logarithmic verification, for proving knowledge of a witness & which opens a public homomor-
phism f to a public element y and opens the known commitment COM® to a public element
P,ie. y = f(x) and P = COM®(x, 7). Here, we assume x € Gg = Fro x GY* x G, and
we have access to a homomorphic commitment scheme COM® : Gg x [y, — Ge, and a public
homomorphism f : Gg — F, X Gy x --- X G4. The relation is given by R = {(P, f,y;x,7) :
P= COMG(a:,V),y = f(x)}, and the POK Ipgen-hom for R is in Fig 3.11).

Parameters
— Common parameters : P = COM®(x, ),y = f(x)
— P’sinput : (x,7)
Protocol
1. P samples r < Gg,p +r F,
2. P computes A = COM®(r, p),t = f(r) and sends it to V
3. 'V samples ¢ <—g [F, and sends it to P
4. P computes z = cx + r and ¢ = ¢y + p and sends it to V

5. V checks if COM®(2,¢) = A+ cP and f(z) = cy +t, outputs 1 if it holds, outputs 0
otherwise.

Figure 3.11: PoK Il gen-hom for relation R [11]

In protocol Ily-gen-hom, We note that step 4 renders the communication complexity linear, and
that along with step 5 makes the verifier’s complexity linear. We now reduce the complexities by
running a compressing protocol I1;-gen-nom Where we compress while relying on the compatibility
of compression provided by the compactness of the commitment scheme for committing to
the elements of the groups Fy,Gq,...,Gy. In ITi-gen-hom, compress the part of co-domain of
COME which is compact, we parse COM® as COM; and COM,, where COM; contains the
compressible (compact) co-domain of the commitment, and COM; contains the incompressible
(non-compact) co-domain of the commitment. Hence, COM; is a compact commitment scheme
and COMjs is not (takes n-dimensional element to n+ 1-dimensional element). Hence, for some

r1 and ro such that r; 4+ ro = r, we have
COM® : Fy* x Gi* x Gi* x F, — Ge
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COM, : F x G x Gp*7! x FI* 5 Ge,
COM, : G* x F* — G,

where size of Ge, is independent of the input dimensions in the domain, and size of Ge, is
dependent on the input dimensions in the domain (increases by one with respect to the input

dimensions in the domain).

We now implement the aforementioned idea by parsing the the witness x as @ = (xg, )
where &g = (xo, . .., x,_1) contains the compressible co-domain of the commitment, and &7 =
x; contains the incompressible co-domain of the commitment. Since we want the verifier
complexity to be sublinear, we also provide commitments to the homomorphism by treating the
homomorphism description as a vector containing elements of Fy, Gy, ..., G;,. While we commit
to the homomorphism f, we parse f as f = (fs, fr), where fg contains the compressible co-

domain of the commitment, and fr contains the incompressible co-domain of the commitment.

Notation for Ili-gen-hom- We denote the commitment key for COM; which commits to ele-
ments of Fy, G1, G, Gy, by cko, ..., cky_1. For example, for (z,y, xs;7) € Fy° x GI' x Gy*, we
have COM,(z,y,xs) = (g, z) + e(y,H) + (G, x5) € G, we set ckg = g, ck; = H, cky = G,
and (C.k(),C.th.kg) is the verification key. For example, in Ili-pom described in section 3.5.3,
ck denotes the commitment key held by the prover ck = ¢* and ck denotes the randomness

encoded in the other group held by the verifier ck = H% where n = 2/, a = (G1y ..., ap),

— eb
a = (Hizl a; >bie{071}'

/CH ={(P,Q,y;z, f) ® = (xs,2r),y = (Y1, Y2, Y3, %), [ = (fs, fr),
= fs(xs),y2 = fs(®r),ys = fr(xs),ya = fr(zr),
Q = COMl(rev(fS)),P = (Pl, PQ), P1 = COMl(ws), P2 = COMQ(QZT)}

We present the PoK ITi_gen-hom for R¢py in Fig 3.12.

Theorem 3.12 Iy om is a (ki, ..., ke¢)-move protocol for relation Rey, where k; = 3, Vi €

1], ¢ = logm, m = maxf;ol n;. It is perfectly complete and computationally special sound. It

incurs total communication of O(logm) source (compressible) group elements (including F,),

O(log m + ny,) target group elements.

Similar to earlier protocols, we aim to run the protocol I -gen-hom as an alternative for steps
4 and 5 of Ilp-gen-hom to avoid having to send a linear-sized vector, IIi-gen-hom does not require

zero-knowledge property as the final message of the protocol Iljgen-hom is intended to be sent in
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Parameters

— Common parameters : P,Q,y,ckoq,ckyq,...,cky_11 (where ck;; is the first element
of ck;, i =0,...,k—1)
- = (:1:5, wT)7y = (y17 Y2, Y3, y4)7 f - (fS7 fT)7

— 1 = fs(®s),y2 = fs(xr),y3 = fr(®s), ya = fr(zr),
- Q = COMl(FEV(fs)), P= (Pl,PQ),Pl = COMl(ws),PQ = COMQ(wT)

— P’s input : cko,cky, ..., ckg 1, = (Tg,®7), s = (To, X1, ..., Tp_1), 7 = (xk), [ =
(f5'7 fT)
— Vs input : cko, cky, . .., cky_1
Protocol
1. P parses @; = (z;p]|@ig), for i =0,...,k, 5o = (Toa,---»Th-1.a), a0d 7o = (Tra)
for a = L, R, and fs = (fs.llfs,r), fr = (fr.oll frr)-
2. Similarly, P parses the commitment keys for g and fs as ckg = (cko,...,cky_1) and

commitment keys for &y and fr as ckp.

3. P sets k = rev(fs) and computes the following :

4. P sends the computed values ao, by, A1, Az, B; and By to V
5. V samples ¢ <—p F, and sends it to P
6. P sets the updated commitment key as ck; = ¢ - ck; ; + ck; g for all i = 0,1,...,k — 1

7. P sends the first element of all updated commitment keys ckj, to V, and V checks the
following for each ck; 1, proceeds to step 8 if it holds, and aborts otherwise

ck’ )
2 (k_?l7geni) =e (Cki,laCki,£> , 1€{0,1,...,k—1}
CK; 1

where gen; is the generator of the group containing ck;.

Figure 3.12: PoK II;_gen-hom for relation Repy
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8. Psets ¢y = xgp + cxsp, f& = CfSL + fs.r, and implicitly updates the randomness for
each updated commitment key ck by dropping the last element ckl , from ck;.

9. P and V both compute the following :

(a) Pl = Ay +cP + *Ay, Q' = By + cQ + 2By
(b) y1 = a1+ cy1 + Paz, ¥y = ya,
(¢) yh=Db1 4 cyo+ o, yh = di + cys + *dy
10. If « contains more than 2 elements from any group : P and V run the protocol
1_Il-gen-hom with Updated common parameters (Plu Ql7 y/>7 P = (Plla PZ)? y, = (yia yé? yé? yéll)u

prover’s input (ckg,cky,...,cki_, @ = (x,x7), [ = (f&, fr), and verifier’s input
(Ck071, Ck171, ... 7Ckk_171, Ckl7 . ,Ckk_l) for (P/, Q/, y/, CL'/, f’) - R/

11. Otherwise :

(a) P sends o' = (s, x7), f/ = (f§, fr) to V

(b) V computes k' = rev(f) and checks the following where COM] is the commitment
with updated commitment keys cki,i =0,...,k—1

i. COM|(zy) = P{, COM}(K)=Q', COMsy(xr) = P,
i fs(xs) = v, fr(er) =

iii. (fg cfs)(@r) =y, frcxs, @) = y;

and outputs 1 if it holds, and outputs 0 otherwise.

Figure 3.12: PoK II;_gen-hom for relation Ry
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clear. The compressed sigma protocol for proving knowledge of homomorphism on a committed

vector is given by the compressed protocol Il gen-hom, Which is defined by :
Hc—gen—hom = 1—-[l—gen—hom o 1_IO—gen—hom

Hence, the compressed protocol for relation R is given by Il gen-hom, Whose communication
and computational complexities are dominated by that of IT;-gen-hom, and we obtain a designated

verifier succinct argument of knowledge for the relation R.
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Chapter 4

Distributed Proof of Knowledge
(DPoK) and its Application in Input

Authentication

In this chapter!, we present a new notion of distributed zero-knowledge proofs, which we call
distributed proof of knowledge (DPoK), that enables a prover to distribute the proof generation
to a set of workers which holds the shares of the witness. We also provide an additional notion
of robustness that helps maintain security even in the presence of dishonest usage of shares
by workers. Next, we provide construction for DPoKs for discrete log relation, and algebraic
signature schemes like BBS+ [29, 41] and PS [97]. Finally, using our DPoKs for algebraic
signature schemes, we provide a compiler that transforms a linear secret-sharing based honest

majority MPC to one with input authentication with negligible overhead.

4.1 Introduction

To motivate our distributed zero-knowledge proof, we first start with its potential applica-
tion through the lens of well-understood primitive of multiparty computation (MPC). Secure
MPC [108, 109, 70, 79, 18] allows two or more parties to jointly compute a function of their
private inputs, while ensuring input privacy and output correctness (even in the presence of
some corrupt parties). Traditional security notions for MPC ensure output correctness and
input privacy, that is, nothing is leaked about the parties’ private inputs beyond the (correct)

output of the computation. However, no assurance is given about how the parties choose their

IThis chapter is based on the joint work [55] with Chaya Ganesh, Sikhar Patranabis and Nitin Singh, that
appeared in Asiacrypt 2024.
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private inputs.

Unfortunately, certain applications of MPC could be sensitive to “ill-formed inputs”. Mali-
ciously chosen inputs could either corrupt the output or reveal the output on arbitrary inputs,
thus violating the desired real-world security guarantees of an MPC protocol. Such attacks are

not captured by traditional MPC security definitions.

Input Authenticity in MPC. There are several real-world applications of MPC where it
is important to ensure that the inputs used by parties are authentic. If a set of individuals
on a job portal wish to compute “industry average compensation” for their expertise and
experience in a privacy preserving manner (e.g., services provided by glassdoor), one would
want them to input payslips bearing their employers’ signature. Similarly, in applications
involving hospitals performing joint computations on patient data for treatment efficacy, it is
desirable to ensure that the data used is signed by a regulatory authority. Input validation is
also of practical relevance in applications of MPC in computation on genomic data [26]. For
all of these applications, the traditional MPC security guarantees are clearly inadequate. A

natural question that confronts us then is: how do we ensure that authentic inputs are used in

MPC?

Authentication via Certification. In the real world, data authentication typically involves
the data being attested by a relevant certifying authority. In our work, we specifically consider
applications where an input bearing a signature is considered authentic and we can assume the
existence of a relevant certifying authority that provides the signature. For instance, employers
can act as the certification authority to digitally sign the payslips when parties wish to compute
‘industry average compensation’ using services like glassdoor, a financial auditor can act as
the certification authority to digitally sign the bills of sale when shipping companies wish to
compute aggregate statistics on private data, a regulatory authority (like WHO) act as the
certification authority to digitally sign the medical records when hospitals wish to perform
joint computation over sensitive patient data, and so on. Since the certifying authority cannot
be omnipresent to vouch for authenticity of the data, it is increasingly common for individuals
to claim this attestation through digital signatures that can be verified efficiently. In fact, there
exist several digital signature schemes today [40, 29, 97] that allow establishing attestation by
a certifying authority while requiring minimal disclosure of attributes, and while maintaining
unlinkability (several usages of the same credential cannot be linked to the same individual).
Unfortunately, such secure mechanisms for authenticating data in the individual context do not
translate when computing over data from multiple data owners using vanilla MPC protocols

(that do not consider input authentication).
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Potential Approaches and Pitfalls. A naive approach would be to incorporate input au-
thentication as part of the function to be computed. However, this is practically inefficient.
For example, incorporating signature verification as part of the function would entail perform-
ing expensive operations such as hashing inside MPC (typically, most signature schemes hash
the message), and would also require expressing the algebraic operations underlying signature
verification as arithmetic circuits. This significantly blows up the size of the circuit, rendering
the resulting MPC protocol practically inefficient.

A more efficient alternative is to have the certifying authority sign a commitment (e.g., a
Pedersen commitment [94]) to each input, and then have the parties prove that their inputs
are those contained inside the public commitments (using customized zero-knowledge proofs).
However, this fails to provide unlinkability, which is an essential privacy requirement. In par-
ticular, one can use the signed commitment to link different protocols where the same input is
reused. The alternative would be to get the certifying authority to sign a different commitment
for each protocol execution, which again requires the authority to be omnipresent, and is clearly
impractical.

Certain prior works [5, 27] proposed using authenticated secret-sharing in order to certify
inputs to an MPC protocol. However, authenticated secret-sharing only provides stand-alone
guarantees about the shares themselves, and additional techniques would be needed to ensure
that malicious parties actually use these authenticated shares in the execution of the actual
MPC protocol (the details of such techniques are not specified completely in prior works [5,
27]). Ideally, we want a notion that ties input authentication into the underlying MPC, thus

preventing malicious parties from using inputs different from the authenticated ones.

Our Goal. We aim to lift existing MPC protocols into authenticated ones that ensure that an
additional predicate is satisfied by each input (for instance, each input is signed by a common
certifying authority). We want to achieve such input authentication (i) without changing the
underlying MPC protocol, (ii) without representing the predicate as a circuit, (iii) incurring
communication overhead that is succinct in the size of the inputs (which are typically large
for the applications we consider), and (iv) maintaining unlinkability. These requirements im-
mediately preclude prior approaches requiring the authentication relation to be expressed as a
circuit [30, 76], as well as the natural approach based on signed public commitments outlined

above, which lacks unlinkability.

4.1.1 Owur Contributions

In this work, we study authenticated MPC. We present the first generic compiler than efficiently

augments existing MPC protocols to additionally ensure that each input has a valid attestation
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(in the form of a digital signature) from a relevant certifying authority, while retaining both
practical efficiency and unlinkability. We illustrate the compatibility of our proposed approach
with popularly used privacy-preserving verifiable attestation mechanisms based on digital signa-
tures such as BBS+ [29, 13] and PS [97]. Towards this goal, we put forth a notion of distributed

(zero-knowledge) proof of knowledge that is of independent interest.

Distributed Proof of Knowledge (DPoK). In Section 4.3, we put forth a notion of a
distributed proof of knowledge (abbreviated as (DPoK)). A DPoK works in a setting with
multiple provers and a single verifier, where the witness is secret shared among the provers.
Concretely, for a relation R and an instance-witness pair (z,w) € R, the verifier holds the
(public) instance z, and each prover holds a share w; of the (secret) witness w such that
w = Reconstruct(wy,...,w,). We also assume a restricted communication model: (i) the
provers do not communicate with each other, and (ii) the verifier communicates only via a
broadcast channel and is public-coin (this facilitates public verifiability, which is used crucially
in our eventual solution for authenticated MPC). Our definition of DPoK may thus be viewed

a natural distributed analogue of honest-verifier public-coin protocols.

Robust Complete DPoK. Our basic DPoK definition does not prevent malicious provers from
disrupting protocol execution, and only provides security with abort. To tackle this, we introduce
a stronger notion of robust completeness for a DPoK, which additionally provides tolerance
against abort in the presence of (a potentially smaller number of) maliciously corrupt provers.
Looking ahead, using robust complete DPoKs allows us to achieve authenticated MPC protocols

with stronger security guarantees.

DPoK for Discrete Log. In Section 4.3, we also construct a DPoK for the discrete loga-
rithm relation, where the witness (the discrete log of a publicly known group element) is
secret-shared (using Shamir secret sharing) across multiple provers. Notably, our construc-
tion achieves: (i) succinct communication (logarithmic in the size of the witness), and (ii)
robust completeness (which ensures that the protocol accepts even in the presence of up to
n/3 malicious provers, where provers only holds shares to the correct witness). For succinct
communication, we use techniques due to Attema et al. [8] to compress the communication com-
plexity of our protocol from linear to logarithmic in the size of the witness. We realize robust
completeness via error-correction in the exponents of group elements. To this end, we leverage
results from low degree testing used in prior works to construct efficient zkSNARKSs (such as
in [4, 22]). While achieving robust completeness is straightforward if we do not care about
succinctness (and vice versa), the main technical novelty of our construction is to achieve both

properties simultaneously.
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In Section 4.5, we present a generalization of the above DPoK for discrete log that works
with any threshold linear secret sharing scheme. In this generalized version, we characterize the
corruption threshold for robust completeness in terms of the minimum distance of the linear
code associated with the threshold linear secret sharing scheme. As an example, we derive
concrete bounds on the corruption threshold for the popularly used replicated secret sharing

scheme.

DPoKs for Algebraically Structured Signatures. Our DPoK for discrete log can be used to build
a DPoK for any digital signature scheme where the associated proof of knowledge of a signature
can be modeled as a proof of knowledge of the opening of a Pedersen commitment. We present
specific instances of this general approach for signature schemes that are algebraically compati-
ble, namely BBS+ [29, 13, 41]' (detailed in Section 4.4) and PS [97] (detailed in Section 4.7.3).
These signature schemes are popular candidates for applications such as verifiable credentials
for self-sovereign digital identity. While these signature schemes natively support efficient (al-
beit non-distributed) zero-knowledge proofs of knowledge of a valid message-signature pair, our
work introduces the first practically efficient DPoKs for these signature schemes that are both
succinct and robust complete. Our techniques are modular, and we believe that they can be
extended to yield DPoKs for other algebraically structured signatures such as [38], as well as

algebraic relations of interest for other applications.

Round Efficient DPoKs in the ROM. The above definitions and constructions of DPoKs are
in the standard model. In Section 4.6, we formally define round efficient DPoKs in the random
oracle model (ROM). This definition is based on the Fiat-Shamir heuristic [59], using which
we transform a DPoK (with number of rounds logarithmic in the size of the witness) into a
round efficient DPoK (having constant number of rounds). Under this definition, we present
round efficient versions of our DPoK constructions for discrete log and algebraically structured
signatures; these protocols achieve the same robust completeness and succinct communication

guarantees as the original protocols, albeit in the ROM.

Authenticated MPC. We now expand upon our main contribution, namely authenticated
MPC. Informally, we consider a notion of input authenticity for MPC where each input is
certified using a valid signature from a certification authority. This is standard in applications
where a publicly known certifying authority (external to the MPC protocol) signs an input
to certify that the input satisfies certain properties’. We build upon our DPoKs for BBS+

!There are standardization efforts for using BBS+ signatures in verifiable credentials for Web 3.0, leading
to a recent RFC draft [87].

20Qur techniques extend to other notions of authenticity such as proving that the inputs open publicly known
commitments.
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and PS signatures to propose a generic compiler that transforms any (threshold linear) secret-
sharing based maliciously secure honest-majority MPC protocol into its authenticated MPC
version. Our compiler yields the first practically efficient MPC protocols that satisfy an ideal
notion of input authenticity while preserving practical efficiency and unlinkability. We note that
our compiler incurs negligible communication overhead over the original MPC protocol. For
simplicity, our ideal functionality and subsequent protocols are described assuming a common
signature authority for all inputs. The more general case involving multiple signing authorities
also follows with minor modifications without incurring any loss of efficiency.

Ideal Functionality for Authenticated MPC. In Section 4.8, we formalize the above notion for
authenticated MPC via an ideal functionality Fh that works as follows. The parties send
their inputs z; and signature o; on x; to Fih for i € [n]. The functionality Ftt then checks if
o; is a valid signature on z; for all i € [n]. For each j € [n] such that o; is not a valid signature
on z;, Fuh sends (abort, P;) to all of the parties. Otherwise it computes y = f(x1,...,2,)
and outputs y to all of the parties.

We note that our ideal functionality ties input authentication into the underlying MPC,
thus preventing malicious parties from using different inputs as compared to the authenticated
ones. The prior works [5, 27] only provide stand-alone guarantees about the authenticated
shares themselves, and would require additional techniques to ensure that these authenticated
shares are then used in the execution of the actual MPC protocol which are currently not
considered. We further note that our ideal functionality already captures unlinkability, since
the adversary does not learn any additional information about the authenticated input (beyond
the function output) that might allow it to correlate the usage of the same input-signature pair
across multiple executions. This rules out solutions based on signing public commitments to

inputs, which trivially violate unlinkability.

Compiler for Authenticated MPC. In Section 4.8, we present a compiler that transforms any
Shamir secret-sharing based maliciously secure honest-majority MPC protocol II into its au-
thenticated MPC version II' that securely realizes the above ideal functionality F3ish, where
each input is authenticated using a BBS+ signature. Our compiler builds upon our DPoK for
BBS+ signatures from Section 4.4. In Section 4.7.3, we present an analogous compiler for input
authentication using PS signatures, which builds upon our DPoK for PS signatures. In both
cases, the compiled protocol I inherits the security of II as long as the inputs are authentic (by

definition, we abort if this is not the case)!. If IT guarantees security with identifiable abort,

'In some applications, it is acceptable to continue computation on default inputs instead of aborting when
authentication fails.
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then the same holds for II'. If IT achieves guaranteed output delivery, then so does I (albeit
for a corruption threshold ¢ < n/3) — this crucially uses the robust completeness property of
the underlying DPoKs.

Generalization and Fxtensions. We note that our approach works in general for: (a) any
(threshold linear) secret-sharing based MPC protocol, and (b) any signature scheme such that
the associated proof of knowledge can be modeled as a proof of knowledge of the opening
of a Pedersen commitment (such as CL signatures [38] and PS signatures [97]). Our DPoK-
based approach also offers the flexibility of extending our compiler to support other notions
of input authentication, beyond proving knowledge of signatures. In particular, one can build
upon our approach to prove a wider class of expressive predicates over secret-shared inputs,
thus catering to a wide range of applications with diverse proof requirements (e.g., federated
learning). For instance, each party can publish a commitment to its input at the beginning
of the authenticated MPC protocol, and then use our DPoK-based framework to prove the
following simultaneously: (i) the secret-shared input is signed by a certifying authority (this
follows from the basic compiler), (ii) the secret-shared input is a valid opening to the published
commitment, and (iii) the opening to the commitment satisfies a certain predicate. Note that,
if a different application requires new/additional properties to be checked, the aforementioned
approach avoids the need to involve the certifying authority each time. Similarly, it maintains
unlinkability since a fresh commitment is used for each protocol execution, while the DPoK

allows keeping the signature from the certifying authority private.

4.1.2 Technical Overview

In this section, we provide a brief overview of our techniques. We begin by outlining ideas to
distribute a well-known protocol for proving knowledge of discrete logarithm of a public group
element. This relation will be at the core of expressive algebraic relations that we will consider

later.

Proof of Knowledge of Discrete Log. Let G be a group of prime order p. Given z € G,
recall Schnorr’s protocol [100, 101] for proving knowledge of discrete logarithm w such that
x = g* for some generator g (here (g,z) is public and w is the secret witness). Let (P!, P2 V)
be the protocol where we denote by P! and P? the algorithms that compute, the prover’s first
message a = g for random « € F,, and the prover’s last message (response) z = a + cw,
respectively, where c is the challenge from the space {0,1}! for some length I. Let V be the

algorithm that takes x, transcript 7 = (a, ¢, z) and accepts iff g* = azx®.
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DPoK for Discrete Log. In order to distribute the above protocol, we begin by assuming n
provers P; who each hold a share w; such that w = w;+- - -4+w, (mod p). Now, each prover runs
¥ with their respective shares in parallel!. That is, P; runs P!, broadcasts a; = g%, receives chal-
lenge ¢ from V, and runs P? and broadcasts z;. The transcript is 7 = (ay,...,an,¢, 21, ..., 2,),
and the verifier accepts iff g** = [] a;2¢ = [], a;z°. This holds since g¥* = g=(@tew) =T az°.

This idea generalizes to any linear secret sharing scheme, and also extends to other relations.
For instance, to prove knowledge of representation of a vector of discrete logarithms with respect
to public generators. In our final construction we use additional ideas like randomization of
the first message of each P; via a sharing of 0 in order to ensure zero-knowledge. This DPoK
has communication complexity linear in the size of the witness. To achieve succinctness, we
instead use as a starting point a compressed sigma protocol [8] in order to achieve a distributed

protocol with logarithmic communication complexity (see Section 4.3.2 for details).

Robust Completeness. While the ideas described above result in protocols that are zero-
knowledge and sound against a malicious adversary controlling up to ¢ parties, completeness
is guaranteed only if all the provers follow the protocol. However, in the distributed setting, a
stronger, but natural notion is a robust completeness property where completeness holds as long
as the shares reconstruct a valid witness, even if some provers are malicious. The main technical
challenge in achieving robust completeness for a distributed proof is to retain succinctness. Our
key technical novelty is to achieve both robustness and succinctness simultaneously via ideas
from low-degree testing. We achieve this by identifying and discarding corrupt shares. At a
high level, the provers commit to their shares and then reveal a certain linear form determined
by the challenge over their shares. Given a challenge ¢ € I}, each P; broadcasts z; = (c, w;).
In the honest case, these opened linear forms are expected to be a sharing of the same linear
form on the reconstructed witness: z = (z1,..., z,) recombine to z where z = (¢, w). The
verifier error-corrects the received z’' to the nearest codeword, and identifies the erroneous
positions. By assumption our corruption threshold is smaller than half the minimum distance
of the code, so the erroneous positions clearly come from corrupt provers. Can some corrupt
provers strategically introduce errors in individual shares so that they “cancel out” in the inner
product with ¢? We lean on coding theoretic result (Lemma 4.2) for linear codes to claim that
such a prover only succeeds with negligible probability. Finally, having identified the corrupt

messages, we can reconstruct the claimed commitment in the exponent using commitments

IThis is a simplified description; in our actual protocol Igiog (Section 4.1), there are no parallel sessions, each
instance uses a random share, ensuring that we do not reuse the shares, and in the FS-compiled version Hgig
(Section 4.4), parties send non-interactive proofs instead of sending the first-messages separately in parallel. We
note that ROS attacks [24] in the context of concurrent signatures are therefore inapplicable in our setting. See

also Section 4.1.3.1 for a more detailed discussion.
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of honest shares (now identified). We need more details around this core idea to ensure the

protocol is zero-knowledge (see Section 4.3.2 for a complete treatment).

DPoKs for Algebraically Structured Signatures. It turns out that the above approach
can be naturally generalized to obtain a DPoK for the opening of a Pedersen commitment [95].
We use this observation as a starting point to realize DPoKs for algebraically structured signa-
tures such as BBS+ [29, 13, 41] and PS [97], which naturally admit proofs of knowledge that
can be cast as proving knowledge of openings of Pedersen commitments. As a core techni-
cal contribution, we introduce a modified proof of knowledge for the BBS+ signature scheme,
which leads to a vastly more efficient DPoK as compared to the straightforward approach of
distributing prior proofs of knowledge for BBS+ signatures. We refer to Section 4.4 for details.
Analogous DPoK for PS signatures is presented in Section 4.7.3.

Compiler for Authenticated MPC. In order to construct an authenticated MPC protocol,
we build upon the above DPoKs for BBS+ and PS signatures. Our compiler reuses the input
sharing that is already done as part of an honest-majority MPC protocol. Before proceeding
with computation on the shares, the distributed zero-knowledge proof is invoked to verify
authenticity, and then the rest of the MPC protocol proceeds. Since the shares of the witness
come from a party in the MPC protocol, our robustness property guarantees that if the dealer
is honest (that is, a valid witness was shared), then even if some parties acting as provers are
dishonest, the authenticity proof goes through (see Section 4.8 for details).

We also note that, while we rely on broadcast for our protocols, all relevant related work
on Fully Linear Probabilistically Checkable Proofs (FLPCP) [30] and previous works on au-
thenticated MPC [27, 5, 76] also make use of a broadcast channel. A broadcast channel is
not a limitation, and can be implemented using point-to-point channels. In the setting where
the number of parties is not too large (as in the applications we consider), the communication

overhead to realize broadcast is not prohibitive.

4.1.3 Related Work

We summarize some relevant related work, and compare our compiler with prior approaches

for authenticated MPC. We refer to Section 4.1.3.2 for some additional discussions.

Certified Inputs. The earlier works of [15, 78, 112] achieve input validation for the special
case of two-party computation using garbled circuit (GC) based techniques. Another work [27]
constructs MPC with certified inputs, albeit using techniques that are specific to certain MPC
protocols [50, 49]. A recent work [5] develops techniques for computing bilinear pairings over

secret shared data, which aims to enable signature verification inside MPC for the PS signature
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scheme [97]. Both works [5, 27] emulate a functionality similar to authenticated secret-sharing
protocol, where shares of an input certified by some certification authority are provided at the
end of the protocol execution. While the goal of authenticated MPC has been studied, these
works would require additional consistency checks to ensure the consistency of shares used
across the protocols for authentication of shares and the underlying MPC execution. Although
the explicit details are not provided in the protocol description, we expect the requirement of
some consistency check on the MACs to ensure the usage of same shares during authentication
protocol and original MPC for function computation. In our work, we formalize this notion
of authenticated MPC as an ideal functionality which incorporates the consistency checks, and
prove that the proposed constructions realize this. For instance, consider the scenario where a
malicious party receives the shares of a certified input held by an honest party, which is done
via an authenticated secret-sharing protocol, however while running the MPC itself it chooses
to not use the shares received during the previously run authenticated secret-sharing protocol
and uses an arbitrarily chosen share instead. The current definitions in [5, 27] fails to safeguard
against such an attack and would require additional assumptions to ensure the consistency of
shares.

To be precise, the current protocol description of Heerinput i [5] (Section 5.1) emulates the
authenticated secret-sharing, such that at the end of the protocol, if an input corresponds to a
valid signature, the shares of that input is available to every party. This protocol first secret-
shares the input, then using the shares held by everyone as input invokes another protocol Iyerify
to ascertain if the shares obtained in the previous phase corresponds to an input for which there
is a valid signature. However, note that only Step 3 of Ilyerir, considers the shares of the input,
which need not be the shares used for running the MPC, unless additional consistency checks
using the MACs on the shares are in place. Such details do not explicitly appear in the protocols
presented in [5].

The protocols in [27] also follow a similar template based on authenticated secret-sharing.
Their techniques consider two specific MPC protocols [49, 50] for input certification. Concretely,
Theorem 8 for input certification in [27] ensures that a malicious prover cannot feed an input
which does not correspond to the valid signature. While it is not explicitly specified in [27]
that the commitments to the inputs used for the batch verification of signatures are consistent
with the inputs used for the remaining proof of knowledge statements, we assume that this is
indeed the case.

In this chapter, we recognize the benefits of having a formal definition to capture the consis-
tency of shares of input used in authentication and the MPC. To this end, we explicitly provide

an ideal functionality ensuring the same, and then present a construction satisfying this ideal
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functionality. We also avoid the possibility of using different inputs for certification and MPC
by enforcing that the honest party shares must completely determine the reconstructed in-
put which is being authenticated. While this observation has not been specified in either of
the works, this specific restriction would also ensure that the consistency of shares holds for
constructions in [5, 27] as well.

We use efficient compressed DPoKs for signature verification instead of verifying signatures
inside the MPC protocol, hence differing from both [5] and [27] in terms of techniques used
and properties achieved. In particular, our compiler is modular, fully generic (works in a plug-
and-play manner with any threshold linear secret sharing based MPC protocol), and avoids
the (potentially expensive) protocol-specific techniques and preprocessing requirements that
are inherent to [5, 27]. Our compiler also enables stronger security guarantees as compared to
abort security, namely identifiable abort (and even full security /guaranteed output delivery in

certain cases), which neither [5] nor [27] achieves.

Distributed Zero-knowledge. Various notions of distributed zero-knowledge have appeared
in literature. The notion of distributed interactive proofs appeared in [95], in the context of
relations describing the verification of signatures, where the signature is public and the secret
key is shared. The notion in [107] considers a distributed prover in order to improve prover
efficiency, but the witness is still held by one entity. In Feta [16], the distributed notion is
a generalization of designated verifier to the threshold setting where a set of verifiers jointly
verify the correctness of the proof. Prio [47] proposes secret shared non-interactive proofs where
again, there is a single prover and many verifiers.

Our formulation of DPoKs also differs from recent works on distributed zkSNARKs [102,
91, 51], where the focus is on jointly computing a non-interactive publicly verifiable proof (with
specific focus on Grothl16 [74], Plonk [62] and Marlin [45]). Their constructions require addi-
tional interaction among the workers over private channels. On the other hand, we consider
DPoKs where all interaction with the verifier takes place over a public broadcast channel. We
also study the notion of robust completeness that guarantees completion even in the presence
of malicious behavior while ensuring succinct proof size, which was not achieved in prior works.
Note that distributed zkSNARKSs fundamentally differ in their objective. DPOKSs prove that
the given shares (e.g., the one used for MPC) reconstruct a valid witness, whereas distributed
zkSNARKSs do not certify a given sharing.

A recent work on distributed zkSNARKS, called zkSaaS [68], considers a monolithic prover
that aims outsources proof generation to (untrusted) servers in a privacy-preserving manner for
increased efficiency. However, we target applications that require proving (algebraically struc-

tured) relations involving an already secret-shared witness. Plugging it naively does not work
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as a replacement for our proposed compiler since it would not ensure that the same input shares
are used consistently in the authentication protocol and the core MPC. Additionally, similar
to the distributed proofs with multiple verifier, [68] also requires expressing the algebraically
structured relations as circuits, which is inefficient for the algebraic relations considered in our

work.

Proofs on Secret-shared Data. Notions of zero-knowledge proofs on distributed data is
explored in recent works [30, 76, 16]. The former work proposes the abstraction of a fully
linear PCP (FLPCP) where each verifier only has access to a share of the statement, and the
latter work is based on MPC-in-the-head paradigm. The techniques of distributed verifica-
tion [30, 76, 16] assumes the relations to be represented as an arithmetic circuit, whereas our
DPoKs consider algebraic relations whose circuit respresentation is prohibitively expensive. Ad-
ditionally, distributed verifier paradigm considers a designated prover who knows entire witness
to create a proof oracle, which is verified in distributed fashion, while DPoKs do not require
a prover which knows the entire witness. For example for proof of ¢*hY = C' wheres x and y
belongs to different parties, a DPoK will succeed as long as provers have valid shares of  and
Y.

Our observation is that algebraic relations like discrete log is naturally distributed witness
relation. A public statement and shared witness is better suited for algebraic relations, and our
distributed zero-knowledge definition captures such natural relations. Since the focus of our
work is on concrete efficiency (prover overhead, communication overhead), we take advantage of
the algebraic nature of the relation to design concretely efficient DPoKs by modeling the witness
as being distributed and statement being public. In this approach, we expect rich classes of
protocols (compressed sigma protocols, Bulletproofs etc that avoid circuit representation for
several useful relations) to be amenable to be distributed under our definition. In addition, [30]
provides sublinear communication only for special circuits (like degree 2) and the circuits of
interest for us are unlikely to have this structure.

We also note that [30] does not consider the robustness property. We put forth the robustness
notion that guarantees that the protocol runs to completion even in the presence of malicious
parties (when the prover is honest). This property is indeed important for our applications,
as this means that the compiled authenticated MPC protocol can identify malicious parties in
the authentication stage. The distributed completeness guarantees of [16] considers robustness,
however its protocol execution incurs communication cost linear in the size of the circuit in the
offline phase. However, [16] does not allow aggregation of multiple instances of authentication
of input into one execution of the underlying distributed protocol, which we support efficiently.

Finally, the motivating application for [30] is compiling passive security to active security,
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and therefore the statements that show up — like the next message function of the protocol
-— have a low degree circuit representation. We consider the authenticated input application
where our relations of interest are algebraic in nature (e.g. verification of an algebraic signature

scheme) and admit efficient sigma protocols.
4.1.3.1 Resistance to Known Vulnerabilities

Here, we present a discussion on why our proposed DPoK protocols and our compiler for

authenticated MPC resist some known attacks and insecurities of ZKP protocols in practice.

Resistance to ROS Attacks. In [24], the authors presented an algorithm for solving ROS
(Random inhomogeneities in a Overdetermined Solvable system of linear equations) mod p in
polynomial time for ¢ > log p dimensions, which leads to the ROS attack on certain advanced
families of digital signatures which involve computations over secret shares. However, the ROS
attack does not apply to our proposed DPoK protocols. In particular, note that the ROS attack
only works when: (i) there are more than logp parallel sessions for the same shares, (ii) the
adversary chooses its first message after seeing all of the other first messages from the honest
parties, (iii) the adversary chooses the challenge.

The ROS attack is not applicable for our protocols as: (i) there are no parallel sessions in our
protocols, (ii) each protocol is instantiated using the output of (the randomized) Share algorithm
of the underlying secret sharing scheme (Share, Reconstruct), thereby ensuring that we do not
reuse the shares across sessions, and in the round-efficient versions of our proposed protocols:
(iii) the parties send non-interactive proofs instead of sending the first-messages separately (see

HFS

ding 111 Section 4.6), and finally (iv) the challenge is not chosen by the adversary (verifier); it

is determined by performing a hash of the available public transcript.

Resistance to OSNARK-related Vulnerabilities. In [60], the authors provide a study
of when SNARKS are insecure in the presence of certain oracles (in particular, the knowledge
soundness guarantees do not hold in such settings since the extraction fails). As defined in [60],
an OSNARK is a SNARK that guarantees extraction even in presence of an oracle for the prover.
We note here that the negative result for the existence of OSNARKS, as outlined in [60], does
not provide a general impossibility result, since it only applies either to SNARKSs where the
prover has access to oracles with secret states (such that the extractor does not have access to
these states), and for standard-model SNARKs. We note that the attack does not apply: (i) to
SNARKSs in the ROM, and (ii) when the extractor is black-box in the adversary. Fiat-Shamir
transformed Sigma protocols are also known to satisfy black-box simulation-extractability, i.e.,
knowledge soundness holds even in the presence of proof oracles [65, 66]. Analogously, our

Fiat-Shamir transformed round-efficient proofs of knowledge are simulation-extractable in the
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random oracle model, as we establish through formal proofs of security. In particular, there are
no other oracles with secret states in our setting. We emphasize that signatures are already
independently obtained by the parties on their inputs, and signing or signature-oracles are not

included as part of our authenticated MPC protocols.
4.1.3.2 Comparison of our approach with Anonymity Sets

In this section, we present some additional discussion on the comparison of our DPoK-based
approach with the approach of signing public commitments. Previously we discussed an alter-
native approach for achieving authenticated MPC based on having the certifying authority sign
commitments to the private inputs of the parties, and then having the parties prove during the
MPC protocol that their inputs indeed open the public commitments. As discussed earlier, this
approach trivially violates the desired property of unlinkability, since one can link the usage of
the same input across different protocol executions from the public commitments. A possible
fix is to use anonymity sets: all commitments to the inputs are made publicly available, and
instead of explicitly identifying which commitment is linked with each input, the party provides
a zero-knowledge proof of knowledge of an opening of one of the several signed commitments,
along with a proof of membership of the commitment in the public set.

While this is a plausible solution, we believe that full unlinkability (as modeled implicitly
by our ideal functionality and realized by our proposed solution) is a better solution that
anonymity. First of all, the anonymity set needs to be large enough for any reasonable notion of
unlinkability to hold; however, this is an issue as the size of the statement to prove increases with
the size of the set, leading to additional overheads for the proof of knowledge. Additionally, one
has to prove that a commitment used is a member of the accumulated set, requiring additional
proofs of membership. Finally, in practical applications, it is unclear which entity will create
and maintain this set accumulator: for instance, if a new data set to be used as input for a
computation is signed by an authority, it must be added to the accumulator. This leads to

additional overheads for accumulator maintenance.

4.2 Preliminaries
In this section, we introduce notations and present preliminary background material.

Notation. We write z <—g x to represent that an element x is sampled uniformly at random
from a set/distribution X. The output z of a deterministic algorithm A is denoted by z = A
and the output 2z’ of a randomized algorithm A’ is denoted by 2’ <—r A’. For n € N, let [n]
denote the set {1,...,n}. For a,b € N such that a,b > 1, we denote by [a, b] the set of integers

lying between a and b (both inclusive). We refer to A € N as the security parameter, and denote
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by poly(\) and negl()\) any generic (unspecified) polynomial function and negligible function
in A, respectively. A function f : N — N is said to be negligible in A if for every positive
polynomial p, f(A) < 1/p(\) when X is sufficiently large.

Let G be a group and IF,, denote the field of prime order p. We use boldface to denote vectors.
Letg = (g1,...,90) € G"and & = (71, ...,2,) € Fy, then g* is defined by g* = g7* - - - g7. For
g=1(91,.---,9,) € G"and h = (hy,...,h,) € G", goh denotes component-wise multiplication,
and is defined by goh = (g1h1, ..., gnhy). For g = (g1, ..., 9,) € G" and & = (11,...,2,) € F,
g; (similarly, x;) denotes the left half of the vector g(x) and gp(xr) denotes the right half,

such that g = g, ||lgr and « = || zk.

4.2.1 Secure Multiparty Computation

Secure multiparty computation (MPC) enables n mutually distrustful parties to jointly compute
a given function f over their private inputs, where i*" party P, holds the private input z;, while
maintaining the properties of correctness and privacy. Intuitively, the property of correctness
ensures that the output computed at the end of the MPC execution is correct, and the property
of privacy ensures that nothing beyond the output of the computation is revealed. The distrust
amongst parties is captured by the existence of an adversary A that can corrupt the behaviour
of up to t parties. This work only considers static corruption, where the set of corrupted parties
is decided before the protocol execution. Note that we only consider computationally bounded
adversaries for MPC execution in this thesis.

In MPC, we can consider semi-honest adversaries, which honestly follows the protocol spec-
ification and attempts to learn more information from the protocol execution. In essence, the
privacy against such adversaries are formalized by the existence of a PPT simulator that, given
only the output and inputs of the corrupt parties, can generate the view of the corrupt parties in
a real execution. However, in this work, we consider malicious adversaries that can arbitrarily
deviate from the protocol execution. The privacy guarantees against malicious adversaries are
formalized in [7] by comparing a real protocol execution to an ideal model, which consists of
the parties sending their private inputs to an incorruptible trusted third party and receiving
the output.

Let f be a function. Formally, II is known as a secure MPC protocol for the function f, if

for every input x of f, the following properties of correctness and privacy hold.

Definition 16 (Correctness) Let outy(x) be the output of the protocol execution I1 on input

x, then we have outy(x) = f(x).

Definition 17 (Privacy) Let € = (z1,...,2,) and P, denote the i" party with input x;. Let
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A denote the adversary with auxiliary input z, C denote the set of indices of parties corrupted
by the adversary A, such that |C| < t. The executions in the real and ideal models are defined

below.

— Exzecution in the Real Model: In real model, the parties run the protocol 11. The
adversary A controls {P; : i € C}, and is assumed to be rushing, i.e., in every given round
it can see the messages sent by the honest parties before determining the messages sent
by the corrupt parties. Let Realna.)c () denote the random variable that consists of
the view of the adversary A (which includes the input and the internal randomness of the
corrupt parties, along with the messages received by them) and the output of the honest

parties.

— Execution in the Ideal Model: The ideal model consists of the honest parties, an
incorruptible trusted party and an ideal PPT adversary Sim, which controls the same set
of corrupted parties {P; : i € C}. The honest parties send their inputs to the trusted party.
The ideal adversary Sim receives the auziliary input z and sees the input of the corrupted
parties {x; : 1 € C}. Note that Sim can substitute any x; with any arbitrary i, for i € C,
such that |x;| = |x}| holds. Let x, be the inputs received by the trusted party, which it then
uses to compute the output (yi,...,yn) = f(24,...,2)). The simulator may send abort to
the trusted party, in which case the trusted party sends the abort message 1 to all parties,
otherwise it sends y; to P;, for all i € [n]. Let ldealssim(z)c () denote the output of the
ideal adversary Sim (which includes its auziliary input, the initial inputs of the corrupt

parties and the messages received by them) and the output of the honest parties.

The n-party protocol 11 is said to satisfy the property of privacy, if for every A in the real
model, there exists a PPT simulator Sim in the ideal model, such that the following computa-

tional indistinguishability holds for every  and z, where z,x; € {0,1}* for all i € [n].

{IdeaIfSim(z)@ (-’E)} =. {ReaIH,A(z),e (:B)}

Security of MPC. Inan MPC execution having security with abort, the adversary may abort
the protocol upon receiving the output, and deprive the honest parties of the opportunity
to obtain the output. In an MPC execution with identifiable abort security, although the
adversary may abort the protocol upon receiving the output and deprive the honest parties of
the opportunity to obtain the output, but in such a scenario a non-empty set of corrupt parties
will be identified by the honest parties. In an MPC execution with guaranteed output delivery
(GOD) security, all the honest parties are guaranteed to receive a correct output irrespective

of any adversarial strategy.
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Capacity of Corruption. In secure MPC, we generally assume that the adversary can only
corrupt atmost ¢t number of parties in the protocol execution, where t is a publicly known
threshold. This is known as a threshold adversary, which is the focus of our application. The
literature of MPC also considers non-threshold adversaries that induces corruption based on a
publicly known adversarial structure.

If the threshold adversary can corrupt any number of parties during the n-party MPC
execution, it is known as the dishonest majority setting and is denoted by ¢ < n. On the other
hand, if the threshold adversary is restricted to corrupt less than half of the total number of
parties, it is known as the honest majority setting and is denoted by ¢ < n/2. Additonally
within honest majority, we can restrict the threshold adversary further to ¢ < n/3, which

requires more than two-third of the total parties to behave honestly.

4.2.2 Threshold Secret Sharing

For ease of exposition we define a special case of threshold linear secret sharing scheme below.
For concreteness, the reader may assume a (¢,n) Shamir Secret Sharing. The more general

definition appears in Section 4.5.

Definition 4.1 (Threshold Secret Sharing) A (t,n) threshold secret sharing over finite field

F consists of algorithms (Share, Reconstruct) as described below:

— Share is a randomized algorithm that on input s € F samples a vector (sy,...,s,) € F", which
we denote as (Sy,...,Sy) <—r Share(s).
— Reconstruct is a deterministic algorithm that takes a setJ C [n], |J| > t, a vector (s1,...,sp)

and outputs
s = Reconstruct((sy,...,sp)),J) € F. We will often omit the argument J when it is clear from

the context.

A threshold secret sharing scheme satisfies the following properties:

— Correctness: Foreverys € F, any (sy,...,s,) <—r Share(s) and any subsetJ = {iy, ... i,} C
[n] with ¢ > t, we have Reconstruct((s;,,...,s;,),J) = s.

~ Privacy: Foreverys € F, any (s1,...,S,) < Share(s) and any subsetJ = {iy,...,i,} C [n]
with g < t, the tuple (s;,, ..., s;,) is information-theoretically independent of s.

A concrete (t,n) sharing scheme over a finite field F, known as the Shamir Secret Sharing is

realized by choosing a set of distinct points n = {n;,...,n,} in F\ {0}. Then given s € F, the
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Share algorithm uniformly samples a polynomial p of degree at most ¢ such that p(0) = s and
outputs (p(m),...,p(n,)) as the shares. The Reconstruct algorithm essentially reconstructs the
value s = p(0) using Lagrangian interpolation. We canonically extend the Share and Reconstruct

algorithms to vectors by applying them component-wise.

Definition 4.2 (Linear Code) An [n,k,d|-linear code £ over field F is a k-dimensional sub-
space of F™ such that d = min{A(x,y) : x,y € L,x # y}. Here A denotes the hamming

distance between two vectors.

We say that an m x n matrix P € £™ if each row of P is a vector in £. We also overload
the distance function A over matrices; for matrices P, Q € F"*" we define A(P, Q) to be the
number of columns in which P and Q differ. For a matrix P € ™" and an [n,k,d] linear
code £ over F, we define A(P,£™) to be minimum value of A(P, Q) where Q € £™.

Definition 4.3 (Reed Solomon code) For any finite field F, any n-length vector n = (m1, ..., n,) €
" of distinct elements of F and integer k < n, the Reed Solomon Code RS, s, is an [n, k,n —
k + 1] linear code consisting of vectors (p(m), . ,p(nn)) where p is a polynomial of degree at

most k — 1 over F.

We note that shares output by (¢,n) Shamir secret sharing are vectors in [n,t + 1,n — ]
Reed Solomon code. We can leverage tests for membership of a vector in a linear code (based
on parity-check matrix) to check if a set of shares {s;}icqc for H C [n] and |H| > ¢ uniquely
determine a shared value s for Shamir Secret Sharing scheme. Below, we formalise the notion
of consistent shares and state a lemma to check such shares. In the interest of space, we directly

state the results for general m € N, i.e. when vectors s € F™ are shared.

Definition 4.4 (Consistent Shares) Let £ be the linear code determined by a (t,n) Shamir
secret sharing scheme over finite field F. For m € N, we call a set of shares {8;}icsc for H C [n]
with |H| > t + 1 to be L™-consistent if there exists (vy,...,v,) € L™ such that s; = v; for
i € H. In this case s = Reconstruct(vy, ..., v,) € F™ is the unique shared value determined by
the shares {s;}ics.

We define the predicate Consistent : F*"1 — {0, 1} as

(

1, |3 <t

1, |H| >t AA{s;}ticx is L™-consistent
Consistent({s; }icsc, 8) = 1 54 {81 e
/\ Reconstruct({s;}ic5) = s

0, otherwise.
\
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We use this Consistent(.) predicate to determine if a vector s can be a possible candidate

which could have been used to generate the set of shares held by the honest parties {s; }ics.

Lemma 4.1 Let £ be the linear code determined by a (t,n) Shamir secret sharing scheme over
finite field F. Then form € N and all H C [n] with ¢ = |H| > t+1, there exists ¢ x (n—t) matriz
HyH over F such that shares {8;}icsc are L™-consistent and determine the value s € F™ if

and only if XHye = (8,0""1) where X = (x1,...,x,) is some canonical ordering of {8; }iesc.

Proof: We sketch the proof. For a matrix P € £™, we have PH = 0"'"! where H is the
parity check matrix for the [n,t+1,n—t] code £. Now for H C [n] with |H| > t+1, and matrix
X determined by £™-consistent shares (;);eq, there exists a matrix Ty such that XTq € L™
and hence X Ty H = 0" "', Thus for Hy; = [k, T4H] where k is the column of reconstruction
coefficients for the set 3, we have X Hy = (s,0" "7 1). O

4.2.3 Proofs of Knowledge
Let R be a NP-relation and £ be the corresponding NP-language, where £ = {x : 3 w such that

(x,w) € R}. Here, z is called an instance or statement and w is called a witness. An interactive
proof system consists of a pair of PPT algorithms (P, V). P, known as the prover algorithm,
takes as input an instance x € £ and its corresponding witness w, and V, known as the verifier
algorithm, takes as input an instance x. Given a public instance x, the prover P, convinces the
verifier V, that x € £. At the end of the protocol, based on whether the verifier is convinced
by the prover’s claim, V outputs a decision bit. A stronger proof of knowledge (PoK)! property
says that if the verifier is convinced, then the prover knows a witness w such that (z,w) € R.
In this thesis, we consider POKs that satisfy two security properties, namely, honest-verifier
zero-knowledge (HVZK) and special-soundness.

A protocol is said to be honest-verifier zero-knowledge (HVZK) if the transcript of mes-
sages resulting from a run of the protocol can be simulated by an efficient algorithm without
knowledge of the witness. A protocol is said to have k-special-soundness, if given k accepting
transcripts, an extractor algorithm can output a w’ such that (z,w’) € R. Furthermore, a
protocol is said to have (ki,...,k,)-special-soundness [32], if given a tree of [/, k; accepting
transcripts, the extractor can extract a valid witness. Here, each vertex in the tree of [/, k;
accepting transcripts corresponds to the prover’s messages and each edge in the tree corresponds

the verifier’s challenge, and each root-to-leaf path is a transcript. An interactive protocol is

!'Note that throughout this thesis, we use proof and argument interchangeably, but we are only concerned
with arguments (proofs with computational soundness) in this thesis.
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said to be public-coin if the verifier’s messages are uniformly random strings. Public-coin pro-
tocols can be transformed into non-interactive arguments using the Fiat-Shamir [59] heuristic
by deriving the verifier’s messages as the output of a Random Oracle. In this work, we consider
public-coin protocols.

We refer to Section 4.2.5 for a detailed treatment of non-interactive zero-knowledge (NIZK)

proof systems.

4.2.4 BBS+ Signatures and PoK for BBS

In this section, we recall the BBS+ signature scheme [29, 87, 41], and its proof of knowledge.
We use the variant of BBS+ signatures and the proof of knowledge from [41], which is the
currently adopted variant in the IETF standard for verifiable crendentials [87]. Later, we also
describe a slight variant of the BBS+ proof of knowledge from [41], which leads to corresponding
distributed proofs with better amortized complexity (i.e, when several DPoKs are required at

a time).

Definition 4.5 (BBS+ Signature Scheme (29, 87]) The BBS+ signature scheme to sign
a message of the formm = (my,...,my) € Ff, consists of a tuple of PPT algorithms (Setup, KeyGen, Sign, \

described as follows :

— Setup(1*) : For security parameter \, this algorithm outputs groups Gy, Gy, and Gr of prime
order p, with an efficient bilinear map e : G; X Gy — Gr as part of the public parameters pp,

along with g1 and go, which are the generators of groups Gy and Go respectively.

~ KeyGen(pp) : This algorithm samples (ho, ..., hy) g G and x <5 F*

b computes w = gy

and outputs (sk, pk), where sk = x and pk = (g1, w, hg, ..., hy).

1

— Sign(sk,my,...,myg) : This algorithm samples 3, s <—gr F,, computes A = (glhg Hle h;”) .
and outputs 0 = (A, 3, s).

— Verify(pk, (mq,...,my),0) : This algorithm parses o as (01,09, 03), and checks

¢
e(o1,wgs’) =e (91h83 Hh;m, 92) :

=1

If yes, it outputs 1, and outputs 0 otherwise.
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Original PoK for BBS+ Signature Scheme. Here, we first recall the proof of knowledge
for BBS+ signatures, which was originally proposed in [41], and then present our modified

version next.

— Common Input: Public Key pk = (w, hg, . .., hy)

1

— Pg inputs: Message m < Fﬁ and signature o= (A’ ﬁ7 S) onm, with A = (glhg Hﬂ hm1> ﬂ+x.

i=1""
1. P samples r; <—p [F; and computes A" = A™ and r3 = ot
2. P computes A = (A’)_ﬂ b, where b= g, hy Hle b
3. P samples ry < F, and computes d = b - hy" and s’ = s — 1y - 13

4. P sends (A’, A,d) to V, and they run a ZKPoK for the relation:

)4
(A) b = Afd A dhg [T =gt

=1

where (m,rg, 73, 3,5') is the witness.

5. 'V checks that A" # 1g,,e (A", w) = e (fl, gg), verifies the ZKPoK proof and outputs 1 if

all the checks pass, and 0 otherwise.

Modified PoK for BBS+ Signature Scheme. We present our modified proof of knowl-
edge (PoK) for BBS+ signatures, building on the PoK originally proposed in [41], wherein we
split the relation d=" hg/ Hz hi™ = g7 by requiring the prover to equivalently show:

1=1""

¢
dhy " =C AR [[R =D AC-D=g?
i=1
The above decomposition has advantage that the (long) message m appears only with public
generators which leads to better aggregation of DPoKs over several messages. The complete

modified protocol appears below.

— Common Input: Public Key pk = (w, hy, ..., hy)

1

— Pg inputs: Message m € ]Ff) and signature o= (A7 57 S) onm, with A = <g1h8 Hf hm7,> 5+r.

i=1""
1. P samples r; <—p [, and computes A’ = A™ and r3 = it

2. P computes A = (A’)_ﬂ 0™, where b = g1hg Hf:1 hi".
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A

P samples 1y <—p [, and computes d = 0™ - hy"™ and s’ = s — 1y - 13
P samples 1 <x F, and sets C' = d"h3 ", and D = h]! [T, A
P sends (A’, A,d,C, D) to V.

P and V run a ZKPoK for the discrete-logarithm relation:
¢
(A) P hp = Ajd A dohy " =C A B[] R =D
i=1
where (m,rq, 73, 3,5 ,n) is the witness.

V checks that A’ # 1g,,C - D = g7 ', e (A, w) = e (4, g2), verifies the ZKPoK proof and
outputs 1 if all the checks pass, and 0 otherwise.

4.2.5 Non-Interactive Zero-Knowledge Proofs in the Random Ora-

cle Model

The Fiat-Shamir heuristic [59] transforms a public-coin interactive proof into an non-interactive
version in the random oracle model. Given a public-coin proof system I1 = (P, V) with r rounds
and Ch; is the challenge space for the ith round. The corresponding non-interactive proof system

Ilrs = (Setupgs, Prs, Vrs) is defined as follows.

H < Setupgs(1*) The setup algorithm for i € [1,r] samples a function H; uniformly from
a set of all functions that map {0, 1}* to Ch,;. Note that this is equivalent to instantiating

H; from a single random oracle via domain separation. We denote by H the set {Hi}ie[lﬂ.

7 <p Prs" (2, w) The prover produces a proof string 7 on input statement z, and wit-
ness w. For each round i € [1,7], Pes™ invokes the next message function of the in-
teractive prover P(x,w) on prior challenge ¢;_; to get a;, and obtains the ith round
challenge by computing ¢; = H;(z,a1,¢1,...,a,-1,¢-1,a;). Then Pes outputs 7 =
(@1, €15y Qpy Cry Qryr).

b < Ves" (z,7) The verifier on input statement z, and proof string 7, outputs a decision

bit. Vest outputs b = 1, meaning the verifier accepts the proof, iff V(z,7) = 1 and

¢; =Hi(z,a1,¢1,...,¢i1,a;) for all i € [1,7].

Definition 4.6 (Knowledge soundness in the ROM) Consider a non-interactive proof sys-

tem Ilgs = (Setupgs, Prs, Ves) for relation R. llgs is extractable with knowledge error k :
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NxN — [0,1] in the random oracle model, if there exists an extractor Ext and some polynomial

poly, such that for any PPT adversary P that makes at most q queries to H, it holds that

acc(P) — k(A q)
poly(A)

ext(P, Ext) >

and Ext halts in an expected number of steps that is polynomial in X and q, where the probabilities

acc and ext are defined as follows.

H < r Setupgs(11);
acc(P)=Pr | b=1]| (x,m) +rP(p);
b<r VFSH(.I',T(')

H g Setupes(1%);

b= 1A (z,7) <r P (p);
(x,w) € R b g VesH(z,7);
w p Ext”(z, 7, p, Q)

ext(P, Ext) = Pr

where Q1 = {Qy;}icpy is the set consisting of pairs corresponding to queries to the random
oracle H with index i, and the response. In the experiment ext, Ext has oracle access to the

next-message function of P.

Zero-knowledge for non-interactive proofs is defined in the explicitly programmable random
oracle model where the simulator is allowed to program the random oracle. The zero-knowledge
simulator Sgs is modeled as a stateful algorithm that operates in two modes. In the first mode,
(¢iyst’) < Sgs(1,st,z,4) handles random oracle calls to H; on input z. In the second mode,

(7, st') < Sgs(2, st, z) simulates a valid proof string. We define stateful wrapper oracles.
— 84(t, i) denotes the oracle that returns the first output of Sgs(1,st, t,7);

— 89(x,w) returns the first output of Sgs(2,st, ) if (pp,z,w) € R and L otherwise; (This

is because ZK is defined only for true statements.)

Definition 4.7 (Non-interactive Zero-Knowledge) A NIZK Tlgs = (Setupgs, Prs”, Ves™)
for relation R is non-interactive zero-knowledge in the random oracle model, if there exists a
PPT simulator 8gs = (81,82) such that for all PPT distinguisher D, the following is negligible
m A

|Pr[DH"(10) = 1 H - Setupes(1)] = Pr [D515(1%) = 11 H ¢, Setups (1) |

98



where both Pest (x,w) and 8y return L if (z,w) & R.

Additionally, given a HVZK simulator 8 for II, we can construct a NIZK simulator S8gs for

IIgs as follows.

— On query (z,7) with mode 1, 8gs(1,st, x,¢) lazily samples a lookup table Q; ; maintained
in state st. It checks whether Q, ;[z] is already defined; if yes, it returns the previously

assigned value; otherwise it returns and sets a fresh random value ¢; sampled from Ch;.

— On query x with mode 2, 8gs(2,st,x) calls the HVZK simulator 8§ of II to obtain a
simulated transcript © = (ay,c1, ..., ar, ¢r, ary1). Then, it programs the tables such that
Quilr,a1] ==c1,..., Q. [z, a1,c1,...,a.] == ¢ If any of the table entries has been already
defined 8gs aborts, which happens with negligible probability under the assumption that

a1 has high min-entropy.

4.2.6 Compressed Sigma Protocols

We recall the sigma protocol for vectors, for proving knowledge of discrete log s € Ff, of a vector
of group elements g, such that g° = z. Here, a prover P with knowledge of the secret vector
s, samples a random vector of scalars r +p Iﬁ‘f;, and sends a = g" to the verifier V. V then
samples a challenge ¢ <= I, and sends it to P and in the next round P replies with © = cs +r
where V checks if g* = z°a. Here, the size of the last message of P is linear in input size, and
hence it makes the proof size linear. We note that, for the proof to be succeed, it suffices to
convince the verifier V that P knows @ such that g* = z°a. Here, we recall the log, m —1 round
protocol using the split and fold technique [8], which has logarithmic proof size, for proving

knowledge of « € IFf; such that g* = y where y = 2%a :
— Common input : g G™, 2 € G
~ P’s input : x € F!
1. P computes A = g7*, B = g7" and sends them to V.
2. 'V samples ¢ <—p F, and sends it to P.
3. P comutes &’ = x;, + cxp.
4. P and V independently computes g’ = g$ o g € G2 and 2/ = Ay<B®.

5. If size(g’) = 2, P sends ' to V, else P and V repeat the protocol from step 1 with @ = @/,
g=¢g and y = 7.
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where for a vector s, s;, denotes the left half of the vector and si denote the right half.

The underlying sigma protocol has perfect completeness, special honest-verifier zero-knowledge
(SHVZK) and 2-special soundness, and the later protocol has perfect completeness and 3-
special soundness at each step of the recursion. Hence, the overall protocol CSP{(z,x) : g* =
z} has perfect completeness, SHVZK which comes from the underlying sigma protocol and
(2, k1, ..., Kgog, ¢—1))-special soundness, where k; = 3 Vi € [log, ¢ — 1]. The protocol can be
compiled into a non-interactive argument of knowledge using Fiat-Shamir heuristic [59] in the

random oracle model, which we denote by NIPK.PRO{(z, x) : g® = z} for the random oracle

RO.
4.2.7 Coding Theory

The following coding theoretic result is used to identify malicious behaviour in the distributed
proof of knowledge protocol in Section 4.3.2. It has been previously used in construction of
zero-knowledge proofs in the interactive oracle setting (e.g [4, 22]), to check that the oracle

represents “low degree polynomials”.

Lemma 4.2 ([23], Theorem 1.2) Let £ be an [n, k,d|-linear code over finite field F and let
S be an m x n matriz over F. Let e = A(S,L™) be such that e < d/2. Then for any codeword
r € L, and v sampled uniformly from F™, we have A(r +~1'S, L) = e with probability at least
L—n/|F|. Furthermore, if E denotes the column indices where S differs from the nearest matriz
Q in L™, with probability 1 —n/|F| over choice of 7, the vector r +~TS differs from the closest

codeword v € L at precisely the positions in E.

4.3 Distributed Proof of Knowledge

In this section, we formalize the notion of distributed proof of knowledge (DPoK) in which
multiple provers, each having a share of the witness engage in an interactive protocol with a
verifier to convince it that their shares determine a valid witness. The provers do not directly
interact with each other, and all the interaction with the verifier takes place over a public

broadcast channel.

4.3.1 Defining a DPoK
Definition 4.8 (Distributed Proof of Knowledge) We define n-party distributed proof of

knowledge for relation generator RGen and a secret-sharing scheme SSS = (Share, Reconstruct)

by the tuple DPoKsss rgen = (Setup, IT) where Setup is a PPT algorithm and II is an interactive
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protocol between PPT algorithms P (prover), V (verifier) and Wy, ...,'W,, (workers) defined as

follows:

— Setup Phase: For relation R <5 RGen(llA)7 Setup(XR) outputs public parameters pp as
pp < r Setup(R). The setup phase is required to be executed only once for a given relation
R. We assume R consists of pairs (x, w) where w is parsed as (s,t)) with s € F. Looking
ahead, we partition the witness as (s,t) to explicitly specify which parts of the witness

later needs to be shared !.

— Input Phase: The prover P receives (x, (s,t)) € R as input, while the worker W;, i € [n]

receives (&, s;) as input, where (s1,...,S,) <r Share(s). All parties receive x as input.

— Preprocessing Phase: This is (an optional) phase where the prover P sends some aux-

iliary information aux; to worker W, using secure private channels.

— Interactive Phase: In this phase, the parties interact using a public broadcast channel
according to the protocol II. The protocol II is a k-round protocol for some k € N, with
(pp, x, s,t) as P’s input, (pp,x, s;,aux;) as the input of W; and (pp,x) as the input of
V. The verifier’s message in each round j € [k] consists of a uniformly sampled challenge
c; € F% for ¢; € N. In each round j € [k], the worker W; (resp. the prover P) broadcasts
a message m;; (resp., m;) which depends on it’s random coins and the messages received

in prior rounds (including preprocessing phase).

— Output Phase: At the conclusion of k rounds, verifier outputs a bit b € {0, 1} indicating
accept (1) or reject (0).

A distributed proof of knowledge DPoKsss rgen @s described above is said to be t-private,
(-robust if the following hold:

~ Completeness: We say that completeness holds if for all R <5 RGen(1'") and (z, s) € R,
the honest execution of all the phases results in 1 being output in the output phase with

probability 1.

— Knowledge-Soundness: We say that knowledge soundness holds if for any PPT adversary
A = (Ay, As), where Ay corrupts the prover P and subset of workers {W;};cc for some

'We specify s € F™ since our secret sharing works over a finite field. The witness component t need not,
in general, be a field element. In fact, in our application, the witness is a message signature pair where the
message is in F™ and the signature is a group element. This group element is not secret shared, yet, the DPOK
guarantees extraction of a valid signature message pair.
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C C [n], there exists an extractor Ext with oracle access to Ay (recall that the prover and

the set of corrupt W; are controlled by As) such the following probability is negligible.

R < pr RGen(1*

pp < g Setup(R

(x,{si}igc) < r Ai(pp

(s,t) < Ext"2(pp, , {s;}igc

v./—l,l_[(pp>w) =1A
Pr ((x, (s,t)) € RV
Consistent({s; }igc, s) = 0)

~— — ~— “—

In the above, V4 n(pp, ) denotes the verifier's output in the protocol IT with its input as
(pp, ) and A being the adversary. The extractor takes as input the shares of the honest
parties specified by the adversary A;, and with all but negligible probability extracts a

valid witness.

— Honest Verifier Zero-Knowledge: We say that a DPoK is honest verifier zero-knowledge
if for all R < RGen(1'"), (z,s) € R and any PPT adversary A corrupting a set of work-
ers {W;}icc, where |C| < ¢, there exists a PPT simulator Sim such that View, (pp, )
is indistinguishable from Sim(pp,x) for pp <—gr Setup(R). Here, the view is given by
Views i = {7, (M,);ec} where 7 denotes the internal randomness of A and M, is the set of
all messages received by W; in II. We remark that we define honest-verifier zero-knowledge
as is standard for public-coin interactive protocols. After Fiat-Shamir compilation into a

non-interactive proof, we get full zero-knowledge against a malicious verifier.

~ Robust-Completeness: We say that robust-completeness holds if for all R <5 RGen(11"),
(x,s) € R and any PPT adversary A corrupting a set of workers {W;};cc, where |C| < ¢,
Van(pp, ) = 1 with overwhelming probability where pp < Setup(R).

Remark 1 Robust completeness is a stronger notion of completeness in the sense that it holds
even if some corrupt workers deviate maliciously from the protocol, as opposed to the standard
notion of completeness which only holds if all the workers follow the protocol. Looking ahead, we
use robust complete DPoKs to design authenticated MPC' protocols that preserve the underlying

protocol’s resilience against malicious behavior.

Remark 2 We assume that the sharing phase is executed before the onset of DPoK, hence
the knowledge soundness extractor of DPoK expects honest party shares in order to extract the
witness.  Since knowledge soundness is supposed to hold against a corrupt prover and some
corrupt workers, it 1s meaningful to say that the adversary breaks knowledge soundness if no

extractor can construct corrupt party shares that together with the honest party shares
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determine a valid witness. Note that extractor is required to produce shares of corrupt parties
which “explain” the successful outcome of the protocol in conjunction with the shares used by

honest parties. Hence, DPoK enables us to certify a given sharing.

Remark 3 We assume an honest verifier V for ease of exposition. In Section 4.6, we relax this
assumption by transforming any DPoKsss reen protocol that uses only public-coins and commu-
nication over broadcast channels between the workers and the verifier (with no communication
among the workers), into a round-efficient version RE-DPoKsss rgen i1 the random oracle model,

wherein the verifier’s challenge is computed using the Fiat-Shamir heuristic [59].

4.3.2 Robust Complete DPoK for Discrete Log

In this section, we provide a DPoKsss pioggen for the discrete log relation based on Shamir
Secret Sharing (SSS) [104]. Let DlogGen be a relation generator that on input (1'*,1¢) outputs
(G, g, p) where p is a 1 -bit prime, G is a cyclic group of order p and g = (g1, ..., g¢) < G is
a uniformly sampled set of generators. The associated relation RPY is defined by (z,s) € RPE
if g° = z. Let SSS = (Share, Reconstruct) denote (¢,n) Shamir secret sharing over F,. Our
protocol Ilgeg realizing DPoKsss piogen is presented in Figure 4.1.

However, for ease of exposition, we first explain a simpler non-robust version of the protocol,
before explaining the robust version. We use an instantiation of compressed sigma protocols
(CSP) due to Attema et al. [8] as a black-box (please refer to Section 4.2.6 for more details). We
run CSP protocol instances over a broadcast channel, meaning that each worker W; (playing
the role of the prover of that instance) broadcasts its messages as part of the CSP protocol,

and the verifier broadcasts all challenges as well.

Warm-up: Non-robust DPoK for DLOG. We begin by describing a simpler, non-robust
version of Iy outlined above, which we call II-giog. Let us consider the scenario where the
parties W;, i € [n], holds the shares s; for a secret s such that (z,s) € RPY ie. 2z = g°. Now
note that since (si,...,8,) <r s, there exists some publicly known k; such that >, k;s; = s.

In particular, the protocol Il,,-qi0g €xecutes the following steps:

— Input Phase: The prover holds (z, s) and each worker W; (i € [n]) holds (z, s;), where

s; are shares of s i.e. (s1,...,8,) <g Share(s).

Interactive Phase

— Each worker W; (i € [n]) broadcasts a commitment A; = g* to their shares s;, along with

a proof of knowledge 7; of its exponent s; with respect to the associated commitment A;.
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— Thereafter, the verifier checks the following:

- The proofs 7; (with respect to the broadcast commitment A;) are valid for all i € [n].

. The broadcast A; and the publicly known z satisfies the relation z = [], A¥ for the

publicly known reconstruction coefficients {k; : i € [n]}.

Robust DPoK for DLOG. Note that the previously described protocol Il-qi0g achieves
completeness only if all of the parties participating to produce the proof are honest. To achieve
completeness even in the presence of corrupt parties, known as the stronger guarantee of robust
completeness, we require error-correction. However the shares that requires error-correction
are in the exponent of a publicly known group element and it is known from [96] that error
correction is not possible in the exponent. To ensure that error correction is possible in the
exponent, we leverage the coding theoretic lemma that states that a random linear combination
of a set of error-correcting codes (e.g., Reed-Solomon code) retains the position of errors as long

as the number of errors are ‘small’. In particular, the protocol Ilgg executes the following steps:

— Input Phase: The prover holds (z, s) and each worker W; (i € [n]) holds (z, s;), where

s; are shares of s i.e. (sy,...,8,) <g Share(s).

— Preprocessing: We need an additional preprocessing step for providing robustness. In
this phase, before the onset of the interactive phase of the protocol, the prover samples

r <—pr I, computes (rq,...,r,) g Share(r) and sends the share r; to the worker W;.

Interactive Phase

— Commit to Shares: In the interactive phase, each worker W; (i € [n]) first commit to

their respective shares by

- broadcasting A; = g* and running its associated proof of knowledge CSP{(A;, s;) :
g

S; —

A;} over broadcast to obtain ;.

- broadcasting B, = hi'hy* for w; < F, and running its its associated proofs of
knowledge
CSP{(B;, (ri,w;)) : hi'hs* = B;} over broadcast to obtain m;s.

— Reveal Linear Form over Shares: The verifier samples a challenge v g Fﬁ and
broadcasts it. Thereafter, the workers broadcast the linear form v; = (v, s;) + r;. Recall

that, we know that random linear combination of a codeword is also a codeword (recalled
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in Lemma 4.2). Using Lemma 4.2, since {(s;,7;) : ¢ € [n]} are codewords respectively, the
linear combination of those codewords (vy, ..., v,) using the randomly sampled ~ is also

a codeword.

Additionally, to ensure that corrupt workers use s;, r; consistent with earlier commitments
A;, B; we additionally require them to run the following proof of knowledge CSP over

broadcast to obtain m;s3:
i3 = CSP{((AlBl,’)’H]_HO,Ul), (Si, ri,wi)) . gsihgihwi = Asz N <’7, 8i> + r, = U,L'}.

Verifier Determines Honest Commitments: Let v = (vy,...,v,), defined by v; =
(7, s:) + ri, be the vector of honestly computed values, and v/ = (v{,...,v)) be the
respective broadcast values received by the workers in the previous step. If one of the
proofs m;1, m or g is invalid, the verifier set b; = 0 else it sets b; = 1. Since A(v/,v) <
d < (n—1)/2,V can compute v from v’ by decoding algorithm (e.g. Berlekamp-Welch)
for Reed-Solomon codes. Set C = {i € [n] : v; # v[ V b; = 0} and let Hy = (h;)) denote
the matrix guaranteed by Lemma 4.1 for Q) = [n]\C = {i1,...,7,} for ¢ € N.

Informally, C is the set consisting of the position of ‘errors’ noted by the verifier and the
new reconstruction coefficient k] is computed for the set [n]\ C = {iy,...,4,}. Thereafter
the verifier proceeds with the final check with the non-error positions in {i,...,i,} by
using the new reconstruction coefficients and the corresponding commitments sent in the
previous round. Also, we rely on the fact that we use shares of a codeword (s,r) in the
proof of knowledge ;3 to ensure that the received values (vy,...,v,), if correctly com-

puted, would also be a codeword and error-correction can be used on the new codeword

(U1, .., Vp).

Output using Honest Messages: V outputs (1, C) if (Hje[q} A’?jk> = (z,0" 1),
k=1,...n—t
and (0, {P}) otherwise.

This is achieved via the additional steps (4b) through (6) in Ilge outlined in the figure

above. We subsequently present a formal proof that Ilges achieves d-robust completeness for

d < dist/2, where dist = (n —t) is the minimum distance of the Reed-Solomon code induced by
(t,n)-SSS.

Remark 4 The final step of protocol Ilgeg checks (n—t) equations over exponents and not just

the reconstruction equation. This is to ensure that we extract the witness consistent with honest

party shares of the witness. This is crucial in the security proof of our compiler for honest
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magjority protocols where honest party shares determine a unique consistent witness, and this
ensures that corrupt parties use the same inputs in both the DPoK protocol and the associated
MPC protocol.

Theorem 4.1 Assuming that CSP satisfies completeness, knowledge-soundness and zero-knowledge
with O(log ¢)-communication overhead, Ilgog is & DPoKsss ploggen (@s per definition 4.8) for re-
lation generator DlogGen and (t,n)-SSS with the following properties:

— Security: t-private and d-robust, for d < dist/2, where dist = (n — t) is the minimum
distance of the Reed-Solomon code induced by (t,n)-SSS.

— Efficiency: O(n) communication over point-to-point channels and O(nlogl) communi-

cation over broadcast channels.

Proof:
Proof. We provide the proof of security and efficiency below.

Proof of Security. In order to prove security, we prove robust completeness, knowledge-soundness

and zero-knowledge.

Robust Completeness. We show that when the prover is honest, and has a correct witness
s, the verifier outputs 1 and identifies the corrupt workers with overwhelming probability. Let
A be an adversary corrupting set C' of workers with |C'| = d < (n —t)/2. Let S denote the
matrix with i column as (s;,r;) for i € [n]. Clearly S € £™ for m = ¢ + 1. We construct
a matrix S’ as follows: for i € C' where the adversary’s proofs w1, T and m;3 are valid, we
extract s; and r; from the proofs m;; and 7 respectively, and set (s}, 7!) as the i column

of §'. For i € C' where one of the proofs is not valid, we set i column of S’ as (s}, r}) for

171

s}, 7l sampled uniformly. Finally for i ¢ C', we set the i* column of S’ as (s;,r;) (i.e. it is
identical to the corresponding column in S). Intuitively, the matrix S is the corrupted version
of honest matrix S in which columns corresponding to corrupt provers consist of shares (s}, 77%)
the adversary had in its “head”. Looking ahead, we force the adversary to reveal a linear
combination over the shares in its “head”, and if they are inconsistent with S, the resulting
message v, will differ from honestly computed v; (Lemma 4.2), which will identify the corrupt
messages. We now proceed with the formal proof. Let E denote the set of column indices where
S and S’ differ. Let v/ = (v],...,v],) be the vector where v, is sent by W; in Step (5). Clearly,

as A(v', L) < |C'| < (n—t)/2, we can decode v’ to vector v = (vy,...,v,) € L. By uniqueness

!'Note that here the witness is s € ]F]‘f,7 and we do not have any component ¢ which is not being secret-shared.
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1. Public Parameters: Let (G,g,p) <r DIogGen(llA,lé). Let RPY denote the relation
consisting of pairs (2, s) such that g¥ = 2. Let (hy, ho) < g Setup(RPY) be two indepen-
dent generators of G.

2. Input Phase: The prover gets (z,s) while workers W;, i € [n]| are given (z,s;) where
(81,...,8,) < r Share(s). !

3. Preprocessing: Prover samples r <—g F,,, computes (ry,...,r,) - Share(r) and sends
ri to W; for i € [n].

4. Commit to Shares: In the interactive phase, each worker W;, for i € [n], does the
following:

(a) W; broadcasts A; = g* and runs its associated proofs of knowledge CSP{(A4;,s;) :
g°® = A;} over broadcast to obtain ;.

(b) W; broadcasts B; = hj*hy" for w; < F, and runs its associated proofs of knowledge
CSP{(B;, (ri,w;)) : hi'hs® = B;} over broadcast to obtain ;.

5. Reveal Linear Form over Shares:

(a) V samples v <p F{ and broacasts it.
(b) For all i € [n], W; computes v; = (7, 8;) + r; and broadcasts v;.

(c) For all i € [n], W; also runs the associated proof of knowledge to obtain 73, i.e.
;3 — CSP{((AZB“")’H].HO, Ui)7 (Si, n-,wz-)) . gslh?h‘;z = Asz N <")/, Si> +7r; = Ui}.

6. Verifier Determines Honest Commitments:

(a) Let v/ = (v],...,v)) be the received values in the previous step by the workers,

rrn

instead of the honestly computed valyes (vy, ..., v,).
(b) If one of the proofs m;;, ;2 or m;3 is invalid, the verifier set b; = 0 else it sets b; = 1.

(c) Since A(v',v) <d < (n—1t)/2 from assumption, V computes v from v’ by decoding
algorithm (e.g. Berlekamp-Welch) for Reed-Solomon codes. Set C = {i € [n] : v; #
vl V b; = 0} and let Hy = (hj;) denote the matrix guaranteed by Lemma 4.1 for

Q: [n]\cz{ll,,lq} fOI'qu.

7. Output using Honest Messages: V outputs (1, C) if

IT A" = (2,071

J€ld] k=1

and (0, {P}) otherwise.

Figure 4.1: 1%1‘70130601 Iiog




of decoding, we must have v, = v; for i ¢ C'. We will prove that with overwhelming probability
we must have (s},r}) = (s;,r;) for all i € @, which from Lemma 4.1 will imply that verifier
outputs 1 (this is because verifier simply checks matrix relation in Lemma 4.1 over exponents).
For sake of contradiction, assume that (s},r}) # (s;,7;) for i € H. We can assume that the
proofs 1, ..., ms3 were valid, for otherwise b; = 0, which would imply ¢ ¢ H, a contradiciton.
Now from soundness of the proofs and binding property of the pedersen commitments, with
overwhelming probability we must have v} = (v, s}) + ri. By assumption we have i € F and
thus from Lemma 4.2, with overwhelming probability we have v, # v;. Thus i ¢ H, which
is again a contradiction. This proves that s, = s; for i € H, and thus the vector (s});es is

L™-consistent. From Lemma 4.1, we conclude that the verifier outputs 1.

Knowledge-Soundness. To prove knowledge-soundness, we describe the extractor Ext which
is provided the shares s;,7 ¢ C with C denoting the indices of workers corrupted by adversary
A. The extractor Ext runs the adversary A. When A succeeds, for each j € [g] in Step (6) the
extractor Ext sets s;j = s, if i; ¢ C; otherwise it invokes the extractor for CSP, which has oracle
access to the worker W;, acting as the prover for the instantiation of CSP{(A;, s;) : g° = A;},
to extract s; satisfying gS;J‘ = A;;. The verification check in Step (7) implies that the tuple
(s;j)je[q] is L’-consistent. The extractor outputs the witness s, which is reconstructed from
/

the columns of the unique matrix S € £¢ determined by the tuple (S»

) - This completes the
4/ j€ldl

proof of knowledge-soundness for ILgjeg.

Zero-Knowledge. For proving zero-knowledge, we describe the simulator as follows. With-
out loss of generaltiy, let us assume that C = {1,..., €} for e <¢. The simulator Sim runs the

adversary as follows:
— Sim receives {A;, B; }icc from the adversary.
— Sim simulates messages {A;, B;, mi1, T2 }igc of the honest parties as follows:

- Sim chooses A} «—p G for 1 <i <t, and sets a = (2, A),..., A}).

- Sim sets A, ; = a% where t; € F}! is the interpolation vector such that f(t + j) =
((f(0),..., f(t),t;) for all polynomials f(z) of degree < t,ie. t; = {Ao(t+j), A\ (t+
7)o A(t+7)} where M\o(x), ..., \(2) are lagrange polynomials with respect to the
set {0,...,t}.

- Sim picks B!, i > € uniformly at random from G.

- Sim invokes the simulator for the CSP to obtain m;; = CSP{(A;, s;) : g° = A;},
mig = CSP{(B;, (ri,w;)) : h1'hs" = B;}.
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- Then Sim sends the messages { A, B}, mi1, T2 }ise to A.
— Sim simulates the challenge by sampling v < IFf).
— Sim receives {v; }i<. from A, along with the proofs {m;3}i<..

— Sim sets v' <—g [, and computes (v},...,v)) <—g Share(v'), computes simulated CSP

pI'OOf T3 = CSP{((AZBza’YaU’L)7 (Siariawi)) : QSZhThCZUZ = AZBZ A <7a 8’i> + ry = Ui}) and

sends {UZ', 7Ti3}i>e-
— Sim sends (v}, m;3)i>e to the adversary A.

To ensure indistinguishability of transcripts, we only need to provide argument for cor-
rectness of honest-party’s first messages {A;};¢c provided by the simulator, since the other
messages are sampled according to the protocol specification. We argue correctness of simu-
lation of honest-party first messages {A;}i¢c as follows. In real execution of the protocol, the
vector of shares for party j is of the form (f1(j),..., fe(j)), where f; : i € [¢] are the polynomi-
als used to share the values s; : i € [{] respectively. Let f = (f1,..., fr) denote the vector of
sharing polynomials and let f(j) to denote the vector (f1(j),..., fe(7)). Then for j > € in the
real protocol, (A;);s. are distributed as (gf)),., subject to constraint that g¥(® = 2. Sam-
pling such a polynomials f;, i € [¢] corresponds to choosing f;(1),..., f;(t) uniformly and then
determining f;(t +j) = ((fi(0), ..., fi(¢)),t;) using the interpolation vector ¢;. Thus f(t+j) is
a t;-linear combination of f(0),..., f(¢), which dictates simulator’s computation of A, from
vector a. The simulated transcript is an accepting transcript as g = z and gf® = A; for
all ¢ ¢ C, and the verification check is satisfied since a known linear combination of { f(7)}¢c
in the exponent yields the desired value f(0) in the exponent. Additionally, since {f(7)}i¢c
are implicitly set as the honest-party shares, it is identical to the correct distribution of secret

shares. This completes the proof of zero-knowledge for Ilgog.

Proof of Efficiency/Succinctness. Assuming that CSP has O(log¢)-communication overhead
8], it follows by inspection that Ilgee incurs O(n) communication over point-to-point chan-
nels (where the prover distributes additional randomness to the workers) and O(nlog¢) com-
munication over broadcast channels (for n instances of CSP). This completes the proof of
efficiency /succinctness for Ilgg, and hence the proof of Theorem 4.1. O
The following corollary of Theorem 4.1 follows immediately and yields the concrete bounds

on the corruption threshold tolerated by Ilgjog.

Corollary 4.1 Setting d =t < n/3, Ilyog is n/3-private and n/3-robust.
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Finally, the following corollary also follows immediately from the proof of Theorem 4.1, and

formally captures the properties of the non-robust protocol Il -giog-

Corollary 4.2 Assuming that CSP satisfies completeness, knowledge-soundness and zero-knowledge
with O(log £)-communication overhead, Il _giog is @ DPoKsss pioggen for relation generator DlogGen
and (t,n)-SSS that satisfies completeness and t-privacy, and incurs O(n) communication over

point-to-point channels and O(nlogt) communication over broadcast channels.

Note that Il,,-qi0g retains all properties of its robust counterpart apart from d-robustness as
stated in Theorem 4.1.

Generalization to Threshold Linear Secret Sharing. We can generalize the above proto-
col to work with any threshold linear secret sharing (TLSS) scheme. In the generalized version,
the corruption threshold for robust completeness depends on the exact distance of the linear
code induced by the TLSS scheme. As a corollary, we derive concrete bounds on the corruption
threshold for robust completeness when using replicated secret sharing. The relevant technical

details appear in Section 4.5.

Round Efficient DPoK for Discrete Log. In Section 4.6, we describe a round-efficient
version of Ilgeg in the random oracle model (obtained using the Fiat-Shamir heuristic), which

we call TIFS

diog: We highlight here that, while Tlgieg requires a logarithmic (in the size of the wit-

FS

diog 0Ny requires a constant

ness) number of rounds of interaction, the round-efficient version IT

FS

diog Satisfies the same robust completeness,

number of rounds of interaction. Apart from this, I1

knowledge soundness and zero-knowledge properties as Ilgiog, albeit in the random oracle model.

4.4 DPoK for BBS+ Signatures over Secret-Shared In-
puts

In this section, we build upon our (publicly verifiable) DPoK for the discrete log relation to
design a protocol that allows a prover P to prove knowledge of a BBS+ (or PS) signature on a
secret-shared input. Concretely, suppose that the prover P holds a BBS+ (or PS) signature o
on a message m under a public key pk, where m is secret-shared across n parties Wy, ..., W,
(i.e. each worker W; holds a share m;). The goal of the protocol is to allow the prover P to
convince a designated verifier V that o is a valid signature on m under pk, without revealing
o in the clear (this helps realize the desired property of signature unlinkability, as explained
subsequently). We also present similar PoK protocols for PS signatures [97] over secret-shared

inputs in Section 4.7.3. Looking ahead, we use these protocols as building blocks to design our
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compiler for upgrading any secret-sharing based MPC protocol into an authenticated version
of the same protocol, where the (secret-shared) inputs are authenticated using BBS+( or PS)
signatures as above.

We start by defining the relation for BBS+ signature verification.

Definition 4.9 (BBS+ Relation) Let BBSGen denote the relation generator, such that BBSGen(1, ¢)
outputs a bilinear group (Gy, Gy, Gr, g1,92,€,p) < r BBS.Setup(llA). The corresponding rela-

tion RPP is defined by (x,(m,t)) € R for @ = pk = (g1, w, ho,...,hs) € Gy x Gy x G,

m = (my,...,my) €F, andt =0 =(A,3,s) € Gy x F? if e(A,wgh) = e(gihg TTi_y h™, g2).

Our DPoK Protocol Il . We build upon the robust complete DPoK Ilgeg for discrete
log to propose a DPoK achieving robust completeness for BBS+ signatures, which allows a
designated prover P, to show knowledge of a BBS+ signature (A, 3, s) over the message m € ]Ff;
that is secret-shared amongst the workers Wy,...,'W,,. Recall that this PoK involved the
following steps: (i) the prover randomly chooses some auxiliary inputs, and combines them with
the signature to output a randomized first message (this randomization ensures unlinkability),
and then (ii) the prover shows knowledge of these auxiliary inputs and components of the
signature satisfying discrete-log relations determined by the first message. Our BBS+ DPoK
over secret-shared inputs follows a similar blueprint, where the prover similarly randomizes
the first message using certain auxiliary inputs. In our case, the prover: (i) secret-shares
the auxiliary inputs to the workers using point-to-point channels (this step is unique to our
protocol and is designed to facilitate distributed proving in the subsequent steps), and (ii)
broadcasts the first message to the workers and the verifier (this step uses broadcast channels
and is conceptually similar to the PoK over non-distributed inputs). At this point, the problem
reduces to a DPoK for the discrete log relation. We handle this using our robust complete
DPoK Ilgeg for discrete log.

We prove the Ilpps; to be a DPoK for the relation generator BBSGen in the following theorem.

Theorem 4.2 Assuming that Ilgog is a DPoKsss pioggen for relation generator DlogGen and
(t,n)-SSS, Ilppss is a DPoK for the relation generator BBSGen and (t,n)-SSS with:

— Security: t-private and d-robust, for d < dist/2, where dist = (n — t) is the minimum
distance of the Reed-Solomon code induced by (t,n)-SSS.

- Efficiency: O(n) communication over point-to-point channels and O(nlogl) communi-

cation over broadcast channels.
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— Public Key: pk = (w, hg, ..., h)

— P’s inputs: Message m = (mq,...,my) € F’ and signature o = (A, 3,s) on m, with

p

_1
A= (glhg I, h;”) """ such that (pk, (m, o)) € RPbs

W;’s inputs: W, possesses the " share m,; of the message vector m, such that
Reconstruct(m,...,m,) =m

Preprocessing: P samples u < F,,r <—g F),n < F,, and computes d = b" - hy"
and t = s —r -v where v = v ',b = gthHle hl". P computes (71,...,7n) g

Share(r), (vi,...,v,) g Share(v), (B1,...,B,) <—r Share(B), (t1,...,t,) <—r Share(t),
(M1, ...,mn) g Share(n). P sends the shares (r;, v;, 5;, t;, m;) to W;, for all i € [n].

In other words, each 'W; locally holds the i-th share s; = (m;, r;, v;, B;, t;, m;) such that

s = (m,r,v,3,t) = Reconstruct ({si}ie[n}) )

— Interactive Protocol:

1. P computes A’ = A*, A = (A)7 . b*(= (A')*), where b = gihs [, A7 and d =

b - hy". P sets C = d Uhh ", D = hl[]i_, h™, and broadcasts (4, A,d,C, D) to
each W, and V.

2. The workers W;, i € [n] and V run the DPoK Tl for the relation D = A [['_, ™,
where (1, mq,...,my) are secret-shared across the workers; and g = (hq,...,h),

z = D is available to all parties.

3. Simultaneously, t_he workers W;, ¢ € [n] and V run the DPoK Il for the relation
C=d" hy"AN4 = (AP by, where (v,n) and (8,r) are secret-shared; and g =
((d, ho), (A, hg)), z = (C, %) is available to all parties.

4. Vacceptsif C-D = g;*, and e (A", w) = e (fl, g2), and both instances of Ilg.g accept.

Figure 4.2: Protocol Ipps,
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Proof:
We provide the proof of security and efficiency below. In order to prove security, we prove

robust completeness, soundness, and zero-knowledge.

Robust Completeness. Robust completeness follows from direct calculation using the ro-
bust completeness of the underlying subprotocols DPoK Iy, for DlogGen, used in step (3) and
(4).

Knowledge Soundness. Consider an adversary that corrupts a ¢-sized subset of the workers
in ypsy. By inspection, for ¢ < n/3, an honest verifier detects the corrupt subset of workers,
since the underlying protocol Ilgeg satisfies d-robust completeness for d < n/3.

Consider an adversary A = (Aj,As) which corrupts P and W;, i € C. We show that,
given an extractor Ext for Ilgeg, it is possible to design an extraction algorithm Ext’ that given
{m;}izc, where m, is the share of m provided to W;, extracts a signature o on m. First Ext
runs the adversary A to obtain the messages (r;, v;, B, ti,n;) for i € C. The extractor Ext’ also
obtains the message (A, A,d,C, D) from A. Next it sets s, = (n;, m;) and s/ = (v;, ys, Bi, )
for ¢ ¢ C where y; = t; —n; for i ¢ C. It then invokes the extractor Ext for DPoK sub-protocol

g0 in steps (2) and (3) respectively and computes the extracted witness as follows:

(s)icc = (1, m)icc < Ext™({s}}igc)

(Sll)z'ec = (v,y, B, T)ieC R EXtA({S;;,}ieZC)

where
n = Reconstruct(ny, ..., n,), m = Reconstruct(m,,...,m,)
v = Reconstruct(vy, ..., v,), y = Reconstruct(yy,...,yn)

f = Reconstruct(f,...,0,), r = Reconstruct(ry,...,r,)

Using the message (A’, A, d, C, D) obtained from the adversary A and the outputs n, m,v,y, 3,7
obtained from the extractor Ext for DPoK sub-protocol 1, extracted witness is computed as
(m,t), where t = (A", 5,y +n+vr).

Here, we parse the extracted witness m as m = (my,...,my). From knowledge-soundness
of the DPoK sub-protocol Ilges and verifier’s checks, with overwhelming probability we have:
D = hi[li_ b, C = d hY, (A)Phy = AJd, C-D = g7' and A = (A')*. We first note that
v # 0, otherwise substituting C, D in the relation C'- D = g;' yields a non-trivial discrete-log
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relation between the generators gy, hg, ..., hy. From the preceding equations, we can derive:
¢
(A" = gng e T ni
i=1

which shows that (A", 3,y + n + vr) is a valid signature on m. Hence, the extractor Ext’
has computed a valid witness for the BBSGen relation. This completes the proof of knowledge

soundness for Iy, .

Honest Verifier Zero-Knowledge. Finally, consider an adversary A that corrupts workers
W;,i € C where |C| < ¢t. We show that, given a ZK-simulator Simik for g0 and a ZK-
simulator Sim%* for the single-prover proof of knowledge for BBS+ signatures from [41], we
construct a simulation algorithm Sim’ that output a simulated view of an honest verifier in
the protocol Tlpps, without the knowledge of the witness (m, o). Using the simulator Simgk,
the simulator Sim’ generates the message (4’ A,d,C, D). As the statements for the DPoKs
in steps (2) and (3) depend entirely on the public parameters and the preceding message, the
simulation follows by invoking simulator Sim? to simulate the transcript for respective DPoKs
on the statements derived from the simulated first message. Looking ahead, in the formal proof
of security for our compiled MPC protocol, we use this simulation algorithm Sim’ to simulate
proofs of knowledge of BBS+ signatures on the inputs of the honest parties. This completes

the proof of zero-knowledge soundness for T, .

Proof of Efficiency/Succinctness. Recall that Ilg0, has O(n) communication over point-
to-point channels and O(nlog ¢)-communication overhead over broadcast channel. It follows
by inspection that Ilphs; also inherit the same communication overheads from Ilgee. This
completes the proof of efficiency for Ilppsy, and hence the proof of Theorem 4.2.

O

Efficiently Batching BBS+4 PoKs. We now present the protocol Ilpps-ayth-opt Which effi-
ciently batches n parallel instances of the protocol Il with the party P; acting as the prover
in the 7*" instance of the protocol. The optimization exploits the fact that each party needs to
prove a linear (in exponents) relation over large part of its witness (the message vector), which
can be reduced via a random challenge to proving a linear relation over the linearly combined
messages. However we lose robustness: we can no longer identify the corrupt parties or a cor-
rupt prover using error-correction as in Ilpps., as the combined witness cannot be attributed to
a specific party. Thus, we simply abort if one of the checks in the underlying protocol Il -giog

fails.
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— Public Parameters: (G, Gz, Gr,91,92,€,p) <r BBSGen(llA) defining BBS+ relation
RP> Let pk = (g1, w = g%, ho, - . ., hy) be a known public key for secret key sk = z < F,,.

— P;’s inputs:
— Message m; € Ff, and signature o; = (A;, 5;, s;) on m; under pk.
— i share of the message m; of P;.
— Preprocessing: P; samples u; < F;, ri <r Fp,n; <g F,, and computes d; = b;" - hy"

and t; = s; — r; - v; where v; = u; Ly, = gihy Hle h;*'. and secret shares r;,v;,t;,ni, Bi
among Py, ..., P,. All parties set g = (ho, ..., h¢).

— Interactive Protocol
1. P;, i € [n] computes A = A", A; = (AP b (= (A)7). P sets C; = d; "hE™™,
D; = g""™i and broadcasts (A%, A;, d;, Cy, D;).

2. The verifier samples a challenge v < Ff) and broacasts it. Each P; then computes
Y = Zje[n] 79 (n:5, M), where 7;;, m;; denotes P;’s share of P;’s inputs m;, n;;.

3. All parties compute D =[], D;.yj.
Parties hold shares y, of y satisfying g¥ = D

4. Parties run the interactive phase of the protocol II,,_giog On statement D with g as
the generator. They run the interactive phase of the protocol Il,,-qi0g On statements

Cy = d; "ihg ™™ A ’3;; — (AP pri | for each i € [n] with generators (d;, ho) and (A%, hy)
respectively.

5. Parties also check that e (TT;_, A}, w) = e ([T}, Ai, g2) holds.

— Output: P; outputs b; = 1 if all the above protocols lead to accept.

Figure 4.3: Protocol Ipps-auth-opt
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Round Efficient DPoK for BBS+ Signatures. Finally, note that by replacing Il with

FS
dlog

heuristic, presented in Section 4.6) in steps (2) and (3) of the Interactive Phase, we obtain

its round efficient version II3>, in the random oracle model (obtained using the Fiat-Shamir
a round efficient version of the protocol, which we call IIf5 . Observe that I[P . requires
constant rounds of interaction, as compared to logarithmic (in the size of the message) rounds
of interaction for Ils., and satisfies the same robust completeness, knowledge soundness and

zero-knowledge properties as Ilppsi, albeit in the random oracle model.

4.5 Generalization to Threshold Linear Secret Sharing

Scheme

In this section, we provide generalization of our technique shown for Shamir Secret Sharing [104]
to any Threshold Linear Secret Sharing Scheme. Here we present the definition of Threshold
Linear Secret Sharing (TLSS) Scheme, which is a restriction of the definition of Linear Secret
Sharing Scheme provided in [48, Chapter 6] to the case when each party receives same number

of shares.

Definition 4.10 (Threshold Linear Secret Sharing Scheme) A (¢,n,r) threshold linear
secret-sharing (TLSS) scheme over a finite field F consists of algorithms (Share, Reconstruct) as

described below:

— Share is a randomized algorithm that is defined by a m X (t+1) matriz M (for some m > n)
and a labeling function ¢ : [m] — [n] such that |~ (i)| = r for alli € [n]. On input s € T,

Share samples 11, . .., 1y < g F uniformly and independently and sets rs = (s,ry,...,1). It
sets 8; = {(Mry); : ¢(j) =i} as the i' share for all i € [n]. We denote the output as
(81,...,8n) < g Share(s), where s; € F" is the share sent to i'" party.

— Reconstruct is a deterministic algorithm that takes a set 3 C [n], || > t, a vector of
shares (s1,...,8)3) and outputs s = Reconstruct((si,...,syy),J) € F. Specifically, for
all sets 3 C [n] with |J| > t, there exists a vector kg = (ki1,...,kn) € F™ such that

S = Z?:l Z;:l kijsij. Here S, = (Sila . 7Sir) fO?"i c [n]

A TLSS scheme satisfies the following properties:

— Correctness: For every s € F, any (s1,...,8,) <gr Share(s) and any subset I =
{i1,...,iq} C [n] with ¢ > t, we have Reconstruct((s;,,...,s;,),J) = s.

— Privacy: For every s € F, any (s1,...,8,) <g Share(s) and any subset I = {iy, ... i,} C
[n] with ¢ <t, the tuple (s;,,...,s;,) is information-theoretically independent of s.
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Remark 5 We focus on Threshold Linear Secret Sharing schemes in this section, and we
denote it as TLSS. As before we can extend a TLSS scheme to secret-share vectors s € F by

applying Share, Reconstruct algorithms component-wise.

4.5.1 Robust DPoK for Discrete Log for TLSS

In this section we generalize the construction of robust complete protocol for discrete-log relation
presented in Section 4.3.2 to the case when (Share, Reconstruct) can be an arbitrary TLSS
scheme. We also characterize the robustness threshold for the same in terms of minimum
distance of linear code associated with the TLSS scheme. The proof of robust completeness
now depends on Lemma 4.3 (below), which generalizes Lemma 4.2 to the case when linear code
is over an extension field F,» = T} of the field F = F,,.

Let DlogGen be a relation generator that on input (11A,m) outputs (G, g,p) where p is
a 1*-bit prime, G is a cyclic group of order p and g = (g1,...,9m) +r G™ is a uniformly
sampled set of generators. The associated relation RPL is defined by (z,s) € RPL if g* = 2.
Let TLSS = (Share, Reconstruct) denote (t,n,r) threshold linear secret sharing over finite field
of order p F = F,. We follow the framework presented for DlogGen; namely 1y, (Figure 4.1),
that is ¢-private, d-robust and incurs O(n) communication over point-to-point channels and
O(nlog ) communication over broadcast channels. We present our generalized protocol with

the similar guarantees.

Additional Preliminaries and Notation. We setup some useful notation and prelimi-
naries specific to this section to ease the presentation. For s € F, we will view the output
(S1,...,8n) <—r Share(s) to consist of n-shares each over F,-, i.e. we view s; € " as an ele-
ment of F,-. Applying the sharing component-wise, for a vector s € F*, we view the output
(81,--.,8n) <r Share(s) to consist of n-shares, each in (F,-)%, i.e an (-length vector over F.

h

We also veiw a vector s = (s1,...,8,) € (Fyr)* as £ x r matrix over F, where i'" row of the

matrix corresponds to s; € F, viewed as a vector in F". We also introduce the linear code

LT1ss, which is induced by the sharings under the TLSS scheme.

Definition 4.11 (TLSS induced code) For an (n,t,r)-TLSS scheme over F given by algo-

rithms (Share, Reconstruct), we define linear code Ltiss over the field Fy- as
Lriss = {(s1,---,8n) : Pr{(s1,...,s,) g Share(s), s «r F] > 0},

consisting of all possible sharings output by the Share algorithm.
We now state the generalization of Lemma 4.2 to fields of the form F,-. The lemma is
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proved in [51]|[Lemma A.5]. We recall that for an [n, k, x| linear code £ over F, L™ denotes the

set, of m x n matrices over F whose rows are codewords in L.

Lemma 4.3 Let £ be an [n, k,d|-linear code over finite field e and let S be an m x n matrix
over F .. Let e = A(S,L™) be such that e < d/3. Then for any codeword r € L, and =y
sampled uniformly from F™, we have A(r +~1S,L) = e with probability at least 1 — d/|F|.
Furthermore, iof E denotes the column indices where S differs from the nearest matriz Q in L™,
with probability 1 — d/|F| over choice of v, the vector » +~T'S differs from the closest codeword
v € L at precisely the positions in E.

We now proceed with the description of the generalised protocol, where we highlight key

differences from the protocol Ilg,, for the case of Shamir Secret Sharing.

1. Public Parameters: The public parameters, as before consists of (G, g, p) <& DIogGen(l1A ).
Additionally we have hy, hy < G. The relation RPY consists of (2, s) satisfying g* = 2.

2. Input Phase: The prover gets (z,s) while workers W;,i € [n] are given (z,s;) where

(81,...,8n) <r Share(s).

3. Preprocessing: The prover sends 0; to W; for i € [n] where (d1,...,0,) <—r Share(d) for
) <R F/)l .

4. Commit to Shares: In the interactive phase, the worker W; proceeds as follows: The worker
veiws the share s; as ¢ x r matrix M; over F. Then for each j € [r], it computes A;; = "/,
where M;|[j] denotes the j* column of the matrix. Similarly it views the input J; as vector
(0i1,-..,0;) over F. It then computes commitments B;; for j € [r] as 5, = RS for
w; <—g F. Finally W; broadcasts A, — (A;;.... .. A;) and B, = (B, .. ., B;,).

5. Reveal Linear Form over Shares: The verifier sends a challenge vector v <px F and
the workers broadcast the linear form v, = (v, s;) + d,. In the preceding inner-product,
we consider s; as a vector over F,» and v;,d; are considered as elements in the field F,-.
To ensure that corrupt workers use s;,d; consistent with earlier commitments A;, B; we
additionally require them to provide proofs by running the proof of knowledge CSP for the

following relations (viewing s; as ¢ x r matrix M; over F):

i1 — CSP(Ml) gJ‘/LLm - Aij vj € [T],
T = CSP((Si,wl, e ,wr) . hi”hgj = Bij VJ € [7’],
mis = CSP{(M;, 6;, w1, ..., wy) : gMimhiijhgj = AyBi; A (v, Mi[j]) + 65 = vy ¥V j € [r]}.
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The NIPK used above can be instantiated with O(log¢) communication complexity using
compressed sigma protocols (CSPs) of Attema et al. [8], made non-interactive using Fiat-
Shamir transformation. We observe that each proof asserts r constraints, which can be

reduced to one constraint each using a random challenge. We skip the details here.

6. Verifier Determines Honest Commitments: Let v/ = (v}, ...,v]) be the purported values
of (vy,...,v,) received in the previous step. If one of the proofs m;;, m; or m;3 is invalid, he
verifier sets v} <—g F,r (randomly). Here we use v = (vy,...,v,) defined by v; = (v, s;) +7;

to denote the vector of honestly computed values. We recall that we consider v to be a
vector over FJ.. Since A(v',v) < d < dist/2, with dist being the minimum distance of
the code induced by the TLSS, V can compute v from v’ by using error correction. Let C
denote indices of corrupt workers (who actually deviate from the protocol). From Lemma

4.3 we conclude C = {i € [n] : v; # vj} with overwhelming probability. Let ki,..., k;

denote the reconstruction coefficients for the set [n]\C where each k; = (k},,...,k..) € F"
for each .
7. Oulput using honest messages: 'V outputs (1,C) if [[ Ali"//"f = 2, and (0, {P}) other-

wise.

Theorem 4.3 (Robust Distributed Proof of Knowledge for Discrete Log for TLSS)

Assuming that the discrete log assumption holds over the group G, the above protocol is a
DPoKriss ploggen for relation generator DlogGen and (t,n,r)-TLSS scheme which satisfies t-
privacy and d-robustness, for d < dist/3, where dist is the minimum distance the linear code
induced by the TLSS scheme. Moreover the protocol incurs O(rn) communication over point-

to-point channels and O(rn +log ) communication over broadcast channels.

The proof of the above theorem is similar to that for the protocol Ilgeg, except that we use
Lemma 4.3 instead of Lemma 4.2 to identify corrupt messages, and appropriately omit them
from the verification check. We now discuss implications of the above theorem for specific

threshold secret sharing schemes.

4.5.2 (Corollary) Distributed Proof of Knowledge using Replicated
Secret Sharing

Our earlier results obtained for Shamir Secret Sharing [104] in Theorem 4.1 can be seen as
special case of Theorem 4.3 for r = 1 and dist = (n — t). Here we additionally specialise
Theorem 4.3 to the case of replicated secret sharing. We recall the definition of Replicated
Secret Sharing (RSS) Scheme provided in [57].
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Definition 4.12 (Replicated Secret Sharing Scheme) A (¢,n, (",")) replicated linear secret-
sharing (RSS) scheme over a finite field F consists of algorithms (Share, Reconstruct) as described

below:

— Share is a randomized algorithm that on input s € F, samples s4 € F for all A € [n], |A] =t,
such that ) , s4 = s, and sets s; = {sa : i ¢ A}. We denote the output as (s1,...,8,) g
Share(s), where s; € F("t") is the share sent to party P;.

— Reconstruct is a deterministic algorithm that takes a setJ C [n], |J| > t, a vector (s1,...,s)5)

and outputs s = Reconstruct((sy,...,s)y),J) € F.

A RSS scheme satisfies the following properties:

— Correctness: Foreverys € F, any (s1, ..., Sn) <—r Share(s) and any subsetJ = {iy,...,i,} C
[n] with ¢ > t, we have Reconstruct((s;,,...,s;,),J) = s.

— Privacy: For every s € F, any (sq,...,sn) g Share(s) and any subset J = {iy, ... i,} C
[n] with q < t, the tuple (s;,,...,s;,) is information-theoretically independent of s.

Remark 6 We note that RSS scheme is a specific instance of TLSS scheme discussed in the

prior section.

Let DlogGen be a relation generator that on input (11A,m) outputs (G, g,p) where p is
a 1*-bit prime, G is a cyclic group of order p and g = (g1,...,9m) +r G™ is a uniformly
sampled set of generators. The associated relation RPL is defined by (z,s) € RPL if g* = 2.
Let RSS = (Share, Reconstruct) denote (¢,n, (")) replicated secret sharing over F,. In this
section, we state the theorems and the threshold bounds for RSS as a specific case of TLSS

(Theorem 4.3).

Theorem 4.4 (Robust Distributed Proof of Knowledge for Discrete Log for Repli-
cated Secret Sharing) Assuming that the discrete log assumption holds over the group G,
protocol I op-rss 15 @ DPoKRss plogcen for Telation generator DlogGen and (t,n, (”;1))—RSS scheme
which satisfies t-privacy and d-robustness, for d =t < dist/3, where dist = (n —t) is the mini-

mum distance of two valid codewords of the linear code induced by the TLSS scheme.

Remark 7 We note that the corruption threshold of t < n/3 attainable for Shamir Secret
Sharing (SSS) Scheme and Replicated Secret Sharing (RSS) Scheme follows from the fact that the
underlying linear code defined by both sharing schemes attain a minimum distance of dist = n—t
between any two valid codewords. We note that the linear codes considered for SSS scheme lies

in I, (Reed-Solomon Codes), whereas the linear codes considered for RSS lies in [F .

120



4.6 Round Efficient Distributed Proof of Knowledge

In this section, we formalize the notion of distributed proof of knowledge (DPoK) in the random
oracle model (ROM) which multiple provers, each having a share of the witness engage in an
interactive protocol with a verifier to convince it that their shares determine a valid witness.
The provers do not directly interact with each other, and all the interaction with the verifier
takes place over a public broadcast channel.

We define a round efficient DPoK by building upon our original definition for DPoK from
Section 4.3. Our definition is based on the Fiat-Shamir heuristic [59], using which we transform
a DPoK (with number of rounds logarithmic in the size of the message) into a round efficient

DPoK (having constant number of rounds).

Definition 4.13 (Round Efficient DPoK in the ROM) Let DPoKsss rgen = (Setup, IT) be
a DPoK as in Definition 4.8 for relation generator RGen and a secret-sharing scheme SSS =
(Share, Reconstruct), where Setup is a PPT algorithm, and II is a k-round interactive proto-
col between PPT algorithms P (prover), V (interactive verifier) and Wy,...,'W,, (workers),
such that all of the interaction with the verifier takes place over a public broadcast channel,
and where in each round j € [k], the verifier V broadcasts a challenge sampled uniformly
from the challenge set Ch;. We define the corresponding round efficient DPoK for the same
(RGen, SSS) pair as a tuple of the form RE-DPoKsss rgen = (Setupgs, lgs, Ves), where Setupgg
is a PPT setup algorithm, Ilgs is an interactive protocol between PPT algorithms Pgs (prover)
and (WRO);, ... (WR?), (workers), and Vs is PPT verification algorithm. These are defined

as follows:

— Setup [(pp, RO) < Setupgs (R, 11)]: The setup algorithm takes as input a relation R 5
RGen(llX) and outputs a tuple of the form (pp,RO), where pp < Setup(R), and RO =
{RO;}iep1 0, with each RO; being a random function sampled uniformly from the set of all
functions that maps {0, 1}* to the challenge set Ch;. As in our general definition of DPoK,
the setup phase is required to be executed only once for a given relation R. We again
assume that R consists of pairs (z, w) where w is parsed as (s,t)) with s € F™; looking
ahead, we partition the witness as (s,t) to explicitly specify which parts of the witness
later needs to be shared. Also, note that sampling each RO; independently is equivalent

to instantiating RO; from a single random oracle via domain separation.

— Interactive Protocol Ilgs: executed jointly by the prover PR and the workers
(WRO),, ..., (WRD), in the following phases:
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— Input Phase: The prover PR receives (pp, x, (s,t)) € R as input, while each worker
(WRQ);, i € [n] receives (x, ;) as input, where (pp, s1,. .., 8,) <r Share(s).

— Preprocessing Phase: This is (an optional) phase where the prover PR? sends some
auxiliary information aux; to worker (WRQ); using secure private channels. This phase
is identical to the preprocessing phase (if any) in the underlying DPoK scheme, with
the prover PR invoking the prover P of DPoK to obtain its output in the preprocessing

phase, and sending the same to the workers (WE®),, ..., (WE?),.

— Interactive Phase: In this phase, the prover and the workers interact using a public
broadcast channel as follows, where all algorithm presented with FS subscript have
access to the random oracle RO:

x The prover PRO (resp. each worker (WRP);) invokes the prover P (resp. the
corresponding worker 'W; of) of DPoK to produce the same round message as in
the protocol II.

% Suppose that in round j of the protocol Il (for j € [k]), the verifier V of the
underlying DPoK outputs a challenge ¢; <—g Ch;. In Ilgs, each worker (WRQ);

computes c; locally as

¢; = RO; (a:, {H{m cticm, Cé}ée[jfl}) ;

where m, ¢ is the prior message of W; in round ¢, and ¢, is prior challenge in

round /.

Let m = (a:, {H{micticm, Cg}ge[k]) denote the transcript of protocol Ilgg at the conclu-

sion of k rounds.

— Verification: [b < VRO (pp,x,7)]: The verifier VRO takes as input (pp,x,7) and out-
puts a decision bit b € {0,1}. It outputs 1 if and only if both of the following hold:
(i) V(pp,x,m) = 1 (V being the verifier of DPoK), and (ii) for each j € [k], ¢; =
RO; (w, {H{micticm), cz}ge[j,l]). Otherwise, the verifier VRO outputs 0.
A distributed proof of knowledge RE-DPoKsss rgen as described above is said to be t-private,
(-robust if the following hold:

— Completeness: We say that completeness holds if for any R < RGen(llA), for (pp, RO) +—r
Setupgs(R, 1, 1%), and for any (x, s) € R, if 7 denotes the transcript of an honest execu-

tion of the protocol Ilgs, then we have

Pr[VE (pp, z,m) = 1] = 1
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— Knowledge Soundness: We say that knowledge soundness holds if for any security
parameter 1* and any PPT adversary A = (A;,A,) that makes at most Q = poly(\)
queries to RO, where A, corrupts the prover PR and subset of workers {(WRQ);}icc for
some C C [n], there exists an extractor Ext with oracle access to Ay (which controls PR
and the set of corrupt (WED);) such that for any R <~z RGen(1?%), the following probability
is negligible,

(pp, RO) +—r Setupes(R)

(z, {si,aux; }igc) < r A1(pp)
VEQ (pp, @, ) =1 A g

br ((x,(s,t) €RV "
Consistent({s; }izc, 8) = 0) Hrs (Az(Pi;{iEVié’:(%)igc})

Ext”2 (pp, x, {si }igc, 7, Q)

where 7 denotes the transcript of an execution of the protocol Ilgs between the adversary
Ay (which controls PR and the set of corrupt (WE?),), and the honest workers.

— Zero-Knowledge: Zero-knowledge for publicly verifiable DPoKs is defined in the explic-
itly programmable random oracle model where the simulator is allowed to program the
random oracle. The zero-knowledge simulator 8gs is modeled as a stateful algorithm that
operates in two modes. In the first mode, (¢;,st’) < Sgs(1,st, x, i) handles random oracle
calls to RO; on input @. In the second mode, (7,st’) <— Sgs(2, st, ) simulates a valid proof

string. We define stateful wrapper oracles.

— 84(t,7) denotes the oracle that returns the first output of Sgs(1,st, t,4);

— 8(z,w) returns the first output of Sgs(2,st,x) if (pp,x,s) € R and L otherwise;

(This is because ZK is defined only for true statements.)

We say that a DPoK is zero-knowledge in the random oracle model if for all R <p
RGen(1"), (,s) € R and any PPT adversary A corrupting a set of workers {(WR);}icc,
where |C| < ¢, there exists a PPT simulator Sgs such that Viewg ro 1. (pp, ) is indistin-
guishable from Sgs(pp, ) for pp <—g Setupgg(R). Here, the view is given by Viewy ro 11 =
{7r, (M,);ec} where r denotes the internal randomness of A and M; is the set of all messages
received by (WEQ); in Is.

— Robust-Completeness: We say that robust-completeness holds if for all R < RGen(llA),
(x,s) € R and any PPT adversary A corrupting a set of workers {(WR),};cc, where |C| <
0, (VRO) 4 110 (PP, @, IIgs) = 1 with overwhelming probability where pp < Setupgs(R).
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Robust Complete Round Efficient DPoK for Discrete Log. We now provide a RE-DPoKsss piogGen
for the discrete log relation based on Shamir Secret Sharing (SSS) [104]. Let DlogGen be a re-

lation generator that on input (11A, 1Y) outputs (G, g, p) where p is a 1*-bit prime, G is a cyclic

group of order p and g = (g1,...,9) +r G’ is a uniformly sampled set of generators. The
associated relation RPY is defined by (z,s8) € RP¥ if g® = 2. Let SSS = (Share, Reconstruct)

denote (t,n) Shamir secret sharing over F,. Our protocol Iy, realizing RE-DPoKsss pioggen 1S

as below. However, for ease of exposition, we first explain a simpler non-robust version of the
protocol, before explaining the robust version.

We use the non-interactive proof of knowledge for the discrete logarithm relation, namely
NIPKgs = (NIPK.Setupgs, NIPK.PRO NIPK.VED), obtained by applying the Fiat-Shamir heuristic
(using random oracle RO : {0,1}* — F') on the public-coin compressed sigma protocol [8] for
proof of knowledge of the discrete logarithm relation. Additionally, we present the protocol

Igi0g using Fiat-Shamir heuristic [59] and a random oracle RO : {0,1}* — ]Ff;.

FS

We now state and prove the following theorem for II5p,.

Theorem 4.5 Assuming that NIPK satisfies completeness, knowledge-soundness and zero-knowledge
with O(log £)-communication overhead, Hgfog is & RE-DPoKsss plogcen (as per definition 4.8) for

relation generator DlogGen and (t,n)-SSS with the following properties:

— Security: t-private and d-robust, for d < dist/2, where dist = (n —t) is the minimum
distance of the Reed-Solomon code induced by (t,n)-SSS.

— Efficiency: O(n) communication over point-to-point channels and O(nlogl) communi-

cation over broadcast channels.

Proof sketch. For knowledge-soundness, the intuition behind extraction of a valid witness are
the fact that the shares (provided to the extractor via definition) held by the honest parties
uniquely determines the output and the adversary succeeds in proving the statement in a proto-
col where these honest-party shares are used. For zero-knowledge, the key intuition behind the
simulation is that the adversial messages can be ‘ignored’ for providing an accepting transcript
as the protocol does ‘error-correction’ and removes the ‘bad shares’ from consideration.

Proof: Completeness and robust completeness of IT15> follows similarly from the completeness

dlog
and robust completeness of its respective counterpart Ilgjog.
Knowledge-Soundness. To prove knowledge-soundness, we describe the extractor Ext for

Hgﬁ,g as follows. Let C be the set of indices of workers corrupted by adversary A. Additionally,

INote that here the witness is s € ]Ff;, and we do not have any component ¢ which is not being secret-shared.
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. Public Parameters: Let (G,g,p) <r DIogGen(llA,lé). Let RPY denote the relation
consisting of pairs (2, s) such that g% = z. Let (hy, ho) < Setup(RPY) be two indepen-
dent generators of G.

. Input Phase: The prover gets (2, s) while workers (WR?);, i € [n] are given (z, s;) where
(81,...,8,) < r Share(s). !

. Preprocessing: The prover sends r; to (WRQ), for i € [n] where (rq,...,7,) < Share(r)
for r <—g IF).

. Commit to Shares: In the interactive phase, the workers first commit to their respective
shares by broadcasting

(a) A; = g* and its associated proofs of knowledge m;; = NIPK.PRO{(4;, s,) : g% = A;}.

(b) B; = hi'hy' for w; <-xr T, and its associated proofs of knowledge m =

. Reveal Linear Form over Shares: Each worker (WR?); computes v as v =
RO (z]|A1[|B1[|A2||Bal| - . . | Anl|Bn) € Fi. Thereafter, the workers broadcast the linear
form v; = (=, s;) + ;. To ensure that corrupt workers use s;,r; consistent with earlier
commitments A;, B; we additionally require them to broadcast proof ;3 as:

T3 = NIPK.PROL((A: By, (11110, v7), (84,75, w5)) :
gslh?hgl = Asz A <")’, Si) +r; = Ui}-

. Verifier Determines Honest Commitments: Let v/ = (v],...,v]) be the received
values in the previous step by the workers, instead of (vy,...,v,). If one of the proofs
i1, Tio OF T3 is invalid, the verifier set b; = 0 else it sets b; = 1. Here we use v =
(v1,...,v,) defined by v; = (7, s;) + r; to denote the vector of honestly computed values.
Since A(v/,v) < d < (n—1)/2, VR? can compute v from v/ by decoding algorithm (e.g.
Berlekamp-Welch) for Reed-Solomon codes. Set C = {i € [n] : v; # v] V b; = 0} and let
H; = (h;;) denote the matrix guaranteed by Lemma 4.1 for Q) = [n]\C = {41, ...,4,} for
q € N.

. Output using Honest Messages: V outputs (1,C) if (H Ahj’“> —
k=1,...n—t

Jj€lql “ 75
(z,0"1) and (0, {PRO}) otherwise.

it A

Figure 4.4: Protocol Hglig
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we assume that there is an extractor Ext; for NIPK proof. The extractor Ext runs the adversary

A as follows:

— Ext is provided (pp, 2, {s8i}i¢c, Ilfs, Q) as input at the onset, where {s;};¢c are the honest-
party shares and Q is the set of RO queries made by the adversary A.

— Ext receives A;, B; from A along with the NIPK proofs {m;;, m;2} for all ¢ € C, such that
;1 — NIPK:PlF:{S (Au Si) . gsi = Al}, T2 = NIPKT?S (Bu (TZ',CL)Z')) . h?hwl = BZ}

— Ext computes {A; = g%, B; = h1'h3" }i¢c and sends {A;, , 71, By, M2 }igc to A,
where T3 — NIPK:PES (A“ Si) : gsi = Az}a T = NlPK‘PEg (B“ (ri,wi)) : h? ;JZ = Bz}

— Ext computes v = RO (z||A1|| B1||A2|| Bz2|| - - . || Avl| Bn)
— Ext receives {v;, m;3}iec from A

— Ext computes Vi, T;3 aS {Ui = <")’, Si>+ri}i§éc and i3 =— NlPK:PESO <<A1B177||1”07 Ui>, (Si7 ri,wi)) :
g¥hihy' = A;B; N (7, 8;) + i = v;}, and sends {v;, T3 }igc

— Ext sets s, = s; for all i ¢ C and for all ¢ € C, it invokes the extractor Ext; for the

Fiat-Shamir transformed proof 7;; to extract s satisfying g% = A,.
— Ext finally computes s’ as s’ = Reconstruct({s; };¢c) and outputs s'.

Note that by using random oracle RO to obtain the challenge « in Step (iii) described
above, we ensure that a ‘random linear combination’ of the code is considered in Step (6) of
the protocol. Now, considering that the adversary A succeeds, we now argue the correctness

of the extracted witness. Since the adversary succeeds, the verification check in Step (7) of the

/

i)i@?C
. h; i .

s’ = Reconstruct({s; }i¢c) along with <Hj¢c Ajj’“)k:1 = (2,0""1), where A; = g% for

all j ¢ C. Note that the extractor’s output s is reconstructed from the columns of the unique

protocol implies that the tuple (s is L’-consistent and the reconstructed vector s’ satisfies

matrix S € £ determined by the tuple (s});¢c. Hence, the extractor output is a valid witness
for the given statement. This completes the proof of knowledge-soundness for Hgig.
Knowledge-error. Since there are three non-parallel instances of Fiat-Shamir transformed

NIPK protocol from Attema et al. [8] being invoked, if the knowledge-error of the Fiat-Shamir

FS

ding 13 K < 3K’ And we know from [8]

transformed version is &', then the knowledge-error of II
that the knowledge-error ” of NIPK protocol is negligible, and [12] ensures that the knowledge-
error k' of non-parallel Fiat-Shamir version of the multi-round protocol is still negligible and

degrades only linearly with respect to the number of queries to the Random Oracle. Specifically,
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if () is the upper-bound for the number of Random Oracle queries for NIPK protocol, then
given that k" is the knowledge-error of the interactive NIPK protocol, from [12] we get that
K =(Q+1).k".

Zero-Knowledge. For proving zero-knowledge, we describe the simulator as follows. With-
out loss of generaltiy, let us assume that C = {1,..., e} for e < ¢. The simulator 8gs runs the

adversary as follows:
— 8fs receives {A;, B; }iec from the adversary.
— 8rs simulates messages {A;, B;, Ti1, T2 }igc of the honest parties as follows:

- 8ps chooses Al «—r G for 1 <i <t and sets a = (2, A},..., A}).
- 8fs sets A}, ; = a® where t; € F*! is the interpolation vector such that f(t + j) =
((f(0),..., f(t),t;) for all polynomials f(z) of degree < ¢, ie. t; = {Ao(t+J), A\ (t+
7)oy A(t47)} where Mo(x), ..., \(2) are lagrange polynomials with respect to the
set {0,...,t}.
- 8gs picks B, i > € uniformly at random from G.
- 8fs invokes the simulator for the NIPK to obtain 7;; = NIPK.PRO{(A;, s;) : g% = A;},
- Then 8gs sends the messages { A%, B, m;1, T }ise to A.
— 8gs queries the random oracle RO to obtain the challenge v < IF]‘;.

— Thereafter, the simulator receives {v;};<. from A, along with the proofs {m;3}i<..

— 8fs sets v’ <—p F,, and computes (v}, ..., v),) < Share(v'), computes simulated NIPK.PRS
proof
T3 = NlPKiPEg ((AiBZ',")/H].HO,U1'>7(Si,Ti,wi)) : gslhqlhgl = Asz A <"}’,Si> + r, = ’UZ‘},

and sends {v;, T3 }ise.
— Finally, Sgs sends (v}, m;3)i= to the adversary A.

We argue correctness of simulation of honest-party first messages {4;};¢c as follows: in the
real protocol, the vector of shares for party j is of the form (f1(j), ..., fi(j)), where f; : i € [{] are
the polynomials used to share the values s; : i € [(] respectively. Let f = (fi,..., fi) denote the
vector of sharing polynomials and let f(j) to denote the vector (f1(j),..., fe(j)). Then for j > €
in the real protocol, (A;);s. are distributed as (g¥));, subject to constraint that g¥(© = 2.
Sampling such a polynomials f;, i € [¢] corresponds to choosing f;(1),..., fi(¢) uniformly and
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then determining f;(t + j) = ((fi(0),..., fi(t)),t;) using the interpolation vector t;. Thus
f(t+j) is a t;-linear combination of f(0),..., f(¢), which dictates simulator’s computation
of Ay from vector a. The simulated transcript is an accepting transcript as g ©) = 2z and
g7 = A, for all i ¢ C, and the verification check is satisfied since a known linear combination
of {f(7)}igc in the exponent yields the desired value f(0) in the exponent. Additionally, since
{F()}igc are implicitly set as the honest-party shares, it is identical to the correct distribution
of secret shares. This completes the proof of zero-knowledge for H5|Sog- O
We note that knowledge soundness ensures simulation extractability in the random oracle
model [65, 66], and hence, our Fiat-Shamir transformed round efficient DPoK is simulation-

extractable. The following corollary of Theorem 4.5 follows immediately and yields the concrete

FS

bounds on the corruption threshold tolerated by IIjg,.

Corollary 4.3 Setting d =t < n/3, 1153 is n/3-private and n/3-robust.

4.7 PS Signatures

In this section we show the generality of techniques shown above by providing distributed
protocols for another pairing-based signature scheme, whose proof of knowledge of signature
also reduces to discrete logarithm relation.

We begin by recalling the Pointcheval Sanders (PS) signature scheme from [97], along with

the associated proof of knowledge.

Definition 4.14 (PS Signature Scheme [97]) The PS Signature Scheme to sign a message
m = (my,...,my) € IE‘;; consists of a tuple of PPT algorithms (Setup, KeyGen, Sign, Verify)

described as follows :

— Setup(1*) : For security parameter X, this algorithm outputs groups Gy, Gy, and G of
prime order p, with an efficient bilinear map e : Gy x Gy — Gy, as part of the public
parameters pp. Note that the bilinear groups are of type 3, which ensures that there are no

homomorphisms between Gy and Gq that are efficiently computable.

— KeyGen(pp) : This algorithm samples § < r Go and
(T, 915+, Ye) <R IFZH, computes (X,Y1,...,Y;) =
(g%, g¥,...,g%), and outputs (sk, pk), where sk = (z,y1,...,y;) and
Dpk=(§,X,Y1,....Y)).

— Sign(sk, my, ..., my) : This algorithm samples h < g G;\{0}, and outputs o = (h, K*T2i%ims),
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— Verify(pk, (mq,...,my),0) : This algorithm parses o as (o1,03), and first checks if o1 # e;.
It then proceeds to check if

e (Jl,X : HY/]my) = e(09,9).
J
If yes, it outputs 1, and outputs 0 otherwise.

Note that given o = (01,09), 0’ = (07,0}) is also a valid signature if o is a valid signature.
However, it can be seen that the distribution of ¢ is not independent of the message m in the

above scheme.

4.7.1 Proof of Knowledge of PS Signatures

PS signatures support an efficient zero-knowledge proof of knowledge (ZKPoK) wherein a prover
holding a valid PS signature ¢ on a message vector m can efficiently prove knowledge of the
signature. A prover P who owns a PS signature o = (01, 05) on a message m = (my,...,my) €
Ff, can prove knowledge of such a signature using a slight modification of the signature scheme
as described above. At a high level, P generates a signature on a a pair (m,t) for uniformly
sampled ¢t < ), based on the original signature o; the usage of a random ¢ makes the resulting

signature independent of m. The complete protocol is as below:
~ Public Key pk = (3, X,Y1,...,Y))
~ P’s inputs: Message m € F{ and signature o = (01,02) on m

1. P samples r,t <px F, and computes ¢’ = (o7, (02 - 0%)").
2. P sends the computed value o’ = (01, 0%) to V.

3. P and V run a ZKPoK of (m,t) for the relation:
e(01, X) - [] el0}, ¥5)™ - e(01,9)" = e(05, 9).
J

4. 'V accepts if the ZKPoK is valid.

The proof of knowledge protocol used in Step (3) is a special case of “proof of opening”, wherein
we can use a protocol for proving the knowledge of s € Ff, which opens the commitment z = g°
where g = (¢1,...,9¢) and gy, ..., ge are public generators of a group G (of order p), where the

discrete log problem is hard. We describe the protocol concretely below.
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— P and V’s common inputs: z € G.

— P’s private inputs: s € Iﬁ‘fr

1. P samples r g IFZ‘; and computes o = g".

2. P>V a.

3. V=P cprF,
4. P> V. s =cs+r.
5. 'V checks: ¢% = az°.

We also describe another variant of PS Signature Scheme, based on a stronger assumption
(Assumption 1 in [97]), that leads to much more efficient distributed prover protocols. This
variant is same as the one described in Definition 4.14, with the exception of KeyGen algorithm
which includes additional elements in the public key (hence stronger assumption). The modified

KeyGen algorithm is described below:

Definition 4.15 (PS Signature: B [97]) The PS Signature Scheme to sign a message m =
(m1,...,my) € ]Ff; consists of a tuple of PPT algorithms (Setup, KeyGen, Sign, Verify) as de-
scribed in Definition 4.1/, except KeyGen which is described below:

~ KeyGen(pp): The algorithm samples g <r G1, § <r G2, (T, 1,...,Yes1) <r F," and
computes (X, Y1,..., Y1) = (g%, g%, ..., g¥+), (X, Y1,..., Y1) = (G%, 0¥, ..., g¥+). It
then outputs (sk, pk) where sk = (z,y1, ..., Y1) and
pk=(g,Y1,...,Y1,3, X, Y1, ..., Yiy1).

— Sign(sk, (mq,...,my)): Choose h <—g G1\{0} and output
(h, h“Zf:lyi'mi). Note that Sign still works on the {-length message.

4.7.2 Alternate Proof of Knowledge of PS Signatures

We describe a protocol for showing knowledge of a PS signature (07, 02) on a message m € ]Ff)
while simultaneously revealing a dynamically sampled commitment C' of m. The proof of
knowledge reduces to the knowledge of opening of C' and a short pairing check as described

below:
— Public Key pk = (¢,Y1,..., Y1, 3, X, Y1, ..., Yei1)

— P’s inputs: Message m € Ff; and signature o = (01, 02) on m
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1. P samples r,t,s <— F, and computes o’ = (o7, (02 - 01)" - Y%,), C = 7' [T, Y™ € Gs,.
2. P sends the computed value o’ = (07, 0%) and C to V.
3. P and V run a ZKPoK showing knowledge of (my, ..., my,t) such that C' = H y ™

%

and a ZKPoK showing knowledge of s such that e(Y 1, §)* = e(ab, §)e(o}, X)te(a}, C) L.

4. V accepts if the ZKPoKs are valid.
. e+ yim;
Proof: For completeness, notice that oy = o; ~*
Ys T(E+Zf:1 yimi+t) _~t 0 M .
R and C = §'[[,_, ¥;"™. Thus we have:

and thus we have o} = o], o =

~ r o~z £ i ~\s
€(Oé,g) = €<0179 T vi Z—H) . €(Ye+1,9)
= e(0}, X) - e(01,C) - e(Yei1,9)°

The above is equivalent to the verification relation. Zero-knowledge follows from the fact
that 01,04 and C' are distributed uniformly in their respective domains, and from the zero-
knowledge property of the ZKPoKs. To show knowledge soundness, we show an extractor &
which extracts a valid signature on a message in IFf). Using the extractors for the ZKPoKs, &

obtains (myq, ..., my,t,s) such that

L
H 027 ) = G(Ui,X) ) 6(0’1, C) ’ e(}/@Jrlag)s

The extractor € computes (o1 = o}, 02 = 05(0]) " (Yes1)™*). To see that (o1,02) is a valid

signature we verify:

e(02,9) = €(0%,9) - e(01,9) " - e(Yer1,9) "
= e(0}, X) - ¢(01,C) - (01, 9) ™"
l

= B(UE’X) ) 6(017H}7imi)

=1

l
= e(al,XHf/;-mi)

=1

The above shows (01,07) is a valid signature for the block (mq,...,my) for the public key
(§7X7-5>i7"'7}‘;2)' D
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4.7.3 DPoK for PS Signatures over Secret-Shared Inputs

We now present a DPoK for PS signatures for secret-shared inputs. We start by defining a

relation relevant to PS signature verification.

Definition 4.16 (PS Relation) Let PSGen denote the relation generator, such that PSGen(1', ¢)
outputs a bilinear group

(G1,Ga,Gr, g1,92,€,p) <R PS.Setup(llA). The corresponding relation RP* is defined by (x, (m,u)) €
R for

x =pk = (¢.Y1,... .Y, 3, X, Y1,.... Y1) € G2 GE3, m = (my,...,my) € Ff; and

u = (0,t) = ((01,02),t) € G} x F, if

e(o), X) - He(a’l, Y;)™i - e(oy, §) = e(ah, §)-
J
Our Protocol II,,. Our DPoK protocol Il for relation PSGen is described below, which
can be invoked from our compiler with input authentication based on PS signatures (instead
of BBS+). It builds upon the known PS PoK [97] in the non-distributed setting. The PoK
involved the following steps: (i) the prover randomizes the signature using some auxiliary
inputs and broadcasts the randomized signature to all other parties (this randomization ensures
unlinkability), and then (ii) the prover shows knowledge of these auxiliary inputs and secret-
shares of the message satisfying discrete-log relations determined by the first message.

Our PS PoK over secret-shared inputs follows the same blueprint, where the prover similarly
randomizes the first message using certain auxiliary inputs. In our case, the problem reduces to
a DPoK for the discrete log relation, with the workers holding the shares of the witness (message)
and the verifier holding the public statement (public key pk + the randomized signature). We
handle this using our robust complete DPoK Ilgg for discrete log.

We note that DPoK protocol II,s achieves robust completeness, knowledge-soundness and
zero-knowledge. The proof is straightforward from the existing proof of knowledge of PS sig-
natures and robust completeness, knowledge-soundness and zero-knowledge properties of our

DPoK protocol Ilge for discrete log.

Theorem 4.6 Assuming that Ilgog is a DPoKsss piogcen for relation generator DlogGen and
(t,n)-SSS, Iy is a DPoK for the relation generator PSGen and (t,n)-SSS with the following

properties:

— Security: t-private and d-robust, for d < dist/2, where dist = (n — t) is the minimum
distance of the Reed-Solomon code induced by (t,n)-SSS.

132



Public Key pk = (¢,Y1,..., Y01, 3, X, Y1, ..., Vi)

P’s inputs: Message m = (my, ..., my) € F} and signature o = (01, 02) on m

W;’s inputs : W, possesses the i" share m; of the message vector m, such that
Reconstruct(mg,...,m,) =m

Preprocessing : P samples ¢ <— F,, computes (t1,...,t,) <—r Share(t). P sends the

shares t; to W;, for all i € [n].

Interactive Protocol

e(03, 9)-
2. P broadcasts the computed value o’ = (0f,0%), C and 7 to V.
3. BEach W; and V locally set g = (§,Y1, ... ,YQ).

4. Each 'W; locally holds the i-th share s; = (my,t;) such that s =
Reconstruct ({s;}ief)-

5. AIl'W; for i € [n| and V run DPoK protocol Iy, for the relation g* = C

6. V accepts if 7 is valid and Il accepts.

Figure 4.5: Protocol Il
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— Efficiency: O(n) communication over point-to-point channels and O(nlogl) communi-

cation over broadcast channels.

Remark 8 (Public Verifiability) The protocol Il,s was presented and analyzed assuming an
honest designated verifier for simplicity. By replacing Ilgog with its publicly verifiable version

I

dlog U1 Steps (5) of the Interactive Phase, we obtain a publicly verifiable version of the protocol,

which we call TIFS. Observe that 115! requires one less round of interaction, as compared to ps,
while it retains the properties of robust completeness, knowledge soundness and honest verifier

zero-knowledge holds identically for the Il,s.

4.8 Application of Distributed Proofs of Knowledge in
Input Authentication in MPC

In this section we present our compiler for MPC with input authentication that outputs an
MPC protocol where each input is authenticated using a BBS+ signature under a common
(public) verification key. We can also obtain a compiler for MPC with input authentication

using similar techniques for PS Signatures discussed in Section 4.7.3.

Class of MPC Protocols. Our compiler takes advantage of the observation that a large
class of secret-sharing based MPC protocols share the following template. (i) There is an input
sharing phase where parties secret-share their inputs, and (ii) when using secret sharing schemes
with certain thresholds (ts, < |H]|), the input of parties is completely determined at the end
of the input sharing phase. This means that using inputs inconsistent with this sharing is
considered deviating, against which the protocol is secure. This is precisely where our compiler
performs well: verification of authenticity (or any other predicate) on the inputs can be done
fully outside the MPC by running a DPoK on the shares. (iii) For an MPC protocol of this
template, there exists a simulator Sim = (Simg,, Sim,,,), where Simg, deterministically extracts

the inputs of corrupt parties, and Sim,, simulates the protocol view.

Features of Our Compiler. Our compiler allows identification of all (malicious) parties
with non-authenticated inputs (this is a consequence of the robust completeness property of
Hyiog used inside Ippsy). We further note that our robust protocol g, tolerates a maximum
corruption threshold of ¢ < n/3 (assuming that the secret-sharing used is Shamir’s secret
sharing). Hence, our compiled MPC protocol also tolerates a maximum corruption threshold
of t < n/3. Using the non-robust version will result in a non-robust compiler that retains the
t < n/2 threshold of the underlying MPC.
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Inputs

The ideal functionality receives from each party P; an input-signature pair of the form (x;, 0;)
under the public verification key pk.

Verify Authenticity

1. If Ver(pk, z;,0;) # 1 for some party P;, then output a set of corrupted parties C and abort.

2. Otherwise, proceed to computation.

Computation

Invoke the ideal functionality Fpc for Iy, on inputs (xq, ..., x,).

auth

Figure 4.6: Functionality I35

The Desired Ideal Functionality. We define below the desired ideal functionality Farend
for MPC with input authentication.

4.8.1 Owur Compiler for Authenticated MPC

We now present a formal description of our compiler. Let Il = (ILsh, [lon) be a secret-sharing
based MPC protocol that guarantees security with abort against malicious corruptions of a

dishonest majority of the parties {Pi, ..., P,}, where:

— Il denotes the secret-sharing phase of Il,,,c and consists of the steps used by each party
P, for i € [n] to secret-share its input @; € IFf; to all of the other parties (throughout, we

assume that this sharing is done using a linear secret-sharing scheme (Share, Reconstruct).

— II,n denotes the remaining steps of the protocol Il,,c where the parties interact to compute

y=flxy,...,x,).

In the description of our compiler, we assume that each party P; holds a BBS+ signature
0; on its input x; with respect to a common public verification key pk. The compiler runs n
instances of Ilppss, where for instance ¢, party P; acts as the prover and all other parties P; for
J # i act as verifiers. Given I, = (ILh, IL,,), our robust compiler outputs an authenticated
MPC protocol Iympe = (ﬁsh,ﬁon). The compiler II,mpc is described above.

Theorem 4.7 (Security of Il.m,c) Assuming that: (a) the MPC protocol Il securely em-

ulates the ideal functionality Fupc, and (b) Ilgog is a DPoKsss pioggen for relation generator
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— Inputs: All parties hold public parameters and the verification key pk of a BBS+ sig-
nature scheme. Party P; has input x; € ]Ff;, together with a signature o;, such that
(pk, (.’L’i, Jz)) € bebS.

— T4 This phase is identical to Ilg, i.e., each party P, shares its input «; to all other
parties exactly as in Ilg,.

— Ilon: In this phase, the parties do the following:

— Foreach j = 1,...,n, the parties execute an instance of [Ty, for (pk, (z;,0;)) € RP>
with P; acting as the Prover, Py, ..., P, constituting the workers and P;, 7 # j acting
as verifiers, .

If any party outputs 0 at the end of this phase, the protocol aborts.

— Otherwise, the parties jointly execute Il,,.

Figure 4.7: Protocol Hampe = (Tgh, ITon)

DlogGen and (t,n)-SSS our compiled MPC protocol with input authentication Ilmpe securely

emulates the ideal functionality FHE for the same corruption threshold of t < n/3.

Proof. 'We construct a simulator for the II,,,. protocol, and prove indistinguishability of the
simulation from a real-world execution of II,mpc. The underlying MPC protocol Il secure

emulates Fypc, and let Sim = (Simg,, Sim,,) be the corresponding simulator.

Simulator for II,,,c. We now describe the simulator Sim for the authenticated MPC protocol
Hampe = (ﬁsh,ﬁon). Let H C [n] and € C [n] denote the set of honest and corrupt parties,

respectively. The simulator Sim proceeds as follows:

1. Simulate the sharing phase Ilg, of the underlying MPC [Impe by invoking Simg, (note that
Simg, does not expect any inputs). Sim receives the ith share {sf }iese from the adversary

(invoked by Simg,) corresponding to the input s’ of each corrupt party P;,j € C.

2. For each P; st. j € C, let (bes+)j denote the instance of the protocol Ilppsy used by the
parties where P; acts as the prover, and all of the remaining parties acting as both workers

and verifiers. The simulation of the online phase proceeds as follows.

(a) First, the simulator of the online phase invokes the simulator of the underlying DPoK
[Typss to simulate the proofs of knowledge of BBS+ signatures on the inputs of the honest

parties.
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(b) For each instance Ilppsy, where a corrupt party P;, j € € is acting as the prover, invoke
the extractor Ext’ of the DPoK Tlpps; on the shares of the honest parties (s7);csc corre-
sponding to the corrupt party P;’s input to extract the witness (x;,0;) from P;. Note
that since we assume honest-majority, the shares {sf }iesc given as input to the extractor
Ext’ completely determines the respective inputs of each corrupt party P;,j € C. Hence,

the compiler aborts if Consistent(x;, {87 }icsc) = 0.

(¢) Invoke Sim,, to simulate the online phase of the underlying MPC Ilp..

3. Send {(x;,0;)}jec to Fah. If Fth aborts by identifying some subset of corrupt parties,
abort while identifying the same subset of corrupt parties; otherwise output whatever Fzth

outputs.

Completing the Security Proof. We now prove the security of II,n,c by using a sequence
of hybrids described as follows (for simplicity of exposition, we assume w.l.o.g. that parties

Py, ..., Pg are corrupt and parties Pej41, ..., P, are honest):
— Hyb,: This hybrid is identical to the real-world execution of II,mpc.

— Hyb,: This hybrid is identical to Hyb, except that we simulate the sharing phase Ilg, of the
underlying I1,,c protocol by invoking Simg,. Receive from Simg, the set of shares {sf Yiesc

corresponding to the input s’ of each corrupt party P;,j € C.

— {Hyby ; }jejon—jep: Hybrid Hyb, , is identical to hybrid Hyb,, and for each j € [1,n — [€]],
hybrid Hyb, ; is identical to Hyb, ;_;y except that proof of knowledge corresponding to
the input of honest party Pley; is simulated using Sim" as described in Step 2(a) of the
simulator. More concretely, for each honest party Pe4;, instead of using the real input
T|e|+; and the real BBS+ signature oe4;, proof of knowledge of a BBS+ signature is
simulated instead of running an instance of the protocol Ilups; where party Pei; is the

prover.

— {Hyb; ; }jefo,jep: The first of these hybrids, i.e., Hybrid Hybs , is identical to hybrid Hyb, ,, e
Next, for each j € [1,|C]], hybrid Hyb, ; is identical to Hybs ;_;) except that we abort if
the following bad event occurs: for the instance of Ilyps where the corrupt party P; is the

prover, invoke the extractor Ext’ (as mentioned in Step 2(b) of the simulator and described

in the proof overview) on the shares of the honest parties (s]);esc corresponding to the
corrupt party P;’s input to extract the witness (z;, ;) from P;. If (pk, (x;,0;)) € R or

Consistent(x;, {8 }ics¢) = 0, then abort.
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— Hyb,: This hybrid is identical to Hyb; e except for the following: invoke Sime, of the
underlying II,. protocol to simulate the online phase I, and output whatever Simg,

outputs.

~ Hyb,: This hybrid is identical to Hyb, except that after invoking Sim, to simulate IL,,, we

query Fth with the extracted inputs {(z;, 0;)};ce.
Hyb, ~. Hyb,. This follows from the security of the underlying II,c protocol. Suppose that
there exists a PP'T adversary A that can distinguish between Hyb, and Hyb,. It is easy to use A
to construct a PPT adversary A’ that can distinguish between a real and simulated execution

of Ilg,, thus breaking security of the underlying I protocol.

Hyb, ;_; =~ Hyb, ;. This follows from the ZK property of Ilgog and the PoK for single-prover
version of BBS+ signatures. In particular, suppose that there exists a PPT adversary A that

can distinguish between Hyb, ;_;) and Hyb, ; for some j € [1,n — [€C|]. Then A can be used

j—1
to construct one of the following algorithms: (a) either an adversary A’ that breaks the ZK
property of the Il protocol, or (b) an adversary A" that breaks the ZK property of the PoK

for single-prover version of BBS+ signatures.

Hybs ;_; . Hybs ;. This follows from knowledge soundness of Ilgiog. The two hybrids differ
only when the bad event occurs, i.e., the extractor Ext’ in Step 2(b) of the simulator fails to
output a valid witness (m, o) where m is consistent with the honest party shares. However, as
described in the proof overview, assuming the knowledge-soundness of Ilyjg, the extractor Ext’
outputs a valid witness. Hence, assuming knowledge-soundness of Ilgg, the probability of the

bad event occurring must be negligible.

Hyb, . Hybs ;. This follows from the security of the underlying Ilypc protocol. At the end
/

j>j€% of

some x} € F*. In Hyb; ¢/, the extractor succeeds in outputting a valid witness @;, and this is

of Iy, if abort did not occur, then for each i € [n], all honest parties hold shares (x

the unique x determined at the end of Il,. Suppose that there exists a PPT adversary A that
can distinguish between Hyb, and Hyb; ¢. It is easy to use A to construct a PPT adversary A’
that can distinguish between a real and simulated execution of Il,,, thus breaking the security

of the underlying II,,. protocol.

Hyb, = Hyb,. Hyb; and Hyb, are identical. In Hyb,, the output of is given by the output of
Sim,, and in Hybg, the output is given by the output of Simg,, which are idential by the security
of the underlying II,,,.. We also note that Hyb; is identical to Sim.

This completes the proof of Theorem 4.7. [ |
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Round Efficient Compiler for Authenticated MPC. Finally, it is easy to see that in-
voking the round efficient DPoK HEES + protocol instead of the DPoK Ilpysy protocol enables us
to obtain a round efficient version of our compiler. The round efficient version achieves the

same security guarantees as the compiler presented above, albeit in the random oracle model.
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Chapter 5

Updatable Lookup Arguments and its
Application in Batching-efficient RAM

In this chapter!, we present updatable lookup arguments that enables us to perform lookups on
tables that have been changed after the preprocessing of expensive parameters, by removing
the rigid dependency of the online phase on the table-dependent preprocessing. We also look
at our constructions for committed index lookup arguments, which takes a step further from
the traditional lookup arguments that prove the sub-vector relations, and ties the proof to the
indices of the elements being ‘looked up’. Finally, using our updatable lookup argument as
a building block, along with other primitives, we provide a batching-efficient RAM (Random
Access Memory) that has constant proof size, constant verification complexity, and prover

complexity that is sublinear in the size of the RAM.

5.1 Introduction

To motivate our key ZKP primitive of updatable lookup argument, we begin by discussing its ap-
plication in the well-understood primitive of RAM. We highlight the established importance and
the extensive prior work on efficiently proving correctness of RAM updates. General purpose
Succinct Non-interactive Arguments of Knowledge (SNARKSs) enable one to generate succinct
proofs of membership of a statement in an NP relation expressed as an arithmetic circuit. These
proofs are extremely cheap to verify, which makes them useful for Verifiable Computation (VC),
where a resource-constrained client (e.g., a mobile phone), can outsource an expensive compu-
tation to an untrusted server, and later verify the correctness of the computation at a minimal

cost.

!This chapter is based on the joint work [54] with Chaya Ganesh, Sikhar Patranabis, Shubh Prakash and
Nitin Singh, that appeared in ACM CCS 2024.
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Modeling RAM in Verifiable Computation. It turns out that arithmetic circuit-based
representations are inefficient in expressing relations involving the result of a program execu-
tion on memory/state. Such relations frequently arise in the context of verifiable computation,
in scenarios that require proving the correctness of query execution against a database, infer-
ence from a decision tree, or updates on a table of account balances (e.g., when a batch of
transactions, such as account transfers, is applied to the table).

In the aforementioned examples, objects such as database tables, decision trees, and accounts
tables can be naturally modeled as instances of addressable memory, or more generally, random
access memory (RAM), where one needs to prove that the RAM has been accessed /updated in
accordance with the correct execution of the computation. There exists a rich and expanding
body of work on efficiently modeling abstractions of RAM in verifiable computation. While a
complete treatment of this vast body of work is beyond the scope of this thesis (a fairly recent
survey in [106] is a good starting point), we mention two additional properties that are often
demanded of the RAM primitive: persistence — the ability to persist the RAM state across
several computations, and batching — where verifiable update of the RAM state is required for

small batches of updates. These properties are also the focus of this work.

Application to Blockchain Rollups. Batching-efficient RAM is especially relevant in the
context of blockchain rollups [14], an umbrella term for recent efforts to scale blockchains by
moving expensive computation off the blockchain to the so-called layer two (or L2) chains.
The blockchain only needs to verify succinct proofs attesting to the correctness of the off-
chain computation. This approach is popularly called rollup as it allows verifying the result
of several (rolled-up) transactions modifying the L2 state, as part of one transaction verified
on the main chain. This simultaneously improves scalability and lowers the cost (e.g., gas
fees) per transaction due to succinct verification. We consider improving efficiency of rollups
an important motivation for our work, but avoid precise details of a smart-contract based

instantiation of our solution.

5.1.1 Owur Contribution

We present batching-efficient RAM construction, which advances the efforts towards achiev-
ing wverifiable outsourcing of state update such as in [34] and more recently in [92, 42]. The
most popular approaches to succinctly represent state involve accumulators based on Merkle-
trees [89], or ones based on groups of unknown order (e.g. RSA, class-groups) [39, 31, 92, 42].
The updates to the state are effected by insertions or deletions in the accumulated set. In
this work, we model the state as an addressable memory (RAM) described by vector T, which

stores value v; at address i. We denote this as T'[i] = v;. The RAM supports two operations,
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viz, loads expressed as v; := T'[i], and stores expressed as T'[i] = v;. We think of addresses
i € [0, N] for some N € Z while the values v; € F for some finite field F. In our construction, we
represent both the RAM and operations on it as polynomials, and use appropriate polynomial
commitment schemes to obtain succinct commitments (digests) to them. In this chapter, we
do not require commitments to be hiding, as our focus is on succinctness.

We summarize our contributions below.

— As our first contribution, we propose update friendly lookup arguments, which addresses
the strict dependence of recent constructions on table-specific preprocessing parameters.
Earlier works relied on preprocessing the quotients of the table which has to be ‘looked up’,
where the online phase only requires computing a linear combination of these preprocessed
parameters. However, for computation of the quotient in the online phase, this approach
strictly relies on these table-dependent preprocessed quotients, which is rendered unusable
in the event of any updates to the table. Our innovation extends the utility of table-specific
parameters to enable efficient lookups from tables, which are within certain Hamming

distance of the preprocessed table.

— We construct commaitted index lookup arguments via black-box reduction to sub-vector
arguments that use homomorphic commitments. A committed index lookup involves three
committed vectors ¢, a and v satisfying v; = t,, for all 7. Similar definition is also used
in recent multi-variate lookup arguments in [103], where a similar reduction to sub-vector

arguments is obtained under a more restrictive assumption about the elements of the table.

— We crucially employ the above two contributions to construct a batching-efficient RAM,
which can prove a batch of m updates with an amortized prover complexity of O(m logm+
vVmN ), with N being the size of the RAM. Our dependence on the RAM size is sublinear,
in contrast to the linear complexity inherent in recent works on batching-efficient RAM
using RSA accumulators [92, 42] or using generic memory checking techniques [105, 21, 19,
114]. All of our protocols are public-coin, and can be made non-interactive using standard

techniques [59].

We consider privacy as an orthogonal goal, one we believe is easily achievable via small
adaptations to our construction. To also attain privacy, we first require the commitments to
be hiding. Furthermore, each polynomial must be padded with sufficient number of random
masks to allow multiple ‘openings’ of the same commitment without compromising privacy.
For ensuring privacy in updatable lookup argument, we require privacy in the underlying com-

mitted index lookup argument, and for ensuring privacy in batching-efficient RAM, we require

142



privacy across all of its building blocks. For instance, we can ensure privacy in the committed
index lookup argument by plugging in a zero-knowledge lookup argument (eg. zkcq+ [43]),
and a privacy-preserving memory consistency check can be performed using a zero-knowledge
permutation argument. In this work, since our technique focuses on efficient computation of
the quotients required from the prover during the protocol execution (whose computation does
not involve the verifier), these techniques are compatible with the standard techniques of using

hiding commitment schemes to achieve privacy.

5.1.2 Techniques

We present a brief summary of our techniques below. A more detailed technical overview

appears in Section 5.1.2.

Update-friendly Lookup Arguments. Our starting point is the recent line of works on
lookup arguments which prove that a vector of size m appears as a sub-vector in a large fixed
vector (table) of size N with succinct proof sizes and verification, but most notably ensuring
that prover runs in time sublinear in the size of the table (V). The pioneering work [110]
obtained prover complexity of O(m? + mlog N), which was improved in subsequent works
to O(m?) [98], O(mlog®m) [111], and O(mlogm) [56, 43]. However, the sublinear prover
complexity requires table-dependent O(N log N) preprocessing and O(N) storage. This table-
dependent preprocessing implies that while the aforementioned lookup arguments can be used
to obtain efficient ROM (read only memory) semantics and cannot be used as is for RAM (which
supports update operations). Moreover, an update involving even a single index renders the
entire O(N) preprocessing unusable for further lookups, thus necessitating entire O(N log N)
re-computation. This work is the first effort towards mitigating this rigid dependence, thereby
increasing the applicability of the recent lookup arguments. An important contribution we
make here is a new method for computing “encoded quotients” used in several recent lookup
constructions such as [110, 98, 56, 43]. Our approach for computing these quotients from pre-
computed parameters remains efficient even when the table is updated, and it directly applies
to all the aforementioned constructions. For a table é-hamming distance away from the pre-
processed one, we incur (m + §)log?(m + ¢) additional overhead for proving m lookups. To
achieve such a quasi-linear overhead in both m and J, we rely on novel algebraic algorithms
described in Section 5.4. We informally summarize our contribution in this regard below,

whereas Theorem 5.3 states the precise result.

Theorem 5.1 (Informal) There exists a deterministic O(N log N) time algorithm Preprocess(T') —
ppy which on input T € TN, outputs parameters ppy of size O(N) such that: Given ppy, vectors
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T € FN, t € F™ with t being a sub-vector of T' an argument of knowledge for the same can be
computed in time O((m + ) log?(m +6) + f(m)) where § = A(T,T') is the Hamming distance
between T and T' while f(m) depends on the specific lookup protocol.

For the constructions based on [110, 98], we set f(m) = m? in the above, while for [56, 43], we

have f(m) = mlogm.

Committed Index Lookup : We augment the sub-vector relation in prior lookup arguments
which considers whether each entry of a given vector appears in the target vector to one that
also identifies the precise positions where the given vector appears in the target vector. When
this relation is checked over commitments of the respective vectors; given vector, the target
vector and the position vector, we call it committed index lookup. The relation we consider is
similar to the one considered in [103]. For lookup arguments with homomorphic commitment
schemes, we show that committed index lookup can be obtained using a sub-vector lookup
argument (Lemma 5.7, Section 5.3.2). Such a construction was also considered in [103], but
under a more restrictive assumption that the size of the elements in the table have to be within
a certain bound. Lemma 5.7 yields a construction of committed index lookup that uses (a
single instance of) the underlying sub-vector protocol in a black-box manner. This immediately
implies efficient constructions of arguments for committed index lookups from [110, 98, 111, 56,
43]. In Section 5.3.1, we also present an explicit (non-black-box) adaptation of [98] to obtain
a committed index lookup, which again incurs costs comparable to a single instance of the

underlying sub-vector protocol.

Batching-Efficient RAM from Lookup Arguments. Memory checking methods based
on address ordered transcripts [105, 21, 19, 114], which are popularly used in efficient RAM
abstractions, incur a cost linear in the size of the RAM. This is prohibitive for efficient batching.
As a key idea in this work, we invoke committed index lookup on the large RAMs, to verifiably
extract smaller sub-RAMSs, which correspond to indices actually involved in the batch update.
Then, we use the linear time memory-checking techniques to argue the consistency of these
smaller sub-RAMs.

The idea needs to work through some more details, such as showing that the larger RAMs
are identical on positions not referenced by the batch of updates (considered in Section 5.5.5).
The overall idea is illustrated in Figure 5.1. We also note that the extracted sub-RAMs can have
duplicate records, corresponding to multiple updates referencing the same RAM index; however,
memory checking methods can be easily adapted to handle such cases. Finally, we would still
hit the “rigidity” of lookup arguments in realizing this plan; once the table has changed, lookups

are no longer efficient from it. To circumvent this, we use our first contribution on extending
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the utility of table-specific parameters to defer parameter re-computation optimally while still
availing efficient lookups. More specifically, if we choose to re-compute the full table-specific
parameters after k& batches (of m updates each), the average cost per batch is O(N log N/k +
mklog®(mk) + f(m)). Here, f(m) as earlier denotes complexity of the non-updatable base
protocol. Setting k =~ \/N/m yields the average cost of m updates as O(f(m) ++vmN), which
scales sublinearly with the size of the RAM. While the preceding analysis considers the worst
case, in specific applications (such as account transactions, where few accounts contribute a
large volume of transactions), it may be possible to further delay the computation of table-

specific parameters. Thus we have:

Theorem 5.2 (Informal) Given m, N € N, there exists an argument for verifiable RAM

which proves updates of batch size m on RAM of size N with amortized prover complexity of

O(f(m) + vmN).

Polynomial Protocol for RAM. There are several ways to implement the ordered tran-
script based memory consistency check on the smaller O(m)-sized RAMs, for example by ex-
pressing the same as an arithmetic circuit. However, for completeness, we also present an
argument for RAM as an interactive polynomial protocol [64], which is then compiled into an
argument of knowledge using the KZG [77] commitment scheme in the algebraic group model
(AGM) [61]. This construction appears in Section 5.6.

As we have alluded to earlier, existing memory-checking based techniques to model RAM
computations incur a cost that is linear in the size of the RAM. We are interested in the setting
where the number of operations whose execution is to be verified is much smaller than the size
of the RAM. Thus, our goal is to achieve prover complexity which is sublinear in the size of the
RAM. Before we proceed, we establish a working definition of RAM for the rest of the chapter.
Informally, a RAM maps indices (addresses) to values, where we assume that values come from
a finite field F, while indices come from a subset I of F. For us, I will generally be the set
{1,...,k} for some integer k (which may be different from size of the RAM n). Finally, for
an index, there should be at most one value in the RAM, i.e., the association is unambiguous.
The formal definition of RAM is as follows:

Definition 5.1 (RAM) Given n € N, finite field F and a set I CF, a RAM of size n over
indices J is a tuple T = (a,v) € I" x F" such that Vi,j € [n] v; = v; whenever a; = a;. We
think of T as a table with vectors a and v denoting its columns. The set of all such tables will

be denoted by RAMg,,.

For a table T' = (a,v) € RAMy,,, we refer to tuples (a;,v;), i € [n] as records of the table T

We use the access notation v = T'[a] to mean that (a,v) is a record of T' (note there can be
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multiple such records according to our definition). When we consider RAMs where the first
column (of indices) is of the form I, = (1,2,...,n), we simply denote such RAMs by T € F".
For a RAM T € RAMy,,, a RAM operation is a three tuple (op,a,v) with op € {0,1}, a € I
and v € F. An operation with op = 0 is called a load operation which denotes reading a value v
mapped to index a in the RAM. Similarly, an operation with op = 1 is called a store operation,
which denotes associating the value v with index a in the RAM. We use O, to denote the set
of all RAM operations with index set I.

Component Protocol Prover Verifier Communication
ompone otoco Complexity Complexity Complexity
Committed
Sub-vector CQ [56] Ofmlog m)F 5P 8G, 3F

O(m) Gl
Lookup
Committed Index : O(mlogm)F
Lookip Figure 5.2 O(m) G, 5P 8Gq, 3F
Localized Update : O(mlog’m)F
in RAM Figure 5.3 O(m) G, 8P 19G+, 1G,, 10F

Table Specific 1 g 17 [5g) O(Nlog N)F,G - -

Preprocessing

Lookup from 9

. . O((m+4d)log*(m+9))F
Approximate Section 5.4 O(m + ) Gy - -
Setup
Polynomial Protocol . O(mlogm)TF,
for RAM Figure 5.9 O(m)G 7P 36G, 30F
Ba‘tcmﬁif/[ﬂimm Figure 5.4 O(v/mN),F,G 9p 65G,, 1Gy, 43F

Table 5.1: Asymptotic efficiency of the component protocols for our scheme. Here, N denotes
the size of the RAM, m denotes the number of operations, and § denotes Hamming distance of
table for which pre-computed parameters are available from the current table. As before, we
use (F, Gy, G, G, €, g1, g2, ;) to denote a bilinear group, and P to denote a pairing evaluation.
The performance figures reported here correspond to our batching-efficient RAM scheme which
uses the lookup argument of CQ [56] as a building block.

5.1.3 Batching-Efficient RAM: Blueprint

We will use vectors in FY¥ to denote the “large” RAMs, where index column is implicitly
assumed to be (1,...,N). Let T, T’ € FV denote the initial and final RAM states, and let
o be a sequence of m operations (m < N) which updates T to T". Let a € F™ denote the
vector of RAM indices referenced by the operations in o, i.e, a; is the index referenced by the
it" operation. To prove the transformation of T to T” via operation sequence o, we proceed as

follows:
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3. Large RAMs are identical outside a

2. Check memory consistency
of § and §’ w.r.t. operations

1. Lookup T, T’ on indices in a

Figure 5.1: Tllustrating different steps of sublinear lookup protocol between large RAMs T and
T

We isolate sub-tables S = (a,v) and S’ = (a,v’) of T and T" consisting of rows corresponding
to indices in a. This requires proving v = T'la] and v/ = T'[a], which we show using

committed index lookup argument discussed in Section 5.3.2.

On the isolated sub-tables S and S’ of size m, we use the standard memory checking arguments
(c.f. argument presented in Section 5.6) to prove that sequence o correctly updates S to S’

with prover complexity of 5(m)

Finally, we show that the RAMs T and T are identical outside indices in a. We describe

the protocol for proving the same in Section 5.5.5.

The blueprint for the above approach is illustrated in Figure 5.1.

5.1.4 Batching-Efficient RAM: Components

We now elaborate on the key technical components in realizing the above blueprint.

Committed Index Lookup. To limit the size of the RAM on which we use memory-checking

techniques, our first step is to isolate sub-tables of RAMs T and T corresponding to addresses
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which are involved in the operations. This is achieved by looking up RAMs T and T' at
indices in the committed vector a. We could leverage the recent work on efficient lookup
arguments to verifiably extract m indices from a table of size N, in time dependent only
on m. However, there are two technical challenges here. First, the aforementioned lookup
arguments only prove the sub-vector relation, without linking the extracted vector to the indices
in a. This is easily solved, as there is an efficient realization of a committed index lookup
from a committed sub-vector argument, where the commitment scheme is homomorphic. The
details appear in Section 5.3.2, with the complete protocol presented in Figure 5.2. The second
challenge is much more formidable: the efficiency of sub-vector arguments (and the committed
index lookup argument derived from them) depends on expensive table-specific preprocessing.
This is acceptable when the table in question is static, but is infeasible in our setting requiring

updatable tables. This motivates our next technical component.

Fast Lookup from Approximate Setup. We build upon the rich body of work on poly-
nomial protocols enabling efficient lookups from static tables [110, 98, 111, 56], which rely on
expensive table-dependent pre-computation to optimise online proving performance. We make
the first attempt towards breaking this rigid dependence. Our key idea is to extend the utility
of pre-computed parameters for a table T', to proving lookups from tables T # T. We show
that for § = A(T, T’), an argument for m lookups from T" incurs an additional prover overhead
of (m+9)log?(m + &) over the lookup argument for static tables. We note that the overhead is
quasi-linear in both m and §. Our competitive overhead rests on several innovative applications
of algebraic algorithms, which are summarised in Section 5.2.4. We then leverage this ability
to use “approximate” setup into a base + cache strategy; where at all times we maintain pre-
computed parameters corresponding to a base table T',, and use this setup to prove lookups
from the current table T'. We achieve optimal prover effort on average by using parameters for
T, till the current table is at a hamming distance at most v/mN from Ty, beyond which we
recompute full parameters for the current table with O(N log V) prover effort. The cycle then

repeats with current table as the base table.

Naive Approaches are Inadequate. We notice that the aforementioned constructions of
lookup arguments require linear combination of encoded quotients of the form

(T(X) = T(&))/(X — &), for upto m values of i during the proof generation. While construc-
tions [110, 98] consider quotients encoded in the group Gg, the protocol in [56] encodes them
in G;. We use a generic | -], to account for protocol-specific choices. We also see that even
a small change to the table requires one to update all the quotients (the polynomial 7'(X) is

common to all quotients). Updating all the quotients after each batch is clearly infeasible. One
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could consider delaying the updation of the quotients, till the time they are actually required
in a proof, which happens when the corresponding index in the table is involved in lookup.
However, each of the m quotients is now potentially “lagging” by ¢ updates, so we would need
Q(md) group operations to refresh all of them. This gives us multiplicative degradation with
0, and is clearly unsustainable for reasonable values of §. In Section 5.4, we present an efficient
method to directly compute linear combination of upto O(m) encoded quotients of the form
(T(X) = T(€)/(X = &),

Localizing changes in RAMs. While the above two components allow us to reliably extract
sub-RAMs corresponding to indices in vector a, we still need to prove that RAMs are identical
outside indices in a. Looking ahead, in terms of polynomials this requires proving that T'(¢") =
T*(&) for i & {a; : i € [m]}. Assuming Z;(X) to be the vanishing polynomial of the set
{&* : i € [m]}, this is equivalent to proving that Z;(X)(T(X) — T*(X)) = D(X)Zu(X)
for some polynomial D. However, naively this involves working with polynomials with degree
O(N), which is expensive. In Section 5.5.5 we show a polynomial protocol for the above relation

which requires only O(mlog®m) prover effort. The protocol appears in Figure 5.3.

Polynomial Protocol for Memory Checking. To complete the verification, we need to
show that the smaller RAMs, S = (a,v) and S’ = (@, v’) extracted from larger RAMs T, T" are
consistent with respect to the operations. This can be accomplished using standard memory
checking techniques based on address ordered transcripts, which we formalize in Section 5.5.1.
Later in Section 5.6 and 5.7, we assemble known techniques to present a polynomial protocol
for memory consistency based on address ordered transcripts. This involves encoding several
artefacts such as operations, transcripts etc., as polynomials and relations among them such
as concatenation, permutation and monotonicity as polynomial identities. Our modelling is
simple and implementation friendly, and helps in realizing a “circuit-free” overall construction.
Complete polynomial protocol for memory checking appears in Figure 5.9, while constituent

protocols appear in Figures 5.7, 5.6 and 5.8.

Efficiency. We conclude the overview with a discussion of efficiency achieved by our scheme,
and how different components discussed in this section contribute to the overall efficiency.
The asymptotic performance of our scheme using CQ [56] is summarized in Table 5.1, with
efficiency of the overall scheme highlighted in gray. The table also serves as a ready-reckoner
for component protocols involved in the overall scheme. A more detailed discussion and break-
up of the polynomial protocol for RAM appears in Table 5.2 in Section 5.6. We note that
the verification complexity of the overall solution is substantially less than the aggregate of

component protocols; this is due to the fact that several pairing checks required for KZG
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verification proofs can be batched together.

Continuity. 'To support applications such as rollups, we also consider it imperative to ensure
that online proof generation does not halt during offline parameter re-generation. In other
words, offline parameter re-generation should not hinder the operational continuity of the sys-
tem. In our scheme, we can ensure this by carefully overlapping the offline computation with
online proof generation such that the system can instantly switch to using the more recently

generated parameters before the online proving time becomes prohibitive.

5.2 Preliminaries

This section presents notations and preliminary background material used in this section.

Notation. Throughout this section, we assume a bilinear group generator BG which on input
A outputs parameters for the protocols. Specifically BG(1*) outputs (F, G, Gy, Gr, €, g1, g2, 9:)

where:
- F =T, is a prime field of super-polynomial size in A, with p = @),

- G1,Gy and Gy are groups of order p, and e is an efficiently computable non-degenerate

bilinear pairing e : G; X Gy — Gr.
- Generators ¢, g are uniformly chosen from G; and G, respectively and g, = e(g1, g2).

We write groups G; and G, additively, and use the shorthand notation [z], and [z], to denote
group elements x - g; and x - g, respectively for x € F. We implicitly assume that all the setup
algorithms for the protocols invoke BG to generate descriptions of groups and fields over which

the protocol is instantiated. We use [n] to denote the set of integers {1,...,n}.

Lagrange Polynomials. We denote the Nth root of unity by £ and define the subgroup H as
H={¢ ..., &Y} Let {u:(X)}Y, be the associated Lagrange basis polynomials over the set H;
that is, pi(X) = [, % We denote by Zg the vanishing polynomial of H; Zg(X) = XV —1.
Formal Derivatives of Polynomials. For a polynomial f(X) = Z?:o a; X" € F[X], we define
its formal derivative to be the polynomial f/(X) = S0 ia; X",

5.2.1 Succinct Arguments of Knowledge

Let R be a NP-relation and L be the corresponding NP-language, where L = {z : 3 w such
that (x,w) € R}. A succinct argument of knowledge consists of a pair of PPT algorithms
(P, V). Given a public instance x, the prover P, convinces the verifier V, that = € L, where the

prover additionally has as a witness w. We use the notation b <—g (P(w),V)(z) to denote V’s
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output in the interactive protocol involving P and V with w as P’s input and x as the common
input. The knowledge-soundness property says that if the verifier is convinced, then an efficient
extractor algorithm given oracle access to the prover outputs a witness w such that (z,w) € R.
An argument system is succinct if the communication complexity and the complexity of V is

polylogarithmic in the size of the witness.

Fiat-Shamir. An interactive protocol is public-coin if the verifier’s messages are uniformly
random strings. Public-coin protocols can be transformed into non-interactive arguments in the
Random Oracle Model (ROM) by using the Fiat-Shamir [59] heuristic to derive the verifier’s

messages as the output of a Random Oracle.

Modular Approach for Succinct Arguments using PIOP. A modular approach for de-
signing efficient succinct arguments consists of two steps; constructing an information theoretic
protocol in an idealized model, and then compiling the information-theoretic protocol via a
cryptographic compiler to obtain an argument system. Informally, the prover and the verifier
interact where the prover provides oracle access to a set of polynomials, and the verifier accepts
or rejects by checking certain identities over the polynomials output by the prover and possibly
public polynomials known to the verifier. Such a protocol can be compiled into a succinct argu-
ment of knowledge by realizing the polynomial oracles using a polynomial commitment scheme.
A polynomial commitment scheme allows a prover to commit to polynomials, and later veri-
fiably open evaluations at chosen points by giving evaluation proofs. This enables the verifier
to probabilistically check polynomial identities at random points of F. Many recent construc-
tions of zkSNARKSs [37, 45, 64] follow this approach where the information theoretic object is
a polynomial interactive oracle proof (also referred to as PIOP or a polynomial protocol), and
the cryptographic primitive in the compiler is a polynomial commitment scheme. Informally, a
polynomial interactive oracle proof (also abbreviated as polynomial IOP or PIOP) consists of
a prover sending polynomials and the verifier is not required to read the received polynomials,
and instead it queries the polynomial at some chosen points to ensure its consistency. We
formally define the semantics of a PIOP below (following [67]). Section 2.3 formally introduces
a polynomial commitment scheme, and we refer to Section 5.2.2 for the relevant polynomial

commitment scheme used throughout this chapter.

Definition 18 (Polynomial Interactive Oracle Proof) A polynomial IOP is a public-coin
interactive proof for a relation R = {(x,w)}. R is an oracle relation which consists of oracles
to polynomials over F with a degree bound d. These oracles can be queried at arbitrary points in
[F to evaluate the polynomials at these points. In every round in the protocol, the prover sends

polynomial oracles to the verifier. The verifier in every round sends a random challenge. At

151



the end of the protocol, the verifier (with oracle access to all the polynomial oracles sent so far)
and given its own randomness, outputs accept/reject. A PIOP as an interactive proof system

satisfies completeness and knowledge-soundness.

Structured Reference String model. We describe public-coin interactive protocols in the
structured reference string (SRS) model where both the parties have access to a SRS. The
SRS in our protocols consists of encodings of monomials of the form {[z'];}, ..., {[#']5}.<icy
for x chosen uniformly from F and a,b, c,d are bounded by some polynomi;ﬂiin A. Tt then
follows from [33] that such an SRS can be generated using a universal and updatable setup [75]
requiring only one honest participant. In practice, this is a superior security model compared
to requiring a fully trusted setup. We use srs = (srsy, srss) to denote the structured reference
string of the above form. We say that the srs has degree @ if all the elements of srs;, © = 1,2
are of the form [f(z)]; for a polynomial f € Fo[X].

Algebraic Group Model. We analyze security of our protocols in the Algebraic Group
Model (AGM) introduced in [61]. An adversary A is called algebraic if every group element
output by A is accompanied by a representation of that group element in terms of all the group
elements that A has seen so far (input and output). In the AGM, an adversary A is restricted to
be algebraic, which in our SRS-based protocol means a PPT algorithm satisfying the following:
for i € {1,2}, whenever A outputs an element A € G, it is accompanied by its representation,

A also outputs a vector v over F such that A = (v, srs;).

Real and Ideal Pairing Checks. For an algebraic adversary A interacting in a protocol
with a degree () SRS over a bilinear group, the verifier can use the pairing e : G; X Gy — G to
perform “ideal check” of the form (Ry-T})-(Ry-T») = 0, where Ry, Ry are vectors of polynomials
over [F and 77,75 are public matrices over F. Under the Q-DLOG assumption stated below, the
aforementioned ideal check is equivalent (except with a negligible probability) to a real pairing
check (a-T7) - (T3 - b) = 0 with a and b denoting vectors in F encoding polynomials in R; and
Ry in groups G and Gy respectively (see [64, Lemma 2.2]).

Definition 5.2 (Q-DLOG Assumption [61]) Fiz an integer Q. The Q-DLOG assumption
for (G, Gy) states that given [1],,[z],,. . ., [xQ} o s [xlys e [:L‘Q] , for uniformly chosen x <—g
F, the probability of an efficient A outputting x is negl(\).

5.2.2 KZG Commitment Scheme

The notion of a polynomial commitment scheme (PCS) that allows the prover to open evalua-

tions of the committed polynomial succinctly was introduced in [77] who gave a construction
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under the trusted setup assumption. A polynomial commitment scheme over F is a tuple

PC = (Setup, Commit, open, eval) where:

— pp + Setup(1*, D). On input security parameter \, and an upper bound D € N on the

degree, Setup generates public parameters pp.

— (C,¢) < Commit(pp, f(X),d). On input the public parameters pp, and a univariate
polynomial f(X) € F[X] with degree at most d < D, Commit outputs a commitment to
the polynomial C', and additionally an opening hint c.

— b+ open(pp, f(X),d,C,¢€). On input the public parameters pp, the commitment C and
the opening hint ¢, a polynomial f(X) of degree d < D, open outputs a bit indicating

accept or reject.

— b < eval(pp,C,d, z,v; f(X)). A public-coin interactive protocol (Peyai(f(X)), Veva)(pp, C, d, 2, v)
between a PPT prover and a PPT verifier. The parties have as common input public pa-
rameters pp, commitment C', degree d, evaluation point x, and claimed evaluation v. The
prover has, in addition, the opening f(X) of C, with deg(f) < d. At the end of the
protocol, the verifier outputs 1 indicating accepting the proof that f(x) = v, or outputs

0 indicating rejecting the proof.
A polynomial commitment scheme must satisfy completeness, binding and extractability.

Definition 5.3 (Completeness) For all polynomials f(X) € F[X] of degree d < D, for all
rel,
pp « Setup(1*, D)
(€, ¢) « Commit(pp, f(X),d)
' v« f(z)
b < eval(pp, C,d, z,v; f(X))

Prlb=1 =1.

Definition 5.4 (Binding) A polynomial commitment scheme PC is binding if for all PPT A,
the following probability is negligible in \:

Open(pp7 f07d7 C7 60) = 1A
Pr Open(ppa fladv 07 E1) = 1A
fo# f1

pp + Setup(1*, D)
(C, fo, f1,€0,€1,d) < A(pp)
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Definition 5.5 (Knowledge Soundness) For any PPT adversary A = (A, Ay), there ex-
ists a PPT algorithm Ext such that the following probability is negligible in A:

pp < Setup(1*, D)
b= 1A . (C,d,z,v,st) < Ai(pp)
Revat(pp, C, 2,0 f,&) =0 (f,€) « Ext"2(pp)
b (Ay(st), Vevar) (pp, C, d, z,v)

Pr

where the relation Reya is defined as follows:

Reval = {((pp, C € G, x € F, v € F); (f(X),0)) :
(open(pp, f,d,C,¢) = 1) Av = f(z)}

We denote by Prove, Verify, the non-interactive prover and verifier algorithms obtained by
applying F'S to the eval public-coin interactive protocol, giving a non-interactive PCS scheme

(Setup, Commit, Prove, Verify).

Definition 5.6 (Succinctness) We require the commitments and the evaluation proofs to be
of size independent of the degree of the polynomial, that is the scheme is proof succinct if |C| is
poly(\), |m| is poly(\) where m is the transcript obtained by applying FS to eval. Additionally,

the scheme is verifier succinct if eval runs in time poly(X) - log(d) for the verifier.

In this work, we use the KZG commitment scheme introduced in [77] which satisfies suc-
cinctness, completeness and knowledge-soundness (extractability) in the algebraic group model,
while additionally featuring a universal and updatable setup. We denote the KZG scheme by the
tuple of PPT algorithms (KZG.Setup,KZG.Commit, KZG.Prove, KZG.Verify) as defined below.

Definition 5.7 (KZG Polynomial Commitment Scheme) Let (F, Gy, Go, Gr,e, g1, 92, gt)
be output of bilinear group generator BG(1%) for security parameter X. The KZG polynomial

commitment scheme is defined as follows:

— KZG.Setup on input (1*,d), where d is the degree bound, outputs srs = ({[7]1,..., [T}

Alrl, - [P}

— KZG.Commit on input (srs,p(X)), where p(X) € F<y4[X]|, outputs C = [p(7))

— KZG.Prove on input (srs,p(X), a), where p(X) € F<4[X] and a € F, outputs (v, 7) such that
v=p(e) and m = [¢(7)]1, for



— KZG.Verify on input (srs,C, v, a, ), outputs 1 if the following equation holds, and 0 otherwise.
e(C —v[l); + am, [1]2) = e(m, [1]2)

Note that both sides of the verification equation involve a fixed generator, and hence several
proof verifications can be batched together to reduce the number of pairing computations. We
also assume (w.l.o.g) analogues of KZG.Commit, KZG.Prove and KZG.Verify defined over the
group Gy. We shall use the (non-standard) notation [p(X)]; to denote [p(7)]; for i € {1,2}.
This allows us a convenient shorthand for referring to “commitment of the polynomial p(X)” in
group G;. Our protocols also use batched KZG proofs to show that polynomial p(X) satisfies
p(a;) = v; for i € [n]. Let a = (au,...,a,) denote the vector of evaluation points and v =
(v1,...,v,) denote the vector of claimed evaluations. Then the batched version of KZG.Prove

is described as follows:

— KZG.Prove on input (srs,p(X), ), where p(X) € F4[X] and a« € F", outputs (v, 7) with
v € F" such that v; = p(«;) and ™ = [¢(7)]; where

pX) —r(X)

q(X) = o(X)

In the above equation, a(X) = (X —aq) -+ (X — ), while ¢(X) and r(X) are the quotient
and remainder polynomials when p(X) is divided by a(X).

— KZG.Verify on input (srs, C, v, o, ), outputs 1 if the following equation is satisfied, and 0

otherwise.

e(C = [r(D]1, [1]2) = e(m, [a(7)]2)

Here, the verifier interpolates the polynomial r(X) € F_,[X] such that r(«;) = ;.

KZG for Vectors. For f € FV, let Encode,(f) denote the polynomial encoding of f over
H given by Zf\il fipi(X). We use KZG to commit to vectors by committing to its polynomial
encoding. In general a vector g of size m is encoded by a polynomial g(X) € F_,,[X] which
interpolates g over a subgroup V consisting of m* roots of unity in some canonical order. We

will explicitly state the subgroups for all sizes of vectors that we consider.

5.2.3 Lookup Arguments

Prior works on lookup arguments [110, 98, 111, 56] consider proving sub-vector relation over

committed vectors, i.e, given commitments ¢; and ¢, to vectors t € FY and v € F™, one proves
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that for all ¢ € [m], there exists j € [N] such that v; = ¢; . We will use v < ¢ to denote that
v 1s a sub-vector of t. The definition below summarizes the sub-vector relation as defined in

prior works.

ngubvec

ws.Non L0 consist of tuples

Definition 5.8 We define the committed sub-vector relation
((ct, c0), (t,v)) where ¢, ¢, € Gy, t € FN, v € F™ such that v < t and

¢t = KZG.Commit(srs, Encode, (t)) and ¢, = KZG.Commit(srs, Encode, (v)).

A committed sub-vector argument is an argument of knowledge for the relation R:fstNein Next,
we consider a slightly modified relation that we call committed index lookup (called indexed
lookup in [103]) where there is a commitment to the indices where v appears in ¢. Formally,

we define it as below:

Definition 5.9 We define the committed index lookup relation RL??X;’;I to consist of tuples of
the form ((ct, ca, Cy), (t, @, v)) where ¢, cq, ¢y € Gy, t €FN, a,v € F™ such that v; = t[a;] = t,,
for all i € [m] and ¢, = KZG.Commit(srs, Encode, (t)), ¢, = KZG.Commit(srs, Encode, (a)) and

¢, = KZG.Commit(srs, Encode, (v)).

A committed index lookup argument is a succinct argument of knowledge for the relation

lookup
ngm,Aﬂrn'

5.2.4 Computational Algebra Preliminaries

Let IF be a finite field of prime order p and G be a cyclic additive group of order p with generator
g. For s € F, we use the notation [s] to denote the group element s - g. We assume that F
contains the n'" root of unity ¢ satisfying £” = 1 for a large n, and the degrees of all polynomials

are less than n.

Fact 5.1 (Fast Evaluation) Let f € F[X] be a polynomial of degree < d and (&1, ...,&.) € F"
be distinct points in . Then the vector (f(&1), ..., f(&)) can be computed in O((d+r)log(d+r))
F operations if &1, . .., &, form roots of unity, and in O((d+r)log®(d+r)) F operations otherwise.

Fact 5.2 (Fast Interpolation) Let &;,...,&; be distinct points in F and (vy,...,vq) € FZ
Then (fo,. .., fa—1) € B can be computed in O(dlog®d) operations in F such that f(&) = v;
for all i € [d] where f(X) = Zf:_ol fi X

Fact 5.3 (Fast Multiplication) Let &,...,&,. be distinct points in F. Then coefficients of
F(X) =TI_,(X = &) can be computed in O(rlog®r) operations in F.
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Fact 5.4 (Multi KZG proofs [58]) Let {[2]}%, be given for some x € F. Then for set of r
distinct points &1, ..., &, and a polynomial f(X) € F[X] of degree < d,the vector
([hi(x)], ..., [he(x)]), where hi(X) = (f(X) — f(&))/(X — &) can be computed in O((r +
d)log(r + d)) group and field operations when &1, ..., &, are roots of unity, and in O(rlog*r +
dlogd) group and field operations otherwise.

Fact 5.5 (Lagrange Polynomials) Let S = {{,...,&} be a set of r distinct points and let
(X)), ..., 7-(X) be the corresponding Lagrange polynomials of degree r — 1 each. Let Zs(X) =
[I;-, (X = &) denote the vanishing polynomial for S. Then we have:

ZTZ-(X) =1

Zs(X)

)=z X -8

for all i € [r]

Formal Derivative. For a polynomial p(X) € F[X], we define the formal derivative of p(X)
as the polynomial u(X, X) where u(X,Y) = %. It can be seen that u(X, X) is equal to
the polynomial p/(X) obtained by differentiating p(X) according to regular rules of calculus.

Thus, this definition agrees with the one given earlier in the preliminaries.

Some Useful Results. We now state and prove some facts that are used later throughout

the proof.

Lemma 5.1 For K C [N], define Hy to be {&' :i € K}. Let p(X) be the vanishing polynomial
of Hi. Let p'(X) and p"(X) denote the formal first derivative and second derivative of p(X),

respectively. Then, p"(&)/p'(€) =2+ 3 icpgn 1/ (€ — &) foralli € K

Proof:  Observe that p'(X) = 3, [Licse iy (X — &) and

reEn= 1[I «-¢),

JeR\{r}
e =Y JI -+ > I «-¢
JEK\{r} ke K\{r,j} ieK\{r} keK\{r,i}
Note that only non-zero products in the expansion of p”(£") occur when ¢ = r or j = r,

resulting in the two summands for the same in the above equation. Moreover, we notice that
both summands are the same, giving us p"(£") = 23,y [ e\ (€7 — €¥). One may now
verify that p/(£")/p"(£") gives the desired result claimed in the lemma. O
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Lemma 5.2 (Sumcheck) Let u(X,Y) be a bi-variate polynomial over a finite field F with
degree less than N in each of the variables and H be defined as the group of N roots of unity
(N << [F|) with generator { € F. Then », nu(X,£) = Nu(X,0)

Proof: For some d < N, we write u(X,Y) = ag + a;Y + aoY? + -+ - + a4Y? where each q; is

a polynomial in X of degree less than N. Now we write the sum:

douX, &) =Nag+a(§+E+ - +&) +ar(@+&+- + M)+ Faad+-- 4+

1E€[N]

But for any o = &¥ for k < N, o+ o +---a” = 0. Thus, all terms vanish except the first
term , and hence 37, vy u(X,§") = Nag. The lemma follows by observing ag = u(X,0). O

We use the following standard observation for our next lemma:

Fact 5.6 If polynomials f,g of degree < N agree on N points, then they are equal as polyno-
mials, that is, f(X) = g(X)

Lemma 5.3 Let Zy(X) be the vanishing polynomial for H, let Z\K(X) and Z(X) be the van-
ishing polynomials for Hinpx and Hy respectively. Let ji(X), ..., un(X) be Lagrange polyno-
mials for the set H = {&,... . &N}, Then:

u(&’)

) =2 7 oy (5.1)
Zx) =Y Z}(((g%u () 5:2)

Proof: Note that the second equation follows from the first by linearity of derivatives, so it
suffices to prove the first equation. Both sides of the identity are polynomials of degree < N, so
it suffices to show their evaluations are identical over N distinct points. In particular, we show
their evaluations are identical over H. Consider evaluating LHS and RHS at &' for i € [N]\ K.
The left side is 0 by definition of Z (X)), while the right-hand side is zero by the properties
of Lagrange polynomials. Now let us consider evaluations LHS and RHS at ¢ for ¢ € K. The

RHS is 2 (El)) by properties of Lagrange polynomials, while the LHS is H eV (& —=¢&)

Multiplying dividing by [] JeR\(i) (& — &) gives:

[T € —€)

LHS = . .
HjeK\{i}(Sl - fj)
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Which is 5}”1((55 )), the same as the right hand side. This proves the claim. O

Lemma 5.4 Let piy,...,ux be the lagrange polynomials for the set H = {&' : i € [N]} of the

N roots of unity. Then we have:

N-1)

. — ifj=1
wE =9 %,
& (EJ ) otherwise
Proof: Let us first consider the case where i # j. We know that p;(X) = #&X&) Thus,

by applying quotient rule (note that ju; is defined at &7 as j # i):

(X - &)V - XM - (X¥ —1)

pi(X) - Zy (&) =

(X =¢&)?
Substituting X by &/, we get:
i) 5= e
Thus, we get: i
4= 56 gy

Now, for the second case where ¢ = j, we have:
() = Hje[N}\{i}(X —¢')
Zy (&)

or, j(X) - Zy(&) = [ (x-¢)
JEINN{4}

Differentiating the above equation on both sides, we get:

Z é‘z o Z H X fk

JEINI\{i} ke[N\{i.5}

Substituting X = £’ in the above equation yields:

g 2 1

NJ\{i }kG[N]\{H}
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Z er N]\{, (5 fk)

J

JEINI\{i} -6
) X 7T
ke[N]\{i JEINI\{i} &= §

=Z;{<si> Z 81@.

NI}
= N/¢ Z

Je[NI\{d}

§— 51

We divide on both sides by N/£% in the above, and use Lemma 5.1 to obtain:

L ZpE) _N-1
= 2 g & 27(8) 28

JelNI\{i}

O

Lemma 5.5 Let K C N be a set of cardinality k and X = {z; : j € K} be a set where x; for
j € K are distinct elements of F. Let Zr(X) = 2, X*+-- -+ 2 denote the vanishing polynomial
of X and {7;(X)}jex denote the Lagrange polynomials such that 7,(x;) = 0;; fori,5 € K. Then
forall j € K, we have 7)(x;) = F(x;)/Zy(x;) where the polynomial Fc(X) is defined as

k .
k k—2 2 J j—2
= Qo (o
Proof: For j € K, by definition of Lagrange polynomials, we have:

Zx(X) 1 Zx(X)
(X —2;) Zi(wy)  Zh(x)) X — x

T (X) =

By long division of Zy(X) by (X — x;), we have:

1
Tj(X): - (Zka_l+(szk+zk—1)Xk_2+"'+(l’§_12k+"'+Zl))
Zy(x5)

k-1

1
Z q p—1 XP
Zx(x;) p=0 (q =p+1 >
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Differentiating both sides, we have:

Substituting X = x;, we get:

This completes the proof. O

5.3 Committed Index Lookup Arguments

In this section, we explore how to obtain committed index lookup arguments, where we first
start with a discussion on extending the lookup arguments of Caulk+ [98] to support committed
index lookup arguments, and thereafter we discuss a generic blackbox method to ”lift” any
lookup argument to a committed index lookup argument.

Let m, N € N be fixed parameters with m < N and let srs denote a KZG setup of degree
d > N over bilinear group (F, Gy, Go, Gr, €, [1];, [1],, [1]:). Recall that the committed index
lookup relation in Definition 5.9 involves the prover showing knowledge of vectors T' € F¥,
a € ™ and v € F™ corresponding to public commitments ¢y, ¢, and ¢, such that they satisfy
v, =T[a;]| =T,,.

5.3.1 Committed Index Lookup from Caulk+

In this section, we present an explicit (non-black-box) adaptation of Caulk+ [98] to obtain
a committed index lookup, which again incurs costs comparable to a single instance of the

underlying sub-vector protocol. We present a polynomial protocol for the same, which is an
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adaptation of the lookup protocol from Caulk+ [98]. However, here we do not aim for zero-
knowledge. Let T'(X) = Encode,(t), a(X) = Encode,(a) and v(X) = Encode,(v) denote the
polynomials encoding the vectors t,a and v respectively. The verifier knows commitments
to these polynomials at the start of the protocol. Now v; = tla;] for i € [m] is equivalent
to v(v) = T(€*")) for i € [m]. To obtain a polynomial protocol, the prover interpolates a
polynomial h(X) = Y 7", £%7;(X), which satisfies h(v') = ¢’ To show that polynomial h
correctly “exponentiates” evaluations of a(X), we consider the inverting polynomial ¢(X) =
Zﬁil ip;(X) which behaves like “log” over H by evaluating to 7 on &'. Now, we see that all

constraints are encoded as polynomial identities below:

(h(X)) = a(X) mod Zy
v(X) mod Zy (5.3)

The last polynomial identity ensures that evaluations of h on V lie in H (the set of roots of Zp).
Since the polynomial ¢ is one-one over H, the first equation implies h(v*) = £% for all ¢ € [m].
The desired relation v; = T;,, now follows from the second identity. The above formulation
involves composition with polynomials ¢, 7 and Zg of degree O(N), which is inefficient. We
use the trick from [98], where we work with low-degree restrictions of O(/N)-degree polynomials
such as T, ¢ over the set H; = {h(v') : i € [m]} = {£% :i € I} C H, where I = {q; : i € [m]}.
The prover commits to the polynomials Z;(X) = [[,c;(X — &), h(X) and low degree (< m)
restrictions 17, ¢; of T and ¢ on the Hj respectively. The polynomial protocol then checks the

following;:
T(X)—T/(X)=0 mod Z;, T;(h(X))=v(X) mod Zy
UX)—0(X)=0 mod Z;, ¢;(h(X))=0a(X) mod Zy (5.4)
Za(X)=0 mod Z;, Zy(h(X)) =0 mod Zy

It must be noted that the above identities imply the earlier polynomial identities in (5.3).
This is so because evaluations of h on V are roots of Z;, which implies T;(h(v?)) = T(h(v*)),
Cr(h(v')) = £(h(v")) and Zg(h(v')) = 0 over V. While the identities on the left still involve a
degree N polynomial, we can use the srs to check the polynomial identity at the point 7 encoded

in the srs. For example, we can evaluate the encoded quotient [Q(X)], = [%] using
2

S RECIE o)

the relation:
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T(X)—t;
X-=¢£t

By pre-computing the KZG proofs Wi = [ ] for all © € [N], the encoded quotient can
2

be evaluated using O(m) Gy-operations and O(mlog?m) F-operations. The identity is then

checked using a real pairing check

e([T(X)]1 - [TI(X)h ) [1]2) = 6([ZI(X)]1 ) [Q(X>]2)

Similarly, we also pre-compute the encoded quotients Wi = [K;X_):] and Wi = [@g)h
for all i € [N]. The quotients can be computed in time O(N log N) using the techniques in
[58]. Using KZG commitment scheme the polynomial relations over Zy can be checked in a
standard manner by having the prover send evaluation proofs for the committed polynomials
at a random point chosen by the verifier. The total prover effort incurred is O(m?) group and

field operations. Thus, we have:

Lemma 5.6 Assuming KZG is extractable polynomial commitment scheme, there exists a suc-

:Rlookup

cinct argument of knowledge for the relation Ry '\, with prover complexity of O(m?), given

access to pre-computed parameters of size O(N).

5.3.2 Blackbox Committed Index Lookup Arguments from Lookup
Arguments

In this section, we “lift” any committed sub-vector argument to a committed index lookup
argument, where the latter makes a black-box use of the former. We use the trick of random
linear combination of vectors to infer indexed lookup relation among them from sub-vector

relation over the aggregated vectors.

Lemma 5.7 Let t € F" and let a,v € F™ for some positive integers m,n. Let I, denote
the vector (1,...,n). Then for v < F, (v+~va) X (t + vI,) implies v = t|a| except with
probability mn/|F|.

Proof: We define vectors of linear polynomials p = (py,...,pm) and ¢ = (q1, . .., gn) wWhere
pi(X) =v;+a; X, i€ [m]and ¢;(X) =t +1X, i € [n]. Now, we see that v = t[a] if and only
if p<q. For y € F, let p, and q, denote the vectors (pi(7),...,pm(7)) and (¢1(7), - .-, ¢ (7))
respectively. It is obvious that p < g implies p, = g, for all v € F. Using Schwartz-Zippel
Lemma, it can also be seen that Pr._ .[p £ ¢|p, < q,] < mn/|F|. The bound follows from
the observation that the event occurs only when v is a common root of at least one pair of
linear polynomials {(p;(X), ¢;(X)) : i € [m],j € [n]}. O

In Figure 5.2, we invoke Lemma 5.7 to construct a committed index lookup argument using a
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Common Input: srs, ¢, c,, ¢y, ¢ = [I(X)]; where I(X) = Encode, (I) encodes the vector
I=(1,...,N) eFV.
Prover’s Input: Vectors t € FV, a,v € F™.

1. V samples v <—g I and sends ~ to P.
2. P and V compute: ¢ = yer + ¢, ¢y = YCq + Cp.
3. P computes: t = I +t, ¥ = ya + v.

4. P and V run sub-vector argument (Py,, Vs, ) with (srs, ¢, ¢,) as the common input and
(t,v) as Pg,’s input.

5.V outputs b < g (Pe, (t, D), Ve, ) (515, &, &y ).

Figure 5.2: Committed Index Lookup Argument

committed sub-vector argument (Ps,, Vs,). We formally state the following lemma, whose proof

essentially follows from Lemma 5.7.

subvec
srs,N,m

the AGM, the interactive protocol in Figure 5.2 is an argument of knowledge for the relation
REKP in the AGM.

srs,N,m

Lemma 5.8 Assuming that (Ps,, Vs,) is an argument of knowledge for the relation R in

5.4 Updatable Lookup Arguments: Fast Lookups from

Approximate Preprocessing

In this section, we provide details of the algorithm to construct lookup argument for a table
T, using pre-computed parameters of a table which is a small hamming distance away. The
dependence on pre-computed parameters in several recent lookup arguments such as [110, 98,

111, 56] stems from the need to compute an encoded quotient of the form:

@)= a) (5.5

for some O(m) sized set I. The quotient in Equation (5.5) can be computed in O(m) cost
when the quotients [(T'(X) — T(£"))/(X — £')], are available for all i € [N]. In this section we
exhibit an algorithm which computes the above with O((m 4 ) log®(m + §)) cost, given access

to similar quotients for a table at hamming distance ¢ from T". We now describe our approach.
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5.4.1 Base + Cache approach

The key idea we employ is to express the current table T' € FV as T\, + T.n, where T, is
the table for which we assume that the encoded quotients are available (via the O(N log N)
computation), and T'¢, captures the changes to the table since. We will periodically update
(say after s batch updates) T, to current table state, and re-compute all the quotients (we
call it the offline phase). We will revisit the question on choosing s optimally later. Let
I C [N] denote the set of indices in the current batch of m lookups. The online phase of our
proof generation involves computing the sum in Equation (5.5) for the table T'. The following

Theorem determines the efficiency of the online phase of our prover.

Theorem 5.3 Let N, ¢ be as defined previously. Given KZG proofs {W; Y., with
Wi = [Th(X) - To(€)/(X = &)],,

where Ty(X) = Encode,(Ty) encodes a vector Ty € FN, for any I C [N], there exists an
algorithm to compute [Q], as given in Equation (5.5) for polynomial T(X) = Encode, (T
encoding the vector T € FN wusing O((6 + |I|)log?(6 + |I|)) F-operations and O(S + |I|) G-

operations. Here, § denotes the hamming distance between vectors Ty and T.

Proof: Let T = Ty + T, and thus T'(X) = Tp(X) + Ten(X). Define K = TU{j € [N] :
T[] # 0} as a set which captures the indices where the current table T differs from the base
Ty, where we explicitly also include the lookup indices I in K. For j € K, let Ty[j] = At;.
Then Ten(X) = > ;cx Aty (X). We write the quotient Q(X) as:

20 -3 (Tb()ig - ?(8)) N ZE;C (Tch();) - ?(3))

From above, we have [Q(z)], = [Qb(2)], + [Qen(7)], where

Qo(X) =) alTo(X) = To(€)) /(X =€)

il
Qen(X) =Y ci(Ten(X) = Tn(€)) /(X =€)
iel
We can compute [Qb(X)]g from the pre-computed KZG openings of T,(X) at points £',1 €
I using O(|I]) group operations and O(|I|log® |I|) field operations. Therefore, it suffices to
compute [Qen(X)], efficiently. Using Teh(X) = >, Atjp;(X) we write Qen(X) as linear
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combination of table-independent polynomials:

Qun(X ZClZAt ,uj —— /;J(fz)

i€l JjeEK
— N a2 2 “ Z Ly cAt, 2
zGZI o 5 ZGZI jGKZ\{z} ’ X él

Now, we can write [Qen(X)], = [Q4)(X)], + [Q% (X)], where:

Q) = S ean L QR = Y Y can )

el i€l jeK\{i}

The term [Qg) (X )] can be computed using O(|I|) group operations by augmenting the setup
with pre-computed KgZG opening proofs of polynomials y;(X) at ¢ for ¢ € [N]. This adds O(N)
to the setup parameters, while the computation can be done in O(N log N) time with methods
similar to existing pre-computed parameters. This eventually leaves us with [Qg) (X)]g- Next,
we synthesize the polynomial Qgi) (X) in a form that reduces group operations required to

compute its encoding.

D) =" D Aty (X) /(X =€)

iel jeK\{i}

Zu(X)
m 2 Z’ Gl ey

i€l jeK\{i}

1 §JAt Zn(X)  Zu(X)
=N Z Z (X—gi_X—@')

el jeK\{i }

fjﬁt Zu(X)
Z Z f] X _ gz

i€l jEK\{}
Zu(X)
+ Ny Ay Y §J 8 Qe (5.6)
JEK iel\{j}

In the first step, we substituted p;(X), while in the final step we re-arranged the summation to

accumulate the scalar factor for each distinct polynomial of the form Zg(X)/(X — £°). Define
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scalars a;, @ € I and b;, j € K as below:

TN ;
aw= > FA84 e =Y ek (5.7)
e &= A= =&
jeK\{i} i€\{j}

Now, define Wi := [Zu(X)/(X — &), We see that Wi is just the KZG opening proof of the
polynomial Zg(X) evaluated at & for j € [N]. These can be precomputed one time and it adds
O(N) to the setup parameters and the computation can be done in O(N log N) time.

Now, we see that [Qgi)(X )]y can be written as linear combination of O(|K|+|I|) group elements.

RG] =N <Z<Ciai> AUEDICAVINE W:{) (5.8)

g icl jEK
Now, ¢; are known constants depending on the specific lookup scheme. So, given {a; }ier, {b;}jex,
[Qg‘) (X )] , can be computed in O(|/|+|K|) group operations. While we have diligently reduced
the group operations, we still seem to need O(|I||K|) = O(md) field operations. We clearly
need better than naive way of computing the scalars in (5.7) to obtain additive overhead in .
This is what we consider next. Let d; := £&/At;. Then we have from Eq (5.7):

=y gicijfj,z’el b= > ﬁ,jeK (5.9)
JEK\{i} iel\{j}
So, to compute a; and b;, it suffices to compute reciprocal sums efficiently. Our next lemma
claims that such reciprocal sums can be computed efficiently. Using our next lemma (Lemma 5.9),
we conclude that the scalars a;,i € I and bj,j € K can be computed in time O(|K|log? |K|),
which proves the bound in Theorem 5.3. O

Lemma 5.9 Let I C K C [N] and let a; for alli € I andb; for all j € K be as described above.
Then, a; for all i € I and b; for all j € K can be computed in O(|K|log? |K|)F operations.

Proof sketch. We sketch the proof here for a;. First, we mention that the special case of the
lemma when d; =1 for all j € K admits an efficient computation due to the following identity

proved in Lemma 5.1.

Z%ng)zz v !

28 A S Y

for Zg(X) = [Tiex(X — &). The polynomial Zx can be computed in O(|K|log” |K|) and

subsequent evaluations of its first two derivatives can also be evaluated on the set {£': i € I}
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with the same complexity. However, to deal with arbitrary values of d; we need more ingenuity.
We will imagine d; to be p(&7) for some polynomial p(X). Moreover, we demand that p(£7) =0
for j ¢ K. We will not compute such a polynomial p, as it has degree O(N), but view it as
an “oracle” which we can hopefully query at the points we need. Then it can be seen that
a; = g;(€) — r;(&%) for rational functions g;(X) and r;(X) defined by:

X)) p(X) —p(&)
Z — 5] ri(X Z — £J (5.10)

je N]\Z JE[N\7

Now, g;(£%) for i € I turns out to be (using the special case above):

p(&) > (€ = &) =di(Zp(&)/Z1(8) /2

jer\{i}

Defining u(X,Y) = (p(X) —p(Y))/(X = Y), we can write r;(£) as

= > u(X, &) —u(X,¢) (5.11)
J€[N]

Observe that (X, X) = p/(X) and so u(X, X) gives the formal derivative of polynomial p(X).
We get 1;(¢) = r(¢) — p/(€') for all i € I, where r(X) = 3"y u(X,&’). Fortunately, r(X)
is simply Nu(X,0) = N(p(X) —p(0))/X, a fact that follows from uni-variate sum-check. The
problem thus reduces to being able to compute derivatives p'(¢%) for i« € I and the value p(0).
Before concluding the proof-sketch, we briefly highlight the structure of the polynomial p(X).
Since p(X) vanishes for p(£%) for i € K, it can we written as the product Zr(X)q(X) where
Z & is the vanishing polynomial of “complementary” roots of unity {¢' : i &€ K} and ¢ is a

low-degree (< K') polynomial. Assuming we can interpolate ¢(X), we can write:
P(€) = Zi(€)d (€) + Zic(€)al€)

In the above expression, we require evaluations of high-degree polynomials Zx (X) and Z(X)
at £, i € I. This is discussed in Lemma 5.3 and other related lemmas in Section 5.2.4, and
motivates the at times tedious algebra there. We will now discuss the detailed proof.

Proof: Now, we present the detailed proof for the computation of a; for all i € I. Thereafter,

we briefly discuss the modifications needed to compute b; for all j € K.
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Computing a;: Recall that for each ¢ € I, we have:

d.
a= Y I (5.12)
§i—¢
JEK\{i}

Also recall that I C K in this case. To compute a;, we first define a polynomial p(X) of degree
at most N — 1 such that p(§) = d; for j € K and p(¢?) = 0 for j € [N]\ K. Then, the
vanishing polynomial of Hiypx divides p(X) and there exists a polynomial ¢(X) of degree at
most |K| — 1 such that:

p(X) = Zg(X) - ¢(X) (5.13)

where Zx(X) = [Ticvp (X — ¢") is the vanishing polynomial of Hjxpx. Now, we introduce

the rational functions:

=Y ;ggwfiel (5.14)
JEINI\{3} —<

aX)= Y ‘ﬁpowiel (5.15)
JEINI\{} —¢

= ¥ X : ) =p(&) ;o (5.16)
JEIN\{i} _5

Note that, by the definition of p(X), f;(£) = a;Vi. Thus, it suffices to compute f;(£") for all
i € 1. Since fi(X) = ¢;(X) — ri(X) for i € I, we have that a; = ¢;(£*) — 7;(£%). Thus, we need
to compute g;(£%) and r;(&) for alli € I C K.

=p(€) >

JE[N]\{4} &= éj
= % (from Lemma 5.1)
(N —1)d;
=

In the above, we used Zy(X) = X~ — 1 and that p(£%) = d;. In other words, g;(£?) for all i can
be obtained in O(|I]) operations. Therefore, it suffices to compute r;(£%) for all i € I efficiently.

To this end, we write 7;(X) as:

X) — J X) — i
() - Zp()()_gj(f)_p()()_gi(f)
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By defining the bivariate polynomial u(X,Y) = (p(X) —p(Y))/(X =Y, we get

r(X) = u(X, &) —u(X,¢)

JE[N]

Defining 7(X) = ¥ u(X, &), we have:
ri(X) = r(X) - u(X,¢)
Substituting X = £' in the above, we have:
ri(€) = (&) —u(g, &) = (&) - P&

where p/(£") = u(€,£%) by the definition of formal derivative. Now, using r(X) = Nu(X,0)

(Lemma 5.2), we have:

X)=N
Finally, substituting X = £ above, we have:
i d; — p(0

Thus, it remains to compute p(0) and p’(£*) efficiently for each i € I.
Computing the polynomial ¢(X): Recall from Equation (5.13) that
p(&)

Q<§ ) = /Z\K(fj)

for all j € K. Furthermore, by Lemma 5.3, we have:

_ Zy(&) _ N/E
Z1(€) ~ Zi(&)

Z(€)

for each 7 € K. Observe that, given the set K, we can compute the polynomial Zg(X)
in O(|K|log®|K|) operations using the fast multiplication, and we can then obtain Z} (X)
in additional O(|K|) operations. Finally, Z}.(£7) can be evaluated for j € K in additional
O(|K|log® | K|) operations. Thus we can efficiently compute ¢(¢7) for all j € K O(|K|log? |K]|)
operations. Since degree of ¢(X) is strictly less than | K|, we can further interpolate to obtain
the polynomial ¢(X) in O(|K|log? |K|) field operations.
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Computing p(0): From Equation (5.13), we have

Additionally, since we have
. ~ Zu(0) -1

750 =70~ Zx(0)

this enables us to compute p(0) since ¢(0) and Zx(0) are just the constant terms of the known
polynomials ¢(X) and Zx(X).
Computing p'(£"): We now show how to compute p'(£%) for each i € I. Using the product

rule for derivatives, we have:

A~ ~

P'(X) = q(X) 25 (X) + ¢ (X) Zk (X)

We have shown how to compute ¢(€7) and Zx(£') in O(|K|log?|K]|) field operations. By
differentiating the polynomial ¢(X) from earlier, we obtain ¢/(X). Then, by fast evaluation, we
get evaluations of ¢/(X) at ¢ for all i € I, again in O(|K|log®|K]|) field operations. So it only
remains to evaluate Z}((S’) for each ¢ € I, which we show next. From the second equation of

Lemma 5.3, we have:

Zis(€)
25 (&)

Zi(€) =) ?’Lé?)u;(é) +

jek\{i} ~ K

1;(€)

Using Lemma 5.4, this becomes:

| LN -
T E)E—8) 28 ()

Zi(€)=Neg' >

JEK\{i

In other words, it suffices to efficiently compute ¢; for all ¢ € I, where

1
"= 2 ZeNe-o)

JeR\{i
To this end, we define the following polynomial:
2X)= Y
Z Z(E)(X = &)

jer\{iy ~ K
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Let {n;(X)}iex be the set of Lagrange polynomials for the set Hx = {£': 7 € K}. Then, since

(X
ZT’;{((X)) = Z}((Eﬂ)l(X o> Pi(X) can be rewritten as:

n; (X
sy IrX
Z n;( /(X =&
X _ ¢
7 Sy
Substituting X = £ in the above, we have:
n; (X X 6’

-y ( e )
JER (i) erK\{}X &)

_ (;(X)/(X =€) (§)
jeKZ\{i} <erK\{i}(X —&M)) (&)
1

= 7@ ]EKZW} (ns(X)/(X =€) (€)

Now, note that for all j # 4, (n;(X)/(X — &) (§") is just the evaluation of the polynomial

0 (X)—n; (€)
X—¢t

n;(X). Thus, we get:

at the point &’. This is just 7;(¢*) by definition of formal derivative of the polynomial
% 1 /(¢
K> jer\(iy

Using that fact that 3, n;(X) =1 (and hence, > ., 1;(X) = 0), we have

S oa(E) = Do) = (e = —ni(&h)

JeRK\{i} JEK

Thus, we get: '
oy = —n;(§")
LZi(E)

At this point, it suffices to efficiently compute n(£%) for i € I. For this, we can use Lemma 5.5,
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with X = Hy = {¢ : j € K} and Zy(X) = Zk(X) as the vanishing polynomial of X, to obtain:

m(E') = Zg%

where F(X) = Z?:g z;(J) X7~ as defined in Lemma 5.5. Hence, it suffices to compute Fx (¢°)
for all i € I, where z,. ..,z are the coefficients of the polynomial Zx(X) computed earlier.

This concludes the proof of computation of a; for i € I.

Modifications for Computing b; for j € K: For computing b;, we proceed as in the
case of a;, with the roles of sets I and K swapped (all of the corresponding lemmas can be
modified accordingly). The only additional technical subtlety arises when we need to compute
;= ®;(&) for all j € K, where the polynomial ®;(X) is defined as:

i (X
%= 3 2
ie\{j}

Now, we consider two cases: j € [ and j € K\ I. We handle the second case first. For each

j € K\ I, we can very easily compute ¢; = ®;(¢7) as
j ﬁi(fj)
P (&) = :
3(5 ) iejz\%j} Z[(fj)
1 J
= 7106 Ezlm(f )

1
Z1(¢9)

This is efficiently computed by evaluating Z;(¢7) for each j € K in O(|K|log® |K|) operations.
Next, we consider the case where j € I. For this, we can again proceed as in the analysis for

computing a; (with the roles of sets I and K swapped) till we need to compute

(&)

Yj = (I)J(gj) = Z}(Sﬂ)

for all j € I. First of all, note that during the prior computation to reach this stage, we would
have already computed Z}(¢7) for all j € K, and thus, for all j € I C K. Next, observe that we
also computed 7/(¢%) for ¢ € I during the computation of a;. This completes the computation
of b; for all j € K, and finishes the proof of lemma 5.9. a
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5.4.2 Amortized Sublinear Batching

We now return to the question of how frequently should we run the offline phase to compute
full parameters. For concrete analysis, let s be the period after which the rebasing takes place;
i.e., after s batches of m operations each, we set the base table T’y to the current table, setting
T = 0. At this point we also compute all encoded quotients for T, using the O(N log N)
algorithm of [58]. Consider 6 < ms as the upper-bound on 4, and distributing the cost of
re-basing, the amortized overhead for the batch of m operations is: O(mslog®(ms) + 218X
F-operations and O(ms + G-operations. Ignoring the logarithmic factors, the cost is
minimized by setting s ~ \/N/—m, resulting in amortized prover overhead of 5(\/@ ). We

note that the above analysis considers the worst case scenario, where each update affects a

Nlog N
)

distinct position in the table. In settings, where frequency of updates is non-uniform across
positions in the table (e.g, in the blockchain example, if bulk of transactions come from small
number of clients), we may be able to defer the offline phase even longer. Same is also true for

settings where updates to the table are infrequent.

5.5 Batching-efficient RAM using Updatable Lookup Ar-

guments

5.5.1 Memory Consistency for RAM

In this section, we briefly review and formalize existing memory-checking techniques to ensure
correctness of RAM operations. The formal definitions for various relations involved in memory

checking will be used to describe polynomial protocol for RAM in Section 5.6.

5.5.2 Correctness of RAM Update

The versatility of the RAM primitive stems from its updatability. While a load operation leaves
the RAM unchanged, the store operation updates the value in the RAM associated with the
referenced index. We model the update via the function Upd; which takes RAM T' € RAMy,,,
operation o = (op,a,v) € O, as inputs and returns an updated RAM T" € RAM;j,,. The
updated RAM T" = Upd, (T, 0) satisfies T' = T if op = 0 while for op = 1 it satisfies T"[a] = v
and T"[z] = T[] for  # a. The central problem in verifiable RAM protocols is to establish
that a sequence of operations o = (0y, . .., 0p,) are correct with respect to the initial RAM state
T and the final RAM state T”. This involves ensuring that all load operations read the value
which is consistent with updates to the RAM as a result of preceding store operations, and that

T’ is the final state. We say that an operation o = (op, a,v) is load-consistent with respect to
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RAM T if v = T'[a] whenever o is a load operation (store operations are vacuously defined to

be load-consistent). We formally define the notion of consistency below:

Definition 5.10 (Consistent Operations) Let n € N and T, T' € RAM;,, for some index
set I. We say that a sequence of operations o = (01,...,0x) € Of over I 1s consistent with
RAM states T, T" if for all i € [k], T; = Updy(T;_1,0;) and operation o; is load-consistent with

respect to T;_;. Here we assume Ty =T and T}, =T’ .

For m,n € N, let LRAMj,,, ,, denote the language consisting of tuples (T, 0, T") with T, T" €
RAM;,, and o € (O,)™ such that o is consistent with T',T". Next, we formalize the folklore

technique of checking correctness of RAM operations using address-ordered transcripts.

5.5.3 Consistency Check via Transcripts

A transcript is time-stamped sequence of operations executed on a RAM. More formally, given
a RAM T = (a,v) € RAMy,,, operation sequence o = (01,...,0,) with o; = (op;, a;,v;) € O,
and RAM T' = (a/,v") € RAMjy,,, the time ordered transcript for the tuple (T',0,T") is given
by the table tr with & = 2n 4+ m rows and four columns tr = (¢, 0p, A, V') defined as follows:
(i)t =1y = (1,...,k), (ii) op = 0™||(0py, .. .,0p,,)||0", (iii) A = al|(ai,...,a,)|la" and (iv)
V = v||(vy,...,0m)|[v". The i* row of the table tr is (t;,0p;, As, Vi) for i € [k]. The first n
records in tr correspond to the contents of T, the next m records correspond to the operations
in o and final n records correspond to contents of T”. The timestamp column ¢ is added to
order operations with the same index. Notationally, we write tr = TimeTr(T, 0,T").

We call a transcript tr = (t,0p, A, V') to be address ordered if A; < A;4q for i € [k — 1]
and t; < t;;1 whenever A; = A;;;. For a transcript tr = (t,0p, A, V) with k records and
a permutation o : [k] — [k], we use o(tr) to denote the transcript (o(t),o(op),c(A),c(V))
obtained by permuting the records of tr according to the permutation o. An address ordered
transcript for tuple (T',0,T") is defined as tr* = o(tr) where tr = TimeTr(T,0,T’) and o is
a permutation such that tr* is address ordered. We denote it by tr* = AddrTr(T,0,T"). We
say that an address ordered transcript tr = (¢,0p, A, V') satisfies load-store correctness if for
all pairs of consecutive records (t;,op;, A;, Vi) and (tit1,0p; 41, Ait1, Viz1) we have Vi =V,
whenever op;,; = 0 (load operation) and A; = A;,4, i.e, a load operation does not change the
value at an index. We formally state the folklore technique for enforcing memory consistency

in our setting.

Lemma 5.10 Let F be a finite field, m,n € N be positive integers and I CF. Then (T,0,T") €
LRAMj .., if and only if the address ordered transcript tr* = AddrTr(T', 0, T") satisfies load-store

correctness.
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The consistency check in Lemma 5.10 can be encoded as an arithmetic circuit of size 5(m +
n), thus yielding an argument of knowledge for the language LRAMjy,, ,, with prover complexity
quasi-linear in m +n. For completeness, we present a self-contained argument of knowledge for

LRAMj ;.m (m = n) based on the “polynomial protocol” framework defined in [64].

5.5.4 Improved Batching-Efficient RAM

We now detail the steps required to realize batching efficient RAM outlined in the technical
overview. We first recall the techniques presented in Section 5.3.2 to obtain a committed index
lookup argument. Here, we leverage the random linear combination technique to simultaneously
check two equations at correlated points of evaluation. We restate the Lemma 5.7 here for

reference.

Lemma 5.11 (Restated) Let t € F" and let a,v € F™ for some positive integers m,n. Let
I, denote the vector (1,...,n). Then for v < F, (v+~ya) 2 (t + vI,) implies v = t[a]
except with probability mn/|F|.

Thereafter, we invoke Lemma 5.7 to construct a committed index lookup argument (Fig-
ure 5.2) using a committed sub-vector argument (Pg,, Vs, ). We now restate the Lemma 5.8

here.

Lemma 5.12 (Restated) Assuming that (P, Vs,) is an argument of knowledge for the rela-

tion RyLYS, in the AGM, the interactive protocol in Figure 5.2 is an argument of knowledge

for the relation R in the AGM.

srs,N,m

5.5.5 Almost Identical RAM States

For a vector a € [N]™, let uniq(a) = {a; : i € [m]} denote the subset of unique values in a.
We call two RAM states T, T" € FY to be a-identical if T'[i] = T'[i] for all i ¢ unig(a). As
before, let T'(X),T*(X) and a(X) be polynomials encoding the vectors T',T" (over H) and a
(over V). Let ¢,y and ¢, be the commitments to vectors T, T' and a respectively in the
group G;. The polynomial protocol to prove that T, T' € FY and a € F™ are a-identical
requires proving the relation Z;(X)(T(X)—T*(X)) = 0 over the set Zy where I = uniq(a) and
Z1(X) =[], ;(X —&') is the vanishing polynomial for the set H; = {¢" : i € I'}. To proceed, the
honest prover commits to polynomial Z;(X) and proves (i) Z;(X)-(T(X)—T*(X)) = 0 mod Zy
and (ii) the zeroes of Z;(X) form a subset of zeroes of H;(X) as defined. Together, the two
conditions imply that T(¢") = T*(¢%) for i & uniq(a). To prove the first relation, the prover
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computes the polynomial D(X) as below:

Substituting A; = T(§") = T*(§"), mi(X) = Zu(X)/(Z(£)(X =€), we get

AV Zi(X N Z(E
PO =2z <X<—€)) 2 <s(§>) i G40

In the above, the summation only runs over indices in I, as A; = 0 for ¢ € I. In the final
equality, we use k;(X) = Z(X)/(Z;(£)(X — &) for i € I which we recognize as the Lagrange
basis polynomials for the set {£*: i € I'}. Thus, Equation (5.17) implies that D(X) is at most
degree |I| — 1 polynomial, with D(&%) = A, Z(€)/Z4(€") for @ € I. The prover can therefore
interpolate D(X) (in power basis) in O(|I|log®|I|) F-operations and compute [D(X)], in O(|I|)
Gq-operations. The prover sends the commitment [D(X)]; to the verifier. Finally, the verifier
can check the identity Z;(X) - (T'(X) — T*(X)) = D(X) - Zu(X) by a pairing check. For this,
since the tables are committed in Gy, prover will need to send [Z;(X)]s.

Next, the prover needs to show that zeroes of Z; are indeed in the set H; = {£':i € [} =
{¢* : i € [m]}. Clearly, it suffices to show that Z;(X) divides the polynomial [],,, (X
£%). To obtain a polynomial protocol, the prover commits to an auxiliary polynomial h(X) =
> &% (X) which interpolates the vector h = (£, ...,£%). The correctness of h polynomial
can be established by showing that the interpolated vector h satisfies committed index lookup
relation h = Teyxy[a] where Tey, = (€1,...,&N). Moreover, we notice that the polynomial
interpolating the table Ty, is particularly simple, i.e, Teyp(X) = X, and thus the setup need
not be augmented with table-specific parameters for T,. Finally, it remains to show that
Zi(X) divides K(X) = [[%,(X — h(v")). To do so, the prover commits to K(X) and the
quotient polynomial ¢(X) = K(X)/Z;(X). The verifier checks the polynomial identities at
a, ie K(a) = g¢(a)Z;(a) and K(a) = [[%,(e = h(v")). The former is easily accomplished
using evaluation proofs for K,q and Z; at a. For checking the latter, the prover commits to

another polynomial u(X) satisfying u(v*) = H;;ll ((a—=h(7))/(1+ B11 (7)) for i € [m] where
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B = K(a) — 1. The verifier ensures the correctness of u(X) by checking:

71(X)(u(X) = 1) = 0 mod Zy

(5.18)
uw(vX)(1+ (X)) — u(X) (a0 — h(X)) = 0 mod Zy.

We prove that the above constraints imply that K(a) = [];c;,,(a— h(v")) in Lemma 5.13. Note
that in this protocol we require commitment to the polynomial Z; in both G; and G,, and thus
another pairing check is required to show that the Z;(X) committed in G; is the same as the
Z1(X) committed in Gy (used for the real pairing check). The complete protocol for checking
that RAMs T and T" are identical outside indices in a is given in Figure 5.3.

Lemma 5.13 There exists a polynomial u(X) € F[X] satisfying the identities in Equation (5.18)
if and only if K(a) =1+ B = [[;cpm(a— h(v%)).

Proof: Assume that the identitites hold for some polynomial u(.X). The first identity implies
u(v) = 1. From the second identity, we conclude that for all i € [m], we have u(v'™!) =

uw(v?) - (o — h(v)) /(1 + Bri(v'))), and thus:

1=u(@™ ") /uw) =[] (loik_ﬁ—];((yv))) '

i€[m]

We observe that the product of denominators in the above equation is simply 1 + 3 as 71 (v")
is 0 for all i # 1, and thus 1+ 8 = [[\2, (v — h(v")). In the other direction, it is easy to check
that u(X) as defined for an honest prover, satisfies the identities in Equation 5.18. O

5.5.6 Batching-Efficient RAM: Combined Protocol

We put the entire protocol together now. Let I denote the set of indices {1,..., N}, and Iy
denote the vector (1,...,N). We formally define the committed RAM relation for which we

present an argument of knowledge in this section.

Definition 5.11 We define the committed RAM relation RZTy .. to consist of tuples

srs,N,m

(e, &py Copy Cay Cw), (T, T, 0p, @, w)) such that:

- (T,0,T") € LRAMy y,,, for 0 = (01,...,0,) where we have o; = (op;,a;,w;) € O, for all

i € [m] (here we implicitly view vectors T and T' as RAMs with index column Iy ).

— ¢p = KZG.Commit(srs, T'(X)), ¢ = KZG.Commit(srs, T*(X)), cop = KZG.Commit(srs, op(X)),
co = KZG.Commit(srs, a(X)), ¢, = KZG.Commit(srs, w(X)) where polynomials T(X), T*(X
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Common Input: srs, cr, ¢r, c,.
Prover’s Input: Vectors T,T" € FY a € F™. Polynomials T'(X),T*(X) and a(X)
encoding T, T' and a respectively.

Round 1: Prover commits to auxiliary polynomials

1. P computes the following:

- I =uniq(a), Zi(X) = [[e/(X = &).

D(X) = Z;(X)(T(X) = T*(X))/ Zu(X).

h(X) such that h(v?) = £% for i € [m].

- K(X) =[[L,(X = h(v")), a(X) = K(X)/Z1(X).

- ¢ = [Z1(X)]y, & = [Z1(X)]y, ca = [D(X)]y, en = [MX)]y, ¢ = [K(X)]y, ¢ = [¢(X)];.

2. P sends ¢, c,, ¢4, Cp, g, cq t0 V.
3. V samples a < F and sends «a to P.
Round 2: Prover commits to polynomial u(X).

1. Psets 8 = K(a)—1 and interpolates u(X) on V such that u(v*) = H;;ll ((a=h(?))/(1+
Bri(17))) for i € [m].

2. P computes ¢, = [u(X)], and sends ¢, to V.

3. V samples r < F and sends r to P.

Round 3: Prover batches checks in Eq (5.18).

1. P computes Q(X) = (uw(vX)(1+ 71 (X)) —u(X)(a—h(X)) +r7(X)(w(X)—1))/Zy(X)
2. P sends c¢g = [Q(X)], to V.

3. V samples s <—g F and sends s to P.

Round 4: Prover sends evaluations.

1. P computes and sends the following evaluations to V: (2), = Z;(a), (¢)a = q(a),

(K)o = K(a), (@)s = Q(s), (u)s = u(s), (u)vs = u(vs), and (h)s = h(s).

2. V samples r,,rs < F and sends 7,7, to P.

Figure 5.3: Argument for showing RAMs are identical outside small set of indices.
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Round 5: Prover batches evaluation proofs.
1. P computes the following:
- pa(X) = Z1(X) + roq(X) + 2 K(X).
- ps(X) = Q(X) + rou(X) + r2h(X).
- 11, = KZG.Prove(srs, p,, @).
- Il = KZG.Prove(srs, ps, s), I1,s = KZG.Prove(srs, u, vs).
2. P sends I1,,, 11, IT,, to V.
Round 6: Verifier checks identities.

1. V computes [pa], = ¢; + TaCq + 72, [p2]; = cg + rsCy + 12k

2. 'V checks the following:

- (2o {@a = (K)a-

(u)vs(1 4 B71(s)) = (u)s(a = (h)s) +r71(s)((u)s — 1) = (Q)sZv(s).
- eler — dp, ) = e(cq, [Zu(X))],)-
e([1]y,ch) = eles, [1],).
KZG.Verify(srs , [pal;s (2)a + Ta(@)a + 2 (K)a, o, I1,).
KZG.Verify(srs, [p.];, (Q)s + s(u)s + r2(K)s, s, IL;).
KZG.Verify(srs, ¢y, (U)ys, v, 1,5).

u

Round 7: Check correctness of polynomial h(X).

1. P and V execute committed index lookup argument (Fig 5.2) to check ([X],,cq,cn) €

lookup
9Q557Aﬂrn'

2. 'V accepts if the above argument accepts and all the preceding checks succeed.

Figure 5.3: Argument for showing RAMs are identical outside small set of indices.
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encode vectors T, T" over H, while op(X), a(X) and w(X) encode vectors op = (opy, . .., 0p,,),

a and w overV.

As outlined in the blueprint, the prover first commits to “smaller” RAMs S = (a,v) and
S’ = (a,v’) where v = T'[a] and v' = T'[a]. The prover commits to S and S’ by sending
commitments ¢, and ¢, to v and v’. Then the prover and verifier execute the committed index
lookup protocol to prove:

(Cr,CarCy) € ROKP A (e, ) € RIOOKIP (5.19)

srs,N,m srs,N,m

: : look :
The verifier uses a random challenge x < F to reduce two instances of R\ to one instance

lookup

(cr + XCp, Cay Co + XC,) € RoeNhe- Then, we show that RAMs T and T" are a-identical using
the protocol in Figure 5.3, described in Section 5.5.5. All that remains is to prove is that
the operation sequence o is consistent with small RAMs S and S’. We check this using the
argument in Section 5.6, which is obtained by compiling the polynomial protocol for RAM in
Section 5.7 into an argument of knowledge in the AGM. Specifically, the prover and the verifier

set cs = (Cay Cy), Cg = (Cay €,

') and ¢, = (Cop, Ca, Cw), and execute the argument of knowledge for

showing (cg, ¢,, ) € REZAM (see Definition 5.12). We provide the complete protocol listing in
Figure 5.4. The protocol in Figure 5.4 assumes pre-computed parameters for the tables T and
T'. The maintenance of these pre-computed parameters in the presence of updates is detailed

in Section 5.4.

Theorem 5.4 The protocol in Figure 5.4 is a succinct argument of knowledge for the relation
Reem - in the AGM, under the Q-DLOG assumption for the bilinear group (F, Gy, Go, Gr, e, g1, go).

srs,N,m

5.6 Argument for RAM From Polynomial Protocols

In this section, we give a self-contained argument of knowledge for membership in the language
LRAMy ,,, ,,, introduced in Section 5.5.1. We first consider the polynomial encoding of different
RAM artefacts.

5.6.1 Polynomial Encoding

Let & = 3m and let w be a primitive £ root of unity in IF. Let v = w?, and thus v is a primitive
m' root of unity in F (We assume, these roots exist in F). We recall V as the subgroup
consisting of m roots of unity with associated Lagrange basis polynomials {7;(X)}ipm), while

we additionally introduce the set K of k™ roots of unity with {\;(X)},ep as the associated
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Setup (1*, N,m, T, T"):

~ srs = ({7, g, {17715} ) for 7 g F

— Both P and 'V precomputes [Zy(X)]; , [Zu(X)],

— P precomputes the following:
= Wi =1Zu(X)/(X = &)y, i € [N]
— P precomputes the following (with respect to (T',T")):

- Wi =[(T(X) = T(£)/(X = &)y, i € [N],
= W =[(T*(X) = T*(€))/(X — €)],, i € [N].

Common Input: srs, cr, ¢, Cop, Ca, € € Gr.
Prover’s Input: Vectors T,T", op, a, w and their encoding polynomials.

Round 1: Commit to sub RAMs.

1. P computes v = T[a], v/ = T'[a] and the encoding polynomials v(X) and v*(X).
2. P computes ¢, = [v(X)],, ¢, = [v*(X)],, and sends ¢,, ¢, to V.

3. V samples xy <—r F and sends x to P.

Round 2: Execute committed index lookup.

1. P and V compute ér = er + X, & = ¢y + XC,.

2. P computes T =T + \T', © = v + xv'.

3. P and V execute committed index lookup argument in Fig 5.2, with (¢r, ¢4, ¢,) as the
common input and (7', a, ) as prover’s input.

Round 3: Prove RAMs are a-identical.

1. P and V execute argument in Fig 5.3 with common input (e¢r, ¢, ¢,) and prover’s input
as (T, T, a).

Round 4: Prove sub RAMs are memory-consistent with update.

1. P and V execute argument in Fig 5.9 to check (cg, ¢o, ¢s) € RgeMM with cg = (ca, ¢y),
cs = (cq,¢,) and ¢, = (Cop, Cas Cu)-

2. 'V accepts if all sub-protocols accept.

Figure 5.4: Our batching-efficient RAM protocol
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Lagrange polynomials.
K={w.. ", V={y.. . v"} (5.20)

As before, we define the encoding of vectors in f € F* as Encode, (f) = Dicp Jidi(X). We
canonically extend the encoding of vectors to encode RAM, operations and transcripts by
encoding their component vectors. Thus, for a RAM T = (a,v) € RAM;,,, we define its
encoding T = (a(X),v(X)) where a(X),v(X) € Fon[X] encode vectors a,v respectively.
Given an operation sequence 0 = (o1, ... , 0n) with 0; = (0p;, @;, T;) we encode 0 as O = (op(X)
,a(X) ,0(X)) where op(X) encodes the vector op = (0py,...,0p,,), a(X) encodes the vector
(@1,...,a,) and v(X )encodes the vector (v1,...,0,,). Finally, a transcript tr = (¢, op, A, V)
for tuples (T',0,T") where T', T' are RAMs of size m, and o is an operation sequence of size m
is encoded as tr = (£(X), op(X), A(X), V(X)) where the polynomials ¢(X), op(X),V(X) and
A(X) encode the respective vectors in F* (See Section 5.5.1).

5.6.2 Relations over Polynomial Encodings

In this section, we describe polynomial checks for two important relations we need in subsequent
sections, viz, (i) checking concatenation of vectors and (ii) checking monotonicity and load-store
consistency of a transcript. The lemma below specifies the polynomial identities for verifying

that vector v € F* is concatenation of vectors a, b, ¢ in F™.

Lemma 5.14 Let a,b,c € F™ and v € F* be vectors encoded by polynomials a(X),b(X), c(X)
and v(X) respectively. Then,

a(X?) —v(X)=0 mod Z(X) (A1)
b(X?) —v(W"X)=0 mod Z(X) (A2)
c(X?) —v(w™X) =0 mod Z(X) (A3)

for Z(X) =T (X — ") if and only if v = al|bl|c.

Proof: Assume that the polynomial identities hold. Substituting X = w' for ¢ € [m] in above
equations implies for i € [m]: a; = v; (Eq (Al)), b; = vy (Eq (A2)) and ¢; = von4i (Eq (A3)),
which together imply v = al|b||c. Converse follows by observing that v = al|b||c implies that
v(X) = a(X?), v(WwmX) = b(X3) and v(w?™X) = ¢(X?) holds for all X = w',i € [m]. Thus,
the equalities hold modulo the polynomial Z(X) as defined above. O

Next, we specify polynomial checks on the encoding of a transcript to ensure it satis-

fies address-ordering and load-store consistency. Let N be an upper bound on the values
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of A, i.e, the index set I C [N]. Let tr = (t,op, A, V) be a transcript encoded as tr =
(t(X),op(X), A(X),V(X)). Recall that we need to check two conditions on tr, viz, (i) mono-
tonicity: the transcript is sorted by address and timestamp respectively, i.e, A; < A;, 4 for all
i < k and t; < t;y1 whenever A; = A; 4, (ii) load-store consistency: whenever op,,; = 0 and
A; = Aipq, we have V; = V1. To do so, we exhibit disjoint sets I, [s with I, W I, = [k — 1]
such that: (i) for all i € I}, A; < A;q1, (ii) for all i € I, (A; = Aip1) A (8 < tip1) and (iil)
for all i € Iy, (op; = 1) V (V; = Vi;1). Note that the conditions on the sets I; and I, ensures
monotonicity. Moreover, it can be seen that load-store consistency requirements are satisfied
for all i € I} (as A; # A;41). Similarly, load-store consistency also holds for all i € I, Tt
remains to exhibit the sets and show that they satisfy the above invariants using polynomials,

as in the following lemma:

Lemma 5.15 Let tr be a polynomial encoding of transcript tr of size k, given by polynomials
t(X), op(X), A(X) and V(X), with index set [N]. Then assuming kN < |F|, tr is address
ordered and satisfies load-store consistency if and only if there exist polynomials Zy, Zo, 1,04
such that the following hold:

A(wX) — A(X) — 64(X) = 0 mod Z,(X)
(

(C1)

AlwX) — A(X) =0 mod Z3(X) (C2)
twX) — ¢(X) — 0r(X) = 0 mod Z>(X) (C3)
(op(X) = D(V(wX) = V(X)) =0 mod Z(X) (C4)
Z1(X) - Zo(X) - (X — 1) = Zg(X) (C5)

1 <AW)<N (C6)
1 <t(w) <N, 1< (W) <N, 1<5p(w') <N fori € [k] (CT7)

Proof:  Suppose there exist polynomials Z;(X), Z2(X),67(X) and 04(X) satisfying above
identities. From Equation (C5), we conclude that their exist sets Iy, Iy with I} W Iy = [k — 1]
such that Z,(X), b € {1,2} is the vanishing polynomial of the set {w’: i € I,}. We now note
that the following are true for ¢ € I:

— A(w"™) — A(w") = da(w'). Since 1 < d4(w') < N, this ensures A; < A;y; for the vector
A encoded by A(X). We note that kN < |F| implies there is no overflow modulo the field

characteristic.

Similarly, it can be seen that for i € I, we must have (i) 4, = A;11 At < ;41 and (ii)
op; =1V V; = V1. Together these imply that the encoded transcript is address-ordered. O
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Protocols facilitating the checks mentioned in Lemma 5.14 and Lemma 5.15 are presented

in Figure 5.5 and 5.6 respectively.

5.7 Succinct Argument for Verifiable RAM

The polynomial encodings in the previous section can be used to construct a polynomial pro-
tocol for checking the membership in the language LRAMy,, ,, for m € N. The polynomial
protocol can be subsequently compiled into a succinct argument using an extractable poly-
nomial commitment scheme. In this section, we use KZG polynomial commitment scheme to
obtain a succinct argument for checking membership in LRAMj,, ., in the Algebraic Group
Model (AGM). At a high level, to prove (T,0,T') € LRAMj,, ., the prover constructs time
ordered transcript tr and then permutes it to obtain the address sorted transcript tr*. It then

sends the polynomial encodings of T, 0,T",tr and tr* to the verifier, who verifies that:

1. The time ordered transcript is correctly constructed, i.e, tr = TimeTr(T,0,T"). This is

achieved using the protocol in Figure 5.7.

2. The transcript tr* is a permutation of the transcript tr, i.e, tr* = o(tr) for some permutation

o of [k]. The protocol for this check appears in Figure 5.8.

3. The transcript tr* is address ordered and satisfies load-store consistency. We describe the

protocol to check this property of transcripts in Figure 5.6.

We check above conditions over commitments. Let srs denote a KZG setup over a bilinear
group, with prime order groups G, Gy and Gr. We canonically commit to RAM, operation
sequences and transcripts by committing to their polynomial encodings. Commitment of an

encoding represented as tuple of polynomials is simply the tuple consisting of commitments of

:RLRAM

ssm Delow, and present a succinct

the component polynomials. We now define the relation

argument for the same.

Definition 5.12 Let R consist of tuples ((cr, co, ), (T, 0,T")) where

cr = KZG.Commit(srs, T), ¢, = KZG.Commit(sts, T"), ¢, = KZG.Commit(srs, O) commit to T
T' and o with (T',0,T') € LRAMy ;,, ..

In the above definition we have ¢ = (cq, ¢,) where ¢, and ¢, are KZG commitments to poly-
nomials a(X) and v(X) in the encoding 7 = (a(X),v(X)). Similarly we parse ¢ = (c,,c,)
and ¢, = (Cop, Ca, Cy) (see Section 5.6.1 for polynomial encodings). For proving relation 5.12,
prover’s input consists of initial RAM state T' = (a,v), final RAM state T" = (a’,v’), opera-

tion sequence o = (0y, ..., 0p,) with o; = (op;, a;, v;), time-ordered transcript tr = (¢, 0p, A, V)
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Common Input: Commitments c,, ¢, ¢, ¢,, and [Z]; (to the polynomial Z(X)

H?Ll(X —w')).

Prover’s Input: Vectors a,b,c € F™ and v € F*.
1. V samples v <—g F, and sends ~ to P.
2. P computes the following:

- B(X) = a(X) +b(X) + 72e(X).
- QX) = (MX?) = v(X) = y(w"X) = y*v(wX))/Z(X).

3. P computes and sends the commitment [Q)], = [Q(X)], to V.
4. V samples s < F, and sends s to P.

5. P computes and sends the followmg evaluations to V: (v
e =

(V)oms = U<w2m5)7 (h)ss = h(s )a (Q)s = Q(s) and (Z

6. V samples r < F and sends r to P.

)s
Z(s).

7. P computes the following KZG proofs:

- II, = KZG.Prove(srs, v, (s,w™s, w?™s)).

- IIj, = KZG.Prove(srs, h, s).

- Iy = KZG.Prove(srs, f, s) where f(X) = Z(X) +rQ(X).
8. P sends II,, II;, and II; to V.

9. V computes commitments [h], and [f],.

10. V checks:

- KZG.Verify(srs, [v], , €y, P, II,)  where p, = (s,w™s,w?™s)
((v)s, (V)wms, (V)wzms).

- KZG.Verify(srs, [h], , (h) s, s, 11}).

- KZG.Verify(srs, [f], . (Z)s + 17(Q)s, s, I1§).

Qs (Z)s = (h)ss — (V)s = V(V)ums = V¥ (V)u2ms.

11. 'V outputs accept if all the above checks succeed, else it outputs reject.

®This can be done locally by leveraging the linearity of the operation

€y

= 0(s), (V)wms = v(W"s),

Figure 5.5: Check concatenation over committed vectors.
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Common Input: Commitments ¢, ¢y, ca and cy to t,0p, A and V constituting the
transcript tr.

Prover’s Input: tr = (t,op,A, V) and its polynomial encoding tr =
(LX), 0p(X), A(X), V(X))

1. Prover determines sets I, I as described in Section 5.6.2.
2. Prover computes polynomials Z;(X), Z2(X), dr(X), d4(X).
3. P sends [Z4(X)],, [Z(X)],, [6r(X)],, [B4(X)]; to V.

4. 'V samples v < F, and sends v to P.

5. P computes the following polynomials:

- Q1(X) = (A(wX) = A(X) = 04(X))/Z:(X).
- Q2(X) = [(A(wX) = A(X)) +7(t(wX) = (X)) = 07(X)) +7* (op(X) = )(V(wX) —
V(X)) Z2(X)

6. P sends commitments [Q1(X)];, [Q2(X)], to V.
7. V sends s < FF, and sends s to P.

8. P computes and sends the following evaluations to V: (A)s = A(s), (
(04)s = 0a(s), (1)s = t(s), (t)ws = t(ws), (or)s = 0r(s), (op)s = op(s), (V)s = V(s),
(V)ws = V(ws), (Q1)s = Q1(8), (Qa)s = Qa(s), (Z1)s = Z1(5), (Z2)s = Za(s).

9. V checks the following:

- <Q1>s < > (< > <A>s - <5A>s)
- (Q2)s(Z2)s = ({(A)us— (A)s) +7({B)ws — () s — (07)s) +7*((0p)s — ) ({V)uos — (V)s)-
- <Zl> <Z2> S — 1.

10. 'V samples rq, 19 < F and sends 71,7y to P.

11. P computes the following:

- D (X) = AX) + mt(X) + 2V (X).

D, (X) = A(X) +7r904(X) +7r3t(X) + 7307 (X) +r50p(X) +r3V(X) +75Q1(X) +
r3Qa(x) + 157, (X) + 15 75(X).

- I, = KZG.Prove(srs, @,s(X),ws).
- 11y = KZG.Prove(srs, ®4(X), s).

12. P sends Il,,, II, to V.

Figure 5.6: Check that transcript is address ordered and load-store consistent.
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14. 'V computes the following:

- [q)ws(X)]l = CA -+ T1Ct + T%CV.
[

O (X)]1 = ca+ r2[0a(X)]1 + ric, + r3[o7(X)]1 + rico, + ey + rS[Q1(X)]1 +
r5[Qa(X)]1 + r3[Z1(X)|1 + r3[Za(X).

- sz - <A>ws + 7 <t>ws + T%<v>ws-

Vi = (A)s +1r2(0a)s + T%<t>s + T§<5T>s + T§<Op>s + T§<V>s + TS<Q1>5 + TZ<Q2>S +
r§<Zl>s + T3<Z2>5.

15. 'V checks the following:

- KZG.Verify(srs, [Puys); , Vivs, ws, ).
- KZG.Verify(srs, [®4], , Vs, s, 15).
16. P and V invoke sub-vector arguments (Py,, Vs,) (eg. [56]) to prove that (srs,cq,cr),
(srs, i, cr), (srs, [64(X)],,cr) and (srs, [67(X)], , cr) are in REPYe

srs,N,m"

17. 'V outputs accept if all checks succeed and the sub-vector arguments outputs accept.
Otherwise it outputs reject.

Figure 5.6: Check that transcript is address ordered and load-store consistent.
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Component Protocol Prover Verifier Communication
p Complexity | Complexity Complexity
Concatenation : O(mlogm)F
of transcripts Fig 5.7 O(m) G, 2P 4Gy, 6F
Permutation : O(mlogm)F
of transcripts Fig 5.8 O(m) G, 2P 4Gy, 5F
Memory consistency
& : O(mlogm)F
Address ordering Fig 5.6 O(m) G, 6P 20G4,19F
of transcripts
Polynomial Protocol : O(mlogm)F
for RAM g 65 O(m) G, P 36G,, 30F

Table 5.2: Efficiency parameters for components of polynomial protocol for RAM. Here m
denotes both the size of the RAM and number of operations (the special case we consider). P
denotes a pairing evaluation, while G; G, and F denote the groups and the scalar field of the
bilinear group used for instantiating the protocol.
and address-ordered transcript tr* = (t*, op*, A*, V") obtained from tr using a permutation
o : [k] — [k]. Verifier’s input consists of the commitments cr, ¢, and ¢ as described above.

The prover starts the protocol by sending commitments ¢, and ¢}, to the transcripts tr and tr*
respectively. To show that tr is correctly formed, the prover needs to prove the concatenations:
(i) op = 0™||(opy, - - -, 0p,,)||0™, (i) A = al|(ay,...,an)||a” and (iii)) V' = vl|(v1,...,0m)||v".
Note that the time-stamp column ¢ is implicitly assumed to be (1,..., k). The verifier checks
the concatenations using Lemma 5.14. It uses a random challenge 8 to reduce the three con-
catenations to one concatenation, and uses another challenge v to reduce the three polynomial
checks in Lemma 5.14 to a single check. The complete polynomial protocol is detailed in Figure
5.7.

Next, we show a polynomial protocol for proving that the transcript tr* is a permutation of

the transcript tr. We first recall the permutation argument for vectors from [62].

Lemma 5.16 (Permutation Check [62]) Let f(X),g(X) be polynomials in F[ X |. Then,
the vectors f,g € F* encoded by the polynomials are permutations of each other if and only
if with overwhelming probability over the choice of a <—r F, there exists a polynomial z(X)

satisfying the polynomial constraints:

M (X)(2(X) = 1) = 0 mod Z(X) (B1)
(a — g(X))z(wX) = (= f(X))2(X) mod Zx(X) (B2)

The polynomial protocol in Figure 5.8 essentially invokes the above argument on the random
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Common Input: Commitments c¢r = (¢4, ¢), ¢o = (Cop, Ca, Cv), ¢ = (¢, ¢,) and ¢y =
(¢t, Cops Caycy) to T,0, T" and tr (which is supposed to be the time ordered transcript)
respectively. Commitment [Z(X)], to the polynomial Z(X) = [\~ (X — w").

Prover’s Input: tr, T, T’ o and their polynomial encodings, Z(X).

—_

.V samples §,v <—g F and sends (3,7 to P.

[\

. P computes the following:

1(X) = a(X) + Bu(X), Go(X) = a(X) + po(X) + f2op(X)
3(X) = a*(X) + v(X), G(X) = A(X) + BV(X) + B2op(X)
(X) = G1(X) +7G2(X) +*Gs(X)

(X) = [(H(X?) = G(X) = 1G(w"X) = ¥*G(w*™X))]/Z(X)

Q

Q

=

O

3. P sends commitment [@Q], of Q(X) to V.
4. V samples s < F and sends s to P.

5. P computes and send the following evaluations to V: (G), = G(s), (G)yms = G(w™s),
(Guems = G(w*™s), (H)p = H(s%), (Q)s = Q(s) and (Z), = Z(s).

6. V samples r < F and sends r to P.
7. P computes and sends the following KZG proofs:
— I = KZG.Prove(srs, G(X), (s, w™s,w?™s)).
— Iy = KZG.Prove(srs, H(X), s*).
— ITp = KZG.Prove(srs, F(X), s) where FI(X) = Z(X) + rQ(X).
8. V computes [G(X)],,[H(X)], and [F(X)],.
9. 'V checks the following:
— KZG.Verify(srs, [G], , ((G)s, (G)uwms, (G)2ms), (5, w™s, w?™s), I1g).
— KZG.Verify(srs, [H], , (H) s, s, I1y).
— KZG.Verify(srs, [F],,(Z)s + r(Q)s, s, 11F).
B <Q>s ' <Z>3 = <H>83 - <G>S - 7<G>wms - 72<G>w2ms.

10. 'V outputs accept if all the above checks succeeds, otherwise it outputs reject.

®This can be done locally by leveraging the linearlity of the operation

Figure 5.7: Check the correctness of time-ordered transcript.
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linear combination of the columns of the respective transcripts.

Common Input: Commitments ¢y = (¢, Cop, ca,cv) and ¢, = (¢}, ¢, €4, ¢;r) of tran-
scripts tr and tr* respectively.

Prover’s Input: Transcripts tr, tr* and their polynomial encodings, permutation ¢ such
that tr* = o(tr).

1 V samples «, B, x +r I and sends «, 3, x to P.
2 P computes the following:
- f(X) = 1(X) + Bop(X) + B2A(X) + BV (X).
- 9(X) = £7(X) + Pop™(X) + F2A7(X) + BV (X).
3 P computes polynomials z(X), ¢(X) as follows:
- Interpolate polynomial z(X) of degree k—1 such that z(w) = 1 andz(w*"!) = Hézl
flw))/(a—g(w?)) for 1 <i<k-—1.
- ¢(X) = ((a = g(X))z(wX) — (o = f(X))2(X) + x M (X)(2(X) — 1)) /Zx(X).

4 P computes commitments [2(X)]; and [¢(X)], to polynomials z(X') and ¢(X') respectively,
and sends [2(X)],, [¢(X)], to V.

(=

5 V computes commitments [f]i, [g]:. *

6 'V checks that ¢(X)Zg(X) = (a—g(X))z(wX) — (a— f(X)2(X) + x M (X)(2(X) —1) by
requesting evaluations and KZG proofs of polynomials f, g, q, 2 at a random point, say s
and evaluation and KZG proof of z at ws.

7 'V outputs accept if all the checks succeed, else it outputs reject.

®This can be done locally by leveraging the linearlity of the operation

Figure 5.8: Check that transcripts are permutations of each other.

Finally, we see that Lemma 5.15 implies a polynomial protocol to check that the tran-
script tr* is address ordered and satisfies load-store consistency, which essentially involves the
prover identifying sets Iy, [s as described in Section 5.6.2 and sending auxiliary polynomials
Z1(X), Z2(X),0%(X) and 65.(X) to the verifier. The verifier then checks the identities (C1)-
(C6) in Lemma 5.15. The range checks in (C7) can be checked using polynomial protocols in

sub-vector lookup arguments such as [98, 56, 43, 113]. The protocol (compiled using KZG

LRAM

srsm Which com-

commitments in AGM) can be found in Figure 5.6. The overall protocol for R

bines invokes protocols in Figures 5.7,5.8 and 5.6 as sub-protocols is presented in Figure 5.9.
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Common Input: Commitments ¢p = (¢,, ), Co = (Cop, Ca, Cv), & = (¢, C).
Prover’s Input: T, T’, o and their polynomial encodings.

1. P computes the following:

— tr (time ordered transcript corresponding to T', 0,T"), its polynomial encoding, and
its commitment ¢y = (¢, Cop, Ca, Cv ).

- Z(X) =TI~ (X — w') and its commitment [Z(X)];.
2. P sends ¢y = (¢, Cop, €a, cy) and [Z(X)]; to V.
3. P and V run the protocol for checking correctness of time ordered transcript (Figure 5.7).

4. P computes the address ordered transcript tr* (along with its polynomial encoding) and
the permutation ¢ from the time ordered transcript tr, such that tr* = o(tr).

5. P computes the commitment c;, = (¢}, c;,, ci, ¢y) of tr* and sends cj,.

6. P and V run the protocol for checking that the two transcripts are permutations of each
other (Figure 5.8).

7. P and V run the protocol for checking the constraints given in Lemma 5.15 (Figure 5.6.)

8. V outputs accept if all the three sub-protocols lead to accept, else it outputs reject.

:RLRAM

srs,m

Figure 5.9: Overall protocol for the relation

Efficiency. We provide a break-up of costs incurred by different components involved in
construction of RAM based on memory-checking techniques in Table 5.2. To reduce pairing
checks we use standard technique of batching pairing checks involving common generators.
In addition, to reduce communication, instead of naively invoking four instances of sub-vector
argument in Step 15 of the protocol in Figure 5.6, we concatenate the four vectors using a variant
of protocol for concatenation of vectors in Figure 5.5, and then use the sub-vector argument
to show that the concatenated vector is a sub-vector of the vector (1,...,N). For CQ [50]
based instantiation, this reduces the total communication of this check from 4 x (8G; + 3F) to
(4G; + 6F) + (8Gy + 3F), a saving of ~ 20G;. The reported overheads in Table 5.2 take into

account such optimizations.
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Chapter 6
Conclusion

This thesis presents advancements in the efficiency of some theoretical primitives in the realm
of zero-knowledge proofs (ZKP) and explores some of their applications in real-life scenarios.
The dimensions of efficiency in the context of ZKPs consist of proof size, round complexity,

verification complexity and prover complexity.

Succinct Verification. To start with, we discussed the well-understood theoretical primitive
of sigma protocols in the literature of ZKPs which has attractive real-world applications (eg.
blockchain). Sigma protocols are 3-round public-coin proof of knowledge protocols that have
linear proof size, verification complexity, and prover complexity. Attema and Cramer [8], by
casting Bulletproofs [36] in the framework of sigma protocols, provided compressed sigma pro-
tocols with logarithmic proof size, but still incur linear verification. They also incur logarithmic
round complexity - which is not prohibitive since these protocols are public-coin and can be
made non-interactive in the Random Oracle Model by using Fiat-Shamir transformation [59].

To ensure efficient verification, we constructed a compressed sigma protocol (CSP) that
has logarithmic proof size and logarithmic verification complexity by moving from transparent
setup to updatable setup, which only requires one honest update during the setup phase to
provide security guarantees against malicious prover strategies. We first constructed CSP for
inner-product argument under discrete log assumption, using which we then provided CSP for
arithmetic circuit satisfiability with logarithmic proof size and logarithmic verification complex-
ity. Additionally, we constructed CSP for opening homomorphism in the designated verifier

setting with logarithmic proof size and logarithmic verification complexity.

Distributed Proofs. Next, we looked at the usage of ZKPs to enable input authentication in
secure multiparty computation (MPC) based on linear secret-sharing, and realized the need for

distributed ZKPs to enhance efficiency and security while maintaining privacy. In particular,
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we put forward a notion of distributed proof of knowledge (DPoK) that enables a prover to
distribute the proof generation to a set of workers holding the shares of the input, such that (i)
workers do not require any private interaction among each other, and (ii) interaction with the
verifier is over the broadcast channel where the verifier is public-coin (which helps us achieve
public verifiability). We also considered robustness in these DPoKs, which ensured security even
in the presence of dishonest usage of shares by workers during proof generation, and referred
to the protocols with such guarantees as robust DPoKs.

We presented constructions of DPoK (and robust DPoKs) for discrete log relation and DPoK
for algebraic signature schemes like BBS+ [29, 41] and PS [97]. We also provided constructions
of round efficient versions of these DPoKs that are secure in the Random Oracle Model. Using
our DPoKs for algebraic signature schemes, we provided a compiler that can lift any threshold
linear secret-sharing based honest majority MPC protocol to also have input authentication,

while incurring negligible overhead over the underlying MPC.

Lookup Arguments. Finally, we discussed the primitive of lookup arguments that enables us
to prove that the vector S of size m is ‘looking up’ elements in T of size IV in the indices specified
by the m-size vector @ C [N], i.e. S; = T, for all i € m, where m << N. We referred to
this class of protocols as committed index lookup arguments. Recent works in lookup arguments
present improved efficiency in the preprocessing paradigm, where the heavy computation is
deferred to the offline phase to make the online phase faster. We removed the rigid dependency
of the online phase on the table-dependent parameters computed in the offline phase, and
presented updatable lookup arguments that enables us to provide efficient proofs for S ¢ T”
when T’ is within a certain Hamming distance of the preprocessed table T.

Using our updatable lookup argument, we then presented our batching-efficient RAM that
enables us to prove that a RAM of size N has undergone m updates (i.e. read/write operations)
with constant communication complexity, constant verification complexity, and sublinear (in
N) prover complexity. This has applications in providing efficient rollups in blockchain by

offloading expensive computation to L2 layer and verifying the off-chain computation.

Open Questions. This thesis explores the theoretical ZKP primitives in the context of var-
ious dimensions of efficiency, and raises interesting questions that offer significant scope for
future exploration. We briefly state some of the potential directions below.

The techniques of compressed sigma protocols (CSP) have been extended to achieve loga-
rithmic proof size for various relations [9, 10, 11]. Exploration of our technique [53] of achieving
succinct verification in the compression framework in the context of CSP for lattices [10] or k-

out-of-n partial knowledge [9] remains open. Additionally, there is scope to further improve our
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construction in [53] that achieves O(log n) communication and verification complexity, to attain
even better communication, verification and/or prover complexities. While our inner product
argument in [53] considers an updatable setup and relies solely on the discrete log assumption,
follow-up works have achieved improved verifier (cubic root) in the transparent setup under the
same assumption [82], and the pursuit of better complexities in the transparent setup under
the discrete log assumption remains open.

In our work [55], the proof generation for proof of knowledge of discrete log relation (and
some algebraic signature schemes [29, 97]) is distributed. Achieving distributed proof of knowl-
edge for interesting relations like arithmetic circuit satisfiability or post-quantum signature
schemes still remains open.

Furthermore, although delegation of proof-generation has been explored in recent works
for general relations like arithmetic circuit satisfiability [46], it would be interesting to explore
delegation of proof-generation for constructions of lookup arguments and batching-efficient RAM
that admit algebraic verification (for protocols based on KZG polynomial scheme [77]) and
currently incur high prover complexity (whereas the proof size and verification complexity are

constant).

Post-Quantum Vulnerability. The cryptographic constructions discussed throughout this the-
sis are based on discrete-logarithm based assumptions and bilinear pairings, since our primary
concern was improving efficiency of the prior works under similar assumptions. The hardness
assumptions considered are extensively studied in the classical setting, and are known to be vul-
nerable to attacks from quantum computers. Achieving similar efficiency using post-quantum
secure hardness assumptions (eg. based on lattices) is a challenging and interesting future
direction.

In particular, we can achieve a postquantum secure version of our work on compressed
sigma protocols (Chapter 3) by transitioning to lattice-based constructions. As a promising
step in this direction, a recent work of Attema et al. [10] already achieves succinct proof size for
compressed sigma protocols for lattices, albeit with linear verification complexity. Achieving
succinct verification complexity with the existing succinct proof size remains an interesting
open question. This would require novel post-quantum secure techniques, since our work relies
on the symmetric structure of bilinear pairings.

The construction of distributed proof of knowledge (DPoK) in the next chapter (Chapter 4)
extends the notion of compressed sigma protocol to support distributed proof generation, and
similarly relies on the assumptions of discrete logarithm (as well as bilinear pairings, to prove
knowledge of BBS+ and PS signatures). The primary application of our DPoK is considered in

‘input authentication in MPC using BBS+/PS signatures’, where the signature schemes under
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consideration are not resistant to attacks from post-quantum computers. The primary aim
of our work was to improve the overhead in attaining input authentication for MPC, without
relying on MPC-specific techniques, and we leverage the efficiency of classical signature schemes
like BBS+/PS!. In a post-quantum secure version of this application, we would need to consider
a post-quantum secure MPC and post-quantum signature scheme.

The recent works on lookup arguments primarily rely on the KZG commitment scheme
and the relevant prior works on batching-efficient RAM primarily rely on RSA groups, which
makes them vulnerable to post-quantum attacks. With a primary focus on efficiency, our
work in Chapter 5 aims to (a) improve the efficiency of batching-efficient RAM to incur only
sublinear dependence of the prover complexity on the RAM size, and (b) support efficient
lookups on tables undergoing updates, both in the classical setting. As a promising step in
the direction of obtaining a post-quantum secure construction, a recent work on power of
polynomial preprocessing [44] provides lookup arguments relying only on a black-box usage of
vector commitments and generic assumptions like collision-resistant hash function, where using
a post-quantum vector commitment scheme would yield a post-quantum lookup argument.
Further achieving post-quantum updatable lookup arguments and subsequently achieving post-

quantum batching-efficient RAM are interesting open problems for future research.

!The RFC draft [87] signifies the standardization efforts for using BBS+ signatures in verifiable credentials.
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