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Abstract

Zero-Knowledge Proofs (ZKPs) are fundamental cryptographic tools enabling a prover to con-

vince a verifier about the knowledge of a secret witness related to a public statement, without

revealing any information beyond the validity of the claim. zk-SNARKs, acronym for zero-

knowledge Succinct Non-interactive ARguments of Knowledge, offer efficient ZKPs with suc-

cinct communication, prover, and verifier complexities. Additionally, contrary to traditional

ZKPs that tackles privacy concerns, there exists applications where privacy is not a require-

ment and efficiency is the primary concern - for instance to enable powerful (and potentially

untrusted) server(s) to perform computationally expensive tasks and provide efficiently verifi-

able proofs of correct computation of the specified function. Furthermore, there are applications

where proof generation being distributed enhances trust and security.

This thesis explores various efficiency dimensions in the context of zero-knowledge proofs.

First, we study compressed sigma protocols, enhancing a core ZKP building block of sigma

protocols, to achieve logarithmic verification complexity while maintaining logarithmic proof

size. Second, we explore applications where privacy is a requirement in an event of distribution

of proof generation. In particular, we elevate the building blocks for ZKPs for scenarios where

the prover wishes to distribute the proof generation to a set of workers by secret-sharing its

private witness; and explore its significance on the application of providing efficient framework

for authentication of inputs used inside secure Multi-Party Computation (MPC). Finally, we

investigate applications like scalable blockchain rollups, where the primary goal is obtaining

efficiently verifiable proofs. We present a batching-efficient Random Access Memory (RAM)

framework that proves the correctness of m updates on a RAM of size N (where m is significantly

smaller than N), where we improve efficiency of proof generation while further improving

proof size and preserving optimal verification complexity. This is achieved by realising efficient

updatable lookup arguments, that helps us perform m lookups on a N -size table, even after

the table has been updated at a few positions.
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Chapter 1

Introduction

Zero-Knowledge Proofs (ZKP) enable a party, known as the prover, to convince another party,

known as the verifier, of the validity of a statement without revealing anything else about the

witness beyond the validity of the statement. Introduced by Goldwasser, Micali and Rackoff in

[71], ZKPs are a powerful cryptographic tool that are used as fundamental building blocks in

various real-world applications, e.g. facilitating decentralized anonymous payments like Zero-

cash by Ben Sasson et al. [20]. The efficiency of a ZKP is determined by various parameters,

such as communication complexity, verification complexity, prover complexity, and round com-

plexity.

1.1 Zero-Knowledge Proofs

Zero-knowledge proofs typically refer to an interactive proof that satisfies three fundamental

properties: completeness, soundness and zero-knowledge, and we will expand on these properties

next. An interactive proof is said to satisfy completeness, if an honest prover always succeeds

in convincing an honest verifier of a valid claim. Similarly, interactive proof is said to satisfy

soundness, if a cheating prover always fails to convince an honest verifier of an invalid claim

with high probability. Interactive arguments are proofs that provide soundness guarantees

only against cheating prover strategies that run in polynomial time. Note that we use the

term arguments and proofs interchangeably throughout the thesis since we only work with

algorithms that run in polynomial time. In an interactive proof, the prover does not wish

to send the witness to the verifier, either due to privacy concerns or due to communication

constraints. To facilitate privacy, an interactive proof is said to satisfy zero-knowledge property,

if a malicious verifier learns nothing beyond the validity of the statement. Beyond traditional

guarantee of ensuring that a cheating prover fails to convince the verifier of an invalid claim, it
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is sometimes imperative for the prover to convince the verifier that it ‘knows’ the witness for

a public statement – for instance the prover may want to prove that its attributes are certified

by a credential issuer by proving it knows a signature (eg. PS signature [97]) on its attributes.

For such scenarios, an interactive proof is said to satisfy knowledge-soundness if the prover

can convince the verifier that it ‘knows’ the secret witness, and the interactive proof is known

as proof of knowledge. Intuitively, this property is ensured by proving the existence of a PPT

algorithm that can ‘extract’ the witness from the prover, in the event that the prover succeeds

in convincing the verifier with high probability. We call an interactive proof public-coin if the

verifier’s randomness is uniformly sampled and sent to the prover during the proof.

NIZKs. So far we have discussed interactive proofs, but there are applications of ZKPs where

we require one-shot proofs that can be sent across to the verifier – for instance, in blockchain

where the proof of valid state update needs to be ‘posted’ in a public forum; or electronic voting

where the proof of valid ballot submission is required per vote. The class of ZKPs that offers

non-interactivity is known as non-interactive zero-knowledge proofs (NIZKs). From here on, we

also refer to communication complexity as the proof size.

Succinct Arguments. ZKPs are often deployed in applications like blockchain – to ensure

that state updates are consistent with the public ledger and perform verifiable off-chain com-

putations, and in verifiable credentials – to enable selective disclosure of personal attributes.

In all such real-world applications, the prover is computationally bounded. If the soundness

guarantee holds against a PPT prover, i.e. if we can ensure that a PPT prover cannot convince

a verifier of a false claim, then such protocols are known as arguments. Considering practical

applications of ZKPs, for instance, in blockchain applications where a prover submits crypto-

graphic evidence of a valid state transition, or in electronic voting systems where proof of a

legitimate ballot submission is required, the generated proofs being very short is a critical fac-

tor for efficiency. To facilitate efficient communication for such use cases, an interactive proof

is said to have a succinct proof, if the proof size is logarithmic in the size of the witness or

constant. Similarly, to facilitate efficient verification, we define interactive proofs with succinct

verification complexity as proofs that require logarithmic/constant verifier computation.

zkSNARKs. Building upon the fundamental concepts of ZKPs and the efficiency gains of-

fered by succinct arguments, we now discuss zkSNARKs – a class of ZKPs that inherits and

amplifies such attractive efficiency benefits. zkSNARKs stands for zero-knowledge Succinct

Non-interactive ARguments of Knowledge, and we expand on each property below. Here zk

in zkSNARKs stands for the classical zero-knowledge property that ensures that the verifier

would not learn anything ‘extra’ from the proofs. Succinct in zkSNARKs stands for succinct

2



proofs with succinct verification, which ensures that the proof is significantly smaller in size

than the computation being verified and that the verification is much faster than re-executing

the computation. Non-interactive in zkSNARKs stands for one-shot proofs that can be sent

across to the verifier in a single round, which is facilitated by a one-time setup (preprocessing)

phase. This is particularly required in applications like blockchain, where the proof of correct

state updates needs to be posted in the public ledger for public verifiability (i.e. anyone in-

terested should be able to verify), and cannot be reliant on interaction with every potential

verifier. Recall that arguments are proofs with computational soundness. Hence, ARguments of

Knowledge in zkSNARKs refers to the proof of knowledge protocols with knowledge-soundness

property against a computationally bounded prover. On a related note, if the proof only sat-

isfies the traditional soundness as opposed to the stronger knowledge-soundness property, it is

known as a zkSNARG that refers to zero-knowledge Succinct Non-interactive ARGument.

1.2 Summary of the contributions of this Thesis

As part of this thesis, we primarily explore several well-studied theoretical primitives that

are often used as foundational building blocks. We then examine the applications of some of

these primitives in practical real-world applications. The primary objective of this thesis is to

analyze these theoretical primitives through the lens of various dimensions of efficiency known

in the context of ZKP constructions – specifically proof size, verification complexity, and prover

complexity.

1.2.1 Succinct Verification

Kilian provided the first construction of succinct arguments based on probabilistically checkable

proofs (PCP) in [80], where the proof size is logarithmic in the size of the statement. Micali made

this non-interactive in the random oracle model (ROM) in [90] – where we assume existence of a

common random function RO. Traditionally, non-interactivity in the standard model is achieved

by assuming a Common Reference String (CRS) generated during a one-time setup phase.

Depending on how the CRS is generated, the setup is known as trusted (where the randomness

used to generate the CRS is a ‘toxic waste’ and is required to be discarded for the security to

hold), transparent (where the CRS consists of public randomness) or updatable (where the CRS

can be updated by anyone, and the security guarantees only assume the existence of at least one

honest update). If the CRS is structured, it is known as a structured reference string (SRS).

There has been a series of works on constructing zkSNARKs [73, 84, 25, 69, 93, 85, 21, 74],

which have very short proofs with efficient verification complexity.

Sigma protocols are well-understood class of zero-knowledge proof of knowledge (ZKPoK)
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that is also public-coin (where the verifier’s randomness is sent to the prover). A public-coin

interactive proof can be made non-interactive in the Random Oracle Model using the Fiat-

Shamir transformation [59]. Earlier work of Bulletproofs [36] uses a split-and-fold technique to

achieve logarithmic communication complexity, which is extended by Attema and Cramer [8]

to the sigma protocol framework for the discrete log relation (which proves that a party knows

x for public group elements P, g such that P = gx). This split-and-fold technique involves

splitting the witness in two halves and taking a random linear combination to construct a new

smaller witness for a similar relation, and it integrates well with scenarios where hiding the

smaller witness is not a requirement. To use this technique to obtain a ZKPoK that hides

the witness, we first need to run a ‘pivot’ ZKPoK protocol (in our case, a sigma protocol) as

a starting point, which ensures zero-knowledge. The split-and-fold technique is then used to

compress the final message of the pivot sigma protocol, which was initially being sent in clear

(leading to linear communication complexity). Using this technique of applying the split-and-

fold compression mechanism on a pivot sigma-protocol has led to a series of works on compressed

sigma protocols, such as for lattices [10], bilinear group arithmetic circuit [11], and k-out-of-n

proofs [9]. When we refer to compressed sigma protocol (CSP), we would consider CSP for

discrete log relation from here on, unless specified otherwise. CSP for discrete log relation

extends the well-understood and deployed framework for sigma protocols to have logarithmic

proof size in the transparent setup.

Our Contributions. In Chapter 3, we lift Attema and Cramer’s CSP [8] to have logarithmic

verification in addition to logarithmic proof size, by increasing the degree of trust in the setup

phase and using structured reference string (SRS). This is done by relying on an updatable

setup as opposed to the earlier transparent setup. Note that translating to this setup is not

prohibitive, since this setup only relies on existence of at least one honest update to the SRS

during the setup phase.

On this front, we first construct an inner product argument with logarithmic proof size and

logarithmic verification complexity by relying on an updatable SRS and discrete log assumption

in bilinear groups. Specifically, this lets the prover convince the verifier that ⟨a, b⟩ = y for

committed vectors a, b and public value y.

Using our above construction, we provide a ZKPoK for arithmetic circuit satisfiability with

logarithmic proof size and logarithmic verification complexity – that has concretely better

proof size, prover or verifier complexity than the state-of-the-art constructions under similar

assumptions and setup. Note that our aforementioned succinct inner product argument can

help us tackle addition gates in the arithmetic circuit. Since arithmetic circuits also consist

of multiplication gates, we need additional primitives with succinct verification. Both of these
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constructions are public-coin and can be made non-interactive in the ROM using the Fiat-

Shamir transformation [59].

Next, we use our techniques discussed above to provide construction for an inner-product-

like relation in groups, against a designated verifier. Specifically, this allows the prover to ‘open’

a group homomorphism f on a particular vector – i.e. prover can convince the verifier that

f(x) = y for committed homomorphism f , committed vector x of field elements, and public

group element y.

Our technique for achieving logarithmic verification in the compression framework is of

independent interest.

1.2.2 Distributed Proofs

We motivate our next question with the following scenario – a party wishes to know the industry

average salary for its role, for which it uses a job portal (eg. glassdoor) that computes the same

in a privacy-preserving manner. This privacy preserving computation can be done using the

powerful and well-explored tool of secure multiparty computation (MPC). However, if a party

participating in the computation decides to participate with a monthly salary of 100 crore

rupees, then the computed average would not be close to the true reflection of the industry

average. This kind of data-poisoning attacks can be avoided by ensuring that only authentic

inputs are being used inside the MPC execution.

MPC allows n parties to compute a joint function on their private inputs, while ensuring

that (1) the privacy of their inputs is maintained and (2) the correctness of the computed output

is guaranteed. In such a framework, if each party wishes to prove to every other party that its

input is authentic leveraging well-known ZKP tools, the traditional ZKP would require each

pair of parties to run a proof of authentication among themselves. This would lead to a total of

O(n2) proofs – which would incur significant computation and communication overhead, while

also requiring additional checks to ensure the same input – that is authenticated with proof

– is being used inside the MPC execution, rendering such a direct application impractical.

With such applications in mind, we propose usage of distributed ZKPs that considers multiple

provers.

Different notions of distributed ZKPs have appeared in recent works [95, 16, 102, 91, 51]

that explores unconventional usage of ZKPs. Pedersen’s distributed ZKP [95] aims to ensure

that a signature can be verified when the signature is publicly available and the secret key is

held distributively by multiple provers. Another extensive line of work [102, 91, 51] focuses on

distributed proof generation, where multiple provers interact with each other to jointly generate

a non-interactive publicly verifiable proof, when the witness is secret-shared across the provers.
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Our Contributions. In Chapter 4, we put forward a notion of distributed proof of knowledge

(DPoK). In DPoK, we separate the notion of classical prover that holds the complete witness,

and call these parties workers – which holds the secret-shares of the witness and interacts with

the verifier on behalf of the prover to convince the verifier of the claim. In particular, prover

holds the witness w and secret-shares the witness by sending the ith share to the ith worker

Wi, and all the workers then interact with the verifier over broadcast channel to convince the

verifier of the claim. Our setting ensures that workers require no private communication and

the verifier is public-coin and only needs to share its random challenges over broadcast, making

the proof publicly verifiable.

Our DPoK ensures that if the prover and the workers are honest, the proof succeeds and if

any of them is corrupt, the proof fails. This is analogous to the traditional completeness prop-

erty in classical ZKPs. Additionally, we have zero-knowledge, ensuring that the verifier learns

nothing beyond the validity of the claim, Finally, we also have knowledge-soundness where we

establish that the prover knows a valid witness if the proof succeeds with high probability. We

also provide a variant of DPoK that has robust completeness, that can ensure an honest prover

succeeds even if some of the workers participate with dishonest shares. We call such variants

Robust Complete DPoKs or Robust DPoKs. Next we provide constructions of these DPoKs

for discrete log relation, using which we also provide DPoKs for algebraic signatures schemes,

namely BBS+ [29, 41] and PS [97]. These DPoKs have logarithmic round complexity, and

hence we also provide constructions of round-efficient versions of these DPoKs (with constant

rounds) that are secure in the Random Oracle Model.

Application of DPoKs in input authentication in MPC. Using our DPoKs for BBS+ (or PS)

signature schemes, we provide a compiler that transforms any honest majority secret-sharing

based MPC to an honest majority secret-sharing based MPC that supports input authentica-

tion. The output MPC retains the security guarantees of the input MPC, eg. identifiable abort

(id-abort) or guaranteed output delivery (if default input is allowed). The input authentication

phase of our compiler can be instantiated with (i) our regular DPoK whose n-parallel executions

can be efficient batched into a single instance – providing enhanced efficiency and security with

abort; or (ii) our robust complete DPoK providing enhanced security against dishonest usage

of share, but against lower corruption threshold. Our robust complete DPoK preserves id-abort

guarantees of the underlying MPC, which was not achieved by any of the prior works irrespec-

tive of the corruption threshold. Our compiler avoids protocol-specific techniques, unlike prior

works for input authentication in MPC [27, 5], and provides a generic compiler with improved

computational overhead.

The prior works of [27, 5] focus on generating authenticated shares and therefore would
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require additional checks to ensure the same authenticated shares are used in a later MPC

execution. On the contrary, our work focuses on authenticating existing shares held by the

parties (workers).

1.2.3 Lookup Arguments

To motivate the next part of the thesis, let us consider a simple real-world scenario. A cryp-

tocurrency blockchain maintains a public digest (commitment) of the account ledger, and one

of the customers wishes to provide a proof of coin ownership with respect to the public digest

to avail an external service, by proving that it holds two accounts – the ith and jth accounts in

the ledger.

Lookup arguments allow us to prove that a large vector T = (T1, . . . , TN) contains the small

vector S = (S1, . . . , Sm) in the indices specified by the index vector a = (a1, . . . , am) ⊂ [N ], i.e.

Si = Tai for all i ∈ [m] where m << N . This version considers the indexed variant of sub-vector

relation, and is a stronger statement than just proving S ⊂ T. It is important to note in this

context that we often consider these vectors as tables, and use the terms interchangeably. The

series of works in lookup arguments [98, 111, 56, 43, 110] already achieves constant proof size

and constant verification complexity and the primary goal of these works is to lessen the prover

complexity. These works are in the preprocessing paradigm, where the prover precomputes the

potentially expensive terms in an offline phase, to ensure that less prover computation is re-

quired in the online phase. In particular, state-of-the-art lookup arguments require O(N logN)

preprocessing (dependent on the large table) to ensure the prover effort in the online phase is

independent of N .

Now looking at our earlier example from the perspective of real-world application, it is

evident that the cryptocurrency’s public commitment shall periodically change due to updates

in the underlying account ledger from currency transfer transactions. However, all recent works

in the field of lookup arguments consider a static table – which implies that we can do multiple

lookups on a static table T efficiently, but if even one of the Ti is changed then the precomputed

parameters are no longer useful and cannot be used in the online phase. All preprocessed

parameters need to be recomputed with O(N logN) effort in the event of any updates to the

large table T.

Our Contributions. In Chapter 5, we provide updatable lookup arguments which supports

efficient lookup arguments for tables that have undergone some update after the precomputation

of preprocessed parameters is done. In essence, we remove the strict dependence of the lookup

arguments on the table-specific preprocessing, and enable the prover to provide efficient proof

for S ⊂ T′ when T′ is within certain Hamming distance of the preprocessed table T.
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We also provide construction for committed index lookup arguments that – given the com-

mitment to three vectors T,S,a – allows us to prove that S is equivalent to looking up T at

indices specified by a, i.e. Si = Tai for all i. We also provide a construction to lift any proof

of sub-vector relation S ⊂ T using homomorphic commitment scheme to support committed

index lookup argument.

Next, using our updatable lookup argument as a building block, along with additional prim-

itives, we construct a batching-efficient RAM (Random Access Memory), which can efficiently

prove that a RAM of size N has undergone m updates when m << N . Here, RAM is mod-

eled as a table, and RAM updates refer to READ/WRITE operations. Recent works of [92, 42]

based on RSA accumulators also present efficient constructions for batching-efficient RAM with

constant proof size and constant verification complexity; however, their prover complexity is

linear in N . We use our updatable lookup argument to ensure our batching-efficient RAM

incurs constant proof size and constant verification complexity, while having improved prover

complexity that is sublinear in the size of the RAM. This has application in achieving verifiable

outsourcing of state updates in blockchain, in particular for blockchain rollups that aims to

offload expensive computation off the blockchain while ensuring correctness of the expensive

off-chain computation.

In our above constructions of lookup arguments and batching-efficient RAM, we primarily

focus on succinctness and do not necessarily require privacy, and we believe it to be achievable

through slight modification to our constructions.

1.3 Roadmap of the Thesis

First, we present some preliminary tools required for this thesis in Chapter 2. Additional foun-

dational concepts are integrated into later chapters as they become relevant to the discussion.

In Chapter 3, we present constructions of zero-knowledge proofs of knowledge with succinct

proof size and succinct verification complexity. Then, in Chapter 4, we discuss distributed

proofs of knowledge and present constructions of the same for discrete log relation and some

algebraic signature schemes, and thereafter we see how to use it to ensure input authentication

in secure Multiparty Computation (MPC). Finally, in Chapter 5, we discuss how to perform effi-

cient lookups on tables undergoing continuous updates and its application in providing efficient

proofs of correct update on large RAMs (where the number of updates are small). The results

in this thesis are based on the works in [53], [54], and [55], and some passages are presented

verbatim.
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Chapter 2

Preliminaries

In this section, we present some of the required background for Zero-Knowledge Proofs. Further

concepts are deferred to the ’preliminaries’ section of later chapters as per their relevance.

Notations. Let N be the set of all natural numbers. Let (G, ◦) denote a group G correspond-

ing to the binary operation ◦. We drop the operation ◦ from the group description when it is

evident from the context. Let (F,+, ·) denote a field with respect to the two binary operations

+ (addition) and · (multiplication). For x ∈ X, let x←−R X denote uniformly random sampling

of an element x from the set X. Let [n] denote the set {1, . . . , n}, such that [n] ⊂ N.

Let Fq denote a finite field of order q, also denoted by F when the order is not specified or

is clear from context. Let G be a group of prime order q. We refer to λ ∈ N as the security

parameter, and denote by poly(λ) and negl(λ) any generic (unspecified) polynomial function

and negligible function in λ, respectively. A function f : N→ N is said to be negligible in λ if

for every positive polynomial p, f(λ) < 1/p(λ) when λ is sufficiently large. The output x of a

deterministic algorithm A is denoted by x = A and the output x′ of a randomized algorithm

A′ is denoted by x′ ←R A′.

We denote vectors by boldface letters. For vectors g = (g1, . . . , gn) ∈ Gn and x =

(x1, . . . , xn) ∈ Fn
q , where G is a group of prime order q, the multi-exponentiation gx is de-

fined by gx = gx1
1 · · · gxn

n . Also, for g ∈ G and x = (x1, . . . , xn) ∈ Fn
q , gx is defined by

gx = (gx1 , · · · , gxn).

Bilinear Group. We assume a bilinear group generator BG on input λ outputs parameters

for the protocols, i.e. BG(1λ) outputs (q,F,G1,G2,GT , e, g1, g2). Here, F = Fq is a prime field of

order q, G1,G2 and GT are groups of order q, and e is an efficiently computable non-degenerate

bilinear pairing e : G1 × G2 → GT . g1, g2 are uniformly chosen generators of G1 and G2

respectively, and e(g1, g2) is the generator for GT .
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2.1 Interactive Proofs

Let R = {(x,w)} be a relation and L be the corresponding NP language. We consider interactive

proofs for relations, where a prover P convinces the verifier that it knows a witness w such

that for a public statement x, (x,w) ∈ R. For a pair of PPT interactive algorithms P, V ,

⟨P (w), V ⟩(x) denotes the output of V on its interaction with P , where w is P ’s private input

and x is a common input.

Proof of Knowledge. An interactive protocol is known as a proof of knowledge (PoK) for

a relation R if it consists of a PPT algorithm Setup(1λ) that takes a security parameter λ and

outputs public parameters srs, and a pair of PPT interactive algorithms ⟨P,V⟩. The triple

(Setup,P,V) satisfy the following properties of completeness and knowledge-soundness.

Definition 1 (Completeness) For all λ ∈ N, (x,w) ∈ R,

Pr
(
⟨P(w),V⟩(srs, x) = 1 : srs← Setup(1λ)

)
= 1.

Definition 2 (Knowledge Soundness) An interactive protocol (P,V) for a relation R is

knowledge sound with error κ if there exists an expected polynomial time extractor Ext such

that for every efficient adversary P̃, for every x ∈ {0, 1}∗, whenever P̃ makes V accept with

probability ϵ > κ, ExtP̃(x) outputs w∗ such that (x,w∗) ∈ R with probability at least ϵ−κ
q

for

some polynomial q.

Zero-Knowledge Proof of Knowledge. An interactive protocol is known as a Zero-Knowledge

Proof of Knowledge (ZKPoK) if it is a Proof of Knowledge which satisfies the following zero-

knowledge property.

Definition 3 (Zero-Knowledge) An interactive protocol is said to satisfy zero-knowledge

property if for every polynomial time verifier Ṽ, there exists an efficient simulator algorithm

Sim(s) such that for every (x,w) ∈ R, the distribution Sim(x) is identical to View⟨P(x,w),Ṽ(x)⟩,

where View⟨P(x,w),Ṽ(x)⟩ is the distribution of the view of the verifier in the protocol on common

input x and prover’s witness w.

Honest Verifier Zero-Knowledge. An interactive protocol is said to be Honest Verifier Zero-

Knowledge (HVZK) if there exists an efficient simulator Sim such that for every (x,w) ∈ R, the

distribution Sim(x) is identical to View⟨P(x,w),V(x)⟩, where View⟨P(x,w),V(x)⟩ is the distribution of

the view of the verifier in the protocol on common input x and prover’s witness w. Contrary to

the earlier zero-knowledge property, this version assumes that the verifier follows the prescribed

algorithm.
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SNARKs. A proof of knowledge protocol is also known as an argument of knowledge (AoK)

if the knowledge-soundness property holds against a PPT prover, i.e. if it has computational

knowledge-soundness. An interactive protocol is said to have a succinct proof, if the communi-

cation complexity between the prover and the verifier is bounded by poly(λ), and is said to have

a succinct verification complexity if the running time of the verifier is bounded by poly(λ+ |x|).
A succinct argument of knowledge which is also non-interactive is known as a SNARK, which

is an acronym for Succinct Non-Interactive ARgument of Knowledge.

Updatable SRS model. In common reference string (CRS) model, we assume the presence

of a trusted setup phase, where a random string is generated and made available to both the

prover and the verifier. If the CRS is structured, then it is known as a structured reference

string (SRS), and the model is known as an SRS model. An SRS is known as an updatable

universal SRS if it enables parties to update the parameters, while retaining computational

soundness against any probabilistic-polynomial time adversary, as long as at least one honest

update is performed, and such a model is known as an updatable SRS model. [28] introduced

non-interactive zero-knowledge proofs (NIZKs) in the CRS model, and later [75] introduced

updatable SRS with its application to SNARKs.

Fiat-Shamir and Random Oracle Model. An interactive protocol is public-coin if the

verifier’s messages are uniformly random strings. Public-coin protocols can be transformed into

non-interactive arguments in the Random Oracle Model (ROM) by using the Fiat-Shamir [59]

heuristic to derive the verifier’s messages as the output of a Random Oracle.

Note that all of our protocols are public-coin, hence we are only required to prove that

our protocols satisfy knowledge-soundness (or special-soundness, which also implies knowledge-

soundness) for our interactive protocols, and thereafter rely on the Fiat-Shamir transform to

obtain the non-interactive version of our protocols.

Algebraic Group Model. An adversary A is called algebraic if every group element output

by A is accompanied by a representation of that group element in terms of all the group

elements that A has seen so far (input and output). Introduced in [61], the Algebraic Group

Model (AGM) restricts the adversary A to be algebraic.

2.2 Sigma Protocols

Sigma protocols are three-round public-coin zero-knowledge proof of knowledge protocols. The

structure of a sigma protocol for (x,w) ∈ R for a relation R is as follows, where x is the common

input and w is the private witness:

– In the first round, the prover sends a message a.
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– In the second round, the verifier responds with a randomly sampled challenge c.

– In the third round, the prover computes and sends a response z based on the witness w,

its first message a, and the random challenge c.

– The verifier then performs local checks based on the public x, prover’s first message a, its

challenge c, and the prover’s response z, and outputs if it accepts/rejects.

Here, (a, c, z) is known as the transcript, and it is known as an accepting transcript if the verifier

accepts at the end of the protocol.

An interactive protocol is known as Sigma protocol if it is a three-round public-coin protocol

that satisfies the following properties of completeness, special-soundness and special honest

verifier zero-knowledge.

Definition 4 (Completeness) If (x,w) ∈ R, and P and V follow the protocol specification,

then Pr
(
⟨P(w),V⟩(x) = 1

)
= 1.

Definition 5 (Special Soundness) There exists a PPT extractor Ext that takes as input two

accepting transcripts (a, c, z) and (a, c′, z′) for a given x, such that c ̸= c′ and the first message

a is identical, and outputs a witness w∗ such that (x,w∗) ∈ R.

Definition 6 (Special Honest Verifier Zero-Knowledge) There exists a PPT simulator

Sim, such that for every (x,w) ∈ R and any given c, the distribution Sim(x, c) is identical

to View⟨P(x,w),V(x,r)⟩, where Sim(x, c) is the output of the simulator with input x and c, and

View⟨P(x,w),V(x,r)⟩ is the distribution of the view of the verifier in the protocol on common input

x and prover’s witness w.

Now, we briefly recall the sigma protocol for proving knowledge of discrete logarithm x ∈ Fn
p

of a vector of group elements g ∈ Gn, such that gx = z. Here, a prover P with knowledge of

the secret vector x, samples a random vector of scalars r ←−R Fn
p , and sends α = gr to the

verifier V. V then samples a challenge c ←−R Fp and sends it to P and in the next round P

replies with x = cx + r. V considers the transcript (α, c, z), and checks if gx = zcα. Note

that the last message of the prover is linear in the size of the witness, and hence the traditional

sigma protocol has linear communication complexity. [8] presents compressed sigma protocol

with logarithmic communication complexity, albeit with logarithmic round complexity, which

can be compressed to obtain NIZK with logarithmic proof size by relying on the Fiat-Shamir

heuristic [59] in the Random Oracle Model.
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2.3 Polynomial Commitment Scheme

The notion of a polynomial commitment scheme (PCS) that allows the prover to open evalua-

tions of the committed polynomial succinctly was introduced in [77] who gave a construction

under the trusted setup assumption. A polynomial commitment scheme over F is a tuple

PC = (Setup,Commit, open, eval) where:

– pp ← Setup(1λ, D). On input security parameter λ, and an upper bound D ∈ N on the

degree, Setup generates public parameters pp.

– (C, c̃) ← Commit(pp, f(X), d). On input the public parameters pp, and a univariate

polynomial f(X) ∈ F[X] with degree at most d ≤ D, Commit outputs a commitment to

the polynomial C, and additionally an opening hint c̃.

– b← open(pp, f(X), d, C, c̃). On input the public parameters pp, the commitment C and

the opening hint c̃, a polynomial f(X) of degree d ≤ D, open outputs a bit indicating

accept or reject.

– b← eval(pp, C, d, x, v; f(X)). A public coin interactive protocol

⟨Peval(f(X)), Veval⟩(pp, C, d, z, v) between a PPT prover and a PPT verifier. The parties

have as common input public parameters pp, commitment C, degree d, evaluation point

x, and claimed evaluation v. The prover has, in addition, the opening f(X) of C, with

deg(f) ≤ d. At the end of the protocol, the verifier outputs 1 indicating accepting the

proof that f(x) = v, or outputs 0 indicating rejecting the proof.

A polynomial commitment scheme must satisfy the following properties of completeness, bind-

ing and extractability.

Definition 2.1 (Completeness) For all polynomials f(X) ∈ F[X] of degree d ≤ D, for all

x ∈ F,

Pr

b = 1 :

pp← Setup(1λ, D)

(C, c̃)← Commit(pp, f(X), d)

v ← f(x)

b← eval(pp, C, d, x, v; f(X))

 = 1.
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Definition 2.2 (Binding) A polynomial commitment scheme PC is binding if for all PPT A,

the following probability is negligible in λ:

Pr

open(pp, f0, d, C, c̃0) = 1∧
open(pp, f1, d, C, c̃1) = 1∧

f0 ̸= f1

:
pp← Setup(1λ, D)

(C, f0, f1, c̃0, c̃1, d)← A(pp)

 .

Definition 2.3 (Knowledge Soundness) For any PPT adversary A = (A1,A2), there ex-

ists a PPT algorithm Ext such that the following probability is negligible in λ:

Pr

 b = 1∧
Reval(pp, C, x, v; f̃ , c̃) = 0

:

pp← Setup(1λ, D)

(C, d, x, v, st)← A1(pp)

(f̃ , c̃)← ExtA2(pp)

b← ⟨A2(st), Veval⟩(pp, C, d, x, v)

 .

where the relation Reval is defined as follows:

Reval = {((pp, C ∈ G, x ∈ F, v ∈ F); (f(X), c̃)) :

(open(pp, f, d, C, c̃) = 1) ∧ v = f(x)}

We denote by Prove,Verify, the non-interactive prover and verifier algorithms obtained by

applying FS to the eval public-coin interactive protocol, giving a non-interactive PCS scheme

(Setup,Commit,Prove,Verify).

Definition 2.4 (Succinctness) We require the commitments and the evaluation proofs to be

of size independent of the degree of the polynomial, that is the scheme is proof succinct if |C| is
poly(λ), |π| is poly(λ) where π is the transcript obtained by applying FS to eval. Additionally,

the scheme is verifier succinct if eval runs in time poly(λ) · log(d) for the verifier.
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Chapter 3

Succinct Verification of Compressed

Sigma Protocols using Updatable SRS

In this chapter1, we explore a class of zero-knowledge proofs of knowledge that has succinct

communication complexity to additionally support succinct verification complexity. In partic-

ular, we lift compressed sigma protocols, introduced by Attema and Cramer in [8], to achieve

logarithmic verification complexity while retaining their logarithmic proof size, by using a struc-

tured reference string (SRS).

3.1 Introduction

NIZKs can be facilitated by having oracle access to a common function which in an idealised

setting is modeled as a random function (known as Random Oracle or RO), which makes the

protocol secure in the idealised setting known as the Random Oracle Model (ROM). The setup

phase generally consists of having a Common Reference String (CRS) shared across the prover

and the verifier. The setup is known as transparent if the CRS consists of a truly random

string. Note that a structured CRS is often referred to as Structured Reference String (SRS).

The construction with better concrete efficiency with respect to communication complexity are

based on trusted SRS, where the randomness used to generate the SRS is akin to toxic waste

(also known as the trapdoor) which is required to be discarded upon the generation of SRS,

and the security guarantees hold only if the randomness is not known.

A line of work aims to reduce the degree of trust required in the generation of the CRS, by

having an updatable SRS, giving rise to SNARKs in an updatable setup model [75, 88, 63, 45].

The updatable SRS can be updated by any of the involved parties, ensuring that the security

1This chapter is based on the joint work [53] with Chaya Ganesh and Neha Jawalkar, that appeared in PKC
2024.
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guarantees hold as long as there has been at least one honest update to the SRS. Intuitively,

an update to the SRS is done by having the party contribute additional randomness, and the

trapdoor for a given ‘updatable’ SRS is hidden due to re-randomization of the trapdoor from

each contribution of randomness.

Bulletproofs [36], building on the work of [32] introduced techniques that achieve logarithmic

communication complexity in discrete logarithm (DL) based zero-knowledge proofs. Thereafter,

Attema and Cramer [8] introduced compressed sigma protocol theory by using a blackbox com-

pression technique, which also places Bulletproofs in the framework of Sigma protocol theory.

These protocols relies on the compression mechanism of the split-and-fold technique, which

uses a ‘pivot’ ZKPoK protocol as a starting point to ensure zero-knowledge, and thereafter

compresses the linear-sized messages of the pivot sigma protocol. The split-and-fold technique

involves splitting the message in half, and then folding it using a randomly sampled challenge,

to attain a new (smaller) witness satisfying a similar relation. The idea of employing a compres-

sion mechanism on a pivot protocol has become a versatile tool, leading to compressed sigma

protocol theory for lattices [10], and compressed sigma protocols for bilinear group arithmetic

circuits [11].

Compressed Sigma Protocols (CSP) are attractive in applications due to their reliance on

weaker assumptions (DL), conceptual simplicity, logarithmic proof size and transparent setup.

One downside of this class of protocols is that they are only proof-succinct but not verifier-

succinct – the verification is linear. In this chapter, we focus on studying succinct verification

of compressed sigma protocols while retaining the succinct proof size.

3.1.1 Our Contributions

In this chapter, we present compressed sigma protocols that are both proof and verifier-succinct

in the updatable SRS model. CSP compresses a pivot Σ-protocol for proving knowledge of a long

vector x while revealing a public linear form L(x), given a Pedersen commitment, resulting in a

protocol for opening linear forms on committed vectors with proof size O(log n) and verification

complexity O(n) where n is the size of x.

Protocol for opening a committed linear form. A core building block of our succinct

verifier constructions is a protocol to open a committed linear form on a committed vector.

That is, we can prove knowledge of a long vector x ∈ Fn
q given a commitment to a linear form

L and a public element y ∈ Fq, such that L(x) = y. Here, L can be equivalently represented by a

vector of group elements (a1, . . . , an) such that L(x) = a1x1+· · ·+anxn, where x = (x1, . . . , xn)

is a vector of field elements. In essence, since both L and x are vectors of field elements, we

are proving that an inner product of two elements has been computed correctly. It is an inner
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product argument, but in the spirit of CSP, one of the vectors – the linear form, is public and not

a witness. This vector is committed to only for the sake of succinctness, and looking ahead, this

commitment encodes the structure of the circuit and is computed during preprocessing. We use

a commitment scheme with a structured key introduced by [52]. This protocol with logarithmic

proof size and logarithmic verification complexity is secure under the DL assumption (same as

CSP), albeit in a bilinear group and at the cost of moving to an updatable SRS setting. We

compare our inner product protocol with [52] and [83] in Table 3.1.

Succinct verifier protocol for circuit satisfiability. We construct a succinct argument

of knowledge for circuit satisfiability in the universal updatable SRS model. The proof size

and verifier are logarithmic in the size of the circuit. This is secure under DL and can be

made non-interactive in the ROM using the Fiat-Shamir transform [59] since our protocols are

public-coin. We compare the concrete costs of our protocol, with that of [52] in Table 3.21.

Since we use the same structure of SRS, the complexity of updating the SRS and verifying

the updates remain the same as in [52]. Dory’s [83] polynomial commitment can be used

to obtain a protocol for circuit-satisfiability. The exact costs will depend on the underlying

information-theoretic object (Polynomial interactive oracle proof) that is compiled using Dory.

For univariate polynomials of degree n, and opening one evaluation, Dory’s costs are: proof

size of (4 log n + 10)G + (log n + 8)Fq , prover’s computation of (n + log n)E + n1/2P , verifier’s

computation of 4 log nE +O(1)P . Note that Dory’s prover requires pairing operations and the

security relies on a decisional assumption.

Protocol Setup Assumption Proof size P complexity V complexity

[52] Updatable DL
8 logn G
2 logn Fq

(8n− 4) E∗ 2 logn P
4 logn E

[83] Transparent SXDH
12 logn G
log n Fq

O(n1/2) P
9 logn E

1 P

This work
(Π1-R)

Updatable DL
4 logn G
3 logn Fq

(8n− 4) E∗

2 logn E
2 logn P
2 logn E

This work
(Π2-R)

Updatable DL
2 logn G
log n Fq

(4n− 2) E∗

log n E
log n P
log n E

Table 3.1: Comparison of our Linear Form opening protocols (or equivalently inner product
arguments) for vectors of length n. We compare in terms of most expensive operations, i.e.
multi-exponentiations E, pairings P and exponentiations E∗ (to provide aggregate values for
non-constant multi-exponentiations).

1We note that other SNARKs in the universal, updatable setting that have better communication and/ver-
ifier complexity (Oλ(1)) rely on the Algebraic Group Model or Knowledge Type assumptions in addition to
the Random Oracle Model. In this work, we are interested in constructions in the Random Oracle Model, and
relying on standard assumptions.
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Protocol Proof size P complexity V complexity

[52]
12 log nG
4 log nFq

(22 + 10M)n E∗ 12 log n E∗

8 log n P

[83]
(27/2) log nG

3 log nFq
O(n1/2) P

((27/2) log n
O(1)) E
O(1) P

This work (Πcsat)
2 log nG
log nFq

(13 + 5M)n E∗ log n E
log n P

Table 3.2: Circuit SAT protocol for a preprocessed circuit of size n (which is roughly 3m for m
multiplication gates). Both protocols are updatable zkSNARKs that rely on the DL assumption.
Similar to [52], we only compare in terms of the most expensive operations, exponentiations
E and pairings P , and omit constant terms. M is a parameter that determines the processed
circuit’s fan-in and fan-out upper bound, and can be fine-tuned to balance the prover/verifier
computations.

Protocol for opening a committed homomorphism. We then construct a protocol for

opening a homomorphism, where both the vector and the homomorphism are committed to.

That is, we can prove knowledge of a long vector x ∈ Fn
q given a commitment to a homomor-

phism f and a public group element y, such that f(x) = y. Throughout this thesis, we consider

group homomorphisms of the form f : Fn
q → G, and f can be equivalently represented by a

vector of group elements (g1, . . . , gn) such that f(x) = gx1
1 · · · gxn

n , where x = (x1, . . . , xn) is a

vector of field elements. We extend commitment schemes to group elements from [81, 11] to

one that uses a structured key and show binding based on SXDH. Succinct verifier protocols

for opening homomorphisms are useful in constructing proofs of partial knowledge with suc-

cinct verifier. We then extend our protocol to general homomorphisms (on commitments to

Fq,G1,G2,GT elements simultaneously) motivated by applications to bilinear group arithmetic

circuit zero-knowledge protocols. Our constructions for opening homomorphisms are in the

designated-verifier setting. In applications like verification of structure preserving signatures

and attribute-based authentication, public verifiability might not be necessary since there is a

designated credential verifier, and indeed the homomorphism itself is given by the statement

to prove (signature verification algorithm) that can be committed to in a preprocessing phase.

Therefore, our protocols can be used in similar applications as in [81], like proving knowledge

of signature for complex access structures. While [81] has proof that scales logarithmically with

the size of the statement, our protocol additionally yields logarithmic verification (albeit for

designated verifier, which we believe is not a limitation for credential verification).
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3.1.2 Related Work

Daza et al. [52] constructs inner product argument with logarithmic verifier by replacing the

unstructured CRS or commitment key with a structured one. This also yields a protocol for

circuit satisfiability with logarithmic verification in the updatable setting. Our construction

and the protocols of [52] achieve the same result asymptotically. However, while we crucially

rely on a structured commitment key to make the verifier logarithmic like in [52], our techniques

are different. The work of [52] extend the protocols of [32, 36], while we take the approach of

CSP. This has the advantage of applying compression mechanism on standard protocols for

linear relations (or non-linear relations after linearization). The CSP approach also allows us

to extend our techniques to other applications where compression applies in a black-box way.

Second, our protocols are concretely better than [52] with smaller constants (See Table 3.2).

Dory [83] presents a transparent protocol for inner products between committed vectors

with logarithmic proof size and logarithmic verification. Dory relies on a decisional assumption

(SXDH) whereas our inner product protocol relies on DL. Additionally, our prover work is only

group operations as opposed to (O(n1/2)) pairing operations required by the prover in Dory,

and our constants in the proof size are better.

Other SNARKs in the updatable setting [88, 63, 45, 86] rely on knowledge-type assumptions

or Algebraic Group Model (AGM), and constructions in the transparent setting with similar and

better asymptotics [37, 6] require unknown order groups with concretely expensive operations.

Lai et al. [81] show a generalization of Bulletproof’s circuit zero-knowledge protocol to work

for bilinear group arithmetic circuits directly, without requiring these circuits to be translated

into arithmetic circuits. Attema et al. [11] generalize compressed sigma protocols for bilinear

group arithmetic circuits. Both these constructions rely on a protocol for opening a group

homomorphism where the verifier is linear. Using our protocol for opening a committed homo-

morphism will yield a succinct verifier at the expense of making it a designated verifier system.

We provide the comparison in Table 3.4. Note that for application like Threshold Signature

Schemes (following Algorithm 4 of [11]), we retain the logarithmic size of the signature similar

to prior works, however we improve the verification complexity from linear to logarithmic.

Performace Comparison for MiMC and Poseidon Hash. We report the timing using a third

party implementation calculator https://zka.lc, where we estimate using BLS12-381 curve

implemented in arkworks-rs provided using Amazon Linux 2 8-core Intel(R) Xeon(R) Platinum

8259CL CPU @ 2.50GHz, 32GB. In Table 3.3, we use the reported number of gates for MiMC

in [3], having 1293 multiplication gates and 646 addition gates. We achieve 1.77× improvement

in prover time and more than 7× improvement in verification time as compared to Daza et al.
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[52]. Similarly, we achieve 1.79× improvement in prover time and more than 7× improvement in

verification time compared to Daza et al. for Poseidon (assuming number of R1CS constraints

is equal to the number of multiplication gates, with 276 R1CS constraints [1]).

Similarly, we obtain 1.42× improvement in prover time as compared to Dory [83] for MiMC

hash instantiation and 2.69× improvement in prover time for Poseidon hash instantiation, at a

slight cost of verifier time. Note that for circuits of smaller sizes, we do fairly better than Dory

in prover time complexity, while not losing much in verifier time complexity. Also, for both

comparisons we assume that Dory has at least 6n1/2 pairings computation by prover, and 3

pairing checks performed by the verifier. For statements that show up in practice, like proving

knowledge of opening of a Merkle tree leaf using MiMC/Poseidon Hash functions, the reported

number for the prover increases by a factor of depth d of the tree.

Hash Protocol Prover Time Verifier Time

[52] 729,272 151,831

MiMC [83] 586,381 7,054

Us 411,809 19,319

[52] 181,058 123,610

Poseidon [83] 270, 912 6, 769

Us 100,636 15,780

Table 3.3: Performance of MiMC and Poseidon Hash Instantiation using https://zka.lc and
in µs.

3.1.3 Technical Overview

An inner product argument allows us to prove that an inner product of two vectors has been

computed correctly, that is ⟨a, b⟩ = z, for two vectors a and b, and a public value z. The

high-level idea behind the inner product argument of [32] and the compressed sigma protocol

of [8] is to compress a vector using a Pedersen commitment, and then in each round reduce

the instance and the commitment key to another one of half the size by using the verifier’s

challenge. At a high level, the source of the verifier’s linear complexity is in having to compute

the new keys at every step.

We use a structured commitment key proposed in [52] that consists of encodings of multilin-

ear monomials of a secret vector of logarithmic length. That is, for vectors of length n, we first

set ℓ = log n and consider the vector ȧ = (ȧ1, . . . , ȧℓ) to construct a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

and

finally, the commitment key is set as ga where gx = (gx1 , . . . , gxn) for a vector x = (x1, . . . , xn).

20

https://zka.lc


Protocol Proof size
Prover

Complexity
Verifier

Complexity

[81]

O(n) GT

O(log n) G1

O(log n) G2

O(log n) Fq

O(n) E O(n) E

[11]
O(log n) GT

O(log n) Fq
O(n) E O(n) E

Us

O(log n) GT

O(log n) G1

O(log n) G2

O(log n) Fq

O(n) E
O(log n) E
O(log n) P

Table 3.4: Comparison of protocols for opening homomorphism for vectors of length n. We
compare in terms of most expensive operations, i.e. pairings P and exponentiations E and
dominant communication cost with respect to elements of the field Fq and groups G1, G2 and
GT . Note that our verifier complexity is 2 log n E + log n P .

The commitment to a vector x under key ga is g⟨a,x⟩. This key is updatable, a party can sample

new ℓ secrets and update the encoding in a verifiable way. A compressed version of this key,

gȧ ∈ Gℓ
1 allows the verifier to be logarithmic.

Linear Form Opening with Succinct Verifier. We build on the inner product arguments

of [32] and [52]. The verifier’s work in [32] involves computing an updated key in each round,

and in [52], the verifier is only given a compressed key (of logarithmic size) and the prover

convinces the verifier that the reduced statement in each round is with respect to a new key

that is correctly updated. New commitment keys with size half of the original one are created by

splitting them in half and then combining them based on the verifier’s challenge. A logarithmic

verifier can check that a structured key has been updated correctly using a pairing operation.

The source of the verifier’s linear complexity in the compressed sigma protocol of [8] was due

to computation of the new keys at every step. On the contrary, our verifier remains logarithmic

as the verifier is only required to parse a compressed key of logarithmic size, which is used for

performing constant number of checks per round, and we only require logarithmic number of

rounds which does not involve updating the shared key.

While our protocol uses the same structured key, we take a slightly different approach: we

exploit the fact that we can go from ‘a commitment to a vector with respect to the second half

of the original basis’ to ‘a commitment to the same vector with respect to the first half of the

original basis’. Now, if a prover produces commitment to both halves of a vector with respect to

the first half of the basis, the verifier can perform one multiplication in the exponent to check the
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consistency. Consider, ȧ = (ȧ1, . . . , ȧℓ) and a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

for n = 2ℓ, the commitment

key is ga =
(
gaL∥gȧℓaL

)
, the verification key is H ȧ, and P = COMa (x). In each step, for

x = (xL∥xR), if the prover produces A1 = COMaL
(xL), A2 = COMaL

(xR), the verifier can

perform the check e( P
A1
, H) = e(A2, H

ȧℓ) to ensure consistency. Thus, the commitment key

updates are done implicitly by simply dropping off the last element ȧℓ, and using the challenge

only to fold the instance vectors x′ = xL + cxR. This observation allows us to shave off about

4 group elements in each round from the Daza et al.’s inner product argument. Our protocol

also has the advantage of allowing efficient batching, i.e., for vectors of length n, the prover

can prove, for distinct L1, . . . , Lm and x1, . . . ,xm that L1(x1) = y1, . . . , Lm(xm) = ym while

incurring a cost that is O(m + log n) as opposed to O(m log n).

Succinct ZK Argument for Circuit Satisfiability. We construct an improved protocol

for arithmetic circuit satisfiability in the universal updatable SRS setting. The CSP approach

to handle multiplication gates by linearizing them renders the verifier linear. We propose a

protocol for computing a commitment to the linear form that captures the multiplication gates

in the circuit in a verifiable way while keeping the verifier succinct. We use the ideas from [52]

to preprocess a circuit, and obtain a commitment to the linear constraints. Now, all relations

are linearized, we have commitments to all linear forms, and we show how to batch all linear

form openings into one protocol for opening a committed linear form on a committed vector.

The following are two key new ideas to make a CSP-like proof have succinct verification.

(i) The first relates to how we handle multiplication gates. For linearizing multiplication con-

straints, CSP uses a linear combination of polynomial evaluations at 1, . . . ,m to evaluate a

polynomial at a new random value z rendering the verifier linear. We handle multiplication in

the same way as CSP, but instead of computing the public linear form for multiplication, the

verifier instead succinctly verifies a commitment to it. We construct a succinct-verifier protocol

for obtaining a commitment to the linear form used for verifying multiplication constraints. In

order to do this, we impose some structure; specifically, we use a linear combination of polyno-

mial evaluations at 2, 22, . . . , 2m. This choice allows us to compute the value of a polynomial at

any point z while keeping the verifier succinct. This idea gives a protocol where the prover com-

putes a commitment to the linear form that the verifier can efficiently check. The linearization

is now done via a committed linear form. (ii) The second idea relates to how we handle linear

gates. Here, we employ the ideas of Daza et al., by reducing the problem of verifying linear

gates to checking that two committed vectors are permutations of each other; and a Hadamard

product argument. We deviate from [52] by first reducing the permutation argument to the

CSP pivot of opening linear forms on committed vectors. We then use our techniques from (i)
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to obtain commitments to these linear forms. Finally, we take advantage of our ability to batch

the openings of linear forms, which allows us to prove circuit constraints while paying the cost

of essentially a single invocation of our linear form protocol.

Homomorphism Opening with Succinct Verifier. Our ideas for succinct verifier in lin-

ear form openings do not extend to opening homomorphism. First, we need to commit to a

homomorphism, and we extend the commitment scheme for group elements used in [81, 11] to a

commitment scheme with a structured key, in order to make the verifier logarithmic. We show

that binding is implied by SXDH (same assumption as the scheme with uniform key). Since we

rely on SXDH, we cannot encode the commitment key randomness in the second group as the

verification key. Thus a pairing check to verify correct key updates is not possible anymore,

making our constructions designated verifier. A second hurdle is that the commitment itself

lives in the target group. This means that our idea to check correct updation of the key in

each round of split-and-fold (which involved a pairing operation) does not work anymore. We

tackle this by having the commitment key in both G1 and GT . Now, the prover updates the

commitment key in G1 and proves that this has been done correctly. The verifier can check

this using a pairing, move this updated commitment key in G1 to GT , and then finally at the

end of the recursion verify the commitment with respect to the updated key in GT .

3.2 Preliminaries

In this section, we present the required notation 1 and relevant background for this chapter.

Notation. Let Fq denote a finite field of order q, also denoted by F when the order is not

specified or is clear from context. Let G be a group of order q. λ denotes the security parameter,

and negl denotes a negligible function, i.e. for any integer c > 0, there exists n ∈ N, such that

∀ x > n, negl(x) ≤ 1/nc. We denote vectors by boldface letters, and the inner product between

a and b by ⟨a,b⟩.
We define L(Fn

q ) as L(Fn
q ) = {L : L is a linear map from Fn

q to Fq}. A linear map L ∈ L(Fn
q )

is equivalently represented by a vector, i.e. L(x1, . . . , xn) = a1x1 + · · ·+anxn (for (x1, . . . , xn) ∈
Fn
q ) is equivalently represented by L = (a1, . . . , an) ∈ Fn

q . For x = (x1, . . . , xn) ∈ Fn
q , rev(x)

denotes its reversal and is defined as rev(x) = (xn, . . . , x1).

A vector a = (a1, . . . , an) naturally defines a (n− 1)-degree polynomial by considering the

vector a as the vector of coefficients, which gives us the polynomial a(X) = a1 +a2X +a3X
2 +

· · ·+ anX
n−1. Also, a commitment to a polynomial a(X) = a1 + a2X + a3X

2 + · · ·+ anX
n−1 is

provided by a commitment to the vector of coefficient a = (a1, . . . , an). We use the vector and

1Note that some of the notations are redefined here for ease of access.
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polynomial notation interchangeably throughout the first chapter for ease of notation.

For vectors g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Fn
q , the multi-exponentiation

gx is defined by gx = gx1
1 · · · gxn

n . Also, for g ∈ G and x = (x1, . . . , xn) ∈ Fn
q , gx is defined

by gx = (gx1 , · · · , gxn). The inner product between elements of Fn
q , a = (a1, . . . , an) and

b = (b1, . . . , bn), is denoted by ⟨a, b⟩ = a1b1 + · · · + anbn. For a ∈ Fm
q , b ∈ Fn

q , a∥b ∈ Fm+n
q

denotes concatenation of a and b in the respective order, and the notation is used similarly for

the vectors in a group G to denote concatenation of two vectors. For a = (a1, . . . , an) ∈ Gn

and b = (b1, . . . , bn) ∈ Gn, the hadamard product a ◦ b is defined by a ◦ b = (a1b1, . . . , anbn).

For v, n ∈ Fq, v
n denotes the vector vn = (1, . . . , vn).

A bilinear group is denoted by the tuple (q,G1,G2,GT , e, G,H) ←−R G(1λ), where G1, G2

and GT are groups of prime order q, G and H are generators of G1 and G2, and e : G1×G2 → GT

is an efficiently computable bilinear map.

We define ML2ℓ ∈ Fn
q to be the set of all n-length multilinear vectors of the form

(1, ȧ1, ȧ2, . . . , ȧ1 · · · ȧℓ), determined by ℓ-mutually independent scalars ȧ1, . . . , ȧℓ. We denote the

set of ℓ scalars by ȧ = (ȧ1, . . . , ȧℓ) and the n-length vector by a = (1, ȧ1, ȧ2, . . . , ȧ1 · · · ȧℓ). More

formally, MLn = {a : ȧ = (ȧ1, . . . , ȧℓ) ∈ Fℓ
q, a = (

∏ℓ
i=1 ȧ

xi
i )xi∈{0,1}}.

3.2.1 Interactive Arguments

We consider interactive arguments for relations, where a prover P convinces the verifier that it

knows a witness w such that for a public statement x, (x,w) ∈ R. For a pair of PPT interactive

algorithms P, V , we denote by ⟨P (w), V ⟩(x), the output of V on its interaction with P , where

w is P ’s private input and x is a common input. Let R = {(x,w)} be a relation and L be the

corresponding NP language.

Definition 7 (Argument of Knowledge) An interactive argument of knowledge (AoK) for

a relation R consists of a PPT algorithm Setup(1λ) that takes a security parameter λ and outputs

public parameters srs, and a pair of PPT interactive algorithms ⟨P,V⟩. The triple (Setup,P,V)

satisfy the following properties.

1. Completeness. For all λ ∈ N, (x,w) ∈ R,

Pr
(
⟨P(w),V⟩(srs, x) = 1 : srs← Setup(1λ)

)
= 1.

2. Knowledge Soundness. An argument system (P,V) for a relation R is knowledge sound

with error κ if there exists an expected polynomial time extractor Ext such that for every

efficient adversary P̃, for every x ∈ {0, 1}∗, whenever P̃ makes V accept with probability
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ϵ > κ, ExtP̃(x) outputs w∗ such that (x,w∗) ∈ R with probability at least ϵ−κ
q

for some

polynomial q.

Definition 8 (Honest verifier zero-knowledge (HVZK)) An argument system (P,V) for

a relation R is HVZK if there exists an efficient simulator Sim such that for every (x,w) ∈ R,

the distribution Sim(x) is identical to View⟨P(x,w),V(x)⟩, where View⟨P(x,w),V(x)⟩ is the distribution

of the view of the verifier in the protocol on common input x and prover’s witness w.

We now recall the special soundness property, which is typically simpler than knowledge

soundness.

Definition 9 (Tree of transcripts) A set of k =
∏ℓ

i=1 ki accepting transcripts for an argu-

ment system (P,V) is a (k1, . . . , kℓ)-tree of accepting transcripts if they are in the following tree

structure: The nodes of the tree are formed by P’s messages, and the edges correspond to V’s

messages. Each node at depth i has exactly ki children corresponding to ki distinct messages

from the verifier. Each transcript is given by a path from a leaf node to the root.

Definition 10 (Special Soundness) A (2ℓ + 1) move protocol is said to be (k1, . . . , kℓ) spe-

cial sound if there exists an extractor Ext that takes as input a (k1, . . . , kℓ)-tree of accepting

transcripts for an instance x, and outputs w such that (x,w) ∈ R.

Definition 11 (Succinct Argument of knowledge) An argument system is proof-succinct

if the communication complexity between prover and verifier is bounded by poly(λ), and verifier-

succinct if the running time of V is bounded by poly(λ + |x|) and independent of the size of the

circuit computing R.

Fiat Shamir and Non-Interactive AoK. An argument system is said to be public-coin if the ver-

ifier’s messages are uniformly random strings. Public-coin interactive protocols can be heuris-

tically compiled into non-interactive arguments by applying the Fiat-Shamir [59] transform

(FS) in the Random Oracle Model (ROM). Building on the above fundamental ZKP concepts,

SNARKs stands for the Succinct Non-interactive ARguments of Knowledge.

Note that all of our protocols are public-coin, hence we are only required to prove that our

protocols satisfy special soundness for our interactive protocols, and thereafter rely on the FS

transform to obtain the non-interactive version of our protocols.
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SNARKs in the updatable SRS model. A common reference string (CRS) model assumes the

presence of a trusted setup phase before the onset of the protocol execution, which generates a

truly random string and makes it available to both the prover and the verifier at the beginning

of the protocol. If the CRS has a structure that is leveraged in the protocol to obtain efficient

ZKP, then the CRS is known as a structured reference string (SRS). Additionally, an SRS which

enables parties to update the parameters during the setup phase, while retaining computational

soundness against any probabilistic polynomial time adversary as long as at least one honest

update is performed, is known as a universal updatable SRS. In the updatable SRS model, we

assume that the setup phase has generated the universal updatable SRS [75] securely, and then

the protocol leverages the structure of the SRS shared between the prover and the verifier to

enable efficient ZKPs.

We follow the model used by Daza et al. [52], based on [75], where anyone can deter-

ministically compute the circuit-specific preprocessing material given the (updated) universal

SRS, which ensures that the circuit-specific preprocessing is performed publicly without any

involvement of secrets.

3.2.2 Assumptions

Definition 12 (DLOG Assumption ) The discrete logarithm (DLOG) assumption for a group

G states that, given a generator g of the group G, for all PPT adversaries A we have

Pr (r = r′ | r ←−R Fq ∧ r′ ← A(gr)) ≤ negl(λ)

For structured keys following multilinear distribution (MLn), the following Find-rep as-

sumption holds in bilinear groups, which is known to follow from asymmetric DLOG Assump-

tion [52] (a natural extension of DLOG to accommodate bilinear groups). In the asymmetric

DLOG assumption, the adversary receives each element in both groups, that is, for generators

g ∈ G1, h ∈ G2 and for all α ∈ Fq, any gα as an input to the adversary will be accompanied by

hα, and vice versa.

Definition 13 (Find-rep Assumption) Find-rep assumption holds with respect to a bilinear

group generator BG for all PPT adversaries A we have

Pr

 g⟨a,x⟩ = 1G1 ∧ x ̸= 0

(q,G1,G2,GT , e, g, h)←−R BG(1λ)

a←−R MLn,x← A(ga, ha)

 ≤ negl(λ)

Definition 14 (DDH Assumption) For a group G, the decisional Diffie-Hellman (DDH)
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problem is to determine, when given a tuple (g, ga, gb, gc) for some g ∈ G, whether c = ab.

Decisional Diffie-Hellman (DDH) assumption in a group G states that DDH problem is hard in

that group.

Definition 15 (SXDH Assumption) For (q,G1,G2,GT , e, g, h) ←−R G(1λ), the Symmetric

External Diffie-Hellman (SXDH) assumption states that the decisional Diffie-Hellman (DDH)

assumption holds for both G1 and G2.

3.3 Compressed Sigma Protocol for Committed Linear

Forms

We construct a protocol to reveal the value L(x) for a committed vector x and committed linear

form L, i.e. a public value y satisfies the constraint y = L(x). The key idea is to honestly

generate a commitment to the (public) linear form in a preprocessing phase. Once generated,

a commitment to a linear form L can be used to open L on any committed vector. Note that

while using this as a subprotocol for arithmetic circuit SAT, we generate these commitments

during a one-time circuit-specific setup phase.

Definition 3.1 (Commitment to Fq-vectors [52]) Let (q,G1,G2,GT , e, g,H) be a bilinear

group and let n ≥ 0. We define a commitment scheme for vectors in Fn
q with the following setup

and commitment phase:

– Setup: Let ȧ := (ȧ1, . . . , ȧℓ) ← Fℓ
q where ℓ = log (n + 1). Let a = (a1, . . . , an) ∈ Fn+1

q be

defined as aj =
∏ℓ

i=1 ȧ
bji
i ,where (bj1, . . . , bjℓ) is the binary representation of j. Output

(ga, H ȧ), where ga ∈ Gn+1
1 is the commitment key, and H ȧ ∈ Gℓ

2 is the verification key.

– Commit: COM : Fn+1
q → G1, γ ←−R Fq and define

COMa (x; γ)→ g⟨a,(x∥γ)⟩

Lemma 3.1 The above scheme is perfectly hiding and computationally binding under the DLOG

assumption [52].

Proof: The prover is given the (public) commitment key ga where a = {a1, . . . , an+1}, i.e.

ga = (ga1 , . . . , gan+1).
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Proof of Hiding. We note that, given a commitment P to any Fq vector, any vector of elements

of Fq, x = (x1, . . . , xn) ∈ Fn
q , could have been the element that is chosen to compute P ,

if the uniformly randomly chosen randomness γ for obtaining the commitment is such that

g⟨a,(x∥γ)⟩ = P i.e. γ satisfies :

(
gan+1

)γ
=

P

(ga1)x1 · · · (gan)xn

Hence, the aforementioned scheme is perfectly hiding.

Proof of Binding. If the binding of this commitment scheme is broken, then we have x =

(x1, . . . , xn), γ and y = (y1, . . . , yn), δ such that x ̸= y and

COMa (x; γ) = COMa (y; δ)

=⇒ g⟨a,(x∥γ)⟩ = g⟨a,(y∥δ)⟩

=⇒ g⟨a,(x−y∥γ−δ)⟩ = 1G1

=⇒
(
ga1
)(x1−y1) · · ·

(
gan
)(xn−yn) ·

(
gan+1

)(γ−δ)
= 1G1

which breaks the (extended) discrete logarithm assumption.

2

We start with a Σ-Protocol for opening a linear form which is similar to the initial protocol

in [8] but using structured keys instead of uniformly random keys for the commitments. We

consider the following relation

R = {(P ∈ G, L ∈ L(Fn
q ), y ∈ Fq;x ∈ Fn

q , γ ∈ Fq) : P = COMa (x; γ) ∧ L(x) = y}}

which corresponds to showing opening of a public commitment P and a public value y, obtained

by operating a linear form L on a secret Fn
q vector x. This is the same relation as in [8] but using

the commitment COM with structured commitment key (ga, H ȧ) (Definition 3.1). We rely

on the SXDH assumption for providing the structured key (ga, H ȧ) while maintaining security.

Theorem 3.1 Π0 is a 3-move protocol for relation R. It is perfectly complete, special honest-

verifier zero-knowledge and computationally special sound.

Proof: Completeness. If protocol steps by the prover is executed correctly, then we have
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Parameters

– Common parameters : (P ∈ G, L ∈ L(Fn
q ), y ∈ Fq), P = COMa (x; γ), y = L(x)

– P’s input : (x ∈ Fn
q , γ ∈ Fq)

Protocol

1. P samples r ←−R Fn
q , ρ←−R Fq, computes A = COMa (r; ρ), t = L(r) and sends A, t to V

2. V samples c←−R Fq and sends c to P

3. P computes z = cx + r and ϕ = cγ + ρ and sends z, ϕ to V

4. V checks if COMa (z;ϕ) = AP c and L(z) = cy + t, outputs 1 if it holds, outputs 0
otherwise.

Figure 3.1: Protocol Π0 for relation R

z = cx + r, and it satisfies the final two checks by the verifier

COMa (z;ϕ) = g⟨a,(z∥ϕ)⟩, L(z) = L(cx + r)

= g⟨a,(cx+r∥cγ+ρ)⟩ = cL(x) + L(r)

= gc⟨a,(x∥γ)⟩g⟨a,(r∥ρ)⟩ = cy + t

= P cA

Special Honest-Verifier Zero-Knowledge. We construct a simulator Sim, which pro-

duces a transcript indistinguishable from the transcript of the real execution of the protocol,

provided a challenge c ∈ Fq. (i) Sim samples z, ϕ (ii) Sim computes COMa (z;ϕ) and sets

A = COMa (z;ϕ)
P c and t = L(z)− cy.

The transcript produced by the simulator Sim is indistinguishable from the transcript of the

real execution of the protocol due to the hiding property of the commitment scheme COM(.) (.),

which ensures that a commitment sampled uniformly at random from the set of all possible com-

mitments is indistinguishable from a commitment computed from a message chosen uniformly

at random.

Special Soundness. We consider 2 accepting transcripts (A, t, c1, z1, ϕ1) and (A, t, c2, z2, ϕ2),

such that c1 ̸= c2. Then we have,

COMa (z1;ϕ1) = AP c1 , L(z1) = c1y + t, and

COMa (z2;ϕ2) = AP c2 , L(z2) = c2y + t
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=⇒ g⟨a,(z1∥ϕ1)⟩ = AP c1 , L(z1) = c1y + t, and

g⟨a,(z2∥ϕ2)⟩ = AP c2 , L(z2) = c2y + t

Dividing the first two equations, and subtracting the second equations, we get

g⟨a,(z1−z2∥ϕ1−ϕ2)⟩ = P c1−c2 , L(z1 − z2) = (c1 − c2)y

We define x = (z1 − z2)/(c1 − c2) and γ = (ϕ1 − ϕ2)/(c1 − c2), and this gives us g⟨a,(x,γ)⟩ =

COMa (x, γ) = P , and L(x) = y. 2

3.3.1 Opening a Committed Linear Form

In Π0, the communication complexity as well as the verifier complexity is linear due to the

last message sent by the prover and the last check performed by the verifier. To improve both

complexities, we replace the message sent in the last step of Π0 with a proof of knowledge. We

define a relation that captures this and reduce the verifier’s work by committing to the linear

form and compressing the check using split-and-fold technique used in [8]. The protocol Π1 is

in Fig 3.2. We compress recursively until the size of instance is constant and can be sent in the

clear.

We now consider the new relation RCLF with respect to an updated linear form, where the

new linear form L is defined as L(z, ϕ) := L(z) and hence, the check performed by the verifier

in step 4 of Π0 (Fig 3.1) corresponds to the new relation, where the message sent by the prover

P to the verifier V in step 3 corresponds to a witness in the new relation.

RCLF = {(P ∈ G, Q ∈ G, y ∈ Fq;x ∈ Fn
q , L ∈ L(Fn

q )) :

P = COMa (x) ∧ Q = COMa (L) ∧ L(x) = y}}

This corresponds to showing opening of a public commitment P and a public value y, which is

the output of a linear form L on a secret Fn
q vector x, given a commitment to the linear form

L. We present the Σ-Protocol Π1 for RCLF in Fig 3.2, and use this protocol instead of step 4 of

Π0 to improve the communication and verifier complexity.

Finally, we define Π1-R as Π1-R = Π1 ◦Π0 for relation R, whose communication and compu-

tational complexity are dominated by that of Π1. The concatenation of the protocols Π1 and

Π0 proceeds by replacing the last message sent in clear by the prover in Π0 with a proof of

knowledge using Π1.
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Parameters

– Common parameters : (P ∈ G, Q ∈ G, y ∈ Fq, H
ȧ ∈ Gℓ

2),

– P = COMa (x), Q = COMa (L), y = L(x),

– n = 2ℓ, ȧ = (ȧ1, . . . , ȧℓ),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

– A bilinear group description (q,G,G2,GT , e, g,H), where e : G × G2 7→ GT is an
efficient bilinear map and g,H and e(g,H) are generators of groups G,G2 and GT ,
respectively, each of order q.

– P’s input : (ga ∈ Gn,x ∈ Fn
q , L ∈ L(Fn

q ))

Protocol

1. P parses x = (xL∥xR), L = (LL∥LR) and ga =
(
gaL∥gȧℓaL

)
, and computes and sends the

following to V:

(a) A1 = COMaL
(xL), A2 = COMaL

(xR)

(b) B1 = COMaL
(LL), B2 = COMaL

(LR)

(c) y1 = ⟨LR,xL⟩, y2 = ⟨LL,xR⟩

2. V checks the following, proceeds to step 3 if it holds, and aborts otherwise

e

(
P

A1

, H

)
= e

(
A2, H

ȧℓ
)
∧ e

(
Q

B1

, H

)
= e

(
B2, H

ȧℓ
)

3. V samples c←−R Fq and sends c to P

4. P sets x′ = xL + cxR, L
′ = cLL +LR and implicitly sets ȧ′ = (ȧ1, . . . , ȧℓ−1) and a′ = aL.

5. P and V both compute the following : P ′ = A1A
c
2, Q

′ = Bc
1B2, y

′ = y1 + cy + c2y2

6. If x′ /∈ F2
q : P runs PoK Π1 to prove knowledge of x′, L′ such that COMa′ (x′) = P ′,

COMa′ (L′) = Q′ and ⟨L′,x′⟩ = y′.
Hence, P and V run the protocol Π1 with updated common parameters (P ′, Q′, y′, gȧ

′
)

and prover’s input (ga
′
,x′, L′), for (P ′, Q′, y′;x′) ∈ RCLF

7. If x′ ∈ F2
q :

(a) P sends x′, L′ to V

(b) V outputs 1 if the following checks hold, and 0 otherwise:

COMa′ (x′) = P ′ ∧ COMa′ (L′) = Q′ ∧ ⟨L′,x′⟩ = y′

Figure 3.2: Protocol Π1 for relation RCLF
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Theorem 3.2 Π1 is a (k1, . . . , kℓ)-move protocol for relation RCLF, where ki = 3, ∀i ∈ [ℓ], ℓ =

log n. It is perfectly complete and computationally special sound. It incurs total communication

of 4 log n group elements and 4 + 3 log n field elements.

Proof Sketch. Here we present the proof sketch for the special soundness of Π1. Given 3

accepting transcripts (A1, A2, B1, B2, y1, y2, ci,x
′
i, L

′
i) for one iteration of Π1 (where one iteration

consists of steps 1-5, and step 6 follows by sending x′, L′ instead of providing a PoK) for

three distinct challenges c1, c2 and c3, extractor proceeds as follows. It computes a1, a2, a3 as

(a1, a2, a3)
T = V −1(0, 1, 0)T , where V is the Vandermonde matrix defined by the the challenges,

and sets w =
∑

i ai(cix
′
i∥x′

i) to be the extracted value. We show that COMa (w) = P ; and

similarly we extract a valid opening m of the commitment Q.

We then show that the extracted w,m satisfy x′
i = wL + ciwR and L′

i = mL + cimR for all

i = 1, 2, 3, which when substituted in the verification equation ⟨L′
i,x

′
i⟩ = y′i (Step 7(b)) gives

us ⟨mR,wL⟩ + ci⟨m,w⟩ + c2i ⟨mL,wR⟩ = y1 + ciy + c2i y2, for the distinct challenges c1, c2 and

c3. Hence, ⟨m,w⟩ = y holds, which shows that (w,m) is a valid witness for (P,Q, y) ∈ RCLF.

We now present the full proof.

Proof: Completeness. If the protocol is correctly executed by the prover P, then we have

1. A1 = COMaL
(xL) = g⟨aL,xL⟩, A2 = COMaL

(xR) = g⟨aL,xR⟩

2. B1 = COMaL
(LL) = g⟨aL, LL⟩, B2 = COMaL

(LR) = g⟨aL, LR⟩

3. y1 = ⟨xL, LR⟩, y2 = ⟨xR, LL⟩

4. x′ = xL + cxR, L′ = cLL + LR

Hence, the following verifier checks are satisfied as shown below :

e

(
P

A1

, H

)
= e

(
g⟨a,x⟩

g⟨aL,xL⟩
, H

)
= e(g⟨aR,xR⟩, H)

= e(g⟨ȧℓaL,xR⟩, H)

= e(g⟨aL,xR⟩, H ȧℓ)

= e(A2, , H
ȧℓ)

e

(
Q

B1

, H

)
= e

(
g⟨a, L⟩

g⟨aL, LL⟩
, H

)
= e(g⟨aR, LR⟩, H)

= e(g⟨ȧℓaL, LR⟩, H)

= e(g⟨aL, LR⟩, H ȧℓ)

= e(B2, , H
ȧℓ)

For each iteration of PoK Π1 (where one iteration consists of steps 1-5, and step 6 follows by

sending x′, L′ instead of providing a PoK), we have
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COMa′ (x′) = g⟨a
′,x′⟩

= g⟨aL,xL+cxR⟩

= g⟨aL,xL⟩gc⟨aL,xR⟩

= A1A
c
2

COMa′ (L′) = g⟨a
′,L′⟩

= g⟨aL,cLL+LR⟩

= gc⟨aL,LL⟩g⟨aL,LR⟩

= Bc
1B2

⟨L′,x′⟩ = ⟨cLL + LR,xL + cxR⟩

= c⟨LL,xL⟩+ c2⟨LL,xR⟩+ ⟨LR,xL⟩+ c⟨LR,xR⟩

= ⟨LR,xL⟩+ c(⟨LL,xL⟩+ ⟨LR,xR⟩) + c2⟨LL,xR⟩

= ⟨LR,xL⟩+ c⟨L,x⟩+ c2⟨LL,xR⟩

= y1 + cy + c2y2

Special Soundness. We first illustrate the extraction of the witness, and thereafter proceed

with the argument of the correctness of the extracted value. We begin with three accepting

transcripts for one iteration of PoK Π1 (where one iteration consists of steps 1-5, and step 6

follows by sending x′, L′ instead of providing a PoK) as follows, where c1, c2, c3 are all distinct

challenges:

(A1, A2, B1, B2, y1, y2, c1,x
′
1, L

′
1)

(A1, A2, B1, B2, y1, y2, c2,x
′
2, L

′
2)

(A1, A2, B1, B2, y1, y2, c3,x
′
3, L

′
3)

Extraction. The extraction proceeds as follows. We aim to find w,m such that ⟨m,w⟩ = y,

and w,m are openings of P and Q. We note that, as c1, c2 and c3 are such that ci ̸= cj for all

(i ̸= j) i, j ∈ {1, 2, 3}, the Vandermonde matrix V described below is invertible.

V =

 1 1 1

c1 c2 c3

c21 c22 c23


Hence, we can compute a1, a2, a3 as (a1, a2, a3)

T = V −1(0, 1, 0)T . The computed a1, a2, a3 satisfy∑
i ai = 0,

∑
i aici = 1 and

∑
i aic

2
i = 0. Define zi = (cix

′
i∥x′

i). Now let w = a1z1 +a2z2 +a3z3

be the extracted value. Following a similar procedure, we extract m and output (w,m) as the

witness for RCLF.

Proof of correctness of extracted value. We first prove that the extracted w and m are

openings of commitments P and Q, respectively. Then we prove that w and m also satisfies the
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constraint ⟨m,w⟩ = y. This shows that the extracted (w,m) is a valid witness for (P,Q, y) ∈
RCLF.

We recall that w = a1z1 + a2z2 + a3z3 by definition, and COMa′ (x′
i) = A1A

ci
2 holds from

verification equation in step 6.

COMa (w) = g⟨a,w⟩

= g⟨a,a1z1+a2z2+a3z3⟩

= g⟨aL∥aR,a1(c1x′1∥x′1)+a2(c2x′2∥x′2)+a3(c3x′3∥x′3)⟩

= g⟨aL,a1c1x
′
1+a2c2x′2+a3c3x′3⟩g⟨aR,a1x′1+a2x′2+a3x′3⟩

= g⟨a
′,a1c1x′1+a2c2x′2+a3c3x′3⟩g⟨ȧℓa

′,a1x′1+a2x′2+a3x′3⟩

= (A1A
c1
2 )a1c1(A1A

c2
2 )a2c2(A1A

c3
2 )a3c3(A1A

c1
2 )a1ȧℓ(A1A

c2
2 )a2ȧℓ(A1A

c3
2 )a3ȧℓ (from step 6)

= A
(a1c1+a2c2+a3c3)+ȧℓ(a1+a2+a3)
1 A

(a1c21+a2c22+a3c23)+ȧℓ(a1c1+a2c2+a3c3)
2

= A1A
ȧℓ
2

= P (since we have e

(
P

A1

, H

)
= e

(
A2, H

ȧℓ
)

which ensures P = A1A
ȧℓ
2 )

Hence, the extracted w is an opening of the commitment P . Similarly, we can prove that

m is an opening of the commitment Q. From the binding of the commitment scheme, we can

ensure that w = x and m = L except with negligible probability.

Let b ∈ Fn
q be such that x′

i = bL + cibR holds for all i = 1, 2, 3. Then our defined zi

can be interpreted as zi = (cix
′
i∥x′

i) = (0∥bL) + ci(bL∥bR) + c2i (bR∥0) for all i = 1, 2, 3.

Now, given a1, a2, a3 that satisfy
∑

i ai = 0,
∑

i aici = 1 and
∑

i aic
2
i = 0, we have w =∑

i aizi =
∑

i ai(0∥bL) +
∑

i aici(bL∥bR) +
∑

i aic
2
i (bR∥0) = b. Hence, the extracted w satisfies

x′
i = wL + ciwR. Similarly, the extracted value m also satisfies L′

i = mL + cimR for all

i = 1, 2, 3.

Since the transcripts are accepting, step 7(b) of the verification equation, ⟨L′
i,x

′
i⟩ = y′i holds;

that is ⟨L′
i,x

′
i⟩ = y1 + ciy + c2i y2, for all i = 1, 2, 3. Substituting the values of L′

i and x′
i, we get

that ⟨mR,wL⟩ + ci⟨m,w⟩ + c2i ⟨mL,wR⟩ = y1 + ciy + c2i y2 holds for all i = 1, 2, 3. Hence, we

obtain that ⟨m,w⟩ = y. 2

3.3.2 Improved Protocol for Opening a Committed Linear Form

We recall that for x = (x1, . . . , xn) ∈ Fn
q , rev(x) is defined as rev(x) = (xn, . . . , x1). We present

an alternative protocol that achieves better communication complexity at the cost of degrading

soundness; it needs 2n transcripts to extract. Consider a modified version of the relation RCLF

34



defined earlier, where instead of committing to the linear form we now commit to the reverse

of the linear form, and define the new relation RCLF-rev as follows :

RCLF-rev = {(P ∈ G, Q ∈ G, y ∈ Fq;x ∈ Fn
q , L ∈ L(Fn

q )) :

P = COMa (x) ∧ Q = COMa (rev(L)) ∧ L(x) = y}}

where the relation RCLF-rev corresponds to showing opening of a public commitment P and a

public value y, obtained by operating a linear form L on a secret Fn
q vector x, where we also

have a commitment to the reverse of linear form L which is represented as a vector. We note

that the randomness used for the commitments is implicitly assumed from here onwards. We

have the following protocol for the relation RCLF-rev (Fig 3.3).

The protocol aims to reduce the verification of the statement (P,Q, y;x) ∈ RCLF-rev by

prover P and verifier V, to a polynomial check where we have the equation

x(U) · rev(L)(U) = pL(U) · U−1 + y · Un−1 + pR(U) · Un

and we have commitment to each polynomial. The polynomials are then evaluated at the

random challenge sent by the verifier V, and the consistency of the evaluations with the equation

satisfied by the polynomial is checked.

Theorem 3.3 Π2 is a protocol for relation RCLF-rev. It is perfectly complete and computation-

ally special sound.

Proof: Completeness follows directly.

Special Soundness. We consider 4 accepting transcripts for one iteration of PoK Π2 with

different challenges ti, i ∈ {1, 2, 3} as follows, where t1, t2, t3 are all distinct challenges:

(A1, A2, c, z1, z2, z3, z4, t1,w1)

(A1, A2, c, z1, z2, z3, z4, t2,w2)

(A1, A2, c, z1, z2, z3, z4, t3,w3)

(A1, A2, c, z1, z2, z3, z4, t4,w4)

We note that, as t1, t2, t3 and t4 are such that ti ̸= tj for all (i ̸= j) i, j ∈ {1, 2, 3, 4}, the
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Parameters

– Common parameters : (P ∈ G, Q ∈ G, y ∈ Fq, H
ȧ ∈ Gℓ),

– P = COMa (x), Q = COMa (rev(L)), y = L(x),

– n = 2ℓ, ȧ = (ȧ1, . . . , ȧn),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

– P’s input : (ga ∈ Gn,x ∈ Fn
q , L ∈ L(Fn

q ))

Protocol

1. Let us define B ∈ Fn
q as B = rev(L). Let x(U) be a polynomial of degree (n− 1) defined

with coefficient vector x = (x1, . . . , xn), such that x(U) =
∑n−1

i=0 xi+1U
i. Similarly, we

define the polynomial B(U) of degree (n− 1) for the vector B.

2. P defines a (2n− 2) degree polynomial p by

p(U) = x(U) ·B(U) =
∑
i,j

xi+1Bj+1U
i+j,

and parses the computed polynomial as

p(U) = pL(U) · U−1 + y · Un−1 + pR(U) · Un,

where pL is a polynomial of degree (n−1) and pR is a polynomial of degree (n−2) (which
is trivially extended to a vector of length n by appending 0 appropriately).

3. P computes A1 = COMa (pL) and A2 = COMa (pR), and sends A1, A2 to V

4. V samples c←−R Fq and sends c to P

5. P computes the evaluations of the polynomials on the random challenge c as follows, and
then sends z1, z2, z3 and z4 to V: z1 = x(c), z2 = B(c), z3 = pL(c), z4 = pR(c).

6. V checks if the following relation holds, aborts if the check fails, and continues to the next
step otherwise.

z3 · c−1 + y · cn−1 + z4 · cn = z1 · z2

7. V samples t←−R Fq and sends t to P

Figure 3.3: Protocol Π2 for relation RCLF-rev
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8. P sets w = x + t ·B + t2 · pL + t3 · pR and sends w to V

9. P and V both compute the following :

R = P ·Qt · At2

1 · At3

2 and z = z1 + t · z2 + t2 · z3 + t3 · z4

10. V outputs 1 if for cn−1 = (1, . . . , cn−1) ∈ PWn the following relation holds, and outputs
0 otherwise:

COMa (w) = R ∧ ⟨w, cn−1⟩ = z

Figure 3.3: Protocol Π2 for relation RCLF-rev

matrix V described below is invertible.

V =


1 1 1 1

t1 t2 t3 t4

t21 t22 t23 t24

t31 t32 t33 t34


Let us denote ei, i ∈ {1, 2, 3, 4} where jth entry of ei is 1 for j = i, and 0 otherwise. Let us

consider a vector ρj = (ρj1, ρ
j
2, ρ

j
3, ρ

j
4) for j = 1, 2, 3, 4. Hence, we can compute (ρj)T = V −1eTj .

The computed ρ11, ρ
1
2, ρ

1
3, ρ

1
4 satisfy

∑
i ρ

1
i = 1,

∑
i ρ

1
i ti = 0,

∑
i ρ

1
i t

2
i = 0 and

∑
i ρ

1
i t

3
i = 0.

Similarly, it holds for j = 2, 3, 4.

We define rx to be the extracted value of x and compute it as rx = ρ11w1 + ρ12w2 + ρ13w3 +

ρ14w4, given that COMa (wi) = P ·Qti · At2i
1 · A

t3i
2 then we consider

COMa (rx) = g⟨a,rx⟩

= g⟨a,ρ
1
1w1+ρ12w2+ρ13w3+ρ14w4⟩

= (PQt1A
t21
1 A

t31
2 )ρ1(PQt2A

t22
1 A

t32
2 )ρ2(PQt3A

t23
1 A

t33
2 )ρ3(PQt4A

t24
1 A

t34
2 )ρ4

= P
∑

i ρ
1
iQ

∑
i ρ

1
i tiA

∑
i ρ

1
i t

2
i

1 A
∑

i ρ
1
i t

3
i

2

= P

Hence, the extracted rx is an opening of the commitment P .

Similarly, we define rB, rpL and rpR to be the extracted value of B,pL and pR ,and compute

them as rB = ρ21w1 + ρ22w2 + ρ23w3 + ρ24w4, rpL = ρ31w1 + ρ32w2 + ρ33w3 + ρ34w4 and rpR =

ρ41w1 + ρ42w2 + ρ43w3 + ρ44w4. We also know that w(c) = z1 + ti · z2 + t2i · z3 + t3i · z4 holds for
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all i = 1, 2, 3, 4, since the transcripts are accepting transcripts.

rx(c) = ρ11w1(c) + ρ12w2(c) + ρ13w3(c) + ρ14w4(c)

=
∑
i

ρ1i z1 +
∑
i

ρ1i ti · z2 +
∑
i

ρ1i t
2
i · z3 +

∑
i

ρ1i t
3
i · z4 = z1

rB(c) = ρ21w1(c) + ρ22w2(c) + ρ23w3(c) + ρ24w4(c)

=
∑
i

ρ2i z1 +
∑
i

ρ2i ti · z2 +
∑
i

ρ2i t
2
i · z3 +

∑
i

ρ2i t
3
i · z4 = z2

rpL(c) = ρ31w1(c) + ρ32w2(c) + ρ33w3(c) + ρ34w4(c)

=
∑
i

ρ3i z1 +
∑
i

ρ3i ti · z2 +
∑
i

ρ3i t
2
i · z3 +

∑
i

ρ3i t
3
i · z4 = z3

rpR(c) = ρ41w1(c) + ρ42w2(c) + ρ43w3(c) + ρ44w4(c)

=
∑
i

ρ4i z1 +
∑
i

ρ4i ti · z2 +
∑
i

ρ4i t
2
i · z3 +

∑
i

ρ4i t
3
i · z4 = z4

Hence, we have that the extracted polynomials rx, rB, rpL and rpR satisfies the following

constraint :

z3 · c−1 + y · cn−1 + z4 · cn = z1 · z2 (from accepting transcripts)

=⇒ rpL(c) · c−1 + y · cn−1 + rpR(c) · cn = rx(c) · rB(c)

Now, we consider 2n such transcripts with different verifier challenges ci, i ∈ {1, . . . , 2n},
each with 4 different challenges tij, j ∈ {1, . . . , 4}, i ∈ {1, . . . , 2n}. Hence, the above constraint

is satisfied by 2n−1 random challenges, i.e. the polynomial evaluations are consistent with the

constraint at 2n evaluation points, where the highest degree of the polynomial is 2n−1. Hence,

polynomials identically satisfy the constraints at all points, which implies that ⟨rx, rev(rB)⟩ = y

holds for the aforementioned polynomials.

2

Now we note that the last message w sent by the prover to the verifier in Π2 (Fig 3.3)

is a witness for the relation R, where R = {(P ∈ G, L ∈ L(Fn
q ), y ∈ Fq;x ∈ Fn

q ) : P =

COMa (x) ∧ L(x) = y}}, and the check computed by the verifier in step 10 of Π2 corresponds

to ensuring that (R, cn−1, z;w) ∈ R.

We state the following protocol for relation R which is the compressed proof of knowledge

protocol stated in [8] with the following key differences: the linear form evaluation is checked in

clear, commitment uses structured commitment key and commitment to the left and right half

of the witness sent in the protocol being used to establish consistency with the commitment

38



to the whole key which is only possible due to the usage of structure in commitment key with

keys being hidden in the exponent.

We note that even with the same protocol technique as [8] which inherently incurs linear

computational complexity for verifier, we manage to retain a logarithmic computational com-

plexity. This is due to the usage of structured commitment key, which does not require the

verifier to compute a challenge dependent commitment key for the next iteration, and having a

nicely-structured linear form which ensures that verifier can compute the challenge dependent

linear form required for the next iteration efficiently. This suffices for our cause as we aim to

use this protocol for providing proof of knowledge of the last message sent in step 8 of Π2 such

that it satisfies the verifier check in the step 10, which provides us a witness of the relation R.

We note that the last message vector (polynomial) sent by the prover to the verifier of Π2

is aimed to convince the verifier that the vector is consistent with opening of a group element

computed by the verifier and evaluation of the polynomial at a random field element is consistent

with a public field element computed by the verifier. We provide protocol Π′
2 for this.

We treat the evaluation of the polynomial w at a fixed point, denoted by w(c), as an

inner-product relation with a univariate polynomial, denoted by ⟨w, cn−1⟩, where cn−1 =

(1, c, . . . , cn−1). Now, provided that the evaluation point is fixed at c ∈ Fq, this inner product

relation can be thought of as a linear form evaluation, where the public linear form cn−1

evaluation at a secret vector w is equal to the public value z ∈ Fq. Now, we note that, the

claim in step 10 is equivalent to providing a Proof of Knowledge of witness w in the following

relation :

R = {(P ∈ G, L ∈ L(Fn
q ), y ∈ Fq;x ∈ Fn

q ) : P = COMa (x) ∧ L(x) = y}}

where we have that (R, cn−1, z;w) ∈ R.

Theorem 3.4 Π′
2 is a (k1, . . . , kℓ)-move protocol for relation (R, cn−1, z;w) ∈ R, where ki =

3, ∀i ∈ [ℓ]. It is perfectly complete and computationally special sound.

Proof: Completeness follows directly.

Special Soundness. We consider 3 accepting transcripts for one iteration of PoK Π′
2 (where

one iteration consists of steps 1-5, and step 6 follows by sending x′, L′ instead of providing a
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Parameters

– Common parameters : (R ∈ G, Lc ∈ Fn
q , z ∈ Fq, H

ȧ ∈ Gℓ)

– R = COMa (w), Lc = cn−1 = (1, c, . . . , cn−1), z = Lc(w),

– n = 2ℓ, ȧ = (ȧ1, . . . , ȧn),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

– P’s input : (ga ∈ Gn,w ∈ Fn
q , Lc = cn−1 ∈ Fn

q )

Protocol

1. P computes and sends A1, A2, z
′ to V

(a) A1 = COMaL
(wL)

(b) A2 = COMaL
(wR)

(c) z′ = ⟨wL, (Lc)L⟩ = ⟨wL, c
n−1
2 ⟩

2. V checks if

e

(
R

A1

, g

)
= e

(
A2, g

ȧℓ
)

If the check fails, V aborts, otherwise V continues.

3. V samples s←−R Fq and sends s to P

4. P sets w′ = wL + s · wR, L
′
c = s(Lc)L + (Lc)R = (s + cn/2)cn/2−1 and implicitly sets

ȧ′ = (ȧ1, . . . , ȧℓ−1) and a′ = aL

5. P and V both compute the following :

R′ = A1A
s
2 and d = cn/2 · z′ + s · z + s2 · c−n/2 · (z − z′)

6. If w′ /∈ F2
q : P runs PoK Π′

2 to prove knowledge of w′, L′
c such that COMa′ (w′) = P ′

and ⟨L′
c,x

′⟩ = d.
Hence, P and V run the protocol Π′

2 with updated common parameters (P ′, L′
c, d, g

ȧ′) and
prover’s input (ga

′
,w′), for (P ′, L′

c, d;w′) ∈ R

7. If w′ ∈ F2
q :

(a) P sends w′, L′
c to V

(b) V outputs 1 if the following holds, and outputs 0 otherwise:

COMa′ (w′) = R′ ∧ ⟨L′
c,w

′⟩ = d

Figure 3.4: Protocol Π′
2 for (R,Lc, z;w) ∈ R
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PoK) as follows, where s1, s2, s3 are all distinct challenges. :

(A1, A2, z
′, s1,w

′
1)

(A1, A2, z
′, s2,w

′
2)

(A1, A2, z
′, s3,w

′
3)

Let us consider zi = (siw
′
i∥w′

i). We note that, as s1, s2 and s3 are such that si ̸= sj for all

(i ̸= j) i, j ∈ {1, 2, 3}, the matrix V described below is invertible.

V =

 1 1 1

s1 s2 s3

s21 s22 s23


Hence, we can compute (a1, a2, a3)

T = V −1(0, 1, 0)T . The computed a1, a2, a3 satisfy
∑

i ai =

0,
∑

i aici = 1 and
∑

i aic
2
i = 0.

Let us consider x = a1z1 + a2z2 + a3z3, given that COMa′ (w′
i) = A1A

si
2 then we consider

COMa (x) = g⟨a,x⟩

= g⟨a,a1z1+a2z2+a3z3⟩

= g⟨aL∥aR,a1(s1w′1∥w′1)+a2(s2w′2∥w′2)+a3(s3w′3∥w′3)⟩

= g⟨aL,a1s1w
′
1+a2s2w′2+ass3w′3⟩g⟨aR,a1w′1+a2w′2+a3w′3⟩

= g⟨a
′,a1s1w′1+a2s2w′2+a3s3w′3⟩g⟨ȧℓa

′,a1w′1+a2w′2+a3w′3⟩

= (A1A
s1
2 )a1s1(A1A

s2
2 )a2s2(A1A

s3
2 )a3s3(A1A

s1
2 )a1ȧℓ(A1A

s2
2 )a2ȧℓ(A1A

s3
2 )a3ȧℓ

= A
(a1s1+a2s2+a3s3)+ȧℓ(a1+a2+a3)
1 A

(a1s21+a2s22+a3s23)+ȧℓ(a1s1+a2s2+a3s3)
2

= A1A
ȧℓ
2

= R (since we have e

(
R

A1

, H

)
= e

(
A2, H

ȧℓ
)

which ensures R = A1A
ȧℓ
2 )

Hence, the extracted x is an opening of the commitment R. From the binding of the

commitment scheme, we can ensure that x = w except with negligible probability.

From the accepting transcripts, we have that ⟨(L′
c)i,x

′
i⟩ = y1 + siy + s2i y2 for i = 1, 2, 3 .

Now, we consider the following :

⟨(L′
c)i,w

′
i⟩ = ⟨si(Lc)L + (Lc)R,wL + siwR⟩ ∀i ∈ {1, 2, 3}

=⇒ y1 + siy + s2i y2 = ⟨(Lc)R,wL⟩+ si⟨(Lc),w⟩+ s2i ⟨(Lc)L,wR⟩ ∀i ∈ {1, 2, 3}
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=⇒ y = ⟨Lc,w⟩

2

Theorem 3.5 (Π2)c = Π′
2 ◦Π2 is a (2n, 4, k1, . . . , kℓ)-move protocol for relation RCLF-rev, where

ki = 3, ∀i ∈ [ℓ]. It is perfectly complete and computationally special sound. It incurs total

communication of (2 + 2 log n) group elements and 6 + 2 log n field elements.

We note that (Π2)c performs better than Π1 for the relation RCLF-rev, however the pre-

processing step needs a commitment to reverse of the linear forms. This is fine in our application

to construct proofs for circuit satisfiability, since the commitments to the reverse of these linear

forms is computed in the preprocessing phase. In case we only a commitment to the linear form,

we can still use our protocol by having the prover send the commitment to the reversed linear

form, together with a proof that it is indeed correct. This can be achieved by the observation

that for L ∈ L(Fn
q ) considered as a polynomial, being evaluated at c has equal value as that of

its reverse being evaluated at c−1 and the result being multiplied with cn−1.

L(c) = cn−1 · (rev(L))
(
c−1
)
⇐⇒ ⟨L, cn−1⟩ = cn−1 · ⟨rev(L), (c−1)n−1⟩

Hence, if P = COMa (L) is computed in the preprocessing phase, then the prover can compute

Q = COMa (rev(L)) and send Q along with the proof that opening of P evaluated at a random

challenge c is cn−1 times Q evaluated at c−1, at the onset of the protocol and proceed with

(Π2)c. This gives us an overhead of 1 group element and 2 field elements. Finally, we define

Π2-R = (Π2)c ◦ Π0 for relation R, whose communication and computational complexity are

dominated by that of (Π2)c.

3.4 Updatable SRS zkSNARK for Circuit Satisfiability

In this section, we construct a zkSNARK with updatable SRS for circuit satisfiability by re-

ducing a statement about a circuit with respect to a public input to opening a linear form.

We take the approach of Attema et al. [8] to handle multiplication gates by linearizing them,

but we need to employ some new ideas to keep the verifier succinct. We recall the technique

for handling multiplication gates in the work of Attema et al. [8], where we have the left input

wire values wa, the right input wire values wb and the output wire values wo, secret shared

via packed secret sharing, where the randomness is embedded in the constant term. Let f, g

and h be the polynomials with the packed secret sharing of wa, wb and wo respectively,such

that f(X) · g(X) = h(X). Attema et al. [8] handles it by sending a commitment to the wire
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values in a long vector and opening them at a random point c, and then using Schwartz Zippel

lemma to argue that the polynomials are identical if f(c) · g(c) = h(c) holds. However, the

protocol to check f(c) · g(c) = h(c) renders the verifier linear, since the linear form for opening

the polynomials at the random value is linear in the size of the witness. We circumvent this

drawback of linear verification complexity from having to read the linear form by obtaining

commitments to the linear form. The goal is to commit to linear forms required for openings

of f, g, and h, and then invoke our succinct-verifier linear form protocol. We then proceed to

prove that, given A,B and C as commitment to some secret vectors a, b and c respectively

from Fn
q , the committed vectors satisfies the hadamard relation a ◦ b = c, i.e. aibi = ci for all

i ∈ [n].

Following that, we show how to prove that given commitments A,B to two vectors s, r ∈ Fn
q ,

they are some committed permutation of each other. Concretely, s, r ∈ Fn
q are such that

s = σ(r) for some known permutation σ. Finally, we show how to put together these building

blocks to construct a protocol for circuit satisfiability with logarithmic proof size and verification

complexity.

3.4.1 Committing to a Linear Form for Multiplication Gates

Let ρc = V −1(1 c c2 · · · cn−1)T for a random challenge c chosen by the verifier, where V is the

Vandermonde matrix of the public evaluation points αi, i ∈ [n]. This enables us to compute

f(c) = f · V · ρc = (f(α1) . . . f(αn)) · ρc for a polynomial f ∈ Fq≤n
[X]. Now, instead of having

the verifier compute a commitment to ρc (which would render it linear), we instead offload the

computation of ρc to the prover and have the verifier check this computation in logarithmic

time.

To check if a group element is indeed a commitment to ρc in logarithmic time, our key idea

is to instantiate V as follows

V =



1 · · · 1 · · · 1

2 · · · 2i · · · 2n

22 · · · 22i · · · 22n

...
...

...

2(n−1) · · · 2(n−1)i · · · 2(n−1)n


(3.1)

This enables us to reduce the verification of ρc to a series of n linear form checks, where the

linear forms correspond to the rows of V . We then use the structure of V to express a random

linear combination of the rows of V in a way that is easily checkable.
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Parameters

– Parameters from preprocessing:

– X := COMa (x) where x := (2, . . . , 2n) ∈ Fn
q ,

– 1Com := COMa (1) where 1 = (1, . . . , 1) ∈ Fn
q

– Common input:

– V is the Vandermonde matrix defined in equation 3.1.

Protocol

1. V samples c←−R Fq and sends it to P.

2. P sets ρc, where ρc = (ρc1, · · · , ρcn) = V −1(1 c c2 · · · cn−1)T and ρc
′ = (0, ρc1, · · · , ρcn),

and computes A = COMa (rev(ρc)), A
′ = COMa (rev(ρc

′)).

3. P sends A,A′ to V.

4. V samples t←−R Fq \ {2−1, · · · , 2−i, · · · , 2−n} and sends t to P.

5. P sets the jth row of V as Vj, i.e. Vj := (2j−1, 22(j−1), · · · , 2i(j−1), · · · , 2n(j−1)) ∀j ∈
{1, · · · , n}, and computes B := COMa (V (t)), where V (t) := (tn−1)TV =

∑n
j=0 t

n−1Vj.

6. P sends B to V.

7. The verifier samples y ←−R Fq \ {1, 2−1}, d←−R Fq and sends y, d to P.

8. P sets z = (2it− 1)i∈[n], γ = ⟨ρc,dn−1⟩ and sends γ to V.

9. P and V independently computes Z = COMa (yn−1 ◦ z) = X t · (1Com)−1, α =

2ntn (2ny)n−1
2ny−1

− yn−1
y−1

and β = (ct)n−1
ct−1

.

10. P and V interact to prove the following relation:

(a) run (Π2)c for (B,A, β; (V (t))T , ρc) ∈ RCLF-rev

(b) run Π2-R for (A,dn−1, γ; ρc), (A
′,dn−1, dγ; ρc

′) ∈ R

(c) run Π2-R for (B,yn−1 ◦ z, α;V (t)) ∈ R

Figure 3.5: Protocol Πcom-mult for obtaining commitment to linear form for multiplication gates.
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Let us define the relation Rcom-mult as follows:

Rcom-mult = { (A1 ∈ G, A2 ∈ G, V ∈ Fn×n
q , cn−1 ∈ Fn

q ; ρc, ρc
′) :

cn−1 = (1 c . . . cn−1), ρc = V −1cn−1, ρc
′ = 0∥ρc,

A1 = COMa (ρc), A2 = COMa (ρc
′)} (3.2)

This relation captures obtaining commitment to a linear form consisting of public linear com-

bination coefficients to obtain the evaluation of an n-degree polynomial at a randomly chosen

point c by the verifier. We note that ρc
′ here denotes the vector (linear form) ρc shifted to the

right by one, which is used in the protocols in subsequent sections to open polynomials defined

by evaluations at the vector (1, c1, . . . , cn) as (1, c1, . . . , cn−1) and (c1, . . . , cn) with the same vec-

tor description. That is, given a vector (1, c1, . . . , cn), we can use our relation to capture linear

forms to evaluate polynomials defined by both (1, c1, . . . , cn−1) and (c1, . . . , cn) simultaneously.

Figure 3.5 presents the protocol Πcom-mult for the relation Rcom-mult.

Note that it is easy to add zero checks to the protocol in Figure 3.5 to get a commitment

to ρn∥0 ∈ Fn′
q . Let n′ > n be the length of the commitment key. The verifier samples a

challenge t ←−R Fq and checks that the commitment Pn claimed to be to ρn ∈ Fn
q satisfies

(Pn,0
n∥tn′−n, 0; ρn∥0) ∈ R. Moreover, it is also easy to get a commitment to the reverse of ρn.

For this, the verifier samples a challenge u and asks the prover to make a claim of the form

⟨ρn,un⟩ = v. It then checks if the commitments Pn, Qn claimed to be to be to ρn and its reverse

satisfy (Pn,u
n, v), (Qn, rev(u

n), v) ∈ RCLF-rev.

Theorem 3.6 Πcom-mult is a (7, 4, k1, . . . , kℓ)-move protocol for relation Rcom-mult (equation 3.2).

It is perfectly complete and computationally special sound.

Proof: Completeness. The prover P computes V (t) = tn−1V =
∑n

j=1 t
j−1Vj and B =

COMa (V (t)), where Vj is the jth row of V (equation 3.1) and t ̸= 1, . . . , 2−i, . . . , 2−(n−1).

Then,

V (t) =
(

(2t)n−1
2t−1

, · · · , (2
it)n−1
2it−1

, · · · , (2
nt)n−1
2nt−1

)
Let us define z = (2t − 1, . . . , 2it − 1, . . . , 2nt − 1), then we have V (t) ◦ z = ((2t)n −

1, . . . , (2it)n−1, . . . , (2nt)n−1), which ensures that, for any y ∈ Fq, we have ⟨yn−1 ◦ z, V (t)⟩ =

⟨yn−1, V (t) ◦ z⟩ = 2ntn (2ny)n−1
2ny−1

− yn−1
y−1

= α. This ensures that (B,yn−1 ◦ z, α;V (t)) ∈
R. Also, ⟨(V (t))T , ρc⟩ = ⟨V T tn−1, V −1cn−1⟩ = ⟨tn−1, cn−1⟩ = (ct)n−1

ct−1
= β, ensures that

(B,A, β; (V (t))T , ρc) ∈ RCLF-rev.
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Since ⟨ρc′,dn−1⟩ = d⟨ρc,dn−1⟩, we have that (A,dn−1, γ; ρc) ∈ R, and (A′,dn−1, dγ; ρc
′) ∈

R for γ = ⟨ρc,dn−1⟩ ∈ Fq.

Special Soundness. Our extractor uses the extractor for (Π2)c and Π2-R, invoked in step

10 of Πcom-mult, as a subroutine. Given (2n, 4, 3, . . . , 3) tree of accepting transcripts for (Π2)c

invoked for relation (B,A, β;V (t), ρc) ∈ RCLF-rev, we run the extractor for (Π2)c to obtain

openings of B,A and the binding of the commitments and soundness of the protocol ensures

that the extracted openings are V (t) and ρc such that ⟨ρc, (V (t))T ⟩ = β. Similarly, given

(2, 2n, 4, 3, . . . , 3) tree of accepting transcripts for Π2-R invoked for relations (A,dn−1, γ; ρc),

(A′,dn−1, dγ; ρc
′), and (B,yn−1 ◦ z, α;V (t)) ∈ R, we run the extractor for (Π2)c to obtain

openings of A,A′, B and the binding of the commitments and soundness of the protocol ensures

that the extracted openings are ρc, ρc
′ and V (t) such that ⟨dn−1, ρc⟩ = γ, ⟨dn−1, ρc

′⟩ = dγ and

⟨yn−1 ◦ z, V (t)⟩ = α. Hence, we get that the following relations hold:

1. ⟨yn−1, V (t) ◦ z⟩ = ⟨yn−1 ◦ z, V (t)⟩ = α = 2ntn (2ny)n−1
2ny−1

− yn−1
y−1

=⇒ ⟨yn−1, V (t) ◦ z⟩ = 2ntn (2ny)n−1
2ny−1

− yn−1
y−1

.

2. ⟨V ρc, t
n−1⟩ = (V ρc)

T tn−1 = ρc
T (V T tn−1) = ρc

TV (t)T = ⟨ρc, V (t)T ⟩ = (ct)n−1
ct−1

=⇒
V ρc = cn−1

3. ⟨ρc′,dn−1⟩ = dγ = d⟨ρc,dn−1⟩
=⇒ ⟨ρc′,dn−1⟩ = d⟨ρc,dn−1⟩

The last relation provides us, that given two polynomials ρc and ρc
′ defined by their vector

of coefficients, we have ρc(d) = d ·ρc′(d) for some d ∈ Fq sampled completely at random. Hence,

given accepting transcripts with n-different challenges y, d and t each, following relations hold

from Schwartz Zippel Lemma:

1. V (t) ◦ z = ((2t)n − 1, . . . , (2it)n − 1, . . . , (2nt)n − 1), where z = (2it− 1)i∈[n]

=⇒ V (t) =
∑n

j=0 t
n−1Vj, where Vj = (2j−1, 22(j−1), · · · , 2i(j−1), · · · , 2n(j−1))

2. V ρc = cn−1

3. ρc
′ = 0∥ρc = (0, ρc1, . . . , ρcn) when ρc = (ρc1, . . . , ρcn)

which ensures that our extracted vectors are such that ρc is a linear form whose commitment

is provided, and ρc contains the coefficient linear combinations for obtaining evaluation at c.

Also, ρc
′ is a linear form which is ρc shifted by one place to the right.

2
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3.4.2 Hadamard Product Argument

Let a, b ∈ Fn
q , recall that the hadamard product is defined as a ◦ b = (a1b1, . . . , anbn) ∈ Fn

q .

Our goal is to prove knowledge of three vectors that satisfy the hadamard product relation,

given succinct commitment to the vectors.

Concretely, given three vectors a, b, c ∈ Fn
q such that a◦b = c, we define pa(X), pb(X), pc(X) ∈

Fn
q [X] such that pa(2i) = ai, pb(2

i) = bi for all i ∈ [n] and pc(X) := pa(X) · pb(X). We define

h(c) = (pc(2
n+1), . . . , pc(2

2n−1)). The protocol proceeds as follows. The prover computes com-

mitments A,B,C to the vectors a, b and c′ := c∥h(c) respectively. The verifier then samples

a challenge z, and the prover responds with commitments Pn, P2n to the reverse of ρn and ρ2n,

where ρn and ρ2n are defined as ρn = V −1(1 z z2 · · · zn−1)T , ρ2n = V −1(1 z z2 · · · z2n−2)T .

Then the prover opens the polynomial evaluations of pa(X), pb(X), pc(X) at a random point

chosen by the verifier, using the commitments to the vectors and the linear forms.

The hadamard relation Rhad with suitable modification to incorporate the commitments to

the vectors is defined below, and the protocol Πhad presents the protocol for relation Rhad. Note

that to ensure zero-knowledge property of the protocol Πhad, to prove a ◦ b = c, we invoke the

protocol for (A,B,C;a∥d, b∥e, c∥de) ∈ Rhad where d, e←−R Fq.

Rhad = {(A ∈ G, B ∈ G, C ∈ G;a ∈ Fn
q , b ∈ Fn

q , c ∈ Fn
q ) :

A = COMa (a), B = COMa (b), c′ = c∥h(c), C = COMa (c′)}

Theorem 3.7 Πhad is a protocol for Rhad. It is perfectly complete, special honest-verifier zero-

knowledge and computationally special sound.

Proof: The proof of completeness is straightforward to argue.

Special Soundness. Let y,y′ be defined as y = u+ra+r2b, y′ = u′ +rc′, q = v1 +rw1 +

r2w2 and q′ = v2 + rw1w2. Now we note that the we invoke (Π2)c for (UArBr2 , Pn, v1 + rw1 +

r2w2;u+ra+r2b, ρn) and (U ′Cr, P2n, v2+rw1w2;u
′+rc′, ρ2n) ∈ RCLF-rev. Our extractor invokes

the extractor for (Π2)c to extract y,y′, ρn and ρ2n such that ⟨ρn,y⟩ = q, ⟨ρ2n,y′⟩ = q′. Extracting

y1,y
′
1,y2,y

′
2,y3,y

′
3 for three distinct challenges e1, e2, e3, our extractor additionally computes

u,u′,a, b, c′ such that ⟨ρn,u⟩ = v1, ⟨ρ2n,u′⟩ = v2, ⟨ρn,a⟩ = w1, ⟨ρn, b⟩ = w2, ⟨ρ2n, c′⟩ = w1w2.

Note that the binding of the commitment ensures that the correct u,u′,a, b, c′, ρn and ρ2n have

been extracted.

Our extractor again invokes the knowledge extractor of Πcom-mult to extract ρn, ρ2n such that

ρn = V −1(1 z z2 · · · zn)T and ρ2n = V −1(1 z z2 · · · z2n+1)T , and the binding of the commitment
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Parameters

– Common input:

– V is the Vandermonde matrix defined in equation 3.1.

– A = COMa (a), B = COMa (b), C = COMa (c′), such that c′ = c∥h(a◦b)

– P’s input: a = a∗∥d, b = b∗∥e, c = c∗∥de such that a∗ ◦ b∗ = c∗ and d, e←−R Fq

Protocol

1. P computes the polynomials pa, pb ∈ Fn
q [X] as pa(2i) := ai, pb(2

i) := bi ∀i ∈ [n]. It defines
pc(X) := pa(X) · pb(X).

2. P samples u←−R Fn
q ,u

′ ←−R F2n−1
q and defines pu ∈ Fn

q [X], pu′F2n
q [X] as pu(2i) := ui ∀i ∈

[n], pu′(2i) := u′
i ∀i ∈ [2n]. P computes U = COMa (u), U ′ = COMa (u′) and sends

U,U ′ to V.

3. V samples z ←−R Fq and sends z to P.

4. Define ρn = V −1(1 z z2 · · · zn)T and ρ2n = V −1(1 z z2 · · · z2n−2)T . P and V run Πcom-mult

to obtain commitments Pn, P2n to the reverse of ρn, ρ2n.

5. P sets w1, w2 as w1 = pa(z), and w2 = pb(z). P also sets v1, v2 as v1 = pu(z), v2 = pu′(z).

6. P sends w1, w2, v1, v2 to V.

7. V samples r ←−R Fq and sends r to P.

8. P and V independently computes Y = UArBr2 , Y ′ = U ′Cr, y = u+ra+r2b, y′ = u′+rc,
q = v1 + rw1 + r2w2 and q′ = v2 + rw1w2.

9. P and V run (Π2)c for

(a) (Y, Pn, q; y, ρn) ∈ RCLF-rev.

(b) (Y ′, P2n, q
′; y′, ρ2n) ∈ RCLF-rev.

Figure 3.6: Protocol Πhad for Rhad
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ensures the consistency of the extracted openings. Hence, it follows that the extracted witnesses

satisfies pu(z) = v1, pu′(z) = v2, pa(z) = w1, pb(z) = w2, pc(z) = w1w2.

We can extract ai, bi, c
′
i for i ∈ [2n+2] distinct challenges zi such that pc′i(zi) = pai

(zi)pbi(zi).

If any of the extracted ai, bi, c
′
i differ, we will have broken binding and so we have that except

with negligible probability, all the extracted ai, bi, c
′
i are identical. Thus, we have extracted

a, b, c′ that satisfy pc′(z) = pa(z)pb(z) for 2n + 2 distinct z. This allows us to conclude (from

the Schwartz-Zippel Lemma) that pc′(X) = pa(X)pb(X).

Zero-Knowledge. Given access to verifier’s randomness z, r, the simulator Shad proceeds

as follows:

1. Shad samples w1, w2 ←−R Fq, y ←−R Fn+1
q ,y′ ←−R F2n+1

q , and sends w1, w2, U = COMa (y)

ArBr2
, U ′ =

COMa (y′)
Cr , v1 = ⟨ρn,y⟩ − rw1 − r2w2, v2 = ⟨ρ2n,y′⟩ − rw1w2 to V.

2. Shad sets Y = COMa (y), Y ′ = COMa (y′), q = ⟨ρn,y⟩, q′ = ⟨ρ2n,y′⟩.

3. Shad then honestly executes (Π2)c to show that (Y, Pn, q;y, ρn),

(Y ′, P2n, q
′;y′, ρ2n) ∈ RCLF-rev in Step 9.

We now argue that the distribution of the simulated transcript is indistinguishable from

the transcript obtained from real protocol execution. Since the underlying vector y,y′, w1

and w2 are sampled uniformly at random, the computed U,U ′, v1, v2 subject to the constraints

COMa (y) = UArBr2 , COMa (y′) = U ′Cr, q = v1 + rw1 + r2w2, and q′ = v2 + rw1w2 outlined

in Step 9, where r ←−R Fq, are distributed uniformly at random in the transcript. The remaining

computations are performed honestly and are thus indistinguishable from an actual protocol

execution.

2

3.4.3 Permutation Argument

Our starting point is the Bayer-Groth protocol [17] for the permutation argument. Let PERMn =

{f : f : [n] −→ [n] such that f is a permutation} and σ ∈ PERMn. For two vectors r =

(r1, . . . , rn) ∈ Fn
q and s = (s1, . . . , sn) ∈ Fn

q , we aim to prove that σ(r) = s for some publicly

known σ. To prove the same, we leverage the technique introduced by Bayer and Groth of

proving
∏n

i=1(ri + iβ + γ) =
∏n

i=1(si + σ(i)β + γ) for verifier’s choice of β, γ ∈ Fq sampled

uniformly at random.

The proof is instantiated by having the verifier choose two challenges β, γ ∈ Fq and the

prover constructing two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) defined as ai = ri + iβ +γ

and bi = si + σ(i)β + γ for all i = 1, . . . , n, and providing a proof that
∏n

i=1 ai =
∏n

i=1 bi holds.
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The proof for
∏n

i=1 ai =
∏n

i=1 bi proceeds by constructing two vectors c′,d′ ∈ Fn+1
q such that

c′0 = 1, d′0 = 1 and c′j :=
∏j

i=1(ri + iβ + γ), d′j :=
∏j

i=1(si + σ(i)β + γ), for all j ∈ [n]. Now

we consider two circuits consisting of n multiplication gates, first circuit with vector of left

inputs a = (a1, . . . , an), vector of right inputs e = (e1, . . . , en) = (1, c1, . . . , cn−1) and vector

of outputs c = (c1, . . . , cn), and second circuit with left input b = (b1, . . . , bn), vector of right

inputs f = (f1, . . . , fn) = (1, d1, . . . , dn−1) and vector of outputs d = (d1, . . . , dn). Our idea

now is to check the hadamard product relations a ◦ e = c and b ◦ f = d by leveraging the

shifted structure of the vectors in the hadamard products; and using protocol Πcom-mult yielding

a succinct verifier permutation argument.

We consider the following relation Rperm for the permutation argument.

Rperm = { (R, S, P ; r, s, σ) : R = COMa (r), S = COMa (s), P = COMa (σ(I)),

I = (1, . . . , n), s = σ(r)}

We present the protocol Πperm for the same in Fig 3.7. We define ρn, ρ2n, δn and δ2n

as ρn = V −1(1 z z2 . . . zn−1), ρ2n = V −1(1 z z2 . . . z2n−1), δn = V −1(1 w w2 . . . wn−1) and

δ2n = V −1(1 w w2 . . . w2n−1) where V is a Vandermonde matrix defined by the public evaluation

points. We recall that the linear forms ρn, ρ2n are for computing evaluation at a random point

z, and the linear forms δn, δ2n are for computing evaluation at a random point w. We note that

we can batch the invocations of (Π2)c for RCLF-rev in each of the steps (a),(b) and (c) in Step

11 of Πperm using the techniques of Attema et al. [8].

Theorem 3.8 Πperm is a protocol for Rperm. It is perfectly complete, special honest-verifier

zero-knowledge and computationally special sound.

Proof: The proof of completeness is straightforward to argue.

Special Soundness. We rely on the sub-routine Π2-R invoked in step 10 to obtain openings

of A,B,C and D provided appropriate (2, 2n, 4, 3, . . . , 3) tree of accepting transcripts. We

denote fa, f b,f c and f d to denote the openings of A,B,C and D respectively which satisfies

the following constraints, ⟨ρn,fa⟩ · ⟨ρn,f c⟩ = ⟨ρ′2n,f c⟩ and ⟨δn,f b⟩ · ⟨δn,f d⟩ = ⟨δ′2n,f d⟩.

The binding of the commitment scheme ensures that fa = a, f b = b,f c = c′′ and f d = d′′.

The constraints of the linear forms from (A,Pn, z1;a, ρn),(C,Pn, z2; c
′′, ρn), (B,Qn, w1; b, δn),

(D,Qn, w2;d
′′, δn), (C,P2n, z1z2; c

′′, ρ′2n), (D,Q2n, w1w2;d
′′, δ′2n) ∈ RCLF and the verifier check

in step 9 further ensure that the polynomials satisfy pc = pa · pe at a random point, i.e.

the polynomials are identical with high probability via Schwartz-Zippel Lemma. Hence, the

evaluations at each point satisfy the relation with high probability, which gives us ci = ai · ei =
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Parameters

– Parameters from preprocessing:

– P = COMa (σ(I)), P ′ = COMa (I) for I = (1, . . . , n)

– left = COMa (rev(1∥0∥0)) and right = COMa (rev(0∥1∥0)) for linear forms (1∥0∥0)
and (0∥1∥0), where 0 = (0, . . . , 0) ∈ Fn

q

– T = COMa (1), 1 = (1, . . . , 1) ∈ Fn
q

– Common Input: R = COMa (r), S = COMa (s)

– P’s input : (r, s, σ, ga)

Protocol

1. V samples β, γ ←−R Fq and sends β, γ to P.

2. P computes x :=
∏n

i=1(ri + iβ + γ) and sends x to V.

3. P computes the vectors a, b ∈ Fn
q such that ai = ri + iβ + γ and bi = si + σ(i)β + γ

for all i ∈ [n]. P additionally computes c′,d′ ∈ Fn+1
q such that c′1 = 1, d′1 = 1 and

c′j :=
∏j−1

i=1 ai, d
′
j :=

∏j−1
i=1 bi, for all j ∈ [n + 1] \ {1}, and defines c,d,e,f ∈ Fn

q such that

ci = c′i+1, di = d′i+1, ei = c′i, fi = d′i for all i ∈ [n], i.e. cj :=
∏j

i=1 ai, dj :=
∏j

i=1 bi, for all

j ∈ [n], and e1 = 1, f1 = 1 and ej :=
∏j−1

i=1 ai, dj :=
∏j−1

i=1 bi, for all j ∈ [n].

4. P computes the polynomials pa, pe and pc as pa(2i) := ai, pe(2i) := ei and pc := pa · pe,
and similarly computes pb, pf and pd as pb(2

i) := bi, pf (2i) := fi and pd := pb · pf .

5. P and V independently computes A = R(P ′)βT γ and B = SP βT γ.

6. P computes c′′ = c′∥(pc(2n+1), . . . , pc(2
2n)) and d′′ = d′∥(pd(2n+1), . . . , pd(22n)), C =

COMa (c′′) and D = COMa (d′′) and sends C,D to V.

7. V samples z, w ←−R Fq and sends z, w to P.

8. P computes ρn = V −1(1 z z2 . . . zn−1), ρ2n = V −1(1 z z2 . . . z2n−2), δn =
V −1(1 w w2 . . . wn−1) and δ2n = V −1(1 w w2 . . . w2n−2).

9. P and V run Πcom-mult to obtain commitments Pn, P2n, Qn and Q2n to the reverse of
ρn,ρ

′
2n,δn and δ′2n where ρ′2n = 0∥ρ2n and δ′2n = 0∥δ2n.

Figure 3.7: Protocol Πperm for Permutation Argument
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10. P sets z1, z2, w1, and w2 as z1 = pa(z), z2 = pe(z), w1 = pb(w), and w2 = pf (w).

11. P and V run (Π2)c to prove the following:

(a) (C, left, 1; c′′, (1∥0∥0)), (C, right, x; c′′, (0∥1∥0)), (D, left, 1;d′′, (1∥0∥0)),
(D, right, x;d′′, (0∥1∥0)) ∈ RCLF-rev

(b) (A,Pn, z1;a, ρn),(C,Pn, z2; c
′′, ρn), (B,Qn, w1; b, δn),

(D,Qn, w2;d
′′, δn) ∈ RCLF-rev

(c) (C,P2n, z1z2; c
′′, ρ′2n), (D,Q2n, w1w2;d

′′, δ′2n) ∈ RCLF-rev.

Figure 3.7: Protocol Πperm for Permutation Argument

ai · ci−1 (considering c0 = 1). We get a(z) ◦ cleft(z) = cright(z) and b(w) ◦ dleft(w) = dright(w)

where cleft = (1, c, . . . , cn−1) = e, cright = (c, . . . , cn) = c, dleft = (1, d, . . . , dn−1), and dright =

(d, . . . , dn), that is ai·c′′i−1 = c′′i and bi·d′′i−1 = d′′i holds for all i ∈ [n]. Additionally, the constraints

of the linear forms from (C, left, 1; c′′, (1∥0∥0)), (C, right, x; c′′, (0∥1∥0)), (D, left, 1;d′′, (1∥0∥0)),

(D, right, x;d′′, (0∥1∥0)) ∈ RCLF ensures that the c′′1 = 1 and d′′1 = 1. The constraints of the

linear forms from (C, right, x; c′′), (D, right, x;d′′) ∈ R ensures that the c′′n = d′′n = x which

provides us
∏n

i=1 ai = x =
∏n

i=1 bi.

We define r, s ∈ Fn
q as ri = ai − iβ − γ, si = bi − σ(i)β − γ for all i ∈ [n], for the public

permutation σ. We rely on the [17] to ensure that given
∏n

i=1 ai = x =
∏n

i=1 bi holds which

implies
∏n

i=1(ri + iβ + γ) =
∏n

i=1(si + σ(i)β + γ) holds, we can ensure that the computed

(extracted) vectors r, s are such that σ(r) = s. The argument follows provided we have O(n)

accepting transcripts of Πperm. 2

3.4.4 zkSNARK for Circuit SAT

Given an upper bound on the circuit size n, the universal updatable SRS is generated by running

COM .Setup to commit to 2n+ 2-length vectors to obtain the commitment key (ga, H ȧ). Here

ga is the proving key and H ȧ is the verification key. Since the SRS is universal, we need

a circuit-dependent setup phase so the verifier will read the circuit only once. We omit the

description of algorithms for updating and verifying the SRS since this corresponds to updating

and verifying the commitment key, and is the same as in Daza et al. [52]. We note that the

circuit-specific preprocessing material can be deterministically computed from the universal

SRS and the circuit description, without any secrets.

We describe the protocol as an interactive public-coin argument. The final zkSNARK

construction is in the Random Oracle model using the Fiat-Shamir heuristic.

Preprocessing. We use the preprocessing phase used by Daza et al. [52] to obtain a commit-
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ment to the linear gates. They establish the existence of a circuit preprocessing methodology

that effectively imposes constraints on the fan-in and fan-out of each gate in the circuit to a

maximum value of M , which only incurs a linear expansion in the size of the circuit.

Let χ1, . . . , χν be the public inputs of the circuit. Let m be the number of multiplication

gates in the circuit. We then require a commitment key of size n = 2m+2. Let xL
i , x

R
i , x

O
i denote

the left input, right input and output of the ith multiplication gate. Let xL = (xL
i )i∈[m],x

R =

(xR
i )i∈[m],x

O = (xO
i )i∈[m]. Then xL ◦ xR = xO. Additionally, there exist vectors wL

i ,w
R
i ∈ Fm

q

with at most M non-zero entries such that ⟨wL
i ,x

O⟩ + xL
i = χi, ∀i ∈ [ν], ⟨wL

i ,x
O⟩ = xL

i , ∀i ∈
{ν + 1, . . . ,m} and ⟨wR

i ,x
O⟩ = xR

i ∀i ∈ [m]. Let WL,WR ∈ Fm×m
q be matrices with their ith

rows equal to wL
i and wR

i respectively. Then WL and WR have ≤ M entries in each row and

each column. The following applies to W k for k ∈ {L,R}. W k can be written as the sum of M

permutation matrices, i.e. W k =
∑M

i=1W
k
i , where each W k

i is a permutation matrix.

In addition to the preprocessing of [52], additional preprocessing material is generated that

is required by our sub-protocols, Πcom-mult Πhad, and Πperm. The verifier obtains commitments

to W k
i , I and σ(I), where I = (1, . . . , n), W k

i and σk
i : [n] → [n] are as defined above. The

verifier also obtains commitments to 1, 2[n], (0∥1∥0), (0∥0∥1) where 0 = (0, . . . , 0) ∈ Fn
q ,

1 = (1, . . . , 1) ∈ Fn
q , 2[n] = (2, . . . , 2n) ∈ Fn

q .

Protocol Overview. Post circuit preprocessing, our circuit is now fully defined by w̃k
i , σ

k
i ,

where w̃k
i is the vector containing the non-zero entry (if there is one) in each column of W k

i

and σk
i : [n] → [n] is the permutation that takes as input a column number j and outputs

the row to which the jth entry of wi belongs. Our goal is to get a commitment to a random

linear combination of the rows of W k, i.e. a commitment to W k(c) =
∑M

i=1 w̃
k
i ◦ σk

i (cm). To

do this, we first demand commitments to σk
i (cm) from the prover, for a random challenge c

chosen by the verifier. We can check that these commitments are honestly generated using

Πperm. We additionally ask the prover to provide us with commitments to w̃k
i ◦ σk

i (cm) and a

proof h(w̃k
i ◦ σi(cm)) that attests to the correct computation of a Hadamard product. To check

this Hadamard product, we deploy our Πhad protocol. Since w̃k
i , σ

k
i are public, Πhad can be

invoked without requiring zero-knowledge.

The above protocol allows us to get commitments to WL(c) and WR(c), but to show that

the constraints of the circuit are satisfied, we need to prove that ⟨WL(c) + uWR(c),xO⟩ =

⟨cm,xL⟩ −
∑ν

i=1 c
i−1χi + u⟨cm,xR⟩ = ⟨cm,xL + uxR⟩ −

∑ν
i=1 c

i−1χi for u←−R Fq. We cannot

test for equality directly since that would require the prover to send out linear combinations of

xL,xR and xO, violating zero-knowledge. Set K =
∑ν

i=1 c
i−1χi, L1 = WL(c) + uWR(c), L2 =

cm,y1 = xO and y2 = xL + uxR. Let L̃2 be the m − 1 vector comprising of the first m − 1

elements of L2. Let (L2)m be the last element of L2. The above constraint can then be
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written as ⟨L1,y1⟩ = ⟨L2,y2⟩ − K. To prove this in zero-knowledge, we have the prover

sample r1 ← Fm
q , r̃2 ← Fm−1

q and set r2 = r̃2||(⟨L1, r1⟩ − ⟨L̃2, r̃2⟩)(L2)
−1
m . This ensures that

⟨L1, r1⟩ = ⟨L2, r2⟩. The protocol now proceeds as follows: the verifier samples a challenge z

and the prover proves that ⟨L1, zy1 + r1⟩ = ⟨L2, zy2 + r2⟩ − zK. We can directly test for

equality here since the prover now needs to reveal ⟨L1, zy1 + r1⟩, which is a random value that

reveals nothing about the input.

This allows us to conclude that the commitments to xL,xR and xO satisfy the linear

combination constraints imposed by the circuit. Testing for multiplication, i.e. checking if

xL ◦ xR = xO can be done by invoking our protocol Πhad by adding randomness to the input

vectors in order to preserve zero-knowledge.

Since we reduce circuit satisfiability to opening a series of committed linear forms on com-

mitted vectors, we can optimize by batching the opening of several linear forms together.

Consider two instances (P1, Q1, y1) and (P2, Q2, y2) claimed by the prover to belong to RCLF-rev.

To prove this, we modify the protocol in Figure 3 as follows: let x1,x2 be the vectors to

which P1 and P2 are commitments. Let B1, B2 be the linear forms to which Q1 and Q2

are commitments. We first demand that the prover send us commitments to pL,1, pR,1, pL,2

and pR,2 as it would in the original protocol. We then ask the prover to make claims about

x1(c),B1(c),pL,1(c),pR,1(c) and x2(c),B2(c),pL,2(c),pR,2(c) with respect to the same chal-

lenge c. This allows us to combine the prover’s claims to open cn−1 on a single vector given by

x1 + tB1 + t2pL,1 + t3pR,1 + t4x2 + t5B2 + t6pL,2 + t7pR,2 for a random challenge t. Thus, we

can open O(M) linear forms while incurring the communication overhead of opening a single

linear form. We present the complete protocol Πcsat in Fig. 3.8.

Theorem 3.9 Πcsat is a public-coin, Honest Verifier Zero-Knowledge Argument of Knowledge

for CSAT with O(logm) round complexity, Oλ(m) prover complexity, and Oλ(logm) communi-

cation and verification complexity, where m is the number of multiplication gates in the prepro-

cessed circuit.

Proof: Completeness follows directly.

Special soundness. We invoke the extractor of (Π2)c to extract witnesses for 2m+2 distinct

ts in Step 10(a). Given these witnesses, we can either conclude that Σ0 is a commitment to

cm∥0 or break binding of the commitment scheme. Further, we can invoke the extractor of

Πperm to extract ∀k ∈ {L,R} ∀i ∈ [M ] vectors uk
i such that uk

i = σk
i (cm). We invoke the

extractor of Πhad to extract ∀k ∈ {L,R} ∀i ∈ [M ] vectors tki = σk
i (cm) ◦ wk

i ∥h(σk
i (c

m)◦wk
i )

. In

steps 10(d) and 10(e), given witnesses for 2m + 2 distinct challenges, we either extract vectors

L′
1, L

′′
1 such that L′

1 =
∑M

i=1 t
L
i +utRi and L′′

1 = (0∥((L′
1)m−i+1)i∈[M ]) = rev(L1) or break binding.
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Universal updatable SRS: (ga, H ȧ)
Preprocessing Compute commitments to the following circuit-dependent vectors:

– Sk
i = COMa (w̃k

i ∥0) ∀i ∈ [M ] k ∈ {L,R}

– P k
i = COMa (σk

i ∥0) ∀i ∈ [M ] k ∈ {L,R}

– ones = COMa (1m∥0), P0 = COMa (m∥0), where m = (1, 2, · · · ,m).

Input

– Public input χ1, . . . , χn

– P’s input is the satisfying assignment xL,xR,xO ∈ Fm
q . P samples d, e←−R Fq and defines

x̃L = xL∥d, x̃R = xR∥e, x̃O = xO∥de∥h(x̃L◦x̃R) ∈ F2m+1
q

– V ’s inputs are the commitments Xk = COMa (x̃k; rk) for k ∈ {L,R}, XO =
COMa (x̃O; rO) with rL, rR, rO ←−R Fq

Protocol

1. V sends c←−R Fq to P.

2. P computes for k ∈ {L,R}:

(a) Σ0 = COMa (cm∥0)

(b) Σk
i = COMa (σk

i (cm)∥0) ∀i ∈ [M ]

(c) W k
i = COMa (wk

i ◦ σk
i (cm)∥h(wk

i ◦σk
i (c

m))) ∀i ∈ [M ]

P sends all the computed commitments to V.

3. V sends u←−R Fq to P.

4. P samples r, r̃ ←−R Fm
q , s, s̃ ←−R Fq such that ⟨WL(c) + uWR(c), r⟩ = ⟨cm, r̃⟩ and sends

R = COMa (r; s) and R̃ = COMa (r̃; s̃) to V.

5. V sends z ←−R Fq to P.

6. P sets L1 = WL(c) + uWR(c), L2 = cm, K =
∑ν

i=1 c
i−1χi and sends v1 = ⟨L1, zx

O + r⟩ =
⟨L2, zx

L + zuxR + r̃⟩ − zK and Lrev
1 = COMa (rev(L1)) to V.

7. V sends t ̸= c−1, t′, th, tperm ←−R Fq to P.

Figure 3.8: Protocol Πcsat for Circuit Satisfiability
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8. P and V invoke Πcom-mult to obtain commitments to the reverse of ρm+1, ρ2m+2 with respect
to the challenge th and to ρm, ρ2m with respect to the challenge tperm.

9. P sends w = ⟨L1, t
′m⟩ to V, where t′m = (1 t′ t′2 . . . t′m−1∥0).

10. V sets L′
1 = (

∏M
i=1W

L
i )(
∏M

i=1 W
R
i )u. Eventually, we need a commitment to the reverse of

the first m elements of the vector underlying L′
1. This is accomplished in steps 11(d) and

11(e).

11. Set V = (XO)zR, Ṽ = (XL)z(XR)zuR̃. V checks if

(a) (Σ0, t
2m+2, (ct)

m−1
ct−1

) ∈ RCLF-rev

(b) (Σ0,Σ
k
i , S

k
i ) ∈ Rperm ∀i ∈ [M ] ∀k ∈ {L,R}

(c) (Sk
i ,Σ

k
i ,W

k
i ) ∈ Rhad∀i ∈ [M ] ∀k ∈ {L,R}

(d) (L′
1, t

′m∥0, w) ∈ RCLF-rev

(e) (Lrev
1 , rev(t′2m+2), w) ∈ RCLF-rev

(f) (V,Lrev
1 , v1) ∈ R

(g) (Ṽ , cm, v1 + zK) ∈ R

(h) (XL, XR, XO) ∈ Rhad

The checks in steps (c) and (h) use the commitments to ρm+1, ρ2m+2 obtained in Step 8,
while the checks in step (b) use the commitments to ρm, ρ2m. We don’t need commitments
to t2m+2, t′m, cm in steps (a), (e) and (g) because the verifier can compute a random linear
combination of these vectors without help from the prover. Moreover, all the claims about
the openings of linear forms made by the prover in Steps 8 and 11 can be aggregated using
our protocol for batched linear form openings.

Figure 3.8: Protocol Πcsat for Circuit Satisfiability
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In steps 10(f) and 10(g), given witnesses for distinct z1, z2 that satisfy the given constraints,

we can extract vectors y, x̃O, r, r̃ such that ∀i ∈ [2], ⟨L1, zix̃
O + r⟩ = ⟨cm, ziy + r̃⟩ − ziK.

This implies that ⟨L1, x̃
O⟩ = ⟨cm,y⟩ −K. Given accepting y for distinct challenges u1, u2, we

can extract WL(c),WR(c), x̃L, x̃R such that ⟨WL(c), x̃O⟩ = ⟨cm, x̃L⟩ −K and ⟨WR(c), x̃O⟩ =

⟨cm, x̃R⟩. If the x̃L, x̃R, x̃O obtained in this way are different from the ones extracted by the

extractor of Πhad in Step (h), we will have broken binding of the commitment scheme.

Given x̃L, x̃R, x̃O for 2m+ 1 distinct c, we either break binding or conclude that x̃L, x̃R, x̃O

satisfy the linear constraints of the circuit as well as the multiplicative constraints, and so

xO = (x̃O)i∈[m] must be a satisfying assignment.

Special HVZK. We describe a simulator that, given commitments to a satisfying assign-

ment and the randomness of the verifier, computes a transcript which is perfectly indistinguish-

able from the transcript of a real execution. The simulator S acts as follows:

– It computes all commitments honestly in Step 2.

– In Step 4, it samples r, r̃ ←−R Fm
q , s, s̃←−R Fq such that ⟨WL(c) + uWR(c), r⟩ = ⟨cm, r̃⟩−

K. It sets R = COMa (r,s)
(XO)z

, R̃ = COMa (r̃,s̃)
(XL)z(XR)zu

.

– In Step 6, it sets v1 = ⟨L1, r⟩.

– It honestly executes Step 8.

– It honestly executes Steps 10(a)-10(e), and invokes the simulator S, Shad of Π0 with the

corresponding verifier randomness in Steps 10(f)-(h).

We analyze the distribution of the transcript. In both executions, the elements R, R̃, v1 are

distributed uniformly at random. The indistinguishability of steps 10(f)-(h) follows from the

simulators of Π0 and Πhadamard. All other computations are honestly executed.

2

3.5 Compressed Sigma Protocol for opening of Commit-

ted Homomorphism

A bilinear group arithmetic circuit is a circuit in which the wire values are from G1,G2,GT

or Fq, and the gates are group operations, Fq-scalar multiplication, or bilinear pairings. Bi-

linear circuits are of interest since they directly capture relations arising in identity-based and

attribute-based encryption [99, 72], structure-preserving signatures [2] etc. Handling bilinear

circuits directly in a ZK system avoids expensive NP reductions or arithmetizations to repre-

sent group operations as an arithmetic circuit. The work of Attema et al. [11], building on the
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work of Lai et al. [81], gives a succinct argument system for bilinear group arithmetic circuits,

by generalizing the compressed sigma protocol framework. A key building block is a protocol

for opening a homomorphism on a committed vector. However, as in the case of arithmetic

circuits, the verifier remains linear.

We construct a designated-verifier succinct argument for opening a committed homomor-

phism on a committed vector, where the verifier is logarithmic.

3.5.1 Commitment Scheme

In this section, we use additive notation for groups in line with prior works for bilinear cir-

cuits. We begin by generalizing the homomorphic commitment scheme of [81], to work with

logarithmic amount of randomness. We note that ȧ denotes ȧ = (a1, . . . , aℓ) and for g ∈ G
and x = (x1, . . . , xn) ∈ Fn

q , gx denotes gx = (gx1, . . . , gxn) for g = (g1, . . . , gn) ∈ Gn and

x = (x1, . . . , xn) ∈ Fn
q , inner product with scalar ⟨g,x⟩ denotes ⟨g,x⟩ = g1x1 + . . . gnxn

; for g = (g1, . . . , gn) ∈ Gn
1 and h = (h1, . . . , hn) ∈ Gn

2 , inner product e(g,h) denotes

e(g,h) = e(g1, h1) + e(g2, h2) + . . . + e(gn, hn). Recall the key distribution MLn, for n = 2ℓ,

MLn = {a : ȧ = (ȧ1, . . . , ȧℓ)←−R Fℓ
q,a = (

ℓ∏
i=1

ȧxi
i )xi∈{0,1}}

We now consider a similar distribution over group elements,

MLn(G) = ML2ℓ(G) := {ga : g ←−R G, ȧ = (ȧ1, . . . , ȧℓ)←−R Fℓ
q,a = (

ℓ∏
i=1

ȧxi
i )xi∈{0,1}}

We define a new commitment scheme which differs from the one proposed in [81] (and

subsequently used in [11]) only in that we sample the commitment key from MLn(G).

Definition 3.2 (Commitment to (Fq,G1,G2)-vectors) Let (q,G1,G2,GT , e, G,H) be a bi-

linear group and n0, n1, n2 ≥ 0. We define a commitment scheme COMG for vectors in

Fn0
q ×Gn1

1 ×Gn2
2 , given by the following setup and commitment phase:

– Setup : (h, g)←−R ML2
n0+1(GT ),H←−R ML2

n1
(G2),G←−R ML2

n2
(G1)

Here, (h, g,H,G) = (ah, bg, cH,dG) for some structured Fq vectors a, b, c,d, where h, g

is sampled to be h = e(h1, H), g = e(g1, H) for some h1, g1 ←−R G1.
1 Then, (ck0 =

1We note that the distribution remains the same even when ag1 is sampled from MLn0(G1) and g is then
set to g = e(g1, H), making the final commitment key for Fq-vector to be g = ag, as opposed to when g is
directly sampled from MLn0

(GT ).
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((ah1,ah), (bg1, bg)), ck1 = cH, ck2 = dG) are the commitment keys and

(ċk0 = (aH, bH), ċk1 = cG, ċk2 = dH) is the verification key.

– Commit : COMG : Fn0
q ×Gn1

1 ×Gn2
2 × Fq → G2

T ,

(x,y,z; γ)→ hγ + ⟨g,x⟩+ e(y,H) + e(G, z),

where hγ + ⟨g,x⟩+ e(y,H) + e(G, z) =

(
h1γ + ⟨g1,x⟩+ e(y,H1) + e(G1, z)

h2γ + ⟨g2,x⟩+ e(y,H2) + e(G2, z)

)
The verification key is used to check that the commitment key has been updated by the

prover, by having the prover send the first element of the commitment key ck to the verifier,

and the verifier using the pairing check to ensure that the split-and-fold technique has been

used correctly to update the commitment key and check that the updated commitment (sent

by the prover) with respect to the updated commitment key is consistent.

We define an assumption called eGDLR assumption 3.4 along the lines of GDLR assumption

in [81] (restated in 3.3), show that it is implied by SXDH (Lemma 3.5) and prove binding of

COMG under eGDLR.

Lemma 3.2 COMG is computationally hiding under DDH in GT , and computationally binding

under SXDH.

We now formally present our hardness assumption eGDLR 3.4 and then present the proof

of Lemma 3.2 in Lemma 3.3 (binding) and Lemma 3.4 (hiding).

3.5.2 Hardness Assumptions

Here, we first recall the GDLR assumption presented in [81], and then we introduce our eGDLR

assumption that extends the guarantees of GDLR to structured strings.

Definition 3.3 (Generalized Discrete Logarithm Representation Assumption [81]) Let

m ≥ 1 and n1, n2, nT ≥ 0 (not all zero). (m,nT , n1, n2)-GDLR assumption holds in

(q,G1,G2,GT , e, G,H), if for any PPT adversary A, we have

Pr


e(a1,B2) + e(B1,a2) + ⟨BT ,aT ⟩ = 0T ∧ (a1,a2,aT ) ̸= (0,0,0)

b1 ←−R Fm×n2
q , b2 ←−R Fm×n1

q , bT ←−R Fm×nT
q

B1 = Gb1,B2 = Hb2,BT = KbT

(a1,a2,aT )←− A(q,G1,G2,GT , e, G,H,B1,B2,BT )

 ≤ negl(λ)

where a1 ∈ Gn2
1 ,a2 ∈ Gn1

2 ,aT ∈ FnT
q .
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We now introduce the eGDLR assumption.

Definition 3.4 (extended Generalized Discrete Logarithm Representation Assumption)

Let m ≥ 1 and n1, n2, nT ≥ 0 (not all zero). (m,nT , n1, n2)−eGDLR assumption holds in

(q,G1,G2,GT , e, G,H), if for any PPT adversary A, we have

Pr


e(a1,B2) + e(B1,a2) + ⟨BT ,aT ⟩ = 0T ∧ (a1,a2,aT ) ̸= (0,0,0)

b1 ←−R MLm
n1
, b2 ←−R MLm

n2
, ḃT ←−R MLm

n0

B1 = Gb1,B2 = Hb2,BT = KbT

(a1,a2,aT )←− A(q,G1,G2,GT , e, G,H,B1,B2,BT )

 ≤ negl(λ)

where a1 ∈ Gn2
1 ,a2 ∈ Gn1

2 ,aT ∈ FnT
q .

Lemma 3.3 COMG (Definition 3.2) is computationally binding under eGDLR assumption.

Proof: If binding of the aforementioned commitment scheme is broken, then we get x,y, z, γ

and x′,y′, z′, γ′ where x ̸= x′ or y ̸= y′ or z ̸= z′ or γ ̸= γ′, such that COMG(x,y,z; γ) =

COMG(x′,y′, z′; γ′)

=⇒

(
h1γ + ⟨g1,x⟩+ e(y,H1) + e(G1, z)

h2γ + ⟨g2,x⟩+ e(y,H2) + e(G2, z)

)
=

(
h1γ

′ + ⟨g1,x
′⟩+ e(y′,H1) + e(G1, z

′)

h2γ
′ + ⟨g2,x

′⟩+ e(y′,H2) + e(G2, z
′)

)

=⇒

(
h1(γ − γ′) + ⟨g1, (x− x′)⟩+ e((y − y′),H1) + e(G1, (z − z′))

h2(γ − γ′) + ⟨g2, (x− x′)⟩+ e((y − y′),H2) + e(G2, (z − z′))

)
=

(
0T

0T

)
which breaks the (2, n0 + 1, n1, n2)-eGDLR assumption. 2

Lemma 3.4 COMG (Definition 3.2) is computationally hiding under DDH assumption in GT .

Proof: Hiding of COMG follows from the fact that (h1, h2, h
γ
1 , h

γ
2), where h1, h2 ∈ GT and

γ ←−R Fq, is computationally indistinguishable from (h1, h2, h
γ
1 , r), where h1, h2 ∈ GT and

γ ←−R Fq, r ←−R GT , when DDH holds in GT .

We construct a DDH adversary A for GT given that we have a distinguisher B which

distinguishes (h1, h2, h
γ
1 , h

γ
2) from (h1, h2, h

γ
1 , r), where h1, h2 ∈ GT and γ ←−R Fq, r ←−R GT .

1. A receives a DDH challenge ch = (g, ga, gb, gc)

2. A sends the challenge vector ch to B

3. If B outputs that ch is of the form (h1, h2, h
γ
1 , h

γ
2), then A outputs c = ab; otherwise A

outputs c ̸= ab.

60



A succeeds with overwhelming probability, if B does, which follows from the following

observation :

– if c = ab, then the challenge vector ch = (g, ga, gb, gc) = (h1, h2, h
γ
1 , h

γ
2) where h1 = g, h2 =

ga, γ = b, and

– if c ̸= ab and c ∈R Fq, then ch = (g, ga, gb, gc) = (h1, h2, h
γ
1 , r),

where h1 = g, h2 = ga, γ = b and r = gc.

Hence, we have that (h1, h2, h
γ
1 , h

γ
2) and (h1, h2, h

γ
1 , r) are computationally indistinguishable

under DDH in GT , where h1, h2 ∈ GT and γ ←−R Fq, r ←−R GT . From the above property,

we note that use of hγ
1 , h

γ
2 to re-randomize the two components of COMG is indistinguishable

from using completely random elements to re-randomize the same, and hence COMG is hiding

under DDH in GT .

2

We now show that eGDLR is implied by SXDH.

Lemma 3.5 Let q be such that 1/q = negl. Let m = 2; ni ≥ 0, i = 0, 1, 2 are not all zero.

Then, the (m,n0, n1, n2)-eGDLR assumption holds if the SXDH assumption holds.

Proof: We know that, for q where 1/q = negl and m ≥ 2; ni ≥ 0, i = 0, 1, 2 are not

all zero, (m,n0, n1, n2)-GDLR assumption holds, if the SXDH assumption holds [81]. From

the previous statement, we can infer that SXDH assumption implies that (2, 1, 1, 1)-GDLR

assumption holds. Now, we wish to prove that, for m = 2, (m,n0, n1, n2)-eGDLR assump-

tion holds if (2, 1, 1, 1)-GDLR assumption holds. We additionally note that the distribu-

tions {(q,G1,G2,GT , e, G,H, (g1r1, h1r2)) : r ←−R Fn
q } and {(q,G1,G2,GT , e, G,H, (g1r, h1r)) :

r1, r2 ←−R Fn
q } are identical when SXDH assumption holds.

We construct an adversary A for (2, 1, 1, 1)-GDLR assumption, given an adversary B for

(2, n0, n1, n2)-eGDLR assumption, as follows :

1. A receives a challenge for (2, 1, 1, 1)-GDLR assumption,

(q,G1,G2,GT , e, G,H, (g1, h1), (g2, h2), (gT , hT ))

such that gi, hi ∈ Gi, i ∈ {1, 2, T}

2. A samples the keys for obtaining challenges for B : r ←−R MLn0 , s ←−R MLn1 , and

t←−R MLn2

3. A sends B the challenge (q,G1,G2,GT , e, G,H, (g1r, h1r), (g2s, h2s), (gT t, hT t))
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4. B(q,G1,G2,GT , e, G,H, (g1r, h1r), (g2s, h2s), (gT t, hT t))→ (a1,a2,aT )

5. A computes x1 = ⟨a1, r⟩, x2 = ⟨a2, s⟩ and xT = ⟨t,aT ⟩ and outputs (x1, x2, xT ), where

the first two operations are inner product with scalar for groups G2 and G1, and the third

operation is inner product of elements of Fq.

We claim that A succeeds with overwhelming probability, if B does.

We note that, if B succeeds, then its output (a1,a2,aT ) is such that (a1,a2,aT ) ̸= (0, 0, 0)

and

gT ⟨t,aT ⟩+ e(g1r,a1) + e(a2, g2s) = 0 , and hT ⟨t,aT ⟩+ e(h1r,a1) + e(a2, h2s) = 0

hence we have, for x1 = ⟨a1, r⟩, x2 = ⟨a2, r⟩ and xT = ⟨t,aT ⟩ :

gTxT + e(g1, x1) + e(x2, g2) = 0 , and hTxT + e(h1, x1) + e(x2, h2) = 0

We analyse that, A’s breaks the assumption if B does, by showing that along with the

satisfied equation, (a1,a2,aT ) ̸= (0, 0, 0) ensures (x1, x2, xT ) ̸= (0, 0, 0), except with negligible

probability.

If aT ̸= 0, then we have xT = ⟨t,aT ⟩ ̸= 0 w.h.p. as otherwise we have gT ⟨t,aT ⟩ = 0 which

breaks dlog in GT , hence it ensures (x1, x2, xT ) ̸= (0, 0, 0).

If a1 ̸= 0, and if x1 = ⟨a1, r⟩ = e2, then we have e(⟨g1, r⟩,a1) = e(g1, ⟨a1, r⟩) = e(g1, e2) =

e(g1, qe2) = e(qg1, e2) = e(e1, e2) = eT , which breaks the (e)n-BP assumption that holds when

SXDH holds, as DDH is hard in G1.

Similarly, we can argue for x2 being non-zero, when a2 is non-zero.

2

Definition 3.5 (n-BP Assumption) For all non-uniform PPT Adversary A,

Pr

 e(X,Y ) = eT ,X ∈ Gn
1 ,Y ∈ Gn

2

x←−R Fn
q ,X = Gx,Y ̸= e2

Y ← A(q,G1,G2,GT , e, G,H,X)

 = negl(λ)

Definition 3.6 ((e)n-BP Assumption) For all non-uniform PPT Adversary A,

Pr

 e(X,Y ) = eT ,X ∈ Gn
1 ,Y ∈ Gn

2

x←−R MLn,X = Gx,Y ̸= e2

Y ← A(q,G1,G2,GT , e, G,H,X)

 = negl(λ)

62



Lemma 3.6 Let q be such that 1/q = negl. n-BP Assumption, for n ∈ N, holds when DDH is

hard in G1.

Proof: We construct a DDH adversary A of G1, given a n-BP adversary B, as follows:

1. A receives a DDH-challenge (g, g · a, g · b, g · c) of G1

2. A samples j ←−R {0, . . . , n−1} and r = (r1, . . . , rn−1)←−R Fn−1
q , and sets x = (x0, . . . , xn−1),

where xj = c, xi = ari+1 for i = 0, . . . , j − 1 and xi = ari for i = j + 1, . . . , n− 1

3. A computes X = Gx and sends (q,G1,G2,GT , e, G,H,X) to B

4. A receives Y from B

5. A sets z = (z0, . . . , zn−1), where z0 = b and zi = ri, i = 1, . . . , n− 1, and sets Z = Gz

6. If e(X,Y ) = eT and e(Z,Y ) = eT , then A outputs 1, otherwise it outputs 0.

We claim that A succeeds with overwhelming probability, if B does.

We note that if B succeeds then we have e(X,Y ) = eT , which implies, assuming Y = Hy,

where y = (y0, y1, . . . , yn−1) ∈ Fn
q

e(Gx, Hy) = eT =⇒ e(G·x1, H·y1) · · · e(G·xn−1, H·yn−1) = eT =⇒ e(G,H)⟨x,y⟩ = eT

which gives us ⟨x, y⟩ = 0.

If c = ab, then we have that ar1y0 + · · · + arjyj−1 + cyj + arj+1yj+1 + · · · + arn−1yn−1 =

0 =⇒ ar1y0 + · · ·+ arjyj−1 + abyj + arj+1yj+1 + · · ·+ arn−1yn−1 = 0 =⇒ r1y0 + · · ·+ rjyj−1 +

byj + rj+1yj+1 + · · ·+ rn−1yn−1 = 0 =⇒ e(Z,Y ) = eT , then the adversary outputs 1.

If c ̸= ab, then the adversary outputs 0 with high probability, as c ̸= ab and output

1 by adversary =⇒ ar1y0 + · · · + arjyj−1 + cyj + arj+1yj+1 + · · · + arn−1yn−1 = 0 and

r1y0 + · · · + rjyj−1 + byj + rj+1yj+1 + · · · + rn−1yn−1 = 0, both equations are independently

satisfied by y, which happens with probability O(1/q).

Additionally, since the position of embedding of the challenge is sampled at random, the

probability that the adversary guesses the position j of embedding of the challenge and sets its

own response such that yj = 0 to remove the dependency of the solution from the challenge is

1/n.

2
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Definition 3.7 ((P,Q)-DDH Assumption [35]) Let q be a prime number. Let G be a group

of order q, g a generator of G, and (P,Q) ⊆ Fq[X1, . . . , Xn] two sets of polynomials. We define

the oracles Real(P,Q) and Fake(P,Q) as follows. Both oracles first select uniformly at random

xi ←−R Fq, for i ∈ [n]. Then they answer two types of queries. In input (info, i) for 1 ≤ i ≤ |P |,
both Real(P,Q) and Fake(P,Q) answer with gpi(x1,x2,...,xn) for pi ∈ P . On each new input (chal, j)

for some 1 ≤ j ≤ |Q|, oracle Real(P,Q) answers with gqj(x1,x2,...,xn) whereas oracle Fake(P,Q) selects

rj ←−R Fq and answers with grj . The adversary can intertwine the info and chal queries. The

goal of the adversary is to distinguish between these two oracles.

[35] proves that when the challenge (P,Q) is non-trivial, i.e. if span(P ) ∩ span(Q) = {0}
and the polynomials in Q are linearly independent, that satisfies two conditions specified in

Definition 3 of [35], then the (P,Q)-DDH Assumption hold whenever DDH holds. Additionally,

we note that if we consider P = {X1, . . . , Xℓ} and Q = {
∏ℓ

i=1X
bi
i }bi∈{0,1}, then it satisfies the

above criteria and hence, this particular variant of (P,Q)-DDH holds whenever DDH holds.

Now, since DDH holds, we prove that our (e)n-BP assumption holds whenever (P,Q)-DDH

assumption holds, given that n-BP assumption holds as well.

Lemma 3.7 Let q be such that 1/q = negl. (e)n-BP Assumption holds when (P,Q)-DDH

Assumption and n-BP Assumption holds, for all n ∈ N.

Proof: Let n = 2ℓ. Let us consider that, if possible, there exists an (e)n-BP adversary that

breaks the (e)n-BP assumption. We construct an adversary A for (P,Q)-DDH Assumption

in G1, given an adversary B for the (e)n-BP Assumption as follows, where we consider P =

{X1, . . . , Xℓ} and Q = {
∏ℓ

i=1X
bi
i }bi∈{0,1}, such that |P | = ℓ and |Q| = n− ℓ.

– A queries the (P,Q)-DDH challenger with (info, i) for all i ∈ {1, . . . , ℓ} and receives

response w1, . . . , wℓ

– A then queries the (P,Q)-DDH challenger with (chal, i) for all i ∈ {1, . . . , n − ℓ} and

receives response z1, . . . , zn−ℓ

– A defines X = (x1, . . . , xn) as xi = wi for all i ∈ [ℓ] and xi = zi−ℓ for all i ∈ {ℓ+1, . . . , n},
and sends X along with the bilinear group (q,G1,G2,GT , e, G,H) to B

– B returns Y to A

– A checks if Y ̸= e2 and e(X,Y ) = eT
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– If the above are satisfied, A concludes that X is a Real(P,Q) challenge and outputs 1, and

outputs 0 otherwise.

We claim that A succeeds with non-negligible advantage if B succeeds with non-negligible

probability. Now, let us consider the (P,Q)-DDH challenges when P = {X1, . . . , Xℓ} and

Q = {
∏ℓ

i=1 X
bi
i }bi∈{0,1}. Note that a Real(P,Q) challenge inherits the MLn distribution in the

exponent, which is the required distribution for a structured (e)n-BP challenge, whereas a

Fake(P,Q) challenge inherits the random distribution. Hence, we can denote a Real(P,Q) challenge

vector X as X ←−R MLn(G) and we can denote a Fake(P,Q) challenge vector X as X ←−R Gn.

Let us assume that B succeeds with probability ϵ1 for a structured (e)n-BP challenge, i.e.

Pr[B succeeds | X ←−R MLn(G)] = ϵ1. Note that B succeeds for a (e)n-BP challenge X if

it outputs Y such that Y ̸= e2 and e(X,Y ) = eT . Let Additionally, we note that if n-BP

holds and Pr[B succeeds | X ←−R Gn] = ϵ2, since the challenge X ←−R Gn follows the required

distribution for a n-BP challenge ϵ2 must be negligible. Then we compute the probability of

success of A.

Pr[A guesses correctly]

= Pr[A outputs 1 | Real(P,Q)] Pr[Real(P,Q)] + Pr[A outputs 0 | Fake(P,Q)] Pr[Fake(P,Q)]

= Pr[A outputs 1 | Real(P,Q)]× 1/2 + Pr[A outputs 0 | Fake(P,Q)]× 1/2

= Pr[A outputs 1 | X ←−R MLn(G)]× 1/2 + Pr[A outputs 0 | X ←−R Gn]× 1/2

= Pr[B succeeds | X ←−R MLn(G)]× 1/2 + Pr[B fails | X ←−R Gn]× 1/2

= ϵ1/2 + Pr[B fails | X ←−R Gn]× 1/2

= ϵ1/2 + (1− Pr[B succeeds | X ←−R Gn])× 1/2

= ϵ1/2 + (1− ϵ2)/2 = 1/2 + (ϵ1 − ϵ2)/2

Now, since ϵ1 = Pr[B succeeds | X ←−R MLn(G)] is non-negligible and

ϵ2 = Pr[B succeeds | X ←−R Gn] is negligible, ϵ1 − ϵ2 is non-negligible. Hence, A succeeds with

a non-negligible advantage, which is a contradiction. 2

3.5.3 Succinct Verifier Σ-Protocol for Opening Committed Homo-

morphism

Notation. Let (q,G1,G2,GT , e, G,H) be a bilinear group. Let ga ∈ G1 be the commitment

key used to commit to a vector of Fq elements in COMa (x) = ⟨a,x⟩g ∈ G1, where x ∈
Fn
q ,a ∈ Fn

q . We consider the group homomorphism f : Fn
q −→ G2, and define HOM(Fn

q ,G2) =

{f : f is a homomorphism from Fn
q to G2}. We use COMG given in definition 3.2 and use a
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modified version to commit to element of only one source group of bilinear pairing as follows

: COMG : Gn
2 −→ GT , where COMG(x) = e(G,x), for n = 2ℓ, h ←−R GT , ȧ = (ȧ1, . . . , ȧℓ) ←−R

Fℓ
q,a =

(∏ℓ
i=1 ȧ

bi
i

)
bi∈{0,1}

,G = aG, and we use the notation to COMG
a to explicitly specify the

commitment key for ease of exposition, and define it as COMG
a(x) = COMG(x) = e(G,x),

where G = aG.

Opening group homomorphism. We aim to prove that a committed vector x ∈ Fn
q is

opening of an element y ∈ G with respect to group homomorphism defined by f : Fn
q −→ G2,

i.e. the opening of a given commitment COMa (x), x ∈ Fn
q is such that f(x) = y for some

y ∈ G2. We note that the homomorphism f : Fn
q −→ G can be defined as f ∈ Gn

2 , and

we extend the techniques discussed in Section 3.3. We use the commitment scheme from

Definition 3.2 COMG : Fq × Gn1
1 × Gn2

2 −→ G2
T to succinctly commit to f = (f1, . . . , fn) ∈ Gn

2

and rev(f) = (fn, . . . , f1) ∈ Gn
2 using the structured commitment key ga ∈ G1 used to commit

to the vector.

We note that while techniques of Section 3.3.2 for committed linear forms can extend to

a committed homomorphism, there are some differences that we need to handle. First, the

representation of a group homomorphism is given by group elements as opposed to field elements

in linear forms, and this requires a commitment to group elements. Since the commitment

scheme relies on SXDH, we cannot encode the commitment randomness in the second group

anymore. This is, however, crucial to verify that the commitment key is updated correctly in

each step of split-and-fold. This makes our protocol designated-verifier since the encoding of

the randomness is available only to the verifier and binding still holds under SXDH. We define

the relation R for opening a group homomorphism f below, and then present the protocol

Π0-hom for relation R.

R = {(P ∈ G1, f ∈ HOM(Fn
q ,G2), y ∈ G2;x ∈ Fn

q , γ ∈ Fq) : P = COMa (x; γ) ∧ f(x) = y}}

Theorem 3.10 Π0-hom (Fig 3.9) is a 3-move protocol for relation R. It is perfectly complete,

special honest-verifier zero-knowledge and computationally special sound.

Proof Sketch. Note that this theorem follows from the fact that this protocol is identical to

the one introduced in [11], and the properties of the protocol relies on the hiding and binding

of the commitment scheme which are satisfied by our commitment scheme 3.2 used here.

Now, we note that the last message sent in step 4 of Π0-hom (Fig 3.9) along with the check

computed by the verifier can be captured by the relations defined below, and we provide a
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Parameters

– Common parameters : (P ∈ G1, f ∈ HOM(Fn
q ,G2), y ∈ G2), P = COMa (x; γ), y =

f(x)

– P’s input : (x ∈ Fn
q , γ ∈ Fq)

Protocol

1. P samples r ←−R G, ρ←−R Fq, computes A = COMa (r; ρ), t = f(r) and sends A, t to V.

2. V samples c←−R Fq and sends c to P

3. P computes z = cx + r and ϕ = cγ + ρ and sends z, ϕ to V

4. V checks if COMa (z;ϕ) = A + cP and f(z) = cy + t, outputs 1 if it holds, outputs 0
otherwise.

Figure 3.9: Protocol Π0-hom for relation R

Proof of Knowledge of the last message instead with the protocols for the following relation.

RCH = {(P ∈ G1, Q ∈ GT , y ∈ G2, g ∈ G1; f,x ∈ Fn
q ) :

P = COMa (x) ∧ Q = COMG
a(f) ∧ f(x) = y}

Note that in the above, P = ⟨a,x⟩g ∧ Q = e(ga, f)

We provide the protocol Π1-hom for handling RCH in Fig 3.10. Note that the protocol starts

with having value of the common parameter intended as the first element of the commitment

key as equal to the generator of the group, i.e. g = G, and it is later updated accordingly to

encompass the commitment key updates in the protocol.

Proof: Special Soundness. We consider 3 accepting transcripts for one iteration of PoK

Π1-hom (where one iteration consists of steps 1-5, and step 6 follows by sending x′, L′ instead of

providing a PoK) as follows, where c1, c2, c3 are all distinct challenges. :

(A1, A2, B1, B2, y1, y2, c1, g
′
1,x

′
1, f

′
1)

(A1, A2, B1, B2, y1, y2, c2, g
′
2,x

′
2, f

′
2)

(A1, A2, B1, B2, y1, y2, c3, g
′
3,x

′
3, f

′
3)

Let us consider zi = (cix
′
i∥x′

i). We note that, as c1, c2 and c3 are such that ci ̸= cj for all
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(i ̸= j) i, j ∈ {1, 2, 3}, the matrix V described below is invertible.

V =

 1 1 1

c1 c2 c3

c21 c22 c23


Hence, we can compute (a1, a2, a3)

T = V −1(0, 1, 0)T . The computed a1, a2, a3 satisfy
∑

i ai =

0,
∑

i aici = 1 and
∑

i aic
2
i = 0.

We define w to be the extracted value of x and compute it as w = a1z1 + a2z2 + a3z3,

given that COMa′ (x′
i) = A1 + ciP + c2iA2 then we consider

COMa (w) = (⟨a,w⟩)g

= (⟨a, a1z1 + a2z2 + a3z3⟩)g

= (⟨aL∥aR, a1(c1x
′
1∥x′

1) + a2(c2x
′
2∥x′

2) + a3(c3x
′
3∥x′

3)⟩)g

= (⟨aL, a1c1x
′
1 + a2c2x

′
2 + a3c3x

′
3⟩)g + (⟨aR, a1x

′
1 + a2x

′
2 + a3x

′
3⟩)g

= (⟨a′, a1c1x
′
1 + a2c2x

′
2 + a3c3x

′
3⟩)g(⟨ȧℓa′, a1x

′
1 + a2x

′
2 + a3x

′
3⟩)g

= (a1⟨(c1 + ȧℓ)a
′,x′

1⟩+ a2⟨(c2 + ȧℓ)a
′,x′

2⟩+ a3⟨(c3 + ȧℓ)a
′,x′

3⟩)g

= (a1⟨a′,x′
1⟩)(g′1) + (a2⟨a′,x′

2⟩)(g′2) + (a3⟨a′,x′
3⟩)(g′3) (from Step 4)

= a1
(
A1 + c1P + c21A2

)
+ a2

(
A1 + c2P + c22A2

)
+ a3

(
A1 + c3P + c23A2

)
(from last check)

= (a1 + a2 + a3)A1 + (a1c1 + a2c2 + a3c3)P + (a1c
2
1 + a2c

2
2 + a3c

2
3)A2 = P

Hence, the extracted w is an opening of the commitment P . Similarly we can extract an

opening m of the commitment Q. From the binding of the commitment scheme, we have that

w = x and m = rev(f) except with negligible probability.

From the accepting transcripts, we have that f ′
i(x

′
i) = y1 + ciy + c2i y2 for i = 1, 2, 3. Now,

we consider the following :

f ′
i(x

′
i) = (cifL + fR) (xL + cixR) ∀i ∈ {1, 2, 3}

=⇒ y1 + ciy + c2i y2 = fR(xL) + cif(x) + c2i fL(xR) ∀i ∈ {1, 2, 3}

=⇒ y = f(x)

2

Theorem 3.11 Π1-hom is a (k1, . . . , kℓ)-move protocol for relation RCH, where ki = 3, ∀i ∈
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Parameters

– Common parameters : (P ∈ G1, Q ∈ GT , y ∈ G2, g ∈ G1),

– P = COMa (x), Q = COMG
a(rev(f)), y = f(x)

– n = 2ℓ, ȧ = (ȧ1, . . . , ȧℓ),a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

– (q,G1,G2,GT , e, G,H) is a bilinear map.

– P’s input : (ag ∈ Gn
1 ,x ∈ Fn

q , f ∈ HOM(Fn
q ,G2))

– V’s input : ȧH ∈ Gℓ
2

Protocol

1. Let us define k as k = rev(f). P parses x = (xL∥xR), f = (fL∥fR) and ag =
(aLg∥(ȧℓaL)g) and computes and sends the following to V:

(a) A1 = COMaR
(xL), A2 = COMaL

(xR)

(b) B1 = COMG
aR

(kL), B2 = COMG
aL

(kR)

(c) y1 = fR(xL), y2 = fL(xR)

2. V samples c←−R Fq and sends c to P

3. P sets x′ = xL + cxR, f
′ = cfL ◦ fR, g′ = (c + ȧℓ)g and implicitly sets ȧ′ = (ȧ1, . . . , ȧℓ−1)

and a = aL. Note that this also implicity sets k′ = kL ◦ ckR.

4. P sends g′ to V and V checks the following, proceeds to step 5 if it holds, and aborts
otherwise

e

(
g′

cg
,H

)
= e (g, ȧℓH)

5. P and V both compute the following :

P ′ = A1 + cP + c2A2, Q′ = B1 + cQ + c2B2, y′ = y1 + cy + c2y2

6. If x′ /∈ F2
q : P runs PoK Π1 to prove knowledge of x′, f ′ such that COMa′ (x′) = P ′,

COMG
a′(k

′) = Q′ and f ′(x′) = y′.
Hence, P and V run the protocol Π1 with updated common parameters (P ′, Q′, y′, g′),
prover’s input (a′(g′),x′, f ′), and verifier’s input (ȧ′H) for (P ′, Q′, y′;x′) ∈ RCH

Figure 3.10: Protocol Π1-hom for relation RCH
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7. If x′ ∈ F2
q :

(a) P sends x′, f ′ to V

(b) V computes k′ = rev(f ′) and checks the following :

COMa′ (x′) = P ′ ∧ COMG
a′(k

′) = Q′ ∧ f ′(x′) = y′

and outputs 1 if it holds, and outputs 0 otherwise.

Figure 3.10: Protocol Π1-hom for relation RCH

[ℓ], ℓ = log n. It is perfectly complete and computationally special sound. It incurs total com-

munication of 3 log n G1 elements, 2 log n + 2 G2 elements, 2 log n GT elements, and log n + 2

field elements.

We note that since we run the protocol Π1-hom as an alternative for steps 4 and 5 of Π0-hom

to avoid having to send a linear-sized vector, Π1-hom does not require zero-knowledge property

as the final message of the protocol Π0-hom is intended to be sent in clear. The compressed

sigma protocol for proving knowledge of homomorphism on a committed vector is given by

the compressed protocol Πc-hom, which is defined by Πc-hom = Π1-hom ◦Π0-hom. The compressed

protocol for relation R is given by Πc-hom, whose communication and computational complexities

are dominated by that of Π1-hom, and hence we obtain a designated verifier succinct argument

of knowledge for the relation R.

Proof of Knowledge of k-out-of-n discrete logarithms. The fundamental contribution

of [9] of proving Proof of Knowledge of k-out-of-n discrete logarithms (Protocol 3 of [9]) relies

on its ability to provide a compressed sigma protocol for opening a general homomorphism

as a building block in a black box manner, and our techniques show how to do this with a

succinct verifier. We expect that by relying on their techniques to amortize the protocol for

opening multiple homomorphisms (which is done by using a challenge provided by the verifier

to perform the check on a random linear combination of the homomorphisms) which is then

deployed as a black box for the protocol to obtain proof of knowledge of k-out-of-n discrete

logarithms, we can obtain a succinct verifier version of the proof in [9].

3.5.4 Compressed Σ-Protocol for Opening General Homomorphisms

We now extend our protocol to opening homomorphisms on committed vectors with coefficients

in multiple groups. We believe that using our protocols in applications of CSP to Threshold

Signature Schemes and circuit zero-knowledge protocols with bilinear gates [11] will result in
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analogs with succinct verifier after an appropriate preprocessing phase.

We first describe the Σ-Protocol of [11], while using our updated commitment scheme with

logarithmic verification, for proving knowledge of a witness x which opens a public homomor-

phism f to a public element y and opens the known commitment COMG to a public element

P , i.e. y = f(x) and P = COMG(x, γ). Here, we assume x ∈ GS = Fn0
q × Gn1

1 × Gnk
k , and

we have access to a homomorphic commitment scheme COMG : GS × Fr
q 7→ GC, and a public

homomorphism f : GS 7→ Fq × G1 × · · · × Gk. The relation is given by R = {(P, f, y;x, γ) :

P = COMG(x, γ), y = f(x)}, and the POK Π0-gen-hom for R is in Fig 3.11).

Parameters

– Common parameters : P = COMG(x, γ), y = f(x)

– P’s input : (x, γ)

Protocol

1. P samples r ←−R GS, ρ←−R Fq

2. P computes A = COMG(r, ρ), t = f(r) and sends it to V

3. V samples c←−R Fq and sends it to P

4. P computes z = cx + r and ϕ = cγ + ρ and sends it to V

5. V checks if COMG(z, ϕ) = A + cP and f(z) = cy + t, outputs 1 if it holds, outputs 0
otherwise.

Figure 3.11: PoK Π0-gen-hom for relation R [11]

In protocol Π0-gen-hom, we note that step 4 renders the communication complexity linear, and

that along with step 5 makes the verifier’s complexity linear. We now reduce the complexities by

running a compressing protocol Π1-gen-hom where we compress while relying on the compatibility

of compression provided by the compactness of the commitment scheme for committing to

the elements of the groups Fq,G1, . . . ,Gk. In Π1-gen-hom, compress the part of co-domain of

COMG which is compact, we parse COMG as COM1 and COM2, where COM1 contains the

compressible (compact) co-domain of the commitment, and COM2 contains the incompressible

(non-compact) co-domain of the commitment. Hence, COM1 is a compact commitment scheme

and COM2 is not (takes n-dimensional element to n+1-dimensional element). Hence, for some

r1 and r2 such that r1 + r2 = r, we have

COMG : Fn0
q ×Gn1

1 ×Gnk
k × Fr

q 7→ GC
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COM1 : Fn0
q ×Gn1

1 ×Gnk−1

k−1 × Fr1
q 7→ GC1

COM2 : Gnk
k × Fr2

q 7→ GC2

where size of GC1 is independent of the input dimensions in the domain, and size of GC1 is

dependent on the input dimensions in the domain (increases by one with respect to the input

dimensions in the domain).

We now implement the aforementioned idea by parsing the the witness x as x = (xS,xT )

where xS = (x0, . . . ,xk−1) contains the compressible co-domain of the commitment, and xT =

xk contains the incompressible co-domain of the commitment. Since we want the verifier

complexity to be sublinear, we also provide commitments to the homomorphism by treating the

homomorphism description as a vector containing elements of Fq,G1, . . . ,Gk. While we commit

to the homomorphism f , we parse f as f = (fS, fT ), where fS contains the compressible co-

domain of the commitment, and fT contains the incompressible co-domain of the commitment.

Notation for Π1-gen-hom. We denote the commitment key for COM1 which commits to ele-

ments of Fq,G1,G2,Gk by ck0, . . . , ckk−1. For example, for (x,y,xS; γ) ∈ Fn0
q ×Gn1

1 ×Gn2
2 , we

have COM1(x,y,xS) = ⟨g,x⟩+ e(y,H) + e(G,xS) ∈ G2
T , we set ck0 = g, ck1 = H, ck2 = G,

and (ċk0, ċk1, ċk2) is the verification key. For example, in Π1-hom described in section 3.5.3,

ck denotes the commitment key held by the prover ck = ga and ċk denotes the randomness

encoded in the other group held by the verifier ċk = H ȧ where n = 2ℓ, ȧ = (ȧ1, . . . , ȧℓ),

a =
(∏ℓ

i=1 ȧ
bi
i

)
bi∈{0,1}

.

R′
CH = {(P,Q, y;x, f) : x = (xS,xT ), y = (y1, y2, y3, y4), f = (fS, fT ),

y1 = fS(xS), y2 = fS(xT ), y3 = fT (xS), y4 = fT (xT ),

Q = COM1(rev(fS)), P = (P1, P2), P1 = COM1(xS), P2 = COM2(xT )}

We present the PoK Π1-gen-hom for R′
CH in Fig 3.12.

Theorem 3.12 Π1-hom is a (k1, . . . , kℓ)-move protocol for relation RCH, where ki = 3, ∀i ∈
[ℓ], ℓ = logm, m = maxk−1

i=0 ni. It is perfectly complete and computationally special sound. It

incurs total communication of O(logm) source (compressible) group elements (including Fq),

O(logm + nk) target group elements.

Similar to earlier protocols, we aim to run the protocol Π1-gen-hom as an alternative for steps

4 and 5 of Π0-gen-hom to avoid having to send a linear-sized vector, Π1-gen-hom does not require

zero-knowledge property as the final message of the protocol Π0-gen-hom is intended to be sent in
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Parameters

– Common parameters : P,Q, y, ck0,1, ck1,1, . . . , ckk−1,1 (where cki,1 is the first element
of cki, i = 0, . . . , k − 1)

– x = (xS,xT ), y = (y1, y2, y3, y4), f = (fS, fT ),

– y1 = fS(xS), y2 = fS(xT ), y3 = fT (xS), y4 = fT (xT ),

– Q = COM1(rev(fS)), P = (P1, P2), P1 = COM1(xS), P2 = COM2(xT )

– P’s input : ck0, ck1, . . . , ckk−1,x = (xS,xT ),xS = (x0,x1, . . . ,xk−1),xT = (xk), f =
(fS, fT )

– V’s input : ċk0, ċk1, . . . , ċkk−1

Protocol

1. P parses xi = (xi,L∥xi,R), for i = 0, . . . , k, xS,α = (x0,α, . . . ,xk−1,α), and xT,α = (xk,α)
for α = L,R, and fS = (fS,L∥fS,R), fT = (fT,L∥fT,R).

2. Similarly, P parses the commitment keys for xS and fS as ckS = (ck0, . . . , ckk−1) and
commitment keys for xT and fT as ckT .

3. P sets k = rev(fS) and computes the following :

(a) A1 = COM1(0,xS,L), A2 = COM1(xS,R, 0)

(b) B1 = COM1(0, kL), B2 = COM1(kR, 0)

(c) a1 = fSR
(xS,L), a2 = fSL

(xS,R)

(d) b1 = fSR
(xT,L), b2 = fSL

(xT,R)

(e) d1 = fTR
(xS,L), d2 = fTL

(xS,R)

4. P sends the computed values a2, b2, A1, A2, B1 and B2 to V

5. V samples c←−R Fq and sends it to P

6. P sets the updated commitment key as ck′i = c · cki,L + cki,R for all i = 0, 1, . . . , k − 1

7. P sends the first element of all updated commitment keys ck′i,1 to V, and V checks the
following for each cki,1, proceeds to step 8 if it holds, and aborts otherwise

e

(
ck′i,1
ckci,1

, geni

)
= e

(
cki,1, ċki,ℓ

)
, i ∈ {0, 1, . . . , k − 1}

where geni is the generator of the group containing ċki.

Figure 3.12: PoK Π1-gen-hom for relation R′
CH
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8. P sets x′
S = xS,L + cxS,R, f

′
S = cfS,L + fS,R, and implicitly updates the randomness for

each updated commitment key ċk
′
i by dropping the last element ċki,ℓ from ċki.

9. P and V both compute the following :

(a) P ′
1 = A1 + cP1 + c2A2, Q′ = B1 + cQ + c2B2

(b) y′1 = a1 + cy1 + c2a2, y
′
4 = y4,

(c) y′2 = b1 + cy2 + c2b2, y
′
3 = d1 + cy3 + c2d2

10. If x′
S contains more than 2 elements from any group : P and V run the protocol

Π1-gen-hom with updated common parameters (P ′, Q′, y′), P ′ = (P ′
1, P2), y

′ = (y′1, y
′
2, y

′
3, y

′
4),

prover’s input (ck′0, ck
′
1, . . . , ck

′
k−1,x

′ = (x′
S,xT ), f ′ = (f ′

S, fT ), and verifier’s input

(ck0,1, ck1,1, . . . , ckk−1,1, ċk1, . . . , ċkk−1) for (P ′, Q′, y′;x′, f ′) ∈ R′
CH

11. Otherwise :

(a) P sends x′ = (x′
S,xT ), f ′ = (f ′

S, fT ) to V

(b) V computes k′ = rev(f ′
S) and checks the following where COM′

1 is the commitment
with updated commitment keys ck′i, i = 0, . . . , k − 1

i. COM′
1(x

′
S) = P ′

1, COM′
1(k

′) = Q′, COM2(xT ) = P2

ii. f ′
S(x′

S) = y′1, fT (xT ) = y4

iii. (f ′
S, cf

′
S)(xT ) = y′2, fT (cx′

S,x
′
S) = y′3

and outputs 1 if it holds, and outputs 0 otherwise.

Figure 3.12: PoK Π1-gen-hom for relation R′
CH
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clear. The compressed sigma protocol for proving knowledge of homomorphism on a committed

vector is given by the compressed protocol Πc-gen-hom, which is defined by :

Πc-gen-hom = Π1-gen-hom ◦ Π0-gen-hom

Hence, the compressed protocol for relation R is given by Πc-gen-hom, whose communication

and computational complexities are dominated by that of Π1-gen-hom, and we obtain a designated

verifier succinct argument of knowledge for the relation R.
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Chapter 4

Distributed Proof of Knowledge

(DPoK) and its Application in Input

Authentication

In this chapter1, we present a new notion of distributed zero-knowledge proofs, which we call

distributed proof of knowledge (DPoK), that enables a prover to distribute the proof generation

to a set of workers which holds the shares of the witness. We also provide an additional notion

of robustness that helps maintain security even in the presence of dishonest usage of shares

by workers. Next, we provide construction for DPoKs for discrete log relation, and algebraic

signature schemes like BBS+ [29, 41] and PS [97]. Finally, using our DPoKs for algebraic

signature schemes, we provide a compiler that transforms a linear secret-sharing based honest

majority MPC to one with input authentication with negligible overhead.

4.1 Introduction

To motivate our distributed zero-knowledge proof, we first start with its potential applica-

tion through the lens of well-understood primitive of multiparty computation (MPC). Secure

MPC [108, 109, 70, 79, 18] allows two or more parties to jointly compute a function of their

private inputs, while ensuring input privacy and output correctness (even in the presence of

some corrupt parties). Traditional security notions for MPC ensure output correctness and

input privacy, that is, nothing is leaked about the parties’ private inputs beyond the (correct)

output of the computation. However, no assurance is given about how the parties choose their

1This chapter is based on the joint work [55] with Chaya Ganesh, Sikhar Patranabis and Nitin Singh, that
appeared in Asiacrypt 2024.
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private inputs.

Unfortunately, certain applications of MPC could be sensitive to “ill-formed inputs”. Mali-

ciously chosen inputs could either corrupt the output or reveal the output on arbitrary inputs,

thus violating the desired real-world security guarantees of an MPC protocol. Such attacks are

not captured by traditional MPC security definitions.

Input Authenticity in MPC. There are several real-world applications of MPC where it

is important to ensure that the inputs used by parties are authentic. If a set of individuals

on a job portal wish to compute “industry average compensation” for their expertise and

experience in a privacy preserving manner (e.g., services provided by glassdoor), one would

want them to input payslips bearing their employers’ signature. Similarly, in applications

involving hospitals performing joint computations on patient data for treatment efficacy, it is

desirable to ensure that the data used is signed by a regulatory authority. Input validation is

also of practical relevance in applications of MPC in computation on genomic data [26]. For

all of these applications, the traditional MPC security guarantees are clearly inadequate. A

natural question that confronts us then is: how do we ensure that authentic inputs are used in

MPC?

Authentication via Certification. In the real world, data authentication typically involves

the data being attested by a relevant certifying authority. In our work, we specifically consider

applications where an input bearing a signature is considered authentic and we can assume the

existence of a relevant certifying authority that provides the signature. For instance, employers

can act as the certification authority to digitally sign the payslips when parties wish to compute

‘industry average compensation’ using services like glassdoor, a financial auditor can act as

the certification authority to digitally sign the bills of sale when shipping companies wish to

compute aggregate statistics on private data, a regulatory authority (like WHO) act as the

certification authority to digitally sign the medical records when hospitals wish to perform

joint computation over sensitive patient data, and so on. Since the certifying authority cannot

be omnipresent to vouch for authenticity of the data, it is increasingly common for individuals

to claim this attestation through digital signatures that can be verified efficiently. In fact, there

exist several digital signature schemes today [40, 29, 97] that allow establishing attestation by

a certifying authority while requiring minimal disclosure of attributes, and while maintaining

unlinkability (several usages of the same credential cannot be linked to the same individual).

Unfortunately, such secure mechanisms for authenticating data in the individual context do not

translate when computing over data from multiple data owners using vanilla MPC protocols

(that do not consider input authentication).
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Potential Approaches and Pitfalls. A näıve approach would be to incorporate input au-

thentication as part of the function to be computed. However, this is practically inefficient.

For example, incorporating signature verification as part of the function would entail perform-

ing expensive operations such as hashing inside MPC (typically, most signature schemes hash

the message), and would also require expressing the algebraic operations underlying signature

verification as arithmetic circuits. This significantly blows up the size of the circuit, rendering

the resulting MPC protocol practically inefficient.

A more efficient alternative is to have the certifying authority sign a commitment (e.g., a

Pedersen commitment [94]) to each input, and then have the parties prove that their inputs

are those contained inside the public commitments (using customized zero-knowledge proofs).

However, this fails to provide unlinkability, which is an essential privacy requirement. In par-

ticular, one can use the signed commitment to link different protocols where the same input is

reused. The alternative would be to get the certifying authority to sign a different commitment

for each protocol execution, which again requires the authority to be omnipresent, and is clearly

impractical.

Certain prior works [5, 27] proposed using authenticated secret-sharing in order to certify

inputs to an MPC protocol. However, authenticated secret-sharing only provides stand-alone

guarantees about the shares themselves, and additional techniques would be needed to ensure

that malicious parties actually use these authenticated shares in the execution of the actual

MPC protocol (the details of such techniques are not specified completely in prior works [5,

27]). Ideally, we want a notion that ties input authentication into the underlying MPC, thus

preventing malicious parties from using inputs different from the authenticated ones.

Our Goal. We aim to lift existing MPC protocols into authenticated ones that ensure that an

additional predicate is satisfied by each input (for instance, each input is signed by a common

certifying authority). We want to achieve such input authentication (i) without changing the

underlying MPC protocol, (ii) without representing the predicate as a circuit, (iii) incurring

communication overhead that is succinct in the size of the inputs (which are typically large

for the applications we consider), and (iv) maintaining unlinkability. These requirements im-

mediately preclude prior approaches requiring the authentication relation to be expressed as a

circuit [30, 76], as well as the natural approach based on signed public commitments outlined

above, which lacks unlinkability.

4.1.1 Our Contributions

In this work, we study authenticated MPC. We present the first generic compiler than efficiently

augments existing MPC protocols to additionally ensure that each input has a valid attestation
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(in the form of a digital signature) from a relevant certifying authority, while retaining both

practical efficiency and unlinkability. We illustrate the compatibility of our proposed approach

with popularly used privacy-preserving verifiable attestation mechanisms based on digital signa-

tures such as BBS+ [29, 13] and PS [97]. Towards this goal, we put forth a notion of distributed

(zero-knowledge) proof of knowledge that is of independent interest.

Distributed Proof of Knowledge (DPoK). In Section 4.3, we put forth a notion of a

distributed proof of knowledge (abbreviated as (DPoK)). A DPoK works in a setting with

multiple provers and a single verifier, where the witness is secret shared among the provers.

Concretely, for a relation R and an instance-witness pair (x,w) ∈ R, the verifier holds the

(public) instance x, and each prover holds a share wi of the (secret) witness w such that

w = Reconstruct(w1, . . . , wn). We also assume a restricted communication model: (i) the

provers do not communicate with each other, and (ii) the verifier communicates only via a

broadcast channel and is public-coin (this facilitates public verifiability, which is used crucially

in our eventual solution for authenticated MPC). Our definition of DPoK may thus be viewed

a natural distributed analogue of honest-verifier public-coin protocols.

Robust Complete DPoK. Our basic DPoK definition does not prevent malicious provers from

disrupting protocol execution, and only provides security with abort. To tackle this, we introduce

a stronger notion of robust completeness for a DPoK, which additionally provides tolerance

against abort in the presence of (a potentially smaller number of) maliciously corrupt provers.

Looking ahead, using robust complete DPoKs allows us to achieve authenticated MPC protocols

with stronger security guarantees.

DPoK for Discrete Log. In Section 4.3, we also construct a DPoK for the discrete loga-

rithm relation, where the witness (the discrete log of a publicly known group element) is

secret-shared (using Shamir secret sharing) across multiple provers. Notably, our construc-

tion achieves: (i) succinct communication (logarithmic in the size of the witness), and (ii)

robust completeness (which ensures that the protocol accepts even in the presence of up to

n/3 malicious provers, where provers only holds shares to the correct witness). For succinct

communication, we use techniques due to Attema et al. [8] to compress the communication com-

plexity of our protocol from linear to logarithmic in the size of the witness. We realize robust

completeness via error-correction in the exponents of group elements. To this end, we leverage

results from low degree testing used in prior works to construct efficient zkSNARKs (such as

in [4, 22]). While achieving robust completeness is straightforward if we do not care about

succinctness (and vice versa), the main technical novelty of our construction is to achieve both

properties simultaneously.
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In Section 4.5, we present a generalization of the above DPoK for discrete log that works

with any threshold linear secret sharing scheme. In this generalized version, we characterize the

corruption threshold for robust completeness in terms of the minimum distance of the linear

code associated with the threshold linear secret sharing scheme. As an example, we derive

concrete bounds on the corruption threshold for the popularly used replicated secret sharing

scheme.

DPoKs for Algebraically Structured Signatures. Our DPoK for discrete log can be used to build

a DPoK for any digital signature scheme where the associated proof of knowledge of a signature

can be modeled as a proof of knowledge of the opening of a Pedersen commitment. We present

specific instances of this general approach for signature schemes that are algebraically compati-

ble, namely BBS+ [29, 13, 41]1 (detailed in Section 4.4) and PS [97] (detailed in Section 4.7.3).

These signature schemes are popular candidates for applications such as verifiable credentials

for self-sovereign digital identity. While these signature schemes natively support efficient (al-

beit non-distributed) zero-knowledge proofs of knowledge of a valid message-signature pair, our

work introduces the first practically efficient DPoKs for these signature schemes that are both

succinct and robust complete. Our techniques are modular, and we believe that they can be

extended to yield DPoKs for other algebraically structured signatures such as [38], as well as

algebraic relations of interest for other applications.

Round Efficient DPoKs in the ROM. The above definitions and constructions of DPoKs are

in the standard model. In Section 4.6, we formally define round efficient DPoKs in the random

oracle model (ROM). This definition is based on the Fiat-Shamir heuristic [59], using which

we transform a DPoK (with number of rounds logarithmic in the size of the witness) into a

round efficient DPoK (having constant number of rounds). Under this definition, we present

round efficient versions of our DPoK constructions for discrete log and algebraically structured

signatures; these protocols achieve the same robust completeness and succinct communication

guarantees as the original protocols, albeit in the ROM.

Authenticated MPC. We now expand upon our main contribution, namely authenticated

MPC. Informally, we consider a notion of input authenticity for MPC where each input is

certified using a valid signature from a certification authority. This is standard in applications

where a publicly known certifying authority (external to the MPC protocol) signs an input

to certify that the input satisfies certain properties2. We build upon our DPoKs for BBS+

1There are standardization efforts for using BBS+ signatures in verifiable credentials for Web 3.0, leading
to a recent RFC draft [87].

2Our techniques extend to other notions of authenticity such as proving that the inputs open publicly known
commitments.
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and PS signatures to propose a generic compiler that transforms any (threshold linear) secret-

sharing based maliciously secure honest-majority MPC protocol into its authenticated MPC

version. Our compiler yields the first practically efficient MPC protocols that satisfy an ideal

notion of input authenticity while preserving practical efficiency and unlinkability. We note that

our compiler incurs negligible communication overhead over the original MPC protocol. For

simplicity, our ideal functionality and subsequent protocols are described assuming a common

signature authority for all inputs. The more general case involving multiple signing authorities

also follows with minor modifications without incurring any loss of efficiency.

Ideal Functionality for Authenticated MPC. In Section 4.8, we formalize the above notion for

authenticated MPC via an ideal functionality Fauth
MPC that works as follows. The parties send

their inputs xi and signature σi on xi to Fauth
MPC for i ∈ [n]. The functionality Fauth

MPC then checks if

σi is a valid signature on xi for all i ∈ [n]. For each j ∈ [n] such that σj is not a valid signature

on xj, F
auth
MPC sends (abort, Pj) to all of the parties. Otherwise it computes y = f(x1, . . . , xn)

and outputs y to all of the parties.

We note that our ideal functionality ties input authentication into the underlying MPC,

thus preventing malicious parties from using different inputs as compared to the authenticated

ones. The prior works [5, 27] only provide stand-alone guarantees about the authenticated

shares themselves, and would require additional techniques to ensure that these authenticated

shares are then used in the execution of the actual MPC protocol which are currently not

considered. We further note that our ideal functionality already captures unlinkability, since

the adversary does not learn any additional information about the authenticated input (beyond

the function output) that might allow it to correlate the usage of the same input-signature pair

across multiple executions. This rules out solutions based on signing public commitments to

inputs, which trivially violate unlinkability.

Compiler for Authenticated MPC. In Section 4.8, we present a compiler that transforms any

Shamir secret-sharing based maliciously secure honest-majority MPC protocol Π into its au-

thenticated MPC version Π′ that securely realizes the above ideal functionality Fauth
MPC, where

each input is authenticated using a BBS+ signature. Our compiler builds upon our DPoK for

BBS+ signatures from Section 4.4. In Section 4.7.3, we present an analogous compiler for input

authentication using PS signatures, which builds upon our DPoK for PS signatures. In both

cases, the compiled protocol Π′ inherits the security of Π as long as the inputs are authentic (by

definition, we abort if this is not the case)1. If Π guarantees security with identifiable abort,

1In some applications, it is acceptable to continue computation on default inputs instead of aborting when
authentication fails.
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then the same holds for Π′. If Π achieves guaranteed output delivery, then so does Π′ (albeit

for a corruption threshold t < n/3) – this crucially uses the robust completeness property of

the underlying DPoKs.

Generalization and Extensions. We note that our approach works in general for: (a) any

(threshold linear) secret-sharing based MPC protocol, and (b) any signature scheme such that

the associated proof of knowledge can be modeled as a proof of knowledge of the opening

of a Pedersen commitment (such as CL signatures [38] and PS signatures [97]). Our DPoK-

based approach also offers the flexibility of extending our compiler to support other notions

of input authentication, beyond proving knowledge of signatures. In particular, one can build

upon our approach to prove a wider class of expressive predicates over secret-shared inputs,

thus catering to a wide range of applications with diverse proof requirements (e.g., federated

learning). For instance, each party can publish a commitment to its input at the beginning

of the authenticated MPC protocol, and then use our DPoK-based framework to prove the

following simultaneously: (i) the secret-shared input is signed by a certifying authority (this

follows from the basic compiler), (ii) the secret-shared input is a valid opening to the published

commitment, and (iii) the opening to the commitment satisfies a certain predicate. Note that,

if a different application requires new/additional properties to be checked, the aforementioned

approach avoids the need to involve the certifying authority each time. Similarly, it maintains

unlinkability since a fresh commitment is used for each protocol execution, while the DPoK

allows keeping the signature from the certifying authority private.

4.1.2 Technical Overview

In this section, we provide a brief overview of our techniques. We begin by outlining ideas to

distribute a well-known protocol for proving knowledge of discrete logarithm of a public group

element. This relation will be at the core of expressive algebraic relations that we will consider

later.

Proof of Knowledge of Discrete Log. Let G be a group of prime order p. Given x ∈ G,

recall Schnorr’s protocol [100, 101] for proving knowledge of discrete logarithm w such that

x = gw for some generator g (here (g, x) is public and w is the secret witness). Let (P1,P2,V)

be the protocol where we denote by P1 and P2 the algorithms that compute, the prover’s first

message a = gα for random α ∈ Fp, and the prover’s last message (response) z = α + cw,

respectively, where c is the challenge from the space {0, 1}l for some length l. Let V be the

algorithm that takes x, transcript τ = (a, c, z) and accepts iff gz = axc.
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DPoK for Discrete Log. In order to distribute the above protocol, we begin by assuming n

provers Pi who each hold a share wi such that w = w1+· · ·+wn (mod p). Now, each prover runs

Σ with their respective shares in parallel1. That is, Pi runs P1, broadcasts ai = gαi , receives chal-

lenge c from V, and runs P2 and broadcasts zi. The transcript is τ = (a1, . . . , an, c, z1, . . . , zn),

and the verifier accepts iff gΣzi =
∏

aix
c =

∏
i aix

c. This holds since gΣzi = gΣ(αi+cwi) =
∏

i aix
c.

This idea generalizes to any linear secret sharing scheme, and also extends to other relations.

For instance, to prove knowledge of representation of a vector of discrete logarithms with respect

to public generators. In our final construction we use additional ideas like randomization of

the first message of each Pi via a sharing of 0 in order to ensure zero-knowledge. This DPoK

has communication complexity linear in the size of the witness. To achieve succinctness, we

instead use as a starting point a compressed sigma protocol [8] in order to achieve a distributed

protocol with logarithmic communication complexity (see Section 4.3.2 for details).

Robust Completeness. While the ideas described above result in protocols that are zero-

knowledge and sound against a malicious adversary controlling up to t parties, completeness

is guaranteed only if all the provers follow the protocol. However, in the distributed setting, a

stronger, but natural notion is a robust completeness property where completeness holds as long

as the shares reconstruct a valid witness, even if some provers are malicious. The main technical

challenge in achieving robust completeness for a distributed proof is to retain succinctness. Our

key technical novelty is to achieve both robustness and succinctness simultaneously via ideas

from low-degree testing. We achieve this by identifying and discarding corrupt shares. At a

high level, the provers commit to their shares and then reveal a certain linear form determined

by the challenge over their shares. Given a challenge c ∈ Fm
p , each Pi broadcasts zi = ⟨c,wi⟩.

In the honest case, these opened linear forms are expected to be a sharing of the same linear

form on the reconstructed witness: z = (z1, . . . , zn) recombine to z where z = ⟨c,w⟩. The

verifier error-corrects the received z′ to the nearest codeword, and identifies the erroneous

positions. By assumption our corruption threshold is smaller than half the minimum distance

of the code, so the erroneous positions clearly come from corrupt provers. Can some corrupt

provers strategically introduce errors in individual shares so that they “cancel out” in the inner

product with c? We lean on coding theoretic result (Lemma 4.2) for linear codes to claim that

such a prover only succeeds with negligible probability. Finally, having identified the corrupt

messages, we can reconstruct the claimed commitment in the exponent using commitments

1This is a simplified description; in our actual protocol Πdlog (Section 4.1), there are no parallel sessions, each
instance uses a random share, ensuring that we do not reuse the shares, and in the FS-compiled version ΠFS

dlog

(Section 4.4), parties send non-interactive proofs instead of sending the first-messages separately in parallel. We
note that ROS attacks [24] in the context of concurrent signatures are therefore inapplicable in our setting. See
also Section 4.1.3.1 for a more detailed discussion.
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of honest shares (now identified). We need more details around this core idea to ensure the

protocol is zero-knowledge (see Section 4.3.2 for a complete treatment).

DPoKs for Algebraically Structured Signatures. It turns out that the above approach

can be naturally generalized to obtain a DPoK for the opening of a Pedersen commitment [95].

We use this observation as a starting point to realize DPoKs for algebraically structured signa-

tures such as BBS+ [29, 13, 41] and PS [97], which naturally admit proofs of knowledge that

can be cast as proving knowledge of openings of Pedersen commitments. As a core techni-

cal contribution, we introduce a modified proof of knowledge for the BBS+ signature scheme,

which leads to a vastly more efficient DPoK as compared to the straightforward approach of

distributing prior proofs of knowledge for BBS+ signatures. We refer to Section 4.4 for details.

Analogous DPoK for PS signatures is presented in Section 4.7.3.

Compiler for Authenticated MPC. In order to construct an authenticated MPC protocol,

we build upon the above DPoKs for BBS+ and PS signatures. Our compiler reuses the input

sharing that is already done as part of an honest-majority MPC protocol. Before proceeding

with computation on the shares, the distributed zero-knowledge proof is invoked to verify

authenticity, and then the rest of the MPC protocol proceeds. Since the shares of the witness

come from a party in the MPC protocol, our robustness property guarantees that if the dealer

is honest (that is, a valid witness was shared), then even if some parties acting as provers are

dishonest, the authenticity proof goes through (see Section 4.8 for details).

We also note that, while we rely on broadcast for our protocols, all relevant related work

on Fully Linear Probabilistically Checkable Proofs (FLPCP) [30] and previous works on au-

thenticated MPC [27, 5, 76] also make use of a broadcast channel. A broadcast channel is

not a limitation, and can be implemented using point-to-point channels. In the setting where

the number of parties is not too large (as in the applications we consider), the communication

overhead to realize broadcast is not prohibitive.

4.1.3 Related Work

We summarize some relevant related work, and compare our compiler with prior approaches

for authenticated MPC. We refer to Section 4.1.3.2 for some additional discussions.

Certified Inputs. The earlier works of [15, 78, 112] achieve input validation for the special

case of two-party computation using garbled circuit (GC) based techniques. Another work [27]

constructs MPC with certified inputs, albeit using techniques that are specific to certain MPC

protocols [50, 49]. A recent work [5] develops techniques for computing bilinear pairings over

secret shared data, which aims to enable signature verification inside MPC for the PS signature
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scheme [97]. Both works [5, 27] emulate a functionality similar to authenticated secret-sharing

protocol, where shares of an input certified by some certification authority are provided at the

end of the protocol execution. While the goal of authenticated MPC has been studied, these

works would require additional consistency checks to ensure the consistency of shares used

across the protocols for authentication of shares and the underlying MPC execution. Although

the explicit details are not provided in the protocol description, we expect the requirement of

some consistency check on the MACs to ensure the usage of same shares during authentication

protocol and original MPC for function computation. In our work, we formalize this notion

of authenticated MPC as an ideal functionality which incorporates the consistency checks, and

prove that the proposed constructions realize this. For instance, consider the scenario where a

malicious party receives the shares of a certified input held by an honest party, which is done

via an authenticated secret-sharing protocol, however while running the MPC itself it chooses

to not use the shares received during the previously run authenticated secret-sharing protocol

and uses an arbitrarily chosen share instead. The current definitions in [5, 27] fails to safeguard

against such an attack and would require additional assumptions to ensure the consistency of

shares.

To be precise, the current protocol description of ΠCertInput in [5] (Section 5.1) emulates the

authenticated secret-sharing, such that at the end of the protocol, if an input corresponds to a

valid signature, the shares of that input is available to every party. This protocol first secret-

shares the input, then using the shares held by everyone as input invokes another protocol ΠVerify

to ascertain if the shares obtained in the previous phase corresponds to an input for which there

is a valid signature. However, note that only Step 3 of ΠVerify considers the shares of the input,

which need not be the shares used for running the MPC, unless additional consistency checks

using the MACs on the shares are in place. Such details do not explicitly appear in the protocols

presented in [5].

The protocols in [27] also follow a similar template based on authenticated secret-sharing.

Their techniques consider two specific MPC protocols [49, 50] for input certification. Concretely,

Theorem 8 for input certification in [27] ensures that a malicious prover cannot feed an input

which does not correspond to the valid signature. While it is not explicitly specified in [27]

that the commitments to the inputs used for the batch verification of signatures are consistent

with the inputs used for the remaining proof of knowledge statements, we assume that this is

indeed the case.

In this chapter, we recognize the benefits of having a formal definition to capture the consis-

tency of shares of input used in authentication and the MPC. To this end, we explicitly provide

an ideal functionality ensuring the same, and then present a construction satisfying this ideal
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functionality. We also avoid the possibility of using different inputs for certification and MPC

by enforcing that the honest party shares must completely determine the reconstructed in-

put which is being authenticated. While this observation has not been specified in either of

the works, this specific restriction would also ensure that the consistency of shares holds for

constructions in [5, 27] as well.

We use efficient compressed DPoKs for signature verification instead of verifying signatures

inside the MPC protocol, hence differing from both [5] and [27] in terms of techniques used

and properties achieved. In particular, our compiler is modular, fully generic (works in a plug-

and-play manner with any threshold linear secret sharing based MPC protocol), and avoids

the (potentially expensive) protocol-specific techniques and preprocessing requirements that

are inherent to [5, 27]. Our compiler also enables stronger security guarantees as compared to

abort security, namely identifiable abort (and even full security/guaranteed output delivery in

certain cases), which neither [5] nor [27] achieves.

Distributed Zero-knowledge. Various notions of distributed zero-knowledge have appeared

in literature. The notion of distributed interactive proofs appeared in [95], in the context of

relations describing the verification of signatures, where the signature is public and the secret

key is shared. The notion in [107] considers a distributed prover in order to improve prover

efficiency, but the witness is still held by one entity. In Feta [16], the distributed notion is

a generalization of designated verifier to the threshold setting where a set of verifiers jointly

verify the correctness of the proof. Prio [47] proposes secret shared non-interactive proofs where

again, there is a single prover and many verifiers.

Our formulation of DPoKs also differs from recent works on distributed zkSNARKs [102,

91, 51], where the focus is on jointly computing a non-interactive publicly verifiable proof (with

specific focus on Groth16 [74], Plonk [62] and Marlin [45]). Their constructions require addi-

tional interaction among the workers over private channels. On the other hand, we consider

DPoKs where all interaction with the verifier takes place over a public broadcast channel. We

also study the notion of robust completeness that guarantees completion even in the presence

of malicious behavior while ensuring succinct proof size, which was not achieved in prior works.

Note that distributed zkSNARKs fundamentally differ in their objective. DPOKs prove that

the given shares (e.g., the one used for MPC) reconstruct a valid witness, whereas distributed

zkSNARKs do not certify a given sharing.

A recent work on distributed zkSNARKs, called zkSaaS [68], considers a monolithic prover

that aims outsources proof generation to (untrusted) servers in a privacy-preserving manner for

increased efficiency. However, we target applications that require proving (algebraically struc-

tured) relations involving an already secret-shared witness. Plugging it naively does not work
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as a replacement for our proposed compiler since it would not ensure that the same input shares

are used consistently in the authentication protocol and the core MPC. Additionally, similar

to the distributed proofs with multiple verifier, [68] also requires expressing the algebraically

structured relations as circuits, which is inefficient for the algebraic relations considered in our

work.

Proofs on Secret-shared Data. Notions of zero-knowledge proofs on distributed data is

explored in recent works [30, 76, 16]. The former work proposes the abstraction of a fully

linear PCP (FLPCP) where each verifier only has access to a share of the statement, and the

latter work is based on MPC-in-the-head paradigm. The techniques of distributed verifica-

tion [30, 76, 16] assumes the relations to be represented as an arithmetic circuit, whereas our

DPoKs consider algebraic relations whose circuit respresentation is prohibitively expensive. Ad-

ditionally, distributed verifier paradigm considers a designated prover who knows entire witness

to create a proof oracle, which is verified in distributed fashion, while DPoKs do not require

a prover which knows the entire witness. For example for proof of gxhy = C wheres x and y

belongs to different parties, a DPoK will succeed as long as provers have valid shares of x and

y.

Our observation is that algebraic relations like discrete log is naturally distributed witness

relation. A public statement and shared witness is better suited for algebraic relations, and our

distributed zero-knowledge definition captures such natural relations. Since the focus of our

work is on concrete efficiency (prover overhead, communication overhead), we take advantage of

the algebraic nature of the relation to design concretely efficient DPoKs by modeling the witness

as being distributed and statement being public. In this approach, we expect rich classes of

protocols (compressed sigma protocols, Bulletproofs etc that avoid circuit representation for

several useful relations) to be amenable to be distributed under our definition. In addition, [30]

provides sublinear communication only for special circuits (like degree 2) and the circuits of

interest for us are unlikely to have this structure.

We also note that [30] does not consider the robustness property. We put forth the robustness

notion that guarantees that the protocol runs to completion even in the presence of malicious

parties (when the prover is honest). This property is indeed important for our applications,

as this means that the compiled authenticated MPC protocol can identify malicious parties in

the authentication stage. The distributed completeness guarantees of [16] considers robustness,

however its protocol execution incurs communication cost linear in the size of the circuit in the

offline phase. However, [16] does not allow aggregation of multiple instances of authentication

of input into one execution of the underlying distributed protocol, which we support efficiently.

Finally, the motivating application for [30] is compiling passive security to active security,
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and therefore the statements that show up – like the next message function of the protocol

-– have a low degree circuit representation. We consider the authenticated input application

where our relations of interest are algebraic in nature (e.g. verification of an algebraic signature

scheme) and admit efficient sigma protocols.

4.1.3.1 Resistance to Known Vulnerabilities

Here, we present a discussion on why our proposed DPoK protocols and our compiler for

authenticated MPC resist some known attacks and insecurities of ZKP protocols in practice.

Resistance to ROS Attacks. In [24], the authors presented an algorithm for solving ROS

(Random inhomogeneities in a Overdetermined Solvable system of linear equations) mod p in

polynomial time for ℓ > log p dimensions, which leads to the ROS attack on certain advanced

families of digital signatures which involve computations over secret shares. However, the ROS

attack does not apply to our proposed DPoK protocols. In particular, note that the ROS attack

only works when: (i) there are more than log p parallel sessions for the same shares, (ii) the

adversary chooses its first message after seeing all of the other first messages from the honest

parties, (iii) the adversary chooses the challenge.

The ROS attack is not applicable for our protocols as: (i) there are no parallel sessions in our

protocols, (ii) each protocol is instantiated using the output of (the randomized) Share algorithm

of the underlying secret sharing scheme (Share,Reconstruct), thereby ensuring that we do not

reuse the shares across sessions, and in the round-efficient versions of our proposed protocols:

(iii) the parties send non-interactive proofs instead of sending the first-messages separately (see

ΠFS
dlog in Section 4.6), and finally (iv) the challenge is not chosen by the adversary (verifier); it

is determined by performing a hash of the available public transcript.

Resistance to OSNARK-related Vulnerabilities. In [60], the authors provide a study

of when SNARKs are insecure in the presence of certain oracles (in particular, the knowledge

soundness guarantees do not hold in such settings since the extraction fails). As defined in [60],

an OSNARK is a SNARK that guarantees extraction even in presence of an oracle for the prover.

We note here that the negative result for the existence of OSNARKs, as outlined in [60], does

not provide a general impossibility result, since it only applies either to SNARKs where the

prover has access to oracles with secret states (such that the extractor does not have access to

these states), and for standard-model SNARKs. We note that the attack does not apply: (i) to

SNARKs in the ROM, and (ii) when the extractor is black-box in the adversary. Fiat-Shamir

transformed Sigma protocols are also known to satisfy black-box simulation-extractability, i.e.,

knowledge soundness holds even in the presence of proof oracles [65, 66]. Analogously, our

Fiat-Shamir transformed round-efficient proofs of knowledge are simulation-extractable in the
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random oracle model, as we establish through formal proofs of security. In particular, there are

no other oracles with secret states in our setting. We emphasize that signatures are already

independently obtained by the parties on their inputs, and signing or signature-oracles are not

included as part of our authenticated MPC protocols.

4.1.3.2 Comparison of our approach with Anonymity Sets

In this section, we present some additional discussion on the comparison of our DPoK-based

approach with the approach of signing public commitments. Previously we discussed an alter-

native approach for achieving authenticated MPC based on having the certifying authority sign

commitments to the private inputs of the parties, and then having the parties prove during the

MPC protocol that their inputs indeed open the public commitments. As discussed earlier, this

approach trivially violates the desired property of unlinkability, since one can link the usage of

the same input across different protocol executions from the public commitments. A possible

fix is to use anonymity sets : all commitments to the inputs are made publicly available, and

instead of explicitly identifying which commitment is linked with each input, the party provides

a zero-knowledge proof of knowledge of an opening of one of the several signed commitments,

along with a proof of membership of the commitment in the public set.

While this is a plausible solution, we believe that full unlinkability (as modeled implicitly

by our ideal functionality and realized by our proposed solution) is a better solution that

anonymity. First of all, the anonymity set needs to be large enough for any reasonable notion of

unlinkability to hold; however, this is an issue as the size of the statement to prove increases with

the size of the set, leading to additional overheads for the proof of knowledge. Additionally, one

has to prove that a commitment used is a member of the accumulated set, requiring additional

proofs of membership. Finally, in practical applications, it is unclear which entity will create

and maintain this set accumulator: for instance, if a new data set to be used as input for a

computation is signed by an authority, it must be added to the accumulator. This leads to

additional overheads for accumulator maintenance.

4.2 Preliminaries

In this section, we introduce notations and present preliminary background material.

Notation. We write x←R χ to represent that an element x is sampled uniformly at random

from a set/distribution X. The output x of a deterministic algorithm A is denoted by x = A

and the output x′ of a randomized algorithm A′ is denoted by x′ ←R A′. For n ∈ N, let [n]

denote the set {1, . . . , n}. For a, b ∈ N such that a, b ≥ 1, we denote by [a, b] the set of integers

lying between a and b (both inclusive). We refer to λ ∈ N as the security parameter, and denote
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by poly(λ) and negl(λ) any generic (unspecified) polynomial function and negligible function

in λ, respectively. A function f : N → N is said to be negligible in λ if for every positive

polynomial p, f(λ) < 1/p(λ) when λ is sufficiently large.

Let G be a group and Fp denote the field of prime order p. We use boldface to denote vectors.

Let g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Fn
p , then gx is defined by gx = gx1

1 · · · gxn
n . For

g = (g1, . . . , gn) ∈ Gn and h = (h1, . . . , hn) ∈ Gn, g ◦h denotes component-wise multiplication,

and is defined by g◦h = (g1h1, . . . , gnhn). For g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Fn
p ,

gL (similarly, xL) denotes the left half of the vector g(x) and gR(xR) denotes the right half,

such that g = gL∥gR and x = xL∥xR.

4.2.1 Secure Multiparty Computation

Secure multiparty computation (MPC) enables n mutually distrustful parties to jointly compute

a given function f over their private inputs, where ith party Pi holds the private input xi, while

maintaining the properties of correctness and privacy. Intuitively, the property of correctness

ensures that the output computed at the end of the MPC execution is correct, and the property

of privacy ensures that nothing beyond the output of the computation is revealed. The distrust

amongst parties is captured by the existence of an adversary A that can corrupt the behaviour

of up to t parties. This work only considers static corruption, where the set of corrupted parties

is decided before the protocol execution. Note that we only consider computationally bounded

adversaries for MPC execution in this thesis.

In MPC, we can consider semi-honest adversaries, which honestly follows the protocol spec-

ification and attempts to learn more information from the protocol execution. In essence, the

privacy against such adversaries are formalized by the existence of a PPT simulator that, given

only the output and inputs of the corrupt parties, can generate the view of the corrupt parties in

a real execution. However, in this work, we consider malicious adversaries that can arbitrarily

deviate from the protocol execution. The privacy guarantees against malicious adversaries are

formalized in [7] by comparing a real protocol execution to an ideal model, which consists of

the parties sending their private inputs to an incorruptible trusted third party and receiving

the output.

Let f be a function. Formally, Π is known as a secure MPC protocol for the function f , if

for every input x of f , the following properties of correctness and privacy hold.

Definition 16 (Correctness) Let outΠ(x) be the output of the protocol execution Π on input

x, then we have outΠ(x) = f(x).

Definition 17 (Privacy) Let x = (x1, . . . , xn) and Pi denote the ith party with input xi. Let
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A denote the adversary with auxiliary input z, C denote the set of indices of parties corrupted

by the adversary A, such that |C| ≤ t. The executions in the real and ideal models are defined

below.

– Execution in the Real Model: In real model, the parties run the protocol Π. The

adversary A controls {Pi : i ∈ C}, and is assumed to be rushing, i.e., in every given round

it can see the messages sent by the honest parties before determining the messages sent

by the corrupt parties. Let RealΠ,A(z),C (x) denote the random variable that consists of

the view of the adversary A (which includes the input and the internal randomness of the

corrupt parties, along with the messages received by them) and the output of the honest

parties.

– Execution in the Ideal Model: The ideal model consists of the honest parties, an

incorruptible trusted party and an ideal PPT adversary Sim, which controls the same set

of corrupted parties {Pi : i ∈ C}. The honest parties send their inputs to the trusted party.

The ideal adversary Sim receives the auxiliary input z and sees the input of the corrupted

parties {xi : i ∈ C}. Note that Sim can substitute any xi with any arbitrary x′
i, for i ∈ C,

such that |xi| = |x′
i| holds. Let x′

i be the inputs received by the trusted party, which it then

uses to compute the output (y1, . . . , yn) = f(x′
1, . . . , x

′
n). The simulator may send abort to

the trusted party, in which case the trusted party sends the abort message ⊥ to all parties,

otherwise it sends yi to Pi, for all i ∈ [n]. Let Idealf,Sim(z),C (x) denote the output of the

ideal adversary Sim (which includes its auxiliary input, the initial inputs of the corrupt

parties and the messages received by them) and the output of the honest parties.

The n-party protocol Π is said to satisfy the property of privacy, if for every A in the real

model, there exists a PPT simulator Sim in the ideal model, such that the following computa-

tional indistinguishability holds for every x and z, where z, xi ∈ {0, 1}∗ for all i ∈ [n].{
Idealf,Sim(z),C (x)

} ∼=c

{
RealΠ,A(z),C (x)

}
Security of MPC. In an MPC execution having security with abort, the adversary may abort

the protocol upon receiving the output, and deprive the honest parties of the opportunity

to obtain the output. In an MPC execution with identifiable abort security, although the

adversary may abort the protocol upon receiving the output and deprive the honest parties of

the opportunity to obtain the output, but in such a scenario a non-empty set of corrupt parties

will be identified by the honest parties. In an MPC execution with guaranteed output delivery

(GOD) security, all the honest parties are guaranteed to receive a correct output irrespective

of any adversarial strategy.
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Capacity of Corruption. In secure MPC, we generally assume that the adversary can only

corrupt atmost t number of parties in the protocol execution, where t is a publicly known

threshold. This is known as a threshold adversary, which is the focus of our application. The

literature of MPC also considers non-threshold adversaries that induces corruption based on a

publicly known adversarial structure.

If the threshold adversary can corrupt any number of parties during the n-party MPC

execution, it is known as the dishonest majority setting and is denoted by t < n. On the other

hand, if the threshold adversary is restricted to corrupt less than half of the total number of

parties, it is known as the honest majority setting and is denoted by t < n/2. Additonally

within honest majority, we can restrict the threshold adversary further to t < n/3, which

requires more than two-third of the total parties to behave honestly.

4.2.2 Threshold Secret Sharing

For ease of exposition we define a special case of threshold linear secret sharing scheme below.

For concreteness, the reader may assume a (t, n) Shamir Secret Sharing. The more general

definition appears in Section 4.5.

Definition 4.1 (Threshold Secret Sharing) A (t, n) threshold secret sharing over finite field

F consists of algorithms (Share,Reconstruct) as described below:

– Share is a randomized algorithm that on input s ∈ F samples a vector (s1, . . . , sn) ∈ Fn, which

we denote as (s1, . . . , sn)←R Share(s).

– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| ≥ t, a vector (s1, . . . , s|I|)

and outputs

s = Reconstruct((s1, . . . , s|I|), I) ∈ F. We will often omit the argument I when it is clear from

the context.

A threshold secret sharing scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆
[n] with q > t, we have Reconstruct((si1 , . . . , siq), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n]

with q ≤ t, the tuple (si1 , . . . , siq) is information-theoretically independent of s.

A concrete (t, n) sharing scheme over a finite field F, known as the Shamir Secret Sharing is

realized by choosing a set of distinct points η = {η1, . . . , ηn} in F \ {0}. Then given s ∈ F, the
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Share algorithm uniformly samples a polynomial p of degree at most t such that p(0) = s and

outputs (p(η1), . . . , p(ηn)) as the shares. The Reconstruct algorithm essentially reconstructs the

value s = p(0) using Lagrangian interpolation. We canonically extend the Share and Reconstruct

algorithms to vectors by applying them component-wise.

Definition 4.2 (Linear Code) An [n, k, d]-linear code L over field F is a k-dimensional sub-

space of Fn such that d = min{∆(x,y) : x,y ∈ L,x ̸= y}. Here ∆ denotes the hamming

distance between two vectors.

We say that an m × n matrix P ∈ Lm if each row of P is a vector in L. We also overload

the distance function ∆ over matrices; for matrices P,Q ∈ Fm×n, we define ∆(P,Q) to be the

number of columns in which P and Q differ. For a matrix P ∈ Fm×n and an [n, k, d] linear

code L over F, we define ∆(P,Lm) to be minimum value of ∆(P,Q) where Q ∈ Lm.

Definition 4.3 (Reed Solomon code) For any finite field F, any n-length vector η = (η1, . . . , ηn) ∈
Fn of distinct elements of F and integer k < n, the Reed Solomon Code RSn,k,η is an [n, k, n−
k + 1] linear code consisting of vectors

(
p(η1), . . . , p(ηn)

)
where p is a polynomial of degree at

most k − 1 over F.

We note that shares output by (t, n) Shamir secret sharing are vectors in [n, t + 1, n − t]

Reed Solomon code. We can leverage tests for membership of a vector in a linear code (based

on parity-check matrix) to check if a set of shares {si}i∈H for H ⊆ [n] and |H| > t uniquely

determine a shared value s for Shamir Secret Sharing scheme. Below, we formalise the notion

of consistent shares and state a lemma to check such shares. In the interest of space, we directly

state the results for general m ∈ N, i.e. when vectors s ∈ Fm are shared.

Definition 4.4 (Consistent Shares) Let L be the linear code determined by a (t, n) Shamir

secret sharing scheme over finite field F. For m ∈ N, we call a set of shares {si}i∈H for H ⊆ [n]

with |H| ≥ t + 1 to be Lm-consistent if there exists (v1, . . . ,vn) ∈ Lm such that si = vi for

i ∈ H. In this case s = Reconstruct(v1, . . . ,vn) ∈ Fm is the unique shared value determined by

the shares {si}i∈H.
We define the predicate Consistent : FH+1 −→ {0, 1} as

Consistent({si}i∈H, s) =



1, |H| ≤ t

1, |H| > t ∧ {si}i∈H is Lm-consistent∧
Reconstruct({si}i∈H) = s

0, otherwise.
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We use this Consistent(.) predicate to determine if a vector s can be a possible candidate

which could have been used to generate the set of shares held by the honest parties {si}i∈H.

Lemma 4.1 Let L be the linear code determined by a (t, n) Shamir secret sharing scheme over

finite field F. Then for m ∈ N and all H ⊆ [n] with q = |H| ≥ t+1, there exists q×(n−t) matrix

HHH over F such that shares {si}i∈H are Lm-consistent and determine the value s ∈ Fm if

and only if XHH = (s,0n−t−1) where X = (x1, . . . ,xq) is some canonical ordering of {si}i∈H.

Proof: We sketch the proof. For a matrix P ∈ Lm, we have PH = 0n−t−1 where H is the

parity check matrix for the [n, t+1, n−t] code L. Now for H ⊆ [n] with |H| ≥ t+1, and matrix

X determined by Lm-consistent shares (si)i∈H, there exists a matrix TH such that XTH ∈ Lm,

and hence XTHH = 0n−t−1. Thus for HH = [k,THH] where k is the column of reconstruction

coefficients for the set H, we have XHH = (s,0n−t−1). 2

4.2.3 Proofs of Knowledge

Let R be a NP-relation and L be the corresponding NP-language, where L = {x : ∃ w such that

(x,w) ∈ R}. Here, x is called an instance or statement and w is called a witness. An interactive

proof system consists of a pair of PPT algorithms (P,V). P, known as the prover algorithm,

takes as input an instance x ∈ L and its corresponding witness w, and V, known as the verifier

algorithm, takes as input an instance x. Given a public instance x, the prover P, convinces the

verifier V, that x ∈ L. At the end of the protocol, based on whether the verifier is convinced

by the prover’s claim, V outputs a decision bit. A stronger proof of knowledge (PoK)1 property

says that if the verifier is convinced, then the prover knows a witness w such that (x,w) ∈ R.

In this thesis, we consider POKs that satisfy two security properties, namely, honest-verifier

zero-knowledge (HVZK) and special-soundness.

A protocol is said to be honest-verifier zero-knowledge (HVZK) if the transcript of mes-

sages resulting from a run of the protocol can be simulated by an efficient algorithm without

knowledge of the witness. A protocol is said to have k-special-soundness, if given k accepting

transcripts, an extractor algorithm can output a w′ such that (x,w′) ∈ R. Furthermore, a

protocol is said to have (k1, . . . , kµ)-special-soundness [32], if given a tree of
∏µ

i=1 ki accepting

transcripts, the extractor can extract a valid witness. Here, each vertex in the tree of
∏µ

i=1 ki

accepting transcripts corresponds to the prover’s messages and each edge in the tree corresponds

the verifier’s challenge, and each root-to-leaf path is a transcript. An interactive protocol is

1Note that throughout this thesis, we use proof and argument interchangeably, but we are only concerned
with arguments (proofs with computational soundness) in this thesis.
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said to be public-coin if the verifier’s messages are uniformly random strings. Public-coin pro-

tocols can be transformed into non-interactive arguments using the Fiat-Shamir [59] heuristic

by deriving the verifier’s messages as the output of a Random Oracle. In this work, we consider

public-coin protocols.

We refer to Section 4.2.5 for a detailed treatment of non-interactive zero-knowledge (NIZK)

proof systems.

4.2.4 BBS+ Signatures and PoK for BBS

In this section, we recall the BBS+ signature scheme [29, 87, 41], and its proof of knowledge.

We use the variant of BBS+ signatures and the proof of knowledge from [41], which is the

currently adopted variant in the IETF standard for verifiable crendentials [87]. Later, we also

describe a slight variant of the BBS+ proof of knowledge from [41], which leads to corresponding

distributed proofs with better amortized complexity (i.e, when several DPoKs are required at

a time).

Definition 4.5 (BBS+ Signature Scheme [29, 87]) The BBS+ signature scheme to sign

a message of the formm = (m1, . . . ,mℓ) ∈ Fℓ
p consists of a tuple of PPT algorithms (Setup,KeyGen, Sign,Verify)

described as follows :

– Setup(1λ) : For security parameter λ, this algorithm outputs groups G1,G2, and GT of prime

order p, with an efficient bilinear map e : G1×G2 → GT as part of the public parameters pp,

along with g1 and g2, which are the generators of groups G1 and G2 respectively.

– KeyGen(pp) : This algorithm samples (h0, . . . , hℓ)←−R Gℓ+1
1 and x←−R F∗

p, computes w = gx2

and outputs (sk, pk), where sk = x and pk = (g1, w, h0, . . . , hℓ).

– Sign(sk,m1, . . . ,mℓ) : This algorithm samples β, s←−R Fp, computes A =
(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

and outputs σ = (A, β, s).

– Verify(pk, (m1, . . . ,mℓ), σ) : This algorithm parses σ as (σ1, σ2, σ3), and checks

e (σ1, wg
σ2
2 ) = e

(
g1h

σ3
0

ℓ∏
i=1

hmi
i , g2

)
.

If yes, it outputs 1, and outputs 0 otherwise.
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Original PoK for BBS+ Signature Scheme. Here, we first recall the proof of knowledge

for BBS+ signatures, which was originally proposed in [41], and then present our modified

version next.

– Common Input: Public Key pk = (w, h0, . . . , hℓ)

– P’s inputs: Message m ∈ Fℓ
p and signature σ = (A, β, s) on m, with A =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

1. P samples r1 ←−R F∗
p and computes A′ = Ar1 and r3 = r−1

1

2. P computes Ā = (A′)−β · br1 , where b = g1h
s
0

∏ℓ
i=1 h

mi
i .

3. P samples r2 ←−R Fp and computes d = br1 · h−r2
0 and s′ = s− r2 · r3

4. P sends (A′, Ā, d) to V, and they run a ZKPoK for the relation:

(A′)
−β

hr2
0 = Ā/d ∧ d−r3hs′

0

ℓ∏
i=1

hmi
i = g−1

1

where (m, r2, r3, β, s
′) is the witness.

5. V checks that A′ ̸= 1G1 , e (A′, w) = e
(
Ā, g2

)
, verifies the ZKPoK proof and outputs 1 if

all the checks pass, and 0 otherwise.

Modified PoK for BBS+ Signature Scheme. We present our modified proof of knowl-

edge (PoK) for BBS+ signatures, building on the PoK originally proposed in [41], wherein we

split the relation d−r3hs′
0

∏ℓ
i=1 h

mi
i = g−1

1 by requiring the prover to equivalently show:

d−r3hs′−η
0 = C ∧ hη

0

ℓ∏
i=1

hmi
i = D ∧ C ·D = g−1

1

The above decomposition has advantage that the (long) message m appears only with public

generators which leads to better aggregation of DPoKs over several messages. The complete

modified protocol appears below.

– Common Input: Public Key pk = (w, h0, . . . , hℓ)

– P’s inputs: Message m ∈ Fℓ
p and signature σ = (A, β, s) on m, with A =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

1. P samples r1 ←−R F∗
p and computes A′ = Ar1 and r3 = r−1

1

2. P computes Ā = (A′)−β · br1 , where b = g1h
s
0

∏ℓ
i=1 h

mi
i .
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3. P samples r2 ←−R Fp and computes d = br1 · h−r2
0 and s′ = s− r2 · r3

4. P samples η ←−R Fp and sets C = d−vhs′−η
0 , and D = hη

0

∏ℓ
i=1 h

mi
i .

5. P sends (A′, Ā, d, C,D) to V.

6. P and V run a ZKPoK for the discrete-logarithm relation:

(A′)
−β

hr2
0 = Ā/d ∧ d−r3hs′−η

0 = C ∧ hη
0

ℓ∏
i=1

hmi
i = D

where (m, r2, r3, β, s
′, η) is the witness.

7. V checks that A′ ̸= 1G1 , C ·D = g−1
1 , e (A′, w) = e

(
Ā, g2

)
, verifies the ZKPoK proof and

outputs 1 if all the checks pass, and 0 otherwise.

4.2.5 Non-Interactive Zero-Knowledge Proofs in the Random Ora-

cle Model

The Fiat-Shamir heuristic [59] transforms a public-coin interactive proof into an non-interactive

version in the random oracle model. Given a public-coin proof system Π = (P,V) with r rounds

and Chi is the challenge space for the ith round. The corresponding non-interactive proof system

ΠFS = (SetupFS,PFS,VFS) is defined as follows.

– H←R SetupFS(1λ) The setup algorithm for i ∈ [1, r] samples a function Hi uniformly from

a set of all functions that map {0, 1}∗ to Chi. Note that this is equivalent to instantiating

Hi from a single random oracle via domain separation. We denote by H the set {Hi}i∈[1,r].

– π ←R PFS
H(x,w) The prover produces a proof string π on input statement x, and wit-

ness w. For each round i ∈ [1, r], PFS
H invokes the next message function of the in-

teractive prover P(x,w) on prior challenge ci−1 to get ai, and obtains the ith round

challenge by computing ci = Hi(x, a1, c1, . . . , ai−1, ci−1, ai). Then PFS
H outputs π =

(a1, c1, . . . , ar, cr, ar+1).

– b←R VFS
H(x, π) The verifier on input statement x, and proof string π, outputs a decision

bit. VFS
H outputs b = 1, meaning the verifier accepts the proof, iff V(x, π) = 1 and

ci = Hi(x, a1, c1, . . . , ci−1, ai) for all i ∈ [1, r].

Definition 4.6 (Knowledge soundness in the ROM) Consider a non-interactive proof sys-

tem ΠFS = (SetupFS,PFS,VFS) for relation R. ΠFS is extractable with knowledge error κ :
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N×N→ [0, 1] in the random oracle model, if there exists an extractor Ext and some polynomial

poly, such that for any PPT adversary P that makes at most q queries to H, it holds that

ext(P,Ext) ≥ acc(P)− κ(λ, q)

poly(λ)

and Ext halts in an expected number of steps that is polynomial in λ and q, where the probabilities

acc and ext are defined as follows.

acc(P) = Pr

 b = 1

H←R SetupFS(1λ);

(x, π)←R PH(ρ);

b←R VFS
H(x, π)



ext(P,Ext) = Pr

 b = 1∧
(x,w) ∈ R

H←R SetupFS(1λ);

(x, π)←R PH(ρ);

b←R VFS
H(x, π);

w ←R ExtP(x, π, ρ,Q1)


where Q1 = {Q1,i}i∈[1,r] is the set consisting of pairs corresponding to queries to the random

oracle H with index i, and the response. In the experiment ext, Ext has oracle access to the

next-message function of P.

Zero-knowledge for non-interactive proofs is defined in the explicitly programmable random

oracle model where the simulator is allowed to program the random oracle. The zero-knowledge

simulator SFS is modeled as a stateful algorithm that operates in two modes. In the first mode,

(ci, st
′) ← SFS(1, st, x, i) handles random oracle calls to Hi on input x. In the second mode,

(π̃, st′)← SFS(2, st, x) simulates a valid proof string. We define stateful wrapper oracles.

– S1(t, i) denotes the oracle that returns the first output of SFS(1, st, t, i);

– S2(x,w) returns the first output of SFS(2, st, x) if (pp, x, w) ∈ R and ⊥ otherwise; (This

is because ZK is defined only for true statements.)

Definition 4.7 (Non-interactive Zero-Knowledge) A NIZK ΠFS = (SetupFS,PFS
H,VFS

H)

for relation R is non-interactive zero-knowledge in the random oracle model, if there exists a

PPT simulator SFS = (S1, S2) such that for all PPT distinguisher D, the following is negligible

in λ

∣∣Pr
[
DH,PFS

H

(1λ) = 1 : H←R SetupFS(1λ)
]
− Pr

[
DS1,S2(1λ) = 1 : H←R SetupFS(1λ)

] ∣∣
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where both PFS
H(x,w) and S2 return ⊥ if (x,w) ̸∈ R.

Additionally, given a HVZK simulator S for Π, we can construct a NIZK simulator SFS for

ΠFS as follows.

– On query (x, i) with mode 1, SFS(1, st, x, i) lazily samples a lookup table Q1,i maintained

in state st. It checks whether Q1,i[x] is already defined; if yes, it returns the previously

assigned value; otherwise it returns and sets a fresh random value ci sampled from Chi.

– On query x with mode 2, SFS(2, st, x) calls the HVZK simulator S of Π to obtain a

simulated transcript π̃ = (a1, c1, . . . , ar, cr, ar+1). Then, it programs the tables such that

Q1,1[x, a1] := c1, . . . ,Q1,r[x, a1, c1, . . . , ar] := cr. If any of the table entries has been already

defined SFS aborts, which happens with negligible probability under the assumption that

a1 has high min-entropy.

4.2.6 Compressed Sigma Protocols

We recall the sigma protocol for vectors, for proving knowledge of discrete log s ∈ Fℓ
p of a vector

of group elements g, such that gs = z. Here, a prover P with knowledge of the secret vector

s, samples a random vector of scalars r ←−R Fℓ
p, and sends α = gr to the verifier V. V then

samples a challenge c←−R Fp and sends it to P and in the next round P replies with x = cs+ r

where V checks if gx = zcα. Here, the size of the last message of P is linear in input size, and

hence it makes the proof size linear. We note that, for the proof to be succeed, it suffices to

convince the verifier V that P knows x such that gx = zcα. Here, we recall the log2m−1 round

protocol using the split and fold technique [8], which has logarithmic proof size, for proving

knowledge of x ∈ Fℓ
p such that gx = y where y = zcα :

– Common input : g ∈ Gm, z ∈ G

– P’s input : x ∈ Fℓ
p

1. P computes A = gxL
R , B = gxR

L and sends them to V.

2. V samples c←−R Fp and sends it to P.

3. P comutes x′ = xL + cxR.

4. P and V independently computes g′ = gc
L ◦ gR ∈ Gℓ/2 and z′ = AycBc2 .

5. If size(g′) = 2, P sends x′ to V, else P and V repeat the protocol from step 1 with x = x′,

g = g′ and y = z′.
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where for a vector s, sL denotes the left half of the vector and sR denote the right half.

The underlying sigma protocol has perfect completeness, special honest-verifier zero-knowledge

(SHVZK) and 2-special soundness, and the later protocol has perfect completeness and 3-

special soundness at each step of the recursion. Hence, the overall protocol CSP{(z,x) : gx =

z} has perfect completeness, SHVZK which comes from the underlying sigma protocol and

(2, k1, . . . , k(log2 ℓ−1))-special soundness, where ki = 3 ∀i ∈ [log2 ℓ − 1]. The protocol can be

compiled into a non-interactive argument of knowledge using Fiat-Shamir heuristic [59] in the

random oracle model, which we denote by NIPK.PRO
FS {(z,x) : gx = z} for the random oracle

RO.

4.2.7 Coding Theory

The following coding theoretic result is used to identify malicious behaviour in the distributed

proof of knowledge protocol in Section 4.3.2. It has been previously used in construction of

zero-knowledge proofs in the interactive oracle setting (e.g [4, 22]), to check that the oracle

represents “low degree polynomials”.

Lemma 4.2 ([23], Theorem 1.2) Let L be an [n, k, d]-linear code over finite field F and let

S be an m× n matrix over F. Let e = ∆(S,Lm) be such that e < d/2. Then for any codeword

r ∈ L, and γ sampled uniformly from Fm, we have ∆(r + γTS,L) = e with probability at least

1−n/|F|. Furthermore, if E denotes the column indices where S differs from the nearest matrix

Q in Lm, with probability 1−n/|F| over choice of γ, the vector r+γTS differs from the closest

codeword v ∈ L at precisely the positions in E.

4.3 Distributed Proof of Knowledge

In this section, we formalize the notion of distributed proof of knowledge (DPoK) in which

multiple provers, each having a share of the witness engage in an interactive protocol with a

verifier to convince it that their shares determine a valid witness. The provers do not directly

interact with each other, and all the interaction with the verifier takes place over a public

broadcast channel.

4.3.1 Defining a DPoK

Definition 4.8 (Distributed Proof of Knowledge) We define n-party distributed proof of

knowledge for relation generator RGen and a secret-sharing scheme SSS = (Share,Reconstruct)

by the tuple DPoKSSS,RGen = (Setup,Π) where Setup is a PPT algorithm and Π is an interactive
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protocol between PPT algorithms P (prover), V (verifier) and W1, . . . ,Wn (workers) defined as

follows:

– Setup Phase: For relation R ←R RGen(11λ), Setup(R) outputs public parameters pp as

pp←R Setup(R). The setup phase is required to be executed only once for a given relation

R. We assume R consists of pairs (x,w) where w is parsed as (s, t)) with s ∈ Fm. Looking

ahead, we partition the witness as (s, t) to explicitly specify which parts of the witness

later needs to be shared 1.

– Input Phase: The prover P receives (x, (s, t)) ∈ R as input, while the worker Wi, i ∈ [n]

receives (x, si) as input, where (s1, . . . , sn)←R Share(s). All parties receive x as input.

– Preprocessing Phase: This is (an optional) phase where the prover P sends some aux-

iliary information auxi to worker Wi using secure private channels.

– Interactive Phase: In this phase, the parties interact using a public broadcast channel

according to the protocol Π. The protocol Π is a k-round protocol for some k ∈ N, with

(pp,x, s, t) as P’s input, (pp,x, si, auxi) as the input of Wi and (pp,x) as the input of

V. The verifier’s message in each round j ∈ [k] consists of a uniformly sampled challenge

cj ∈ Fℓj for ℓj ∈ N. In each round j ∈ [k], the worker Wi (resp. the prover P) broadcasts

a message mij (resp., mi) which depends on it’s random coins and the messages received

in prior rounds (including preprocessing phase).

– Output Phase: At the conclusion of k rounds, verifier outputs a bit b ∈ {0, 1} indicating

accept (1) or reject (0).

A distributed proof of knowledge DPoKSSS,RGen as described above is said to be t-private,

ℓ-robust if the following hold:

– Completeness: We say that completeness holds if for all R←R RGen(11λ) and (x, s) ∈ R,

the honest execution of all the phases results in 1 being output in the output phase with

probability 1.

– Knowledge-Soundness: We say that knowledge soundness holds if for any PPT adversary

A = (A1,A2), where A2 corrupts the prover P and subset of workers {Wi}i∈C for some

1We specify s ∈ Fm since our secret sharing works over a finite field. The witness component t need not,
in general, be a field element. In fact, in our application, the witness is a message signature pair where the
message is in Fm and the signature is a group element. This group element is not secret shared, yet, the DPOK
guarantees extraction of a valid signature message pair.
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C ⊆ [n], there exists an extractor Ext with oracle access to A2 (recall that the prover and

the set of corrupt Wi are controlled by A2) such the following probability is negligible.

Pr


VA,Π(pp,x) = 1 ∧
((x, (s, t)) ̸∈ R ∨

Consistent({si}i̸∈C, s) = 0)

R←R RGen(1λ)

pp←R Setup(R)

(x, {si}i̸∈C)←R A1(pp)

(s, t)←R ExtA2(pp,x, {si}i̸∈C)


In the above, VA,Π(pp,x) denotes the verifier’s output in the protocol Π with its input as

(pp,x) and A being the adversary. The extractor takes as input the shares of the honest

parties specified by the adversary A1, and with all but negligible probability extracts a

valid witness.

– Honest Verifier Zero-Knowledge: We say that a DPoK is honest verifier zero-knowledge

if for all R←R RGen(11λ), (x, s) ∈ R and any PPT adversary A corrupting a set of work-

ers {Wi}i∈C, where |C| ≤ t, there exists a PPT simulator Sim such that ViewA,Π(pp,x)

is indistinguishable from Sim(pp,x) for pp ←R Setup(R). Here, the view is given by

ViewA,Π = {r, (Mi)i∈C} where r denotes the internal randomness of A and Mi is the set of

all messages received by Wi in Π. We remark that we define honest-verifier zero-knowledge

as is standard for public-coin interactive protocols. After Fiat-Shamir compilation into a

non-interactive proof, we get full zero-knowledge against a malicious verifier.

– Robust-Completeness: We say that robust-completeness holds if for all R←R RGen(11λ),

(x, s) ∈ R and any PPT adversary A corrupting a set of workers {Wi}i∈C, where |C| ≤ ℓ,

VA,Π(pp,x) = 1 with overwhelming probability where pp←R Setup(R).

Remark 1 Robust completeness is a stronger notion of completeness in the sense that it holds

even if some corrupt workers deviate maliciously from the protocol, as opposed to the standard

notion of completeness which only holds if all the workers follow the protocol. Looking ahead, we

use robust complete DPoKs to design authenticated MPC protocols that preserve the underlying

protocol’s resilience against malicious behavior.

Remark 2 We assume that the sharing phase is executed before the onset of DPoK, hence

the knowledge soundness extractor of DPoK expects honest party shares in order to extract the

witness. Since knowledge soundness is supposed to hold against a corrupt prover and some

corrupt workers, it is meaningful to say that the adversary breaks knowledge soundness if no

extractor can construct corrupt party shares that together with the honest party shares
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determine a valid witness. Note that extractor is required to produce shares of corrupt parties

which “explain” the successful outcome of the protocol in conjunction with the shares used by

honest parties. Hence, DPoK enables us to certify a given sharing.

Remark 3 We assume an honest verifier V for ease of exposition. In Section 4.6, we relax this

assumption by transforming any DPoKSSS,RGen protocol that uses only public-coins and commu-

nication over broadcast channels between the workers and the verifier (with no communication

among the workers), into a round-efficient version RE-DPoKSSS,RGen in the random oracle model,

wherein the verifier’s challenge is computed using the Fiat-Shamir heuristic [59].

4.3.2 Robust Complete DPoK for Discrete Log

In this section, we provide a DPoKSSS,DlogGen for the discrete log relation based on Shamir

Secret Sharing (SSS) [104]. Let DlogGen be a relation generator that on input (11λ , 1ℓ) outputs

(G, g, p) where p is a 1λ-bit prime, G is a cyclic group of order p and g = (g1, . . . , gℓ)←R Gℓ is

a uniformly sampled set of generators. The associated relation RDL is defined by (z, s) ∈ RDL

if gs = z. Let SSS = (Share,Reconstruct) denote (t, n) Shamir secret sharing over Fp. Our

protocol Πdlog realizing DPoKSSS,DlogGen is presented in Figure 4.1.

However, for ease of exposition, we first explain a simpler non-robust version of the protocol,

before explaining the robust version. We use an instantiation of compressed sigma protocols

(CSP) due to Attema et al. [8] as a black-box (please refer to Section 4.2.6 for more details). We

run CSP protocol instances over a broadcast channel, meaning that each worker Wi (playing

the role of the prover of that instance) broadcasts its messages as part of the CSP protocol,

and the verifier broadcasts all challenges as well.

Warm-up: Non-robust DPoK for DLOG. We begin by describing a simpler, non-robust

version of Πdlog outlined above, which we call Πnr-dlog. Let us consider the scenario where the

parties Wi, i ∈ [n], holds the shares si for a secret s such that (z, s) ∈ RDL, i.e. z = gs. Now

note that since (s1, . . . , sn) ←−R s, there exists some publicly known ki such that
∑

i kisi = s.

In particular, the protocol Πnr-dlog executes the following steps:

– Input Phase: The prover holds (z, s) and each worker Wi (i ∈ [n]) holds (z, si), where

si are shares of s i.e. (s1, . . . , sn)←R Share(s).

Interactive Phase

– Each worker Wi (i ∈ [n]) broadcasts a commitment Ai = gsi to their shares si, along with

a proof of knowledge πi of its exponent si with respect to the associated commitment Ai.
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– Thereafter, the verifier checks the following:

· The proofs πi (with respect to the broadcast commitment Ai) are valid for all i ∈ [n].

· The broadcast Ai and the publicly known z satisfies the relation z =
∏

i A
ki
i for the

publicly known reconstruction coefficients {ki : i ∈ [n]}.

Robust DPoK for DLOG. Note that the previously described protocol Πnr-dlog achieves

completeness only if all of the parties participating to produce the proof are honest. To achieve

completeness even in the presence of corrupt parties, known as the stronger guarantee of robust

completeness, we require error-correction. However the shares that requires error-correction

are in the exponent of a publicly known group element and it is known from [96] that error

correction is not possible in the exponent. To ensure that error correction is possible in the

exponent, we leverage the coding theoretic lemma that states that a random linear combination

of a set of error-correcting codes (e.g., Reed-Solomon code) retains the position of errors as long

as the number of errors are ‘small’. In particular, the protocol Πdlog executes the following steps:

– Input Phase: The prover holds (z, s) and each worker Wi (i ∈ [n]) holds (z, si), where

si are shares of s i.e. (s1, . . . , sn)←R Share(s).

– Preprocessing: We need an additional preprocessing step for providing robustness. In

this phase, before the onset of the interactive phase of the protocol, the prover samples

r ←−R Fp, computes (r1, . . . , rn)←−R Share(r) and sends the share ri to the worker Wi.

Interactive Phase

– Commit to Shares: In the interactive phase, each worker Wi (i ∈ [n]) first commit to

their respective shares by

· broadcasting Ai = gsi and running its associated proof of knowledge CSP{(Ai, si) :

gsi = Ai} over broadcast to obtain πi1.

· broadcasting Bi = hri
1 h

ωi
2 for ωi ←R Fp and running its its associated proofs of

knowledge

CSP{(Bi, (ri, ωi)) : hri
1 h

ωi
2 = Bi} over broadcast to obtain πi2.

– Reveal Linear Form over Shares: The verifier samples a challenge γ ←−R Fℓ
p and

broadcasts it. Thereafter, the workers broadcast the linear form vi = ⟨γ, si⟩+ ri. Recall

that, we know that random linear combination of a codeword is also a codeword (recalled
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in Lemma 4.2). Using Lemma 4.2, since {(si, ri) : i ∈ [n]} are codewords respectively, the

linear combination of those codewords (v1, . . . , vn) using the randomly sampled γ is also

a codeword.

Additionally, to ensure that corrupt workers use si, ri consistent with earlier commitments

Ai, Bi we additionally require them to run the following proof of knowledge CSP over

broadcast to obtain πi3:

πi3 = CSP{((AiBi,γ∥1∥0, vi), (si, ri, ωi)) : gsihri
1 h

ωi
2 = AiBi ∧ ⟨γ, si⟩+ ri = vi}.

– Verifier Determines Honest Commitments: Let v = (v1, . . . , vn), defined by vi =

⟨γ, si⟩ + ri, be the vector of honestly computed values, and v′ = (v′1, . . . , v
′
n) be the

respective broadcast values received by the workers in the previous step. If one of the

proofs πi1, πi2 or πi3 is invalid, the verifier set bi = 0 else it sets bi = 1. Since ∆(v′,v) ≤
d < (n − t)/2, V can compute v from v′ by decoding algorithm (e.g. Berlekamp-Welch)

for Reed-Solomon codes. Set C = {i ∈ [n] : vi ̸= v′i ∨ bi = 0} and let HQ = (hjk) denote

the matrix guaranteed by Lemma 4.1 for Q = [n]\C = {i1, . . . , iq} for q ∈ N.

Informally, C is the set consisting of the position of ‘errors’ noted by the verifier and the

new reconstruction coefficient k′
i is computed for the set [n] \C = {i1, . . . , iq}. Thereafter

the verifier proceeds with the final check with the non-error positions in {i1, . . . , iq} by

using the new reconstruction coefficients and the corresponding commitments sent in the

previous round. Also, we rely on the fact that we use shares of a codeword (s, r) in the

proof of knowledge πi3 to ensure that the received values (v1, . . . , vn), if correctly com-

puted, would also be a codeword and error-correction can be used on the new codeword

(v1, . . . , vn).

– Output using Honest Messages: V outputs (1,C) if
(∏

j∈[q]A
hjk

ij

)
k=1,...,n−t

= (z,0n−t−1),

and (0, {P}) otherwise.

This is achieved via the additional steps (4b) through (6) in Πdlog outlined in the figure

above. We subsequently present a formal proof that Πdlog achieves d-robust completeness for

d < dist/2, where dist = (n− t) is the minimum distance of the Reed-Solomon code induced by

(t, n)-SSS.

Remark 4 The final step of protocol Πdlog checks (n− t) equations over exponents and not just

the reconstruction equation. This is to ensure that we extract the witness consistent with honest

party shares of the witness. This is crucial in the security proof of our compiler for honest
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majority protocols where honest party shares determine a unique consistent witness, and this

ensures that corrupt parties use the same inputs in both the DPoK protocol and the associated

MPC protocol.

Theorem 4.1 Assuming that CSP satisfies completeness, knowledge-soundness and zero-knowledge

with O(log ℓ)-communication overhead, Πdlog is a DPoKSSS,DlogGen (as per definition 4.8) for re-

lation generator DlogGen and (t, n)-SSS with the following properties:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the minimum

distance of the Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log ℓ) communi-

cation over broadcast channels.

Proof:

Proof. We provide the proof of security and efficiency below.

Proof of Security. In order to prove security, we prove robust completeness, knowledge-soundness

and zero-knowledge.

Robust Completeness. We show that when the prover is honest, and has a correct witness

s, the verifier outputs 1 and identifies the corrupt workers with overwhelming probability. Let

A be an adversary corrupting set C′ of workers with |C′| = d < (n − t)/2. Let S denote the

matrix with ith column as (si, ri) for i ∈ [n]. Clearly S ∈ Lm for m = ℓ + 1. We construct

a matrix S′ as follows: for i ∈ C′ where the adversary’s proofs πi1, πi2 and πi3 are valid, we

extract s′i and ri from the proofs πi1 and πi2 respectively, and set (s′i, r
′
i) as the ith column

of S′. For i ∈ C′ where one of the proofs is not valid, we set ith column of S′ as (s′i, r
′
i) for

s′i, r
′
i sampled uniformly. Finally for i ̸∈ C′, we set the ith column of S′ as (si, ri) (i.e. it is

identical to the corresponding column in S). Intuitively, the matrix S′ is the corrupted version

of honest matrix S in which columns corresponding to corrupt provers consist of shares (s′i, r
′
i)

the adversary had in its “head”. Looking ahead, we force the adversary to reveal a linear

combination over the shares in its “head”, and if they are inconsistent with S, the resulting

message v′i will differ from honestly computed vi (Lemma 4.2), which will identify the corrupt

messages. We now proceed with the formal proof. Let E denote the set of column indices where

S and S′ differ. Let v′ = (v′1, . . . , v
′
n) be the vector where v′i is sent by Wi in Step (5). Clearly,

as ∆(v′,L) ≤ |C′| < (n− t)/2, we can decode v′ to vector v = (v1, . . . , vn) ∈ L. By uniqueness

1Note that here the witness is s ∈ Fℓ
p, and we do not have any component t which is not being secret-shared.
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1. Public Parameters: Let (G, g, p) ←R DlogGen(11λ , 1ℓ). Let RDL denote the relation
consisting of pairs (z, s) such that gs = z. Let (h1, h2) ←R Setup(RDL) be two indepen-
dent generators of G.

2. Input Phase: The prover gets (z, s) while workers Wi, i ∈ [n] are given (z, si) where
(s1, . . . , sn)←R Share(s). 1

3. Preprocessing: Prover samples r ←R Fp, computes (r1, . . . , rn)←R Share(r) and sends
ri to Wi for i ∈ [n].

4. Commit to Shares: In the interactive phase, each worker Wi, for i ∈ [n], does the
following:

(a) Wi broadcasts Ai = gsi and runs its associated proofs of knowledge CSP{(Ai, si) :
gsi = Ai} over broadcast to obtain πi1.

(b) Wi broadcasts Bi = hri
1 h

ωi
2 for ωi ←R Fp and runs its associated proofs of knowledge

CSP{(Bi, (ri, ωi)) : hri
1 h

ωi
2 = Bi} over broadcast to obtain πi2.

5. Reveal Linear Form over Shares:

(a) V samples γ ←−R Fℓ
p and broacasts it.

(b) For all i ∈ [n], Wi computes vi = ⟨γ, si⟩+ ri and broadcasts vi.

(c) For all i ∈ [n], Wi also runs the associated proof of knowledge to obtain πi3, i.e.

πi3 = CSP{((AiBi,γ∥1∥0, vi), (si, ri, ωi)) : gsihri
1 h

ωi
2 = AiBi ∧ ⟨γ, si⟩+ ri = vi}.

6. Verifier Determines Honest Commitments:

(a) Let v′ = (v′1, . . . , v
′
n) be the received values in the previous step by the workers,

instead of the honestly computed valyes (v1, . . . , vn).

(b) If one of the proofs πi1, πi2 or πi3 is invalid, the verifier set bi = 0 else it sets bi = 1.

(c) Since ∆(v′,v) ≤ d < (n− t)/2 from assumption, V computes v from v′ by decoding
algorithm (e.g. Berlekamp-Welch) for Reed-Solomon codes. Set C = {i ∈ [n] : vi ̸=
v′i ∨ bi = 0} and let HQ = (hjk) denote the matrix guaranteed by Lemma 4.1 for
Q = [n]\C = {i1, . . . , iq} for q ∈ N.

7. Output using Honest Messages: V outputs (1,C) if∏
j∈[q]

A
hjk

ij


k=1,...,n−t

= (z,0n−t−1)

and (0, {P}) otherwise.

Figure 4.1: Protocol Πdlog107



of decoding, we must have v′i = vi for i ̸∈ C′. We will prove that with overwhelming probability

we must have (s′i, r
′
i) = (si, ri) for all i ∈ Q, which from Lemma 4.1 will imply that verifier

outputs 1 (this is because verifier simply checks matrix relation in Lemma 4.1 over exponents).

For sake of contradiction, assume that (s′i, r
′
i) ̸= (si, ri) for i ∈ H. We can assume that the

proofs πi1, . . . , πi3 were valid, for otherwise bi = 0, which would imply i ̸∈ H, a contradiciton.

Now from soundness of the proofs and binding property of the pedersen commitments, with

overwhelming probability we must have v′i = ⟨γ, s′i⟩ + r′i. By assumption we have i ∈ E and

thus from Lemma 4.2, with overwhelming probability we have v′i ̸= vi. Thus i ̸∈ H, which

is again a contradiction. This proves that s′i = si for i ∈ H, and thus the vector (s′i)i∈H is

Lm-consistent. From Lemma 4.1, we conclude that the verifier outputs 1.

Knowledge-Soundness. To prove knowledge-soundness, we describe the extractor Ext which

is provided the shares si, i ̸∈ C with C denoting the indices of workers corrupted by adversary

A. The extractor Ext runs the adversary A. When A succeeds, for each j ∈ [q] in Step (6) the

extractor Ext sets s′ij = sij if ij ̸∈ C; otherwise it invokes the extractor for CSP, which has oracle

access to the worker Wij acting as the prover for the instantiation of CSP{(Ai, si) : gsi = Ai},
to extract s′ij satisfying g

s′ij = Aij . The verification check in Step (7) implies that the tuple(
s′ij
)
j∈[q] is Lℓ-consistent. The extractor outputs the witness s, which is reconstructed from

the columns of the unique matrix S ∈ Lℓ determined by the tuple
(
s′ij
)
j∈[q] This completes the

proof of knowledge-soundness for Πdlog.

Zero-Knowledge. For proving zero-knowledge, we describe the simulator as follows. With-

out loss of generaltiy, let us assume that C = {1, . . . , ϵ} for ϵ ≤ t. The simulator Sim runs the

adversary as follows:

– Sim receives {Ai, Bi}i∈C from the adversary.

– Sim simulates messages {Ai, Bi, πi1, πi2}i/∈C of the honest parties as follows:

· Sim chooses A′
i ←R G for 1 ≤ i ≤ t, and sets a = (z, A′

1, . . . , A
′
t).

· Sim sets A′
t+j = atj where tj ∈ Ft+1

p is the interpolation vector such that f(t + j) =

⟨(f(0), . . . , f(t)), tj⟩ for all polynomials f(x) of degree ≤ t, i.e. tj = {λ0(t+j), λ1(t+

j), . . . , λt(t+j)} where λ0(x), . . . , λt(x) are lagrange polynomials with respect to the

set {0, . . . , t}.

· Sim picks B′
i, i > ϵ uniformly at random from G.

· Sim invokes the simulator for the CSP to obtain πi1 = CSP{(Ai, si) : gsi = Ai},
πi2 = CSP{(Bi, (ri, ωi)) : hri

1 h
ωi
2 = Bi}.
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· Then Sim sends the messages {A′
i, B

′
i, πi1, πi2}i>ϵ to A.

– Sim simulates the challenge by sampling γ ←R Fℓ
p.

– Sim receives {vi}i<ϵ from A, along with the proofs {πi3}i<ϵ.

– Sim sets v′ ←R Fp and computes (v′1, . . . , v
′
n) ←R Share(v′), computes simulated CSP

proof πi3 = CSP{((AiBi,γ, vi), (si, ri, ωi)) : gsihri
1 h

ωi
2 = AiBi ∧ ⟨γ, si⟩ + ri = vi}, and

sends {vi, πi3}i>ϵ.

– Sim sends (v′i, πi3)i>ϵ to the adversary A.

To ensure indistinguishability of transcripts, we only need to provide argument for cor-

rectness of honest-party’s first messages {Aj}i/∈C provided by the simulator, since the other

messages are sampled according to the protocol specification. We argue correctness of simu-

lation of honest-party first messages {Aj}i/∈C as follows. In real execution of the protocol, the

vector of shares for party j is of the form (f1(j), . . . , fℓ(j)), where fi : i ∈ [ℓ] are the polynomi-

als used to share the values si : i ∈ [ℓ] respectively. Let f = (f1, . . . , fℓ) denote the vector of

sharing polynomials and let f(j) to denote the vector (f1(j), . . . , fℓ(j)). Then for j > ϵ in the

real protocol, (Aj)j>ϵ are distributed as (gf(j))j>ϵ, subject to constraint that gf(0) = z. Sam-

pling such a polynomials fi, i ∈ [ℓ] corresponds to choosing fi(1), . . . , fi(t) uniformly and then

determining fi(t+ j) = ⟨(fi(0), . . . , fi(t)), tj⟩ using the interpolation vector tj. Thus f(t+ j) is

a tj-linear combination of f(0), . . . ,f(t), which dictates simulator’s computation of At+j from

vector a. The simulated transcript is an accepting transcript as gf(0) = z and gf(i) = Ai for

all i /∈ C, and the verification check is satisfied since a known linear combination of {f(i)}i/∈C
in the exponent yields the desired value f(0) in the exponent. Additionally, since {f(i)}i/∈C
are implicitly set as the honest-party shares, it is identical to the correct distribution of secret

shares. This completes the proof of zero-knowledge for Πdlog.

Proof of Efficiency/Succinctness. Assuming that CSP has O(log ℓ)-communication overhead

[8], it follows by inspection that Πdlog incurs O(n) communication over point-to-point chan-

nels (where the prover distributes additional randomness to the workers) and O(n log ℓ) com-

munication over broadcast channels (for n instances of CSP). This completes the proof of

efficiency/succinctness for Πdlog, and hence the proof of Theorem 4.1. 2

The following corollary of Theorem 4.1 follows immediately and yields the concrete bounds

on the corruption threshold tolerated by Πdlog.

Corollary 4.1 Setting d = t < n/3, Πdlog is n/3-private and n/3-robust.
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Finally, the following corollary also follows immediately from the proof of Theorem 4.1, and

formally captures the properties of the non-robust protocol Πnr-dlog.

Corollary 4.2 Assuming that CSP satisfies completeness, knowledge-soundness and zero-knowledge

with O(log ℓ)-communication overhead, Πnr-dlog is a DPoKSSS,DlogGen for relation generator DlogGen

and (t, n)-SSS that satisfies completeness and t-privacy, and incurs O(n) communication over

point-to-point channels and O(n log ℓ) communication over broadcast channels.

Note that Πnr-dlog retains all properties of its robust counterpart apart from d-robustness as

stated in Theorem 4.1.

Generalization to Threshold Linear Secret Sharing. We can generalize the above proto-

col to work with any threshold linear secret sharing (TLSS) scheme. In the generalized version,

the corruption threshold for robust completeness depends on the exact distance of the linear

code induced by the TLSS scheme. As a corollary, we derive concrete bounds on the corruption

threshold for robust completeness when using replicated secret sharing. The relevant technical

details appear in Section 4.5.

Round Efficient DPoK for Discrete Log. In Section 4.6, we describe a round-efficient

version of Πdlog in the random oracle model (obtained using the Fiat-Shamir heuristic), which

we call ΠFS
dlog. We highlight here that, while Πdlog requires a logarithmic (in the size of the wit-

ness) number of rounds of interaction, the round-efficient version ΠFS
dlog only requires a constant

number of rounds of interaction. Apart from this, ΠFS
dlog satisfies the same robust completeness,

knowledge soundness and zero-knowledge properties as Πdlog, albeit in the random oracle model.

4.4 DPoK for BBS+ Signatures over Secret-Shared In-

puts

In this section, we build upon our (publicly verifiable) DPoK for the discrete log relation to

design a protocol that allows a prover P to prove knowledge of a BBS+ (or PS) signature on a

secret-shared input. Concretely, suppose that the prover P holds a BBS+ (or PS) signature σ

on a message m under a public key pk, where m is secret-shared across n parties W1, . . . ,Wn

(i.e. each worker Wi holds a share mi). The goal of the protocol is to allow the prover P to

convince a designated verifier V that σ is a valid signature on m under pk, without revealing

σ in the clear (this helps realize the desired property of signature unlinkability, as explained

subsequently). We also present similar PoK protocols for PS signatures [97] over secret-shared

inputs in Section 4.7.3. Looking ahead, we use these protocols as building blocks to design our
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compiler for upgrading any secret-sharing based MPC protocol into an authenticated version

of the same protocol, where the (secret-shared) inputs are authenticated using BBS+( or PS)

signatures as above.

We start by defining the relation for BBS+ signature verification.

Definition 4.9 (BBS+ Relation) Let BBSGen denote the relation generator, such that BBSGen(11λ , ℓ)

outputs a bilinear group (G1,G2,GT , g1, g2, e, p) ←R BBS.Setup(11λ). The corresponding rela-

tion Rbbs is defined by (x, (m, t)) ∈ Rbbs for x = pk = (g1, w, h0, . . . , hℓ) ∈ G1 × G2 × Gℓ
1,

m = (m1, . . . ,mℓ) ∈ Fℓ
p and t = σ = (A, β, s) ∈ G1 × F2

p if e(A,wgβ2 ) = e(g1h
s
0

∏ℓ
i=1 h

mi
i , g2).

Our DPoK Protocol Πbbs+. We build upon the robust complete DPoK Πdlog for discrete

log to propose a DPoK achieving robust completeness for BBS+ signatures, which allows a

designated prover P, to show knowledge of a BBS+ signature (A, β, s) over the message m ∈ Fℓ
p

that is secret-shared amongst the workers W1, . . . ,Wn. Recall that this PoK involved the

following steps: (i) the prover randomly chooses some auxiliary inputs, and combines them with

the signature to output a randomized first message (this randomization ensures unlinkability),

and then (ii) the prover shows knowledge of these auxiliary inputs and components of the

signature satisfying discrete-log relations determined by the first message. Our BBS+ DPoK

over secret-shared inputs follows a similar blueprint, where the prover similarly randomizes

the first message using certain auxiliary inputs. In our case, the prover: (i) secret-shares

the auxiliary inputs to the workers using point-to-point channels (this step is unique to our

protocol and is designed to facilitate distributed proving in the subsequent steps), and (ii)

broadcasts the first message to the workers and the verifier (this step uses broadcast channels

and is conceptually similar to the PoK over non-distributed inputs). At this point, the problem

reduces to a DPoK for the discrete log relation. We handle this using our robust complete

DPoK Πdlog for discrete log.

We prove the Πbbs+ to be a DPoK for the relation generator BBSGen in the following theorem.

Theorem 4.2 Assuming that Πdlog is a DPoKSSS,DlogGen for relation generator DlogGen and

(t, n)-SSS, Πbbs+ is a DPoK for the relation generator BBSGen and (t, n)-SSS with:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the minimum

distance of the Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log ℓ) communi-

cation over broadcast channels.
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– Public Key: pk = (w, h0, . . . , hℓ)

– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Fℓ
p and signature σ = (A, β, s) on m, with

A =
(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

, such that (pk, (m, σ)) ∈ Rbbs

– Wi’s inputs: Wi possesses the ith share mi of the message vector m, such that
Reconstruct(m1, . . . ,mn) = m

– Preprocessing: P samples u ←−R F∗
p, r ←−R Fp, η ←−R Fp, and computes d = bu · h−r

0

and t = s − r · v where v = u−1, b = g1h
s
0

∏ℓ
i=1 h

mi
i . P computes (r1, . . . , rn) ←R

Share(r), (v1, . . . , vn) ←R Share(v), (β1, . . . , βn) ←R Share(β), (t1, . . . , tn) ←R Share(t),
(η1, . . . , ηn)←R Share(η). P sends the shares (ri, vi, βi, ti, ηi) to Wi, for all i ∈ [n].

In other words, each Wi locally holds the i-th share si = (mi, ri, vi, βi, ti, ηi) such that

s = (m, r, v, β, t) = Reconstruct
(
{si}i∈[n]

)
.

– Interactive Protocol:

1. P computes A′ = Au, Ā = (A′)−β · bu(= (A′)x), where b = g1h
s
0

∏ℓ
i=1 h

mi
i and d =

bu · h−r
0 . P sets C = d−vht−η

0 , D = hη
0

∏ℓ
i=1 h

mi
i , and broadcasts (A′, Ā, d, C,D) to

each Wi and V.

2. The workers Wi, i ∈ [n] and V run the DPoK Πdlog for the relation D = hη
0

∏ℓ
i=1 h

mi
i ,

where (η,m1, . . . ,mℓ) are secret-shared across the workers; and g = (h0, . . . , hℓ),
z = D is available to all parties.

3. Simultaneously, the workers Wi, i ∈ [n] and V run the DPoK Πdlog for the relation

C = d−vht−η
0 ∧ Ā

d
= (A′)−β hr

0, where (v, η) and (β, r) are secret-shared; and g =

((d, h0), (A
′, h0)), z = (C, Ā

d
) is available to all parties.

4. V accepts if C ·D = g−1
1 , and e (A′, w) = e

(
Ā, g2

)
, and both instances of Πdlog accept.

Figure 4.2: Protocol Πbbs+
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Proof:

We provide the proof of security and efficiency below. In order to prove security, we prove

robust completeness, soundness, and zero-knowledge.

Robust Completeness. Robust completeness follows from direct calculation using the ro-

bust completeness of the underlying subprotocols DPoK Πdlog for DlogGen, used in step (3) and

(4).

Knowledge Soundness. Consider an adversary that corrupts a t-sized subset of the workers

in Πbbs+. By inspection, for t < n/3, an honest verifier detects the corrupt subset of workers,

since the underlying protocol Πdlog satisfies d-robust completeness for d < n/3.

Consider an adversary A = (A1,A2) which corrupts P and Wi, i ∈ C. We show that,

given an extractor Ext for Πdlog, it is possible to design an extraction algorithm Ext′ that given

{mi}i̸∈C, where mi is the share of m provided to Wi, extracts a signature σ on m. First Ext

runs the adversary A to obtain the messages (ri, vi, βi, ti, ηi) for i ̸∈ C. The extractor Ext′ also

obtains the message (A′, Ā, d, C,D) from A. Next it sets s′i = (ηi,mi) and s′′i = (vi, yi, βi, ri)

for i ̸∈ C where yi = ti − ηi for i ̸∈ C. It then invokes the extractor Ext for DPoK sub-protocol

Πdlog in steps (2) and (3) respectively and computes the extracted witness as follows:

(s′)i∈C = (η,m)i∈C ←R ExtA({s′i}i̸∈C)

(s′′)i∈C = (v, y, β, r)i∈C ←R ExtA({s′′i }i̸∈C)

where

η = Reconstruct(η1, . . . , ηn), m = Reconstruct(m1, . . . ,mn)

v = Reconstruct(v1, . . . , vn), y = Reconstruct(y1, . . . , yn)

β = Reconstruct(β1, . . . , βn), r = Reconstruct(r1, . . . , rn)

Using the message (A′, Ā, d, C,D) obtained from the adversary A and the outputs η,m, v, y, β, r

obtained from the extractor Ext for DPoK sub-protocol Πdlog, extracted witness is computed as

(m, t), where t = (A′v, β, y + η + vr).

Here, we parse the extracted witness m as m = (m1, . . . ,mℓ). From knowledge-soundness

of the DPoK sub-protocol Πdlog and verifier’s checks, with overwhelming probability we have:

D = hη
0

∏ℓ
i=1 h

mi
i , C = d−vhy

0, (A′)−βhr
0 = Ā/d, C ·D = g−1

1 and Ā = (A′)x. We first note that

v ̸= 0, otherwise substituting C,D in the relation C ·D = g−1
1 yields a non-trivial discrete-log
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relation between the generators g1, h0, . . . , hℓ. From the preceding equations, we can derive:

(A′v)β+x = g1h
y+η+vr
0

ℓ∏
i=1

hmi
i

which shows that (A′v, β, y + η + vr) is a valid signature on m. Hence, the extractor Ext′

has computed a valid witness for the BBSGen relation. This completes the proof of knowledge

soundness for Πbbs+.

Honest Verifier Zero-Knowledge. Finally, consider an adversary A that corrupts workers

Wi,i ∈ C where |C| ≤ t. We show that, given a ZK-simulator Simzk
1 for Πdlog and a ZK-

simulator Simzk
2 for the single-prover proof of knowledge for BBS+ signatures from [41], we

construct a simulation algorithm Sim′ that output a simulated view of an honest verifier in

the protocol Πbbs+ without the knowledge of the witness (m, σ). Using the simulator Simzk
2 ,

the simulator Sim′ generates the message (A′, Ā, d, C,D). As the statements for the DPoKs

in steps (2) and (3) depend entirely on the public parameters and the preceding message, the

simulation follows by invoking simulator Simzk
1 to simulate the transcript for respective DPoKs

on the statements derived from the simulated first message. Looking ahead, in the formal proof

of security for our compiled MPC protocol, we use this simulation algorithm Sim′ to simulate

proofs of knowledge of BBS+ signatures on the inputs of the honest parties. This completes

the proof of zero-knowledge soundness for Πbbs+.

Proof of Efficiency/Succinctness. Recall that Πdlog has O(n) communication over point-

to-point channels and O(n log ℓ)-communication overhead over broadcast channel. It follows

by inspection that Πbbs+ also inherit the same communication overheads from Πdlog. This

completes the proof of efficiency for Πbbs+, and hence the proof of Theorem 4.2.

2

Efficiently Batching BBS+ PoKs. We now present the protocol Πbbs-auth-opt which effi-

ciently batches n parallel instances of the protocol Πbbs+ with the party Pi acting as the prover

in the ith instance of the protocol. The optimization exploits the fact that each party needs to

prove a linear (in exponents) relation over large part of its witness (the message vector), which

can be reduced via a random challenge to proving a linear relation over the linearly combined

messages. However we lose robustness: we can no longer identify the corrupt parties or a cor-

rupt prover using error-correction as in Πbbs+, as the combined witness cannot be attributed to

a specific party. Thus, we simply abort if one of the checks in the underlying protocol Πnr-dlog

fails.
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– Public Parameters: (G1,G2,GT , g1, g2, e, p) ←R BBSGen(11λ) defining BBS+ relation
Rbbs. Let pk = (g1, w = gx2 , h0, . . . , hℓ) be a known public key for secret key sk = x←R Fp.

– Pi’s inputs:

– Message mi ∈ Fℓ
p and signature σi = (Ai, βi, si) on mi under pk.

– ith share of the message mj of Pj.

– Preprocessing: Pi samples ui ←−R F∗
p, ri ←−R Fp, ηi ←−R Fp, and computes di = bui

i · h
−ri
0

and ti = si − ri · vi where vi = u−1
i , bi = g1h

si
0

∏ℓ
i=1 h

mi
i . and secret shares ri, vi, ti, ηi, βi

among P1, . . . , Pn. All parties set g = (h0, . . . , hℓ).

– Interactive Protocol

1. Pi, i ∈ [n] computes A′
i = Aui

i , Āi = (A′
i)
−β · bui (= (A′

i)
x). P sets Ci = d−vi

i hti−ηi
0 ,

Di = gηi,mi , and broadcasts (A′
i, Āi, di, Ci, Di).

2. The verifier samples a challenge γ ←−R Fℓ
p and broacasts it. Each Pi then computes

yi =
∑

j∈[n] γ
j(ηij,mij), where ηij,mij denotes Pi’s share of Pj’s inputs mj, ηij.

3. All parties compute D =
∏

j∈[n]D
γj

j .

Parties hold shares yi of y satisfying gy = D

4. Parties run the interactive phase of the protocol Πnr-dlog on statement D with g as
the generator. They run the interactive phase of the protocol Πnr-dlog on statements

Ci = d−vi
i hti−ηi

0 ∧ Āi

di
= (A′

i)
−βi hri

0 , for each i ∈ [n] with generators (di, h0) and (A′
i, h0)

respectively.

5. Parties also check that e (
∏n

i=1 A
′
i, w) = e

(∏n
i=1 Āi, g2

)
holds.

– Output: Pj outputs bj = 1 if all the above protocols lead to accept.

Figure 4.3: Protocol Πbbs-auth-opt
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Round Efficient DPoK for BBS+ Signatures. Finally, note that by replacing Πdlog with

its round efficient version ΠFS
dlog in the random oracle model (obtained using the Fiat-Shamir

heuristic, presented in Section 4.6) in steps (2) and (3) of the Interactive Phase, we obtain

a round efficient version of the protocol, which we call ΠFS
bbs+. Observe that ΠFS

bbs+ requires

constant rounds of interaction, as compared to logarithmic (in the size of the message) rounds

of interaction for Πbbs+, and satisfies the same robust completeness, knowledge soundness and

zero-knowledge properties as Πbbs+, albeit in the random oracle model.

4.5 Generalization to Threshold Linear Secret Sharing

Scheme

In this section, we provide generalization of our technique shown for Shamir Secret Sharing [104]

to any Threshold Linear Secret Sharing Scheme. Here we present the definition of Threshold

Linear Secret Sharing (TLSS) Scheme, which is a restriction of the definition of Linear Secret

Sharing Scheme provided in [48, Chapter 6] to the case when each party receives same number

of shares.

Definition 4.10 (Threshold Linear Secret Sharing Scheme) A (t, n, r) threshold linear

secret-sharing (TLSS) scheme over a finite field F consists of algorithms (Share,Reconstruct) as

described below:

– Share is a randomized algorithm that is defined by a m×(t+1) matrix M (for some m ≥ n)

and a labeling function ϕ : [m] −→ [n] such that |ϕ−1(i)| = r for all i ∈ [n]. On input s ∈ F,
Share samples r1, . . . , rt ←R F uniformly and independently and sets rs = (s, r1, . . . , rt). It

sets si = {(Mrs)j : ϕ(j) = i} as the ith share for all i ∈ [n]. We denote the output as

(s1, . . . , sn)←R Share(s), where si ∈ Fr is the share sent to ith party.

– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| > t, a vector of

shares (s1, . . . , s|I|) and outputs s = Reconstruct((s1, . . . , s|I|), I) ∈ F. Specifically, for

all sets I ⊆ [n] with |I| > t, there exists a vector kI = (k11, . . . , knr) ∈ Fnr such that

s =
∑n

i=1

∑r
j=1 kijsij. Here si = (si1, . . . , sir) for i ∈ [n].

A TLSS scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn) ←R Share(s) and any subset I =

{i1, . . . , iq} ⊆ [n] with q > t, we have Reconstruct((si1 , . . . , siq), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆
[n] with q ≤ t, the tuple (si1 , . . . , siq) is information-theoretically independent of s.
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Remark 5 We focus on Threshold Linear Secret Sharing schemes in this section, and we

denote it as TLSS. As before we can extend a TLSS scheme to secret-share vectors s ∈ Fℓ by

applying Share,Reconstruct algorithms component-wise.

4.5.1 Robust DPoK for Discrete Log for TLSS

In this section we generalize the construction of robust complete protocol for discrete-log relation

presented in Section 4.3.2 to the case when (Share,Reconstruct) can be an arbitrary TLSS

scheme. We also characterize the robustness threshold for the same in terms of minimum

distance of linear code associated with the TLSS scheme. The proof of robust completeness

now depends on Lemma 4.3 (below), which generalizes Lemma 4.2 to the case when linear code

is over an extension field Fpr
∼= Fr

p of the field F = Fp.

Let DlogGen be a relation generator that on input (11λ ,m) outputs (G, g, p) where p is

a 1λ-bit prime, G is a cyclic group of order p and g = (g1, . . . , gm) ←R Gm is a uniformly

sampled set of generators. The associated relation RDL is defined by (z, s) ∈ RDL if gs = z.

Let TLSS = (Share,Reconstruct) denote (t, n, r) threshold linear secret sharing over finite field

of order p F = Fp. We follow the framework presented for DlogGen; namely Πdlog (Figure 4.1),

that is t-private, d-robust and incurs O(n) communication over point-to-point channels and

O(n log ℓ) communication over broadcast channels. We present our generalized protocol with

the similar guarantees.

Additional Preliminaries and Notation. We setup some useful notation and prelimi-

naries specific to this section to ease the presentation. For s ∈ F, we will view the output

(s1, . . . , sn) ←R Share(s) to consist of n-shares each over Fpr , i.e. we view si ∈ Fr as an ele-

ment of Fpr . Applying the sharing component-wise, for a vector s ∈ Fℓ, we view the output

(s1, . . . , sn) ←R Share(s) to consist of n-shares, each in (Fpr)
ℓ, i.e an ℓ-length vector over Fpr .

We also veiw a vector s = (s1, . . . , sℓ) ∈ (Fpr)
ℓ as ℓ × r matrix over F, where ith row of the

matrix corresponds to si ∈ Fpr viewed as a vector in Fr. We also introduce the linear code

LTLSS, which is induced by the sharings under the TLSS scheme.

Definition 4.11 (TLSS induced code) For an (n, t, r)-TLSS scheme over F given by algo-

rithms (Share,Reconstruct), we define linear code LTLSS over the field Fpr as

LTLSS = {(s1, . . . , sn) : Pr [(s1, . . . , sn)←R Share(s), s←R F] > 0},

consisting of all possible sharings output by the Share algorithm.

We now state the generalization of Lemma 4.2 to fields of the form Fpr . The lemma is
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proved in [51][Lemma A.5]. We recall that for an [n, k, ∗] linear code L over F, Lm denotes the

set of m× n matrices over F whose rows are codewords in L.

Lemma 4.3 Let L be an [n, k, d]-linear code over finite field Fpk and let S be an m× n matrix

over Fpk . Let e = ∆(S,Lm) be such that e < d/3. Then for any codeword r ∈ L, and γ

sampled uniformly from Fm, we have ∆(r + γTS,L) = e with probability at least 1 − d/|F|.
Furthermore, if E denotes the column indices where S differs from the nearest matrix Q in Lm,

with probability 1− d/|F| over choice of γ, the vector r+γTS differs from the closest codeword

v ∈ L at precisely the positions in E.

We now proceed with the description of the generalised protocol, where we highlight key

differences from the protocol Πdlog for the case of Shamir Secret Sharing.

1. Public Parameters: The public parameters, as before consists of (G, g, p)←R DlogGen(11λ , ℓ).

Additionally we have h1, h2 ←R G. The relation RDL consists of (z, s) satisfying gs = z.

2. Input Phase: The prover gets (z, s) while workers Wi,i ∈ [n] are given (z, si) where

(s1, . . . , sn)←R Share(s).

3. Preprocessing: The prover sends δi to Wi for i ∈ [n] where (δ1, . . . , δn) ←R Share(δ) for

δ ←R Fpr .

4. Commit to Shares: In the interactive phase, the worker Wi proceeds as follows: The worker

veiws the share si as ℓ×r matrix Mi over F. Then for each j ∈ [r], it computes Aij = gMi[j],

where Mi[j] denotes the jth column of the matrix. Similarly it views the input δi as vector

(δi1, . . . , δir) over F. It then computes commitments Bij for j ∈ [r] as Bij = h
δij
1 h

ωj

2 for

ωj ←R F. Finally Wi broadcasts Ai = (Ai1, . . . , Air) and Bi = (Bi1, . . . , Bir).

5. Reveal Linear Form over Shares: The verifier sends a challenge vector γ ←R Fℓ, and

the workers broadcast the linear form vi = ⟨γ, si⟩+ δi. In the preceding inner-product,

we consider si as a vector over Fpr and vi, δi are considered as elements in the field Fpr .

To ensure that corrupt workers use si, δi consistent with earlier commitments Ai,Bi we

additionally require them to provide proofs by running the proof of knowledge CSP for the

following relations (viewing si as ℓ× r matrix Mi over F):

πi1 = CSP(Mi) : gMi[j] = Aij ∀ j ∈ [r],

πi2 = CSP(δi, ω1, . . . , ωr) : h
δij
1 h

ωj

2 = Bij ∀ j ∈ [r],

πi3 = CSP
{

(Mi, δi, ω1, . . . , ωr) : gMi[j]h
δij
1 h

ωj

2 = AijBij ∧ ⟨γ,Mi[j]⟩+ δij = vij ∀ j ∈ [r]
}
.
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The NIPK used above can be instantiated with O(log ℓ) communication complexity using

compressed sigma protocols (CSPs) of Attema et al. [8], made non-interactive using Fiat-

Shamir transformation. We observe that each proof asserts r constraints, which can be

reduced to one constraint each using a random challenge. We skip the details here.

6. Verifier Determines Honest Commitments: Let v′ = (v′1, . . . , v
′
n) be the purported values

of (v1, . . . , vn) received in the previous step. If one of the proofs πi1, πi2 or πi3 is invalid, he

verifier sets v′i ←R Fpr (randomly). Here we use v = (v1, . . . , vn) defined by vi = ⟨γ, si⟩+ri

to denote the vector of honestly computed values. We recall that we consider v to be a

vector over Fn
pr . Since ∆(v′,v) ≤ d < dist/2, with dist being the minimum distance of

the code induced by the TLSS, V can compute v from v′ by using error correction. Let C

denote indices of corrupt workers (who actually deviate from the protocol). From Lemma

4.3 we conclude C = {i ∈ [n] : vi ̸= v′i} with overwhelming probability. Let k′
1, . . . , k

′
q

denote the reconstruction coefficients for the set [n]\C where each k′
i = (k′

i1, . . . , k
′
ir) ∈ Fr

for each i.

7. Output using honest messages: V outputs (1,C) if
∏

j∈[q],t∈[r] A
k′jt
ij ,t

= z, and (0, {P}) other-

wise.

Theorem 4.3 (Robust Distributed Proof of Knowledge for Discrete Log for TLSS)

Assuming that the discrete log assumption holds over the group G, the above protocol is a

DPoKTLSS,DlogGen for relation generator DlogGen and (t, n, r)-TLSS scheme which satisfies t-

privacy and d-robustness, for d < dist/3, where dist is the minimum distance the linear code

induced by the TLSS scheme. Moreover the protocol incurs O(rn) communication over point-

to-point channels and O(rn + log ℓ) communication over broadcast channels.

The proof of the above theorem is similar to that for the protocol Πdlog, except that we use

Lemma 4.3 instead of Lemma 4.2 to identify corrupt messages, and appropriately omit them

from the verification check. We now discuss implications of the above theorem for specific

threshold secret sharing schemes.

4.5.2 (Corollary) Distributed Proof of Knowledge using Replicated

Secret Sharing

Our earlier results obtained for Shamir Secret Sharing [104] in Theorem 4.1 can be seen as

special case of Theorem 4.3 for r = 1 and dist = (n − t). Here we additionally specialise

Theorem 4.3 to the case of replicated secret sharing. We recall the definition of Replicated

Secret Sharing (RSS) Scheme provided in [57].
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Definition 4.12 (Replicated Secret Sharing Scheme) A (t, n,
(
n−1
t

)
) replicated linear secret-

sharing (RSS) scheme over a finite field F consists of algorithms (Share,Reconstruct) as described

below:

– Share is a randomized algorithm that on input s ∈ F, samples sA ∈ F for all A ∈ [n], |A| = t,

such that
∑

A sA = s, and sets si = {sA : i /∈ A}. We denote the output as (s1, . . . , sn)←R

Share(s), where sj ∈ F(n−1
t ) is the share sent to party Pj.

– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| ≥ t, a vector (s1, . . . , s|I|)

and outputs s = Reconstruct((s1, . . . , s|I|), I) ∈ F.

A RSS scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆
[n] with q ≥ t, we have Reconstruct((si1 , . . . , siq), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆
[n] with q < t, the tuple (si1 , . . . , siq) is information-theoretically independent of s.

Remark 6 We note that RSS scheme is a specific instance of TLSS scheme discussed in the

prior section.

Let DlogGen be a relation generator that on input (11λ ,m) outputs (G, g, p) where p is

a 1λ-bit prime, G is a cyclic group of order p and g = (g1, . . . , gm) ←R Gm is a uniformly

sampled set of generators. The associated relation RDL is defined by (z, s) ∈ RDL if gs = z.

Let RSS = (Share,Reconstruct) denote (t, n,
(
n−1
t

)
) replicated secret sharing over Fp. In this

section, we state the theorems and the threshold bounds for RSS as a specific case of TLSS

(Theorem 4.3).

Theorem 4.4 (Robust Distributed Proof of Knowledge for Discrete Log for Repli-

cated Secret Sharing) Assuming that the discrete log assumption holds over the group G,

protocol Πrob-rss is a DPoKRSS,DlogGen for relation generator DlogGen and (t, n,
(
n−1
t

)
)-RSS scheme

which satisfies t-privacy and d-robustness, for d = t < dist/3, where dist = (n− t) is the mini-

mum distance of two valid codewords of the linear code induced by the TLSS scheme.

Remark 7 We note that the corruption threshold of t < n/3 attainable for Shamir Secret

Sharing (SSS) Scheme and Replicated Secret Sharing (RSS) Scheme follows from the fact that the

underlying linear code defined by both sharing schemes attain a minimum distance of dist = n−t
between any two valid codewords. We note that the linear codes considered for SSS scheme lies

in Fp (Reed-Solomon Codes), whereas the linear codes considered for RSS lies in Fpk .
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4.6 Round Efficient Distributed Proof of Knowledge

In this section, we formalize the notion of distributed proof of knowledge (DPoK) in the random

oracle model (ROM) which multiple provers, each having a share of the witness engage in an

interactive protocol with a verifier to convince it that their shares determine a valid witness.

The provers do not directly interact with each other, and all the interaction with the verifier

takes place over a public broadcast channel.

We define a round efficient DPoK by building upon our original definition for DPoK from

Section 4.3. Our definition is based on the Fiat-Shamir heuristic [59], using which we transform

a DPoK (with number of rounds logarithmic in the size of the message) into a round efficient

DPoK (having constant number of rounds).

Definition 4.13 (Round Efficient DPoK in the ROM) Let DPoKSSS,RGen = (Setup,Π) be

a DPoK as in Definition 4.8 for relation generator RGen and a secret-sharing scheme SSS =

(Share,Reconstruct), where Setup is a PPT algorithm, and Π is a k-round interactive proto-

col between PPT algorithms P (prover), V (interactive verifier) and W1, . . . ,Wn (workers),

such that all of the interaction with the verifier takes place over a public broadcast channel,

and where in each round j ∈ [k], the verifier V broadcasts a challenge sampled uniformly

from the challenge set Chj. We define the corresponding round efficient DPoK for the same

(RGen, SSS) pair as a tuple of the form RE-DPoKSSS,RGen = (SetupFS,ΠFS,VFS), where SetupFS

is a PPT setup algorithm, ΠFS is an interactive protocol between PPT algorithms PFS (prover)

and (WRO
FS )1, . . . , (W

RO
FS )n (workers), and VFS is PPT verification algorithm. These are defined

as follows:

– Setup [(pp,RO)←R SetupFS(R, 11λ)]: The setup algorithm takes as input a relation R←R

RGen(11λ) and outputs a tuple of the form (pp,RO), where pp ←R Setup(R), and RO =

{ROi}i∈[1,r], with each ROi being a random function sampled uniformly from the set of all

functions that maps {0, 1}∗ to the challenge set Chi. As in our general definition of DPoK,

the setup phase is required to be executed only once for a given relation R. We again

assume that R consists of pairs (x,w) where w is parsed as (s, t)) with s ∈ Fm; looking

ahead, we partition the witness as (s, t) to explicitly specify which parts of the witness

later needs to be shared. Also, note that sampling each ROi independently is equivalent

to instantiating ROi from a single random oracle via domain separation.

– Interactive Protocol ΠFS: executed jointly by the prover PRO
FS and the workers

(WRO
FS )1, . . . , (W

RO
FS )n in the following phases:
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– Input Phase: The prover PRO
FS receives (pp,x, (s, t)) ∈ R as input, while each worker

(WRO
FS )i, i ∈ [n] receives (x, si) as input, where (pp, s1, . . . , sn)←R Share(s).

– Preprocessing Phase: This is (an optional) phase where the prover PRO
FS sends some

auxiliary information auxi to worker (WRO
FS )i using secure private channels. This phase

is identical to the preprocessing phase (if any) in the underlying DPoK scheme, with

the prover PRO
FS invoking the prover P of DPoK to obtain its output in the preprocessing

phase, and sending the same to the workers (WRO
FS )1, . . . , (W

RO
FS )n.

– Interactive Phase: In this phase, the prover and the workers interact using a public

broadcast channel as follows, where all algorithm presented with FS subscript have

access to the random oracle RO:

∗ The prover PRO
FS (resp. each worker (WRO

FS )i) invokes the prover P (resp. the

corresponding worker Wi of) of DPoK to produce the same round message as in

the protocol Π.

∗ Suppose that in round j of the protocol Π (for j ∈ [k]), the verifier V of the

underlying DPoK outputs a challenge cj ←R Chj. In ΠFS, each worker (WRO
FS )i

computes cj locally as

cj = ROj

(
x, {{mi,ℓ}i∈[n], cℓ}ℓ∈[j−1]

)
,

where mi,ℓ is the prior message of Wi in round ℓ, and cℓ is prior challenge in

round ℓ.

Let π =
(
x, {{mi,ℓ}i∈[n], cℓ}ℓ∈[k]

)
denote the transcript of protocol ΠFS at the conclu-

sion of k rounds.

– Verification: [b ←R VRO
FS (pp,x, π)]: The verifier VRO

FS takes as input (pp,x, π) and out-

puts a decision bit b ∈ {0, 1}. It outputs 1 if and only if both of the following hold:

(i) V(pp,x, π) = 1 (V being the verifier of DPoK), and (ii) for each j ∈ [k], cj =

ROj

(
x, {{mi,ℓ}i∈[n], cℓ}ℓ∈[j−1]

)
. Otherwise, the verifier VRO

FS outputs 0.

A distributed proof of knowledge RE-DPoKSSS,RGen as described above is said to be t-private,

ℓ-robust if the following hold:

– Completeness: We say that completeness holds if for any R←R RGen(11λ), for (pp,RO)←R

SetupFS(R, 11λ , 1k), and for any (x, s) ∈ R, if π denotes the transcript of an honest execu-

tion of the protocol ΠFS, then we have

Pr[VRO
FS (pp,x, π) = 1] = 1
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– Knowledge Soundness: We say that knowledge soundness holds if for any security

parameter 1λ and any PPT adversary A = (A1,A2) that makes at most Q = poly(λ)

queries to RO, where A2 corrupts the prover PRO
FS and subset of workers {(WRO

FS )i}i∈C for

some C ⊆ [n], there exists an extractor Ext with oracle access to A2 (which controls PRO
FS

and the set of corrupt (WRO
FS )i) such that for any R←R RGen(1λ), the following probability

is negligible,

Pr


VRO
FS (pp,x, π) = 1 ∧
((x, (s, t)) ̸∈ R ∨

Consistent({si}i̸∈C, s) = 0)

(pp,RO)←R SetupFS(R)

(x, {si, auxi}i̸∈C)←R A1(pp)

π :=

ΠFS

(
A2(ρ), {(WRO

FS )i(αi)i/∈C}
)

(s, t)←R

ExtA2 (pp,x, {si}i̸∈C, π,Q)


where π denotes the transcript of an execution of the protocol ΠFS between the adversary

A2 (which controls PRO
FS and the set of corrupt (WRO

FS )i), and the honest workers.

– Zero-Knowledge: Zero-knowledge for publicly verifiable DPoKs is defined in the explic-

itly programmable random oracle model where the simulator is allowed to program the

random oracle. The zero-knowledge simulator SFS is modeled as a stateful algorithm that

operates in two modes. In the first mode, (ci, st
′)← SFS(1, st,x, i) handles random oracle

calls to ROi on input x. In the second mode, (π̃, st′)← SFS(2, st,x) simulates a valid proof

string. We define stateful wrapper oracles.

– S1(t, i) denotes the oracle that returns the first output of SFS(1, st, t, i);

– S2(x,w) returns the first output of SFS(2, st,x) if (pp,x, s) ∈ R and ⊥ otherwise;

(This is because ZK is defined only for true statements.)

We say that a DPoK is zero-knowledge in the random oracle model if for all R ←R

RGen(11λ), (x, s) ∈ R and any PPT adversary A corrupting a set of workers {(WRO
FS )i}i∈C,

where |C| ≤ t, there exists a PPT simulator SFS such that ViewA,RO,ΠFS
(pp,x) is indistin-

guishable from SFS(pp,x) for pp←R SetupFS(R). Here, the view is given by ViewA,RO,ΠFS
=

{r, (Mi)i∈C} where r denotes the internal randomness of A and Mi is the set of all messages

received by (WRO
FS )i in ΠFS.

– Robust-Completeness: We say that robust-completeness holds if for all R←R RGen(11λ),

(x, s) ∈ R and any PPT adversary A corrupting a set of workers {(WRO
FS )i}i∈C, where |C| ≤

ℓ, (VRO
FS )A,ΠFS

(pp,x,ΠFS) = 1 with overwhelming probability where pp←R SetupFS(R).
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Robust Complete Round Efficient DPoK for Discrete Log. We now provide a RE-DPoKSSS,DlogGen

for the discrete log relation based on Shamir Secret Sharing (SSS) [104]. Let DlogGen be a re-

lation generator that on input (11λ , 1ℓ) outputs (G, g, p) where p is a 1λ-bit prime, G is a cyclic

group of order p and g = (g1, . . . , gℓ) ←R Gℓ is a uniformly sampled set of generators. The

associated relation RDL is defined by (z, s) ∈ RDL if gs = z. Let SSS = (Share,Reconstruct)

denote (t, n) Shamir secret sharing over Fp. Our protocol Πdlog realizing RE-DPoKSSS,DlogGen is

as below. However, for ease of exposition, we first explain a simpler non-robust version of the

protocol, before explaining the robust version.

We use the non-interactive proof of knowledge for the discrete logarithm relation, namely

NIPKFS = (NIPK.SetupFS,NIPK.P
RO
FS ,NIPK.V

RO
FS ), obtained by applying the Fiat-Shamir heuristic

(using random oracle RO : {0, 1}∗ → Fℓ
p) on the public-coin compressed sigma protocol [8] for

proof of knowledge of the discrete logarithm relation. Additionally, we present the protocol

Πdlog using Fiat-Shamir heuristic [59] and a random oracle RO : {0, 1}∗ → Fℓ
p.

We now state and prove the following theorem for ΠFS
dlog.

Theorem 4.5 Assuming that NIPK satisfies completeness, knowledge-soundness and zero-knowledge

with O(log ℓ)-communication overhead, ΠFS
dlog is a RE-DPoKSSS,DlogGen (as per definition 4.8) for

relation generator DlogGen and (t, n)-SSS with the following properties:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the minimum

distance of the Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log ℓ) communi-

cation over broadcast channels.

Proof sketch. For knowledge-soundness, the intuition behind extraction of a valid witness are

the fact that the shares (provided to the extractor via definition) held by the honest parties

uniquely determines the output and the adversary succeeds in proving the statement in a proto-

col where these honest-party shares are used. For zero-knowledge, the key intuition behind the

simulation is that the adversial messages can be ‘ignored’ for providing an accepting transcript

as the protocol does ‘error-correction’ and removes the ‘bad shares’ from consideration.

Proof: Completeness and robust completeness of ΠFS
dlog follows similarly from the completeness

and robust completeness of its respective counterpart Πdlog.

Knowledge-Soundness. To prove knowledge-soundness, we describe the extractor Ext for

ΠFS
dlog as follows. Let C be the set of indices of workers corrupted by adversary A. Additionally,

1Note that here the witness is s ∈ Fℓ
p, and we do not have any component t which is not being secret-shared.
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1. Public Parameters: Let (G, g, p) ←R DlogGen(11λ , 1ℓ). Let RDL denote the relation
consisting of pairs (z, s) such that gs = z. Let (h1, h2) ←R Setup(RDL) be two indepen-
dent generators of G.

2. Input Phase: The prover gets (z, s) while workers (WRO
FS )i, i ∈ [n] are given (z, si) where

(s1, . . . , sn)←R Share(s). 1

3. Preprocessing: The prover sends ri to (WRO
FS )i for i ∈ [n] where (r1, . . . , rn)←R Share(r)

for r ←R Fp.

4. Commit to Shares: In the interactive phase, the workers first commit to their respective
shares by broadcasting

(a) Ai = gsi and its associated proofs of knowledge πi1 = NIPK.PRO
FS {(Ai, si) : gsi = Ai}.

(b) Bi = hri
1 h

ωi
2 for ωi ←R Fp and its associated proofs of knowledge πi2 =

NIPK.PRO
FS {(Bi, (ri, ωi)) : hri

1 h
ωi
2 = Bi}.

5. Reveal Linear Form over Shares: Each worker (WRO
FS )i computes γ as γ =

RO (z∥A1∥B1∥A2∥B2∥ . . . ∥An∥Bn) ∈ Fℓ
p. Thereafter, the workers broadcast the linear

form vi = ⟨γ, si⟩ + ri. To ensure that corrupt workers use si, ri consistent with earlier
commitments Ai, Bi we additionally require them to broadcast proof πi3 as:

πi3 = NIPK.PRO
FS {((AiBi,γ∥1∥0, vi), (si, ri, ωi)) :

gsihri
1 h

ωi
2 = AiBi ∧ ⟨γ, si⟩+ ri = vi}.

6. Verifier Determines Honest Commitments: Let v′ = (v′1, . . . , v
′
n) be the received

values in the previous step by the workers, instead of (v1, . . . , vn). If one of the proofs
πi1, πi2 or πi3 is invalid, the verifier set bi = 0 else it sets bi = 1. Here we use v =
(v1, . . . , vn) defined by vi = ⟨γ, si⟩+ ri to denote the vector of honestly computed values.
Since ∆(v′,v) ≤ d < (n− t)/2, VRO

FS can compute v from v′ by decoding algorithm (e.g.
Berlekamp-Welch) for Reed-Solomon codes. Set C = {i ∈ [n] : vi ̸= v′i ∨ bi = 0} and let
HQ = (hij) denote the matrix guaranteed by Lemma 4.1 for Q = [n]\C = {i1, . . . , iq} for
q ∈ N.

7. Output using Honest Messages: V outputs (1,C) if
(∏

j∈[q]A
hjk

ij

)
k=1,...,n−t

=

(z,0n−t−1), and (0, {PRO
FS }) otherwise.

Figure 4.4: Protocol ΠFS
dlog
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we assume that there is an extractor Ext1 for NIPK proof. The extractor Ext runs the adversary

A as follows:

– Ext is provided (pp, z, {si}i/∈C,ΠFS,Q) as input at the onset, where {si}i/∈C are the honest-

party shares and Q is the set of RO queries made by the adversary A.

– Ext receives Ai, Bi from A along with the NIPK proofs {πi1, πi2} for all i ∈ C, such that

πi1 = NIPK.PRO
FS {(Ai, si) : gsi = Ai}, πi2 = NIPK.PRO

FS {(Bi, (ri, ωi)) : hri
1 h

ωi
2 = Bi}.

– Ext computes {Ai = gsi , Bi = hri
1 h

ωi
2 }i/∈C and sends {Ai, , πi1, Bi, πi2}i/∈C to A,

where πi1 = NIPK.PRO
FS {(Ai, si) : gsi = Ai}, πi2 = NIPK.PRO

FS {(Bi, (ri, ωi)) : hri
1 h

ωi
2 = Bi}.

– Ext computes γ = RO (z∥A1∥B1∥A2∥B2∥ . . . ∥An∥Bn)

– Ext receives {vi, πi3}i∈C from A

– Ext computes vi, πi3 as {vi = ⟨γ, si⟩+ri}i/∈C and πi3 = NIPK.PRO
FS {((AiBi,γ∥1∥0, vi), (si, ri, ωi)) :

gsihri
1 h

ωi
2 = AiBi ∧ ⟨γ, si⟩+ ri = vi}, and sends {vi, πi3}i/∈C

– Ext sets s′i = si for all i ̸∈ C and for all i ∈ C, it invokes the extractor Ext1 for the

Fiat-Shamir transformed proof πi1 to extract s′i satisfying gs′i = Ai.

– Ext finally computes s′ as s′ = Reconstruct({si}i/∈C) and outputs s′.

Note that by using random oracle RO to obtain the challenge γ in Step (iii) described

above, we ensure that a ‘random linear combination’ of the code is considered in Step (6) of

the protocol. Now, considering that the adversary A succeeds, we now argue the correctness

of the extracted witness. Since the adversary succeeds, the verification check in Step (7) of the

protocol implies that the tuple
(
s′i
)
i/∈C is Lℓ-consistent and the reconstructed vector s′ satisfies

s′ = Reconstruct({si}i/∈C) along with
(∏

j /∈C A
hjk

j

)
k=1,...,n−t

= (z,0n−t−1), where Aj = gsj for

all j /∈ C. Note that the extractor’s output s′ is reconstructed from the columns of the unique

matrix S ∈ Lℓ determined by the tuple (s′i)j /∈C. Hence, the extractor output is a valid witness

for the given statement. This completes the proof of knowledge-soundness for ΠFS
dlog.

Knowledge-error. Since there are three non-parallel instances of Fiat-Shamir transformed

NIPK protocol from Attema et al. [8] being invoked, if the knowledge-error of the Fiat-Shamir

transformed version is κ′, then the knowledge-error of ΠFS
dlog is κ ≤ 3κ′. And we know from [8]

that the knowledge-error κ′′ of NIPK protocol is negligible, and [12] ensures that the knowledge-

error κ′ of non-parallel Fiat-Shamir version of the multi-round protocol is still negligible and

degrades only linearly with respect to the number of queries to the Random Oracle. Specifically,
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if Q is the upper-bound for the number of Random Oracle queries for NIPK protocol, then

given that κ′′ is the knowledge-error of the interactive NIPK protocol, from [12] we get that

κ′ = (Q + 1).κ′′.

Zero-Knowledge. For proving zero-knowledge, we describe the simulator as follows. With-

out loss of generaltiy, let us assume that C = {1, . . . , ϵ} for ϵ ≤ t. The simulator SFS runs the

adversary as follows:

– SFS receives {Ai, Bi}i∈C from the adversary.

– SFS simulates messages {Ai, Bi, πi1, πi2}i/∈C of the honest parties as follows:

· SFS chooses A′
i ←R G for 1 ≤ i ≤ t, and sets a = (z, A′

1, . . . , A
′
t).

· SFS sets A′
t+j = atj where tj ∈ Ft+1

p is the interpolation vector such that f(t + j) =

⟨(f(0), . . . , f(t)), tj⟩ for all polynomials f(x) of degree ≤ t, i.e. tj = {λ0(t+j), λ1(t+

j), . . . , λt(t+j)} where λ0(x), . . . , λt(x) are lagrange polynomials with respect to the

set {0, . . . , t}.

· SFS picks B′
i, i > ϵ uniformly at random from G.

· SFS invokes the simulator for the NIPK to obtain πi1 = NIPK.PRO
FS {(Ai, si) : gsi = Ai},

πi2 = NIPK.PRO
FS {(Bi, (ri, ωi)) : hri

1 h
ωi
2 = Bi}.

· Then SFS sends the messages {A′
i, B

′
i, πi1, πi2}i>ϵ to A.

– SFS queries the random oracle RO to obtain the challenge γ ←R Fℓ
p.

– Thereafter, the simulator receives {vi}i<ϵ from A, along with the proofs {πi3}i<ϵ.

– SFS sets v′ ←R Fp and computes (v′1, . . . , v
′
n)←R Share(v′), computes simulated NIPK.PRO

FS

proof

πi3 = NIPK.PRO
FS {((AiBi,γ∥1∥0, vi), (si, ri, ωi)) : gsihri

1 h
ωi
2 = AiBi ∧ ⟨γ, si⟩ + ri = vi},

and sends {vi, πi3}i>ϵ.

– Finally, SFS sends (v′i, πi3)i>ϵ to the adversary A.

We argue correctness of simulation of honest-party first messages {Aj}i/∈C as follows: in the

real protocol, the vector of shares for party j is of the form (f1(j), . . . , fℓ(j)), where fi : i ∈ [ℓ] are

the polynomials used to share the values si : i ∈ [ℓ] respectively. Let f = (f1, . . . , fℓ) denote the

vector of sharing polynomials and let f(j) to denote the vector (f1(j), . . . , fℓ(j)). Then for j > ϵ

in the real protocol, (Aj)j>ϵ are distributed as (gf(j))j>ϵ, subject to constraint that gf(0) = z.

Sampling such a polynomials fi, i ∈ [ℓ] corresponds to choosing fi(1), . . . , fi(t) uniformly and
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then determining fi(t + j) = ⟨(fi(0), . . . , fi(t)), tj⟩ using the interpolation vector tj. Thus

f(t + j) is a tj-linear combination of f(0), . . . ,f(t), which dictates simulator’s computation

of At+j from vector a. The simulated transcript is an accepting transcript as gf(0) = z and

gf(i) = Ai for all i /∈ C, and the verification check is satisfied since a known linear combination

of {f(i)}i/∈C in the exponent yields the desired value f(0) in the exponent. Additionally, since

{f(i)}i/∈C are implicitly set as the honest-party shares, it is identical to the correct distribution

of secret shares. This completes the proof of zero-knowledge for ΠFS
dlog. 2

We note that knowledge soundness ensures simulation extractability in the random oracle

model [65, 66], and hence, our Fiat-Shamir transformed round efficient DPoK is simulation-

extractable. The following corollary of Theorem 4.5 follows immediately and yields the concrete

bounds on the corruption threshold tolerated by ΠFS
dlog.

Corollary 4.3 Setting d = t < n/3, ΠFS
dlog is n/3-private and n/3-robust.

4.7 PS Signatures

In this section we show the generality of techniques shown above by providing distributed

protocols for another pairing-based signature scheme, whose proof of knowledge of signature

also reduces to discrete logarithm relation.

We begin by recalling the Pointcheval Sanders (PS) signature scheme from [97], along with

the associated proof of knowledge.

Definition 4.14 (PS Signature Scheme [97]) The PS Signature Scheme to sign a message

m = (m1, . . . ,mℓ) ∈ Fℓ
p consists of a tuple of PPT algorithms (Setup,KeyGen, Sign,Verify)

described as follows :

– Setup(1λ) : For security parameter λ, this algorithm outputs groups G1,G2, and GT of

prime order p, with an efficient bilinear map e : G1 × G2 → GT , as part of the public

parameters pp. Note that the bilinear groups are of type 3, which ensures that there are no

homomorphisms between G1 and G2 that are efficiently computable.

– KeyGen(pp) : This algorithm samples g̃ ←−R G2 and

(x, y1, . . . , yℓ)←−R Fn+1
p , computes (X̃, Ỹ1, . . . , Ỹℓ) =

(g̃x, g̃y1 , . . . , g̃yℓ), and outputs (sk, pk), where sk = (x, y1, . . . , yℓ) and

D pk = (g̃, X̃, Ỹ1, . . . , Ỹℓ).

– Sign(sk,m1, . . . ,mℓ) : This algorithm samples h←−R G1\{0}, and outputs σ = (h, hx+
∑

j yjmj).
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– Verify(pk, (m1, . . . ,mℓ), σ) : This algorithm parses σ as (σ1, σ2), and first checks if σ1 ̸= e1.

It then proceeds to check if

e

(
σ1, X̃ ·

∏
j

Ỹ
mj

j

)
= e(σ2, g̃).

If yes, it outputs 1, and outputs 0 otherwise.

Note that given σ = (σ1, σ2), σ
′ = (σr

1, σ
r
2) is also a valid signature if σ is a valid signature.

However, it can be seen that the distribution of σ is not independent of the message m in the

above scheme.

4.7.1 Proof of Knowledge of PS Signatures

PS signatures support an efficient zero-knowledge proof of knowledge (ZKPoK) wherein a prover

holding a valid PS signature σ on a message vector m can efficiently prove knowledge of the

signature. A prover P who owns a PS signature σ = (σ1, σ2) on a message m = (m1, . . . ,mℓ) ∈
Fℓ
p can prove knowledge of such a signature using a slight modification of the signature scheme

as described above. At a high level, P generates a signature on a a pair (m, t) for uniformly

sampled t←−R Fp based on the original signature σ; the usage of a random t makes the resulting

signature independent of m. The complete protocol is as below:

– Public Key pk = (g̃, X̃, Ỹ1, . . . , Ỹℓ)

– P’s inputs: Message m ∈ Fℓ
p and signature σ = (σ1, σ2) on m

1. P samples r, t←−R Fp and computes σ′ = (σr
1, (σ2 · σt

1)
r).

2. P sends the computed value σ′ = (σ′
1, σ

′
2) to V.

3. P and V run a ZKPoK of (m, t) for the relation:

e(σ′
1, X̃) ·

∏
j

e(σ′
1, Ỹj)

mj · e(σ′
1, g̃)t = e(σ′

2, g̃).

4. V accepts if the ZKPoK is valid.

The proof of knowledge protocol used in Step (3) is a special case of “proof of opening”, wherein

we can use a protocol for proving the knowledge of s ∈ Fℓ
p which opens the commitment z = gs

where g = (g1, . . . , gℓ) and g1, . . . , gℓ are public generators of a group G (of order p), where the

discrete log problem is hard. We describe the protocol concretely below.
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– P and V’s common inputs: z ∈ G.

– P’s private inputs: s ∈ Fℓ
p.

1. P samples r ←−R Fℓ
p and computes α = gr.

2. P→ V: α.

3. V→ P: c←−R Fp.

4. P→ V: s′ = cs + r.

5. V checks: gs
′

= αzc.

We also describe another variant of PS Signature Scheme, based on a stronger assumption

(Assumption 1 in [97]), that leads to much more efficient distributed prover protocols. This

variant is same as the one described in Definition 4.14, with the exception of KeyGen algorithm

which includes additional elements in the public key (hence stronger assumption). The modified

KeyGen algorithm is described below:

Definition 4.15 (PS Signature: B [97]) The PS Signature Scheme to sign a message m =

(m1, . . . ,mℓ) ∈ Fℓ
p consists of a tuple of PPT algorithms (Setup,KeyGen, Sign,Verify) as de-

scribed in Definition 4.14, except KeyGen which is described below:

– KeyGen(pp): The algorithm samples g ←R G1, g̃ ←R G2, (x, y1, . . . , yℓ+1) ←R Fℓ+1
p and

computes (X, Y1, . . . , Yℓ+1) = (gx, gy1 , . . . , gyℓ+1), (X̃, Ỹ1, . . . , Ỹℓ+1) = (g̃x, g̃y1 , . . . , g̃yℓ+1). It

then outputs (sk, pk) where sk = (x, y1, . . . , yℓ+1) and

pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1).

– Sign(sk, (m1, . . . ,mℓ)): Choose h←R G1\{0} and output

(h, hx+
∑ℓ

i=1 yi·mi). Note that Sign still works on the ℓ-length message.

4.7.2 Alternate Proof of Knowledge of PS Signatures

We describe a protocol for showing knowledge of a PS signature (σ1, σ2) on a message m ∈ Fℓ
p

while simultaneously revealing a dynamically sampled commitment C of m. The proof of

knowledge reduces to the knowledge of opening of C and a short pairing check as described

below:

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1)

– P’s inputs: Message m ∈ Fℓ
p and signature σ = (σ1, σ2) on m
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1. P samples r, t, s←R Fp and computes σ′ = (σr
1, (σ2 · σt

1)
r · Y s

ℓ+1), C = g̃t
∏l

i=1 Ỹ
mi
i ∈ G2.

2. P sends the computed value σ′ = (σ′
1, σ

′
2) and C to V.

3. P and V run a ZKPoK showing knowledge of (m1, . . . ,mℓ, t) such that C = g̃t
∏ℓ

i=1 Ỹ
mi
i

and a ZKPoK showing knowledge of s such that e(Yℓ+1, g̃)s = e(σ′
2, g̃)e(σ′

1, X̃)−1e(σ′
1, C)−1.

4. V accepts if the ZKPoKs are valid.

Proof: For completeness, notice that σ2 = σ
x+

∑ℓ
i=1 yimi

1 and thus we have σ′
1 = σr

1, σ′
2 =

Y s
ℓ+1 · σ

r(x+
∑ℓ

i=1 yimi+t)
1 and C = g̃t

∏ℓ
i=1 Ỹ

mi
i . Thus we have:

e(σ′
2, g̃) = e(σr

1, g̃
x+

∑ℓ
i=1 yimi+t) · e(Yℓ+1, g̃)s

= e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)s

The above is equivalent to the verification relation. Zero-knowledge follows from the fact

that σ′
1, σ

′
2 and C are distributed uniformly in their respective domains, and from the zero-

knowledge property of the ZKPoKs. To show knowledge soundness, we show an extractor E

which extracts a valid signature on a message in Fℓ
p. Using the extractors for the ZKPoKs, E

obtains (m1, . . . ,mℓ, t, s) such that

C = g̃t
ℓ∏

i=1

Ỹ mi
i , e(σ′

2, g̃) = e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)s

The extractor E computes
(
σ1 = σ′

1, σ2 = σ′
2(σ

′
1)

−t(Yℓ+1)
−s
)
. To see that (σ1, σ2) is a valid

signature we verify:

e(σ2, g̃) = e(σ′
2, g̃) · e(σ′

1, g̃)−t · e(Yℓ+1, g̃)−s

= e(σ′
1, X̃) · e(σ′

1, C) · e(σ′
1, g̃)−t

= e(σ′
1, X̃) · e(σ′

1,

ℓ∏
i=1

Ỹ mi
i )

= e(σ1, X̃

ℓ∏
i=1

Ỹ mi
i )

The above shows (σ1, σ2) is a valid signature for the block (m1, . . . ,mℓ) for the public key

(g̃, X̃, Ỹ1, . . . , Ỹℓ). 2
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4.7.3 DPoK for PS Signatures over Secret-Shared Inputs

We now present a DPoK for PS signatures for secret-shared inputs. We start by defining a

relation relevant to PS signature verification.

Definition 4.16 (PS Relation) Let PSGen denote the relation generator, such that PSGen(11λ , ℓ)

outputs a bilinear group

(G1,G2,GT , g1, g2, e, p)←R PS.Setup(11λ). The corresponding relation Rps is defined by (x, (m,u)) ∈
Rps for

x = pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1) ∈ Gℓ+2
1 × Gℓ+3

2 , m = (m1, . . . ,mℓ) ∈ Fℓ
p and

u = (σ, t) = ((σ1, σ2), t) ∈ G2
1 × Fp if

e(σ′
1, X̃) ·

∏
j

e(σ′
1, Ỹj)

mj · e(σ′
1, g̃)t = e(σ′

2, g̃).

Our Protocol Πps. Our DPoK protocol Πps for relation PSGen is described below, which

can be invoked from our compiler with input authentication based on PS signatures (instead

of BBS+). It builds upon the known PS PoK [97] in the non-distributed setting. The PoK

involved the following steps: (i) the prover randomizes the signature using some auxiliary

inputs and broadcasts the randomized signature to all other parties (this randomization ensures

unlinkability), and then (ii) the prover shows knowledge of these auxiliary inputs and secret-

shares of the message satisfying discrete-log relations determined by the first message.

Our PS PoK over secret-shared inputs follows the same blueprint, where the prover similarly

randomizes the first message using certain auxiliary inputs. In our case, the problem reduces to

a DPoK for the discrete log relation, with the workers holding the shares of the witness (message)

and the verifier holding the public statement (public key pk + the randomized signature). We

handle this using our robust complete DPoK Πdlog for discrete log.

We note that DPoK protocol Πps achieves robust completeness, knowledge-soundness and

zero-knowledge. The proof is straightforward from the existing proof of knowledge of PS sig-

natures and robust completeness, knowledge-soundness and zero-knowledge properties of our

DPoK protocol Πdlog for discrete log.

Theorem 4.6 Assuming that Πdlog is a DPoKSSS,DlogGen for relation generator DlogGen and

(t, n)-SSS, Πps is a DPoK for the relation generator PSGen and (t, n)-SSS with the following

properties:

– Security: t-private and d-robust, for d < dist/2, where dist = (n − t) is the minimum

distance of the Reed-Solomon code induced by (t, n)-SSS.
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– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1)

– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Fℓ
p and signature σ = (σ1, σ2) on m

– Wi’s inputs : Wi possesses the ith share mi of the message vector m, such that
Reconstruct(m1, . . . ,mn) = m

– Preprocessing : P samples t ←−R Fp, computes (t1, . . . , tn) ←R Share(t). P sends the
shares ti to Wi, for all i ∈ [n].

– Interactive Protocol

1. P samples r, v ←−R Fp and computes σ′ = (σr
1, (σ2 ·σt

1)
r ·Y v

ℓ+1), C = g̃t
∏ℓ

i=1 Ỹ
mi
i . P also

generates a NIPK π showing knowledge of v such that e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)v =
e(σ′

2, g̃).

2. P broadcasts the computed value σ′ = (σ′
1, σ

′
2), C and π to V.

3. Each Wi and V locally set g = (g̃, Ỹ1, . . . , Ỹℓ).

4. Each Wi locally holds the i-th share si = (mi, ti) such that s = (m, t) =
Reconstruct

(
{si}i∈[n]

)
.

5. All Wi for i ∈ [n] and V run DPoK protocol Πdlog for the relation gs = C

6. V accepts if π is valid and Πdlog accepts.

Figure 4.5: Protocol Πps
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– Efficiency: O(n) communication over point-to-point channels and O(n log ℓ) communi-

cation over broadcast channels.

Remark 8 (Public Verifiability) The protocol Πps was presented and analyzed assuming an

honest designated verifier for simplicity. By replacing Πdlog with its publicly verifiable version

Πpv
dlog in steps (5) of the Interactive Phase, we obtain a publicly verifiable version of the protocol,

which we call Πpv
ps . Observe that Πpv

ps requires one less round of interaction, as compared to Πps,

while it retains the properties of robust completeness, knowledge soundness and honest verifier

zero-knowledge holds identically for the Πps.

4.8 Application of Distributed Proofs of Knowledge in

Input Authentication in MPC

In this section we present our compiler for MPC with input authentication that outputs an

MPC protocol where each input is authenticated using a BBS+ signature under a common

(public) verification key. We can also obtain a compiler for MPC with input authentication

using similar techniques for PS Signatures discussed in Section 4.7.3.

Class of MPC Protocols. Our compiler takes advantage of the observation that a large

class of secret-sharing based MPC protocols share the following template. (i) There is an input

sharing phase where parties secret-share their inputs, and (ii) when using secret sharing schemes

with certain thresholds (tsh < |H|), the input of parties is completely determined at the end

of the input sharing phase. This means that using inputs inconsistent with this sharing is

considered deviating, against which the protocol is secure. This is precisely where our compiler

performs well: verification of authenticity (or any other predicate) on the inputs can be done

fully outside the MPC by running a DPoK on the shares. (iii) For an MPC protocol of this

template, there exists a simulator Sim = (Simsh, Simon), where Simsh deterministically extracts

the inputs of corrupt parties, and Simon simulates the protocol view.

Features of Our Compiler. Our compiler allows identification of all (malicious) parties

with non-authenticated inputs (this is a consequence of the robust completeness property of

Πdlog used inside Πbbs+). We further note that our robust protocol Πdlog tolerates a maximum

corruption threshold of t < n/3 (assuming that the secret-sharing used is Shamir’s secret

sharing). Hence, our compiled MPC protocol also tolerates a maximum corruption threshold

of t < n/3. Using the non-robust version will result in a non-robust compiler that retains the

t < n/2 threshold of the underlying MPC.
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Inputs

The ideal functionality receives from each party Pi an input-signature pair of the form (xi, σi)
under the public verification key pk.

Verify Authenticity

1. If Ver(pk, xi, σi) ̸= 1 for some party Pi, then output a set of corrupted parties C and abort.

2. Otherwise, proceed to computation.

Computation

Invoke the ideal functionality FMPC for Πmpc on inputs (x1, . . . ,xn).

Figure 4.6: Functionality Fauth
MPC

The Desired Ideal Functionality. We define below the desired ideal functionality Fauthid
MPC

for MPC with input authentication.

4.8.1 Our Compiler for Authenticated MPC

We now present a formal description of our compiler. Let Πmpc = (Πsh,Πon) be a secret-sharing

based MPC protocol that guarantees security with abort against malicious corruptions of a

dishonest majority of the parties {P1, . . . , Pn}, where:

– Πsh denotes the secret-sharing phase of Πmpc and consists of the steps used by each party

Pi for i ∈ [n] to secret-share its input xi ∈ Fℓ
p to all of the other parties (throughout, we

assume that this sharing is done using a linear secret-sharing scheme (Share,Reconstruct).

– Πon denotes the remaining steps of the protocol Πmpc where the parties interact to compute

y = f(x1, . . . ,xn).

In the description of our compiler, we assume that each party Pi holds a BBS+ signature

σi on its input xi with respect to a common public verification key pk. The compiler runs n

instances of Πbbs+, where for instance i, party Pi acts as the prover and all other parties Pj for

j ̸= i act as verifiers. Given Πmpc = (Πsh,Πon), our robust compiler outputs an authenticated

MPC protocol Πampc = (Πsh,Πon). The compiler Πampc is described above.

Theorem 4.7 (Security of Πampc) Assuming that: (a) the MPC protocol Πmpc securely em-

ulates the ideal functionality FMPC, and (b) Πdlog is a DPoKSSS,DlogGen for relation generator
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– Inputs: All parties hold public parameters and the verification key pk of a BBS+ sig-
nature scheme. Party Pi has input xi ∈ Fℓ

p, together with a signature σi, such that
(pk, (xi, σi)) ∈ Rbbs.

– Πsh: This phase is identical to Πsh, i.e., each party Pi shares its input xi to all other
parties exactly as in Πsh.

– Πon: In this phase, the parties do the following:

– For each j = 1, . . . , n, the parties execute an instance of Πbbs+ for (pk, (xj, σj)) ∈ Rbbs

with Pj acting as the Prover, P1, . . . ,Pn constituting the workers and Pi, i ̸= j acting
as verifiers, .

If any party outputs 0 at the end of this phase, the protocol aborts.

– Otherwise, the parties jointly execute Πon.

Figure 4.7: Protocol Πampc = (Πsh,Πon)

DlogGen and (t, n)-SSS our compiled MPC protocol with input authentication Πampc securely

emulates the ideal functionality Fauth
MPC for the same corruption threshold of t < n/3.

Proof. We construct a simulator for the Πampc protocol, and prove indistinguishability of the

simulation from a real-world execution of Πampc. The underlying MPC protocol Πmpc secure

emulates FMPC, and let Sim = (Simsh, Simon) be the corresponding simulator.

Simulator for Πampc. We now describe the simulator Sim for the authenticated MPC protocol

Πampc =
(
Πsh,Πon

)
. Let H ⊆ [n] and C ⊂ [n] denote the set of honest and corrupt parties,

respectively. The simulator Sim proceeds as follows:

1. Simulate the sharing phase Πsh of the underlying MPC Πmpc by invoking Simsh (note that

Simsh does not expect any inputs). Sim receives the ith share {sji}i∈H from the adversary

(invoked by Simsh) corresponding to the input sj of each corrupt party Pj, j ∈ C.

2. For each Pj s.t. j ∈ C, let (Πbbs+)j denote the instance of the protocol Πbbs+ used by the

parties where Pj acts as the prover, and all of the remaining parties acting as both workers

and verifiers. The simulation of the online phase proceeds as follows.

(a) First, the simulator of the online phase invokes the simulator of the underlying DPoK

Πbbs+ to simulate the proofs of knowledge of BBS+ signatures on the inputs of the honest

parties.
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(b) For each instance Πbbs+, where a corrupt party Pj, j ∈ C is acting as the prover, invoke

the extractor Ext′ of the DPoK Πbbs+ on the shares of the honest parties (sji )i∈H corre-

sponding to the corrupt party Pj’s input to extract the witness (xj, σj) from Pj. Note

that since we assume honest-majority, the shares {sji}i∈H given as input to the extractor

Ext′ completely determines the respective inputs of each corrupt party Pj, j ∈ C. Hence,

the compiler aborts if Consistent(xj, {sji}i∈H) = 0.

(c) Invoke Simon to simulate the online phase of the underlying MPC Πmpc.

3. Send {(xj, σj)}j∈C to Fauth
MPC. If Fauth

MPC aborts by identifying some subset of corrupt parties,

abort while identifying the same subset of corrupt parties; otherwise output whatever Fauth
MPC

outputs.

Completing the Security Proof. We now prove the security of Πampc by using a sequence

of hybrids described as follows (for simplicity of exposition, we assume w.l.o.g. that parties

P1, . . . , P|C| are corrupt and parties P|C|+1, . . . , Pn are honest):

– Hyb0: This hybrid is identical to the real-world execution of Πampc.

– Hyb1: This hybrid is identical to Hyb0 except that we simulate the sharing phase Πsh of the

underlying Πmpc protocol by invoking Simsh. Receive from Simsh the set of shares {sji}i∈H
corresponding to the input sj of each corrupt party Pj, j ∈ C.

– {Hyb2,j}j∈[0,n−|C|]: Hybrid Hyb2,0 is identical to hybrid Hyb1, and for each j ∈ [1, n − |C|],
hybrid Hyb2,j is identical to Hyb2,(j−1) except that proof of knowledge corresponding to

the input of honest party P|C|+j is simulated using Sim′ as described in Step 2(a) of the

simulator. More concretely, for each honest party P|C|+j, instead of using the real input

x|C|+j and the real BBS+ signature σ|C|+j, proof of knowledge of a BBS+ signature is

simulated instead of running an instance of the protocol Πbbs+ where party P|C|+j is the

prover.

– {Hyb3,j}j∈[0,|C|]: The first of these hybrids, i.e., Hybrid Hyb3,0 is identical to hybrid Hyb2,n−|C|.

Next, for each j ∈ [1, |C|], hybrid Hyb3,j is identical to Hyb3,(j−1) except that we abort if

the following bad event occurs: for the instance of Πbbs+ where the corrupt party Pj is the

prover, invoke the extractor Ext′ (as mentioned in Step 2(b) of the simulator and described

in the proof overview) on the shares of the honest parties (sji )i∈H corresponding to the

corrupt party Pj’s input to extract the witness (xj, σj) from Pj. If (pk, (xj, σj)) ̸∈ Rbbs or

Consistent(xj, {sji}i∈H) = 0, then abort.
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– Hyb4: This hybrid is identical to Hyb3,|C| except for the following: invoke Simon of the

underlying Πmpc protocol to simulate the online phase Πon, and output whatever Simon

outputs.

– Hyb5: This hybrid is identical to Hyb4 except that after invoking Simon to simulate Πon, we

query Fauth
MPC with the extracted inputs {(xj, σj)}j∈C.

Hyb0 ≈c Hyb1. This follows from the security of the underlying Πmpc protocol. Suppose that

there exists a PPT adversary A that can distinguish between Hyb0 and Hyb1. It is easy to use A

to construct a PPT adversary A′ that can distinguish between a real and simulated execution

of Πsh, thus breaking security of the underlying Πmpc protocol.

Hyb2,j−1 ≈c Hyb2,j. This follows from the ZK property of Πdlog and the PoK for single-prover

version of BBS+ signatures. In particular, suppose that there exists a PPT adversary A that

can distinguish between Hyb2,(j−1) and Hyb2,j for some j ∈ [1, n − |C|]. Then A can be used

to construct one of the following algorithms: (a) either an adversary A′ that breaks the ZK

property of the Πdlog protocol, or (b) an adversary A′′ that breaks the ZK property of the PoK

for single-prover version of BBS+ signatures.

Hyb3,j−1 ≈c Hyb3,j. This follows from knowledge soundness of Πdlog. The two hybrids differ

only when the bad event occurs, i.e., the extractor Ext′ in Step 2(b) of the simulator fails to

output a valid witness (m, σ) where m is consistent with the honest party shares. However, as

described in the proof overview, assuming the knowledge-soundness of Πdlog, the extractor Ext′

outputs a valid witness. Hence, assuming knowledge-soundness of Πdlog, the probability of the

bad event occurring must be negligible.

Hyb4 ≈c Hyb3,|C|. This follows from the security of the underlying Πmpc protocol. At the end

of Πsh, if abort did not occur, then for each i ∈ [n], all honest parties hold shares ⟨x′
j⟩j∈H of

some x′
i ∈ Fℓ. In Hyb3,|C|, the extractor succeeds in outputting a valid witness xi, and this is

the unique x′
i determined at the end of Πsh. Suppose that there exists a PPT adversary A that

can distinguish between Hyb4 and Hyb3,|C|. It is easy to use A to construct a PPT adversary A′

that can distinguish between a real and simulated execution of Πon, thus breaking the security

of the underlying Πmpc protocol.

Hyb5 ≡ Hyb4. Hyb5 and Hyb4 are identical. In Hyb4, the output of is given by the output of

Simon and in Hyb5, the output is given by the output of Simsh, which are idential by the security

of the underlying Πmpc. We also note that Hyb5 is identical to Sim.

This completes the proof of Theorem 4.7.
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Round Efficient Compiler for Authenticated MPC. Finally, it is easy to see that in-

voking the round efficient DPoK ΠFS
bbs+ protocol instead of the DPoK Πbbs+ protocol enables us

to obtain a round efficient version of our compiler. The round efficient version achieves the

same security guarantees as the compiler presented above, albeit in the random oracle model.
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Chapter 5

Updatable Lookup Arguments and its

Application in Batching-efficient RAM

In this chapter1, we present updatable lookup arguments that enables us to perform lookups on

tables that have been changed after the preprocessing of expensive parameters, by removing

the rigid dependency of the online phase on the table-dependent preprocessing. We also look

at our constructions for committed index lookup arguments, which takes a step further from

the traditional lookup arguments that prove the sub-vector relations, and ties the proof to the

indices of the elements being ‘looked up’. Finally, using our updatable lookup argument as

a building block, along with other primitives, we provide a batching-efficient RAM (Random

Access Memory) that has constant proof size, constant verification complexity, and prover

complexity that is sublinear in the size of the RAM.

5.1 Introduction

To motivate our key ZKP primitive of updatable lookup argument, we begin by discussing its ap-

plication in the well-understood primitive of RAM. We highlight the established importance and

the extensive prior work on efficiently proving correctness of RAM updates. General purpose

Succinct Non-interactive Arguments of Knowledge (SNARKs) enable one to generate succinct

proofs of membership of a statement in an NP relation expressed as an arithmetic circuit. These

proofs are extremely cheap to verify, which makes them useful for Verifiable Computation (VC),

where a resource-constrained client (e.g., a mobile phone), can outsource an expensive compu-

tation to an untrusted server, and later verify the correctness of the computation at a minimal

cost.

1This chapter is based on the joint work [54] with Chaya Ganesh, Sikhar Patranabis, Shubh Prakash and
Nitin Singh, that appeared in ACM CCS 2024.
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Modeling RAM in Verifiable Computation. It turns out that arithmetic circuit-based

representations are inefficient in expressing relations involving the result of a program execu-

tion on memory/state. Such relations frequently arise in the context of verifiable computation,

in scenarios that require proving the correctness of query execution against a database, infer-

ence from a decision tree, or updates on a table of account balances (e.g., when a batch of

transactions, such as account transfers, is applied to the table).

In the aforementioned examples, objects such as database tables, decision trees, and accounts

tables can be naturally modeled as instances of addressable memory, or more generally, random

access memory (RAM), where one needs to prove that the RAM has been accessed/updated in

accordance with the correct execution of the computation. There exists a rich and expanding

body of work on efficiently modeling abstractions of RAM in verifiable computation. While a

complete treatment of this vast body of work is beyond the scope of this thesis (a fairly recent

survey in [106] is a good starting point), we mention two additional properties that are often

demanded of the RAM primitive: persistence – the ability to persist the RAM state across

several computations, and batching – where verifiable update of the RAM state is required for

small batches of updates. These properties are also the focus of this work.

Application to Blockchain Rollups. Batching-efficient RAM is especially relevant in the

context of blockchain rollups [14], an umbrella term for recent efforts to scale blockchains by

moving expensive computation off the blockchain to the so-called layer two (or L2) chains.

The blockchain only needs to verify succinct proofs attesting to the correctness of the off-

chain computation. This approach is popularly called rollup as it allows verifying the result

of several (rolled-up) transactions modifying the L2 state, as part of one transaction verified

on the main chain. This simultaneously improves scalability and lowers the cost (e.g., gas

fees) per transaction due to succinct verification. We consider improving efficiency of rollups

an important motivation for our work, but avoid precise details of a smart-contract based

instantiation of our solution.

5.1.1 Our Contribution

We present batching-efficient RAM construction, which advances the efforts towards achiev-

ing verifiable outsourcing of state update such as in [34] and more recently in [92, 42]. The

most popular approaches to succinctly represent state involve accumulators based on Merkle-

trees [89], or ones based on groups of unknown order (e.g. RSA, class-groups) [39, 31, 92, 42].

The updates to the state are effected by insertions or deletions in the accumulated set. In

this work, we model the state as an addressable memory (RAM) described by vector T , which

stores value vi at address i. We denote this as T [ i ] = vi. The RAM supports two operations,

141



viz, loads expressed as vi := T [ i ], and stores expressed as T [ i ] = vi. We think of addresses

i ∈ [0, N ] for some N ∈ Z while the values vi ∈ F for some finite field F. In our construction, we

represent both the RAM and operations on it as polynomials, and use appropriate polynomial

commitment schemes to obtain succinct commitments (digests) to them. In this chapter, we

do not require commitments to be hiding, as our focus is on succinctness.

We summarize our contributions below.

– As our first contribution, we propose update friendly lookup arguments, which addresses

the strict dependence of recent constructions on table-specific preprocessing parameters.

Earlier works relied on preprocessing the quotients of the table which has to be ‘looked up’,

where the online phase only requires computing a linear combination of these preprocessed

parameters. However, for computation of the quotient in the online phase, this approach

strictly relies on these table-dependent preprocessed quotients, which is rendered unusable

in the event of any updates to the table. Our innovation extends the utility of table-specific

parameters to enable efficient lookups from tables, which are within certain Hamming

distance of the preprocessed table.

– We construct committed index lookup arguments via black-box reduction to sub-vector

arguments that use homomorphic commitments. A committed index lookup involves three

committed vectors t,a and v satisfying vi = tai for all i. Similar definition is also used

in recent multi-variate lookup arguments in [103], where a similar reduction to sub-vector

arguments is obtained under a more restrictive assumption about the elements of the table.

– We crucially employ the above two contributions to construct a batching-efficient RAM,

which can prove a batch of m updates with an amortized prover complexity of O(m logm+√
mN), with N being the size of the RAM. Our dependence on the RAM size is sublinear,

in contrast to the linear complexity inherent in recent works on batching-efficient RAM

using RSA accumulators [92, 42] or using generic memory checking techniques [105, 21, 19,

114]. All of our protocols are public-coin, and can be made non-interactive using standard

techniques [59].

We consider privacy as an orthogonal goal, one we believe is easily achievable via small

adaptations to our construction. To also attain privacy, we first require the commitments to

be hiding. Furthermore, each polynomial must be padded with sufficient number of random

masks to allow multiple ‘openings’ of the same commitment without compromising privacy.

For ensuring privacy in updatable lookup argument, we require privacy in the underlying com-

mitted index lookup argument, and for ensuring privacy in batching-efficient RAM, we require
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privacy across all of its building blocks. For instance, we can ensure privacy in the committed

index lookup argument by plugging in a zero-knowledge lookup argument (eg. zkcq+ [43]),

and a privacy-preserving memory consistency check can be performed using a zero-knowledge

permutation argument. In this work, since our technique focuses on efficient computation of

the quotients required from the prover during the protocol execution (whose computation does

not involve the verifier), these techniques are compatible with the standard techniques of using

hiding commitment schemes to achieve privacy.

5.1.2 Techniques

We present a brief summary of our techniques below. A more detailed technical overview

appears in Section 5.1.2.

Update-friendly Lookup Arguments. Our starting point is the recent line of works on

lookup arguments which prove that a vector of size m appears as a sub-vector in a large fixed

vector (table) of size N with succinct proof sizes and verification, but most notably ensuring

that prover runs in time sublinear in the size of the table (N). The pioneering work [110]

obtained prover complexity of O(m2 + m logN), which was improved in subsequent works

to O(m2) [98], O(m log2m) [111], and O(m logm) [56, 43]. However, the sublinear prover

complexity requires table-dependent O(N logN) preprocessing and O(N) storage. This table-

dependent preprocessing implies that while the aforementioned lookup arguments can be used

to obtain efficient ROM (read only memory) semantics and cannot be used as is for RAM (which

supports update operations). Moreover, an update involving even a single index renders the

entire O(N) preprocessing unusable for further lookups, thus necessitating entire O(N logN)

re-computation. This work is the first effort towards mitigating this rigid dependence, thereby

increasing the applicability of the recent lookup arguments. An important contribution we

make here is a new method for computing “encoded quotients” used in several recent lookup

constructions such as [110, 98, 56, 43]. Our approach for computing these quotients from pre-

computed parameters remains efficient even when the table is updated, and it directly applies

to all the aforementioned constructions. For a table δ-hamming distance away from the pre-

processed one, we incur (m + δ) log2(m + δ) additional overhead for proving m lookups. To

achieve such a quasi-linear overhead in both m and δ, we rely on novel algebraic algorithms

described in Section 5.4. We informally summarize our contribution in this regard below,

whereas Theorem 5.3 states the precise result.

Theorem 5.1 (Informal) There exists a deterministic O(N logN) time algorithm Preprocess(T )→
ppT which on input T ∈ FN , outputs parameters ppT of size O(N) such that: Given ppT , vectors
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T ′ ∈ FN , t ∈ Fm with t being a sub-vector of T ′ an argument of knowledge for the same can be

computed in time O((m+ δ) log2(m+ δ) + f(m)) where δ = ∆(T ,T ′) is the Hamming distance

between T and T ′ while f(m) depends on the specific lookup protocol.

For the constructions based on [110, 98], we set f(m) = m2 in the above, while for [56, 43], we

have f(m) = m logm.

Committed Index Lookup : We augment the sub-vector relation in prior lookup arguments

which considers whether each entry of a given vector appears in the target vector to one that

also identifies the precise positions where the given vector appears in the target vector. When

this relation is checked over commitments of the respective vectors; given vector, the target

vector and the position vector, we call it committed index lookup. The relation we consider is

similar to the one considered in [103]. For lookup arguments with homomorphic commitment

schemes, we show that committed index lookup can be obtained using a sub-vector lookup

argument (Lemma 5.7, Section 5.3.2). Such a construction was also considered in [103], but

under a more restrictive assumption that the size of the elements in the table have to be within

a certain bound. Lemma 5.7 yields a construction of committed index lookup that uses (a

single instance of) the underlying sub-vector protocol in a black-box manner. This immediately

implies efficient constructions of arguments for committed index lookups from [110, 98, 111, 56,

43]. In Section 5.3.1, we also present an explicit (non-black-box) adaptation of [98] to obtain

a committed index lookup, which again incurs costs comparable to a single instance of the

underlying sub-vector protocol.

Batching-Efficient RAM from Lookup Arguments. Memory checking methods based

on address ordered transcripts [105, 21, 19, 114], which are popularly used in efficient RAM

abstractions, incur a cost linear in the size of the RAM. This is prohibitive for efficient batching.

As a key idea in this work, we invoke committed index lookup on the large RAMs, to verifiably

extract smaller sub-RAMs, which correspond to indices actually involved in the batch update.

Then, we use the linear time memory-checking techniques to argue the consistency of these

smaller sub-RAMs.

The idea needs to work through some more details, such as showing that the larger RAMs

are identical on positions not referenced by the batch of updates (considered in Section 5.5.5).

The overall idea is illustrated in Figure 5.1. We also note that the extracted sub-RAMs can have

duplicate records, corresponding to multiple updates referencing the same RAM index; however,

memory checking methods can be easily adapted to handle such cases. Finally, we would still

hit the “rigidity” of lookup arguments in realizing this plan; once the table has changed, lookups

are no longer efficient from it. To circumvent this, we use our first contribution on extending
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the utility of table-specific parameters to defer parameter re-computation optimally while still

availing efficient lookups. More specifically, if we choose to re-compute the full table-specific

parameters after k batches (of m updates each), the average cost per batch is O(N logN/k +

mk log2(mk) + f(m)). Here, f(m) as earlier denotes complexity of the non-updatable base

protocol. Setting k ≈
√
N/m yields the average cost of m updates as Õ(f(m) +

√
mN), which

scales sublinearly with the size of the RAM. While the preceding analysis considers the worst

case, in specific applications (such as account transactions, where few accounts contribute a

large volume of transactions), it may be possible to further delay the computation of table-

specific parameters. Thus we have:

Theorem 5.2 (Informal) Given m,N ∈ N, there exists an argument for verifiable RAM

which proves updates of batch size m on RAM of size N with amortized prover complexity of

Õ(f(m) +
√
mN).

Polynomial Protocol for RAM. There are several ways to implement the ordered tran-

script based memory consistency check on the smaller O(m)-sized RAMs, for example by ex-

pressing the same as an arithmetic circuit. However, for completeness, we also present an

argument for RAM as an interactive polynomial protocol [64], which is then compiled into an

argument of knowledge using the KZG [77] commitment scheme in the algebraic group model

(AGM) [61]. This construction appears in Section 5.6.

As we have alluded to earlier, existing memory-checking based techniques to model RAM

computations incur a cost that is linear in the size of the RAM. We are interested in the setting

where the number of operations whose execution is to be verified is much smaller than the size

of the RAM. Thus, our goal is to achieve prover complexity which is sublinear in the size of the

RAM. Before we proceed, we establish a working definition of RAM for the rest of the chapter.

Informally, a RAM maps indices (addresses) to values, where we assume that values come from

a finite field F, while indices come from a subset I of F. For us, I will generally be the set

{1, . . . , k} for some integer k (which may be different from size of the RAM n). Finally, for

an index, there should be at most one value in the RAM, i.e., the association is unambiguous.

The formal definition of RAM is as follows:

Definition 5.1 (RAM) Given n ∈ N, finite field F and a set I ⊆ F, a RAM of size n over

indices I is a tuple T = (a,v) ∈ In × Fn such that ∀ i, j ∈ [n] vi = vj whenever ai = aj. We

think of T as a table with vectors a and v denoting its columns. The set of all such tables will

be denoted by RAMI,n.

For a table T = (a,v) ∈ RAMI,n, we refer to tuples (ai, vi), i ∈ [n] as records of the table T .

We use the access notation v = T [a] to mean that (a, v) is a record of T (note there can be
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multiple such records according to our definition). When we consider RAMs where the first

column (of indices) is of the form In = (1, 2, . . . , n), we simply denote such RAMs by T ∈ Fn.

For a RAM T ∈ RAMI,n, a RAM operation is a three tuple (op, a, v) with op ∈ {0, 1}, a ∈ I

and v ∈ F. An operation with op = 0 is called a load operation which denotes reading a value v

mapped to index a in the RAM. Similarly, an operation with op = 1 is called a store operation,

which denotes associating the value v with index a in the RAM. We use O
I

to denote the set

of all RAM operations with index set I.

Component Protocol
Prover

Complexity
Verifier

Complexity
Communication

Complexity
Committed
Sub-vector

Lookup
CQ [56]

O(m logm)F
O(m)G1

5P 8G1, 3F

Committed Index
Lookup

Figure 5.2
O(m logm)F
O(m)G1

5P 8G1, 3F

Localized Update
in RAM

Figure 5.3
O(m log2m)F

O(m)G1
8P 19G1, 1G2, 10F

Table Specific
Preprocessing

Fast KZG [58] O(N logN)F,G - -

Lookup from
Approximate

Setup
Section 5.4

O((m + δ) log2(m + δ))F
O(m + δ)G1

- -

Polynomial Protocol
for RAM

Figure 5.9
O(m logm)F,

O(m)G 7P 36G1, 30F

Batching-Efficient
RAM

Figure 5.4 Õ(
√
mN),F,G 9P 65G1, 1G2, 43F

Table 5.1: Asymptotic efficiency of the component protocols for our scheme. Here, N denotes
the size of the RAM, m denotes the number of operations, and δ denotes Hamming distance of
table for which pre-computed parameters are available from the current table. As before, we
use (F,G1,G2,GT , e, g1, g2, gt) to denote a bilinear group, and P to denote a pairing evaluation.
The performance figures reported here correspond to our batching-efficient RAM scheme which
uses the lookup argument of CQ [56] as a building block.

5.1.3 Batching-Efficient RAM: Blueprint

We will use vectors in FN to denote the “large” RAMs, where index column is implicitly

assumed to be (1, . . . , N). Let T ,T ′ ∈ FN denote the initial and final RAM states, and let

o be a sequence of m operations (m < N) which updates T to T ′. Let a ∈ Fm denote the

vector of RAM indices referenced by the operations in o, i.e, ai is the index referenced by the

ith operation. To prove the transformation of T to T ′ via operation sequence o, we proceed as

follows:
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Figure 5.1: Illustrating different steps of sublinear lookup protocol between large RAMs T and
T ′.

- We isolate sub-tables S = (a,v) and S′ = (a,v′) of T and T ′ consisting of rows corresponding

to indices in a. This requires proving v = T [a] and v′ = T ′[a], which we show using

committed index lookup argument discussed in Section 5.3.2.

- On the isolated sub-tables S and S′ of size m, we use the standard memory checking arguments

(c.f. argument presented in Section 5.6) to prove that sequence o correctly updates S to S′

with prover complexity of Õ(m).

- Finally, we show that the RAMs T and T ′ are identical outside indices in a. We describe

the protocol for proving the same in Section 5.5.5.

The blueprint for the above approach is illustrated in Figure 5.1.

5.1.4 Batching-Efficient RAM: Components

We now elaborate on the key technical components in realizing the above blueprint.

Committed Index Lookup. To limit the size of the RAM on which we use memory-checking

techniques, our first step is to isolate sub-tables of RAMs T and T ′ corresponding to addresses
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which are involved in the operations. This is achieved by looking up RAMs T and T ′ at

indices in the committed vector a. We could leverage the recent work on efficient lookup

arguments to verifiably extract m indices from a table of size N , in time dependent only

on m. However, there are two technical challenges here. First, the aforementioned lookup

arguments only prove the sub-vector relation, without linking the extracted vector to the indices

in a. This is easily solved, as there is an efficient realization of a committed index lookup

from a committed sub-vector argument, where the commitment scheme is homomorphic. The

details appear in Section 5.3.2, with the complete protocol presented in Figure 5.2. The second

challenge is much more formidable: the efficiency of sub-vector arguments (and the committed

index lookup argument derived from them) depends on expensive table-specific preprocessing.

This is acceptable when the table in question is static, but is infeasible in our setting requiring

updatable tables. This motivates our next technical component.

Fast Lookup from Approximate Setup. We build upon the rich body of work on poly-

nomial protocols enabling efficient lookups from static tables [110, 98, 111, 56], which rely on

expensive table-dependent pre-computation to optimise online proving performance. We make

the first attempt towards breaking this rigid dependence. Our key idea is to extend the utility

of pre-computed parameters for a table T , to proving lookups from tables T ′ ̸= T . We show

that for δ = ∆(T ,T ′), an argument for m lookups from T ′ incurs an additional prover overhead

of (m+ δ) log2(m+ δ) over the lookup argument for static tables. We note that the overhead is

quasi-linear in both m and δ. Our competitive overhead rests on several innovative applications

of algebraic algorithms, which are summarised in Section 5.2.4. We then leverage this ability

to use “approximate” setup into a base + cache strategy; where at all times we maintain pre-

computed parameters corresponding to a base table T b, and use this setup to prove lookups

from the current table T . We achieve optimal prover effort on average by using parameters for

T b till the current table is at a hamming distance at most
√
mN from T b, beyond which we

recompute full parameters for the current table with O(N logN) prover effort. The cycle then

repeats with current table as the base table.

Naive Approaches are Inadequate. We notice that the aforementioned constructions of

lookup arguments require linear combination of encoded quotients of the form

[(T (X)− T (ξi))/(X − ξi)]g for upto m values of i during the proof generation. While construc-

tions [110, 98] consider quotients encoded in the group G2, the protocol in [56] encodes them

in G1. We use a generic [ · ]g to account for protocol-specific choices. We also see that even

a small change to the table requires one to update all the quotients (the polynomial T (X) is

common to all quotients). Updating all the quotients after each batch is clearly infeasible. One
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could consider delaying the updation of the quotients, till the time they are actually required

in a proof, which happens when the corresponding index in the table is involved in lookup.

However, each of the m quotients is now potentially “lagging” by δ updates, so we would need

Ω(mδ) group operations to refresh all of them. This gives us multiplicative degradation with

δ, and is clearly unsustainable for reasonable values of δ. In Section 5.4, we present an efficient

method to directly compute linear combination of upto O(m) encoded quotients of the form

[(T (X)− T (ξi))/(X − ξi)]g.

Localizing changes in RAMs. While the above two components allow us to reliably extract

sub-RAMs corresponding to indices in vector a, we still need to prove that RAMs are identical

outside indices in a. Looking ahead, in terms of polynomials this requires proving that T (ξi) =

T ∗(ξi) for i ̸∈ {ai : i ∈ [m]}. Assuming ZI(X) to be the vanishing polynomial of the set

{ξai : i ∈ [m]}, this is equivalent to proving that ZI(X)(T (X) − T ∗(X)) = D(X)ZH(X)

for some polynomial D. However, naively this involves working with polynomials with degree

O(N), which is expensive. In Section 5.5.5 we show a polynomial protocol for the above relation

which requires only O(m log2m) prover effort. The protocol appears in Figure 5.3.

Polynomial Protocol for Memory Checking. To complete the verification, we need to

show that the smaller RAMs, S = (a,v) and S′ = (a,v′) extracted from larger RAMs T ,T ′ are

consistent with respect to the operations. This can be accomplished using standard memory

checking techniques based on address ordered transcripts, which we formalize in Section 5.5.1.

Later in Section 5.6 and 5.7, we assemble known techniques to present a polynomial protocol

for memory consistency based on address ordered transcripts. This involves encoding several

artefacts such as operations, transcripts etc., as polynomials and relations among them such

as concatenation, permutation and monotonicity as polynomial identities. Our modelling is

simple and implementation friendly, and helps in realizing a “circuit-free” overall construction.

Complete polynomial protocol for memory checking appears in Figure 5.9, while constituent

protocols appear in Figures 5.7, 5.6 and 5.8.

Efficiency. We conclude the overview with a discussion of efficiency achieved by our scheme,

and how different components discussed in this section contribute to the overall efficiency.

The asymptotic performance of our scheme using CQ [56] is summarized in Table 5.1, with

efficiency of the overall scheme highlighted in gray. The table also serves as a ready-reckoner

for component protocols involved in the overall scheme. A more detailed discussion and break-

up of the polynomial protocol for RAM appears in Table 5.2 in Section 5.6. We note that

the verification complexity of the overall solution is substantially less than the aggregate of

component protocols; this is due to the fact that several pairing checks required for KZG
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verification proofs can be batched together.

Continuity. To support applications such as rollups, we also consider it imperative to ensure

that online proof generation does not halt during offline parameter re-generation. In other

words, offline parameter re-generation should not hinder the operational continuity of the sys-

tem. In our scheme, we can ensure this by carefully overlapping the offline computation with

online proof generation such that the system can instantly switch to using the more recently

generated parameters before the online proving time becomes prohibitive.

5.2 Preliminaries

This section presents notations and preliminary background material used in this section.

Notation. Throughout this section, we assume a bilinear group generator BG which on input

λ outputs parameters for the protocols. Specifically BG(1λ) outputs (F,G1,G2,GT , e, g1, g2, gt)

where:

- F = Fp is a prime field of super-polynomial size in λ, with p = λω(1).

- G1,G2 and GT are groups of order p, and e is an efficiently computable non-degenerate

bilinear pairing e : G1 ×G2 → GT .

- Generators g1, g2 are uniformly chosen from G1 and G2 respectively and gt = e(g1, g2).

We write groups G1 and G2 additively, and use the shorthand notation [x]1 and [x]2 to denote

group elements x · g1 and x · g2 respectively for x ∈ F. We implicitly assume that all the setup

algorithms for the protocols invoke BG to generate descriptions of groups and fields over which

the protocol is instantiated. We use [n] to denote the set of integers {1, . . . , n}.

Lagrange Polynomials. We denote the Nth root of unity by ξ and define the subgroup H as

H = {ξ, . . . , ξN}. Let {µi(X)}Ni=1 be the associated Lagrange basis polynomials over the set H;

that is, µi(X) =
∏

j ̸=i
X−ξj

ξi−ξj
. We denote by ZH the vanishing polynomial of H; ZH(X) = XN−1.

Formal Derivatives of Polynomials. For a polynomial f(X) =
∑d

i=0 aiX
i ∈ F[X], we define

its formal derivative to be the polynomial f ′(X) =
∑d

i=1 iaiX
i−1.

5.2.1 Succinct Arguments of Knowledge

Let R be a NP-relation and  L be the corresponding NP-language, where  L = {x : ∃ w such

that (x,w) ∈ R}. A succinct argument of knowledge consists of a pair of PPT algorithms

(P,V). Given a public instance x, the prover P, convinces the verifier V, that x ∈  L, where the

prover additionally has as a witness w. We use the notation b ←R ⟨P(w),V⟩(x) to denote V’s
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output in the interactive protocol involving P and V with w as P’s input and x as the common

input. The knowledge-soundness property says that if the verifier is convinced, then an efficient

extractor algorithm given oracle access to the prover outputs a witness w such that (x,w) ∈ R.

An argument system is succinct if the communication complexity and the complexity of V is

polylogarithmic in the size of the witness.

Fiat-Shamir. An interactive protocol is public-coin if the verifier’s messages are uniformly

random strings. Public-coin protocols can be transformed into non-interactive arguments in the

Random Oracle Model (ROM) by using the Fiat-Shamir [59] heuristic to derive the verifier’s

messages as the output of a Random Oracle.

Modular Approach for Succinct Arguments using PIOP. A modular approach for de-

signing efficient succinct arguments consists of two steps; constructing an information theoretic

protocol in an idealized model, and then compiling the information-theoretic protocol via a

cryptographic compiler to obtain an argument system. Informally, the prover and the verifier

interact where the prover provides oracle access to a set of polynomials, and the verifier accepts

or rejects by checking certain identities over the polynomials output by the prover and possibly

public polynomials known to the verifier. Such a protocol can be compiled into a succinct argu-

ment of knowledge by realizing the polynomial oracles using a polynomial commitment scheme.

A polynomial commitment scheme allows a prover to commit to polynomials, and later veri-

fiably open evaluations at chosen points by giving evaluation proofs. This enables the verifier

to probabilistically check polynomial identities at random points of F. Many recent construc-

tions of zkSNARKs [37, 45, 64] follow this approach where the information theoretic object is

a polynomial interactive oracle proof (also referred to as PIOP or a polynomial protocol), and

the cryptographic primitive in the compiler is a polynomial commitment scheme. Informally, a

polynomial interactive oracle proof (also abbreviated as polynomial IOP or PIOP) consists of

a prover sending polynomials and the verifier is not required to read the received polynomials,

and instead it queries the polynomial at some chosen points to ensure its consistency. We

formally define the semantics of a PIOP below (following [67]). Section 2.3 formally introduces

a polynomial commitment scheme, and we refer to Section 5.2.2 for the relevant polynomial

commitment scheme used throughout this chapter.

Definition 18 (Polynomial Interactive Oracle Proof) A polynomial IOP is a public-coin

interactive proof for a relation R = {(x,w)}. R is an oracle relation which consists of oracles

to polynomials over F with a degree bound d. These oracles can be queried at arbitrary points in

F to evaluate the polynomials at these points. In every round in the protocol, the prover sends

polynomial oracles to the verifier. The verifier in every round sends a random challenge. At
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the end of the protocol, the verifier (with oracle access to all the polynomial oracles sent so far)

and given its own randomness, outputs accept/reject. A PIOP as an interactive proof system

satisfies completeness and knowledge-soundness.

Structured Reference String model. We describe public-coin interactive protocols in the

structured reference string (SRS) model where both the parties have access to a SRS. The

SRS in our protocols consists of encodings of monomials of the form {[xi]1}a≤i≤b, {[x
i]2}c≤i≤d

for x chosen uniformly from F and a, b, c, d are bounded by some polynomial in λ. It then

follows from [33] that such an SRS can be generated using a universal and updatable setup [75]

requiring only one honest participant. In practice, this is a superior security model compared

to requiring a fully trusted setup. We use srs = (srs1, srs2) to denote the structured reference

string of the above form. We say that the srs has degree Q if all the elements of srsi, i = 1, 2

are of the form [f(x)]i for a polynomial f ∈ F<Q[X].

Algebraic Group Model. We analyze security of our protocols in the Algebraic Group

Model (AGM) introduced in [61]. An adversary A is called algebraic if every group element

output by A is accompanied by a representation of that group element in terms of all the group

elements that A has seen so far (input and output). In the AGM, an adversary A is restricted to

be algebraic, which in our SRS-based protocol means a PPT algorithm satisfying the following:

for i ∈ {1, 2}, whenever A outputs an element A ∈ Gi, it is accompanied by its representation,

A also outputs a vector v over F such that A = ⟨v, srsi⟩.

Real and Ideal Pairing Checks. For an algebraic adversary A interacting in a protocol

with a degree Q SRS over a bilinear group, the verifier can use the pairing e : G1×G2 → GT to

perform “ideal check” of the form (R1 ·T1)·(R2 ·T2) ≡ 0, where R1, R2 are vectors of polynomials

over F and T1, T2 are public matrices over F. Under the Q-DLOG assumption stated below, the

aforementioned ideal check is equivalent (except with a negligible probability) to a real pairing

check (a · T1) · (T2 · b) = 0 with a and b denoting vectors in F encoding polynomials in R1 and

R2 in groups G1 and G2 respectively (see [64, Lemma 2.2]).

Definition 5.2 (Q-DLOG Assumption [61]) Fix an integer Q. The Q-DLOG assumption

for (G1,G2) states that given [1]1,[x]1,. . .,
[
xQ
]
1
, [1]2 , [x]2 , . . . ,

[
xQ
]
2
for uniformly chosen x←R

F, the probability of an efficient A outputting x is negl(λ).

5.2.2 KZG Commitment Scheme

The notion of a polynomial commitment scheme (PCS) that allows the prover to open evalua-

tions of the committed polynomial succinctly was introduced in [77] who gave a construction
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under the trusted setup assumption. A polynomial commitment scheme over F is a tuple

PC = (Setup,Commit, open, eval) where:

– pp ← Setup(1λ, D). On input security parameter λ, and an upper bound D ∈ N on the

degree, Setup generates public parameters pp.

– (C, c̃) ← Commit(pp, f(X), d). On input the public parameters pp, and a univariate

polynomial f(X) ∈ F[X] with degree at most d ≤ D, Commit outputs a commitment to

the polynomial C, and additionally an opening hint c̃.

– b← open(pp, f(X), d, C, c̃). On input the public parameters pp, the commitment C and

the opening hint c̃, a polynomial f(X) of degree d ≤ D, open outputs a bit indicating

accept or reject.

– b← eval(pp, C, d, x, v; f(X)). A public-coin interactive protocol ⟨Peval(f(X)), Veval⟩(pp, C, d, z, v)

between a PPT prover and a PPT verifier. The parties have as common input public pa-

rameters pp, commitment C, degree d, evaluation point x, and claimed evaluation v. The

prover has, in addition, the opening f(X) of C, with deg(f) ≤ d. At the end of the

protocol, the verifier outputs 1 indicating accepting the proof that f(x) = v, or outputs

0 indicating rejecting the proof.

A polynomial commitment scheme must satisfy completeness, binding and extractability.

Definition 5.3 (Completeness) For all polynomials f(X) ∈ F[X] of degree d ≤ D, for all

x ∈ F,

Pr

b = 1 :

pp← Setup(1λ, D)

(C, c̃)← Commit(pp, f(X), d)

v ← f(x)

b← eval(pp, C, d, x, v; f(X))

 = 1.

Definition 5.4 (Binding) A polynomial commitment scheme PC is binding if for all PPT A,

the following probability is negligible in λ:

Pr

open(pp, f0, d, C, c̃0) = 1∧
open(pp, f1, d, C, c̃1) = 1∧

f0 ̸= f1

:
pp← Setup(1λ, D)

(C, f0, f1, c̃0, c̃1, d)← A(pp)

 .

153



Definition 5.5 (Knowledge Soundness) For any PPT adversary A = (A1,A2), there ex-

ists a PPT algorithm Ext such that the following probability is negligible in λ:

Pr

 b = 1∧
Reval(pp, C, x, v; f̃ , c̃) = 0

:

pp← Setup(1λ, D)

(C, d, x, v, st)← A1(pp)

(f̃ , c̃)← ExtA2(pp)

b← ⟨A2(st), Veval⟩(pp, C, d, x, v)

 .

where the relation Reval is defined as follows:

Reval = {((pp, C ∈ G, x ∈ F, v ∈ F); (f(X), c̃)) :

(open(pp, f, d, C, c̃) = 1) ∧ v = f(x)}

We denote by Prove,Verify, the non-interactive prover and verifier algorithms obtained by

applying FS to the eval public-coin interactive protocol, giving a non-interactive PCS scheme

(Setup,Commit,Prove,Verify).

Definition 5.6 (Succinctness) We require the commitments and the evaluation proofs to be

of size independent of the degree of the polynomial, that is the scheme is proof succinct if |C| is
poly(λ), |π| is poly(λ) where π is the transcript obtained by applying FS to eval. Additionally,

the scheme is verifier succinct if eval runs in time poly(λ) · log(d) for the verifier.

In this work, we use the KZG commitment scheme introduced in [77] which satisfies suc-

cinctness, completeness and knowledge-soundness (extractability) in the algebraic group model,

while additionally featuring a universal and updatable setup. We denote the KZG scheme by the

tuple of PPT algorithms (KZG.Setup,KZG.Commit, KZG.Prove, KZG.Verify) as defined below.

Definition 5.7 (KZG Polynomial Commitment Scheme) Let (F,G1,G2,GT , e, g1, g2, gt)

be output of bilinear group generator BG(1λ) for security parameter λ. The KZG polynomial

commitment scheme is defined as follows:

– KZG.Setup on input (1λ, d), where d is the degree bound, outputs srs = ({[τ ]1, . . . , [τ
d]1}

,{[τ ]2, . . . , [τ
d]2}).

– KZG.Commit on input (srs, p(X)), where p(X) ∈ F≤d[X], outputs C = [p(τ)]1

– KZG.Prove on input (srs, p(X), α), where p(X) ∈ F≤d[X] and α ∈ F, outputs (v, π) such that

v = p(α) and π = [q(τ)]1, for

q(X) =
p(X)− p(α)

X − α

154



– KZG.Verify on input (srs, C, v, α, π), outputs 1 if the following equation holds, and 0 otherwise.

e(C − v[1]1 + απ, [1]2) = e(π, [τ ]2)

Note that both sides of the verification equation involve a fixed generator, and hence several

proof verifications can be batched together to reduce the number of pairing computations. We

also assume (w.l.o.g) analogues of KZG.Commit, KZG.Prove and KZG.Verify defined over the

group G2. We shall use the (non-standard) notation [p(X)]i to denote [p(τ)]i for i ∈ {1, 2}.
This allows us a convenient shorthand for referring to “commitment of the polynomial p(X)” in

group Gi. Our protocols also use batched KZG proofs to show that polynomial p(X) satisfies

p(αi) = vi for i ∈ [n]. Let α = (α1, . . . , αn) denote the vector of evaluation points and v =

(v1, . . . , vn) denote the vector of claimed evaluations. Then the batched version of KZG.Prove

is described as follows:

– KZG.Prove on input (srs, p(X),α), where p(X) ∈ F≤d[X] and α ∈ Fn, outputs (v, π) with

v ∈ Fn such that vi = p(αi) and π = [q(τ)]1 where

q(X) =
p(X)− r(X)

a(X)

In the above equation, a(X) = (X − α1) · · · (X − αn), while q(X) and r(X) are the quotient

and remainder polynomials when p(X) is divided by a(X).

– KZG.Verify on input (srs, C,v,α, π), outputs 1 if the following equation is satisfied, and 0

otherwise.

e(C − [r(τ)]1, [1]2) = e(π, [a(τ)]2)

Here, the verifier interpolates the polynomial r(X) ∈ F<n[X] such that r(αi) = vi.

KZG for Vectors. For f ∈ FN , let EncodeH(f) denote the polynomial encoding of f over

H given by
∑N

i=1 fiµi(X). We use KZG to commit to vectors by committing to its polynomial

encoding. In general a vector g of size m is encoded by a polynomial g(X) ∈ F<m[X] which

interpolates g over a subgroup V consisting of mth roots of unity in some canonical order. We

will explicitly state the subgroups for all sizes of vectors that we consider.

5.2.3 Lookup Arguments

Prior works on lookup arguments [110, 98, 111, 56] consider proving sub-vector relation over

committed vectors, i.e, given commitments ct and cv to vectors t ∈ FN and v ∈ Fm, one proves
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that for all i ∈ [m], there exists j ∈ [N ] such that vi = tj . We will use v ⪯ t to denote that

v is a sub-vector of t. The definition below summarizes the sub-vector relation as defined in

prior works.

Definition 5.8 We define the committed sub-vector relation Rsubvec
srs,N,m to consist of tuples

((ct, cv), (t,v)) where ct, cv ∈ G1, t ∈ FN , v ∈ Fm such that v ⪯ t and

ct = KZG.Commit(srs,EncodeH(t)) and cv = KZG.Commit(srs,EncodeV(v)).

A committed sub-vector argument is an argument of knowledge for the relation Rsubvec
srs,N,m. Next,

we consider a slightly modified relation that we call committed index lookup (called indexed

lookup in [103]) where there is a commitment to the indices where v appears in t. Formally,

we define it as below:

Definition 5.9 We define the committed index lookup relation R
lookup
srs,N,m to consist of tuples of

the form ((ct, ca, cv), (t,a,v)) where ct, ca, cv ∈ G1, t ∈ FN , a,v ∈ Fm such that vi = t[ai] = tai
for all i ∈ [m] and ct = KZG.Commit(srs,EncodeH(t)), ca = KZG.Commit(srs,EncodeV(a)) and

cv = KZG.Commit(srs,EncodeV(v)).

A committed index lookup argument is a succinct argument of knowledge for the relation

R
lookup
srs,N,m.

5.2.4 Computational Algebra Preliminaries

Let F be a finite field of prime order p and G be a cyclic additive group of order p with generator

g. For s ∈ F, we use the notation [ s ] to denote the group element s · g. We assume that F
contains the nth root of unity ξ satisfying ξn = 1 for a large n, and the degrees of all polynomials

are less than n.

Fact 5.1 (Fast Evaluation) Let f ∈ F[X] be a polynomial of degree < d and (ξ1, . . . , ξr) ∈ Fr

be distinct points in F. Then the vector (f(ξ1), . . . , f(ξr)) can be computed in O((d+r) log(d+r))

F operations if ξ1, . . . , ξr form roots of unity, and in O((d+r) log2(d+r)) F operations otherwise.

Fact 5.2 (Fast Interpolation) Let ξ1, . . . , ξd be distinct points in F and (v1, . . . , vd) ∈ Fd.

Then (f0, . . . , fd−1) ∈ Fd can be computed in O(d log2 d) operations in F such that f(ξi) = vi

for all i ∈ [d] where f(X) =
∑d−1

i=0 fiX
i.

Fact 5.3 (Fast Multiplication) Let ξ1, . . . , ξr be distinct points in F. Then coefficients of

f(X) =
∏r

i=1(X − ξi) can be computed in O(r log2 r) operations in F.
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Fact 5.4 (Multi KZG proofs [58]) Let {[xi ]}di=1 be given for some x ∈ F. Then for set of r

distinct points ξ1, . . . , ξr, and a polynomial f(X) ∈ F[X] of degree < d,the vector

([h1(x) ], . . . , [hr(x) ]), where hi(X) = (f(X) − f(ξi))/(X − ξi) can be computed in O((r +

d) log(r + d)) group and field operations when ξ1, . . . , ξr are roots of unity, and in O(rlog2r +

d log d) group and field operations otherwise.

Fact 5.5 (Lagrange Polynomials) Let S = {ξ1, . . . , ξr} be a set of r distinct points and let

τ1(X), . . . , τr(X) be the corresponding Lagrange polynomials of degree r− 1 each. Let ZS(X) =∏r
i=1(X − ξr) denote the vanishing polynomial for S. Then we have:

r∑
i=1

τi(X) = 1

τi(X) =
ZS(X)

Z ′
S(ξi)(X − ξi)

for all i ∈ [r]

Formal Derivative. For a polynomial p(X) ∈ F[X], we define the formal derivative of p(X)

as the polynomial u(X,X) where u(X,Y ) = p(X)−p(Y )
X−Y

. It can be seen that u(X,X) is equal to

the polynomial p′(X) obtained by differentiating p(X) according to regular rules of calculus.

Thus, this definition agrees with the one given earlier in the preliminaries.

Some Useful Results. We now state and prove some facts that are used later throughout

the proof.

Lemma 5.1 For K ⊂ [N ], define HK to be {ξi : i ∈ K}. Let p(X) be the vanishing polynomial

of HK. Let p′(X) and p′′(X) denote the formal first derivative and second derivative of p(X),

respectively. Then, p′′(ξi)/p′(ξi) = 2 ·
∑

j∈K\{i} 1/(ξi − ξj) for all i ∈ K

Proof: Observe that p′(X) =
∑

i∈K
∏

j∈K\{i}(X − ξj) and

p′′(X) =
∑

i∈K
∑

j∈K\{i}
∏

k∈K\{i,j}(X − ξk). Thus for r ∈ K, we have:

p′(ξr) =
∏

j∈K\{r}

(ξr − ξj),

p′′(ξr) =
∑

j∈K\{r}

∏
k∈K\{r,j}

(ξr − ξk) +
∑

i∈K\{r}

∏
k∈K\{r,i}

(ξr − ξk)

Note that only non-zero products in the expansion of p′′(ξr) occur when i = r or j = r,

resulting in the two summands for the same in the above equation. Moreover, we notice that

both summands are the same, giving us p′′(ξr) = 2
∑

i∈K\{r}
∏

k∈\{r,i}(ξ
r − ξk). One may now

verify that p′(ξr)/p′′(ξr) gives the desired result claimed in the lemma. 2
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Lemma 5.2 (Sumcheck) Let u(X, Y ) be a bi-variate polynomial over a finite field F with

degree less than N in each of the variables and H be defined as the group of N th roots of unity

(N << |F|) with generator ξ ∈ F. Then
∑

i∈[N ] u(X, ξi) = Nu(X, 0)

Proof: For some d < N , we write u(X, Y ) = a0 + a1Y + a2Y
2 + · · ·+ adY

d where each ai is

a polynomial in X of degree less than N . Now we write the sum:∑
i∈[N ]

u(X, ξi) = Na0 + a1(ξ + ξ2 + · · ·+ ξN) + a2(ξ
2 + ξ4 + · · ·+ ξ2N) + · · ·+ ad(ξ

d + · · ·+ ξNd)

But for any α = ξk for k < N , α + α2 + · · ·αN = 0. Thus, all terms vanish except the first

term , and hence
∑

i∈[N ] u(X, ξi) = Na0. The lemma follows by observing a0 = u(X, 0). 2

We use the following standard observation for our next lemma:

Fact 5.6 If polynomials f, g of degree < N agree on N points, then they are equal as polyno-

mials, that is, f(X) = g(X)

Lemma 5.3 Let ZH(X) be the vanishing polynomial for H, let ẐK(X) and ZK(X) be the van-

ishing polynomials for H[N ]\K and HK respectively. Let µ1(X), . . . , µN(X) be Lagrange polyno-

mials for the set H = {ξ, . . . , ξN}. Then:

ẐK(X) =
∑
j∈K

Z ′
H(ξj)

Z ′
K(ξj)

µj(X), (5.1)

Ẑ ′
K(X) =

∑
j∈K

Z ′
H(ξj)

Z ′
K(ξj)

µ′
j(X) (5.2)

Proof: Note that the second equation follows from the first by linearity of derivatives, so it

suffices to prove the first equation. Both sides of the identity are polynomials of degree < N , so

it suffices to show their evaluations are identical over N distinct points. In particular, we show

their evaluations are identical over H. Consider evaluating LHS and RHS at ξi for i ∈ [N ] \K.

The left side is 0 by definition of ẐK(X), while the right-hand side is zero by the properties

of Lagrange polynomials. Now let us consider evaluations LHS and RHS at ξi for i ∈ K. The

RHS is
Z′H(ξ

i)

Z′K(ξi)
by properties of Lagrange polynomials, while the LHS is

∏
j∈[N ]\K(ξi − ξj)

Multiplying dividing by
∏

j∈K\{i}(ξ
i − ξj) gives:

LHS =

∏
j∈[N ]\{i}(ξ

i − ξj)∏
j∈K\{i}(ξ

i − ξj)
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Which is
Z′H(ξ

i)

Z′K(ξi)
, the same as the right hand side. This proves the claim. 2

Lemma 5.4 Let µ1, . . . , µN be the lagrange polynomials for the set H = {ξi : i ∈ [N ]} of the

N th roots of unity. Then we have:

µ′
i(ξ

j) =


(N−1)
2ξi

if j = i

ξi

ξj(ξj−ξi)
otherwise

Proof: Let us first consider the case where i ̸= j. We know that µi(X) = ZH(X)
Z′H(ξi)(X−ξi)

. Thus,

by applying quotient rule (note that µi is defined at ξj as j ̸= i):

µ′
i(X) · Z ′

H(ξi) =
(X − ξi)(N ·XN−1)− (XN − 1)

(X − ξi)2

Substituting X by ξj, we get:

µ′
i(ξ

j) · N
ξi

=
N(ξj − ξi)

ξj(ξj − ξi)2

Thus, we get:

µ′
i(ξ

j) =
ξi

ξj(ξj − ξi)
.

Now, for the second case where i = j, we have:

µi(X) =

∏
j∈[N ]\{i}(X − ξj)

Z ′
H(ξi)

or, µi(X) · Z ′
H(ξi) =

∏
j∈[N ]\{i}

(X − ξj)

Differentiating the above equation on both sides, we get:

µ′
i(X) · N

ξi
=

∑
j∈[N ]\{i}

∏
k∈[N ]\{i,j}

(X − ξk)

Substituting X = ξi in the above equation yields:

µ′
i(ξ

i) · N
ξi

=
∑

j∈[N ]\{i}

∏
k∈[N ]\{i,j}

(ξi − ξk)
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=
∑

j∈[N ]\{i}

∏
k∈[N ]\{i}(ξ

i − ξk)

ξi − ξj

=
∏

k∈[N ]\{i}

(ξi − ξk)
∑

j∈[N ]\{i}

1

ξi − ξj

= Z ′
H(ξi)

∑
j∈[N ]\{i}

1

ξi − ξj

= N/ξi
∑

j∈[N ]\{i}

1

ξi − ξj

We divide on both sides by N/ξi in the above, and use Lemma 5.1 to obtain:

µ′
i(ξ

i) =
∑

j∈[N ]\{i}

1

ξi − ξj
=

Z ′′
H(ξi)

2Z ′
H(ξi)

=
N − 1

2ξi

2

Lemma 5.5 Let K ⊆ N be a set of cardinality k and X = {xj : j ∈ K} be a set where xj for

j ∈ K are distinct elements of F. Let ZX(X) = zkX
k + · · ·+z0 denote the vanishing polynomial

of X and {τj(X)}j∈K denote the Lagrange polynomials such that τi(xj) = δij for i, j ∈ K. Then

for all j ∈ K, we have τ ′j(xj) = FK(xj)/Z
′
X(xj) where the polynomial FK(X) is defined as

FK(X) =

(
k

2

)
zkX

k−2 + · · ·+
(

2

2

)
z2 =

k∑
j=2

zj

(
j

2

)
Xj−2

Proof: For j ∈ K, by definition of Lagrange polynomials, we have:

τj(X) =
ZX(X)

(X − xj)Z ′
X(xj)

=
1

Z ′
X(xj)

ZX(X)

X − xj

By long division of ZX(X) by (X − xj), we have:

τj(X) =
1

Z ′
X(xj)

(
zkX

k−1 + (xjzk + zk−1)X
k−2 + · · ·+ (xk−1

j zk + · · ·+ z1)
)

=
1

Z ′
X(xj)

k−1∑
p=0

(
k∑

q=p+1

zqx
q−p−1
j

)
Xp
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Differentiating both sides, we have:

τ ′j(X) =
1

Z ′
X(xj)

k−1∑
p=0

(
k∑

q=p+1

zqx
q−p−1
j

)
pXp−1

=
1

Z ′
X(xj)

k−1∑
p=1

p

k∑
q=p+1

zqx
q−p−1
j Xp−1

Substituting X = xj, we get:

τ ′j(xj) =
1

Z ′
X(xj)

k−1∑
p=1

p
k∑

q=p+1

zqx
q−2
j

=
1

Z ′
X(xj)

k∑
q=2

zqx
q−2
j

q−1∑
p=1

p

=
1

Z ′
X(xj)

k∑
q=2

zq

(
q

2

)
xq−2
j

=
FK(xj)

Z ′
X(xj)

This completes the proof. 2

5.3 Committed Index Lookup Arguments

In this section, we explore how to obtain committed index lookup arguments, where we first

start with a discussion on extending the lookup arguments of Caulk+ [98] to support committed

index lookup arguments, and thereafter we discuss a generic blackbox method to ”lift” any

lookup argument to a committed index lookup argument.

Let m,N ∈ N be fixed parameters with m < N and let srs denote a KZG setup of degree

d ≥ N over bilinear group (F, G1, G2, GT , e, [1]1, [1]2, [1]t). Recall that the committed index

lookup relation in Definition 5.9 involves the prover showing knowledge of vectors T ∈ FN ,

a ∈ Fm and v ∈ Fm corresponding to public commitments cT , ca and cv such that they satisfy

vi = T [ ai ] = Tai .

5.3.1 Committed Index Lookup from Caulk+

In this section, we present an explicit (non-black-box) adaptation of Caulk+ [98] to obtain

a committed index lookup, which again incurs costs comparable to a single instance of the

underlying sub-vector protocol. We present a polynomial protocol for the same, which is an
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adaptation of the lookup protocol from Caulk+ [98]. However, here we do not aim for zero-

knowledge. Let T (X) = EncodeH(t), a(X) = EncodeV(a) and v(X) = EncodeV(v) denote the

polynomials encoding the vectors t,a and v respectively. The verifier knows commitments

to these polynomials at the start of the protocol. Now vi = t[ai] for i ∈ [m] is equivalent

to v(νi) = T (ξa(ν
i)) for i ∈ [m]. To obtain a polynomial protocol, the prover interpolates a

polynomial h(X) =
∑m

i=1 ξ
aiτi(X), which satisfies h(νi) = ξa(ν

i). To show that polynomial h

correctly “exponentiates” evaluations of a(X), we consider the inverting polynomial ℓ(X) =∑N
i=1 iµi(X) which behaves like “log” over H by evaluating to i on ξi. Now, we see that all

constraints are encoded as polynomial identities below:

ℓ(h(X)) = a(X) mod ZV

T (h(X)) = v(X) mod ZV

ZH(h(X)) = 0 mod ZV

(5.3)

The last polynomial identity ensures that evaluations of h on V lie in H (the set of roots of ZH).

Since the polynomial ℓ is one-one over H, the first equation implies h(νi) = ξai for all i ∈ [m].

The desired relation vi = Tai now follows from the second identity. The above formulation

involves composition with polynomials ℓ, T and ZH of degree O(N), which is inefficient. We

use the trick from [98], where we work with low-degree restrictions of O(N)-degree polynomials

such as T, ℓ over the set HI = {h(νi) : i ∈ [m]} = {ξai : i ∈ I} ⊆ H, where I = {ai : i ∈ [m]}.
The prover commits to the polynomials ZI(X) =

∏
i∈I(X − ξi), h(X) and low degree (< m)

restrictions TI , ℓI of T and ℓ on the HI respectively. The polynomial protocol then checks the

following:

T (X)− TI(X) = 0 mod ZI , TI(h(X))= v(X) mod ZV

ℓ(X)− ℓI(X) = 0 mod ZI , ℓI(h(X)) = a(X) mod ZV

ZH(X) = 0 mod ZI , ZI(h(X)) = 0 mod ZV

(5.4)

It must be noted that the above identities imply the earlier polynomial identities in (5.3).

This is so because evaluations of h on V are roots of ZI , which implies TI(h(νi)) = T (h(νi)),

ℓI(h(νi)) = ℓ(h(νi)) and ZH(h(νi)) = 0 over V. While the identities on the left still involve a

degree N polynomial, we can use the srs to check the polynomial identity at the point τ encoded

in the srs. For example, we can evaluate the encoded quotient [Q(X)]2 =
[
(T (X)−TI(X)

ZI(X)

]
2

using

the relation: [
T (X)− TI(X)

ZI(X)

]
2

=
∑
i∈I

1

Z ′
I(ξ

i)

[
T (X)− ti
X − ξi

]
2
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By pre-computing the KZG proofs W i
1 =

[
T (X)−ti
X−ξi

]
2

for all i ∈ [N ], the encoded quotient can

be evaluated using O(m) G2-operations and O(m log2m) F-operations. The identity is then

checked using a real pairing check

e([T (X)]1 − [TI(X)]1 , [1]2) = e([ZI(X)]1 , [Q(X)]2).

Similarly, we also pre-compute the encoded quotients W i
2 =

[
ℓ(X)−i
X−ξi

]
2

and W i
3 =

[
ZH(X)
X−ξi

]
2

for all i ∈ [N ]. The quotients can be computed in time O(N logN) using the techniques in

[58]. Using KZG commitment scheme the polynomial relations over ZV can be checked in a

standard manner by having the prover send evaluation proofs for the committed polynomials

at a random point chosen by the verifier. The total prover effort incurred is O(m2) group and

field operations. Thus, we have:

Lemma 5.6 Assuming KZG is extractable polynomial commitment scheme, there exists a suc-

cinct argument of knowledge for the relation R
lookup
srs,N,m with prover complexity of O(m2), given

access to pre-computed parameters of size O(N).

5.3.2 Blackbox Committed Index Lookup Arguments from Lookup

Arguments

In this section, we “lift” any committed sub-vector argument to a committed index lookup

argument, where the latter makes a black-box use of the former. We use the trick of random

linear combination of vectors to infer indexed lookup relation among them from sub-vector

relation over the aggregated vectors.

Lemma 5.7 Let t ∈ Fn and let a,v ∈ Fm for some positive integers m,n. Let In denote

the vector (1, . . . , n). Then for γ ←R F, (v + γa) ⪯ (t + γIn) implies v = t[a ] except with

probability mn/|F|.

Proof: We define vectors of linear polynomials p = (p1, . . . , pm) and q = (q1, . . . , qn) where

pi(X) = vi + aiX, i ∈ [m] and qi(X) = ti + iX, i ∈ [n]. Now, we see that v = t[a ] if and only

if p ⪯ q. For γ ∈ F , let pγ and qγ denote the vectors (p1(γ), . . . , pm(γ)) and (q1(γ), . . . , qn(γ))

respectively. It is obvious that p ⪯ q implies pγ ⪯ qγ for all γ ∈ F. Using Schwartz-Zippel

Lemma, it can also be seen that Pr
γ←RF [p ⪯̸ q |pγ ⪯ qγ] ≤ mn/|F|. The bound follows from

the observation that the event occurs only when γ is a common root of at least one pair of

linear polynomials {(pi(X), qj(X)) : i ∈ [m], j ∈ [n]}. 2

In Figure 5.2, we invoke Lemma 5.7 to construct a committed index lookup argument using a
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Common Input: srs, ct, ca, cv, cI = [I(X)]1 where I(X) = EncodeH(I) encodes the vector
I = (1, . . . , N) ∈ FN .
Prover’s Input: Vectors t ∈ FN , a,v ∈ Fm.

1. V samples γ ←R F and sends γ to P.

2. P and V compute: c̃t = γcI + ct, c̃v = γca + cv.

3. P computes: t̃ = γI + t, ṽ = γa + v.

4. P and V run sub-vector argument (Psv,Vsv) with (srs, c̃t, c̃v) as the common input and
(t̃, ṽ) as Psv’s input.

5. V outputs b←R ⟨Psv(t̃, ṽ),Vsv⟩(srs, c̃t, c̃v).

Figure 5.2: Committed Index Lookup Argument

committed sub-vector argument (Psv,Vsv). We formally state the following lemma, whose proof

essentially follows from Lemma 5.7.

Lemma 5.8 Assuming that (Psv,Vsv) is an argument of knowledge for the relation Rsubvec
srs,N,m in

the AGM, the interactive protocol in Figure 5.2 is an argument of knowledge for the relation

R
lookup
srs,N,m in the AGM.

5.4 Updatable Lookup Arguments: Fast Lookups from

Approximate Preprocessing

In this section, we provide details of the algorithm to construct lookup argument for a table

T , using pre-computed parameters of a table which is a small hamming distance away. The

dependence on pre-computed parameters in several recent lookup arguments such as [110, 98,

111, 56] stems from the need to compute an encoded quotient of the form:

[Q]g =
∑
i∈I

ci

[
T (X)− T (ξi)

X − ξi

]
g

(5.5)

for some O(m) sized set I. The quotient in Equation (5.5) can be computed in O(m) cost

when the quotients [(T (X)− T (ξi))/(X − ξi)]g are available for all i ∈ [N ]. In this section we

exhibit an algorithm which computes the above with O((m+ δ) log2(m+ δ)) cost, given access

to similar quotients for a table at hamming distance δ from T . We now describe our approach.
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5.4.1 Base + Cache approach

The key idea we employ is to express the current table T ∈ FN as T b + T ch, where T b is

the table for which we assume that the encoded quotients are available (via the O(N logN)

computation), and T ch captures the changes to the table since. We will periodically update

(say after s batch updates) T b to current table state, and re-compute all the quotients (we

call it the offline phase). We will revisit the question on choosing s optimally later. Let

I ⊆ [N ] denote the set of indices in the current batch of m lookups. The online phase of our

proof generation involves computing the sum in Equation (5.5) for the table T . The following

Theorem determines the efficiency of the online phase of our prover.

Theorem 5.3 Let N, ξ be as defined previously. Given KZG proofs {Wi}Ni=1 with

Wi =
[
Tb(X)− Tb(ξ

i)/(X − ξi)
]
g
,

where Tb(X) = EncodeH(T b) encodes a vector T b ∈ FN , for any I ⊆ [N ], there exists an

algorithm to compute [Q]g as given in Equation (5.5) for polynomial T (X) = EncodeH(T )

encoding the vector T ∈ FN using O((δ + |I|) log2(δ + |I|)) F-operations and O(δ + |I|) G-

operations. Here, δ denotes the hamming distance between vectors T b and T .

Proof: Let T = T b + T ch and thus T (X) = Tb(X) + Tch(X). Define K = I ∪ {j ∈ [N ] :

T ch[ j ] ̸= 0} as a set which captures the indices where the current table T differs from the base

T b, where we explicitly also include the lookup indices I in K. For j ∈ K, let T ch[j] = ∆tj.

Then Tch(X) =
∑

j∈K ∆tjµj(X). We write the quotient Q(X) as:

Q(X) =
∑
i∈I

ci

(
Tb(X)− Tb(ξ

i)

X − ξi

)
+
∑
i∈I

ci

(
Tch(X)− Tch(ξ

i)

X − ξi

)

From above, we have [Q(x)]g = [Qb(x)]g + [Qch(x)]g where

Qb(X) =
∑
i∈I

ci(Tb(X)− Tb(ξ
i))/(X − ξi)

Qch(X) =
∑
i∈I

ci(Tch(X)− Tch(ξ
i))/(X − ξi)

We can compute [Qb(X)]g from the pre-computed KZG openings of Tb(X) at points ξi, i ∈
I using O(|I|) group operations and O(|I| log2 |I|) field operations. Therefore, it suffices to

compute [Qch(X)]g efficiently. Using Tch(X) =
∑

j∈K ∆tjµj(X) we write Qch(X) as linear
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combination of table-independent polynomials:

Qch(X) =
∑
i∈I

ci
∑
j∈K

∆tj
µj(X)− µj(ξ

i)

X − ξi

=
∑
i∈I

ci∆ti
µi(X)− 1

X − ξi
+
∑
i∈I

∑
j∈K\{i}

ci∆tj
µj(X)

X − ξi

Now, we can write [Qch(X)]g = [Q
(1)
ch (X)]g + [Q

(2)
ch (X)]g where:

Q
(1)
ch (X) =

∑
i∈I

ci∆ti
µi(X)− 1

X − ξi
, Q

(2)
ch (X) =

∑
i∈I

∑
j∈K\{i}

ci∆tj
µj(X)

X − ξi

The term
[
Q

(1)
ch (X)

]
g

can be computed using O(|I|) group operations by augmenting the setup

with pre-computed KZG opening proofs of polynomials µi(X) at ξi for i ∈ [N ]. This adds O(N)

to the setup parameters, while the computation can be done in O(N logN) time with methods

similar to existing pre-computed parameters. This eventually leaves us with [Q
(2)
ch (X)]g. Next,

we synthesize the polynomial Q
(2)
ch (X) in a form that reduces group operations required to

compute its encoding.

Q
(2)
ch (X) =

∑
i∈I

ci
∑

j∈K\{i}

∆tjµj(X)/(X − ξi)

=
∑
i∈I

ci
∑

j∈K\{i}

∆tj
Z ′

H(ξj)

ZH(X)

(X − ξi)(X − ξj)

= N−1
∑
i∈I

ci
∑

j∈K\{i}

ξj∆tj
ξi − ξj

(
ZH(X)

X − ξi
− ZH(X)

X − ξj

)

= N−1
∑
i∈I

ci ·
∑

j∈K\{i}

ξj∆tj
ξi − ξj

 ZH(X)

X − ξi

+ N−1
∑
j∈K

ξj∆tj ·
∑

i∈I\{j}

ci
ξj − ξi

 ZH(X)

X − ξj
(5.6)

In the first step, we substituted µj(X), while in the final step we re-arranged the summation to

accumulate the scalar factor for each distinct polynomial of the form ZH(X)/(X − ξi). Define
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scalars ai, i ∈ I and bj, j ∈ K as below:

ai =
∑

j∈K\{i}

ξj∆tj
ξi − ξj

, i ∈ I bj =
∑

i∈I\{j}

ci
ξj − ξi

, j ∈ K (5.7)

Now, define W j
3 := [ZH(X)/(X − ξj)]g. We see that W j

3 is just the KZG opening proof of the

polynomial ZH(X) evaluated at ξj for j ∈ [N ]. These can be precomputed one time and it adds

O(N) to the setup parameters and the computation can be done in O(N logN) time.

Now, we see that [Q
(2)
ch (X)]g can be written as linear combination of O(|K|+|I|) group elements.

[
Q

(2)
ch (X)

]
g

= N−1

(∑
i∈I

(ciai) ·W i
3 +

∑
j∈K

(ξj∆tjbj) ·W j
3

)
(5.8)

Now, ci are known constants depending on the specific lookup scheme. So, given {ai}i∈I , {bj}j∈K ,[
Q

(2)
ch (X)

]
g

can be computed in O(|I|+|K|) group operations. While we have diligently reduced

the group operations, we still seem to need O(|I||K|) = O(mδ) field operations. We clearly

need better than naive way of computing the scalars in (5.7) to obtain additive overhead in δ.

This is what we consider next. Let dj := ξj∆tj. Then we have from Eq (5.7):

ai =
∑

j∈K\{i}

dj
ξi − ξj

, i ∈ I bj =
∑

i∈I\{j}

ci
ξj − ξi

, j ∈ K (5.9)

So, to compute ai and bj, it suffices to compute reciprocal sums efficiently. Our next lemma

claims that such reciprocal sums can be computed efficiently. Using our next lemma (Lemma 5.9),

we conclude that the scalars ai, i ∈ I and bj, j ∈ K can be computed in time O(|K| log2 |K|),
which proves the bound in Theorem 5.3. 2

Lemma 5.9 Let I ⊂ K ⊂ [N ] and let ai for all i ∈ I and bj for all j ∈ K be as described above.

Then, ai for all i ∈ I and bj for all j ∈ K can be computed in O(|K| log2 |K|)F operations.

Proof sketch. We sketch the proof here for ai. First, we mention that the special case of the

lemma when dj = 1 for all j ∈ K admits an efficient computation due to the following identity

proved in Lemma 5.1.
Z ′′

K(ξi)

Z ′
K(ξi)

= 2
∑

j∈K\{i}

1

ξi − ξj

for ZK(X) =
∏

i∈K(X − ξi). The polynomial ZK can be computed in O(|K| log2 |K|) and

subsequent evaluations of its first two derivatives can also be evaluated on the set {ξi : i ∈ I}
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with the same complexity. However, to deal with arbitrary values of dj we need more ingenuity.

We will imagine dj to be p(ξj) for some polynomial p(X). Moreover, we demand that p(ξj) = 0

for j ̸∈ K. We will not compute such a polynomial p, as it has degree O(N), but view it as

an “oracle” which we can hopefully query at the points we need. Then it can be seen that

ai = gi(ξ
i)− ri(ξ

i) for rational functions gi(X) and ri(X) defined by:

gi(X) =
∑

j∈[N ]\i

p(X)

X − ξj
, ri(X) =

∑
j∈[N ]\i

p(X)− p(ξj)

X − ξj
(5.10)

Now, gi(ξ
i) for i ∈ I turns out to be (using the special case above):

p(ξi)
∑

j∈K\{i}

1/(ξi − ξj) = di(Z
′′
K(ξi)/Z ′

K(ξi))/2

Defining u(X,Y ) = (p(X)− p(Y ))/(X − Y ), we can write ri(ξ
i) as:

ri(X) =
∑
j∈[N ]

u(X, ξj)− u(X, ξi) (5.11)

Observe that u(X,X) = p′(X) and so u(X,X) gives the formal derivative of polynomial p(X).

We get ri(ξ
i) = r(ξi) − p′(ξi) for all i ∈ I, where r(X) =

∑
j∈[N ] u(X, ξj). Fortunately, r(X)

is simply Nu(X, 0) = N(p(X)− p(0))/X, a fact that follows from uni-variate sum-check. The

problem thus reduces to being able to compute derivatives p′(ξi) for i ∈ I and the value p(0).

Before concluding the proof-sketch, we briefly highlight the structure of the polynomial p(X).

Since p(X) vanishes for p(ξi) for i ̸∈ K, it can we written as the product ẐK(X)q(X) where

ẐK is the vanishing polynomial of “complementary” roots of unity {ξi : i ̸∈ K} and q is a

low-degree (< K) polynomial. Assuming we can interpolate q(X), we can write:

p′(ξi) = ẐK(ξi)q′(ξi) + Ẑ ′
K(ξi)q(ξi)

In the above expression, we require evaluations of high-degree polynomials ẐK(X) and Ẑ ′
K(X)

at ξi, i ∈ I. This is discussed in Lemma 5.3 and other related lemmas in Section 5.2.4, and

motivates the at times tedious algebra there. We will now discuss the detailed proof.

Proof: Now, we present the detailed proof for the computation of ai for all i ∈ I. Thereafter,

we briefly discuss the modifications needed to compute bj for all j ∈ K.
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Computing ai: Recall that for each i ∈ I, we have:

ai =
∑

j∈K\{i}

dj
ξi − ξj

(5.12)

Also recall that I ⊂ K in this case. To compute ai, we first define a polynomial p(X) of degree

at most N − 1 such that p(ξj) = dj for j ∈ K and p(ξj) = 0 for j ∈ [N ] \ K. Then, the

vanishing polynomial of H[N ]\K divides p(X) and there exists a polynomial q(X) of degree at

most |K| − 1 such that:

p(X) = ẐK(X) · q(X) (5.13)

where ẐK(X) =
∏

i∈[N ]\K(X − ξi) is the vanishing polynomial of H[N ]\K . Now, we introduce

the rational functions:

fi(X) =
∑

j∈[N ]\{i}

p(ξj)

X − ξj
, i ∈ I (5.14)

gi(X) =
∑

j∈[N ]\{i}

p(X)

X − ξj
, i ∈ I (5.15)

ri(X) =
∑

j∈[N ]\{i}

p(X)− p(ξj)

X − ξj
, i ∈ I (5.16)

Note that, by the definition of p(X), fi(ξ
i) = ai ∀i. Thus, it suffices to compute fi(ξ

i) for all

i ∈ I. Since fi(X) = gi(X)− ri(X) for i ∈ I, we have that ai = gi(ξ
i)− ri(ξ

i). Thus, we need

to compute gi(ξ
i) and ri(ξ

i) for all i ∈ I ⊂ K.

gi(ξ
i) = p(ξi)

∑
j∈[N ]\{i}

1

ξi − ξj

=
p(ξi)Z ′′

H(ξi)

2Z ′
H(ξi)

(from Lemma 5.1)

=
(N − 1)di

2ξi

In the above, we used ZH(X) = XN − 1 and that p(ξi) = di. In other words, gi(ξ
i) for all i can

be obtained in O(|I|) operations. Therefore, it suffices to compute ri(ξ
i) for all i ∈ I efficiently.

To this end, we write ri(X) as:

ri(X) =
∑
j∈[N ]

p(X)− p(ξj)

X − ξj
− p(X)− p(ξi)

X − ξi
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By defining the bivariate polynomial u(X, Y ) = (p(X)− p(Y ))/(X − Y ), we get

ri(X) =
∑
j∈[N ]

u(X, ξj)− u(X, ξi)

Defining r(X) =
∑

j∈[N ] u(X, ξj), we have:

ri(X) = r(X)− u(X, ξi)

Substituting X = ξi in the above, we have:

ri(ξ
i) = r(ξi)− u(ξi, ξi) = r(ξi)− p′(ξi)

where p′(ξi) = u(ξi, ξi) by the definition of formal derivative. Now, using r(X) = Nu(X, 0)

(Lemma 5.2), we have:

r(X) = N
(p(X)− p(0))

X

Finally, substituting X = ξi above, we have:

r(ξi) = N
(di − p(0))

ξi

Thus, it remains to compute p(0) and p′(ξi) efficiently for each i ∈ I.

Computing the polynomial q(X): Recall from Equation (5.13) that

q(ξj) =
p(ξj)

ẐK(ξj)

for all j ∈ K. Furthermore, by Lemma 5.3, we have:

ẐK(ξj) =
Z ′

H(ξj)

Z ′
K(ξj)

=
N/ξj

Z ′
K(ξj)

for each j ∈ K. Observe that, given the set K, we can compute the polynomial ZK(X)

in O(|K| log2 |K|) operations using the fast multiplication, and we can then obtain Z ′
K(X)

in additional O(|K|) operations. Finally, Z ′
K(ξj) can be evaluated for j ∈ K in additional

O(|K| log2 |K|) operations. Thus we can efficiently compute q(ξj) for all j ∈ K O(|K| log2 |K|)
operations. Since degree of q(X) is strictly less than |K|, we can further interpolate to obtain

the polynomial q(X) in O(|K| log2 |K|) field operations.
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Computing p(0): From Equation (5.13), we have

p(0) = ẐK(0) · q(0)

Additionally, since we have

ẐK(0) =
ZH(0)

ZK(0)
=
−1

ZK(0)

this enables us to compute p(0) since q(0) and ZK(0) are just the constant terms of the known

polynomials q(X) and ZK(X).

Computing p′(ξi): We now show how to compute p′(ξi) for each i ∈ I. Using the product

rule for derivatives, we have:

p′(X) = q(X)Ẑ ′
K(X) + q′(X)ẐK(X)

We have shown how to compute q(ξi) and ẐK(ξi) in O(|K| log2 |K|) field operations. By

differentiating the polynomial q(X) from earlier, we obtain q′(X). Then, by fast evaluation, we

get evaluations of q′(X) at ξi for all i ∈ I, again in O(|K| log2 |K|) field operations. So it only

remains to evaluate Ẑ ′
K(ξi) for each i ∈ I, which we show next. From the second equation of

Lemma 5.3, we have:

Ẑ ′
K(ξi) =

∑
j∈K\{i}

Z ′
H(ξj)

Z ′
K(ξj)

µ′
j(ξ

i) +
Z ′

H(ξi)

Z ′
K(ξi)

µ′
i(ξ

i)

Using Lemma 5.4, this becomes:

Ẑ ′
K(ξi) = Nξ−i

∑
j∈K\{i}

1

Z ′
K(ξj)(ξi − ξj)

+
N(N − 1)

2ξ2iZ ′
K(ξi)

In other words, it suffices to efficiently compute φi for all i ∈ I, where

φi =
∑

j∈K\{i}

1

Z ′
K(ξj)(ξi − ξj)

To this end, we define the following polynomial:

Φi(X) =
∑

j∈K\{i}

1

Z ′
K(ξj)(X − ξj)
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Let {ηi(X)}i∈K be the set of Lagrange polynomials for the set HK = {ξi : i ∈ K}. Then, since
ηj(X)

ZK(X)
= 1

Z′K(ξj)(X−ξj)
, Φi(X) can be rewritten as:

Φi(X) =
∑

j∈K\{i}

ηj(X)

ZK(X)

=
∑

j∈K\{i}

ηj(X)/(X − ξi)

ZK(X)/(X − ξi)

Substituting X = ξi in the above, we have:

φi = Φi(ξ
i) =

 ∑
j∈K\{i}

ηj(X)/(X − ξi)∏
k∈K\{i}(X − ξk)

 (ξi)

=
∑

j∈K\{i}

(
ηj(X)/(X − ξi)∏
k∈K\{i}(X − ξk)

)
(ξi)

=
∑

j∈K\{i}

(ηj(X)/(X − ξi)) (ξi)(∏
k∈K\{i}(X − ξk)

)
(ξi)

=
1

Z ′
K(ξi)

∑
j∈K\{i}

(
ηj(X)/(X − ξi)

)
(ξi)

Now, note that for all j ̸= i, (ηj(X)/(X − ξi)) (ξi) is just the evaluation of the polynomial
ηj(X)−ηj(ξ

i)

X−ξi
at the point ξi. This is just η′j(ξ

i) by definition of formal derivative of the polynomial

ηj(X). Thus, we get:

φi = Φi(ξ
i) =

1

Z ′
K(ξi)

∑
j∈K\{i}

η′j(ξ
i)

Using that fact that
∑

j∈K ηj(X) = 1 (and hence,
∑

j∈K η′j(X) = 0), we have∑
j∈K\{i}

η′j(ξ
i) =

∑
j∈K

η′j(ξ
i)− η′i(ξ

i) = −η′i(ξi)

Thus, we get:

φi =
−η′i(ξi)
Z ′

K(ξi)

At this point, it suffices to efficiently compute η′i(ξ
i) for i ∈ I. For this, we can use Lemma 5.5,
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with X = HK = {ξj : j ∈ K} and ZX(X) = ZK(X) as the vanishing polynomial of X, to obtain:

η′i(ξ
i) =

FK(ξi)

Z ′
K(ξi)

where FK(X) =
∑k

j=2 zj
(
j
2

)
Xj−2 as defined in Lemma 5.5. Hence, it suffices to compute FK(ξi)

for all i ∈ I, where z0, . . . , zk are the coefficients of the polynomial ZK(X) computed earlier.

This concludes the proof of computation of ai for i ∈ I.

Modifications for Computing bj for j ∈ K: For computing bj, we proceed as in the

case of ai, with the roles of sets I and K swapped (all of the corresponding lemmas can be

modified accordingly). The only additional technical subtlety arises when we need to compute

φj = Φj(ξ
j) for all j ∈ K, where the polynomial Φj(X) is defined as:

Φj(X) =
∑

i∈I\{j}

ηi(X)

ZI(X)

Now, we consider two cases: j ∈ I and j ∈ K \ I. We handle the second case first. For each

j ∈ K \ I, we can very easily compute φj = Φj(ξ
j) as

Φj(ξ
j) =

∑
i∈I\{j}

ηi(ξ
j)

ZI(ξj)

=
1

ZI(ξj)

∑
i∈I

ηi(ξ
j)

=
1

ZI(ξj)

This is efficiently computed by evaluating ZI(ξ
j) for each j ∈ K in O(|K| log2 |K|) operations.

Next, we consider the case where j ∈ I. For this, we can again proceed as in the analysis for

computing ai (with the roles of sets I and K swapped) till we need to compute

φj = Φj(ξ
j) =

−η′j(ξj)
Z ′

I(ξ
j)

for all j ∈ I. First of all, note that during the prior computation to reach this stage, we would

have already computed Z ′
I(ξ

j) for all j ∈ K, and thus, for all j ∈ I ⊂ K. Next, observe that we

also computed η′i(ξ
i) for i ∈ I during the computation of ai. This completes the computation

of bj for all j ∈ K, and finishes the proof of lemma 5.9. 2
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5.4.2 Amortized Sublinear Batching

We now return to the question of how frequently should we run the offline phase to compute

full parameters. For concrete analysis, let s be the period after which the rebasing takes place;

i.e., after s batches of m operations each, we set the base table T b to the current table, setting

T ch = 0. At this point we also compute all encoded quotients for T b using the O(N logN)

algorithm of [58]. Consider δ ≤ ms as the upper-bound on δ, and distributing the cost of

re-basing, the amortized overhead for the batch of m operations is: O(ms log2(ms) + N logN
s

)

F-operations and O(ms + N logN
s

) G-operations. Ignoring the logarithmic factors, the cost is

minimized by setting s ≈
√

N/m, resulting in amortized prover overhead of Õ(
√
mN). We

note that the above analysis considers the worst case scenario, where each update affects a

distinct position in the table. In settings, where frequency of updates is non-uniform across

positions in the table (e.g, in the blockchain example, if bulk of transactions come from small

number of clients), we may be able to defer the offline phase even longer. Same is also true for

settings where updates to the table are infrequent.

5.5 Batching-efficient RAM using Updatable Lookup Ar-

guments

5.5.1 Memory Consistency for RAM

In this section, we briefly review and formalize existing memory-checking techniques to ensure

correctness of RAM operations. The formal definitions for various relations involved in memory

checking will be used to describe polynomial protocol for RAM in Section 5.6.

5.5.2 Correctness of RAM Update

The versatility of the RAM primitive stems from its updatability. While a load operation leaves

the RAM unchanged, the store operation updates the value in the RAM associated with the

referenced index. We model the update via the function UpdI which takes RAM T ∈ RAMI,n,

operation o = (op, a, v) ∈ O
I

as inputs and returns an updated RAM T ′ ∈ RAMI,n. The

updated RAM T ′ = UpdI(T , o) satisfies T ′ = T if op = 0 while for op = 1 it satisfies T ′[ a ] = v

and T ′[ x ] = T [x ] for x ̸= a. The central problem in verifiable RAM protocols is to establish

that a sequence of operations o = (o1, . . . , om) are correct with respect to the initial RAM state

T and the final RAM state T ′. This involves ensuring that all load operations read the value

which is consistent with updates to the RAM as a result of preceding store operations, and that

T ′ is the final state. We say that an operation o = (op, a, v) is load-consistent with respect to
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RAM T if v = T [a] whenever o is a load operation (store operations are vacuously defined to

be load-consistent). We formally define the notion of consistency below:

Definition 5.10 (Consistent Operations) Let n ∈ N and T ,T ′ ∈ RAMI,n for some index

set I. We say that a sequence of operations o = (o1, . . . , ok) ∈ Ok
I
over I is consistent with

RAM states T ,T ′ if for all i ∈ [k], T i = UpdI(T i−1, oi) and operation oi is load-consistent with

respect to T i−1. Here we assume T 0 = T and T k = T ′.

For m,n ∈ N, let LRAMI,m,n denote the language consisting of tuples (T ,o,T ′) with T ,T ′ ∈
RAMI,n and o ∈ (O

I
)m such that o is consistent with T ,T ′. Next, we formalize the folklore

technique of checking correctness of RAM operations using address-ordered transcripts.

5.5.3 Consistency Check via Transcripts

A transcript is time-stamped sequence of operations executed on a RAM. More formally, given

a RAM T = (a,v) ∈ RAMI,n, operation sequence o = (o1, . . . , om) with oi = (ōpi, āi, v̄i) ∈ O
I

and RAM T ′ = (a′,v′) ∈ RAMI,n, the time ordered transcript for the tuple (T ,o,T ′) is given

by the table tr with k = 2n + m rows and four columns tr = (t,op,A,V ) defined as follows:

(i) t = Ik = (1, . . . , k), (ii) op = 0n||(ōp1, . . . , ōpm)||0n, (iii) A = a||(ā1, . . . , ām)||a′ and (iv)

V = v||(v̄1, . . . , v̄m)||v′. The ith row of the table tr is (ti, opi, Ai, Vi) for i ∈ [k]. The first n

records in tr correspond to the contents of T , the next m records correspond to the operations

in o and final n records correspond to contents of T ′. The timestamp column t is added to

order operations with the same index. Notationally, we write tr = TimeTr(T ,o,T ′).

We call a transcript tr = (t,op,A,V ) to be address ordered if Ai ≤ Ai+1 for i ∈ [k − 1]

and ti < ti+1 whenever Ai = Ai+1. For a transcript tr = (t,op,A,V ) with k records and

a permutation σ : [k] → [k], we use σ(tr) to denote the transcript (σ(t), σ(op), σ(A), σ(V ))

obtained by permuting the records of tr according to the permutation σ. An address ordered

transcript for tuple (T ,o,T ′) is defined as tr∗ = σ(tr) where tr = TimeTr(T ,o,T ′) and σ is

a permutation such that tr∗ is address ordered. We denote it by tr∗ = AddrTr(T ,o,T ′). We

say that an address ordered transcript tr = (t,op,A,V ) satisfies load-store correctness if for

all pairs of consecutive records (ti, opi, Ai, Vi) and (ti+1, opi+1, Ai+1, Vi+1) we have Vi+1 = Vi

whenever opi+1 = 0 (load operation) and Ai = Ai+1, i.e, a load operation does not change the

value at an index. We formally state the folklore technique for enforcing memory consistency

in our setting.

Lemma 5.10 Let F be a finite field, m,n ∈ N be positive integers and I ⊆ F. Then (T ,o,T ′) ∈
LRAMI,n,m if and only if the address ordered transcript tr∗ = AddrTr(T ,o,T ′) satisfies load-store

correctness.
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The consistency check in Lemma 5.10 can be encoded as an arithmetic circuit of size Õ(m+

n), thus yielding an argument of knowledge for the language LRAMI,n,m with prover complexity

quasi-linear in m+n. For completeness, we present a self-contained argument of knowledge for

LRAMI,m,m (m = n) based on the “polynomial protocol” framework defined in [64].

5.5.4 Improved Batching-Efficient RAM

We now detail the steps required to realize batching efficient RAM outlined in the technical

overview. We first recall the techniques presented in Section 5.3.2 to obtain a committed index

lookup argument. Here, we leverage the random linear combination technique to simultaneously

check two equations at correlated points of evaluation. We restate the Lemma 5.7 here for

reference.

Lemma 5.11 (Restated) Let t ∈ Fn and let a,v ∈ Fm for some positive integers m,n. Let

In denote the vector (1, . . . , n). Then for γ ←R F, (v + γa) ⪯ (t + γIn) implies v = t[a ]

except with probability mn/|F|.

Thereafter, we invoke Lemma 5.7 to construct a committed index lookup argument (Fig-

ure 5.2) using a committed sub-vector argument (Psv,Vsv). We now restate the Lemma 5.8

here.

Lemma 5.12 (Restated) Assuming that (Psv,Vsv) is an argument of knowledge for the rela-

tion Rsubvec
srs,N,m in the AGM, the interactive protocol in Figure 5.2 is an argument of knowledge

for the relation R
lookup
srs,N,m in the AGM.

5.5.5 Almost Identical RAM States

For a vector a ∈ [N ]m, let uniq(a) = {ai : i ∈ [m]} denote the subset of unique values in a.

We call two RAM states T ,T ′ ∈ FN to be a-identical if T [i] = T ′[i] for all i ̸∈ uniq(a). As

before, let T (X), T ∗(X) and a(X) be polynomials encoding the vectors T ,T ′ (over H) and a

(over V). Let cT , c
′
T and ca be the commitments to vectors T ,T ′ and a respectively in the

group G1. The polynomial protocol to prove that T ,T ′ ∈ FN and a ∈ Fm are a-identical

requires proving the relation ZI(X)(T (X)−T ∗(X)) = 0 over the set ZH where I = uniq(a) and

ZI(X) =
∏

i∈I(X−ξi) is the vanishing polynomial for the set HI = {ξi : i ∈ I}. To proceed, the

honest prover commits to polynomial ZI(X) and proves (i) ZI(X)·(T (X)−T ∗(X)) = 0 mod ZH

and (ii) the zeroes of ZI(X) form a subset of zeroes of HI(X) as defined. Together, the two

conditions imply that T (ξi) = T ∗(ξi) for i ̸∈ uniq(a). To prove the first relation, the prover
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computes the polynomial D(X) as below:

D(X) =
(T (X)− T ∗(X)) · ZI(X)

ZH(X)

=
∑
i∈I

(T (ξi)− T ∗(ξi))µi(X)

ZH(X)
ZI(X)

Substituting ∆i = T (ξi)− T ∗(ξi), µi(X) = ZH(X)/(Z ′
H(ξi)(X − ξi)), we get

D(X) =
∑
i∈I

∆i

Z ′
H(ξi)

(
ZI(X)

X − ξi

)
=
∑
i∈I

∆iZ
′
I(ξ

i)

Z ′
H(ξi)

κi(X) (5.17)

In the above, the summation only runs over indices in I, as ∆i = 0 for i ̸∈ I. In the final

equality, we use κi(X) = ZI(X)/(Z ′
I(ξ

i)(X − ξi)) for i ∈ I which we recognize as the Lagrange

basis polynomials for the set {ξi : i ∈ I}. Thus, Equation (5.17) implies that D(X) is at most

degree |I| − 1 polynomial, with D(ξi) = ∆iZ
′
I(ξ

i)/Z ′
H(ξi) for i ∈ I. The prover can therefore

interpolate D(X) (in power basis) in O(|I| log2 |I|) F-operations and compute [D(X)]1 in O(|I|)
G1-operations. The prover sends the commitment [D(X)]1 to the verifier. Finally, the verifier

can check the identity ZI(X) · (T (X)− T ∗(X)) = D(X) · ZH(X) by a pairing check. For this,

since the tables are committed in G1, prover will need to send [ZI(X)]2.

Next, the prover needs to show that zeroes of ZI are indeed in the set HI = {ξi : i ∈ I} =

{ξai : i ∈ [m]}. Clearly, it suffices to show that ZI(X) divides the polynomial
∏

i∈[m](X −
ξai). To obtain a polynomial protocol, the prover commits to an auxiliary polynomial h(X) =∑m

i=1 ξ
aiτi(X) which interpolates the vector h = (ξa1 , . . . , ξam). The correctness of h polynomial

can be established by showing that the interpolated vector h satisfies committed index lookup

relation h = T exp[a ] where T exp = (ξ1, . . . , ξN). Moreover, we notice that the polynomial

interpolating the table T exp is particularly simple, i.e, Texp(X) = X, and thus the setup need

not be augmented with table-specific parameters for T exp. Finally, it remains to show that

ZI(X) divides K(X) =
∏m

i=1(X − h(νi)). To do so, the prover commits to K(X) and the

quotient polynomial q(X) = K(X)/ZI(X). The verifier checks the polynomial identities at

α, i.e K(α) = q(α)ZI(α) and K(α) =
∏m

i=1(α − h(νi)). The former is easily accomplished

using evaluation proofs for K, q and ZI at α. For checking the latter, the prover commits to

another polynomial u(X) satisfying u(νi) =
∏i−1

j=1

(
(α−h(νj))/(1 +βτ1(ν

j))
)

for i ∈ [m] where
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β = K(α)− 1. The verifier ensures the correctness of u(X) by checking:

τ1(X)(u(X)− 1) = 0 mod ZV

u(νX)(1 + βτ1(X))− u(X)(α− h(X)) = 0 mod ZV.
(5.18)

We prove that the above constraints imply that K(α) =
∏

i∈[m](α−h(νi)) in Lemma 5.13. Note

that in this protocol we require commitment to the polynomial ZI in both G1 and G2, and thus

another pairing check is required to show that the ZI(X) committed in G1 is the same as the

ZI(X) committed in G2 (used for the real pairing check). The complete protocol for checking

that RAMs T and T ′ are identical outside indices in a is given in Figure 5.3.

Lemma 5.13 There exists a polynomial u(X) ∈ F[X] satisfying the identities in Equation (5.18)

if and only if K(α) = 1 + β =
∏

i∈[m](α− h(νi)).

Proof: Assume that the identitites hold for some polynomial u(X). The first identity implies

u(ν) = 1. From the second identity, we conclude that for all i ∈ [m], we have u(νi+1) =

u(νi) · ((α− h(νi))/(1 + βτ1(ν
i))), and thus:

1 = u(νm+1)/u(ν) =
∏
i∈[m]

(
α− h(νi)

1 + βτ1(νi)

)
.

We observe that the product of denominators in the above equation is simply 1 + β as τ1(ν
i)

is 0 for all i ̸= 1, and thus 1 + β =
∏m

i=1(α − h(νi)). In the other direction, it is easy to check

that u(X) as defined for an honest prover, satisfies the identities in Equation 5.18. 2

5.5.6 Batching-Efficient RAM: Combined Protocol

We put the entire protocol together now. Let I denote the set of indices {1, . . . , N}, and IN

denote the vector (1, . . . , N). We formally define the committed RAM relation for which we

present an argument of knowledge in this section.

Definition 5.11 We define the committed RAM relation Rram
srs,N,m to consist of tuples

((cT , c
′
T , cop, ca, cw), (T ,T ′,op,a,w)) such that:

– (T ,o,T ′) ∈ LRAMI,N,m for o = (o1, . . . , om) where we have oi = (opi, ai, wi) ∈ O
I
for all

i ∈ [m] (here we implicitly view vectors T and T ′ as RAMs with index column IN).

– cT = KZG.Commit(srs, T (X)), c′T = KZG.Commit(srs, T ∗(X)), cop = KZG.Commit(srs, op(X)),

ca = KZG.Commit(srs, a(X)), cw = KZG.Commit(srs, w(X)) where polynomials T (X), T ∗(X)
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Common Input: srs, cT , c
′
T , ca.

Prover’s Input: Vectors T ,T ′ ∈ FN , a ∈ Fm. Polynomials T (X), T ∗(X) and a(X)
encoding T ,T ′ and a respectively.

Round 1: Prover commits to auxiliary polynomials

1. P computes the following:

- I = uniq(a), ZI(X) =
∏

i∈I(X − ξi).

- D(X) = ZI(X)(T (X)− T ∗(X))/ZH(X).

- h(X) such that h(νi) = ξai for i ∈ [m].

- K(X) =
∏m

i=1(X − h(νi)), q(X) = K(X)/ZI(X).

- cz = [ZI(X)]1, c
′
z = [ZI(X)]2, cd = [D(X)]1, ch = [h(X)]1, ck = [K(X)]1, cq = [q(X)]1.

2. P sends cz, c
′
z, cd, ch, ck, cq to V.

3. V samples α←R F and sends α to P.

Round 2: Prover commits to polynomial u(X).

1. P sets β = K(α)−1 and interpolates u(X) on V such that u(νi) =
∏i−1

j=1

(
(α−h(νj))/(1+

βτ1(ν
j))
)

for i ∈ [m].

2. P computes cu = [u(X)]1 and sends cu to V.

3. V samples r ←R F and sends r to P.

Round 3: Prover batches checks in Eq (5.18).

1. P computes Q(X) =
(
u(νX)(1+βτ1(X))−u(X)(α−h(X))+rτ1(X)(u(X)−1)

)
/ZV(X)

2. P sends cQ = [Q(X)]1 to V.

3. V samples s←R F and sends s to P.

Round 4: Prover sends evaluations.

1. P computes and sends the following evaluations to V: ⟨z⟩α = ZI(α), ⟨q⟩α = q(α),
⟨K⟩α = K(α), ⟨Q⟩s = Q(s), ⟨u⟩s = u(s), ⟨u⟩νs = u(νs), and ⟨h⟩s = h(s).

2. V samples rα, rs ←R F and sends rα, rs to P.

Figure 5.3: Argument for showing RAMs are identical outside small set of indices.
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Round 5: Prover batches evaluation proofs.

1. P computes the following:

- pα(X) = ZI(X) + rαq(X) + r2αK(X).

- ps(X) = Q(X) + rsu(X) + r2sh(X).

- Πα = KZG.Prove(srs, pα, α).

- Πs = KZG.Prove(srs, ps, s), Πνs = KZG.Prove(srs, u, νs).

2. P sends Πα,Πs,Πνs to V.

Round 6: Verifier checks identities.

1. V computes [pα]1 = cz + rαcq + r2α, [pz]1 = cQ + rscu + r2sch.

2. V checks the following:

- ⟨z⟩α · ⟨q⟩α = ⟨K⟩α.

- ⟨u⟩νs(1 + βτ1(s))− ⟨u⟩s(α− ⟨h⟩s) + rτ1(s)(⟨u⟩s − 1) = ⟨Q⟩sZV(s).

- e(cT − c′T , c
′
z) = e(cd, [ZH(X)]2).

- e([1]1 , c
′
z) = e(cz, [1]2).

- KZG.Verify(srs , [pα]1, ⟨z⟩α + rα⟨q⟩α + r2α⟨K⟩α, α, Πα).

- KZG.Verify(srs, [pz]1, ⟨Q⟩s + rs⟨u⟩s + r2s⟨K⟩s, s, Πs).

- KZG.Verify(srs, cu, ⟨u⟩νs, νs,Πνs).

Round 7: Check correctness of polynomial h(X).

1. P and V execute committed index lookup argument (Fig 5.2) to check ([X]1 , ca, ch) ∈
R

lookup
srs,N,m.

2. V accepts if the above argument accepts and all the preceding checks succeed.

Figure 5.3: Argument for showing RAMs are identical outside small set of indices.
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encode vectors T ,T ′ over H, while op(X), a(X) and w(X) encode vectors op = (op1, . . . , opm),

a and w over V.

As outlined in the blueprint, the prover first commits to “smaller” RAMs S = (a,v) and

S′ = (a,v′) where v = T [a] and v′ = T ′[a]. The prover commits to S and S′ by sending

commitments cv and c′v to v and v′. Then the prover and verifier execute the committed index

lookup protocol to prove:

(cT , ca, cv) ∈ R
lookup
srs,N,m ∧ (c′T , ca, c

′
v) ∈ R

lookup
srs,N,m (5.19)

The verifier uses a random challenge χ←R F to reduce two instances of Rlookup
srs,N,m to one instance

(cT + χc′T , ca, cv + χc′v) ∈ R
lookup
srs,N,m. Then, we show that RAMs T and T ′ are a-identical using

the protocol in Figure 5.3, described in Section 5.5.5. All that remains is to prove is that

the operation sequence o is consistent with small RAMs S and S′. We check this using the

argument in Section 5.6, which is obtained by compiling the polynomial protocol for RAM in

Section 5.7 into an argument of knowledge in the AGM. Specifically, the prover and the verifier

set cS = (ca, cv), c
′
S = (ca, c

′
v) and co = (cop, ca, cw), and execute the argument of knowledge for

showing (cS, co, c
′
S) ∈ RLRAM

srs,m (see Definition 5.12). We provide the complete protocol listing in

Figure 5.4. The protocol in Figure 5.4 assumes pre-computed parameters for the tables T and

T ′. The maintenance of these pre-computed parameters in the presence of updates is detailed

in Section 5.4.

Theorem 5.4 The protocol in Figure 5.4 is a succinct argument of knowledge for the relation

Rram
srs,N,m in the AGM, under the Q-DLOG assumption for the bilinear group (F,G1,G2,GT , e, g1, g2).

5.6 Argument for RAM From Polynomial Protocols

In this section, we give a self-contained argument of knowledge for membership in the language

LRAMI,m,m introduced in Section 5.5.1. We first consider the polynomial encoding of different

RAM artefacts.

5.6.1 Polynomial Encoding

Let k = 3m and let ω be a primitive kth root of unity in F. Let ν = ω3, and thus ν is a primitive

mth root of unity in F (We assume, these roots exist in F). We recall V as the subgroup

consisting of mth roots of unity with associated Lagrange basis polynomials {τi(X)}i∈[m], while

we additionally introduce the set K of kth roots of unity with {λi(X)}i∈[k] as the associated
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Setup (1λ, N,m,T ,T ′):

– srs = ({[τ i]1}Ni=0, {[τ i]2}Ni=0) for τ ←R F

– Both P and V precomputes [ZH(X)]1 , [ZH(X)]2

– P precomputes the following:

– W i
2 = [ZH(X)/(X − ξi)]2, i ∈ [N ]

– P precomputes the following (with respect to (T ,T ′)):

– W i
1 = [(T (X)− T (ξi))/(X − ξi)]2, i ∈ [N ],

– W i
1
′
= [(T ∗(X)− T ∗(ξi))/(X − ξi)]2, i ∈ [N ].

Common Input: srs, cT , c
′
T , cop, ca, cw ∈ G1.

Prover’s Input: Vectors T ,T ′,op,a,w and their encoding polynomials.

Round 1: Commit to sub RAMs.

1. P computes v = T [a ], v′ = T ′[a ] and the encoding polynomials v(X) and v∗(X).

2. P computes cv = [v(X)]1, c
′
v = [v∗(X)]1, and sends cv, c

′
v to V.

3. V samples χ←R F and sends χ to P.

Round 2: Execute committed index lookup.

1. P and V compute ĉT = cT + χc′T , ĉv = cv + χc′v.

2. P computes T̂ = T + χT ′, v̂ = v + χv′.

3. P and V execute committed index lookup argument in Fig 5.2, with (ĉT , ca, ĉv) as the
common input and (T̂ ,a, v̂) as prover’s input.

Round 3: Prove RAMs are a-identical.

1. P and V execute argument in Fig 5.3 with common input (cT , c
′
T , ca) and prover’s input

as (T ,T ′,a).

Round 4: Prove sub RAMs are memory-consistent with update.

1. P and V execute argument in Fig 5.9 to check (cS, co, c
′
S) ∈ RLRAM

srs,m with cS = (ca, cv),
c′S = (ca, c

′
v) and co = (cop, ca, cw).

2. V accepts if all sub-protocols accept.

Figure 5.4: Our batching-efficient RAM protocol
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Lagrange polynomials.

K = {ω, . . . , ωk}, V = {ν, . . . , νm} (5.20)

As before, we define the encoding of vectors in f ∈ Fk as EncodeK(f) =
∑

i∈[k] fiλi(X). We

canonically extend the encoding of vectors to encode RAM, operations and transcripts by

encoding their component vectors. Thus, for a RAM T = (a,v) ∈ RAMI,m, we define its

encoding T̃ = (a(X), v(X)) where a(X), v(X) ∈ F<m[X] encode vectors a,v respectively.

Given an operation sequence o = (o1, . . . , om) with oi = (ōpi, āi, v̄i) we encode o as Õ = (ōp(X)

,ā(X) ,v̄(X)) where ōp(X) encodes the vector op = (ōp1, . . . , ōpm), ā(X) encodes the vector

(ā1, . . . , ām) and v̄(X)encodes the vector (v̄1, . . . , v̄m). Finally, a transcript tr = (t,op,A,V )

for tuples (T ,o,T ′) where T ,T ′ are RAMs of size m, and o is an operation sequence of size m

is encoded as t̃r = (t(X), op(X), A(X), V (X)) where the polynomials t(X), op(X), V (X) and

A(X) encode the respective vectors in Fk (See Section 5.5.1).

5.6.2 Relations over Polynomial Encodings

In this section, we describe polynomial checks for two important relations we need in subsequent

sections, viz, (i) checking concatenation of vectors and (ii) checking monotonicity and load-store

consistency of a transcript. The lemma below specifies the polynomial identities for verifying

that vector v ∈ Fk is concatenation of vectors a, b, c in Fm.

Lemma 5.14 Let a, b, c ∈ Fm and v ∈ Fk be vectors encoded by polynomials a(X), b(X), c(X)

and v(X) respectively. Then,

a(X3)− v(X) = 0 mod Z(X) (A1)

b(X3)− v(ωmX) = 0 mod Z(X) (A2)

c(X3)− v(ω2mX) = 0 mod Z(X) (A3)

for Z(X) =
∏m

i=1(X − ωi) if and only if v = a||b||c.

Proof: Assume that the polynomial identities hold. Substituting X = ωi for i ∈ [m] in above

equations implies for i ∈ [m]: ai = vi (Eq (A1)), bi = vm+i (Eq (A2)) and ci = v2m+i (Eq (A3)),

which together imply v = a||b||c. Converse follows by observing that v = a||b||c implies that

v(X) = a(X3), v(ωmX) = b(X3) and v(ω2mX) = c(X3) holds for all X = ωi, i ∈ [m]. Thus,

the equalities hold modulo the polynomial Z(X) as defined above. 2

Next, we specify polynomial checks on the encoding of a transcript to ensure it satis-

fies address-ordering and load-store consistency. Let N be an upper bound on the values
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of A, i.e, the index set I ⊆ [N ]. Let tr = (t,op,A,V ) be a transcript encoded as t̃r =

(t(X), op(X), A(X), V (X)). Recall that we need to check two conditions on tr, viz, (i) mono-

tonicity: the transcript is sorted by address and timestamp respectively, i.e, Ai ≤ Ai+1 for all

i < k and ti < ti+1 whenever Ai = Ai+1, (ii) load-store consistency: whenever opi+1 = 0 and

Ai = Ai+1, we have Vi = Vi+1. To do so, we exhibit disjoint sets I1, I2 with I1 ⊎ I2 = [k − 1]

such that: (i) for all i ∈ I1, Ai < Ai+1, (ii) for all i ∈ I2, (Ai = Ai+1) ∧ (ti < ti+1) and (iii)

for all i ∈ I2, (opi = 1) ∨ (Vi = Vi+1). Note that the conditions on the sets I1 and I2 ensures

monotonicity. Moreover, it can be seen that load-store consistency requirements are satisfied

for all i ∈ I1 (as Ai ̸= Ai+1). Similarly, load-store consistency also holds for all i ∈ I2. It

remains to exhibit the sets and show that they satisfy the above invariants using polynomials,

as in the following lemma:

Lemma 5.15 Let t̃r be a polynomial encoding of transcript tr of size k, given by polynomials

t(X), op(X), A(X) and V (X), with index set [N ]. Then assuming kN < |F|, tr is address

ordered and satisfies load-store consistency if and only if there exist polynomials Z1, Z2, δT , δA

such that the following hold:

A(ωX)− A(X)− δA(X) = 0 mod Z1(X) (C1)

A(ωX)− A(X) = 0 mod Z2(X) (C2)

t(ωX)− t(X)− δT (X) = 0 mod Z2(X) (C3)

(op(X)− 1)(V (ωX)− V (X)) = 0 mod Z2(X) (C4)

Z1(X) · Z2(X) · (X − 1) = ZK(X) (C5)

1 ≤ A(ωi) ≤ N (C6)

1 ≤ t(ωi) ≤ N, 1 ≤ δA(ωi) ≤ N, 1 ≤ δT (ωi) ≤ N for i ∈ [k] (C7)

Proof: Suppose there exist polynomials Z1(X), Z2(X), δT (X) and δA(X) satisfying above

identities. From Equation (C5), we conclude that their exist sets I1, I2 with I1 ⊎ I2 = [k − 1]

such that Zb(X), b ∈ {1, 2} is the vanishing polynomial of the set {ωi : i ∈ Ib}. We now note

that the following are true for i ∈ I1:

– A(ωi+1) − A(ωi) = δA(ωi). Since 1 ≤ δA(ωi) ≤ N , this ensures Ai < Ai+1 for the vector

A encoded by A(X). We note that kN < |F| implies there is no overflow modulo the field

characteristic.

Similarly, it can be seen that for i ∈ I2, we must have (i) Ai = Ai+1 ∧ ti < ti+1 and (ii)

opi = 1 ∨ Vi = Vi+1. Together these imply that the encoded transcript is address-ordered. 2
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Protocols facilitating the checks mentioned in Lemma 5.14 and Lemma 5.15 are presented

in Figure 5.5 and 5.6 respectively.

5.7 Succinct Argument for Verifiable RAM

The polynomial encodings in the previous section can be used to construct a polynomial pro-

tocol for checking the membership in the language LRAMI,m,m for m ∈ N. The polynomial

protocol can be subsequently compiled into a succinct argument using an extractable poly-

nomial commitment scheme. In this section, we use KZG polynomial commitment scheme to

obtain a succinct argument for checking membership in LRAMI,m,m in the Algebraic Group

Model (AGM). At a high level, to prove (T ,o,T ′) ∈ LRAMI,m,m, the prover constructs time

ordered transcript tr and then permutes it to obtain the address sorted transcript tr∗. It then

sends the polynomial encodings of T ,o,T ′, tr and tr∗ to the verifier, who verifies that:

1. The time ordered transcript is correctly constructed, i.e, tr = TimeTr(T ,o,T ′). This is

achieved using the protocol in Figure 5.7.

2. The transcript tr∗ is a permutation of the transcript tr, i.e, tr∗ = σ(tr) for some permutation

σ of [k]. The protocol for this check appears in Figure 5.8.

3. The transcript tr∗ is address ordered and satisfies load-store consistency. We describe the

protocol to check this property of transcripts in Figure 5.6.

We check above conditions over commitments. Let srs denote a KZG setup over a bilinear

group, with prime order groups G1,G2 and GT . We canonically commit to RAM, operation

sequences and transcripts by committing to their polynomial encodings. Commitment of an

encoding represented as tuple of polynomials is simply the tuple consisting of commitments of

the component polynomials. We now define the relation RLRAM
srs,m below, and present a succinct

argument for the same.

Definition 5.12 Let RLRAM
srs,m consist of tuples ((cT , co, c

′
T ), (T ,o,T ′)) where

cT = KZG.Commit(srs, T̃ ), c′T = KZG.Commit(srs, T̃ ′), co = KZG.Commit(srs, Õ) commit to T ,

T ′ and o with (T ,o,T ′) ∈ LRAMI,m,m.

In the above definition we have cT = (ca, cv) where ca and cv are KZG commitments to poly-

nomials a(X) and v(X) in the encoding T̃ = (a(X), v(X)). Similarly we parse c′T = (c′a, c
′
v)

and co = (c̄op, c̄a, c̄v) (see Section 5.6.1 for polynomial encodings). For proving relation 5.12,

prover’s input consists of initial RAM state T = (a,v), final RAM state T ′ = (a′,v′), opera-

tion sequence o = (o1, . . . , om) with oi = (ōpi, āi, v̄i), time-ordered transcript tr = (t,op,A,V )
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Common Input: Commitments ca, cb, cc, cv, and [Z]1 (to the polynomial Z(X) =∏m
i=1(X − ωi)).

Prover’s Input: Vectors a, b, c ∈ Fm and v ∈ Fk.

1. V samples γ ←R F, and sends γ to P.

2. P computes the following:

- h(X) = a(X) + γb(X) + γ2c(X).

- Q(X) = (h(X3)− v(X)− γv(ωmX)− γ2v(ω2mX))/Z(X).

3. P computes and sends the commitment [Q]1 = [Q(X)]1 to V.

4. V samples s←R F, and sends s to P.

5. P computes and sends the following evaluations to V: ⟨v⟩s = v(s), ⟨v⟩ωms = v(ωms),
⟨v⟩ω2ms = v(ω2ms), ⟨h⟩s3 = h(s3), ⟨Q⟩s = Q(s) and ⟨Z⟩s = Z(s).

6. V samples r ←R F and sends r to P.

7. P computes the following KZG proofs:

- Πv = KZG.Prove(srs, v, (s, ωms, ω2ms)).

- Πh = KZG.Prove(srs, h, s3).

- Πf = KZG.Prove(srs, f, s) where f(X) = Z(X) + rQ(X).

8. P sends Πv, Πh and Πf to V.

9. V computes commitments [h]1 and [f ]1.
a

10. V checks:

- KZG.Verify(srs, [v]1 , ev,pv,Πv) where pv = (s, ωms, ω2ms) and ev =
(⟨v⟩s, ⟨v⟩ωms, ⟨v⟩ω2ms).

- KZG.Verify(srs, [h]1 , ⟨h⟩s3 , s3,Πh).

- KZG.Verify(srs, [f ]1 , ⟨Z⟩s + r⟨Q⟩s, s,Πf ).

- ⟨Q⟩s · ⟨Z⟩s = ⟨h⟩s3 − ⟨v⟩s − γ⟨v⟩ωms − γ2⟨v⟩ω2ms.

11. V outputs accept if all the above checks succeed, else it outputs reject.

aThis can be done locally by leveraging the linearity of the operation

Figure 5.5: Check concatenation over committed vectors.
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Common Input: Commitments ct, cop, cA and cV to t,op,A and V constituting the
transcript tr.
Prover’s Input: tr = (t,op,A,V ) and its polynomial encoding t̃r =
(t(X), op(X), A(X), V (X)).

1. Prover determines sets I1, I2 as described in Section 5.6.2.

2. Prover computes polynomials Z1(X), Z2(X), δT (X), δA(X).

3. P sends [Z1(X)]1, [Z2(X)]1, [δT (X)]1, [δA(X)]1 to V.

4. V samples γ ←R F, and sends γ to P.

5. P computes the following polynomials:

- Q1(X) = (A(ωX)− A(X)− δA(X))/Z1(X).

- Q2(X) = [(A(ωX)−A(X))+γ(t(ωX)−t(X)−δT (X))+γ2(op(X)−1)(V (ωX)−
V (X))]/Z2(X)

6. P sends commitments [Q1(X)]1, [Q2(X)]1 to V.

7. V sends s←R F, and sends s to P.

8. P computes and sends the following evaluations to V: ⟨A⟩s = A(s), ⟨A⟩ωs = A(ωs),
⟨δA⟩s = δA(s), ⟨t⟩s = t(s), ⟨t⟩ωs = t(ωs), ⟨δT ⟩s = δT (s), ⟨op⟩s = op(s), ⟨V ⟩s = V (s),
⟨V ⟩ωs = V (ωs), ⟨Q1⟩s = Q1(s), ⟨Q2⟩s = Q2(s), ⟨Z1⟩s = Z1(s), ⟨Z2⟩s = Z2(s).

9. V checks the following:

- ⟨Q1⟩s · ⟨Z1⟩s = (⟨A⟩ωs − ⟨A⟩s − ⟨δA⟩s).
- ⟨Q2⟩s ·⟨Z2⟩s = (⟨A⟩ωs−⟨A⟩s)+γ(⟨t⟩ωs−⟨t⟩s−⟨δT ⟩s)+γ2(⟨op⟩s−1)(⟨V ⟩ωs−⟨V ⟩s).
- ⟨Z1⟩s · ⟨Z2⟩s = s3m − 1.

10. V samples r1, r2 ←R F and sends r1, r2 to P.

11. P computes the following:

- Φws(X) = A(X) + r1t(X) + r21V (X).

- Φs(X) = A(X) + r2δA(X) + r22t(X) + r32δT (X) + r42op(X) + r52V (X) + r62Q1(X) +
r72Q2(x) + r82Z1(X) + r92Z2(X).

- Πωs = KZG.Prove(srs,Φωs(X), ωs).

- Πs = KZG.Prove(srs,Φs(X), s).

12. P sends Πωs,Πs to V.

Figure 5.6: Check that transcript is address ordered and load-store consistent.
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14. V computes the following:

- [Φωs(X)]1 = cA + r1ct + r21cV .

- [Φs(X)]1 = cA + r2[δA(X)]1 + r22ct + r32[δT (X)]1 + r42cop + r52cV + r62[Q1(X)]1 +
r72[Q2(X)]1 + r82[Z1(X)]1 + r92[Z2(X)]1.

- Vws = ⟨A⟩ωs + r1⟨t⟩ωs + r21⟨V ⟩ωs.
- Vs = ⟨A⟩s + r2⟨δA⟩s + r22⟨t⟩s + r32⟨δT ⟩s + r42⟨op⟩s + r52⟨V ⟩s + r62⟨Q1⟩s + r72⟨Q2⟩s +
r82⟨Z1⟩s + r92⟨Z2⟩s.

15. V checks the following:

- KZG.Verify(srs, [Φws]1 , Vws, ωs,Πωs).

- KZG.Verify(srs, [Φs]1 , Vs, s,Πs).

16. P and V invoke sub-vector arguments (Psv,Vsv) (eg. [56]) to prove that (srs, cA, cI),
(srs, ct, cI), (srs, [δA(X)]1 , cI) and (srs, [δT (X)]1 , cI) are in Rsubvec

srs,N,m.

17. V outputs accept if all checks succeed and the sub-vector arguments outputs accept.
Otherwise it outputs reject.

Figure 5.6: Check that transcript is address ordered and load-store consistent.
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Component Protocol
Prover

Complexity
Verifier

Complexity
Communication

Complexity
Concatenation
of transcripts

Fig 5.7
O(m logm)F
O(m)G1

2P 4G1, 6F

Permutation
of transcripts

Fig 5.8
O(m logm)F
O(m)G1

2P 4G1, 5F

Memory consistency
&

Address ordering
of transcripts

Fig 5.6
O(m logm)F
O(m)G1

6P 20G1,19F

Polynomial Protocol
for RAM

Fig 5.9
O(m logm)F
O(m)G1

7P 36G1, 30F

Table 5.2: Efficiency parameters for components of polynomial protocol for RAM. Here m
denotes both the size of the RAM and number of operations (the special case we consider). P
denotes a pairing evaluation, while G1 G2 and F denote the groups and the scalar field of the
bilinear group used for instantiating the protocol.

and address-ordered transcript tr∗ = (t∗,op∗,A∗,V ∗) obtained from tr using a permutation

σ : [k]→ [k]. Verifier’s input consists of the commitments cT , co and c′T as described above.

The prover starts the protocol by sending commitments ctr and c∗tr to the transcripts tr and tr∗

respectively. To show that tr is correctly formed, the prover needs to prove the concatenations:

(i) op = 0m||(ōp1, . . . , ōpm)||0m, (ii) A = a||(ā1, . . . , ām)||a′ and (iii) V = v||(v̄1, . . . , v̄m)||v′.

Note that the time-stamp column t is implicitly assumed to be (1, . . . , k). The verifier checks

the concatenations using Lemma 5.14. It uses a random challenge β to reduce the three con-

catenations to one concatenation, and uses another challenge γ to reduce the three polynomial

checks in Lemma 5.14 to a single check. The complete polynomial protocol is detailed in Figure

5.7.

Next, we show a polynomial protocol for proving that the transcript tr∗ is a permutation of

the transcript tr. We first recall the permutation argument for vectors from [62].

Lemma 5.16 (Permutation Check [62]) Let f(X), g(X) be polynomials in F[X ]. Then,

the vectors f , g ∈ Fk encoded by the polynomials are permutations of each other if and only

if with overwhelming probability over the choice of α ←R F, there exists a polynomial z(X)

satisfying the polynomial constraints:

λ1(X)(z(X)− 1) = 0 mod ZK(X) (B1)

(α− g(X))z(ωX) = (α− f(X))z(X) mod ZK(X) (B2)

The polynomial protocol in Figure 5.8 essentially invokes the above argument on the random
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Common Input: Commitments cT = (ca, cv), co = (c̄op, c̄a, c̄v), c′T = (c′a, c
′
v) and ctr =

(ct, cop, cA, cV ) to T ,o,T ′ and tr (which is supposed to be the time ordered transcript)
respectively. Commitment [Z(X)]1 to the polynomial Z(X) =

∏m
i=1(X − ωi).

Prover’s Input: tr,T ,T ′,o and their polynomial encodings, Z(X).

1. V samples β, γ ←R F and sends β, γ to P.

2. P computes the following:

- G1(X) = a(X) + βv(X), G2(X) = ā(X) + βv̄(X) + β2ōp(X)

- G3(X) = a∗(X) + βv∗(X), G(X) = A(X) + βV (X) + β2op(X)

- H(X) = G1(X) + γG2(X) + γ2G3(X)

- Q(X) = [(H(X3)−G(X)− γG(ωmX)− γ2G(ω2mX))]/Z(X)

3. P sends commitment [Q]1 of Q(X) to V.

4. V samples s←R F and sends s to P.

5. P computes and send the following evaluations to V: ⟨G⟩s = G(s), ⟨G⟩ωms = G(ωms),
⟨G⟩ω2ms = G(ω2ms), ⟨H⟩s3 = H(s3), ⟨Q⟩s = Q(s) and ⟨Z⟩s = Z(s).

6. V samples r ←R F and sends r to P.

7. P computes and sends the following KZG proofs:

– ΠG = KZG.Prove(srs, G(X), (s, ωms, ω2ms)).

– ΠH = KZG.Prove(srs, H(X), s3).

– ΠF = KZG.Prove(srs, F (X), s) where F (X) = Z(X) + rQ(X).

8. V computes [G(X)]1 , [H(X)]1 and [F (X)]1.
a

9. V checks the following:

– KZG.Verify(srs, [G]1 , (⟨G⟩s, ⟨G⟩ωms, ⟨G⟩ω2ms), (s, ω
ms, ω2ms),ΠG).

– KZG.Verify(srs, [H]1 , ⟨H⟩s3 , s3,ΠH).

– KZG.Verify(srs, [F ]1 , ⟨Z⟩s + r⟨Q⟩s, s,ΠF ).

– ⟨Q⟩s · ⟨Z⟩s = ⟨H⟩s3 − ⟨G⟩s − γ⟨G⟩ωms − γ2⟨G⟩ω2ms.

10. V outputs accept if all the above checks succeeds, otherwise it outputs reject.

aThis can be done locally by leveraging the linearlity of the operation

Figure 5.7: Check the correctness of time-ordered transcript.
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linear combination of the columns of the respective transcripts.

Common Input: Commitments ctr = (ct, cop, cA, cV ) and c∗tr = (c∗t , c
∗
op, c

∗
A, c

∗
V ) of tran-

scripts tr and tr∗ respectively.
Prover’s Input: Transcripts tr, tr∗ and their polynomial encodings, permutation σ such
that tr∗ = σ(tr).

1 V samples α, β, χ←R F and sends α, β, χ to P.

2 P computes the following:

- f(X) = t(X) + βop(X) + β2A(X) + β3V (X).

- g(X) = t∗(X) + βop∗(X) + β2A∗(X) + β3V ∗(X).

3 P computes polynomials z(X), q(X) as follows:

- Interpolate polynomial z(X) of degree k−1 such that z(ω) = 1 andz(ωi+1) =
∏i

j=1(α−
f(ωj))/(α− g(ωj)) for 1 ≤ i ≤ k − 1.

- q(X) = ((α− g(X))z(ωX)− (α− f(X))z(X) + χλ1(X)(z(X)− 1))/ZK(X).

4 P computes commitments [z(X)]1 and [q(X)]1 to polynomials z(X) and q(X) respectively,
and sends [z(X)]1 , [q(X)]1 to V.

5 V computes commitments [f ]1, [g]1.
a

6 V checks that q(X)ZK(X) = (α−g(X))z(ωX)− (α−f(X))z(X)+χλ1(X)(z(X)−1) by
requesting evaluations and KZG proofs of polynomials f, g, q, z at a random point, say s
and evaluation and KZG proof of z at ωs.

7 V outputs accept if all the checks succeed, else it outputs reject.

aThis can be done locally by leveraging the linearlity of the operation

Figure 5.8: Check that transcripts are permutations of each other.

Finally, we see that Lemma 5.15 implies a polynomial protocol to check that the tran-

script tr∗ is address ordered and satisfies load-store consistency, which essentially involves the

prover identifying sets I1, I2 as described in Section 5.6.2 and sending auxiliary polynomials

Z1(X), Z2(X), δ∗A(X) and δ∗T (X) to the verifier. The verifier then checks the identities (C1)-

(C6) in Lemma 5.15. The range checks in (C7) can be checked using polynomial protocols in

sub-vector lookup arguments such as [98, 56, 43, 113]. The protocol (compiled using KZG

commitments in AGM) can be found in Figure 5.6. The overall protocol for RLRAM
srs,m which com-

bines invokes protocols in Figures 5.7,5.8 and 5.6 as sub-protocols is presented in Figure 5.9.
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Common Input: Commitments cT = (ca, cv), co = (c̄op, c̄a, c̄v), c
′
T = (c′a, c

′
v).

Prover’s Input: T ,T ′,o and their polynomial encodings.

1. P computes the following:

– tr (time ordered transcript corresponding to T ,o,T ′), its polynomial encoding, and
its commitment ctr = (ct, cop, cA, cV ).

– Z(X) =
∏m

i=1(X − ωi) and its commitment [Z(X)]1.

2. P sends ctr = (ct, cop, cA, cV ) and [Z(X)]1 to V.

3. P and V run the protocol for checking correctness of time ordered transcript (Figure 5.7).

4. P computes the address ordered transcript tr∗ (along with its polynomial encoding) and
the permutation σ from the time ordered transcript tr, such that tr∗ = σ(tr).

5. P computes the commitment c∗tr = (c∗t , c
∗
op, c

∗
A, c

∗
V ) of tr∗ and sends c∗tr.

6. P and V run the protocol for checking that the two transcripts are permutations of each
other (Figure 5.8).

7. P and V run the protocol for checking the constraints given in Lemma 5.15 (Figure 5.6.)

8. V outputs accept if all the three sub-protocols lead to accept, else it outputs reject.

Figure 5.9: Overall protocol for the relation RLRAM
srs,m

Efficiency. We provide a break-up of costs incurred by different components involved in

construction of RAM based on memory-checking techniques in Table 5.2. To reduce pairing

checks we use standard technique of batching pairing checks involving common generators.

In addition, to reduce communication, instead of naively invoking four instances of sub-vector

argument in Step 15 of the protocol in Figure 5.6, we concatenate the four vectors using a variant

of protocol for concatenation of vectors in Figure 5.5, and then use the sub-vector argument

to show that the concatenated vector is a sub-vector of the vector (1, . . . , N). For CQ [56]

based instantiation, this reduces the total communication of this check from 4× (8G1 + 3F) to

(4G1 + 6F) + (8G1 + 3F), a saving of ≈ 20G1. The reported overheads in Table 5.2 take into

account such optimizations.
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Chapter 6

Conclusion

This thesis presents advancements in the efficiency of some theoretical primitives in the realm

of zero-knowledge proofs (ZKP) and explores some of their applications in real-life scenarios.

The dimensions of efficiency in the context of ZKPs consist of proof size, round complexity,

verification complexity and prover complexity.

Succinct Verification. To start with, we discussed the well-understood theoretical primitive

of sigma protocols in the literature of ZKPs which has attractive real-world applications (eg.

blockchain). Sigma protocols are 3-round public-coin proof of knowledge protocols that have

linear proof size, verification complexity, and prover complexity. Attema and Cramer [8], by

casting Bulletproofs [36] in the framework of sigma protocols, provided compressed sigma pro-

tocols with logarithmic proof size, but still incur linear verification. They also incur logarithmic

round complexity - which is not prohibitive since these protocols are public-coin and can be

made non-interactive in the Random Oracle Model by using Fiat-Shamir transformation [59].

To ensure efficient verification, we constructed a compressed sigma protocol (CSP) that

has logarithmic proof size and logarithmic verification complexity by moving from transparent

setup to updatable setup, which only requires one honest update during the setup phase to

provide security guarantees against malicious prover strategies. We first constructed CSP for

inner-product argument under discrete log assumption, using which we then provided CSP for

arithmetic circuit satisfiability with logarithmic proof size and logarithmic verification complex-

ity. Additionally, we constructed CSP for opening homomorphism in the designated verifier

setting with logarithmic proof size and logarithmic verification complexity.

Distributed Proofs. Next, we looked at the usage of ZKPs to enable input authentication in

secure multiparty computation (MPC) based on linear secret-sharing, and realized the need for

distributed ZKPs to enhance efficiency and security while maintaining privacy. In particular,
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we put forward a notion of distributed proof of knowledge (DPoK) that enables a prover to

distribute the proof generation to a set of workers holding the shares of the input, such that (i)

workers do not require any private interaction among each other, and (ii) interaction with the

verifier is over the broadcast channel where the verifier is public-coin (which helps us achieve

public verifiability). We also considered robustness in these DPoKs, which ensured security even

in the presence of dishonest usage of shares by workers during proof generation, and referred

to the protocols with such guarantees as robust DPoKs.

We presented constructions of DPoK (and robust DPoKs) for discrete log relation and DPoK

for algebraic signature schemes like BBS+ [29, 41] and PS [97]. We also provided constructions

of round efficient versions of these DPoKs that are secure in the Random Oracle Model. Using

our DPoKs for algebraic signature schemes, we provided a compiler that can lift any threshold

linear secret-sharing based honest majority MPC protocol to also have input authentication,

while incurring negligible overhead over the underlying MPC.

Lookup Arguments. Finally, we discussed the primitive of lookup arguments that enables us

to prove that the vector S of size m is ‘looking up’ elements in T of size N in the indices specified

by the m-size vector a ⊂ [N ], i.e. Si = Tai for all i ∈ m, where m << N . We referred to

this class of protocols as committed index lookup arguments. Recent works in lookup arguments

present improved efficiency in the preprocessing paradigm, where the heavy computation is

deferred to the offline phase to make the online phase faster. We removed the rigid dependency

of the online phase on the table-dependent parameters computed in the offline phase, and

presented updatable lookup arguments that enables us to provide efficient proofs for S ⊂ T′

when T′ is within a certain Hamming distance of the preprocessed table T.

Using our updatable lookup argument, we then presented our batching-efficient RAM that

enables us to prove that a RAM of size N has undergone m updates (i.e. read/write operations)

with constant communication complexity, constant verification complexity, and sublinear (in

N) prover complexity. This has applications in providing efficient rollups in blockchain by

offloading expensive computation to L2 layer and verifying the off-chain computation.

Open Questions. This thesis explores the theoretical ZKP primitives in the context of var-

ious dimensions of efficiency, and raises interesting questions that offer significant scope for

future exploration. We briefly state some of the potential directions below.

The techniques of compressed sigma protocols (CSP) have been extended to achieve loga-

rithmic proof size for various relations [9, 10, 11]. Exploration of our technique [53] of achieving

succinct verification in the compression framework in the context of CSP for lattices [10] or k-

out-of-n partial knowledge [9] remains open. Additionally, there is scope to further improve our
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construction in [53] that achieves O(log n) communication and verification complexity, to attain

even better communication, verification and/or prover complexities. While our inner product

argument in [53] considers an updatable setup and relies solely on the discrete log assumption,

follow-up works have achieved improved verifier (cubic root) in the transparent setup under the

same assumption [82], and the pursuit of better complexities in the transparent setup under

the discrete log assumption remains open.

In our work [55], the proof generation for proof of knowledge of discrete log relation (and

some algebraic signature schemes [29, 97]) is distributed. Achieving distributed proof of knowl-

edge for interesting relations like arithmetic circuit satisfiability or post-quantum signature

schemes still remains open.

Furthermore, although delegation of proof-generation has been explored in recent works

for general relations like arithmetic circuit satisfiability [46], it would be interesting to explore

delegation of proof-generation for constructions of lookup arguments and batching-efficient RAM

that admit algebraic verification (for protocols based on KZG polynomial scheme [77]) and

currently incur high prover complexity (whereas the proof size and verification complexity are

constant).

Post-Quantum Vulnerability. The cryptographic constructions discussed throughout this the-

sis are based on discrete-logarithm based assumptions and bilinear pairings, since our primary

concern was improving efficiency of the prior works under similar assumptions. The hardness

assumptions considered are extensively studied in the classical setting, and are known to be vul-

nerable to attacks from quantum computers. Achieving similar efficiency using post-quantum

secure hardness assumptions (eg. based on lattices) is a challenging and interesting future

direction.

In particular, we can achieve a postquantum secure version of our work on compressed

sigma protocols (Chapter 3) by transitioning to lattice-based constructions. As a promising

step in this direction, a recent work of Attema et al. [10] already achieves succinct proof size for

compressed sigma protocols for lattices, albeit with linear verification complexity. Achieving

succinct verification complexity with the existing succinct proof size remains an interesting

open question. This would require novel post-quantum secure techniques, since our work relies

on the symmetric structure of bilinear pairings.

The construction of distributed proof of knowledge (DPoK) in the next chapter (Chapter 4)

extends the notion of compressed sigma protocol to support distributed proof generation, and

similarly relies on the assumptions of discrete logarithm (as well as bilinear pairings, to prove

knowledge of BBS+ and PS signatures). The primary application of our DPoK is considered in

‘input authentication in MPC using BBS+/PS signatures’, where the signature schemes under
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consideration are not resistant to attacks from post-quantum computers. The primary aim

of our work was to improve the overhead in attaining input authentication for MPC, without

relying on MPC-specific techniques, and we leverage the efficiency of classical signature schemes

like BBS+/PS1. In a post-quantum secure version of this application, we would need to consider

a post-quantum secure MPC and post-quantum signature scheme.

The recent works on lookup arguments primarily rely on the KZG commitment scheme

and the relevant prior works on batching-efficient RAM primarily rely on RSA groups, which

makes them vulnerable to post-quantum attacks. With a primary focus on efficiency, our

work in Chapter 5 aims to (a) improve the efficiency of batching-efficient RAM to incur only

sublinear dependence of the prover complexity on the RAM size, and (b) support efficient

lookups on tables undergoing updates, both in the classical setting. As a promising step in

the direction of obtaining a post-quantum secure construction, a recent work on power of

polynomial preprocessing [44] provides lookup arguments relying only on a black-box usage of

vector commitments and generic assumptions like collision-resistant hash function, where using

a post-quantum vector commitment scheme would yield a post-quantum lookup argument.

Further achieving post-quantum updatable lookup arguments and subsequently achieving post-

quantum batching-efficient RAM are interesting open problems for future research.

1The RFC draft [87] signifies the standardization efforts for using BBS+ signatures in verifiable credentials.
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