
Practically Efficient Secure Small Party Computation over

the Internet

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty of Engineering

BY

Megha Byali

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

November, 2019

Declaration of Originality

I, Megha Byali, with SR No. 04-04-00-10-22-16-1-13901 hereby declare that the material

presented in the thesis titled

Practically Efficient Secure Small Party Computation over the Internet

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2016-2019.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

c© Megha Byali

November, 2019

All rights reserved

DEDICATED TO

My beloved Parents and loving Brother

who stood by me in every phase of my life

Thank you for being there

Acknowledgements

Excellence is about desire: “I’ll not let a single ball go past me” ; “Hit one more to me”.

-Harsha Bhogle

First and foremost, I would like to extend immense gratitude to my research advisor Dr.

Arpita Patra, for accepting me as part of her lab and introducing me to the world of “Secure

Computation”. I still remember the time when she took a leap of faith and accepted me as her

research student despite my lack of understanding of cryptography to begin with. Ever since,

she has played an enormous role in identifying and honing my skills. I’m forever indebted to

her for bestowing all the opportunities that have come my way. I’ve grown as a researcher and

moreover as a person under her guidance and support. Despite having personal commitments,

the dedication that she has offered while working with me in all the times we’ve submitted pa-

pers has left me in awe. She has stayed up late with me during submissions and has meticulously

helped me in all our research discussions and writing. We have had meaningful conversations

about various topics on several occasions and it has led me to appreciate the enthusiasm she

brings on the table. Her perseverance and inquisitiveness are the virtues I wish to inculcate

within me. In summary, it has been a wonderful experience to work with her.

Besides my advisor, I would also like to express my sincere gratitude to Dr. Carmit Hazay

for inviting me to Bar-Ilan University, Israel and hosting me as a research collaborator. She

gave me the opportunity to meet with some of the pioneer researchers at Bar-Ilan University.

It was during the time with her that I started working on my thesis and she’s been a great

mentor. She made my stay in Israel a very comfortable one and was helpful in the numerous

discussions that we’ve had over time. She was pivotal in giving me a different perspective about

research and it has been a pleasure working with her. The time I spent in Israel has been one

of the most memorable times in recent years.

I would also like to thank my collaborators who were also my lab mates: Ajith Suresh, Divya

Ravi and Pratik Sarkar for being great researchers to work with. Our unending discussions, be

it research or gossip have been pleasurable. I would rather consider them more as friends than

i

lab mates. I’ve had memorable times with them specially at Denmark. My special regards to

Divya for being a great mentor and helping me in every step of the way during my research. It

has been a pleasant experience to have her as a co-author for my first conference paper.

My co-author for the papers based on this thesis, Swati Singla has been amazing to work

with. Our chemistry as co-authors has been a remarkable one. The resemblance that we’ve

shared in our career choices is uncanny. She has also been one of my great friends at IISc,

somebody I could always rely on. We’ve shared some great moments, be it in IISc, Israel or

Denmark. I appreciate her for being there in my difficult situations, for being my personal

photographer and bearing my constant cribbing! which I’m sure she has loved.

My warm regards specially to Ajith Suresh for helping me out with all the coding co-

nundrums!. My lab-mates Arun Joseph, Nishat Koti and Harsh Choudhary deserve special

acknowledgements. They have made learning, a fun experience. I would also like to thank my

friend, Shivika Narang for being a constant support. I wish to extend my love to all friends at

IISc for making my stay a memorable one.

My hearty gratitude goes out my friend Deepti Upadhya with whom I’ve shared countless

laughter and moments worth living. Her sarcasm, advice and positiveness has made me a

better person. We’ve been friends for as long as I can remember and everything is complete

when she is around. My warm regards to my friend Anant Nayak for being my emotional

support and staying by me. My love goes out to my wonderful friends Supriya Doddagoudar

and Trishla Kalal for being with me through thick and thin. I’ve cherished all the fun, sarcasm

and philosophical conversations that we’ve shared overtime.

This acknowledgement is incomplete without the mention of my parents Ashokraj and

Kalpana, to whom my truest gratitude goes out. Their unending love and support in ev-

ery step of my life has made me who I’m today and I will forever be grateful to them for raising

me as an independent person. They’ve bestowed upon me with everything I could wish for

and have been great teachers of my life. My mother has been the greatest friend and teacher

I’ve ever known. She’s always taught me to dream big and I would consider myself blessed

if I could be at least half the woman she is. My father has taught me to be ambitious and

self reliant. My unending love goes out to my brother Sagar, who has had immense influence

over me. He has been my go to person throughout life. His philosophical thoughts, sarcasm

and advice are worth living for. I always cherish the fun and fights we’ve had over time. The

amount of learning I’ve had being with him is enormous.

Lastly, I would like to thank IISc, IACR, ACM CCS’18 and TPMPC’18 for granting me

funds to attend conferences.

ii

Abstract

Secure Multi-party Computation (MPC) with small population has drawn focus specifically

due to customization in techniques and resulting efficiency that the constructions can offer.

Practically efficient constructions have been witnessed in the setting of both honest majority

and dishonest majority. In this work, we investigate the efficiency of a wide range of security

notions in the small party domain with 5 parties and 4 parties. Being constant-round, our

protocols are best suited for real-time, high latency networks such as the Internet. All our

constructions are backed with experimental results.

In the setting of five parties with honest majority, we present efficient constructions with

unanimous abort (where either all honest parties obtain the output or none of them do) and

fairness (where the adversary obtains its output only if all honest parties also receive it) in

a minimal setting of pairwise-private channels. With the presence of an additional broadcast

channel (known to be necessary), we present a construction with the strongest security of

guaranteed output delivery (where any adversarial behaviour cannot prevent the honest parties

from receiving the output). The broadcast communication is minimal and independent of circuit

size. In terms of performance (communication and run time), our protocols incur minimal

overhead over the best known selective abort protocol of Chandran et al. (ACM CCS 2016)

while retaining their round complexity. Further, our protocols for fairness and unanimous abort

can be extended to n-parties with at most
√
n corruptions, similar to Chandran et al.

In the setting of four parties, surpassing the traditional honest majority model, we achieve

stronger security goals in a mixed model where minority of the parties are actively corrupt

and additionally some parties are passively corrupt, thus giving an overall dishonest majority.

We present the first efficient constructions that tolerate a mixed adversary corrupting 1 party

actively and 1 party passively and achieve the security goals of guaranteed output delivery and

fairness. Our constructions adhere to the feasibility result of Hirt et al. (CRYPTO’13).

Going beyond the most popular honest-majority setting of three parties with one corruption,

our results demonstrate feasibility of attaining stronger security notions at an expense not too

far from the least desired security of selective abort.

iii

Publications based on this Thesis

• Megha Byali, Carmit Hazay, Arpita Patra and Swati Singla. Fast Actively-secure Five

Party Computation with Security Beyond Abort. ACM CCS 2019.

• Megha Byali, Arpita Patra, Divya Ravi and Swati Singla. Beyond Honest Majority:

On the Efficiency of 4-Party Computation in High-latency Networks. Under Submission.

iv

Other Publications

• Megha Byali, Arun Joseph, Arpita Patra and Divya Ravi. Fast Secure Computation for

Small Population over the Internet. ACM CCS 2018.

• Megha Byali, Pankaj Dayama, Shivika Narang, Yadatti Narahari and Vinayaka Pandit.

Trusted B2B Market Platforms using Permissioned Blockchains and Game Theory. IEEE

Conference on Blockchain and Cryptocurrency.

• Megha Byali, Nishat Koti, Arpita Patra, Divya Ravi and Swati Singla. Speedo4: High-

Speed Secure 4-Party Computation over the Internet. Under Submission.

• Megha Byali, Harsh Chaudhari, Arpita Patra and Ajith Suresh. FLASH: Fast Mali-

ciously Secure 4PC Framework for Machine Learning. Under Submission.

• Megha Byali, Arpita Patra, Divya Ravi and Pratik Sarkar. Efficient, Round-optimal,

Composable Oblivious Transfer and Commitment Scheme with Adaptive Security.

v

Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis iv

Other Publications v

Contents vi

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Literature . 3

1.2 Our Contribution . 4

1.3 Outline of this Thesis . 7

2 Preliminaries 9

2.1 Security Model and Notations . 9

2.2 Primitives . 11

2.2.1 Garbling Scheme . 11

2.2.1.1 Properties of Garbling Scheme 11

2.2.2 Distributed Garbled Circuit . 12

2.2.3 Non-Interactive Commitment Schemes 12

2.2.3.1 Instantiations . 13

2.2.4 Equivocal Non-Interactive Commitment Schemes 14

2.2.4.1 Instantiations . 14

vi

2.2.5 Extractable Commitment Schemes . 15

2.2.5.1 Instantiation . 16

2.2.6 Secret Sharing Schemes . 16

2.2.7 Collision Resistant Hash . 17

2.2.8 Oblivious Transfer . 17

3 Distributed Garbling and More 18

3.1 Building Blocks for 5PC . 19

3.1.1 Seed Distribution . 19

3.1.2 Attested Oblivious Transfer . 19

3.1.3 The semi-honest 4DG and Evaluation . 20

3.1.3.1 4DG with AOT and Seed distribution 23

3.1.3.2 Efficiency of 4DG . 27

3.1.3.3 Correctness and Security of 4DG 27

3.2 Building Blocks for 4PC . 28

3.2.1 Seed-distribution . 28

3.2.2 Attested Oblivious Transfer . 29

3.2.3 The semi-honest 3DG and Evaluation . 30

I Five-Party Computation with Honest Majority 33

4 5PC with Fairness 34

4.1 Technical Overview . 34

4.1.1 Overview of [CGMV17] . 34

4.1.2 Our Techniques . 35

4.2 The construction . 36

4.2.1 Optimizations . 39

4.3 Properties . 39

4.4 n-party Extension of fair5PC . 40

4.5 Security Proof of fair5PC . 42

5 5PC with Unanimous Abort 50

5.1 Technical Overview and the Construction . 50

5.2 Properties . 52

5.3 n-party Extension of ua5PC . 52

vii

5.4 Security Proof of ua5PC . 53

6 5PC with GOD 55

6.1 The Construction . 55

6.2 Optimizations . 62

6.3 Properties . 63

6.4 3PC with GOD . 65

6.5 Transition from 5PC to 3PC . 66

6.6 Security Proof of god5PC . 68

II Four-Party Computation with Mixed Adversary 77

7 4PC with GOD 78

7.1 The Construction . 78

7.1.1 Optimizations . 84

7.2 Properties . 84

7.3 Security Proof of god4PC . 85

8 4PC with Fairness 100

8.1 The Construction . 100

8.2 Properties . 103

8.3 Security Proof of fair4PC . 105

9 Empirical Results 117

9.1 Setup . 117

9.1.1 Hardware Details . 117

9.1.2 Software Details . 118

9.2 Comparison . 118

9.2.1 Analysis of 5PC . 118

9.2.2 Analysis of 4PC . 120

10 Summary of the thesis and Future Scope 123

10.1 Summary of the Thesis . 123

10.2 Future Scope . 124

Bibliography 125

viii

ix

List of Figures

2.1 Ideal Functionality Fgod . 10

2.2 Ideal Functionality Ffair . 10

2.3 Ideal Functionality FuAbort . 11

2.4 Extractable Commitment Scheme . 16

2.5 Ideal Functionality for OT FOT. 17

3.1 Ideal Functionality FS . 19

3.2 Ideal Functionality F4AOT(Ps, Pr, {Pa1 , Pa2}) for 4DG 20

3.3 Ideal Functionality FGC . 23

3.4 Protocol Π4AOT(Ps, Pr, {Pa1 , Pa2}) for 4DG realizing F4AOT 24

3.5 Protocol Garble4() . 26

3.6 Protocol Eval4() . 27

3.7 Protocol πseedDist for SD in 3DG . 29

3.8 Ideal Functionality F3AOT(Ps, Pr, Pa) for 3DG 30

3.9 Protocol Garble3() . 32

3.10 Protocol Eval3() . 32

4.1 Protocol fair5PC . 38

4.2 Output Phase for n-party fairness . 42

4.3 Simulator S12
fair5PC for fair5PC with actively corrupt P ∗1 , P

∗
2 45

4.4 Simulator S15
fair5PC for fair5PC with actively corrupt P ∗1 , P

∗
5 48

5.1 Protocol ua5PC . 51

5.2 Output Phase for n-party unanimous abort . 53

6.1 Protocol inputGODi . 56

6.2 Protocol seedGODg . 57

6.3 Protocol Π4AOTGOD(Ps, Pr, {Pa1 , Pa2}, Pa) for god5PC 59

x

6.4 Protocol god3PC . 60

6.5 Protocol god5PC . 62

6.6 Protocol g3PC . 66

6.7 Diagram showing the transition from 5PC to 3PC. 67

6.8 Simulator S12
inputGOD1

(for input x1) with actively corrupt P ∗1 , P
∗
2 70

6.9 Simulator S12
god5PC for god5PC with actively corrupt P ∗1 , P

∗
2 71

6.10 Simulator S15
god5PC for god5PC with actively corrupt P ∗1 , P

∗
5 74

7.1 Protocol Π3AOTGOD(Ps, Pr, Pa, Ph) for god4PC . 81

7.2 Protocol passive2PC . 82

7.3 Protocol god4PC . 83

7.4 Simulator S1A,2P
πseedDist

for πseedDist with actively corrupt P ∗1 and passively corrupt P ◦2 . 87

7.5 Simulator S
1A,2P
god4PC for god4PC with actively corrupt P ∗1 and passively corrupt P ◦2 . 89

7.6 Simulator S1A,4P
πseedDist

for πseedDist with actively corrupt P ∗1 and passively corrupt P ◦4 . 91

7.7 Simulator S
1A,4P
god4PC for god4PC with actively corrupt P ∗1 and passively corrupt P ◦4 . 93

7.8 Simulator S4A,1P
πseedDist

for πseedDist with actively corrupt P ∗4 and passively corrupt P ◦1 . 95

7.9 Simulator S
4A,1P
god4PC for god4PC with actively corrupt P ∗4 and passively corrupt P ◦1 . 97

8.1 Protocol fair4PC . 103

8.2 Simulator S1A,2P
πseedDist

for πseedDist with actively corrupt P ∗1 and passively corrupt P ◦2 . 106

8.3 Simulator S
1A,2P
fair4PC for fair4PC with actively corrupt P ∗1 and passively corrupt P ◦2 . 108

8.4 Simulator S1A,4P
πseedDist

for πseedDist with actively corrupt P ∗1 and passively corrupt P ◦4 . 109

8.5 Simulator S
1A,4P
fair4PC for fair4PC with actively corrupt P ∗1 and passively corrupt P ◦4 . 111

8.6 Simulator S4A,1P
πseedDist

for πseedDist with actively corrupt P ∗4 and passively corrupt P ◦1 . 113

8.7 Simulator S
4A,1P
fair4PC for fair4PC with actively corrupt P ∗4 and passively corrupt P ◦1 . 115

xi

List of Tables

9.1 Computation time (CT), LAN run-time (LAN), WAN run-time (WAN) and Com-

munication (CC) for [CGMV17], ua5PC and fair5PC for g ∈ [4]. 120

9.2 Computation time (CT), LAN run-time (LAN) and Communication (CC) and Broad-

cast (BC) for protocol god5PC for g ∈ [4]. Pg′ is the garbler and Pγ is the evaluator

for worst case 3PC run. 120

9.3 Computation time (CT), LAN run-time (LAN), WAN run-time (WAN) and Com-

munication (CC) for [CGMV17], fair4PC and god4PC protocol where g ∈ [3] and Pe

denotes the evaluator. 121

9.4 The total computation time (Total CT), maximum latency in LAN run-time (LAN)

and WAN run-time (WAN) and total communication (Total CC) of all parties for

[CGMV17] and our protocols using Garble3/Garble4. The figures in brackets indicate

the increase for the worst case run of god5PC and god4PC. 122

xii

xiii

Chapter 1

Introduction

Secure Multiparty Computation (MPC) [Yao82, GMW87, CDG87] is an area of cryptog-

raphy that has evolved breathtakingly over the years in its attempt to secure data while

computing on it. MPC focuses on the problem of enabling a set of n mutually distrusting

parties to perform joint computation on their private inputs in a way that no coalition of

t parties can affect the output of computation or learn any additional information beyond

what is revealed by the output. In other words, MPC guarantees correctness of computa-

tion and privacy of inputs. The literature of MPC has witnessed plethora of works from

a theoretical standpoint, however, the focus on building practice-oriented MPC [DPSZ12a,

WRK17, BHKL18] constructs has gained momentum only in the recent years owing to the

rising demand for efficiency in real-time networks such as the Internet. Based on the corrup-

tion threshold, the vast literature of MPC is traditionally categorized into dishonest majority

[GMW87, DO10, BDOZ11, DPSZ12b, AJL+12, NNOB12, LPSY15, WRK17] and honest major-

ity [BGW88, RB89, BMR90, DN07, BH07, BH08, BFO12, MRZ15]. While both have received

attention in the efficiency studies, designing practical MPC with honest majority is a captivat-

ing area of research [MRZ15, AFL+16, FLNW17, CGMV17, PR18, BJPR18] for the various

reasons illustrated below.

The paramount benefit of having honest majority enables the computation to achieve

stronger security goals such as fairness (adversary obtains output if and only if all honest

parties do) and guaranteed output delivery (GOD) (any adversarial behaviour cannot prevent

the honest parties from receiving the output) [Cle86]. These properties are desirable in real-

life owing to limited time and resource availability, as they bind the parties to participate in

the computation and thus keep the adversarial behaviour in check. Furthermore, lack of such

strong guarantees can be detrimental in practice. For instance, in real-time applications such

as e-commerce and e-auction, an adversary can always cause an abort if the outcome is not

1

in its favour unless a stronger security notion is ensured. In e-voting, the adversary can abort

the computation repeatedly, yet learn the outputs each time and use them to rig the election.

Apart from enabling stronger security goals, honest-majority allows design of efficient protocols

solely using symmetric-key functions. For instance, the necessity of a public-key primitive for

realizing oblivious transfer can be replaced with symmetric-key primitives, as exhibited by our

protocols and [CGMV17]. Further, this setting enables design of information-theoretic protocols

[BGW88, RB89, BFO12, IKKP15], besides the computational ones. Thus, these strong notions

have driven a lot of research. To elaborate, [DI05, DI06] show constant-round protocols with

GOD. The round-optimality of these notions have been studied in [GIKR02, GLS15, PR18] and

3 rounds is proven to be necessary. Lately, round-optimal MPC protocols with GOD appeared

in [GLS15, ACGJ18, BJMS18] relying on either Common Reference String (CRS) or public-key

operations, in [ACGJ19, ABT19] under super-honest-majority t < n/4 and in [PR18] for the

special case of 3-party solely from symmetric-key primitives. The work of [DOS18] shows how

to compile honest majority MPC protocol for arithmetic circuits with abort (and several other

constraints) into a protocol with fairness while preserving its efficiency. Interestingly, while

[Cle86] rules out fairness in dishonest majority, [BK14, ADMM14, CGJ+17, PST17] demon-

strate its feasibility relying on non-standard techniques such public bulletin boards, secure

processors or penalties (via Bitcoin).

Another widely acceptable demarcation of the protocols apart from the traditional hon-

est majority and dishonest majority is in terms of the power of adversary; which can be

active (parties deviate arbitrarily from the protocol) or passive (the protocol steps are cor-

rectly followed but the parties can gossip to glean additional information). The work of

[Cha89, DDWY93, FHM98, HMZ08] overcomes this strict partition and considers the notion

of mixed adversary who can selectively corrupt some parties to be active and some additional

parties to be passive. Such protocols are more suitable for practical scenarios where the ad-

versary may have wider range of corruption options, and is not necessarily restricted to purely

active or passive. This model is particularly preferable for critical systems of financial data

analysis [BTW12], secure auctions [DGK09], federated learning and prediction [MR18], voting

[KMO01, NBK15] and secure aggregation [BIK+17] where input privacy is of paramount impor-

tance and yet, a robust computation (to the extent theoretically feasible) is desirable. In this

direction, we present the first efficient constructions in the four-party (4PC) setting, against a

mixed adversary corrupting one party actively and one party passively.

Since inception, the primary focus of MPC has been on generic constructions with n parties.

Yet, the regime of practical MPC has seen major breakthroughs in the small-party domain: 3-5.

Real-time applications such as Danish Sugar-Beet Auction [BCD+09], statistical and financial

2

data analysis [BTW12], email filtering [LADM14], distributed credential encryption [MRZ15],

Kerberos [AFL+16], privacy-preserving machine learning [MRSV17], efficient MPC-frameworks

such as VIFF [Gei07], Sharemind [BLW08] and ABY-Arithmetic Boolean Yao [MR18] are

crafted for 3 parties with one corruption. The setting of 4, 5 parties with minority corruption

has been explored in [CGMV17, IKKP15, BJPR18]. The most popular setting of 3/4 parties

with 1 active corruption brings to the table some eloquent custom-made tools such as the use of

Yao’s garbled circuits [Yao82] to achieve malicious security [MRZ15, PR18, BJPR18], spending

just 2-3 elements per party in arithmetic circuits [ABF+17] and sure-election of one honest party

as a trusted party in case the adversary strikes [BJPR18, PR18]. These techniques rely on the

adversary not having an accomplice to cause damage. However, the moment adversary has a

collaborator (2 corruptions), these custom-made tools fall apart, thus elevating the challenge

of achieving desired security with real-time efficiency. In this thesis we consider,

(i) Honest Majority model– Efficient MPC for 5 parties (5PC) with 2 corruptions and treat it

with securities of unanimous abort (where either all honest parties obtain the output or

none of them do), fairness and GOD, at an expense that is not too far from the result of

[CGMV17] achieving least desired security of selective abort (the adversary on receiving

the output can arbitrarily choose which of the honest parties get the output).

(ii) Mixed Adversary model– Efficient MPC for 4 parties (4PC), first of their kind, with simul-

taneous 1 active and 1 passive corruptions that promise fairness and GOD. Note that, the

work of [Cle86] shows that the security notions of fairness / GOD can be achieved under

at most an active minority. However, in this adversarial model, we aim to provide strong

security while going beyond strict honest majority and considering an additional (purely)

passive party (apart from active minority) shown to be feasible in [HLM13]. Specifi-

cally, we consider only one passive party as opposed to 2 in 4PC, owing to the feasibility

threshold of [HLM13] which introduces a dynamic trade-off between active and passive

corruptions. In particular, [HLM13] shows that the stronger goals of fairness and GOD

are attainable when 2ta + tp < n where ta denotes active corruptions and tp denotes the

(purely) passive corruptions. This directly rules out the possibility of fair protocols with

1 active and 2 additional passive corruptions in the 4-party setting; implying our setting

of one active and one passive corruption is optimal for fair / GOD protocols.

1.1 Literature

The notable works on MPC for small parties come in two flavours– low-latency and high-

throughput protocols. Relying on garbled circuits, the former offers constant-round protocols

3

that serve better in high-latency networks such as the Internet. The latter, built on secret

sharing tools, aim for low communication (bandwidth), but at the cost of rounds proportional to

the depth of the circuit representing the desired function. These primarily cater to low-latency

networks. We focus on the former category in our work. As efficiency studies considering mixed

adversary is limited and no relevant literature exists for small party domain to the best of our

knowledge, we mainly focus on MPC with small population considering the traditional honest

and dishonest majority below.

The work most relevant to ours (in both 5PC and 4PC) is [CGMV17] that proposes a

5PC protocol achieving the weak notion of selective abort against two malicious corruptions.

Their customization for 5PC resulted in an efficient protocol for actively-secure distributed

garbling of 4 parties, relying solely on the passively-secure scheme of [BLO16], saving 60%

communication than [BLO16] with four corruptions. In the 3-party (3PC), 4-party (4PC)

domain, [MRZ15, IKKP15] gave a 3PC with selective abort. [IKKP15] also gave a 2-round

4PC with GOD. Recently, [BJPR18] improved the state-of-the-art with efficient 3PC and 4PC

achieving fairness and GOD with minimal overhead over [MRZ15]. In the dishonest-majority

setting, the protocol of [CKMZ14] studies 3PC with two active corruptions. Orthogonally,

recent works [AFL+16, ABF+17, FLNW17, CCPS19, EOP+19] in the high-throughput setting

with non-constant rounds, show abort security in 3PC with one corruption. The works of

[CGH+18, NV18, DOS18, CCPS19] additionally include constructs attaining fairness. The

recent work of [GRW18] explores the 4-party setting with one malicious corruption and considers

the stronger security notions of fairness and GOD.

1.2 Our Contribution

In the regime of low-latency protocols which is of interest to us, the widely known works

[MRZ15, IKKP15, CGMV17], despite being in honest majority, trade efficiency for security and

settle for weaker guarantees such as selective abort. With 3, 4 parties, [IKKP15, PR18, BJPR18]

demonstrate that fairness, GOD are feasible goals and present protocols with minimal overhead

over those achieving weaker notions. Our work is yet another attempt in this direction, focused

on the 4-party and 5-party setting. Being efficient and constant-round, our protocols are best

suited for high latency networks such as the Internet. Designed in the Boolean world, our pro-

tocols are built on the semi-honest variant of the distributed garbling scheme of [WRK17] while

leveraging the techniques of seed distribution and Attested Oblivious Transfer of [CGMV17].

The semi-honest variant of the distributed garbling scheme of [WRK17] is superior to the state-

of-the-art semi-honest distributed garbling scheme of [BLO16]. The generality of our protocols

is such that they can accommodate any passively secure distributed garbling scheme as a build-

4

ing block. Our theoretical findings are backed with implementation results with the choice of

benchmark circuits AES-128 and SHA-256. Below we summarize our contributions.

In the traditional honest majority model, we present efficient, constant-round 5PC protocols

tolerating two malicious corruptions that achieve security notions ranging from unanimous abort

to GOD, solely relying on symmetric-key primitives.

5PC with Fairness and Unanimous Abort In a minimal network of pairwise-secure chan-

nels, we achieve fairness and unanimous abort in 5PC with performance almost on par with

[CGMV17], all consuming 8 rounds. On a technical note, building on [CGMV17], we achieve

fairness by ensuring a robust output computation phase even when the adversary chooses not to

participate in the rest of the output computation on learning the output herself. This is realized

using techniques which enforce that, in order to learn the output herself, the adversary must

first aid at least one honest party compute the correct output. Further, we employ techniques

to allow this honest party to release the output and convince about the correctness of the same

to remaining honest parties. Our 5PC with unanimous abort is obtained by simplifying the

fair construct such that the adversary can learn the output all by herself without any aid from

honest parties, but if she helps at least one honest party get the output, then that honest party

aids fellow honest parties to get the output (as in fair construct). Both our 5PC protocols with

fairness and unanimous abort can be extended to n parties under the constraint of t =
√
n

corruptions which was established in [CGMV17].

5PC with GOD Our protocol uses point-to-point channels and a broadcast channel. The

latter is inevitable as we use optimal threshold [CL14]. As broadcast is expensive in real-

time, we limit broadcast communication to be minimal and primarily, independent of circuit,

input and output size. Our implementation uses a software broadcast based on Dolev-Strong

protocol [DS83]. On the technical side, our protocol relies on 2-robust techniques– 4-party

2-private replicated secret sharing (RSS) scheme for input distribution and seed-distribution of

[CGMV17] to ensure each party’s role is emulated by two other parties. These strategies ensure

that each piece of intermediate data is with a 3-party committee and any wrong-doing by at

most 2 parties will ensue conflict. When a conflict occurs, we determine a smaller instance of

a 3PC with at most 1 corruption to compute the output robustly. Our technical innovations

come from maintaining– (A) input privacy, while making two 3-party committees, one formed

by RSS and one by seed-distribution, interact; (B) input consistency across the 3PC and outer

5PC. Due to the use of customized tools for small parties such as RSS, conflict identification

and running a smaller 3PC instance, this protocol cannot be scaled to n-parties while retaining

the goal of efficiency.

5

In the setting of mixed model, where the adversary can corrupt parties both actively and

passively, we present two concrete 4PC constructions, against 1 active and 1 passive corruption

(ta = tp = 1) achieving GOD and fairness.

4PC with GOD and Fairness Our protocols are highly efficient in nature due to the use

of semi-honest primitives to begin with. The setting, though goes beyond the natural honest-

majority, is able to leverage the techniques of passive distributed garbling, attested oblivious

transfer and seed distribution (used in the face of two active corruptions among 5 parties in

[CGMV17]), mainly due to the semi-honest nature of the second corrupt party.

On the technical side, for the 4PC GOD protocol, the prime innovations include– (1) Use

of two 1-out-of-2 semi-honestly secure oblivious transfer (OT) [EGL85] to tackle a malicious

corruption as opposed to one expensive maliciously secure OT for transfer of data and still

preserve input privacy. (2) Identification and exclusion of two conflicted parties (one of which

is guaranteed to be the actively corrupt) and leveraging a passive 2PC based on Yao’s garbled

circuit [Yao82] to complete the computation. (3) Measures to ensure input consistency and pri-

vacy throughout the computation. On the other hand, the 4PC fair protocol is a simplification

of the 4PC GOD and we allow parties to abort before any party obtains the output since it is

acceptable for the execution to abort in such case owing to the weaker security guarantee. The

prime innovation involves ensuring the robust computation of output by honest parties once

the corrupt evaluator has obtained the output. This is done by denying the evaluator of the

output till the result of circuit evaluation is communicated by the evaluator. Moreover as in

4PC GOD protocol, semi-honestly secure OTs are used to improve efficiency.

Empirical Comparison. A consolidated view of our results is presented below outlining the

security achieved, rounds used, use of broadcast (BC) and empirical values. The values indicate

the overhead in maximum runtime latency in LAN, WAN and total communication (CC) over

[CGMV17] that offers selective abort in 8 rounds. The range is composed over the choice of

circuits: AES-128 and SHA-256 and the left value in the range corresponds to AES, while the

right value indicates SHA. AES is a smaller circuit, with 33616 gates, compared to 236112 gates

of SHA. ((g) for a value indicates gain over [CGMV17]. The worst case run of 5PC with GOD

is calculated plugging in the state of the art robust 3PC [BJPR18] and the worst case 4PC

GOD is calculated plugging in [Yao82] with the state of the art optimization of [ZRE15]).

6

Security BC LAN (ms) WAN (s) CC (MB)

unanimous abort 7 0.65-2.87 0.2-0.01 0.16-0.09

5PC with fairness 7 1.05-10.95 0.28-0.03 0.2-0.13

5PC with GOD (honest run) 3 [CL14] 3.94-4.92 1.16-0.82 0.17-0.07

5PC with GOD (worst case) 3 [CL14] 6.33-19.42 2.26-2.33 0.49-6.22

4PC with fairness 7 2.93(g)-23.14(g) 0.37(g)-0.99(g) 12.83(g)-132.36(g)

4PC with GOD (honest run) 7 2.54(g) -17.38(g) 0.01(g)-0.54(g) 12.77(g)-132.24(g)

4PC with GOD (worst case) 7 1.14(g)-1.9(g) 0.23-0.29(g) 12.47(g)-129.24(g)

All protocols barring the ones with GOD maintain the same circuit-dependent communi-

cation as [CGMV17]. The GOD protocols cost two circuit-dependent communication, one in

the outer protocol (5PC/4PC) and one in smaller instance (3PC/2PC). This is reflected in the

cost of worst case run of our GOD protocols. For all other constructions in 5PC, the overhead

comes from extra communication (commitments to be precise) that is dependent only on the

input, output size. Since SHA is a bigger circuit, its absolute overheads for 5PC are more than

AES in most cases but the percentage overheads are better for SHA than AES. The factor of

additional communication overhead incurred by our 5PC protocols for SHA when compared to

AES circuit is far less than the factor of increase in the total communication for SHA over AES

in [CGMV17]. This indicates that the efficiency of our protocols improves for larger circuits.

The saving for our 4PC protocols over [CGMV17] is due to the difference in the number of par-

ties. Nevertheless, our 4PC protocols achieve stronger security of fairness and GOD while going

beyond strict honest majority as opposed to the weakest security of selective abort achieved by

[CGMV17] in honest majority.

1.3 Outline of this Thesis

We begin the thesis starts by introducing the basics of MPC and a high-level overview of the

preliminaries most relevant to our work. This is followed by the protocols and their security

proofs. We divide the thesis into two parts: first, 5PC with honest majority appearing in

Chapters 4,5,6 and second, 4PC with mixed adversary appearing in Chapter 7,8. We now

present the thesis outline.

• Chapter 2: This chapter begins with the discussion of the secuirty model, notations

used and the formal functionalities of the security notions that are achieved in our work,

followed by the quick overview of preliminary tools and primitives used throughout the

thesis.

• Chapter 3: In this chapter, we describe in detail, the basic efficient building blocks, the

7

distributed garbled circuit construction and evaluation technique for five party and four

party protocols.

• Chapter 4: In this chapter, we begin with the honest majority model in 5PC and present

our 5PC with fairness. We first give a technical overview of our 5PC with fairness protocol.

We then move onto a formal description of our protocol, followed by a rigorous security

proof.

• Chapter 5: In this chapter of 5PC with honest majority, we first give a technical overview

of our 5PC with unanimous abort protocol. We then move onto a formal description of

our protocol, followed by the security proof.

• Chapter 6: In this chapter of 5PC with honest majority, we first give a technical overview

of our 5PC with guaranteed output delivery protocol. We then move onto a formal

description of our protocol, followed by a rigorous security proof.

• Chapter 7: In this chapter, we begin with the mixed adversary in 4PC and present our

4PC with fairness. We first give a technical overview of our 4PC with fairness protocol.

We then move onto a formal description of our protocol, followed by a rigorous security

proof.

• Chapter 8: In this chapter of 4PC with mixed adversary, we first give a technical

overview of our 4PC with guaranteed output delivery protocol. We then move onto a

formal description of our protocol, followed by a rigorous security proof.

• Chapter 9: We discuss the efficiency of our 4PC and 5PC protocols compared to their

respective state-of-the-art elaborately in this chapter.

• Chapter 10: We conclude with summary of the thesis and possible future directions to

our work.

8

Chapter 2

Preliminaries

2.1 Security Model and Notations

We consider a set of 5 parties P = {P1, P2, P3, P4, P5}, where each pair is connected by a pair-

wise secure and authentic channel. The presence of a broadcast channel is assumed only for

the 5PC GOD protocol where it is known to be necessary [CL14]. We model each party as a

non-uniform probabilistic polynomial time (PPT) interactive Turing Machine. We consider a

static security model with honest majority, where a PPT adversary A can corrupt at most 2

parties at the onset of protocol. Adversary A can be malicious in 5PC setting i.e., the corrupt

parties can arbitrarily deviate from the protocol specification and can be both malicious and

passive (honest but curious) in the 4PC setting. The computational security parameter is

denoted by κ. A function negl(κ) is said to be negligible in κ if for every positive polynomial

p(·), there exists an n0 such that for all n > n0, it holds that negl(n) < 1
p(n)

. A probability

ensemble X = {X(a, n)}a∈{0,1}∗;n∈N is an infinite sequence of random variables indexed by a

and n ∈ N. Two ensembles X = {X(a, n)}a∈{0,1}∗;n∈N and Y = {Y (a, n)}a∈{0,1}∗;n∈N are said to

be computationally indistinguishable, denoted by X
c
≈ Y , if for every PPT algorithm D, there

exists a negligible function negl(.) such that for every a ∈ {0, 1}∗ and n ∈ N, |Pr[D(X(a, n)) =

1]− Pr[D(Y (a, n)) = 1]| ≤ negl(n).

The security of our protocols is proven based on the standard real/ideal world paradigm

i.e. it is examined by comparing the adversary’s behaviour in a real execution to that of an

ideal execution considered to be secure by definition (in presence of an incorruptible trusted

third party (TTP)). In an ideal execution, each participating party sends its input to the TTP

over a perfectly secure channel, the TTP computes the function using these inputs and sends

respective output to each party. Informally, a protocol is said to be secure if an adversary’s

behaviour in the real protocol (where no TTP exists) can be simulated in the above described

9

ideal computation. The formal definitions of the functionalities used to achieve the security

notions of GOD, fairness and unanimous abort for a general polynomial function f , appear in

Figs 2.1, 2.2, 2.3 respectively. These are motivated from [CL14, GLS15].

Each honest party Pi (i ∈ [n]) sends its input xi to the functionality. Corrupted parties may send

arbitrary inputs.

Input: On message (Input, xi) from a party Pi (i ∈ [n]), do the following: if (Input, ∗) message

was already received from Pi, then ignore. Else record x′i = xi internally. If x′i is outside of the

domain for Pi, set x′i to be some predetermined default value.

Output: Compute y = f(x′1, x
′
2, x
′
3, ..., x

′
n) and send (Output, y) to party Pi for every i ∈ [n].

Functionality Fgod

Figure 2.1: Ideal Functionality Fgod

Each honest party Pi (i ∈ [n]) sends its input xi to the functionality. Corrupted parties may send

arbitrary inputs as instructed by the adversary. When sending the inputs to the functionality, the

adversary is allowed to send a special abort command as well.

Input: On message (Input, xi) from Pi, do the following: if (Input, ∗) message was received from

Pi, then ignore. Otherwise record x′i = xi internally. If x′i is outside of the domain for Pi, consider

x′i = abort.

Output: If there exists i ∈ [n] such that x′i = abort, send (Output,⊥) to all the parties. Else,

send (Output, y) to party Pi for every i ∈ [n], where y = f(x′1, x
′
2, x
′
3, ..., x

′
n).

Functionality Ffair

Figure 2.2: Ideal Functionality Ffair

Each honest party Pi (i ∈ [n]) sends its input xi to the functionality. Corrupted parties may send

arbitrary inputs as instructed by the adversary. When sending the inputs to the trusted party, the

adversary is allowed to send a special abort command as well.

Input: On message (Input, xi) from Pi, do the following: if (Input, ∗) message was received from

Functionality FuAbort

10

Pi, then ignore. Otherwise record x′i = xi internally. If x′i is outside of the domain for Pi, consider

x′i = abort.

Output to the adversary: If there exists i ∈ [n] such that x′i = abort, send (Output,⊥) to

all the parties. Else, send (Output, y) to the adversary, where y = f(x′1, x
′
2, x
′
3, ..., x

′
n).

Output to honest parties: Receive either continue or abort from the adversary. In case of

continue, send y to all honest parties. In case of abort send ⊥ to all honest parties.

Figure 2.3: Ideal Functionality FuAbort

In the next section, we discuss the primitives that we use for our constructions.

2.2 Primitives

2.2.1 Garbling Scheme

We follow the circuit garbling approach to perform secure computation of a function formalized

as a primitive by Bellare et al [BHR12]. A garbling scheme G is characterized by a tuple of

four PPT algorithms G = (Gb,En,Ev,De) defined as follows:

• Gb(1κ, C), transforms the circuit to be garbled C into a triplet (C, e, d) where C is the

garbled circuit, e is input encoding information and d is output decoding information.

• En(e, x) maps the input x to garbled input X using input encoding information e.

• Ev(C,X) produces garbled output Y by evaluating the garbled circuit C on garbled input

X.

• De(d,Y) decodes garbled output Y to clear output y using decoding information d.

We additionally use the property of a projective garbling scheme required in our protocols.

A circuit C : {0, 1}n → {0, 1}m on garbling projectively generates encoding information, e =

(e0i , e
1
i)i∈[n] and the encoded input corresponds to X = (exii)i∈[n] = En(x, e). We formally define

the properties desired of our garbling scheme below.

2.2.1.1 Properties of Garbling Scheme

Definition 2.2.1. A projective garbling scheme is one where while garbling a circuit C :

{0, 1}n → {0, 1}m, the e has the form e = (e0i , e
1
i)i∈[n], and X for x = (xi)i∈[n] can be interpreted

as X = En(x, e) = (exii)i∈[n].

Definition 2.2.2. A garbling scheme G = (Gb,En,Ev,De) is correct if for all input lengths

n ≤ poly(κ), circuit C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n,

Pr[De(Ev(C, En(x, e)), d) 6= C(x) : (C, e, d)← Gb(1κ, C)] ≤ negl(κ)

11

Definition 2.2.3. A garbling scheme G is private if for all n ≤ poly(κ), circuit C : {0, 1}n →
{0, 1}m, there exists a PPT simulator Spriv such that for all x ∈ {0, 1}n, for all PPT adversary

A the following distributions are computationally indistinguishable.

- real(C, x): run (C, e, d)← Gb(1κ, C) and output (C,En(x, e), d)

- ideal(C,C(x)): output (C′,X, d′)← Spriv(1κ, C, C(x))

Definition 2.2.4. A garbling scheme G is authentic if for all n ≤ poly(κ), circuit C : {0, 1}n →
{0, 1}m, input x ∈ {0, 1}n and for all PPT adversary A, the following probability is negl(κ).

Pr

(
Ŷ 6= Ev(C,X)

∧ De(Ŷ, d) 6= ⊥
:

X = En(x, e),(C, e, d)← Gb(κ,C),

Ŷ← A(C,X)

)

2.2.2 Distributed Garbled Circuit

[BMR90, BLO16] In multiparty setting, it is necessary for all parties to participate in the con-

struction of garbled circuit to prevent any coalition of corrupt parties from learning information

about the value being computed. In the computation of distributed garbled circuit (DGC) with

n parties, let n − 1 {P1, ..., Pn−1} parties be the garblers and Pn be the evaluator. Each wire

w is associated with mask λw ∈ {0, 1}.Pi samples its mask share λiw s.t ⊕i∈[n−1]λiw = λw. The

technique of point and permute is used to hide the outputs of intermediate gates and λw acts

as the permutation bit for each wire w. Every Pi chooses two keys kiw,0, k
i
w,1 = kiw,0 ⊕ ∆i per

wire where ∆i is the global offset of Pi. Each wire is thus defined with a set of n − 1 keys for

0-label and n− 1 keys for 1-label. The property of free-XOR allows the output key and mask

of an XOR gate to be set equal to the XOR of the input keys and masks. Construction of AND

gate ciphertexts requires interaction amongst the garblers and thus is realized by all garblers

running a secure MPC protocol to compute the distributed garbled circuit.

2.2.3 Non-Interactive Commitment Schemes

A Non-Interactive Commitment Scheme (NICOM) is characterized by two PPT algorithms

(Com,Open) for the purpose of commitment and opening phase defined as follows:

– Com outputs commitment c and corresponding opening information o, given a security pa-

rameter κ, a common public parameter pp, message x and random coins r.

– Open outputs the message x given κ, pp, a commitment c and corresponding opening infor-

mation o.

12

The properties to be satisfied by a commitment scheme are:

– Correctness: For all values of public parameter pp, message x ∈ M and randomness r ∈ R,

if (c, o)← Com(x; r) then Open(c, o) = x.

– Hiding: For all PPT adversaries A, all values of pp, and all x, x
′ ∈ M, the difference

|Pr(c,o)←Com(x)[A(c) = 1]− Pr(c,o)←Com(x′)[A(c) = 1]| is negligible.

– Binding : A PPT adversary A outputs (c, o, o
′
) such that Open(c, o) 6= Open(c, o

′
) and ⊥ /∈

{Open(c, o),Open(c, o
′
)} with negligible probability over uniform choice of pp and random

coins of A.

We use instantiations based on injective one-way functions that ensure a strong binding even

if the public parameter is arbitrarily chosen by adversary.

2.2.3.1 Instantiations

In the random oracle model, the commitment scheme is:

– Com(x; r) sets c = H(x||r), o = (x||r) where c, o refer to the commitment and opening

respectively. The pp can be empty.

– Open(c, o = (x||r)) returns x if H(o) = c and ⊥ otherwise.

For the purpose of all empirical results, the random oracle can be instantiated using a

hash function. Alternatively, based on one-way permutation, we present an instantiation of

NICOM(Com, Open) used theoretically in our protocols as: Let f : {0, 1}n → {0, 1}n be a

one-way permutation and h : {0, 1}n → {0, 1} be a hard-core predicate for f . Then the bit-

commitment scheme for x is:

– Com(x, r) sets c = (f(r), x⊕ h(r)) where r ∈R {0, 1}n and o = (x||r).

– Open(c, o = (x||r)) returns x if c = (f(r), x⊕ h(r)), else ⊥.

We provide bit and string based instantiations for NICOM(Com,Open) [CGMV17] based

on block ciphers that are secure in the ideal cipher model [Sha49, HKT11, Bla06] that are used

in our AOT protocols for efficiency. The bit commitment scheme is as follows:

– Com(b, r) sets c = Fk(r)⊕ r ⊕ bn where bn = ||i∈[n]b and F : {0, 1}n × {0, 1}n → {0, 1}n is a

random permutation parametrized by key k. Also, o = (r||b).

– Open(c, o = (r||b)) returns b if c = Fk(r)⊕ r ⊕ bn and ⊥ otherwise.

13

However, this bit commitment scheme is not secure for string commitments. Hence we describe

the following secure instantiation:

– Com(m, r) sets c = Fk(r) ⊕ r ⊕ Fk(m) ⊕m s.t F : {0, 1}n × {0, 1}n → {0, 1}n is a random

permutation parametrized by key k and o = (r||m).

– Open(c, o = (r||m)) returns b if c = Fk(r)⊕ r ⊕ Fk(m)⊕m, else ⊥.

2.2.4 Equivocal Non-Interactive Commitment Schemes

For our fair protocols, we need an equivocal NICOM (eNICOM). An eNICOM is defined with

four PPT algorithms (eCom, eOpen, eGen,Equiv). eCom, eOpen are defined as in NICOM and

eGen,Equiv are used to provide equivocation. Equiv enables a dummy commitment to be opened

to any desired message with the help of a trapdoor output by eGen. These algorithms are defined

as follows:

– eGen(1κ) returns a public parameter and a corresponding trapdoor (epp, t). The parameter

epp is used by both eCom and eOpen and trapdoor t is used for equivocation.

– Equiv(c, o′, x, t) returns an o s.t x ← eOpen(epp, c, o) when invoked on commitment c, its

opening o′, the desired message x (to which equivocation is required) and the trapdoor t.

An eNICOM should satisfy the following properties:

– Correctness: For all pairs of public parameter and trapdoor, (epp, t) ← eGen(1κ), message

x ∈M and randomness r ∈ R, if (c, o)← eCom(x; r) then eOpen(c, o) = x.

– Hiding: For all (epp, t)← eGen(1κ), all PPT adversaries A and all x, x′ ∈M, the difference

|Pr(c,o)←eCom(x)[A(c, o) = 1]− Pr(c,o)←eCom(x),o←Equiv(c,x,t)A(c, o) = 1| is negligible.

– Binding: For all (epp, t) ← eGen(1κ), a PPT adversary A outputs (c, o, o
′
) s.t eOpen(c, o) 6=

eOpen(c, o
′
) and ⊥ /∈ {eOpen(c, o), eOpen(c, o

′
)} with negligible probability.

2.2.4.1 Instantiations

We can use the equivocal bit commitment scheme of [CIO98] in the standard model, based on

Naor’s commitment scheme [Nao91] for bits. Let G : {0, 1}n → {0, 1}4n be a pseudorandom

generator. The commitment scheme for bit b used in the 5PC protocols is:

– eGen(1κ) sets (epp, t1, t2, t3, t4) = ((σ,G(r1),G(r2),G(r3),G(r4)), r1, r2, r3, r4), where σ = G(r1)⊕
G(r2)⊕ G(r3)⊕ G(r4). t = ||i∈[4]ti is the trapdoor.

14

– eCom(x; r) sets c = G(s1) ⊕ G(s2) if x = 0, else c = G(s1) ⊕ G(s2) ⊕ σ and sets o = (x||r)
where r = s1||s2.

– eOpen(c, o = (x||r)) returns x if c = G(s1) ⊕ G(s2) ⊕ x · σ (where (·) denotes multiplication

by a constant), else returns ⊥.

– Equiv(c = G(r1) ⊕ G(r2),⊥, x, (t1, t2, t3, t4)) returns o = (x||r) where r = t1||t2 if x = 0, else

r = t3||t4. The entire trapdoor t = (t1, t2, t3, t4) is required for equivocation.

For 4PC protocols, the eNICOM instantiation given above is modified as follows:

- (epp, t) ← eGen(1κ) where trapdoor t = t0||t1 and public parameter epp = (σ,G(t0), G(t1))

s.t σ = G(t0)⊕G(t1).

- eCom(epp, x) samples randomness r such that r and sets c = G(r) if x = 0, else sets c =

G(r)⊕ σ. It sets opening information x = (x||r).

- eOpen(epp, c, o = x||r) returns x if c = G(r) ⊕ x · σ (· denotes multiplication by bit) , else

returns ⊥.

- Equiv(c = G(t0), x, t = t0||t1) returns o = x||t0 if x = 0, else returns o = x||t1.

For empirical purposes, we rely on the random oracle based scheme presented before with

the property of equivocation and is realized using a hash function.

2.2.5 Extractable Commitment Schemes

In this section, we consider a 3-round extractable commitment protocol (C,R). We now define

extractable commitments taken verbatim from [PW09]:

Definition 2.2.5. Let (C,R) be a statistically binding commitment scheme. We say that (C,R)

is an extractable commitment scheme if there exists an expected polynomial-time probabilistic

oracle machine (the extractor) E that given oracle access to any PPT cheating sender C∗ outputs

a pair (τ, σ∗) s.t

- (simulation) τ is identically distributed to the view of C∗ at the end of interacting with an

honest receiver in the commit phase

- (extraction) the probability that τ is accepting and σ∗ = ⊥ is negligible.

- (binding) if σ∗ 6= ⊥, then it is statistically impossible to open τ to any value other than σ∗.

15

2.2.5.1 Instantiation

An instantiation of an extractable commitment (ExtCom,ExtOpen) appears in Fig 2.4. We

refer to [PW09] for details of proof (implicit in [PRS02, Ros04]) that ExtCom is an extractable

commitment scheme.

Commitment phase ExtCom:

Let σ ← {0, 1}m denote the input of S (committer / sender)

Round 1: S commits (using Ncom Com) to k pairs of strings (v01, v
1
1) . . . (v0n, v

1
n) where (v0i , v

1
i) =

(ηi, σ ⊕ ηi) and η1 . . . ηk are random strings in {0, 1}m.

Round 2: R sends challenge e = (e1 . . . ek).

Round 3: S opens the commitments to ve11 . . . vekk . R checks if the openings are valid.

Decommitment Phase ExtOpen:

- S sends σ and opens the commitments to all k pairs of strings.

- R checks that all the openings are valid and also that σ = v01 ⊕ v11 = . . . v0k ⊕ v1k.

Protocol ExtCom,ExtOpen

Figure 2.4: Extractable Commitment Scheme

2.2.6 Secret Sharing Schemes

We use additive sharing and replicated secret sharing (RSS) [CDI05, ISN89] for our construc-

tions. For a value x, its gth additive share is noted as xg. We now recall RSS. Consider a secret

x, of some finite field F to be shared among n parties s.t only > t parties can reconstruct x.

A maximal unqualified set is the set of t parties who together cannot reconstruct the secret.

A dealer with secret x splits it into additive shares s.t each share corresponds to one maximal

unqualified set Tl, l ∈ {1, ...,
(
n
t

)
}. Formally, x =

∑
l∈[(nt)]

xl. Each share xl is associated with

the unqualified set Tl (lexicographically wlog) and additive shares are random s.t they sum to

x. Each party Pi, i ∈ [n] gets all xl for Pi /∈ Tl. This ensures that t parties alone of any Tl

cannot retrieve the secret x. Specifically in our 5PC protocols, we use a 4-party RSS with t = 2

private against 2 corruptions where, each party gets 3 shares and each share is held by 3 parties

including the dealer. Reconstruction is done by combining the shares held by any 3 parties.

Given only shares of any two parties {Pi, Pj}, x remains private as xl associated with Tl where

Tl = {Pi, Pj} is missing from the view. Both additive secret sharing and RSS are instantiated

over F2 for our protocols.

16

2.2.7 Collision Resistant Hash

[RS04] Consider a hash function family H = K × L → Y. The hash function H is said to be

collision resistant if for all probabilistic polynomial-time adversaries A, given the description of

Hk where k ∈R K, there exists a negligible function negl() such that Pr[(x1, x2)← A(k) : (x1 6=
x2) ∧ Hk(x1) = Hk(x2)] ≤ negl(κ), where m = poly(κ) and x1, x2 ∈R {0, 1}m.

2.2.8 Oblivious Transfer

Oblivious transfer (OT) [EGL85] is one of the most fundamental building blocks in secure

computation. OT is a protocol between two parties: a sender and a receiver. Informally, OT

protocol is a type of protocol in which a sender transfers one of potentially many pieces of

information to a receiver, but remains oblivious as to what piece (if any) has been transferred.

For oblivious transfer, we denote the sender by S and the receiver by R. In a 1-out-of-2 OT

on ` bit strings, S holds two inputs x0, x1, each from {0, 1}` and R holds a choice bit b. The

output to R is xb and R remains unaware about x1−b. The sender S remains oblivious as to

which of x0, x1 has been received by R. The formal functionality is presented in Fig 2.5.

Choose: On input (rec, σ) from R where σ ∈ {0, 1}; if no message of the form (rec, σ) has been

recorded in memory, store (rec, σ) and send rec to S.

Transfer: On input (sen, (x0, x1)) from S with x0, x1 ∈ {0, 1}n, if no message of the form (sen,

(x0, x1)) is recorded and a message of the form (rec, σ) is stored, send (sent, xσ) to R and sent

to S.

Functionality FOT

Figure 2.5: Ideal Functionality for OT FOT.

17

Chapter 3

Distributed Garbling and More

At the heart of our 5PC and 4PC lie a 4-party (4DG) and 3-party (3DG) distributed garbling

(DG) respectively and a matching evaluation protocol tolerating arbitrary semi-honest corrup-

tions. For better understanding, we first concretely describe the 4-party garbling scheme and

the matching evaluation protocol. Then, we provide details to trivially scale down the 4DG to

3DG.

Garbling is done distributively amongst the garblers {P1, P2, P3, P4} and P5 enacts the sole

evaluator. Our distributed garbling scheme is a direct simplification of the state-of-the-art

actively-secure distributed garbling scheme of [WRK17]. The semi-honest scheme when com-

bined with party-emulation idea of [CGMV17], achieves malicious security against 2 corruptions.

Specifically, the role of each garbler in the underlying semi-honest 4DG scheme is also enacted

by two other fellow garblers. This emulation is achieved via a unique seed distribution (SD)

technique that ensures that the seed of a garbler is consistent with two other garblers and all

the needed randomness for 4DG is generated from the seed. This helps to detect any wrong-

doing by at most two garblers. Interestingly, the seed distribution can further be leveraged to

replace the computationally-heavy public-key primitive Oblivious Transfer (OT) in [WRK17]

with an inexpensive symmetric-key based alternative called attested OT [CGMV17]. While all

our protocols for 5PC can be realized with any underlying passively-secure garbling scheme

when used with SD and attested OT, we choose the current construction for efficiency. We

start with the building blocks of 5PC.

18

3.1 Building Blocks for 5PC

3.1.1 Seed Distribution

The starting point of our 5PC protocols is a semi-honest distributed garbling with {P1, P2, P3, P4}
as garblers and P5 as evaluator. The final distributed garbled circuit (DGC) is denoted as

GC = GC1||GC2||GC3||GC4. In distributed garbling, all randomness required by a garbler Pi

is generated using a random seed si. The SD technique involves distributing the seeds among 4

garblers s.t the seed si generated by Pi is held by two other garblers and no single garbler has

the knowledge of all 4 seeds. Consequently, any data computed based on si is done identically

by 3 parties who own si and thus, can be compared for correctness. With at least one honest

party in this team of 3 parties, any wrong-doing by at most two parties is detected. The SD

functionality FS is depicted in Fig 3.1 and is realized differently in each of our protocols based

on the required security guarantee (fairness, unanimous abort or GOD). We use Sg to denote

the set of indices of parties who hold sg as well as the set of indices of the seeds held by party

Pg. Note that both these sets are identical– for instance, S1 = {1, 3, 4} indicates that parties

P1, P3, P4 hold s1. S1 also indicates that P1 holds s1, s3, s4. Thus, the fragment GC1 (analogously

GC2, GC3 and GC4) are constructed by three parties P1, P3, P4 who hold seed s1.

Let Si, i ∈ [4] be S1 = {1, 3, 4}, S2 = {2, 3, 4}, S3 = {1, 2, 3}, S4 = {1, 2, 4}. Let H ⊂ P,C ⊂ P be

the set of indices of Honest and Corrupt parties respectively. Each honest party Pg, g ∈ H) sends

its input (Input, ∗) to the functionality. Corrupted parties Pj , j ∈ C may send the trusted party

(Input, sj/⊥) as instructed by the adversary.

On message (Input, ∗) from garbler Pg, g ∈ H and (Input, {sj/⊥}j∈C) from adversary, sample sg

on behalf of every honest Pg. Send each seed si, i ∈ [4] (or ⊥ as given by adversary) to each party

in Si.

Functionality FS

Figure 3.1: Ideal Functionality FS

3.1.2 Attested Oblivious Transfer

The Attested Oblivious Transfer (AOT) protocol [CGMV17] can be viewed as an OT between

a sender and a receiver with additional help from two other parties called “attesters”. These

“attesters” aid in ensuring correctness of the OT protocol by attesting inputs of the sender and

the receiver, thus tolerating 2 active corruptions. AOT functionality is recalled in Fig 3.2.

19

Ps acts as sender, Pr acts as receiver and Pa1 , Pa2 act as attesters.

– On input message (Sen, m0, m1) from Ps, record (m0, m1) and send (Sen, m0, m1) to Pa1 and

Pa2 and Sen to the adversary.

– On input message (Rec, b) from Pr, where b ∈ {0, 1}, record b and send (Rec, b) to Pa1 and Pa2

and Rec to the adversary.

– On input message (A, mj
0, m

j
1, b

j) from Paj , j ∈ [2], if (Sen, sid, ∗, ∗) and (Rec, ∗) have been

recorded, ignore this message; otherwise, record (m
aj
0 , m

aj
1 , baj) and send A to the adversary.

– On input message Output from the adversary, if (m0,m1, b) 6= (ma1
0 ,m

a1
1 , b

a1) or (m0,m1, b) 6=
(ma2

0 ,m
a2
1 , ba2), send (Output,⊥) to Pr; else send (Output,mb) to Pr.

– On input message abort from the adversary, send (Output,⊥) to Pr.

Functionality F4AOT

Figure 3.2: Ideal Functionality F4AOT(Ps, Pr, {Pa1 , Pa2}) for 4DG

For the attested OT functionality F4AOT defined in Fig 3.2, we now provide a standalone

instantiation. The sender of the AOT, Ps having inputs m0,m1 samples random r0, r1 ←
{0, 1}κ and generates the commitments: (c0, o0) ← Com(pp,m0), (c1, o1) ← Com(pp,m1). Ps

sends (m0, r0,m1, r1) to the attesters and (pp, c0, c1) to the receiver. The receiver Pr sends the

choice bit b to the attesters. The attesters exchange the copy of messages received from Ps, Pr

amongst themselves to verify correctness. If verified, they use (m0, r0,m1, r1) to compute the

commitments (pp, c0, c1) and send the same to the receiver. One of the attesters, say Pa1 also

sends the opening corresponding to cb to Pr. If the verification fails, the attesters send ⊥ to

Pr. The receiver Pr then checks if all the copies of commitments received are the same. If not,

aborts. Else, Pr uses the opening of cb to obtain mb.

3.1.3 The semi-honest 4DG and Evaluation

A distributed garbled circuit (DGC) is prepared together by all garblers in a distributed manner.

Each wire w in our 4DG scheme is associated with a mask bit λw ∈ {0, 1} and each garbler

Pg holds a share λgw s.t λw = ⊕g∈[4]λgw. Each Pg samples two keys kgw,0, k
g
w,1 = kgw,0 ⊕ ∆g for

each wire w, with global offset ∆g. Thus, each super-key of a wire has 4 keys contributed by 4

garblers.

Definition 3.1.1. A super-key of a wire is a set of 4 keys, each contributed by one garbler i.e.,

{kgw,0}g∈[4] indicates the 0-super-key on wire w and {kgw,1}g∈[4] indicates the 1-super-key on w.

Free-XOR is enabled by setting the mask and keys for the output wire of an XOR gate

as the XOR of masks and keys of its input wires. A garbled AND gate, on the other hand,

comprises of 4 super-ciphertexts (super-CT), one for each row of truth table. A super-CT is

20

made up of 4 CTs, each of which is contributed by one garbler. Each CT hides a share of a

super-key on the output wire such that during evaluation, 4 decrypted messages of a super-CT

together would give the desired super-key on the output wire. In order to hide the actual

output of intermediate gates from an evaluator, we enable point and permute. The mask bit

λw acts as the permutation bit for wire w. Thus, for an AND gate with input wires u, v,

output wire w and their corresponding masks λu, λv, λw, if xu, xv denote the actual values on

wires u, v respectively, then the evaluator sees super-keys kgu,bu , kgv,bv where bu, bv defined as

(bu = xu ⊕ λu), (bv = xv ⊕ λv) denote the blinded bits. The evaluator then decrypts the super-

CT positioned at row (bu, bv) and obtains the output super-key {kgw,0⊕∆g(xuxv⊕λw)}g∈[4] that

corresponds to the blinded (masked) bit xuxv ⊕ λw on wire w.

Definition 3.1.2. A blinded or masked bit of a bit xw on a wire w is the XOR of xw with

mask bit λw on wire w i.e. bw = xw ⊕ λw.

Interpreting row (bu, bv) as γ = 2bu+bv+1 and recasting the above, we see that the super-CT

at row γ for γ ∈ [4] encrypts the super-key {kgw,0⊕∆g((bu⊕λu)(bv⊕λv)⊕λw)}g∈[4]. In 4DG, the

super-CTs as above for an AND gate are prepared distributedly amongst the garblers, using the

additive shares of the mask bits and keys held by each garbler corresponding to the input and

output wires of the gate. We achieve this in a two-step process. First, we generate the additive

sharing of each key belonging to the super-key to be encrypted in each row. Second, for each

row, a garbler encrypts the additive shares it holds of each key of the corresponding super-key

(obtained in the first step) in the CT that it contributes for the super-CT of that row. A CT

for row γ has the format of one-time pad where the pad is calculated using a double-keyed PRF

with keys corresponding to row γ.

Definition 3.1.3. A super-ciphertext for a given row γ (γ = 2bu + bv + 1), of an AND gate

with input wires u, v, output wire w, is a set of 4 CTs, {cgγ}g∈[4], where Pg contributes cgγ that

encrypts its additive share of each key in {kgw,0 ⊕∆g((bu ⊕ λu)(bv ⊕ λv)⊕ λw)}g∈[4].

To compute the additive sharing of super-key {kgw,0 ⊕∆g((bu ⊕ λu)(bv ⊕ λv)⊕ λw)}g∈[4] for

all rows (i.e. all possibilities of (bu, bv)), we compute the additive sharing of the following in

sequence, starting with the additive shares of λu, λv, λw: (A) λuλv (for row 1 i.e. γ = 1 and

bu = bv = 0), λuλv (for γ = 2 and bu = 0, bv = 1), λuλv (for γ = 3 and bu = 1, bv = 0) and

λu λv (for γ = 4 and bu = 1, bv = 1); (B) λ1 = λuλv⊕λw, λ2 = λuλv⊕λw, λ3 = λuλv⊕λw, λ4 =

λu λv ⊕ λw; (C) ∆gλγ for all g, γ ∈ [4] and lastly (D) kgw,0⊕∆gλγ for all g, γ ∈ [4]. (B) and (D)

require linear operations, thus can be done locally by each garbler. However, for (A) and (C),

additive sharing of a product needs to be computed which requires interaction among garblers.

21

This is done via OTs, which we explain below. Also, in (A), it is known how to tweak shares

of λuλv locally to get the shares of remaining products [BLO16], thus computing the sharing of

λuλv alone suffices. We now explain how the additive sharing of 1) λuλv and 2) ∆gλγ for any

γ ∈ [4] is computed.

To compute 1), each garbler Pg locally computes λguλ
g
v. In addition, each pair of parties

Pg, Pg′ for g 6= g′ run an OT with Pg as sender, holding (r, r⊕λgu) and Pg′ as receiver, holding λg
′
v

to generate 2-out-of-2 additive sharing of λguλ
g′
v . Pg outputs its share as r denoted by [λguλ

g′
v]S and

Pg′ outputs its share as the OT output r⊕λguλg
′
v denoted by [λguλ

g′
v]R (We use [·]S, [·]R to denote

the shares of sender and receiver of OT respectively). Each garbler Pg now computes its share,

λguv, of the product λuv = λuλv as the sum of its local product λguλ
g
v and the shares obtained from

OTs either as a sender or as a receiver i.e., λguv = λguλ
g
v⊕(⊕g 6=g′ [λguλg

′
v]S)⊕(⊕g 6=g′ [λg

′
u λ

g
v]R). Next,

to compute 2), where ∆g belongs to Pg and ∆gλγ = ∆g(λ1γ⊕λ2γ⊕λ3γ⊕λ4γ), each garbler Pg first

locally computes ∆gλgγ and then for each cross-term ∆gλg
′
γ , g 6= g′, Pg acts as a sender with each

Pg′ as receiver in an OT to get their respective shares [∆gλg
′
γ]S and [∆gλg

′
γ]R. Finally, the share

of Pg for the product ∆gλγ is set to the following sum: ∆gλgγ⊕(⊕g′ 6=g[∆gλg
′
γ]S), while the share of

each Pg′ is set to [∆gλg
′
γ]R. We now present the functionality FGC (Fig 3.3). Partitioning the set

of all super-CTs into its 4 constituent CTs, we can view the GC as GC1 || GC2 || GC3 || GC4

where gth partition is contributed by garbler Pg.

Let C be the circuit, κ, the security parameter and F, a double-keyed PRF [BLO16]. Each garbler

Pg prepares the private input set ISetg consisting of:

– An offset string ∆g ∈ {0, 1}κ.

– A share λgw ∈ {0, 1} of the masking bit for each wire w, barring the output wire of XOR gates.

– Keys kgw,0, k
g
w,1 ∈ {0, 1}κ for every wire w s.t kgw,1 = kgw,0 ⊕∆g,except the output wire of XOR

gates.

Input: On receiving message (Input, ISetg) from each garbler Pg, g ∈ [4], compute super-keys and

mask bits for all wires (those for XOR output wires are computed as per free-XOR). For every

AND gate with input wires u, v; output wire w, the gth CT in the γth super-CT for g, γ ∈ [4] is

computed as follows. For a, b ∈ {0, 1}, let γ = 2a + b + 1, λ1 = λuλv ⊕ λw, λ2 = λuλv ⊕ λw, λ3 =

λuλv ⊕ λw, λ4 = λu λv ⊕ λw, λγ = ⊕g∈[4]λ
g
γ and [∆g′λγ]g denote the gth additive share of ∆g′λγ ,

g′ ∈ [4].

Functionality FGC

22

cgγ=Fkgu,a,kgv,b
(w||g)︸ ︷︷ ︸

Pad

⊕(λgγ︸︷︷︸
share of
blinded
output

||{[∆g′λγ]g}g′ 6=g︸ ︷︷ ︸
Pg ’s share of the
output key of Pg′

||kgw,0 ⊕ [∆gλγ]g︸ ︷︷ ︸
Pg ’s share of the
output key of Pg

)

Output: On receiving Output from parties, send gth partition GCg = {{cgγ}γ∈[4]∀ AND gates}||
{{H(kgw,0),H(kgw,1)}∀ output wires w} to Pg where H is the collision resistant hash (Section 2.2).

Figure 3.3: Ideal Functionality FGC

Evaluation of the DGC Starting with the masked bits of all inputs and corresponding super-

keys, P5 evaluates a DGC in topological order, with XOR gates evaluated using free-XOR. For

an AND gate with input wires u,v, P5, given input super-keys {(kgu,bu , k
g
v,bv

)}g∈[4] and blinded

input bits bu, bv, decrypts (bu, bv)th row’s super-CT to obtain the super-key corresponding to

blinded output bit xuxv ⊕ λw and the blinded output bit itself. The blinded bits for output

wires give clear output when XORed with their respective masks.

3.1.3.1 4DG with AOT and Seed distribution

As iterated before, we assume that all the randomness required by a party Pg for 4DG is

generated using a random seed sg. The SD then enables a party-emulation technique where the

seed sg of Pg is available to exactly two other garblers in Sg who can now emulate the role of Pg.

Thus, each partition of GC, GCg is generated by 3 garblers holding sg, offering security against

at most two corrupt garblers. This also preserves input privacy as: (i) when two garblers are

corrupt (and together hold all seeds), the evaluator is surely honest and protects the privacy

of inputs; (ii) when a garbler and the evaluator are corrupt, one seed remains hidden, assuring

input privacy. The SD results brings a prime gain in the underlying semi-honest 4DG– replacing

standard OTs with 1-round AOTs: The standard OTs used to compute each cross-term λguλ
g′
v ,

∆gλg
′
γ (g 6= g′) in the additive-sharing of λuλv,∆

gλγ respectively, are replaced with AOTs. The

SD further enables each AOT to be run s.t the attesters hold both seeds that the sender and

receiver mutually-exclusively hold. This implies that the attesters are aware of the inputs of

both sender and receiver at the onset, thus leading to a one-round instantiation of AOT. To

elaborate, for instance in F4AOT (Fig 3.2), when Ps = P1, Pr = P2, the attesters are P3, P4 and

the inputs of sender are derived from the seed s1, while the input of the receiver is derived from

seed s2 (both seeds are with P3, P4). Thus, Ps, now sends (pp, c0, c1) to Pr and the attesters

send H(pp, c0, c1) to Pr. Also, Pa1 sends opening corresponding to the commitment cb. All these

steps can be done parallely in only one round and hence AOT in our garbling scheme needs

only one round. Pr then computes the output as in the standalone description. This process is

23

formally depicted in Fig 3.4.

Ps, Pr denote the sender and receiver respectively. Pa1 , Pa2 are attesters. All are distinct parties.

Inputs: Ps holds m0,m1, Pr holds choice bit b.

Output Pr outputs mb/⊥.

Primitives: A secure NICOM (Com,Open) (Section 2.2).

– Ps samples pp and random r0, r1 ← {0, 1}κ (derived from si, i ∈ Ss \Sr) and computes (c0, o0)←
Com(pp,m0), (c1, o1) ← Com(pp,m1). Ps sends (pp, c0, c1) to Pr. Pa1 , Pa2 who know (r0, r1)

(since they know si) also compute (c0, o0)← Com(pp,m0), (c1, o1)← Com(pp,m1) and each send

H((pp, c0, c1)) to Pr
a.

– Pr has b (derived using sj , j ∈ Sr \ Ss) which is known to Pa1 , Pa2 (since they know sj). Pa1

(wlog) sends ob to Pr.

(Local Computation by Pr): If the commitment sent by Ps and the hash values sent by Pa1 , Pa2

do not match, then Pr outputs ⊥. Else, output mb = Open(cb, ob).

aThe exact realization of the functionality F4AOT involves Ps and Pr sending (r0,m0, r1,m1) and b re-
spectively to Pa1

and Pa2
who in turn exchange their copies received from Ps, Pr for correctness.

Functionality Π4AOT

Figure 3.4: Protocol Π4AOT(Ps, Pr, {Pa1 , Pa2}) for 4DG realizing F4AOT

Note that the party-emulation technique does not increase the number of OTs required to

three times the underlying semi-honest 4DG but instead keeps it the same, since SD ensures

that, for each garbler Pi, OTs are needed in the computation of every λguλ
g′
v , ∆gλg

′
γ (g 6= g′)

only when one of g, g′ is not in Si.

For clarity, below we demonstrate, how a particular product share λ1uv (of λuλv) is computed

by parties in S1 ({P1, P3, P4}), utilizing AOT and SD. The share λ1uv consists of summands as

listed in the first column of the table below. We explain how P1 computes each summand.

Except λ1uλ
1
v, the remaining summands correspond to cross-terms that P1 originally obtained

via OT either as sender or receiver. Now, all summands that correspond to P1 enacting a

sender (λ1uλ
g
v, g 6= 1) can be sampled from s1, as the sender’s share is a random bit. For the

summands where P1 enacts receiver (λguλ
1
v, g 6= 1), AOT is needed only for the summand, λ2uλ

1
v

that involves s2 which P1 does not own, while for other terms, P1 can locally compute its share

with the knowledge of both seeds. As for the AOT, P1 acts as receiver with seed s1, P2 acts as

24

sender with seed s2, and {P3, P4} act as attesters with {s1, s2}. Similarly, {P3, P4} can compute

the summands of λ1uv as indicated in the table.

Summand P1 : (s1, s3, s4) P3 : (s1, s2, s3) P4 : (s1, s2, s4)

λ1uλ
1
v local local local

[λ1uλ
2
v]S local local local

[λ1uλ
3
v]S, [λ1uλ

4
v]S

[λ2uλ
1
v]R F4AOT(P2, P1, {P3, P4}) local local

[λ3uλ
1
v]R local local F4AOT(P2, P4, {P1, P3})

[λ4uλ
1
v]R local F4AOT(P2, P3, {P1, P4}) local

Our final garbling and evaluation protocols appear in Figs 3.5-3.6. Our 4DG scheme with the

use of standard OTs [EGL85] can be scaled in a straightforward way to arbitrary n-parties

tolerating at-most n-1 corruptions by setting each of n-1 parties to enact the role of a garbler

and the remaining party to enact the role of an evaluator. However, with the use of AOTs,

our 4DG scheme can be scaled in a straightforward way to arbitrary n-parties but tolerating

at-most
√
n corruptions. For completeness, we describe the semi-honest scheme when scaled to

3DG scheme in Section 3.2.3.

Common Inputs: Circuit C that computes f .

Primitives and Notation: A double-keyed PRF F [BLO16]. Sg denotes the indices of parties

who hold sg as well as the indices of seeds held by Pg.

Output: Each party Pg, g ∈ [4] outputs GCj , j ∈ Sg or ⊥.

Sampling Phase: Each Pg, g ∈ [4] samples ∆j from sj , j ∈ Sg. Also, the following is done for

each wire w in C corresponding to seed sj :

– If w is not an output wire of XOR gate, sample λjw and kjw,0 from sj . Set kjw,1 = kjw,0 ⊕∆j .

– If w is an output wire of XOR gate with input wires u, v, set λjw = λju ⊕ λjv, kjw,0 = kju,0 ⊕ k
j
v,0

and kjw,1 = kjw,0 ⊕∆j .

The mask and super-key pair for a wire w is defined as λw = ⊕g∈[4]λ
g
w and

(
{kgw,0}g∈[4], {k

g
w,1}g∈[4]

)
.

Run in parallel for every AND gate in C with input wires u, v and output wire w:

R1: Product Phase I: Define λuv = λuλv = (⊕g∈[4]λ
g
u)(⊕g∈[4]λ

g
v). Likewise define λuv, λuv, λu v

that can be derived from shares of λuv. Each garbler Pg computes λjuv of λuv for every j ∈ Sg as

below:

Protocol Garble4()

25

– locally compute λjuλ
j
v. For each k 6= j, sample [λjuλkv]S from seed sj .

– for every k ∈ Sg, locally compute [λkuλ
j
v]R = [λkuλ

j
v]S ⊕ λkuλ

j
v with the knowledge of sj and sk.

– for every k 6∈ Sg, obtain [λkuλ
g
v]R from F4AOT acting as receiver with input λgv and Pk as the

sender with inputs ([λkuλ
g
v]S ,[λkuλ

g
v]S ⊕ λku) derived from sk.

– for each k 6∈ Sg, j 6= g, obtain [λkuλ
j
v]R from F4AOT acting as a receiver with input λjv, and sender

Ps, s = [4] \ {g, j, k} with inputs ([λkuλ
j
v]S ,[λkuλ

j
v]S ⊕ λku) derived from sk.

– compute λjuv = λjuλ
j
v ⊕ (⊕i 6=j [λjuλiv]S)⊕ (⊕i 6=j [λiuλ

j
v]R).

Define λ1 = λuλv ⊕ λw, λ2 = λuλv ⊕ λw, λ3 = λuλv ⊕ λw, λ4 = λu λv ⊕ λw. Every Pg computes jth

share λj1 of λ1 for all j ∈ Sg as λjuv ⊕ λjw. Similarly, it computes the shares for λ2, λ3, λ4.

R2: Product Phase II: Pg computes share [∆jλγ]j (jth additive share) of ∆jλγ for every

γ ∈ [4] and j ∈ Sg as follows:

– locally compute ∆jλjγ . For every k 6= j, sample [∆jλkγ]S from sj .

– compute [∆jλγ]j = ∆jλjγ ⊕k 6=j [∆jλkγ]S .

Pg computes [∆kλγ]j of ∆kλγ for each k 6= j, γ ∈ [4], j ∈ Sg as:

◦ For every k ∈ Sg, compute [∆kλγ]j = [∆kλjγ]R locally from the knowledge of sj and sk.

◦ For k /∈ Sg, j = g, obtain [∆kλgγ]R from F4AOT acting as receiver with input λgγ and with Pk as

sender whose inputs are [∆kλgγ]S and [∆kλgγ]S ⊕∆k derived from sk. Set [∆kλγ]j = [∆kλjγ]R.

◦ For k /∈ Sg, j 6= g, obtain [∆kλjγ]R from F4AOT acting as receiver with input λjγ and Ps, s =

[4] \ {g, j, k} as sender with inputs [∆kλjγ]S , [∆kλjγ]S ⊕∆k (from sk). Set [∆kλγ]j = [∆kλjγ]R.

Super-CT Construction Phase: For each j ∈ Sg, Pg constructs cjγ for γ ∈ [4], as in FGC

(Fig 3.3) and outputs GCj = {{cjγ}γ∈[4]}∀ AND gates||{H(kgw,0),H(kgw,1)}∀ output wires w.

Figure 3.5: Protocol Garble4()

Inputs: P5 holds GC = GC1||GC2||GC3||GC4, blinded bit bw, the corresponding super-key

{kgw,bw}g∈[4] for every input wire w and mask λw for every output wire w.

Output: P5 outputs y = C(x) where x is the actual input or ⊥.

Evaluation: Evaluation is done topologically. For a gate with input wires u, v and output

wire w, P5 has (bu, {kgu,bu}g∈[4]), (bv, {kgv,bv}g∈[4]).
– For XOR gate, P5 sets bw = bu ⊕ bv, {kgw,bw = kgu,bu ⊕ k

g
u,bv
}g∈[4].

– For AND gate, P5 sets γ = 2bu+bv+1 and decrypts every CT cgγ in the γth super-CT as follows:

(λgγ ||{[∆g′λγ]g}g′ 6=g||kgw) := Fkgu,bu ,k
g
v,bv

(j||g)⊕ cgγ

P5 then computes bw = ⊕g∈[4]λ
g
γ and kgw,bw = kgw ⊕ (⊕g′ 6=g[∆

gλγ]g′).

Protocol Eval4()

26

For an output wire w, P5 assigns Y := {kgw,bw}g∈[4] and checks if the hash on gth key in Y

indeed maps to H(kgw,bw), g ∈ [4].

Output: P5 outputs yw := bw ⊕ (⊕g∈[4]λ
g
w) for every output wire w.

Figure 3.6: Protocol Eval4()

3.1.3.2 Efficiency of 4DG

Our 4DG is superior to the state-of-the-art [BLO16] computationally while retaining their

communication efficiency. Concretely, for 4DG, [BLO16] needs 4 PRF computations per CT

of the super-CT whereas our scheme needs 1 PRF computation per CT. Since, the number

of PRFs computed depends on the number of parties, this difference is significant for large n.

To elaborate, for n-party garbling, [BLO16] needs n PRF computations per CT of super-CT

and hence a total of O(n2) PRF per super-CT, while our scheme still needs 1 PRF per CT

(so total of n PRFs for super-CT), thus saving O(n) PRF computations over [BLO16]. The

player-emulation technique also impacts the performance of [BLO16] concretely, compared to

our 4DG– 12 versus 3 for each CT which has 3 copies and thus, 48 versus 12 per super-CT and

192 versus 48 per AND gate.

3.1.3.3 Correctness and Security of 4DG

Lemma 3.1.4. The protocols Garble4 and Eval4 are correct.

Proof. To prove the lemma we argue that the super-key encrypted in the super-CT of a row

decrypts to the correct super-key when evaluated on the blinded inputs corresponding to that

row. Consider an AND gate with input wires u, v and output wire w with corresponding masks

λu, λv and λw respectively. Let the blinded inputs bu, bv received for evaluation have values

bu = bv = 0. This means γ = 1 (row 1). We prove that bw and {kgw,bw}g∈[4] are correctly

computed given bu, bv and super-keys {(kgu,bu , k
g
v,bv

)}g∈[4]. For simplicity we consider λw = 0.

The values bu = bv = 0 imply xu = λu and xv = λv. Since, λw = 0, λγ = λ1 = λuλv.

This means that g(λu, λv) = g(xu, xv) where g is the AND gate function. Thus, the encrypted

super-key must be {kgw,g(xu,xv)}g∈[4] as ∆gλ1 = ∆gg(xu, xv) (thus λ1 = g(xu, xv)) for each garbler

Pg. Now, we show that on decryption of the super-CT in row γ = 1, the evaluator obtains

{kgw,g(xu,xv)}g∈[4]. The plaintext of super-CT of row 1 on unmasking the one-time pad of PRF

27

appears as follows:

{ (λ11||{[∆g′λ1]1}g′ 6=1||k1w,0 ⊕ [∆1λ1]1),

(λ21||{[∆g′λ1]2}g′ 6=2||k2w,0 ⊕ [∆2λ1]2),

(λ31||{[∆g′λ1]3}g′ 6=3||k3w,0 ⊕ [∆3λ1]3),

(λ41||{[∆g′λ1]4}g′ 6=4||k4w,0 ⊕ [∆4λ1]4) }

The evaluator computes bw = ⊕g∈[4]λg1 = g(xu, xv) and computes the super-key as {(kgw,0 ⊕
[∆gλ1]g) ⊕ (⊕g′ 6=g[∆gλ1]g′)}g∈[4] = {kgw,0 ⊕∆gλ1}g∈[4]. Since ∆gλ1 = ∆g(xu, xv), the super-key

reduces to {kgw,g(xu,xv)}g∈[4] as desired. The correctness for the remaining rows of super-CT and

for any choice of λw can be proved in a similar way.

3.2 Building Blocks for 4PC

3.2.1 Seed-distribution

The starting point of our 4PC protocols is a semi-honest distributed garbling with {P1, P2, P3}
as garblers and P4 as evaluator. The final DGC is denoted as GC = GC1||GC2||GC3. Since,

we have actively corrupt party in mixed-adversary model, we need a mechanism to ensure

correctness of the DGC. We adopt the technique of seed-distribution as described in 5PC

building blocks and modify it for our 4PC (to ensure correctness of DGC in the face of 1 actively

corrupt garbler). We assume that the randomness used to construct GC fragment GCg by the

designated garbler (say Pi) is derived from seed sg. Now, a corrupt Pi could construct a faulty

GCg. SD enables a pair of parties to construct each fragment of DGC and correctness of that

fragment is verified by simply checking the equality of the copies. This strategy suffices when

at least one of the two seed-owners is not maliciously corrupt and constructs the DGC fragment

honestly.

Our SD works as follows: Three seeds s1, s2, s3 are distributed amongst the garblers P1, P2, P3

such that party Pg holds all but seed sg. For instance, the fragment GC1 (analogously GC2

and GC3) are constructed by two parties P2, P3 who hold seed s1. We denote by Sg, the

indices of the seeds held by party Pg as well as the indices of the parties who hold seed sg i.e.

S1 = {2, 3}, S2 = {1, 3}, S3 = {1, 2}. We use this same notation for both 5PC and 4PC protocols

and the notation must be interpreted based on whether the context is 5PC or 4PC. The formal

protocol appears in Fig 3.7. Additionally like in 4DG seed distribution, this technique also

maintains input privacy for colluding parties (1 actively corrupt and 1 passively corrupt) since,

28

(a) for 2 corrupt garblers, all seeds are known to the adversary but the evaluator is guaranteed

to be honest; (b) a colluding garbler and the evaluator lack the knowledge of one seed, hence

the secrets remain hidden from the adversary.

Notation S1 = {2, 3}, S2 = {1, 3}, S3 = {1, 2}.

Output Party Pg, g ∈ [3] outputs seed si, i ∈ Sg.

Seed-setup P1 samples a random seed s2 and runs the routine ExtCom with P3 as receiver. The

broadcast-only transcript of ExtCom (hence, the commitment) is available to the remaining

parties too. P1 runs the routine ExtOpen to obtain opening o[s]2 which is sent privately to

P3. If the opening is invalid, P3 aborts. Else, P3 computes s2 using o[s]2.

Similar steps are done by P2 for seed s3 and P3 for seed s1.

Protocol πseedDist

Figure 3.7: Protocol πseedDist for SD in 3DG

For our purposes in the mixed model, SD is done by broadcasting commitment on each seed

and sending the opening to only the relevant garbler. This is done to resolve a technicality in

the proof and the details are made clear in the relevant section.

3.2.2 Attested Oblivious Transfer

The idea of AOT is similar as described in the 5PC building blocks, except that in the 4PC

setting, only one attester is needed (in place of 2 as in 5PC) since there is only 1 active

corruption and any malicious behaviour by a possibly corrupt sender Ps, attester Pa or receiver

Pr is contained by having an honest party who computes the same message. The formal

functionality F3AOT (scaled to 3 parties) appears in Fig 3.8.

Ps, Pr act as sender and receiver respectively, and Pa acts as attester.

– On input message (Sen, m0, m1) from Ps, record (m0, m1) and send (Sen, m0, m1) to Pa and

Sen to the adversary.

– On input message (Rec, b) from Pr, where b ∈ {0, 1}, record b and send (Rec, b) to Pa and Rec

to the adversary.

– On input message (A, ma
0, ma

1, ba) from Pa, if (Sen, sid, ∗, ∗) and (Rec, ∗) have not been recorded,

Functionality F3AOT

29

ignore this message; otherwise, record (ma
0, ma

1, ba) and send A to the adversary.

– On input message Output from the adversary, if (m0,m1, b) 6= (ma
0,m

a
1, b

a), send (Output,⊥) to

Pr; else send (Output,mb) to Pr.

– On input message abort from the adversary, send (Output,⊥) to Pr.

Figure 3.8: Ideal Functionality F3AOT(Ps, Pr, Pa) for 3DG

3.2.3 The semi-honest 3DG and Evaluation

The semi-honest 4DG scheme and its evaluation protocol can be trivially scaled to 3DG scheme

with {P1, P2, P3} as garblers and P4 as evaluator. We assume that all the randomness required

by a party for the GC partition GCg is generated using the random seed sg. When coupled

with seed distribution and party emulation technique, each GCg is generated by 2 garblers

holding sg, offering security to at most one actively corrupt garbler. The standard OTs are

then replaced with AOT with the use of SD. Similar to 4DG, each AOT is run s.t the attesters

hold both seeds that the sender and receiver mutually-exclusively hold. Our formal garbling

and evaluation protocols appear in Figs 3.9-3.10. Correctness of 3DG scheme follows from the

correctness of 4DG scheme (Lemma 3.1.4).

Next, F3AOT can be realized in just one round when enabled with SD [CGMV17] since, every

AOT is run between a sender Ps and a receiver Pr s.t there exists an attester Pa who possesses

the seeds (inputs) of both Ps, Pr. As a result, Ps, Pa can send the commitments of sender OT

message to Pr in one round, while Pa sends the opening for choice bit message in the same

round. The receiver then verifies the commitments and computes the OT message. Our AOT

is secure against 1 active corruption since, malicious behaviour by a possibly corrupt Ps, Pa or

Pr is contained by having an honest party who computes the same message.

For clarity, below we demonstrate, how a particular product share λ2uv (of λuλv) is computed

by parties in S2 ({P1, P3}), utilizing AOT and SD. The share λ2uv consists of summands as listed

in the first column of the table below. We explain how P1 computes each summand. Except

λ2uλ
2
v, the remaining summands correspond to cross-terms that P1 originally obtained via OT

either as sender or receiver. Now, all summands that correspond to P1 enacting a sender

(λ2uλ
g
v, g 6= 2) can be sampled from s2, as the sender’s share is a random bit. For the summands

where P1 enacts receiver (λguλ
2
v, g 6= 2), AOT is needed only for the summand, λ1uλ

2
v that

involves s1 which P1 does not own, while for other terms, P1 can locally compute its share with

the knowledge of both seeds. As for the AOT, P1 acts as receiver with seed s2, P2 acts as sender

with seed s1, and P3 act as attester with {s1, s2}. Similarly, P3 can compute the summands of

λ2uv as indicated in the table.

30

Summand P1 : (s2, s3) P3 : (s1, s2)

λ2
uλ

2
v local local

[λ2
uλ

1
v]S , [λ2

uλ
3
v]S local local

[λ1
uλ

2
v]R F4AOT(P2, P1, P3) local

[λ3
uλ

2
v]R local F4AOT(P2, P3, P1)

Common Inputs: Circuit C that computes f .

Primitives and Notation: A double-keyed PRF F [BLO16]. Sg denotes the indices of parties

who hold sg as well as the indices of seeds held by Pg.

Output: Each party Pg, g ∈ [3] outputs GCj , j ∈ Sg or ⊥.

Sampling Phase: Each Pg, g ∈ [3] samples ∆j from sj , j ∈ Sg. Also, the following is done for

each wire w in C corresponding to seed sj :

– If w is not an output wire of XOR gate, sample λjw and kjw,0 from sj . Set kjw,1 = kjw,0 ⊕∆j .

– If w is an output wire of XOR gate with input wires u, v, set λjw = λju ⊕ λjv, kjw,0 = kju,0 ⊕ k
j
v,0

and kjw,1 = kjw,0 ⊕∆j .

The mask and super-key pair for a wire w is defined as λw = ⊕g∈[4]λ
g
w and

(
{kgw,0}g∈[4], {k

g
w,1}g∈[4]

)
.

Run in parallel for every AND gate in C with input wires u, v and output wire w:

R1: Product Phase I: Define λuv = λuλv = (⊕g∈[3]λ
g
u)(⊕g∈[3]λ

g
v). Likewise define λuv, λuv, λu v

that can be derived from shares of λuv. Each garbler Pg computes λjuv of λuv for every j ∈ Sg as

below:

– locally compute λjuλ
j
v. For each k 6= j, sample [λjuλkv]S from seed sj .

– for every k ∈ Sg, k 6= j, locally compute [λkuλ
j
v]R = [λkuλ

j
v]S ⊕ λkuλ

j
v with the knowledge of sj , sk.

– To obtain [λguλ
j
v]R from F3AOT acting as receiver with input λjv and Pk with only knowledge of

sg (and not sj) as the sender with inputs ([λguλ
j
v]S ,[λguλ

j
v]S ⊕ λju) derived from sg. Pl who has

knowledge of sg, sj acts as attester.

– compute λjuv = λjuλ
j
v ⊕ (⊕i 6=j [λjuλiv]S)⊕ (⊕i 6=j [λiuλ

j
v]R).

Define λ1 = λuλv ⊕ λw, λ2 = λuλv ⊕ λw, λ3 = λuλv ⊕ λw, λ4 = λu λv ⊕ λw. Every Pg computes jth

share λj1 of λ1 for all j ∈ Sg as λjuv ⊕ λjw. Similarly, it computes the shares for λ2, λ3, λ4.

R2: Product Phase II: Pg computes share [∆jλγ]j (jth additive share) of ∆jλγ for every

γ ∈ [4] and j ∈ Sg as follows:

– locally compute ∆jλjγ . For every k 6= j, sample [∆jλkγ]S from sj .

Protocol Garble3()

31

– compute [∆jλγ]j = ∆jλjγ ⊕k 6=j [∆jλkγ]S .

Pg computes [∆kλγ]j of ∆kλγ for each k 6= j, γ ∈ [4], j ∈ Sg as:

◦ For every k ∈ Sg, k 6= j, compute [∆kλγ]j = [∆kλjγ]R locally from the knowledge of sj and sk.

◦ To obtain [∆gλjγ]R from F3AOT acting as receiver with input λjγ and with Pk holding only sg

(and not sj) as sender whose inputs are [∆gλjγ]S and [∆gλjγ]S ⊕∆j derived from sg. Pl who has

knowledge of sg, sj acts as attester. Set [∆gλγ]j = [∆gλjγ]R.

Super-CT Construction Phase: For each j ∈ Sg, Pg constructs cjγ for γ ∈ [4], as in FGC

(Fig 3.3) and outputs GCj = {{cjγ}γ∈[4]}∀ AND gates||{H(kgw,0),H(kgw,1)}∀ output wires w.

Figure 3.9: Protocol Garble3()

Inputs: P4 holds GC = GC1||GC2||GC3, blinded bit bw, the corresponding super-key {kgw,bw}g∈[3]
for every input wire w, mask λw for every output wire w.

Output: P4 outputs y = C(x) where x is the actual input or ⊥.

Evaluation: Evaluation is done topologically. For a gate with input wires u, v and output

wire w, P4 has (bu, {kgu,bu}g∈[3]), (bv, {kgv,bv}g∈[3]).
– For XOR gate, P4 sets bw = bu ⊕ bv, {kgw,bw = kgu,bu ⊕ k

g
u,bv
}g∈[3].

– For AND gate, P4 sets γ = 2bu+bv+1 and decrypts every CT cgγ in the γth super-CT as follows:

(λgγ ||{[∆g′λγ]g}g′ 6=g||kgw) := Fkgu,bu ,k
g
v,bv

(j||g)⊕ cgγ

P4 then computes bw = ⊕g∈[4]λ
g
γ and kgw,bw = kgw ⊕ (⊕g′ 6=g[∆

gλγ]g′).

For an output wire w, P4 assigns Y := {kgw,bw}g∈[3] and checks if the hash on gth key in Y

indeed maps to H(kgw,bw), g ∈ [3].

Output: P4 outputs yw := bw ⊕ (⊕g∈[3]λ
g
w) for every output wire w.

Protocol Eval3()

Figure 3.10: Protocol Eval3()

32

Part I

Five-Party Computation with Honest

Majority

33

Chapter 4

5PC with Fairness

Relying on pairwise-secure channels, we outline a symmetric-key based 5PC with fairness,

tolerating 2 malicious corruptions with performance almost on par with the state-of-the-art

[CGMV17] with selective-abort while maintaining a round complexity of 8. Starting with the

overview of [CGMV17], we enumerate the challenges involved in introducing fairness into it and

then describe techniques to tackle them and ensure robustness of the output phase.

4.1 Technical Overview

4.1.1 Overview of [CGMV17]

In [CGMV17], the garblers perform a one-time SD, which can be used for multiple executions.

The evaluator P5 splits her input additively among P2, P3, P4 who treat the shares as their

own input. Garbling is done using the passively secure scheme of [BLO16] topped with the

techniques of SD and AOT (Section 3). For the transfer of super-keys wrt every input wire w

of each garbler Pg, the remaining garblers send the mask shares not held by Pg (λjw, j /∈ Sg) on

w to Pg who after verifying the shares for correctness (applying the equality check), computes

the blinded bit bw = xw ⊕ λw (xw is the input on w). Now, Pg can send 3 out of 4 keys in

the super-key for bw to P5. However, to enable P5 learn the fourth key for bw that corresponds

to the seed held by remaining co-garblers, Pg cannot simply send bw to the co-garblers, as it

would leak Pg’s input when two of the garblers are corrupt (and hold all seeds and thus the

mask λw). Hence, [CGMV17] overcomes this subtle case of masked input key as follows. Pg

splits bw as bw = ⊕l∈[4]\{g}bl and sends each share to exactly one co-garbler. Each co-garbler

now sends key for the share she received to P5 who XORs the 3 key-shares to get the desired

4th key. The property of free-XOR is crucial in ensuring that XOR of key-shares gives the key

on blinded input. A breach in the above solution is that Pg colluding with P5 can learn both

34

super-keys for w leading to multiple evaluations of f . This is captured by the following attack:

Pg sets bl = 0, bl′ = 1 and sends them to co-garblers Pl, Pl′ respectively. As a result, P5 receives

0-key from Pl, 1-key from Pl′ and XOR of these values leaks the global offset and thus both

keys corresponding to the seed Pg does not own. Now Pg who already owns 3 seeds can now

use both 0-key and 1-key of the 4th key to obtain multiple evaluations of f . This is tackled by

having Pg and one of her co-garblers separately provide additive shares of 0κ that are XORed

with key-shares before sending to P5. Finally, P5 assembles the XOR shares and uses the 4th

key for evaluation. On evaluation, P5 sends the output super key Y to all garblers, who then

compute the output using output mask shares, that are exchanged and verified at the end of

garbling phase.

4.1.2 Our Techniques

The prime challenge to introduce fairness in the protocol of [CGMV17] is for the case of a corrupt

evaluator, who either sends Y selectively to garblers or sends an invalid/no Y after learning

the output herself on successful evaluation of DGC. This can be tackled using the following

natural techniques in the output phase: (a) The garblers withhold the shares of mask bits on

the output wires until a valid output super-key is received from P5. (b) To further prevent a

corrupt P5 from selectively sending Y to garblers, we enforce the garbler who received valid Y

from P5 to, in turn, send the same Y to her co-garblers. Nevertheless, both the above solutions

can lead to unfair scenarios. In solution (a), a corrupt garbler can send an incorrect share of

the mask bit on receiving Y, thus creating chaos for the honest receiver who cannot decide the

true value, while the corrupt garbler herself learns the output using the shares received from

honest co-garblers. In solution (b), two colluding garblers can convince the honest garblers of

any Y using their knowledge of all seeds, even if the honest P5 aborts during evaluation. This is

easily fixable with broadcast, however, without broadcast, a convincing strategy that Y indeed

originated from P5 is necessary.

We tackle the concerns in solution (a) using the commit-then-open technique. In detail,

the garblers are forced to commit to the shares of mask bit on each output wire in advance to

bar them from sending inconsistent values later and violating fairness. Three copies of each

commitment are sent by the 3-parties who own the corresponding seed which are then compared

for correctness by each receiver prior to evaluation. The collision-resistant property of hash is

used as a proofing mechanism to tackle the concerns in solution (b). Concretely, P5 computes

hash on a random value proof in the garbling phase and sends the resulting hash, H(proof) to

all garblers who in turn exchange H(proof) amongst themselves for consistency. The value proof

is sent as a proof to the garblers along with Y post evaluation. This technique is reminiscent of

35

the one used in [BJPR18]. The above techniques ensure that a colluding garbler and P5 cannot

compute the output y without the aid of at least one honest garbler. An honest garbler reveals

shares on the mask bits owned by her only on the receipt of valid (Y, proof) from some party.

This handles the concern in solution (b) by ensuring that Y was not impostered upon by two

colluding garblers as they cannot forge a valid proof.

4.2 The construction

We present the formal protocol in Fig 4.1. The garblers perform a one-time SD as in [CGMV17],

which can be used for multiple runs. Circuit garbling is done as in Fig 3.5. The input keys sent

by garblers define their committed inputs. The case of evaluator’s input and transfer of input

keys is dealt as in [CGMV17]. In addition, we enforce each garbler to generate commitments

on the shares of output wire masks wrt each seed she owns and allow agreement on these

commitments by all parties. Also, P5 samples a random proof and sends H(proof) to the

garblers who agree on the hash value or abort. Then, P5 evaluates the GC and sends (Y, proof)

to all. Each garbler checks if (Y, proof) is valid. If so, it sends (Y, proof) and the openings

corresponding to the commitments on mask bit shares of output wires to all. Finally, when a

garbler has enough valid openings for commitments on mask bit shares of output wires, she

computes the required output.

Inputs: Party Pi ∈ P has xi.

Common Inputs: The circuit C(x1, x2, x3, x4,⊕j∈{2,3,4}x5j) that computes f(x1, x2, x3, x4, x5)

and takes x1, x2, x3, x4 and shares {x5j}j∈{2,3,4} as inputs, each input, their shares are from {0, 1}
(instead of {0, 1}` for simplicity) and output is of the form {0, 1}`.
Notation: Si denotes indices of the parties who hold si as well as indices of the seeds held by Pi.

Output: y = C(x1, x2, x3, x4, x5) or ⊥.

Primitives: A secure NICOM (Com,Open) (Section 2.2), an eNICOM (eGen, eCom, eOpen,Equiv)

(Section 2.2), Garble4 (Fig 3.5), Eval4 (Fig 3.6), Collision Resistant Hash H (Section 2.2).

Seed Distribution Phase (one-time): Pg chooses random seed sg ∈R {0, 1}κ, and sends sg

to the other two parties in Sg who in turn exchange with each other and abort if their versions do

not match.

Evaluator’s Input sharing Phase: P5 secret shares its input as x5 = x52 ⊕ x53 ⊕ x54. P5

sends x5j to Pj (wlog).

Protocol fair5PC

36

Proof Establishment Phase: P5 chooses proof from the domain of hash function H, computes

and sends H(proof) to each garbler Pg, g ∈ [4]. Pg in turn sends the copy of H(proof) received from

P5 to her co-garblers. Pg aborts if H(proof) received from a co-garbler does not match with her own

copy received from P5. Else, Pg accepts H(proof) to be the agreed upon hash.

Setup of public parameter for Equivocal Commitment. For eppg, g ∈ [4] of eNICOM,

each Pj , j ∈ Sg samples eppgj from fresh randomness (not from any of the seeds he holds) and

sends to all. Pg additionally samples eppgl, l ∈ [4] \ Sg and sends to all. Each party computes

eppg = ⊕j∈[4]eppgj . Pl ∈ P forwards eppg, g ∈ [4] to all. Each Pi ∈ P aborts if any of eppg received

mismatch.

Transfer of Equivocal Commitments.

– Each Pg, g ∈ [4] runs the Sampling Phase of Garble(C) and computes commitments for every

circuit output wire w using randomness from sj , j ∈ Sg as: {(cjw, ojw)← eCom(eppj , λjw)}j∈Sg . Pg
sends {(eppj , cjw)}j∈Sg to all.

– Pi ∈ P aborts if it receives mismatched copies of (eppj , cjw), j ∈ [4] for some output wire w.

Garbling, Masked input bit and Key Transfer Phase.

– For circuit input wire w held by Pg, g ∈ [4] corresponding to input bit xw, each Pl, l ∈ [4] \ {g}
sends λjw, j ∈ Sl to Pg. Pg aborts if it receives mismatched copies for some λjw. Else, Pg computes

λw = ⊕j∈[4]λ
j
w and bw = xw ⊕ λw. Pg sends (bw, {kjw,bw}j∈Sg) to P5. To send kjw,bw , j ∈ [4] \ Sg

(not held by Pg) to P5, it does the following (The case for the key of P ′5s input share if held by

Pg is handled similarly):

◦ Pg chooses random bits bl and random βl ∈ {0, 1}κ s.t bw = ⊕l∈[4]\{g}bl and 0κ = ⊕l∈[4]\{g}βl.
Pg sends bl, βl to Pl.

◦ One garbler other than Pg chooses δl ∈ {0, 1}κ s.t 0κ = ⊕l∈[4]\{g}δl and sends δl to Pl.

◦ Pl sends Kl = kj
w,blw
⊕ βl ⊕ δl to P5 who sets kjw,bw := ⊕lKl.

– For input wire w corresponding to P5’s input shares, let {kgw,0, k
g
w,1}g∈[4] be the keys derived

from seeds {sg}g∈[4] . Each Pg, g ∈ [4] computes commitments on these as: for b ∈ {0, 1}, j ∈ Sg,

(cjw,b, o
j
w,b) ← Com(ppj , kjw,b) using ppj and randomness derived from sj and sends {ppj , cjw,b}

to P5. Pg also sends ojw,bw to P5 if it holds bw. P5 aborts if it receives either different copies

of commitments or invalid opening for any wire. Otherwise, P5 recovers the super-keys for bw,

namely, {kgw,bw}g∈[4]. Let X to be the set of super-keys obtained.

– Garble4(C) is run. Each Pg, g ∈ [4] sends {GCj}j∈Sg to P5. If P5 finds conflicting copies, it

aborts.

Evaluation and Output Phase.

– P5 runs Eval4 to evaluate GC using X and obtains Y and (yw ⊕ λw) for all output wires w. P5

sends (Y, proof) to all.

– For g ∈ [4], j ∈ Sg, if kjw,bw of Y for some output wire w does not match with either (kjw,0, k
j
w,1)

37

or the three keys kjw,bw in Y do not map to the same bw or if proof does not verify with previously

received H(proof), Pg does nothing. Else, Pg sends (Y, proof) to all other garblers and {ojw}j∈Sg
to all. P5 checks if valid {ojw}j∈Sg received from each Pg. If so, P5 computes yw = (yw ⊕ λw) ⊕
(⊕l∈[4]λlw) for output wire w and thus outputs y.

– If received valid (Y, proof) and {ojw}j∈Sg from a co-garbler Pg, Pα, α ∈ [4] computes y by un-

masking all λw. Also, if sent nothing before, send (Y, proof) to co-garblers, {olw, o
j
w}l∈Sα,j∈Sg to

all. If no y computed yet and received valid (Y, proof), {olw, o
j
w}l∈Sα,j∈Sg from co-garbler Pα (ojw

was sent by Pg to Pα before), compute y upon unmasking all λw. Likewise, if P5 has not computed

y yet and received valid {olw, o
j
w}l∈Sα,j∈Sg from Pα (ojw was sent by Pg to Pα before), P5 computes

y by unmasking all λw.

Figure 4.1: Protocol fair5PC

The equivocal commitment eNICOM is used to commit on the output mask shares to

handle a technicality that arises in the proof. Namely, when one garbler and P5 are corrupt,

the adversary, on behalf of P5 can decide to abort as late as when Y needs to be sent to garblers.

Hence, the simulator is also forced to act on the adversary’s behalf and invoke the functionality

after this step. Nevertheless, the simulator needs to simulate the prior rounds with no clue of

the output, which includes transfer of DGC, super-keys, commitments on output mask shares.

To tackle this, the simulator uses eNICOM to commit to dummy values at the start and

later equivocates to output mask shares (set based on the output obtained after invoking the

functionality) if the corrupt P5 sends Y to at least one honest garbler. Elaborate details are

given in Chapter 4.5.

To keep the eNICOM trapdoor hidden from the adversary and available to the simulator,

we need it to be distributed among 3 parties. Although convenient, the public parameter for

eNICOM cannot be derived from the seeds, as it would trivially arm a corrupt garbler (with the

knowledge of 3 seeds) to equivocate. Further, due to the symmetry of eNICOM, equivocation

seems infeasible for the simulator if the trapdoor is distributed into only three parts. Hence,

we distribute the trapdoor and thus public parameter into four parts (held by three parties)

to keep the binding property intact in the real world while allowing the simulator (acting on

behalf of 3 honest parties) to perform equivocation. We demonstrate below for each g ∈ [4],

how eppg(= ⊕l∈[4]eppgl) for the output mask bits corresponding to sg is chosen by the parties.

We note that we could opt for a random-oracle based scheme and use its programmability to

enable equivocality. But this would make the proof rely on non-standard assumption, and not

injective one-way functions. Elaborate details about the instantiation are given in Chapter 2.

38

P1 P2 P3 P4

epp1 epp11, epp12 – epp13 epp14

epp2 – epp21, epp22 epp23 epp24

epp3 epp31 epp32 epp33, epp34 –

epp4 epp41 epp42 – epp43, epp44

4.2.1 Optimizations

We propose the optimizations below to boost the efficiency of fair5PC: all optimizations of

[CGMV17] can be applied to our protocol. More concretely, majority of communication in the

garbling phase is due to the number of AOT invocations. This is optimized with the use of batch

AOTs. Batch AOTs allow the sender to send both commitments while the attesters send only

hash on all the commitments. The NICOM instantiation (Chapter 2) based on the ideal cipher

model can be used to obtain faster commitments in practice. Each GCg, g ∈ [4], is sent by

exactly one owner while the rest send only H(GCg). P5 verifies the hash values before evaluation.

For implementation purposes alone, eNICOM, NICOM are instantiated with random-oracle

based commitment. Also, communication in eNICOM is saved by generating commitment on

the concatenation of mask bit shares of all wires rather than on each bit individually.

4.3 Properties

Lemma 4.3.1. The protocol fair5PC is correct.

Proof. The input of P5 is well defined by the shares sent to P2, P3, P4. The 3 keys for each input

wire owned by the garblers, along with the 4th key sent as XOR shares, define their committed

inputs. Evaluation is done on committed inputs. The correctness of Y and thus y follows from

the correctness of garbling and evaluation (Figs 3.5, 3.6).

Theorem 4.3.2. Our fair5PC protocol consumes at most 8 rounds.

Proof. The proof establishment phase and setting up of public parameter for eNICOM consume

2 rounds each and can be overlapped. Further, round 1 of these two phases can be overlapped

with distribution of P5’s input and round 1 of masked input bit computation and key transfer

phase. These together consume a total of 3 rounds. The key transfer is started prior to Garble.

More precisely, garbling can begin alongside round 3 of key transfer phase. The transfer of GC

and keys to P5 take 1 round. Finally, evaluation and output phase need at most 3 rounds, thus

settling the protocol in 8 rounds. If Y is received by all honest garblers in round 1 of output

39

phase itself, then 7 rounds suffice. The seed distribution phase is one-time and hence is not

counted for round complexity as in [CGMV17].

Theorem 4.3.3. Assuming one-way permutations, the protocol of fair5PC securely realizes Ffair

(Fig 2.2) in the standard model against a malicious adversary that corrupts at most two parties.

The correctness and security proofs appear in Section 4.5.

While the formal security proof is elaborated in Section 4.5, we give the intuition of fairness

for completeness. For fairness, we need to guarantee that if the adversary learns the output,

then so do honest parties and converse. We first argue in the forward direction. Suppose an

adversary gets the output. We consider two corruption cases: Firstly, when P1 and P5 are

corrupt, the adversary obtains the output only if at least one honest garbler say P2 receives

a valid (Y, o) from P5 or P1 (valid shares of output wire mask bits also from P1). P2 sends

the received message along with the masking bit shares she owns to all, allowing other parties

to compute the output. The recipient garblers further send out their valid masking bit shares

to allow any residual party to compute the output. Secondly, when two garblers P1, P2 are

corrupt, an honest P5 sends (Y, o) to all, on successfully evaluating GC. P1, P2, knowing all the

seeds, can construct the output themselves. The honest garblers send the masking bit shares

they hold to all. Thus, every party obtains the output in both cases.

To prove the converse case, suppose the honest parties get the output. We consider the

same corruption cases as above. In the first case, it must be true that at least one of the

honest garblers say P2, received a valid (Y, o) who then sends the masking bit shares it owns

along with (Y, o) to all. Thus, the honest recipients compute the output using (Y, o) and the

masking bit shares from P2. If P2 received Y from P5, then P2 uses the masking bit shares sent

by P3, P4 (once they obtain output) to compute y. Else, P2 must have received valid (Y, o) and

the masking bit shares from P1, which is sufficient to compute y. For the case of corrupt P1, P2,

suppose P5 gets the output. This implies that all garblers must have obtained the output using

valid (Y, o) sent by P5 and the masking bit shares received from co-garblers. Consequently, P5

obtains the output using the masking bit shares sent by honest garblers. This summarizes the

intuition.

4.4 n-party Extension of fair5PC

The technique of achieving fairness for 5 parties can be extended to n parties tolerating t <
√
n

corruptions by modifying only the output phase of fair5PC (Fig 4.1). The technical overview is

elaborated below.

40

n-party Extension We first recall the conditions involved in seed distribution for n-parties

elaborated in [CGMV17] to better understand the extension tolerating t ≈
√
n corruptions.

The seed distribution needs to satisfy the following properties:

Privacy: No t− 1 garblers should hold all the seeds. This is to ensure input privacy of honest

garblers when t− 1 garblers and the evaluator collude.

Attested OT For each pair of seeds si, sj, there must be a garbler who holds both si, sj. This

party will act as an attester in the corresponding AOT.

Correctness Every seed should be held by at least t + 1 garblers. This is necessary for

correctness of the computed DGC.

All the above properties collectively imply that for any corruption scenario, the honest garblers

together must hold all the seeds. Specifically, from correctness : each seed si that is supposed

to be held by at least t + 1 garblers is sure to end up in the hands of an honest garbler in

the worst case corruption scenario of t corrupt garblers. To achieve fairness for the case of n

parties, all steps of the protocol fair5PC remain the same except the output phase. For the

extension, we consider that P1, ..., Pn−1 are garblers and Pn is the evaluator. On a high level,

the output phase involves 3 rounds where in round 1, Pn sends (Y, proof) to all garblers and

the remaining two rounds are used to exchange (Y, proof) with co-garblers and openings for

the commitments on mask-shares belonging to output wires with all and thus fairly compute

the output.

Each honest party computes the output only if openings for commitments wrt every seed is

received by the end of round 3. A naive way to distribute the openings in the last two rounds

is to allow an honest garbler to forward the openings possessed by her (and if received any

other) when a valid (Y, proof) is received. This technique however, leads to fairness violation

in the following scenario: suppose the evaluator and t − 1 garblers are corrupt and Pn does

not communicate with any honest garbler in round 1, However in round 2, few of the corrupt

garblers send (Y, proof) to one set of honest parties (chosen selectively s.t the openings of this

set of honest parties and those held by the adversary are enough to compute the output). These

honest parties forward all the accumulated openings in round 3 and thus the adversary gets

the output. Further, in round 3, the adversary can also choose to send the openings to the

other complementary set of honest parties on behalf of all the corrupt parties who have not

sent anything yet, thus ensuring that other complimentary set gets the output while the first

set aborts. To tackle this, we impose a restriction on the garbler Pg who communicates for

the first time in round 3 of the output phase as: Forward all the openings accumulated until

41

round 2 only if, the openings received in round 2 together with those held by Pg are sufficient to

reconstruct the output. This condition eliminates the dependency of Pg on shares received in

round 3 to compute the output and ensures that the adversary, in order to compute the output

herself, must aid at least one honest party compute the output. Thus, even if one honest party

is able to compute the output at the end of round 2, then that honest party releases all the

openings in round 3 sufficient to help all honest parties compute the output. This concludes

the intuition. The formal protocol is presented in Fig 4.2.

Round 1: The evaluator sends (Y, proof) to the garblers.

Round 2: If the received (Y, proof) from the evaluator is valid, each garbler Pg forwards

(Y, proof) and openings for the commitments on output mask shares wrt the seeds she holds.

Round 3: If received valid (Y, proof) and valid openings from subset of garblers s.t the openings

received and the output mask shares already present with party Pα are sufficient to reconstruct

λw for every output wire w, then Pα computes output y using the output masks. If sent nothing

before, Pα forwards (Y, proof) and the accumulated openings to all.

Local Computation: If no y computed yet and received valid (Y, proof) and openings from

subset of garblers that are sufficient to reconstruct λw for every output wire w, then party Pβ

computes output y using the output masks.

Protocol n-party Fairness

Figure 4.2: Output Phase for n-party fairness

4.5 Security Proof of fair5PC

We now outline the complete security proof of Theorem 4.3.3 that describes the security of the

fair5PC protocol relative to its ideal functionality in the standard security model.

Proof. We describe the simulator Sfair5PC for the following two cases: First, when two garblers

say P1 and P2 are corrupt. Second, when one garbler say P1 and the evaluator P5 are corrupt.

The simulator acts on behalf of all the honest parties in the execution. The corruption of any

two garblers is symmetric to the case when P1, P2 are corrupt and the corruption of any one

garbler and evaluator corrupt is symmetric to the case of P1, P5 corrupt.

We briefly highlight the need for equivocal commitment scheme (eNICOM) for the shares

of output masking bits in our fair protocol as follows: The adversary can decide to abort

the execution as late as when Y needs to be sent (in the worst case). Consequently, this

enforces the simulator to make this decision on behalf of the adversary at the end of Round 5

when calling the functionality. Hence, the simulator needs a mechanism to simulate the earlier

42

rounds appropriately such as sending the GC and committing to the shares of the output

masking bits, without the knowledge of whether the execution will result in a valid output or

not (with no information about the output). The sending of distributed GC is handled as in any

standard distributed garbling proof. To tackle the commitment on shares of output masking

bits, the simulator commits to dummy bits for the seed completely under its control. At a

later point if the execution results in invoking Ffair and obtaining y, the simulator equivocates

the commitments to desired share bits such that each output wire w decodes to correct yw.

The trapdoor and public parameter for our eNICOM scheme are derived from relevant seeds

as described in the protocol.

We provide a high level view of the simulation in distributed garbling and evaluation for

completeness. First, in the case of corrupt P ∗1 , P
∗
2 , the evaluator is honest. Hence correctness is

required from the DGC. The simulator behaves as an honest Pi, i ∈ {3, 4} following the protocol

steps and instructing the functionality to abort in case of any cheating throughout the garbling

since all seeds are known to the adversary. If no cheating is detected throughout the DGC

construction, then the GC is generated as per the Garble4 procedure. The inputs of corrupt

parties are extracted during the garbled input communication. The simulator sends abort to

the functionality if the GC partition sent by P ∗1 , P
∗
2 is not same as the one generated by honest

parties.

Second, in the case of corrupt P ∗1 , P
∗
5 , the simulator knows the seeds held by the adversary. In

addition the simulator has complete control over the part of GC generated using seed s2. Since

the simulator does not know the output in advance, the masking bit share λ2w corresponding

to output wires w cannot be set in advance. As a result, a fake GC is constructed using s2

that always evaluates to the same output super-key for the extracted and random inputs that

are known to the simulator. If the evaluation goes through and Y is received on behalf of

the honest parties, then the simulator invokes the functionality to obtain y, aptly programs

the masking bit share under its control by setting λ2w = y ⊕ (⊕i∈[4], i 6= 2)λiw for each output

wire, performs equivocation on the commitment made for share λ2w and sends the corresponding

decommitment to the corrupt parties thus completing simulation. We describe the simulator

steps in detail in Figures 4.3, 4.4.

S12fair5PC (P ∗1 , P
∗
2 are corrupt)

Seed Distribution Phase (one-time):

– Receive sg, g ∈ [2] from P ∗g on behalf of both P3, P4. If the copies of sg received mismatch, then

Simulator S12fair5PC

43

invoke Ffair with (Input,⊥) on behalf of P ∗g and set y = ⊥.

– Sample random s3, s4 and send s3 to P ∗1 , P
∗
2 on behalf of P3 and s4 on behalf of P4 to P ∗1 , P

∗
2 .

Evaluator’s Input sharing Phase:

– Sample a random x52 ∈ {0, 1}` as input share of P5 and send x52 to P ∗2 on behalf of P5.

Proof Establishment Phase:

– Sample proof from the domain of hash function H and send H(proof) on behalf of P5 to P ∗1 , P
∗
2 .

– Send H(proof) on behalf of P3, P4 to P ∗g , g ∈ [2]. Also receive H(proof) from P ∗g on behalf of

P3, P4. If the received hash value from P ∗g does not match with the hash value H(proof) that was

created originally on behalf of P5, then invoke Ffair with (Input,⊥) on behalf of P ∗g and set y = ⊥.

Setup of public parameter for Equivocal Commitment.

– For eNICOM, receive eppjg, g ∈ [2], j ∈ Sg, epp
gl, l ∈ [4] \ Sg from P ∗g on behalf of the honest

parties. Also send eppji, i ∈ {3, 4}, j ∈ Si, epp
il, l ∈ [4] \ Si on behalf of Pi to each P ∗g . Compute

eppα = ⊕j∈[4]eppαj , α ∈ [4] based on the values received from P ∗g . If eppg does not match with the

eppβ = ⊕j∈[4]eppβj computed on behalf of the honest parties, then invoke Ffair with (Input,⊥) on

behalf of P ∗g and set y = ⊥. Else forward eppi, i ∈ [4] to P ∗1 , P
∗
2 on behalf of the honest parties.

Transfer of Equivocal Commitments.

– For each circuit output wire w, create equivocal commitments for masking bit shares as per the

protocol. Send {(eppj , cjw)}j∈Si on behalf of Pi, i ∈ {3, 4} to P ∗1 , P
∗
2 . Also, receive {(epplw, clw)}l∈Sg

from P ∗g , g ∈ [2] on behalf of the honest parties. For any output wire w, if the received (eppl, clw)

from P ∗g , does not correspond to the one generated using sl, then invoke Ffair with (Input,⊥) on

behalf of P ∗g and set y = ⊥.

Garbling, Masked input bit and Key Transfer Phase.

– For circuit input wires w corresponding to input xii ∈ [2] held by P ∗i , send λlw, l ∈ Sj on behalf

of Pj , j ∈ {3, 4} to P ∗i . Similarly, for input corresponding to honest Pj , receive λlw, l ∈ Si from P ∗i

on behalf of Pj . Invoke Ffair with (Input,⊥) on behalf of P ∗i and set y = ⊥ if λlw received from

P ∗i corresponding to Pj ’s share does not correspond to the one generated using sl.

– Sample random bits b1, b2 for input wires w of honest Pi, i ∈ {3, 4} (including the shares of P5

that Pi should hold). Send b1, b2 to P ∗1 , P
∗
2 respectively on behalf of Pi. For the masked input bw

on wire w of P ∗j , j ∈ [2], perform the steps as per the protocol to compute Kl, l ∈ [4] \ {j}.
– For every input wire w belonging to P5’s input share, where {kgw,0, k

g
w,1}g∈[4] denote the super-

key derived from seeds {sg}g∈[4], receive {cjw,b}b∈{0,1} sent by P ∗i , i ∈ [2] ∩ Sl on behalf of P5. If

the commitment received for any w from P ∗i does not match with the one originally created, then

invoke Ffair with (Input,⊥) on behalf of P ∗i and set y = ⊥.

– For simulation of Round 1 of Garble4, it is necessary to ensure correctness of the circuit. Behave

as honest Pl, l ∈ {3, 4} using the seeds chosen in Round 1 and instruct the functionality to abort

44

in case of any cheating detected on behalf of honest Pl based on the messages sent by P ∗i , i ∈ [2].

If an instance of F4AOT returns ⊥ (due to inconsistent messages from P ∗i , i ∈ [2]), then invoke

Ffair with (Input,⊥) on behalf of P ∗i and set y = ⊥.

– For simulation of Round 2 of Garble4, behave as honest Pl, l ∈ {3, 4}. If an instance of F4AOT

returns ⊥ (due to inconsistent messages from P ∗i , i ∈ [2]) or i ∈ Sj for some j ∈ [4] sends different

GCj , then invoke Ffair with (Input,⊥) on behalf of P ∗i and set y = ⊥. If there is no abort, then

the garble circuit (described in 3.5) will be the output of honest parties.

– Input xi of P ∗i , i ∈ [2] is extracted by unmasking λw from bw = xi⊕λw (sent to P5) for each wire

w corresponding to the input of P ∗i . Invoke Ffair with (Input, x1), (Input, x2) to get the output y.

Evaluation and Output Phase.

– Compute Y such that for all output wires w, each key in Y maps to (yw⊕λw). Send (Y, proof)

to P ∗i , i ∈ [2] on behalf of P5.

– Send (Y, proof, ojw), j ∈ Sl for all output wires w on behalf of Pl, l ∈ {3, 4} to P ∗i , i ∈ [2]. Also,

receive the openings sent by P ∗g similarly. This completes the simulation.

Figure 4.3: Simulator S12
fair5PC for fair5PC with actively corrupt P ∗1 , P

∗
2

The hybrid arguments are as follows:

Security against corrupt P ∗1 , P
∗
2 : We now argue that idealFfair,S

12
fair5PC

c
≈ realfair5PC,A when

an adversary A corrupts P1, P2. The views are shown to be indistinguishable via a series of

intermediate hybrids.

– hyb0: Same as realfair5PC,A.

– hyb1: Same as hyb0 except that P5 aborts if any decommitment for {kgw,0, k
g
w,1}g∈[4] cor-

responding to a committed share x52 opens to a value other than what was originally

committed and held by P ∗2 .

– hyb2: Same as hyb1 except that Y is computed as Y = {kgw,yw⊕λw}g∈[4] for each output wire

w instead of running the Evaluation Phase of garbling.

– hyb3: Same as hyb2 except that Pi, i ∈ {3, 4} outputs ⊥ if distributed GC cannot be

successfully evaluated by P5.

hyb3 = idealFfair,S
12
fair5PC

.To sum up the proof, we show that each pair of hybrids is computation-

ally indistinguishable as follows:

hyb0
c
≈ hyb1: The primary difference between the hybrids is that in hyb0, P5 aborts if the

decommitments sent by P2 corresponding to the share x52 output ⊥ whereas in hyb1, P5 aborts

45

if the decommitments sent by P ∗2 open to any value other than what was originally committed.

Since the commitment scheme Com is strong binding , P2 could have decommitted successfully

to a different valid input label than what was originally committed, only with negligible prob-

ability.

hyb1
c
≈ hyb2: The only difference between the hybrids is that, in hyb2, Y is computed

as Y = {kgw,yw⊕λw}g∈[4] instead of running the Evaluation Phase of the garbling. The indis-

tinguishability follows from the correctness of the garbling scheme since Y computed using

Y = {kgw,yw⊕λw}g∈[4] is equivalent to that computed using the standard Evaluation Phase of

garbling.

hyb2
c
≈ hyb3: The only difference between the hybrids is that in hyb2, Pi, i ∈ {3, 4} can

possibly output y which is non-⊥ in case it receives a valid proof ′ such that H(proof ′) = H(proof)

from P ∗1 or P ∗2 although P5 was unable to evaluate the GC successfully, whereas in hyb3, Pi

outputs ⊥ in this case. Due to the collision resistant property of the hash function, P ∗1 /P
∗
2

could have a proof ′ that can be valid pre-image of H(proof) only with negligible probability.

S15fair5PC (P ∗1 , P
∗
5 are corrupt)

Seed Distribution Phase (one-time):

– Receive s1 from P ∗1 on behalf of both P3, P4. If the copies of s1 received mismatch, then invoke

Ffair with (Input,⊥) on behalf of P ∗1 and set y = ⊥.

– Sample random s3, s4 and send s3 to P ∗1 on behalf of P3 and s4 on behalf of P4.

Evaluator’s Input sharing Phase:

– Receive x52, x53, x54 on behalf of P2, P3, P4 respectively. Compute x5 = ⊕j∈{2,3,4}x5j .

Proof Establishment Phase:

– Receive H(proof) on behalf of Pi, i ∈ {2, 3, 4} from P ∗5 . If the received copies of H(proof) are not

consistent, then invoke Ffair with (Input,⊥) on behalf of P ∗5 and set y = ⊥.

– Send H(proof) to P ∗1 on behalf of Pi. Also receive H(proof) from P ∗1 on behalf of Pi. If the

copy of the hash value sent by P ∗1 is not consistent from that sent by P ∗5 , then invoke Ffair with

(Input,⊥) on behalf of P ∗1 and set y = ⊥.

Setup of public parameter for Equivocal Commitment.

– For eNICOM, receive eppj1, j ∈ S1, epp
12 from P ∗1 on behalf of the honest parties. Also send

Simulator S15fair5PC

46

eppji, i ∈ {2, 3, 4}, j ∈ Si, eppil, l ∈ [4] \ Si on behalf of Pi to each P ∗g , g ∈ {1, 5}. Compute

eppl = ⊕j∈[4]epplj , l ∈ [4] based on the values received from P ∗1 . If eppg does not match with

the eppα = ⊕j∈[4]eppij , α ∈ [4] computed on behalf of the honest parties, then invoke Ffair with

(Input,⊥) on behalf of P ∗g and set y = ⊥. Else forward eppi, i ∈ [4] to P ∗1 , P
∗
5 on behalf of the

honest parties.

Transfer of Equivocal Commitments.

– For each circuit output wire w, create commitments for masking bit shares known to P ∗1 as

per the protocol (for λiw, i ∈ [4] \ {2}). Create a dummy commitment c2w for each λ2w. Send

{(eppj , cjw)}j∈Sl on behalf of Pl, l ∈ {2, 3, 4} to P ∗1 , P
∗
5 . Also, receive {(eppj , cjw)}j∈S1 from P ∗1 on

behalf of the honest parties. If for any j, the received (eppj , cjw) from P ∗1 , does not correspond to

the one generated using sj , then invoke Ffair with (Input,⊥) on behalf of P ∗1 and set y = ⊥.

Garbling, Masked input bit and Key Transfer Phase.

– For circuit input wires w corresponding to input x1 held by P ∗1 , send λlw, l ∈ Sj on behalf of

Pj , j ∈ {2, 3, 4} to P ∗1 . Similarly, for input corresponding to honest Pj , receive λlw, l ∈ S1 from P ∗1

on behalf of Pj . Invoke Ffair with (Input,⊥) on behalf of P ∗1 and set y = ⊥ if λlw received from

P ∗1 corresponding to Pj ’s share does not correspond to the one generated using S1.

– Sample random b1 for input wires w of honest Pi, i ∈ {2, 3, 4} (including the shares of P5 that

Pi should hold). Send b1 to P ∗1 respectively on behalf of Pi. For P ∗1 ’s input, perform the steps as

per the protocol to compute Kl, l ∈ {2, 3, 4}. Send Kl to P ∗5 on behalf of Pl. Extract P ∗1 ’s input

x1 by XORing for each wire w as follows : xi = (b2 ⊕ b3 ⊕ b4)⊕ λw (λw is known since all seeds

are known).

– For every input wire w belonging to P5’s input share, where {kgw,0, k
g
w,1}g∈[4] denote the super-key

derived from seeds {sg}g∈[4], each Pl, l ∈ {3, 4} computes commitments on these as per the protocol

steps for seeds s3, s4. For commitments in (cjw,0, c
j
w,1) obtained using s2 that correspond to input

labels, generate commitments to the committed shares as per NICOM. Commit to dummy values

for all other labels that are not input labels. Send {ciw,b}b∈{0,1},i∈Sα on behalf of Pα, α ∈ {2, 3, 4}
to P ∗5 .

– For simulation of Round 1 of Garble4 on behalf of honest Pl, l ∈ {2, 3, 4}, all the seeds are known.

Additionally, s2 is not known to P ∗1 , so the randomness and garble circuit generated using s2 is

unknown to P ∗1 . Participate in the distributed garbling as before but constructing a simulated

GC with the help of s2 such that each ciphertext is encrypts the same output key that represents

the masked output which corresponds to the evaluation performed using the extracted inputs of

the adversary and the random inputs chosen during simulation. Simulate each instance of F4AOT

by acting as honest party. If a F4AOT instance returns ⊥ (due to inconsistent messages from P ∗1),

then invoke Ffair with (Input,⊥) on behalf of P ∗1 and set y = ⊥.

47

– For simulation of Round 2 of Garble4 on behalf of honest Pl, l ∈ {2, 3, 4}, participate in the

distributed garbling as described before in round 1 (same strategy as described in [CGMV17]).

If an instance of F4AOT returns ⊥ (due to inconsistent messages from P ∗1), then invoke Ffair with

(Input,⊥) on behalf of P ∗1 and set y = ⊥. If there is no abort, then the garble circuit (described

in Fig 3.5) will be the output of honest parties.

Evaluation and Output Phase.

– Receive (Y, proof) from P ∗5 on behalf of Pj , j ∈ {2, 3, 4}.
– If received (Y, proof) on behalf of Pl, l ∈ {2, 3, 4} from P ∗5 is such that Y is same as the output

label created in the generation of simulated GC, then invoke Ffair with (Input, x1), (Input, x5) to

get the output y and for all output wires w, set λ2w = ((y⊕λw)⊕λjw)j∈S1 , send (Y, proof, ojw), j ∈ Sl

on behalf of Pl to P ∗1 and (ojw)j∈Sl to P ∗5 where o2w = Equiv(c2w, o
′2
w , λ

2
w, t) where t is the trapdoor

for the commitment c2w.

– Else if, received (Y, proof, cjw), j ∈ S1 on behalf of Pl, l ∈ {2, 3, 4} from P ∗1 (and not from P ∗5), per-

form checks as per the protocol. If valid, then invoke Ffair with (Input, x1), (Input, x5) and obtain

the output y. Send (ciw, c
j
w), i ∈ Sl, j ∈ S1 on behalf of Pl to P ∗5 where o2w = Equiv(c2w, o

′2
w , λ

2
w, t)

where t is the trapdoor for the commitment c2w.

Figure 4.4: Simulator S15
fair5PC for fair5PC with actively corrupt P ∗1 , P

∗
5

Security against corrupt P ∗1 , P
∗
5 : We now argue that idealFfair,S

15
fair5PC

c
≈ realfair5PC,A when

an adversary A corrupts P1, P5. The views are shown to be indistinguishable via a series of

intermediate hybrids.

– hyb0: Same as realfair5PC,A.

– hyb1: Same as hyb0 except that some of the commitments of input wire labels sent by

P2, P3, P4 wrt seed s2, which will not be opened are replaced with commitments of dummy

values. These commitments correspond to the labels that do not correspond to any input

share.

– hyb2: Same as hyb1 except that the GC is created as simulated one with the knowledge

of s2.

– hyb3: Same as hyb2 except that,

• hyb3.1: When the execution results in abort, the commitment to λ2w for each output

wire w is created for a dummy value.

• hyb3.2: When the execution results in output y, the commitment c2w for each output

wire w is created for a dummy value and later equivocated to λ2w using o2w computed

via where o2w = Equiv(c2w, o
′2
w, λ

2
w, t) where t is the trapdoor for the commitment c2w.

48

– hyb4: Same as hyb3 except that that the protocol results in abort if the received Y does

not correspond to the Y resulting from the simulated GC.

hyb4 = idealFfair,S
15
fair5PC

. To conclude the proof we show that every consecutive pair of hy-

brids is computationally indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference between the hybrids is that some of the commitments of

the input labels in hyb0 corresponding to P5’s input shares that will not be opened are replaced

with commitments of dummy values in hyb1. The indistinguishability follows via reduction to

the hiding property of Com.

hyb1
c
≈ hyb2: The only difference between the hybrids is that in hyb2, the GC is con-

structed as a simulated one using the seed s2 instead of a real GC. More concretely, In hyb1,

Rounds 1, 2 are run as per Garble4 procedure, which gives ||g∈[4]GCg. In hyb2, it is generated

as a simulated circuit such that it always evaluates to the same Y. Indistinguishability follows

from the reduction to the security of distributed garbling and in turn the double-keyed PRF F

property.

hyb2
c
≈ hyb3.1: The difference between the hybrids is that the commitment to λ2w for each

output wire w, is created for a dummy value in hyb3.1. The indistinguishability follows via

reduction to the hiding property of eCom.

hyb2
c
≈ hyb3.2: The difference between the hybrids is that in hyb3.2, commitment to λ2w

for each output wire w, is created for a dummy value and later equivocated using o2w computed

via where o2w = Equiv(c2w, o
′2
w, λ

2
w, t) where t is the trapdoor for the commitment c2w. Indistin-

guishability follows via reduction to the hiding property of eCom.

hyb3
c
≈ hyb4: The only difference between the hybrids is that, in hyb3, the protocol aborts

if for some output wire w and index j ∈ Sg, k
j
w,bw

of the received Y does not match with

either (kjw,0, k
j
w,1) or the keys {kjw,bw}j∈Sg in Y do not map to the same bw whereas in hyb4,

the protocol results in abort if the received Y does not match the one created with simulated

GC. By security of the garbling scheme, P5 could have forged such a Y only with negligible

probability.

49

Chapter 5

5PC with Unanimous Abort

5.1 Technical Overview and the Construction

By simplifying fair5PC, we present a 5PC achieving unanimous abort, relying on a network of

pairwise-private channels with performance on par with [CGMV17] and maintaining the round

complexity to 8. Specifically, we eliminate the stronger primitive of eNICOM used to commit on

output mask shares in fair5PC, owing to weaker security. However, we still need to address the

case of a corrupt P5 selectively sending Y to honest garblers. Unanimous abort can be trivially

achieved if Y is broadcast by P5 instead of being sent privately but since broadcast increases

assumptions and is expensive in real-time networks, we enforce the garbler who receives a valid

Y from P5 to forward the same to her co-garblers. However, this technique does not suffice

on its own, since in case of a colluding garbler and the evaluator, P5 may not send Y to any

honest party and at the same time, the corrupt garbler may send Y only in the last round, to

one honest garbler, thus violating unanimity. To tackle this, we ensure that an honest garbler

accepts Y in the last round of output phase from a co-garbler only if the the co-garbler gives a

valid proof that she received Y from P5 only in the previous round. This is realized by having

each garbler sample a random value and circulate its hash for agreement prior to evaluation of

GC. Later in the output phase, if received Y from P5, each garbler sends this random value

along with Y to the co-garblers. However, if a garbler Pg who did not receive any message

from P5, receives valid Y and random value from the co-garbler, then Pg sends her random

value along with the Y and random value of the co-garbler to all. The number of random

values received along with Y from a garbler Pg serve as proof as in which round of output

phase Pg received Y. Further, to ensure that Y indeed originated from P5 (and was not forged

by two corrupt garblers), we reuse the technique described in fair5PC. The formal protocol

is presented in Fig 5.1. Similar to our fair protocol, this protocol can also be extended for

50

arbitrary n parties by modifying the output phase of ua5PC (Fig 5.1) as in Fig 5.2.

Inputs, Common Inputs, Output and Notation : Same as in fair5PC().

Primitives: A secure NICOM (Com,Open) (Section 2), Garble4 (Figs. 3.5), Eval4 (Fig. 3.6).

Seed Distribution Phase (one-time)and Evaluator’s Input Sharing Phase are same as

in fair5PC().

Proof Establishment Phase: Pi, i ∈ [5] chooses proofi from the domain of a hash function H,

computes and sends H(proofi) to all parties. Each party, Pj , j ∈ [5] \ {i} in turn sends the copy of

H(proofi) received to the remaining parties. Pj aborts if the H(proofi) received from the remaining

parties does not match with her own copy received from Pi. Else, Pj accepts H(proofi) to be the

agreed upon hash.

Setup of public parameter and Transfer of Equivocal Commitments are not present in

this protocol but instead for each output wire w, each Pj , j ∈ Sg sends λgw in clear to all. Each party

Pi ∈ P aborts if the three copies of λgw received do not match. Else, Pi computes λw = ⊕g∈[4]λ
g
w.

Garbling, Masked input bit and Key Transfer Phase are same as in fair5PC().

Evaluation and Output Phase:

– P5 runs Eval4 to evaluate GC using X and obtains Y and (yw ⊕ λw) for all output wires w. P5

sends (Y, proof) to all. P5 locally computes yw = (yw ⊕ λw)⊕l∈[4] λlw for each output wire w.

– For each Pg, g ∈ [4], j ∈ Sg, if the received kjw,bw of Y for some output wire w does not match with

either (kjw,0, k
j
w,1) or the three keys kjw,bw , j ∈ Sg in Y do not map to the same bw or proof5 fails,

then do nothing. Else for each output wire w, compute yw unmasking λw. Send (Y, proof5, proofg)

to the co-garblers.

– If received valid (Y, proof5, proofg) from a co-garbler Pg, Pα, α ∈ [4] computes y unmask-

ing λw. Also if sent nothing before, send (Y, proof5, proofg, proofα) to all. If no output y is

computed yet and received valid (Y, proof5, proofg, proofα) from co-garbler Pα (proofg indicates

(Y, proof5, proofg) was received from Pg), garbler Pγ obtains (yw ⊕ λw) from Y, unmasks λw and

computes y.

Protocol ua5PC

Figure 5.1: Protocol ua5PC

Optimizations. The efficiency of ua5PC protocol can be boosted similar to fair5PC in both

the garbling phase and communication of GC.

51

5.2 Properties

Lemma 5.2.1. The ua5PC protocol is correct.

Proof. The input of the evaluator, P5 is defined to be committed based on the shares sent to

P2, P3, P4 in Round 1. The keys communicated by the garblers for their own input define their

committed inputs. Evaluation is performed using the committed inputs. The correctness of

the output super-key Y and thus y follows from the correctness of garbling and evaluation

(Figs 3.5, 3.6).

Theorem 5.2.2. Our ua5PC protocol runs in at most 8 rounds.

Proof. The proof follows from the proof of Theorem 4.3.2.

Theorem 5.2.3. Assuming one-way permutations, our protocol ua5PC securely realizes the

functionality FuAbort (Fig. 2.3) in the standard model against a malicious adversary that corrupts

at most two parties.

The security proof is provided in Section 5.4.

5.3 n-party Extension of ua5PC

To achieve unanimous abort for the case of n parties, all steps of the protocol ua5PC remain

the same except the output phase. The seed-distribution is done as explained in Section 4.4.

For the extension, we consider that P1, ..., Pn−1 are garblers and Pn is the evaluator. On a high

level, the output phase involves 3 rounds where in round 1, Pn sends (Y, proofn) to all garblers

and the remaining two rounds are used to exchange the Y and proofs to compute the output.

Each honest party computes the output only if t+ 1 proofs are received by the end of round

3. This is done to prevent the adversary from remaining silent in first two rounds but selectively

sending Y to few honest parties only in the last round and them naively accepting the output

without any confirmation about fellow honest parties. Thus, an honest garbler who has not sent

anything until the end of round 2, forwards Y and the received proofs (along with own proof)

in round 3 only if at least t valid proofs are received by the end of round 2. This ensures that all

honest parties are in agreement about the output acceptance at the end of round 3. In detail,

if one honest party decides to accept the output by the end of round 2 due to the availabilty

of t proofs, then all honest parties will also accept the output at the end of round 3 due to the

availability of at least t+1 proofs which implies that an honest party has accepted Y i round 2.

This completes the intuition. We formally present the n-party extension for unanimous abort

in Fig 5.2.

52

Let Pn be the evaluator and Pg, g ∈ [n− 1] be the garblers.

Round 1: The evaluator sends (Y, proofn) to the garblers.

Round 2: If the received (Y, proofn) from the evaluator is valid, each garbler Pg forwards

(Y, proofn, proofg) to all.

Round 3: If received valid (Y, proofn, {proofg}g∈G) where G is a subset of garblers, if the total

number of proofg’s and proofn is at least t, then party Pα outputs y and if sent nothing before,

Pα forwards (Y, proofn, {proofg}g∈G, proofα) to all.

Local Computation: If no y output yet and received valid (Y, proofn, {proofg}g∈G, proofα) s.t

the total number of proofg’s, proofn and proofα together is at least (t+ 1), then party Pβ outputs

y using the output super-key and output wire masks for each output wire.

Protocol n-party Extension

Figure 5.2: Output Phase for n-party unanimous abort

The n-party extension of both ua5PC and fair5PC protocols are designed starting with the

n-party extension for selective abort proposed by [CGMV17]. While our ua5PC and fair5PC

protocols efficiently achieve UA and fairness respectively against t ≈
√
n corruptions, there

have been prior works in the literature in the honest majority setting (t < n/2) that achieve

fairness and GOD [ACJ17],[GLS15],[IKP+16]. However, all these protocols are of theoretical

interest and focus on attaining optimal round complexity.

5.4 Security Proof of ua5PC

Proof. We present the proof of Theorem 5.2.3 relative to its ideal functionality FuAbort (Fig-

ure 2.3). We only outline the sketch of the proof, since it is very similar to the security proof

of Theorem 4.3.3, explained in detail in Section 4.5.

We consider two corruption cases: First, when two garblers P1, P2 are corrupt and second,

when one garbler P1 and the evaluator P5 are corrupt. The cases of any two corrupt garblers

and one garbler one evaluator corrupt are analogous to the first and second case respectively.

The simulator, S12
ua5PC is described for the first case of corruption as follows: When P1, P2 are

corrupt, S12
ua5PC acts on behalf of the honest parties. To begin with, S12

ua5PC receives si, i ∈ [2]

from P ∗i on behalf of P3, P4. If the copies of si received mismatch, then S12
ua5PC invokes the

functionality FuAbort on behalf of P ∗i with input ⊥. Else, it samples sj, j ∈ {3, 4} and sends sj

to P ∗1 , P
∗
2 on behalf of Pj. A random x52 is also sent by S12

ua5PC on behalf of P5 to P ∗2 . S12
ua5PC

behaves according to the protocol steps in the masked input bit and Key Transfer Phase. The

inputs of corrupt parties are extracted similar to our fair protocol. For garbling, since P1, P2

are corrupt, correctness must be ensured. S12
ua5PC behaves as an honest Pi, i ∈ {3, 4} instructing

53

the functionality to abort in case of any cheating during garbling since all seeds are known to

the adversary. If no cheating occurs in the GC construction, then a GC is generated as per the

Garble procedure. If transfer of keys and masked inputs proceed without any adversarial action,

S12
ua5PC then sends x1, x2 to FuAbort to obtain y which is the output of GC evaluation. S12

ua5PC

then computes Y such that for all output wires w, each key in Y maps to (yw ⊕ λw). S12
ua5PC

sends continue to FuAbort and sends (Y, proof5) on behalf of P5 and send (Y, proof5, proofg) on

behalf of every honest garbler Pg in the next round to complete the execution.

For the case of a corrupt garbler P1 and the evaluator P5, we describe the simulator, S15
ua5PC

as follows: To begin with, S15
ua5PC receives s1 from P ∗1 on behalf of P3, P4. If the copies of s1

received mismatch, then S15
ua5PC invokes the functionality FuAbort on behalf of P ∗1 with input ⊥.

Else, it samples sj, j ∈ {3, 4} and sends sj to P ∗1 on behalf of Pj. S15
ua5PC has the freedom to

choose s2. S15
ua5PC behaves according to the protocol steps in the masked input bit and Key

Transfer Phase. The input of P ∗5 is extracted using the shares disclosed by her to the parties

with indices in {2, 3, 4}. The input of P ∗1 is extracted in garbled input generation similar to

our fair protocol. S15
ua5PC the invokes the functionality to obtain the output y. Construct a

fake garbled circuit using s2 and the knowledge of y that always evaluates to the same output

super-key Y, which corresponds to the evaluation performed using the extracted inputs of the

adversary and the inputs of the honest parties. Consequently, the evaluator evaluates the GC

to obtain Y′ which is communicated to the garblers. If the labels in Y,Y′ differ, then S15
ua5PC

instructs the functionality to abort. However, the probability this event is negligible since the

adversary can decode only one row of the CT for each gate corresponding to the seed not held

by her. This makes the distributions indistinguishable. Finally, if S15
ua5PC receives a valid pair

(Y, proof5) from P ∗5 on behalf of honest Pi, i ∈ {2, 3, 4}, then S15
ua5PC sends continue to FuAbort

and sends (Y, proof5, proofi) to P ∗1 on behalf of Pi. Else if valid (Y, proof5, proof1) is received

from P ∗1 in round 2 of the output phase on behalf of honest Pi, then S15
ua5PC sends continue to

FuAbort. Else, S15
ua5PC sends abort to the FuAbort to complete the simulation.

54

Chapter 6

5PC with GOD

With fair5PC as the starting point, we elevate the security and present a constant-round 5PC

with GOD relying only on symmetric-key primitives. We assume a necessary broadcast channel

besides pairwise-private channels for our corruption threshold owing to the result of [CL14].

Our protocol reduces to an honest-majority 3PC with GOD in some cases. With the assumption

of broadcast channel, our protocol takes 6 rounds when no 3PC is invoked and stretches up to

12 rounds when packed with the 3PC of [BJPR18] in the worst case.

6.1 The Construction

We achieve GOD by tackling the scenarios leading to abort when the parties are in conflict.

Specifically, we eliminate a corrupt party and transit to a smaller world of 3 parties with at most

one corruption to complete computation in such cases. We retain the setup of four garblers

{P1, P2, P3, P4} and P5 as the evaluator. On a high level, our protocol starts with a robust

input and (one-time) SD, followed by the garbling phase, transfer of the GC, blinded inputs

and corresponding super-keys to the evaluator and concludes with the circuit evaluation by the

evaluator and output computation by all. The key technique in achieving a robust computation

lies in the use of tools such as 4-party 2-private RSS and SD to ensure that each phase of the

protocol is robust against any malicious wrongdoing. While using a passively-secure 4DG as the

underlying building block, there exist scenarios where it seems improbable to publicly identify

and eliminate a corrupt party due to the presence of 2 active corruptions. Instead, when the

adversary strikes, we establish and eliminate the parties in conflict publicly (of which one is

ensured to be corrupt) and rely on the remaining parties with at most one corruption to robustly

compute the output. The essence of our protocol lies in tackling the threats to input privacy

and correctness that arise during the transfer of masked inputs and corresponding super-keys

55

due to the presence of distinct committees.

To begin with, the input and seed distributions are robust. Each input-share/seed is owned

by a committee of 3 parties (as dictated by RSS/seed-distribution). To ensure consistent

distribution, we force the dealer (of input-share/seed) to commit to the data publicly and open

privately rather than relying on private communication alone. Parties who receive the same

RSS share/seed cross-check with each other to agree either on a publicly committed value or a

default value when no correct openings are dealt. The shares distributed as per RSS in input

distribution are now deemed as parties’ new inputs and the circuit is augmented with XOR

gates at input level which take these shares as inputs. The formal protocols for input and seed

distribution appear in Fig. 6.1 and 6.2 respectively.

Inputs: Pi has input xi.

Notation: Tj , j ∈ [6] denotes the two size maximal unqualified subset (|Tj | = 2) of the parties in

the lexicographic order.

Output: Each party Pk ∈ Pi outputs (cij , c
′
ij)j∈[6], {(oil, (xil⊕ril)), (o′il, r

il)}k/∈Tl∧l∈[6] where (cil, oil),

(c′il, o
′
il) denote the commitment and opening of the shares (xil ⊕ ril), ril respectively.

Primitives: A secure NICOM (Com,Open) (Chapter 2), a 4-party 2-private RSS.

R1: Pi does the following:

– shares its input as xi = ⊕j∈[6]xij and a random input ri ∈ {0, 1} as ri = ⊕j∈[6]rij .
– samples ppi and for j ∈ [6], computes commitments on (xij ⊕ rij), rij as: (cij , oij) ← Com(ppi,

(xij ⊕ rij)) and (c′ij , o
′
ij)← Com(ppi, r

ij).

– broadcasts (ppi, cij , c
′
ij); sends {oij , o′ij} privately to each Pl /∈ Tj .

Define Xij to be the set of parties holding the shares xij ⊕ rij and rij . Pi by default belongs to

every Xij .

R2: For {ppi, (cij , c′ij)}j∈[6] and {oij , o′ij} received from Pi, Pk sets the opening information to

⊥ when they are invalid and forwards (oij , o
′
ij) to Pl 6∈ Tj .

Local computation by Pk: Pk resets its opening data on receiving valid openings from fellow

parties (if set to ⊥ earlier). If any opening still remains ⊥, set agreed-upon default value of (xij⊕rij)
and rij .

Protocol inputGODi

Figure 6.1: Protocol inputGODi

56

Notation: S1 = {1, 3, 4}, S2 = {2, 3, 4}, S3 = {1, 2, 3}, S4 = {1, 2, 4}.

Output: Each party Pj , j ∈ Sg outputs sg.

R1: Pg chooses random seed sg ∈R {0, 1}κ, samples ppg and computes (cg, og)← Com(ppg, sg). Pg

broadcasts (ppg, cg) and sends og privately to each Pj , j ∈ Sg.

R2: If no og received or Open(ppg, cg, og) = ⊥, Pj sets og =⊥. Pj forwards og to Pk, k ∈ Sg.

(Local Computation by Pj:) Accept og sent by Pk, if Open(ppg, cg, og) 6= ⊥ and the og received

earlier from Pg was set to ⊥. If the opening still remains ⊥, agree on default seed sg.

Protocol seedGODg

Figure 6.2: Protocol seedGODg

The techniques to identify a pair of conflicting parties (in order to eliminate a corrupt

party) differ based on the communication being either public or private. Public data sent

by a party involves the transfer of: (a) GC partition wrt each seed owned by the party, (b)

shares of output wire masks wrt each seed owned by the party, (c) shares of input wire masks

wrt the seeds not owned by the wire owner, (d) masked input values for the input-shares not

owned by the evaluator. Each of these values can be broadcasted by the 3 parties owning

the respective seed (for cases (a)-(c)) or input-share (for case (d)). Any mismatch in the 3

broadcasted copies leads to election of a 3-party committee P3 that becomes the custodian

for completing computation. The primary reason for adopting broadcast in the above cases

is to aid in unanimous agreement about the conflicting parties. Else, if we rely on private

communication alone, an honest receiver may always receive mismatching copies and fail to

convince all honest parties about the wrongdoing. Further, input privacy is preserved when

masked input is broadcast in case (d) for the shares not owned by evaluator (instead owned by

3 garblers), since the adversary (corrupting the evaluator and one garbler) lacks knowledge of

one seed needed to learn the underlying input-share.

Private communication includes the transfer of super-key for input wires wrt masked input

shares to P5. The natural solution is to have the garblers, owning the respective input share,

send keys privately to P5 corresponding to the seeds they own. The private transfer alone,

however, allows corrupt parties to send incorrect keys which goes undetected by P5. We resolve

this using the standard trick of commit-then-open. All garblers publicly commit to both keys on

each input wire for the seeds they possess, where any conflict is dealt as in the public message.

The commitments wrt each seed are generated by the three seed owners using randomness

derived from the same seed, turning public verification to plain equality checking. When no

public conflict arises, only the garblers holding the actual input share send the relevant openings

to P5. Since each input-share is owned by at least two garblers (the other may be the evaluator),

57

they together hold all parts of the correct super-key to be opened, hence all openings can be

communicated. However, this step may not be robust in case of a corrupt garbler sending

incorrect (or no) opening privately which can be realised only by P5. In such case, P5 raises a

conflict against the garbler who sent a faulty opening and a 3-party set is identified for 3PC

which excludes P5 and the conflicting garbler.

Further, input consistency is threatened when the adversary gets the output in the 5PC,

yet makes the honest parties receive output via 3PC which now needs to adhere to the inputs

committed in the outer 5PC protocol. This occurs when a corrupt P5 computes the output,

yet does not disclose to the garblers and the related 3PC instance invoked must ensure input

consistency to bar the adversary from learning multiple evaluations of f . This creates a subtle

issue when in the elected 3PC, only one party say Pα holds a share xij (the other two owners

of xij are eliminated). A potentially corrupt Pα can use a different xij causing the 3PC to

compute on a different input xi of Pi than what was used in the 5PC, thus obtaining multiple

evaluations of f . Custom-made to the robust 3PC of [BJPR18], we tackle this having the RSS

dealer Pi distribute xij + rij and rij instead of just xij for each share in the input-distribution

phase. When a 3PC is invoked, the 3-parties who hold opening of xij + rij and rij hand them

over respectively to the two parties in the 3PC who do not hold xij. With such a modification,

now each input share in the elected 3PC is either held by at least two parties or by one party

in which case it is XOR-shared between the remaining two. This is in line with the 3PC of

[BJPR18] that offers consistency for inputs, that are either held by at least two parties or by

one party in which case it is XOR-shared between the remaining two. In the 3PC of [BJPR18],

two parties, say Pα, Pβ act as garblers and the third party, say Pγ acts as an evaluator. The

garblers use common randomness to construct the same Yao’s GC [BHR12] individually. Since

at most one party can be corrupt, a comparison of GCs received from the garblers allows Pγ

to conclude its correctness. For key transfer, the garblers perform commitments on all keys for

the input wires in a permuted order and send openings for the shares they own to Pγ. This

suffices since, for an input share not held by Pγ, it is available with both garblers and thus, Pγ

can verify if both the openings received for such a share are same. The use of permutation here

further ensures that Pγ does not learn the actual value of the input key that she has the opening

for. However, for input shares held by Pγ, no permutation is used to allow Pγ to verify if the

correct opening has been received. The diagram and an example depicting this process appears

in Fig 6.7 (Section 6.4). Our formal 3PC appears in Fig 6.4. The main protocol appears in

Fig 6.5.

In 5PC, it is easy to check that the evaluator colluding with a garbler can’t cheat with a

wrong super-key for the output, as no single garbler possesses all seeds. The AOT protocol,

58

used in Garble, is aptly modified to tackle conflicts and elect a 3PC instance. The protocol

realization specific to our 5PC with GOD, god5PC is presented in Fig 6.3. This protocol is

same as Π4AOT, except that the sender’s and attesters’ messages are broadcast to enable the

identification of conflict in case of mismatching messages. Thus the protocol either outputs the

OT message to the receiver or identifies a 3PC, P3 for all.

Finally, due to tools customized for 5PC such as RSS, conflict-identification and running

smaller 3PC instance, we conclude that our god5PC protocol , in its current form, cannot be

extended to n-parties while retaining efficiency, unlike both our fair5PC and ua5PC protocols.

Ps, Pr denote the sender and receiver respectively. Pa1 , Pa2 are attesters. Pa denotes the auditor.

All are distinct parties.

Inputs: Ps holds m0,m1, Pr holds choice bit b.

Notations P3 is the 3PC committee with at most 1 corruption.

Output Pr outputs mb/P
3. All other parties output ⊥/P3.

Primitives: A secure NICOM (Com,Open) (Section 2.2).

– Ps samples pp and random r0, r1 ← {0, 1}κ (derived from si, i ∈ Ss \Sr) and computes (c0, o0)←
Com(pp,m0), (c1, o1)← Com(pp,m1). Ps broadcasts (pp, c0, c1). Pa1 , Pa2 who know (r0, r1) (since

they know si) also compute (c0, o0) ← Com(pp,m0), (c1, o1) ← Com(pp,m1) and each broadcast

(c0, c1).

– Pr has b (derived using sj , j ∈ Sr \ Ss) which is known to Pa1 , Pa2 (since they know sj). Pa1

(wlog) sends ob to Pr.

If the broadcast values sent by Ps, Pa1 , Pa2 do not match, each Pγ , γ ∈ [5] sets P3 := {a1, r, a}.
Output P3.

(Computation by Pr): If no ob is received or Open(cb, ob) = ⊥, broadcast conflict with Pa1 .

All parties set P3 := {s, a2, a} and output P3. Else, Pr outputs mb = Open(cb, ob) and the remaining

parties output ⊥.

Protocol Π4AOTGOD

Figure 6.3: Protocol Π4AOTGOD(Ps, Pr, {Pa1 , Pa2}, Pa) for god5PC

59

Inputs: Party Pk has (cij , c
′
ij) for i ∈ [5], j ∈ [6] and (oil, o

′
il) for i ∈ [5], l ∈ [6], Pk /∈ Tl.

Common Inputs: The circuit C(⊕j∈[6]x1j ,⊕j∈[6]x2j ,⊕j∈[6]x3j ,⊕j∈[6]x4j ,⊕j∈[6]x5j) that computes

f(x1, x2, x3, x4, x5), each input, their shares and output are from {0, 1}.
Notation: P3 = {Pα, Pβ, Pγ} is the chosen 3PC Committee.

Output: y = C(x1, x2, x3, x4, x5).

Input Setup for 3PC: For each xij , if just one party, say Pα ∈ P3∩Xij , the following is done:

every party in Xij sends oij for xij ⊕ rij and o′ij for rij to Pβ and Pγ respectively, each of which in

turn recovers the respective share using one valid opening.

3PC Run: Run a robust 3PC (Fig 6.6 [BJPR18] secure against one active corruption with {Pα, Pβ}
as garblers and Pγ as the evaluator.

– The input of each party is xij/ xij⊕ rij / rij . Pγ does not XOR-share its input as in the protocol

of [BJPR18].

– Inside the 3PC, for inputs not known to Pγ , the garblers send commitments on both keys in

random permuted order with randomness drawn from the common randomness of garblers. For

other inputs, the commitments are sent without permutation.

– For xij , not known to Pγ and held by both Pα, Pβ and on receiving the opening for keys Pγ ,

checks if the opened keys are same from both garblers. For xij known to Pγ , it checks if they

correspond to bit xij by checking whether xijth commitment was opened or not.

– The case when all 3 parties hold xij is subsumed in the above case.

– For xij held by Pγ while xij⊕ rij and rij held by Pα and Pβ respectively, Pγ (who knows xij⊕rij

and rij too) checks if the openings obtained from Pα and Pβ indeed correspond to xij ⊕ rij and

rij respectively. If so, he XORs the keys to obtain the key for xij .

– For xij held by Pα, while xij ⊕ rij held by Pβ and rij held by Pγ , Pα sends key-openings wrt

xij + rij , rij and Pβ sends key-opening wrt xij ⊕ rij . Pγ checks if the opening wrt rij is correct

and if the opened keys wrt xij ⊕ rij (sent by Pα, Pβ) are the same. If so, the keys of rij XORed

with xij ⊕ rij top obtain key wrt xij . Compute similarly if xij ⊕ rij is held by Pγ .

– The rest of 3PC is run using keys for all RSS shares xij and the output obtained is sent to each

Pi ∈ P.

Output: The parties output majority of the three y’s received.

Protocol god3PC

Figure 6.4: Protocol god3PC

Inputs and Output: Party Pi ∈ P has xi. Each party outputs y = C(x1, x2, x3, x4, x5).

Protocol god5PC

60

Common Inputs: The circuit C(⊕j∈[6]x1j ,⊕j∈[6]x2j ,⊕j∈[6]x3j ,⊕j∈[6]x4j ,⊕j∈[6]x5j) that takes the

RSS shares as inputs and computes f(x1, x2, x3, x4, x5), each input, their shares are from {0, 1}
(instead of {0, 1}` for simplicity) and output is from {0, 1}`.
Notation: Si denotes the indices of the parties who hold si as well as the indices of the seeds held

by Pi. Xij denotes the set of parties that holds the jth share of Pi’s input xij . P3 is the identified

3PC committee.

Primitives: A secure NICOM (Com,Open) (Section 2), inputGODi (Fig 6.1), seedGODg (Fig 6.2),

Garble4 (Fig 3.5), Eval4 (Fig 3.6) and Π4AOTGOD (Fig 6.3).

Input and Seed Distribution Phase. Run inputGODi and seedGODg for every Pi ∈ P and

Pg, g ∈ [4] respectively in parallel.

Garbling Phase. Garble4(C) is run where ΠAOTGOD (Fig 6.3) is used instead of F4AOT to

achieve OT. Each Pg, g ∈ [4] broadcasts {GCj}j∈Sg . Each party runs god3PC with P3 when any

instance of Π4AOTGOD returns P3 or with P3 = P \ {Pα, Pβ} when (Pα, Pβ) with α, β ∈ Sg for some

g ∈ [4] broadcasts different GCg (in the optimized version, we broadcast only a hash of GC).

Masked input bit and Key Transfer Phase.

– In parallel to the R1 of Garbling phase,

◦ For each output wire w, Pg, g ∈ [4] broadcasts λjw, j ∈ Sg. Every party runs god3PC with

P3 = P\{Pα, Pβ}, if parties Pα, Pβ holding seed sg i.e. {α, β} ∈ Sg broadcast different copies of

λgw for some output wire w and g. (Tie break deterministically if multiple pairs are in conflict.)

Otherwise, every party reconstructs λw = ⊕g∈[4]λ
g
w for every output wire w.

◦ For every input wire w corresponding to input xw = xij held by three garblers, for each Pg ∈ Xij :

each garbler Ph, h 6= g, broadcasts λlw, l ∈ Sh \ Sg. (If Xij includes evaluator, then each garbler

Ph, h ∈ [4] broadcasts λlw, l ∈ Sh). Every party runs god3PC with P3 = P\{Pα, Pβ}, if there are

parties Pα, Pβ with {α, β} ∈ Sl broadcasting different copies λlw for some wire w. Otherwise,

Pg, the owner of the input wire w uses λlw to compute λw = ⊕l∈[4]λlw.

– In parallel to R2 of Garbling phase, for circuit input wire w corresponding to input xw = xij

held by three garblers, each Pα ∈ Xij computes bw = xw ⊕ λw and broadcasts bw. Every party

runs god3PC with P3 = P \ {Pα, Pβ}, if there are parties Pα, Pβ with {α, β} ∈ Xij broadcasting

different copies of bw. Otherwise, P5 uses bw(= xw ⊕ λw) for evaluation. For circuit input wire

w corresponding to input xw = xij held by two garblers and P5, P5 already knows bw as λw was

computed by P5 in the previous step.

– For every input wire w, let {kgw,0, k
g
w,1}g∈[4] denote the super-key derived from seeds {sg}g∈[4].

Each Pg, g ∈ [4] computes commitments as: for b ∈ {0, 1}, j ∈ Sg, (cjw,b, o
j
w,b) ← Com(ppj , kjw,b)

and broadcasts {ppj , cjw,b}. Pg sends the opening ojw,bw to P5 if it also holds bw. Every party runs

god3PC with P3 with P3 = P \ {Pα, Pβ} if (Pα, Pβ) with α, β ∈ Si for some i and input wire w

broadcast different commitments. Otherwise, P5 tries to recover the super-key for bw, namely,

61

{kgw,bw}g∈[4] using the openings received. If no valid openings received for some key, P5 broadcasts

a conflict with a garbler who sent invalid opening and subsequently every party runs god3PC with

the remaining three parties as P3. Otherwise, let X to be the set of super-keys obtained.

Evaluation and Output Phase.

– P5 runs Eval4 to evaluate C using X and obtains Y and (yw ⊕ λw) for all output wires w. For

each output wire w, P5 computes yw = (yw ⊕ λw)⊕g∈[4] λ
g
w and thus y. Finally, P5 outputs y. P5

broadcasts Y.

– Every party Pg runs god3PC with P3 with P3 = P \ {P1, P5} if kjw,bw of Y for some output wire

w and index j ∈ Sg does not match with either (kjw,0, k
j
w,1) or the three keys kjw,bw , j ∈ Sg in Y

do not map to the same bw. Otherwise, each garbler Pg obtains (yw ⊕ λw) by comparing each

key in Y with the two key labels for each w and computes yw = (yw ⊕ λw)⊕g∈[4] λ
g
w. Finally, Pg

outputs y.

Figure 6.5: Protocol god5PC

6.2 Optimizations

To improve efficiency, the garbling process is optimized similar to fair5PC. When a conflict

is identified prior to the sending of GC, identification of the 3PC instance and its execution

are set in motion immediately, thus enabling the protocol to terminate faster. To minimize the

overhead of broadcast and make it independent of input, output and circuit size, we replace each

broadcast message m with the collision-resistant hash of the message, H(m), while sending m

privately to the recipient. For instance, in DGC, H(GCi), i ∈ [4] is broadcasted by parties who

own GCi whereas, GCi is sent to the evaluator by one of the parties in Si privately. Similarly,

for sending output super-key, H(Y) is broadcasted by P5 and Y is sent via pairwise channels

and so on. With this optimization in broadcast, we elaborate how any conflict will be resolved

with the following examples (all our broadcast messages fall under one of these examples):

Example 1: Consider a message m to be broadcasted where m is the GC fragment GC1.

This fragment is held by P1, P3, P4 due to seed distribution. Each of P1, P3, P4 broadcasts

H(GC1). If the hashes mismatch for two parties say P1, P3, then a 3PC instance is formed with

P2, P4, P5. Else, if all the broadcast hashes are in agreement, then P1 will send GC1 privately

to P5. Now if P5 is honest and finds that the received GC1 is not consistent with the hash

that was successfully broadcasted and agreed, then P5 broadcasts a conflict with P1 and a 3PC

instance with P2, P3, P4 is chosen. Else if P5 is corrupt and raises a false conflict with P1, even

then the 3PC with P2, P3, P4 is run. In both the cases, one corrupt party is surely eliminated

and the 3PC contains at most one corruption.

62

Example 2: Consider a message m to be broadcasted where m is the mask share λ1w on

output wire w. The mask-share λ1w is held by P1, P3, P4 due to seed distribution. Each of

P1, P3, P4 broadcasts H(λ1w). If the hashes mismatch for two parties say P1, P3, then a 3PC

instance is formed amongst the remaining parties, P2, P4, P5. Else, if all the hashes are in

agreement, then P1, P3, P4 privately send λ1w to each party. We consider the receiver P2 for

explanation. This step is robust since if the hashes are in agreement, there will always exist

one valid pre-image among the private messages received by P2. This is because, even if two

of the three senders P1, P3 are corrupt and send inconsistent preimage, P4 will send valid λ1w

which will be consistent with the agreed upon hash. Hence P2 uses the value sent by P4 and

proceeds for computation.

6.3 Properties

Lemma 6.3.1. An elected 3PC has at most one corruption.

Proof. We argue that a corrupt party is eliminated in a conflict. Suppose Pi, Pj are in conflict.

This could be due to either (i) mismatch in the public message broadcast by Pi, Pj or (ii) one

of Pi, Pj raised a conflict against the other for an incorrect private message. In case (i), each

message is result of either robust input or seed distribution and hence if both were honest, the

broadcast messages would be identical. In case (ii), each message involves an opening for the

commitments agreed on in public message and neither Pi nor Pj would raise a conflict if valid

opening was received. Also, in both the above cases, each message is checked for correctness

before proceeding further and thus the conflict could not have been the result of adversary’s

doing in the previous steps. This implies that at least one of Pi, Pj is corrupt. Thus, an elected

3PC in either case would contain parties P3 = P\{Pi, Pj}. Since one of Pi, Pj is surely corrupt,

at most one corrupt party can be present in P3.

Lemma 6.3.2. The output y computed in the god3PC instance corresponds to the committed

inputs.

Proof. In case of conflict in god5PC, a 3PC instance with at most one corruption is formed

(Lemma 6.3.1). To ensure input consistency in the 3PC, every agreed upon RSS share xij in

inputGOD, is made available in 3PC to at least two parties or when held by one party, it is

XOR shared between the remaining two. With this arrangement of input shares, the robust

3PC of [BJPR18] is guaranteed to preserve input consistency. This ensures that computation

in 3PC is performed on the inputs committed in inputGOD.

Theorem 6.3.3. The protocol god5PC is correct.

63

Proof. We argue that the output y computed corresponds to the unique inputs committed by

each Pi, i ∈ [5] in inputGODi. A corrupt party either commits to an input or a default value is

assumed as per inputGOD. The honest parties are established to have committed to their inputs

by the end of round 1 in inputGOD. An honest Pα obtains the output either by decoding the

output super-key Y or via the output of god3PC (as a participant in god3PC or recipient from

the 3PC committee). In the latter case, correctness follows from Lemma 6.3.2 and correctness

of god3PC. We argue for the former case. Let an honest Pα obtains output from Y broadcast by

P5. This implies that the adversary behaved honestly in the entire execution and the input keys

opened by a corrupt garbler correspond to committed inputs only. Otherwise, a conflict would

be raised to elect a 3PC, which contradicts our assumption that the output was obtained on

decoding Y. Thus, the output always corresponds to the committed inputs in inputGOD. The

correctness of evaluation follows from the correctness of the garbling scheme (Figs 3.5, 3.6).

Lemma 6.3.4. Assuming a broadcast channel, our protocol god5PC runs in at most 12 rounds.

Proof. The robust routine inputGODi needs 2 rounds. In the honest run, Garble4 requires 2

rounds which can be overlapped with transfer of mask bit shares on input wires and output

wires publicly. Transfer of input super-keys, blinded inputs and the distributed GC takes 1

round. Finally, 1 last round is required for sending Y by the evaluator. Thus, 6 rounds suffice

for GOD in an honest run.

The worst case run occurs when a corrupt P5 chooses not to send the output super-key to

garblers. In such a case, the round complexity inflates to at most 12, since at most 5 rounds are

necessary for the robust 3PC [BJPR18] and 1 extra round to send the output of 3PC instance

to all parties. In all other cases of conflict, at most one round is used to establish the conflict

and elect the 3PC. Thus, the round complexity in such cases is less than the worst case run.

Theorem 6.3.5. Assuming one-way permutations, protocol god5PC securely realizes the func-

tionality Fgod (Fig. 2.1) in the standard model against an active adversary that corrupts at

most two parties.

The security proof is presented in Section 6.6. Since the inputs are defined prior to the garbling

phase in god5PC, we do not require the adaptive notion of the proof. The same is true for all

our protocols.

Although, the formal security proof appears in Section 6.6, here, we provide intuition of

GOD for completeness. The routine inputGOD binds the adversary to commit to an input or

a default value. If a conflict is identified at any point during the execution, then an elected

3PC committee runs robust 3PC of [BJPR18] to obtain the output y. Otherwise, computation

64

proceeds as per the honest run and each party receives the output using the Y broadcasted

by P5. If Y is valid, then all parties compute y using Y to conclude the execution. Else if Y

is invalid or not received, a 3PC instance is identified among the garblers to compute y. In

both the above cases (lemma 6.3.3), inputs committed in inputGOD alone are used to obtain

the output y thus concluding the intuition.

6.4 3PC with GOD

In this section, we include the robust 3PC instantiation of [BJPR18] verbatim in Fig 6.6 for

completeness. For every case of conflict when a 3PC committee is chosen, the routine god3PC

invokes the protocol in Fig 6.6 to compute the output robustly while ensuring consistency of

inputs committed in inputGOD routine. In the protocol g3PC given below, that is assumed

to run between the 3 parties P1, P2, P3, P1, P2 act as garblers and P3 is the evaluator. Yao’s

garbled circuit [Yao82] with security defined as per [BHR12, LP04] is used for garbling. The

property of soft decoding used in this protocol allows decoding of the garbled circuit output

without the use of decoding information [MRZ15]. This can be trivially achieved by appending

the truth value to each output key.

Inputs: Party Pα has xα for α ∈ [3].

Common Inputs: The function C(x1, x2, x3, x4) that computes f(x1, x2, x3 ⊕ x4) where inputs,

function output are in {0, 1}` for ` ∈ poly(κ). P3 is the evaluator and (P1, P2) are the garblers.

Output: y = C(x1, x2, x3, x4) = f(x1, x2, x3 ⊕ x4).
Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and authentic with the

property of soft decoding, a NICOM (Com,Open) and a PRG G.

Round 1: P1 chooses random s ∈R {0, 1}κ for G and sends s to P2. Besides,

– P3 picks x31, x32 ∈R {0, 1}` with x3 = x31 ⊕ x32. P3 samples pp for NICOM and generates

(c31, o31)← Com(pp, x31), (c32, o32)← Com(pp, x32), broadcasts {pp, c31, c32} and sends (x31, o31),

(x32, o32) to P1, P2 respectively. (This step is not done in our 3PC. as god3PC already does this

step to ensure input consistency and privacy).

Round 2: Pi(i ∈ [2]) broadcasts (conflict, P3) if Open(c3i, o3i) 6= x3i. Else, it does the

following:

– Compute GC (C, e, d) ← Gb(1κ, C) with randomness from G(s). Assume {K0
α,K

1
α}α∈[`],

{K0
`+α,K

1
`+α}α∈[`], {K0

2`+α,K
1
2`+α}α∈[2`] refer to encoding information for the input of P1, P2 and

Protocol g3PC

65

shares of P3 respectively (w.l.o.g).

– Compute permutation strings p1, p2 ∈R {0, 1}` for garblers’ input wires, generate commitments

on e using randomness from G(s). For b ∈ {0, 1}, (cbα, o
b
α) ← Com(pp, e

pα1⊕b
α), (cb`+α, o

b
`+α) ←

Com(pp, e
pα2⊕b
`+α) for α ∈ [`], (cb2`+α, o

b
2`+α) ← Com(pp, eb2`+α) for α ∈ [2`]. Broadcast Bi ={

C, {cbα}α∈[4`],b∈{0,1}
}

.

– P1 computes m1 = x1 ⊕ p1 and sends to P3: the openings of the commitments corresponding to

(x1, x31) i.e {om
α
1

α , o
xα31
2`+α}α∈[`], m1. Similarly, P2 computes m2 = x2⊕p2 and sends to P3: openings

of the commitments corresponding to (x2, x32) i.e {om
α
2

`+α, o
xα32
3`+α}α∈[`], m2.

Every party sets TTP as follows. If exactly one Pi(i ∈ [2]) broadcasts (conflict, P3) in Round 2,

set TTP = P[2]\i. If both raise conflict, set TTP = P1. If B1 6= B2, set TTP = P3.

Round 3: If TTP = ∅, P3 does the following:

– Assign Xα
1 = Open(pp, c

mα1
α , o

mα1
α) and Xα

31 = Open(pp, c
xα31
2`+α, o

xα31
2`+α) for α ∈ [`]. Broadcast

(conflict, P1) if Open results in ⊥
– Assign Xα

2 = Open(pp, c
mα2
`+α, o

mα2
`+α), Xα

32 = Open(pp, c
xα32
3`+α, o

xα32
3`+α) for α ∈ [`]. Then broadcast

(conflict, P2) if Open results in ⊥
– Else, set X = X1|X2|X31|X32, run Y ← Ev(C,X) and y ← sDe(Y). Broadcast Y.

If P3 broadcasts (conflict, Pi), set TTP = P[2]\i. If TTP = ∅ and P3 broadcasts Y, Pi (i ∈ [2])

then do the following: Execute y ← De(Y, d). If y = ⊥, set TTP = P1.

Round 4: If TTP 6= ∅: Pi (i ∈ [2]) sends xi and o3i (if valid) to TTP. P3 sends o31, o32 to

TTP.

Round 5: TTP computes x3i = Open(c3i, o3i) using openings sent by P1, P2 (if available), else

uses the openings sent by P3. If valid opening is not received, a default value is used for shares of

x3. Compute y = f(x1, x2, x31⊕x32) and send y to others. Every party computes output as follows.

If y = ⊥ and received y′ from TTP, set y = y′.

Figure 6.6: Protocol g3PC

6.5 Transition from 5PC to 3PC

For better understanding, we describe how the transition from 5PC to 3PC takes place with

a diagram when a conflict is identified and a 3PC instance is chosen. In such a case, input

consistency must be maintained for 1) an xij that is held by the two garblers. 2) an xij that

is held by one garbler, say Pα and evaluator Pγ. The case when all the three parties hold

xij is subsumed in one of the above cases. The most critical case when xij is with only one

of {Pα, Pβ, Pγ} which is further categorized into two cases depending on whether 3) the input

share is held either only by the garbler or 4) the input share is held by the evaluator. For

the purpose of our explanation, we consider the case when a corrupt P5 does not broadcast

66

P1

P3

P2

Case 1: When both garblers hold the input share x14

o14, o’14 o14, o’14

x14
x14

m14,O[m14] m14,O[m14]

Check if the two m14 copies are the same. If so, use valid
O[m14] to obtain the key K[x14]. Else, follow the steps in
[BJPR18].

o12, o’12

x12

O[x12]

x12

Check if O[x12] is valid. If so, use O[x12] to obtain the key
K[x12]. Else, follow the steps in [BJPR18].

Case 2: When one P1 and P3 hold the input share x12

o12, o’12

Case 3: When only P1 holds the input share x11

o11, o’11 o11

x11, x11 ⊕ r11, r11 x11 ⊕ r11

m11, O[m11],
O[r11]

Check:
• If the two copies of m11 are the same.
• Check if O[r11] is valid.
If so, use valid O[m11], O[r11] to obtain K[x11 ⊕ r11], K[r11] respectively.
Compute K[x11] = K[x11 ⊕ r11] ⊕ K[r11]. If any of the steps fail, follow the
steps in [BJPR18].

o31

x31 ⊕ r31

O[x31 ⊕ r31]

x31, x31 ⊕ r31, r31

Check if O[x31 ⊕ r31], O[r31] is valid. If so, use O[x31 ⊕ r31], O[r31]
to obtain the key K[x31 ⊕ r31], K[r31] respectively. Compute K[x31]
= K[x31 ⊕ r31] ⊕ K[r31]. Else, follow the steps in [BJPR18].

Case 4: When only P3 holds the input share x31

r11, o’11

m11, O[m11]

o’31

r31

O[r31]

o31, o’31

2

P1

P3

P2

P1

P3

P2 P1

P3

P2

Figure 6.7: Diagram showing the transition from 5PC to 3PC.

Y and the garblers choose P1, P2, P3 to run the robust 3PC of [BJPR18]. Hence, we have

α = 1, β = 2, γ = 3. We specifically consider the input shares of input x1 of P1 to describe the

first 3 cases. We use the share of x3 to describe case 4). For input x1, P1 holds all the shares

(dealer), while P2 holds (x14, x15, x16) and P3 holds (x12, x13, x16). For input x3, P3 holds all the

shares (dealer) while P1 holds (x34, x35, x36) and P2 holds (x32, x33, x36).

In the Fig 6.7, pij denotes the permutation bit for input xij and thus the commitments on

both input keys for wire belonging to xij are sent in permuted order as per pij. mij denotes the

XOR of xij and pij. Recall that as per inputGODi, (cij, oij) denotes the commitment-opening

pair for share xij⊕ rij while (c′ij, o
′
ij) denotes the commitment-opening pair for share rij and all

the commitments are broadcast, while the openings are sent privately. During the transition

from 5PC to 3PC, for the shares of the form say x11 that are held by only one party, P1 in

the 3PC (the other two share holders are eliminated), the opening o11 (for share x11 ⊕ r11) is

distributed to say P2 while the opening o′11 (for share r11) is distributed to P3. Similar steps

are done for the lone input share x31 held by P3 and all others held by only one party in 3PC.

Inside the 3PC instance, in case 1) x14 is held by both garblers and not by the evaluator

P3. The garblers broadcast m14 and send the opening O[m14] corresponding to the key K[x14].

If the copies of m14 match, then P3 uses a valid opening O[m14] (one of the two sent by the

garblers) to get the key K[x14]. Else, the conflict resolution steps in [BJPR18] are followed. In

case 2), x12 is held by garbler P1 and evaluator P3. The garbler P1 sends O[x12] to P3 who

checks if O[x12] is valid. If so, P3 uses opening O[x12] to get the key K[x12]. Else, the conflict

67

resolution steps in [BJPR18] are followed. In case 3), x11 is held only by garbler P1. However

the re-shares x11⊕ r11 and r11 are held respectively by P2, P3 (which are both known to P1 due

to inputGOD1). Now, P1 sends m11 (masked bit wrt share x11 ⊕ r11) and O[m11],O[r11] to P3,

while P2 sends m11 and O[m11] to P3. P3 now verifies if: the copies of m11 sent by the garblers

are the same, the opening O[r11] sent by P1 is valid. If so, P3 obtains the keys K[x11 ⊕ r11] and

K[r11] from the openings and XORs them to get K[x11]. If any of the checks fail, the conflict

resolution steps in [BJPR18] are followed. In Case 4), where the evaluator alone holds the

share x31 is simpler than case 3). However, the re-shares x31⊕ r31 and r31 are held respectively

by P1, P2 (which are both known to P3 due to inputGOD3). Now, P1 sends O[x31 ⊕ r31] to P3,

while P2 sends O[r31] to P3. P3 now verifies if the openings are valid. If so, P3 obtains the keys

K[x31 ⊕ r31] and K[r31] from the openings and XORs them to get K[x31].

Every input share belongs to one of the above described four cases and is handled in a similar

way. If all the input keys are obtained, P3 evaluates the Yao’s GC constructed by the garblers

as per [BJPR18] and distributes the output to the garblers. Finally, the 3PC communicates

the output to all the parties in 5PC. This completes the description.

6.6 Security Proof of god5PC

In this section, we outline the complete security proof of Theorem 6.3.5 that describes the

security of our god5PC protocol relative to its ideal functionality in the standard security

model.

Proof. We describe the simulator Sgod5PC for two cases which exhaustively cover the corruption

scenarios: First, when P1 and P2 are corrupt. Second, when P1 and P5 are corrupt. The cor-

ruption of any two garblers is symmetric to the case when P1, P2 are corrupt and the corruption

of any one garbler and evaluator is symmetric to the case of P1, P5 corrupt. The simulator acts

on behalf of all honest parties in the execution. For better understanding we separate out the

simulation for the subroutine inputGOD from the simulation of main protocol. In the inputGOD

routine, we outline the simulator for the case of corrupt P1, P2 describing inputGOD1 for P1’s

input x1 and inputGOD3 for honest party’s input x3. The simulation of inputGOD routine for

the case of corrupt P1, P5 is identical to the case of corrupt P1, P2. The inputs of corrupt parties

are extracted in the inputGOD routine.

We give a high level view of the simulation of garbling and output computation as follows:

First, in the case of P ∗1 , P
∗
2 corrupt, the evaluator P5 is honest. Hence, in this case, correctness

is required from the distributed GC. The simulator behaves as an honest Pi, i ∈ {3, 4} by raising

conflicts as per the protocol in case of any cheating throughout the garbling phase, since all

68

seeds are known to the adversary. If no cheating is detected throughout the GC construction,

then a GC is generated as per the Garble4 procedure. Else a 3PC instance is identified and the

simulator in turn invokes the simulator of 3PC guaranteed output delivery protocol to complete

the simulation. Second, in the case of P ∗1 , P
∗
5 corrupt, the simulator knows the seeds held by the

adversary. In addition the simulator has complete control over the part of GC generated using

the seed s2. Since input extraction is done in the inputGOD routine, the simulator can invoke the

functionality to obtain y in advance at the time of garbling. As a result with the knowledge of y,

a fake garbled circuit is constructed by the simulator using s2 that always evaluates to the same

output keys forming the output super-key Y, which correspond to the evaluation performed

using the extracted inputs of the adversary and the inputs of the honest parties. The output

masking bit share λ2w for each output wire w is broadcasted after setting it to (y⊕(⊕i∈[4],i 6=2λ
i
w))

in the garbling phase itself since the simulator knows y and all masking bit shares in advance.

Finally, if Y is received from P ∗5 on behalf of honest parties then the simulation terminates,

else a 3PC instance is identified according to the protocol and the simulator runs the simulator

of the 3PC instance sub-routine to complete the simulation. (Since the simulator for 3PC is

already well-described in [BJPR18], we do not provide details of it).

We describe the simulator steps in detail for inputGOD() and the main protocol separately

in Figs 6.8 and 6.9, 6.10 respectively.

S12inputGOD1
(for input x1)

R1 Receive the broadcast commitments {pp1, c1j , c′1j)}j∈6 on behalf of each Pl, l ∈ {3, 4, 5} and

openings {o1j , o′1j} from P ∗1 on behalf of Pl, l ∈ {3, 4, 5}, Pl /∈ Tj . For opening o13 corresponding

to share x13 that is common between P3, P4, accept a default value if o13 sent by P ∗1 and received

on behalf of P3 and P4 are both invalid i.e., Open(pp1, c13, o13) = ⊥. Else, accept the opening

whichever is valid. Similar steps are done for openings o′13 and for shares common between P3, P5

and P4, P5 as well.

R2 Send openings corresponding to commitments c16, c15, c14 on behalf of P3, P4, P5 respectively

to P ∗2 . Similarly, receive openings o16, o15, o14 on behalf of P3, P4, P5 respectively from P ∗2 . For

opening o16 of share x16 that is common between P ∗2 , P3, accept a default value if o16 received

on behalf of P3 from P ∗1 and sent by P ∗2 are both invalid. Else, accept the opening received from

either P ∗1 , P
∗
2 whichever is valid. Similar steps are done for opening o′16 common between P ∗2 , P3

and openings common between P ∗2 , P4 (o15, o
′
15) and P ∗2 , P5 (o14, o

′
14). Compute x1 = ⊕j∈[6]xij .

S12inputGOD3
(for input x3)

Simulator S12inputGOD1

69

R1 On behalf of P3: Compute {pp3, c3j , c′3j} as commitments on randomly chosen x3j , r3j for

j ∈ [6] such that for l ∈ [2] it holds that P ∗l /∈ Tj . For remaining shares such that P ∗l ∈ Tj ,

compute commitments on dummy value. Broadcast {c3j , c′3j}j∈6 on behalf of P3 and send openings

{o3j , o′3j}j∈6,P ∗l /∈Tj to P ∗l .

R2 Send openings o35, o34 (corresponding to commitments c35, c34) to P ∗1 and o33, o32 (correspond-

ing to c33, c32) to P ∗2 on behalf of P4 and P5 respectively. Similar steps are done for openings

o′35, o
′
34 common between P ∗1 , P4 and o′33, o

′
32 common between P ∗2 , P5.

Figure 6.8: Simulator S12
inputGOD1

(for input x1) with actively corrupt P ∗1 , P
∗
2

S12god5PC (P ∗1 , P
∗
2 are corrupt)

Input and Seed Distribution Phase.

– Simulation of S12inputGODi
, i ∈ [5] instances for input xi. Invoke Fgod with (Input, x1), (Input, x2)

on behalf of P ∗1 , P
∗
2 to obtain y.

– For simulation of seedGODg, g ∈ [2], receive (ppg, cg) from P ∗g on behalf of all honest parties.

Receive og on behalf of P3 and P4 from P ∗g . If a valid opening og is received on behalf of at least

one of P3, P4, use the corresponding valid opening to obtain sg. Else assume a default value for

sg.

– For simulation of seedGODg, g ∈ {3, 4}, sample random sg and compute (cg, og)← Com(ppg, sg).

Broadcast (ppg, cg) on behalf of Pg and send og on behalf of Pg to P ∗1 , P ∗2 .

Garbling Phase.

– For simulation of Round 1 of Garble4, it is necessary to ensure correctness of the circuit. Behave

as honest Pg, g ∈ {3, 4} using the seeds chosen in Round 1. Simulate each instance of Π4AOTGOD

by acting as an honest party. If a Π4AOTGOD instance returns P3 (due to inconsistent messages

from either P ∗1 or P ∗2), invoke Sgod3PC (Simulator for 3PC [BJPR18]) and send the output y to

all received from the simulation of god3PC on behalf of honest parties in P3 to complete the

simulation.

– For simulation of Round 2 of Garble4, behave as honest Pg, g ∈ {3, 4}. If a Π4AOTGOD instance

returns P3 (due to inconsistent messages from either P ∗1 or P ∗2) or P3 = P \ {Pα, Pβ} is identified

when (Pα, Pβ) with α, β ∈ Sj for some j ∈ [4] broadcasts different GCj , invoke Sgod3PC and

send the output y to all received from Sgod3PC on behalf of honest parties in P3 to complete the

simulation. If there is no conflict in the garbling phase, then the GC (described in Fig.3.5) will

be the output of honest parties.

Masked input bit and Key Transfer Phase.

Simulator S12god5PC

70

– For i ∈ {3, 4} and j ∈ Si\Sg, do as per the protocol: broadcast λjw for each input wire w belonging

to P ∗g where g ∈ [2] and λlw for each output wire w on behalf of Pi where l ∈ Si. Broadcast λβw on

behalf of honest Pi for input wire w belonging to honest Pg′ where g′ ∈ {3, 4} \ {i} and g′ /∈ Si.

Also, receive on behalf of the honest Pi, λ
α
w (for each input wire w) where α /∈ Si and λlw (for

each output wire w) from P ∗g , g ∈ [2] where l ∈ Sg. If for any α, l, the received λαw/λ
l
w from P ∗g ,

does not correspond to the one generated using sg, then invoke Sgod3PC with P3 = P \ {P ∗g , Pβ},
where β ∈ Sg is the index of the party in conflict with P ∗g and send the output y received from

Sgod3PC on behalf of honest parties in P3 to complete the simulation.

– For each wire w corresponding to input xw = xij held by P ∗α, α ∈ [2]∩Xij , compute the masked

input bw = xw ⊕ λw as per the protocol and broadcast bw on behalf of Pl, l ∈ ({3, 4} ∩Xij). Also

receive bw from P ∗α on behalf of honest parties. If the received bw for any w from P ∗α does not

match with the one originally broadcasted by Pl, then invoke Sgod3PC with P3 = P \ {P ∗α, Pl}
and send the output y received from Sgod3PC on behalf of honest parties in P3 to complete the

simulation.

- For each wire w holding the input share xw = xij belonging to only honest parties, broadcast

random bw on behalf of the honest parties.

– For every input wire w, where {kgw,0, k
g
w,1}g∈[4] denote the super-key derived from seeds {sg}g∈[4],

each Pl, l ∈ {3, 4} computes commitments on these as per the protocol steps and broadcasts

{cjw,b}b∈{0,1},j∈Sl on behalf of Pl. Also receive on behalf of the honest parties, {cjw,b}b∈{0,1} sent

by P ∗α, α ∈ [2] ∩ Sl. If the commitment received for any w from P ∗α does not match with the one

originally created on behalf of Pl, then invoke god3PC with P3 = P\{P ∗α, Pl} and send the output

y received from Sgod3PC on behalf of honest parties in P3 to complete the simulation.

Evaluation and Output Phase.

– Compute Y such that for all output wires w, each key in Y maps to (yw ⊕ λw). Broadcast Y

on behalf of P5.

Figure 6.9: Simulator S12
god5PC for god5PC with actively corrupt P ∗1 , P

∗
2

The hybrid arguments are as follows:

Security against corrupt P ∗1 , P
∗
2 : We now argue that idealFgod,S

12
god5PC

c
≈ realgod5PC,A when

an adversary A corrupts P1, P2. The views are shown to be indistinguishable via a series of

intermediate hybrids.

– hyb0: Same as realgod5PC,A.

– hyb1: Same as hyb0 except that when the execution does not result in P ∗1 , P
∗
2 getting

access to the opening of the commitment cij, i ∈ {3, 4, 5}, j ∈ [6] in the inputGODi, the

commitment is replaced with the commitment of a dummy value.

71

– hyb2: Same as hyb1 except that P5 raises a conflict to identify a 3PC instance if any

decommitment for {kgw,0, k
g
w,1}g∈[4] corresponding to a committed share not held by P5

opens to a value other than what was originally committed and held by P ∗i , i ∈ [2].

– hyb3: Same as hyb3 except that Y is computed as Y = {kgw,yw⊕λw}g∈[4] for each output wire

w instead of running the Evaluation Phase of garbling.

– hyb4: Same as hyb3 except that in case of a 3PC instance elected, run Sgod3PC in place of

the 3PC protocol algorithm.

Note that hyb4 = idealFgod,S
12
god5PC

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference between the hybrids is that in hyb1, when the execution

does not result in P ∗1 , P
∗
2 getting access to the opening of commitments cij, i ∈ P12, j ∈ [6]

in the inputGODi, the commitment is replaced with the commitment of a dummy value. The

indistinguishability follows from the hiding property of the commitment scheme.

hyb1
c
≈ hyb2: The only difference between the hybrids is that in hyb1, P5 raises a conflict

if the decommitment for {kgw,0, k
g
w,1}g∈[4] corresponding to a committed share not held by P5

and sent by P ∗i , i ∈ [2] is invalid (the decommitment is ⊥) whereas in hyb2, P5 raises a conflict

to identify the 3PC instance if the decommitment corresponding a committed share opens to a

value other than what was originally committed and held by P ∗i . Since the commitment scheme

Com is binding for any pp, P ∗i could have successfully decommitted to a value than what was

originally committed with negligible probability. Hence, the hybrids are indistinguishable.

hyb2
c
≈ hyb3: The only difference between the hybrids is that, in hyb3, Y is computed

as Y = {kgw,yw⊕λw}g∈[4] instead of running the Evaluation Phase of the garbling. The indistin-

guishability follows from the correctness of the garbling scheme since Y computed using the

Evaluation Phase of garbling would also result in Y = {kgw,yw⊕λw}g∈[4]

hyb3
c
≈ hyb4: The only difference between the hybrids is that, in hyb3, a real-world 3PC

is run in case of conflict whereas Sgod3PC is run in hyb4. Since, idealFgod,Sgod3PC

c
≈ realgod3PC,A

[BJPR18], indistinguishability follows.

72

S15god5PC (P ∗1 , P
∗
5 are corrupt)

Input and Seed Distribution Phase.

– Simulation of S15inputGODi
, i ∈ [5] instances for input xi. Invoke Fgod with (Input, x1), (Input, x5)

on behalf of P ∗1 , P
∗
5 to obtain y.

– For simulation of seedGOD1, receive (pp1, c1) from P ∗1 on behalf of all honest parties. Receive o1

on behalf of P3 and P4 from P ∗1 . If there exists a valid opening o1 received on behalf of at least

one of P3, P4, use the corresponding valid opening to obtain s1. Else assume a default value for

s1.

– For simulation of seedGODg, g ∈ {3, 4}, sample random sg and compute (cg, og)← Com(ppg, sg).

Broadcast (ppg, cg) on behalf of Pg and send og on behalf of Pg to P ∗1 . For seedGOD2, broadcast

random commitment (pp2, c2) on behalf of P2.

Garbling Phase.

– For simulation of Round 1 of Garble4 on behalf of honest Pl, l ∈ {2, 3, 4}, all the seeds are known.

Additionally, s2 is not known to P ∗1 , so the randomness and GC2 generated using s2 is unknown to

P ∗1 . Use the y obtained from the Fgod to compute λ2w = y⊕λ1w⊕λ3w⊕λ4w for each output wire w.

Participate in the distributed garbling as before but constructing a simulated GC with the help

of s2 and with the knowledge of y such that each ciphertext encrypts the same output key that

represents the masked output which corresponds to the evaluation performed using the extracted

inputs of the adversary and the inputs of the honest parties. Simulate each instance of Π4AOTGOD

by acting as honest party. If a Π4AOTGOD instance returns P3 (due to inconsistent messages from

P ∗1), invoke Sgod3PC and send the output y received from Sgod3PC on behalf of honest parties in

P3 to complete the simulation.

– For simulation of Round 2 of Garble4, compute the simulated garble circuit using s2 on behalf

of Pl, l ∈ {2, 3, 4}. If a Π4AOTGOD instance returns P3 (due to inconsistent messages from P ∗1) or

P3 = P \ {P ∗1 , Pβ} is identified when (P ∗1 , Pβ) with 1, β ∈ Sj for some j ∈ [4] broadcasts different

GCj , invoke Sgod3PC and send the output y received from Sgod3PC on behalf of honest parties in P3

to complete the simulation. If there is no conflict in the garbling phase, then the GC (described

in Fig.3.5) will be the output of honest parties.

Masked input bit and Key Transfer Phase.

– For i ∈ {2, 3, 4} and j ∈ Si, do as per the protocol: broadcast λjw for each input wire w belonging

to P ∗5 . For j /∈ S1, broadcast λjw for each input wire w belonging to P ∗1 and λlw (for each output

wire w) on behalf of Pi where l ∈ Si. Broadcast λβw on behalf of honest Pi for input wire w

belonging to honest Pg′ where g′ ∈ {2, 3, 4}\{i} and β /∈ Sg. Also, receive on behalf of the honest

Pi, λ
α
w (for each input wire w) where α /∈ Si and λlw (for each output wire w) from P ∗1 where

Simulator S15god5PC

73

l ∈ S1. If for any α, l, the received λαw/λ
l
w from P ∗1 , does not correspond to the one generated on

behalf of the honest parties, then invoke Sgod3PC with P3 = P \ {Pg∗, Pβ}, with β ∈ Sg and send

the output y received from Sgod3PC on behalf of honest parties in P3 to complete the simulation.

– For each wire w corresponding to input xw = xij held by P ∗1 and two honest garblers, set the

masked input bw = xw⊕λw as per the protocol and broadcast bw on behalf of Pl, l ∈ ({2, 3, 4}∩Xij).
Also receive bw from P ∗1 on behalf of honest parties. Also, for xw held by only honest parties,

broadcast a random bw on behalf of all honest parties. If the bw received for any w from P ∗1 does

not match with the one created on behalf of honest Pl, then invoke Sgod3PC with P3 = P\{P ∗1 , Pl}
and send the output y received from Sgod3PC on behalf of honest parties in P3 to complete the

simulation.

– For every input wire w, where {kgw,0, k
g
w,1}g∈[4] denote the super-keys derived from seeds {sg}g∈[4],

on behalf of each Pl, l ∈ {3, 4} compute commitments on these as per the protocol steps for all

seeds except s2. For commitments in (cjw,0, c
j
w,1) obtained using s2 that correspond to input keys,

generate commitments to the shares as per NICOM. Commit to dummy values for all other keys

that are not input keys. Broadcast {ciw,b}b∈{0,1},i∈Sα on behalf of Pα, α ∈ {2, 3, 4}. Also receive

{cjw,b}b∈{0,1} sent by P ∗1 , j ∈ S1 on behalf of the honest parties. If the commitment received for

any w from P ∗1 does not match with the one originally created on behalf of honest Pβ, where

β ∈ S1, then invoke Sgod3PC with P3 = P \ {P ∗1 , Pβ} and send the output y received from Sgod3PC

on behalf of honest parties in P3 to complete the simulation.

Evaluation and Output Phase.

– Receive Y from P ∗5 on behalf of Pg, g ∈ {2, 3, 4}. If received Y for some output wire w and

index j ∈ Sg does not match with the output super-key created in the generation of simulated

GC, invoke Sgod3PC with P3 with P3 = P \ {P ∗1 , P ∗5 } and send the output y received from Sgod3PC

on behalf of honest parties in P3 to complete the simulation.

Figure 6.10: Simulator S15
god5PC for god5PC with actively corrupt P ∗1 , P

∗
5

Security against corrupt P ∗1 , P
∗
5 : We now argue that idealFgod,S

15
god5PC

c
≈ realgod5PC,A when

an adversary A corrupts P1, P5. The views are shown to be indistinguishable via a series of

intermediate hybrids.

– hyb0: Same as realgod5PC,A.

– hyb1: Same as hyb0 except that when the execution does not result in P ∗1 , P
∗
5 getting access

to the opening of the commitment cij, i ∈ {2, 3, 4}, j ∈ [6] in inputGODi, the commitment

is replaced with the commitment of a dummy value.

– hyb2: Same as hyb1 except that the commitment to seed s2 in seedGOD2 is replaced with

the commitment on dummy value.

74

– hyb3: Same as hyb2 except that some of the commitments of input keys sent by P2, P3, P4

wrt seed s2, which will not be opened are replaced with commitments of dummy values.

These commitments correspond to the labels that do not correspond to any input share.

– hyb4: Same as hyb3 except that the GC is created as simulated one with the knowledge

of s2 and output y along with the share λ2w for each output wire w set to the value

λ2w = y ⊕ (⊕i∈[4],i 6=2λ
i
w).

– hyb5: Same as hyb4 except that a 3PC instance is chosen as per the protocol if the received

Y does not correspond to the Y originally created by the simulated GC. Note that

hyb5 = idealFgod,S
15
god5PC

.

– hyb6: Same as hyb5 except that in case of a 3PC instance elected, run Sgod3PC in place of

the 3PC protocol algorithm.

Next, we show that each pair of hybrids are computationally indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference between the hybrids is that, in hyb1, when the execution

does not result in P ∗1 , P
∗
5 getting access to the opening of commitments cij, i ∈ {2, 3, 4}, j ∈ [6]

in the inputGODi, the commitment is replaced with the commitment of a dummy value. The

indistinguishability follows from the hiding property of the commitment scheme.

hyb1
c
≈ hyb2: The only difference between the hybrids is that, in hyb2, the commitment

to the seed s2 is replaced with the commitment on a dummy value. The indistinguishability

follows from the hiding property of the commitment scheme.

hyb2
c
≈ hyb3: The only difference between the hybrids is that, in hyb3, the commitments

of input wire labels wrt seed s2, which will not be opened are replaced with commitments on

dummy values. The indistingushability follows from the hiding property of the commitment

scheme.

hyb3
c
≈ hyb4: The only difference between the hybrids is that in hyb4, GC is constructed as

a simulated one using the seed s2 and the knowledge of output y instead of a real GC. More con-

cretely, In hyb3, Rounds 1, 2 are run as per Garble4, which gives GC. In hyb4, it is generated as

a simulated circuit and additionally, for each output wire w, λ2w is set to λ2w = y⊕(⊕i∈[4],i 6=2λ
i
w).

Indistinguishability follows from reduction to the security of distributed garbling which in turns

relies on the the double-keyed PRF F.

75

hyb4
c
≈ hyb5: The only difference between the hybrids is that, in hyb4, a 3PC instance is

identified if kjw,bw of the received Y for some output wire w and index j ∈ Sg does not match

with either (kjw,0, k
j
w,1) or the three keys kjw,bw , j ∈ Sg in Y do not map to the same bw whereas

in hyb5, a 3PC committee is identified if the received Y does not match the one created using

simulated GC. By security of the garbling scheme, P5 could have forged such a Y only with

negligibility probability.

hyb5
c
≈ hyb6: The only difference between the hybrids is that, in hyb5, a real-world 3PC

is run in case of conflict whereas Sgod3PC is run in hyb6. Since, idealFgod,Sgod3PC

c
≈ realgod3PC,A

[BJPR18], indistinguishability follows.

76

Part II

Four-Party Computation with Mixed

Adversary

77

Chapter 7

4PC with GOD

In this section, we present an efficient constant round 4PC protocol achieving the strongest

security notion of GOD against an adversary in mixed model who corrupts 2 parties such that

one is active and the other is passive (ta = 1, tp = 1). We rely only on pairwise private channels

for communication. This protocol is yet again inspired from [CGMV17] that promises selective

abort for 5 parties against 2 active corruptions (honest majority). We customize their techniques

to achieve a much stronger notion of GOD in our setting which is even stronger than strict

honest majority. To provide robustness, similar to god5PC, we ensure public identification of

conflict between two parties (one of which is surely actively corrupt) in case of any adversarial

mis-behaviour and switch to a passive 2PC based on Yao’s garbled circuit [Yao82] to obtain

the output.

7.1 The Construction

The protocol retains 3 parties {P1, P2, P3} as garblers and P4 as evaluator. Our protocol can be

segregated into phases, some of which can be run in parallel to minimize rounds. At a high level,

we begin with seed and input commit phase, then run the garbling phase that involves some

non-trivial techniques for the transfer of keys for input wires and conclude with the evaluation

phase and computation of output. For garbling, we use a one-time seed-distribution (SD) as in

πseedDist (Fig 3.7) where the seeds {s1, s2, s3} are distributed amongst the garblers {P1, P2, P3} s.t

a garbler Pg knows all but seed sg. The key feature of our construction is the use of only semi-

honest primitives, namely distributed garbling and oblivious transfer [EGL85], despite having

a malicious party out of the two corruptions (dishonest majority). For smoother description,

we first describe the protocol assuming an additional broadcast channel and later realize each

broadcast with EIG protocol [BNDDS87] with threshold n > 3ta in 3 rounds.

78

The key idea to ensure GOD is to employ tools to eliminate the sole actively-corrupt party

in case of any wrongdoing and further rely on the remaining parties to robustly compute the

output. However, the techniques used on top of the passively secure primitives to provide

security against the active corruption are not always sufficient to pin-point the malicious party.

Thus, in case the adversary strikes, we resort to unanimously identifying a conflict between

two parties, one of which is guaranteed to be the actively corrupt and eliminate them. The

remaining two parties can run a 2PC [Yao82], which is robust for one semi-honest corruption.

As a result, achieving guaranteed output delivery in the mixed model boils down to resolving

the following two challenges: (a) unanimous identification and elimination of conflict in case

of any misbehavior leading to abort; (b) ensuring input consistency across the 4PC and the

smaller 2-party instance to prevent the adversary from obtaining outputs on multiple inputs.

Case (b) is particularly tricky when, the actively-corrupt evaluator sends an invalid output

(or no output) to the garblers after learning the output herself on successful evaluation. We

address this concern by having an input-commit phase where each party additively splits her

input into 3 shares, distributes shares s.t each shareholder gets one share. We force the dealer

to commit to her input via these shares (else a default is chosen) using the commit publicly,

open privately technique where each party generates commitment on the shares, broadcasts the

commitments and sends the opening of each share privately to exactly one party to provide

resilience against 2 corruptions. Besides, input-privacy, this further ensures that the actively-

corrupt party is bound to her input across the 4PC and 2PC runs. To elaborate, the parties

that run 2PC possess all but one share of every input, which is held by both the eliminated

parties. These eliminated parties are enabled to provide their share to exactly one party in

the 2PC for further computation. Since one of the eliminated parties is honest or passive, the

2PC instance always receives at least one valid opening for that share, thus ensuring input

consistency. However, note that releasing this share to a party in 2PC who does not possess it,

still preserves input privacy since the share already belongs to the adversary.

Case (a) is dealt with based on whether the inconsistency was detected in (i) broadcast

resilient data or (ii) private data. Case (i) may involve either input-independent data such as

GC, mask-shares of output wires, blinded-input and mask-shares (wrt seeds not held by the

wire owner) on input wires, all of which can be generated by two parties who share the same

seed or input-share. On the similar lines as god5PC, correctness of such data can be determined

by simply comparing the copies of broadcast data (one of the two senders is honest/passive).

Also, broadcast of such data does not cause any privacy leaks. Since one of the two seed

owners is honest or passive, any wrongdoing can be determined by simply comparing the copies

of broadcasted message. Consequently, if a conflict is established, the conflicting parties are

79

eliminated. However, case (ii) involves communication of input-dependent data such as keys

used for evaluation where privacy is crucial. This is handled as explained below.

The transfer of keys on input wires involves sending of keys for each fragment of GC.

To ensure that each input key indeed corresponds to the masked input share, each garbler

commits to both the keys for every input wire of the DGC fragment generated by her as in

[MRZ15, CGMV17]. The evaluator needs keys corresponding to all GC fragments for every

input share to perform evaluation. The input commit phase ensures that, each input share is

held by two parties. Hence for each input shares that are held by two garblers say Pi, Pj, Pi, Pj

together are aware of all seeds and thus each sends openings for the commitments on input

key corresponding to the seeds they own. Consequently, if any opening is invalid, the evaluator

raises a public conflict with the sender and the two get eliminated while the remaining two

parties run a 2PC.

A trickier case occurs for the transfer of input keys belonging to an input share held by a

garbler (Pg) and the evaluator (P4). Pg can send only 2 out of the 3 keys (for seeds in Sg) as Pg

does not possess sg. Hence there is need for a way to communicate the input keys for the DGC

fragment GCg. We use passively secure 1-out-of-2 OTs to communicate the residual input key

corresponding to sg. At the first glance, although it appears that actively-secure OTs must be

employed due to the presence of a malicious party, we use neat tricks to ensure privacy and

correctness while relying on passive-OTs. It is observed that, the passively secure 1-out-of-2 of

[EGL85] is already secure against a maliciously corrupt sender. For security against a malicious

receiver, we employ techniques outside of semi-honest OT to protect the privacy of the sender.

To elaborate, we split the sender’s message (both keys of input wire) into two additive shares,

generate commitments on them. Then we run two instances of semi-honest OT involving two

different pairs of parties with sender in each OT holding openings for commitments on one

additive share of both the input keys and the receiver in each OT holding the same choice-bit.

For instance, for the input share x14 held by P1, P4, the seed s1 is held by P2, P3 who split the

openings for the keys belonging to x14. P1 acts as a receiver with her masked input of x14 as

the choice bit and runs an OT with P2 as a sender. Similarly, P4 acts as receiver with the same

choice bit as P1 and runs an OT with P3 as sender. Thus, if P4 is maliciously corrupt and P1

is passive, then only P4 learns P3’s inputs for the OT which are random additive shares and P1

learns nothing since the OT is secure against a passive receiver. Further, if one of the sender

say P3 is malicious, then the obtained opening may be invalid (leading to ⊥) and thus P4 will

publicly raise a conflict that leads to P1, P2 running a 2PC instance. With this technique, we

achieve our purpose while preserving correctness and privacy.

To ensure the robustness of 3- party garbling, we modify F3AOT to tackle the abort cases.

80

The modified AOT is presented in Fig 7.1.

Ps, Pr denote the sender and receiver respectively. Pa denotes the attester and Ph denotes the

auditor.

Input and Output: Ps inputs m0,m1, Pr inputs choice bit b. Pr outputs mb/F. Pa outputs ⊥/F.

Notations F denotes the set of two parties in conflict one of which is guaranteed to be actively

corrupt.

Primitives: A secure NICOM (Com,Open) (Chapter 2).

Round 1: Ps samples pp and random values r0, r1 ← {0, 1}κ (derived from si, i ∈ Ss ∩ Sa) to

compute (c0, o0)← Com(pp,m0) and (c1, o1)← Com(pp,m1). Ps broadcasts (pp, c0, c1).

Round 2: Pa, who knows (r0, r1) (derived from si), also computes (c′0, o
′
0)← Com(pp,m0) and

(c′1, o
′
1) ← Com(pp,m1). Pa broadcasts (conflict, Ps, Pa) and terminates the routine by setting

F = {Ps, Pa} if c0 6= c′0 or c1 6= c′1. Else, it broadcasts (c′0, c
′
1) and sends o′b privately to Pr.

(Computation by Pr:) Set F = {Ps, Pa} if the values broadcast by Ps, Pa do not match.

Broadcast (conflict, Ps, Pr) and terminate by outputting F = {Pr, Pa} if no ob is received or

Open(cb, ob) = ⊥. Else, output mb = Open(c′b, o
′
b).

(Computation by Pa, Ph, Ps:) If the values broadcast by Ps, Pa mismatch or got a conflict

message, output F. Else, output ⊥.

Protocol Π3AOTGOD

Figure 7.1: Protocol Π3AOTGOD(Ps, Pr, Pa, Ph) for god4PC

We use extractable commitments to commit on the seeds in the seed-commit phase owing

to a technicality arising in the proof. Elaborate details are presented in Section 7.3. It is

interesting to note that, broadcast in our setting can be efficiently realized using any broadcast

protocol with threshold n > 3ta. We instantiate our broadcast with EIG broadcast [BNDDS87]

of 3 rounds and eliminate the need of broadcast channel. Our seed distribution and passively

secure 2PC protocol appear in Figs 3.7 and 7.2 respectively. The main protocol appears in

Fig 7.3 and is explained with broadcast for simplicity.

Notation: Let Pα and Pβ be the two parties appointed to run 2PC. Let {Pm, Pn} = P \ {Pα, Pβ}
be the eliminated parties.

Inputs: Pα (similarly Pβ) has {xαi}i∈[4]\{α}, xmα, xnα, xmn.

Protocol passive2PC

81

Output: Each party outputs y = f(x1, x2, x3, x4).

Common Inputs: The circuit C that takes the additive shares xij of xi for i ∈ [4], j ∈ [4] \ {i} as

inputs and computes f(x1, x2, x3, x4), each input, their shares and output are from {0, 1} (instead

of {0, 1}` for simplicity).

Input distribution: Pm and Pn send the openings for commitment to input share xmn i.e. omn to

Pα who uses the valid opening (out of the two) to compute xmn ← Open(ppi, cmn, omn). Similarly,

Pm and Pn provide onm to Pβ who computes xnm. Now, Pα and Pβ together own all the shares i.e.

xij , i ∈ [4], j ∈ [4] \ {i}.
Computation: Pα, Pβ together run 2PC (instantiated by Yao’s protocol [Yao82]) with Pα as GC

constructor and Pβ as evaluator. Pβ computes the output y and sends to all.

Figure 7.2: Protocol passive2PC

Inputs and Output: Party Pi ∈ P has xi. Each party outputs y = f(x1, x2, x3, x4).

Common Inputs: The circuit C that takes the additive shares xij of xi for i ∈ [4], j ∈ [4] \ {i} as

inputs and computes f(x1, x2, x3, x4), each input, their shares and output are from {0, 1} (instead

of {0, 1}` for simplicity).

Notation: F denotes the two parties identified to be in conflict. [k]0, [k]1 represent the additive-

shares of key k.

Primitives: A secure NICOM (Com,Open), Oblivious Transfer (OT), Garble3 (Fig 3.9), Eval3

(Fig 3.10) and collision resistant hash H.

One-time Seed-Distribution: P1, P2, P3 run πseedDist (Fig. 3.7).

Input Commit: Pi ∈ P splits its input as xi = ⊕j 6=ixij , samples ppi and computes: (cij , oij) ←
Com(ppi, x

ij). Pi broadcasts (ppi, cij) and sends oij privately to Pj . Pj sets xij = Open(ppi, cij , oij).

If oij is invalid, then Pj sets default value of xij .

Mask and Blinded Input Transfer:

- For every input wire w held by party Pi, each garbler Pg, g 6= i broadcasts λjw, j ∈ [3] \ Si (if

Pi = P4, set j ∈ Sg). If λjw sent by parties Pα, Pβ for α, β ∈ Sj mismatch, run passive2PC with

parties in P2 = P \ {Pα, Pβ}. Else, Pi uses λjw to compute λw = ⊕g∈[3]λ
g
w, sets bw = xw ⊕ λw (xw

is the input on w).

- If input wire w is owned by two garblers, the wire owners (say Pi, Pl) broadcast bw. If the

broadcast values mismatch, then run passive2PC with parties in P2 = P \ {Pi, Pl}. The blinded

bit bw on wire owned by P4 is already known to P4.

- For every output wire w, Pg, g ∈ [3] broadcasts λjw, j ∈ Sg. If λjw sent by parties Pα, Pβ for

Protocol god4PC

82

α, β ∈ Sj mismatch, run passive2PC with parties in P2 = P \ {Pα, Pβ}.
Key Transfer: For each input wire w, let {kgw,0, k

g
w,1} denote two keys derived from seed sg, g ∈ [3].

- For b ∈ {0, 1}, each Pg, g ∈ [3] computes commitments for j ∈ Sg as: (cjw,b, o
j
w,b)← Com(ppj , kjw,b)

and broadcasts (ppj , {cjw,b}b∈{0,1}).
- For wire w belonging to share xg4 or x4g for g ∈ [3] and b ∈ {0, 1}, each Pj , j ∈ [3]\{g} additively

shares the key kgw,b as kgw,b = [kgw,b]
0 ⊕ [kgw,b]

1. Pj computes ([cgw,b]
0, [ogw,b]

0) ← Com(ppg, [kgw,b]
0)

and ([cgw,b]
1, [ogw,b]

1)← Com(ppj , [kgw,b]
1) and broadcasts (ppg,

{
[cgw,b]

0, [cgw,b]
1
}
b∈{0,1}).

- If (ppg, {cgw,b}b∈{0,1}) or (ppg,
{

[cgw,b]
0, [cgw,b]

1
}
b∈{0,1}) broadcasted by parties Pα, Pβ for α, β ∈ Sg

mismatch, run passive2PC with parties in P2 = P \ {Pα, Pβ}.
- When the input share on w is held by two garblers Pi, Pl where i < l, then Pi sends openings

{ojw,bw}j∈Si and Pl sends opening {oiw,bw} (wrt to seed si not held by Pi) to P4. If valid, P4 uses

ojw,bw for j ∈ [3] to compute kjw,bw .

- When the input share on w is held by a garbler Pg and P4 (xg4 or x4g), Pg sends openings

{ojw,bw}j∈Sg to P4. If valid, P4 uses ojw,bw to compute key kjw,bw . The key kgw,bw is computed by P4

as follows: Let {α, β} = [3] \ {g}.
◦ Pg runs a passive OT acting as a receiver with choice bit bw and Pα acting as sender with inputs

[ogw,0]
0, [ogw,1]

0. Similarly, P4 runs a passive OT acting as a receiver with choice bit bw with Pβ

as sender with inputs [ogw,0]
1, [ogw,1]

1.

◦ P4 receives [ogw,bw]1 as the OT output, and if valid (and indeed corresponds to bw), computes

key-share [kgw,bw]1. Similar steps are done by Pg to compute [kgw,bw]0 and sends [ogw,bw]0 to P4

which is XORed by P4 with [kgw,bw]1 to obtain kgw,bw .

Garbling Phase: Each garbler Pg, g ∈ [3] runs Garble3(C) (Fig 3.9) with π3AOTGOD (Fig. 7.1)

to realize OT. Pg broadcasts {GCj}j∈Sg . If any run of π3AOTGOD returns F or a mismatch occurs

in GCi, i ∈ [3] sent by Pα, Pβ for α, β ∈ Si, set F = {Pα, Pβ}, then run passive2PC (Fig 7.2) with

parties in P2 = P \ F. Else, P4 sets GC = GC1||GC2||GC3.

In all the above cases, if some opening sent by some Pg and received by Pi, i ∈ [4] (either directly

or via OT) is invalid, then Pi broadcasts (conflict, Pi, Pg) and passive2PC is run with parties in

P2 = P \ {Pi, Pg}. Else, set X as the set of super-keys for all input wires w i.e. {kgw,bw}g∈[3].
Evaluation and Output Phase:

- P4 runs Eval3 and evaluates GC using X to obtain output super-key Y and z = (y ⊕ λw) for

output wire w. P4 unmasks z to compute y = z ⊕g∈[3] λ
g
w and outputs y. P4 broadcasts Y.

- Each garbler Pg accepts Y if there exists z such that for each j ∈ Sg, k
j
w obtained from Y matches

kjw,z. Pg outputs y = z ⊕g∈[3] λ
g
w. Else, passive2PC is run with parties in P2 = P \ {P4, P3}.

Figure 7.3: Protocol god4PC

83

7.1.1 Optimizations

We use all optimizations of god5PC to improve the efficiency of our garbling scheme. The use

of AOT is optimized by running many AOTs in batches, thus amortizing the communication

to 2 commitments and 1 opening per AOT as in [CGMV17]. Further, each DGC fragment is

sent by only one garbler privately while the two owners broadcast the hash on it which are

compared for equality to determine a conflict, if exists. Likewise, Y is sent privately to all

garblers by P4 after broadcasting H(Y). In all cases, broadcast is realized with EIG on the

hash of a value rather than the value itself to optimize communication. We use random oracle

based instantiations to implement NICOM.

7.2 Properties

Lemma 7.2.1. The elected 2PC has at most one passive corruption.

Proof. Let the 2PC be elected after two parties Pα, Pβ were identified to be in conflict which

could be a consequence of a) Pα, Pβ sending conflicting broadcast message or b) one of Pα, Pβ

raising a conflict against the other for a possibly faulty private communication between the

two. In both cases, one of Pα, Pβ is actively corrupt party, because if not, then the worst

adversarial scenario is one of Pα, Pβ is passive, in which case, in a) Pα, Pβ would broadcast

identical message and in b) no party would send an incorrect private message and the other

won’t raise a fake conflict. Also, in both the above cases, each message is checked for correctness

before proceeding further and thus the conflict could not have been the result of adversary’s

doing in the previous steps. This implies that the 2PC P2 = P \ {Pα, Pβ} does not include the

active party. Removing the active party, there remains one passive corruption which can be a

part of P2 in the worst case.

Lemma 7.2.2. The output computed by the elected 2PC adheres to the inputs committed in

the outer 4PC protocol.

Proof. A 2PC-instance between P2 is run after a conflict in the outer 4PC is identified. The

inputs in the 2PC are the input-shares as computed in the input commit phase of 4PC. The

two parties in P2 know all input-shares except the two shares that are exclusively owned by the

two parties outside P2. For those two shares, both the parties outside provide share openings

(one of which is guaranteed to be correct) to the parties in P2. Lemma 7.2.1 guarantees honest

behavior in the 2PC instance hence ensuring that only the committed inputs are used for

computation.

Lemma 7.2.3. The protocol god4PC is correct.

84

Proof. In case the output is obtained from the 2PC instance, the correctness follows from

Lemma 7.2.2 and the correctness of Yao protocol. For an honest execution, when no conflict

occurs and the output is obtained from the 4PC itself, the correctness can be argued as: the

transfer of input and output wire masks, the masked input, the input keys and the DGC is

guaranteed to be correct (as per to the underlying distributed garbling scheme) because of

techniques of seed-distribution and commit publicly, open privately technique. Otherwise, a

conflict would be raised to elect a 2PC, which contradicts our assumption that the output was

obtained on decoding Y. Hence, the correctness of Y and thus the output follows from the

correctness of the garbling scheme (Figs 3.9, 3.10).

Theorem 7.2.4. The protocol god4PC is securely realizes the functionality Fgod (Fig 2.1) in

the standard model against an adversary corrupting two parties– 1 active, 1 passive, assuming

enhanced trapdoor permutations.

Proof. The security proof appears in Section 7.3.

Although, the formal security proof appears in Section 7.3, here, we provide intuition of

GOD for completeness. The input commit phase binds the adversary to commit to an input or

a default value. If a conflict is identified at any point during the execution, then an elected 2PC

committee runs passive 2PC [Yao82] to obtain the output y. Otherwise, computation proceeds

as per the honest run and each party receives the output using the Y broadcasted by P4. If Y

is valid, then all parties compute y using Y to conclude the execution. Else if Y is invalid or

not received, a 2PC instance is identified among the garblers to compute y. In both the above

cases (Lemma 7.2.2), the inputs committed in input phase alone are used to obtain the output

y thus concluding the intuition.

7.3 Security Proof of god4PC

In this section, we outline the complete security proof of Theorem 7.2.4 that describes the

security of our god4PC protocol relative to its ideal functionality in the standard security

model in the FOT hybrid model.

Proof. We describe the simulator Sgod4PC for three cases which exhaustively cover the corruption

scenarios: First, when P1 is actively corrupt and P2 is passively corrupt. Second, when P1 is

actively corrupt and P4 is passively corrupt. Finally, when P4 is actively corrupt and P1 is

passively corrupt. The corruption of any two garblers is symmetric to the case when P1, P2

are corrupt, the corruption of any one actively corrupt garbler and passively corrupt evaluator

is symmetric to the second case and the corruption of any one passively corrupt garbler and

85

actively corrupt evaluator is symmetric to the third case. The simulator acts on behalf of all

honest parties in the execution. For better understanding we separate out the simulation for

the subroutine πseedDist from the simulation of main protocol.

We give a high level view of the simulation of garbling and output computation as follows:

First, in the case of P ∗1 actively corrupt and P ◦2 passively corrupt, the evaluator P4 is honest.

Hence, in this case, correctness is required from the distributed GC. The simulator behaves as

an honest P3 by raising conflicts as per the protocol in case of any cheating throughout the

garbling phase, since all seeds are known to the adversary. If no cheating is detected throughout

the GC construction, then a GC is generated as per the Garble3 procedure. Else a 2PC instance

is identified and the 4PC simulator in turn invokes the simulator of 2PC [Yao82] protocol to

complete the simulation. Second, in the case of actively corrupt P ∗1 and passively corrupt P ◦4 , the

simulator knows the seeds held by the adversary. In addition the simulator has complete control

over the part of GC generated using the seed s1. Since input extraction of actively corrupt P ∗1

is done in the input commit phase and in the execution of OTs, the simulator can invoke the

functionality to obtain y in advance at the time of garbling. As a result with the knowledge

of y, a fake garbled circuit is constructed by the simulator using s1 that always evaluates to

the same output keys forming the output super-key Y, which correspond to the evaluation

performed using the extracted inputs of the adversary and the inputs of the honest parties.

Finally, Y is received from P ◦4 on behalf of honest parties, then the simulation terminates.

(Since the simulator for 2PC is already well-described in [LP04], we do not provide details of

it). A similar strategy as explained in the second case is employed for the case when P ◦1 is

passively corrupt and P ∗4 is actively corrupt except that the input of P ◦1 is available at the

onset and the input of P ∗4 is extracted from the input commit phase and OTs. Finally, if Y is

received from P ∗4 on behalf of honest parties then the simulation terminates, else a 2PC instance

is identified according to the protocol and the 4PC simulator runs the simulator of the 2PC

instance sub-routine to complete the simulation.

We describe the simulator steps in detail for πseedDist and the main protocol separately in

Figs 7.4, 7.6, 7.8 and Figs7.5, 7.7, 7.5 respectively.

- Act honestly on behalf of P3 for the commitment instance between P ∗1 as sender and P3 as receiver

to obtain seed s2.

- Sample random s1 and act honestly on behalf of P3 for the commitment instance between P3 as

Simulator S1A,2PπseedDist

86

sender and P ◦2 as receiver.

- For the commitment instance between P ∗1 as sender and P ◦2 as receiver to commit to seed s3:

◦ Run the ExtCom protocol where P ∗1 and P ◦2 run rounds 1-3 and broadcast their messages

(extcom1
1, extcom

1
2, extcom

1
3).

◦ Rewind the adversary to the end of round 1 for P ∗1 and P ◦2 to rerun rounds 2-3 and broadcast

(extcom2
2, extcom

2
3).

◦ On behalf of P3, Run extractor algorithm Extract of the commitment scheme as in Fig 2.4

using inputs (extcom1
1, {extcomi

2, extcom
i
3}i∈[2]) to extract the committed seed s3.

Figure 7.4: Simulator S1A,2P
πseedDist

for πseedDist with actively corrupt P ∗1 and passively corrupt P ◦2

Seed Distribution Phase (one-time): Invoke S
1A,2P
πseedDist (Fig 7.4). Extract s3.

Input Distribution Phase: Obtain x2 as the input provided to simulator.

For input of active P ∗1 (x1):

- Receive (pp1, c12, c13, c14) as broadcasted by P ∗1 on behalf of the honest parties. Receive o1i on

behalf of Pi, i ∈ {3, 4} and compute x1i ← Open(pp1, c1i, o1i). If o1i is invalid, set x1i to the

default value.

For input of passive P ◦2 (x2):

- Receive (pp2, c21, c23, c24) as broadcasted by P ◦2 on behalf of the honest parties. Receive o2i on

behalf of Pi, i ∈ {3, 4} and compute x2i ← Open(pp2, c2i, o2i).

For input of honest P3 (x3):

- On behalf of P3: sample random x31, x32 and compute commitments as (c3i, o3i)← Com(pp3, x
3i)

for i ∈ [2]. Choose a dummy commitment c34. Broadcast (pp3, c31, c32, c34) and send o31, o32

privately to P ∗1 , P
◦
2 respectively. Similar steps are done for honest P4’s input.

Mask and Blinded Input Transfer:

- On behalf of P3 do the following: For every input wire w with party Pi holding the value on

wire w, broadcast λjw, j ∈ S3 \ Si (for P4, set j ∈ S3). Send ojw privately to Pi. If λjw sent by

parties P ∗1 , Pl ∈ S1 mismatch, invoke simulator for passive2PC, Spassive2PC with P2 = P \ {P1, Pl}
to complete the simulation and send the output y to all on behalf of honest parties.

- For input wire w owned by P ∗1 and P ◦2 (say, corresponding to share x12): receive bw (bw =

xw ⊕ λw where xw is the bit on wire w) as broadcasted by P ∗1 and P ◦2 . If mismatching values

are broadcasted, invoke simulator for passive2PC, Spassive2PC with P2 = P \ {P ∗1 , P ◦2 } to complete

Simulator S1A,2Pgod4PC

87

the simulation and send the output y to all on behalf of honest parties. Else, compute x12 =

bw ⊕ (⊕i∈[3]λiw) (using the knowledge of all seeds). Compute x1 = x12 ⊕ x13 ⊕ x14. Invoke Fgod

(FIg 2.1) with (Input, x1), (Input, x2) on behalf of corrupt P ∗1 , P
◦
2 to obtain y. Similar steps are

done for the input share x21 held by P ∗1 , P
◦
2 .

- For input wire w owned by P ∗1 and P3 (say, corresponding to share x13): Broadcast bw (bw =

xw ⊕ λw where xw is the bit on wire w) on behalf of P3. Also receive bw as broadcasted by

P ∗1 on behalf of the honest parties. If mismatching values are broadcasted, invoke simulator for

passive2PC, Spassive2PC with P2 = P \ {P ∗1 , P3} to complete the simulation and send the output y

to all on behalf of honest parties. Similar steps are done for the input share x21 held by P ∗1 , P3.

- For input wire w owned by P ◦2 and P3 (say, corresponding to share x23): Broadcast bw (bw =

xw ⊕ λw where xw is the bit on wire w) on behalf of P3. Also receive bw as broadcasted by P ◦2 on

behalf of the honest parties. Similar steps are done for the input share x32 held by P ◦2 , P3.

- For every output wire w, broadcast λhw, h ∈ S3 on behalf of P3. If h ∈ S1 and P ∗1 broadcasts

a mismatching λhw (in comparison to λhw broadcast by honest/passive Pi), invoke simulator for

passive2PC, Spassive2PC with P2 = P \ {P ∗1 , P3} to complete the simulation and send the output y

to all on behalf of honest parties.

Key Transfer: For every input wire w, let {kgw,0, k
g
w,1} denote the two keys derived from seed

sg for g ∈ [3].

- On behalf of P3: for b ∈ {0, 1}, j ∈ S3, compute commitments as: (cjw,b, o
j
w,b) ← Com(ppj , kjw,b)

and broadcast (ppj , {cjw,b}b∈{0,1}).
- On behalf of P3: for input wire w corresponding to share xg4 or x4g for g ∈ [2] and b ∈ {0, 1}, split

key kgw,b = [kgw,b]
0 ⊕ [kgw,b]

1. Compute ([cgw,b]
0, [ogw,b]

0) ← Com(ppg, [kgw,b]
0) and ([cgw,b]

1, [ogw,b]
1) ←

Com(ppj , [kgw,b]
1) and broadcasts (ppg,

{
[cgw,b]

0, [cgw,b]
1
}
b∈{0,1}).

- If (ppg, {cgw,b}b∈{0,1}) or (ppg,
{

[cgw,b]
0, [cgw,b]

1
}
b∈{0,1}) broadcasted by parties in S1 mismatch, add

parties in S1 to F and invoke simulator for passive2PC, Spassive2PC with P2 = P \ F to complete

the simulation and send the output y to all on behalf of honest parties.

- For the input wire w owned by P ∗1 and P ◦2 , receive openings {ojw,bw}j∈S1 from P ∗1 and {o1w,bw}
from P2 on behalf of P4. If opening sent by P1 is invalid, broadcast (conflict, P ∗1 , P4). Invoke

simulator for passive2PC, Spassive2PC with P2 = P \ {P ∗1 , P4} to complete the simulation and send

the output y to all on behalf of honest parties.

- For the input wire w owned by P3 and garbler P ∗1 , receive openings {ojw,bw}j∈Sg sent by P ∗1 on

behalf of P4. If opening sent by P ∗1 is invalid, broadcast (conflict, P ∗1 , P4). Invoke simulator for

passive2PC, Spassive2PC with P2 = P \ {P ∗1 , P4} to complete the simulation and send the output y

to all on behalf of honest parties.

- For the input wire w owned by P3 and semi-honest P ◦2 , receive openings {ojw,bw}j∈Sg sent by P ◦2

88

on behalf of P4.

- For input wire w held by the adversary Pg, g ∈ [2] and P4, receive openings {ojw,bw}j∈Sg from Pg

on behalf of P4 while for opening {ogw,bw}:

◦ Invoke FOT with Pg (as receiver) and Ph, h ∈ [2]\{g} (as sender). If Pg broadcasts (conflict, P ∗g ,

Ph), invoke simulator of passive2PC, Spassive2PC with P2 = P \ {P ∗g , Ph} to complete the sim-

ulation and send the output y to all on behalf of honest parties.

◦ Receive [ogw,bw]0 from Pg on behalf of P4. For g = 1, if the opening is invalid, broadcast

(conflict, P ∗1 , P4), invoke simulator of passive2PC, Spassive2PC with P2 = P \ {P ∗1 , P4} to

complete the simulation and send the output y to all on behalf of honest parties.

- For input wire w held by a garbler P3 and evaluator P4, do the following for opening {o3w,bw}:

◦ Invoke FOT on behalf of P3 (as receiver) and P ∗1 (as sender) to obtain [o3w,bw]0. If invalid,

broadcast (conflict, P3, P
∗
1) on behalf of P3 and invoke simulator for passive2PC, Spassive2PC

with P2 = P \ {P ∗1 , P3} to complete the simulation and send the output y to all on behalf of

honest parties.

◦ Similarly, invoke FOT on behalf of P4 (as receiver) and P ◦2 (as sender) to obtain [o3w,bw]1.

Garbling Phase:

- Behave honestly on behalf of P3 in Garble3 and Π3AOTGOD using seeds chosen in seed distribution

phase. If any run of Π3AOTGOD returns F (because of misbehaviour by P ∗1), invoke simulator for

passive2PC, Spassive2PC with P2 = P \ F to complete the simulation and send the output y to all

on behalf of honest parties.

- Broadcast GCh for h ∈ S3 on behalf of P3. Receive GCg as broadcasted by Pi, i ∈ [2] for g ∈ Si.

If a mismatch occurs in GCi, i ∈ S1 sent by parties in S1, add parties in S1 to F and invoke

simulator for passive2PC, Spassive2PC with P2 = P \ F to complete the simulation and send the

output y to all on behalf of honest parties. Else, on behalf of P4, set GC = GC1||GC2||GC3.

Evaluation and Output Phase:

- Using the knowledge of all seeds sg, g ∈ [3] and y set z = y ⊕ λw and Y = {kgw,z}g∈[3] for output

wire w. Broadcast Y on behalf of P4 to complete the simulation.

Figure 7.5: Simulator S
1A,2P
god4PC for god4PC with actively corrupt P ∗1 and passively corrupt P ◦2 .

The hybrid arguments are as follows:

Security against actively corrupt P ∗1 and passively corrupt P ◦2 : We now formally argue that

ideal
Fgod,S

1A,2P
god4PC

c
≈ realgod4PC,A when an adversary A corrupts P ∗1 actively and P ◦2 passively.

The views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realgod4PC,A.

89

– hyb1: Same as hyb0 except: rerun rounds 2-3 of extractable commitment (with P ◦2 as sender

and P ∗1 as receiver) in the seed-distribution phase to extract seed s3. Run the subsequent

rounds same as hyb0.

– hyb2: Same as hyb1 except that for share x34 (i.e. the share that the adversary doesn’t get

access to), replace c34 with the commitment of a dummy value in input commit phase.

Do the same for share x43.

– hyb3: Same as hyb2 except that P4 raises a conflict to identify a 2PC instance if any

decommitment for {kgw,0, k
g
w,1}g∈[3] corresponding to a committed share opens to a value

other than what was originally committed and held by P ∗1 .

– hyb4: Same as hyb3 except: for input wire w held by garbler (say P3) and P4, to obtain

opening o3w,bw , invoke FOT with P3 as receiver and P ∗1 as sender to obtain [o3w,bw]0. Similarly,

invoke FOT with P4 as receiver and P ◦2 as sender to obtain [o3w,bw]1.

– hyb5: Same as hyb4 except: for wire w with share x12 owned by P ∗1 and P ◦2 use bw to obtain

x12 = bw⊕i∈[3] λiw (using knowledge of all seeds) and compute x1 = x12⊕x13⊕x14. Invoke

the ideal functionality Fgod with (Input, x1), (Input, x2) to obtain y. Compute z = y ⊕ λw
and Y = {kgw,z}g∈[3] instead of running the Evaluation Phase of garbling.

– hyb6: Same as hyb5 except: in case of a 2PC instance elected because of a public/private

conflict, invoke simulator for passive2PC of [Yao82] presented in [LP04] instead of running

passive2PC.

Note that hyb6 = ideal
Fgod,S

1A,2P
god4PC

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference between the hybrids is that, in hyb1, rounds 2-3 of the

extractable commitment are rewound. However, the adversary’s view contains only the final

rewound execution and the previous rewinds are erased. Hence the hybrids hyb0 and hyb1 are

indistinguishable.

hyb1
c
≈ hyb2: The only difference between the hybrids is that in hyb2, the commitment

for shares x34 and x43 are replaced by commitments of dummy values. Note that these are the

shares whose openings are not revealed to the adversary. Hence, the indistinguishability follows

from the hiding property of the commitment scheme.

90

hyb2
c
≈ hyb3: The only difference between the hybrids is that in hyb3, P4 raises a conflict

if the decommitment for {kgw,0, k
g
w,1}g∈[3] corresponding to a committed share and sent by P ∗1

is invalid (the decommitment is ⊥) whereas in hyb2, P4 raises a conflict to identify the 2PC

instance if the decommitment corresponding a committed share opens to a value other than

what was originally committed and held by P ∗1 . Since the commitment scheme Com is binding

for any pp, P ∗1 could have successfully decommitted to a value than what was originally com-

mitted with negligible probability. Hence, the hybrids are indistinguishable.

hyb3
c
≈ hyb4: Indistinguishability of hybrids follows from the security of the underlying

OT scheme [EGL85].

hyb4
c
≈ hyb5: The only difference between the hybrids is that, in hyb4, Y is computed

as Y = {kgw,yw⊕λw}g∈[3] instead of running the Evaluation Phase of the garbling. The indistin-

guishability follows from the correctness of the garbling scheme (follows from Lemma 3.1.4) since

Y computed using the Evaluation Phase of garbling would also result in Y = {kgw,y⊕λw}g∈[3]
where y = f(x1, x2, x3, x4) except with negligible probabiltiy.

hyb5
c
≈ hyb6: The indistinguishability follows from the indistinguishability of passive2PC

simulator Spassive2PC (by the security of [Yao82] presented in [LP04]) with the real execution of

[Yao82].

We now describe the simulator and hybrid arguments for the second case.

- Act honestly on behalf of P3 for the commitment instance between P ∗1 as sender and P3 as

receiver to obtain seed s2. Abort if P1 sends incorrect opening.

- Sample random s3 and act honestly on behalf of P2 for the commitment instance between P2 as

sender and P ∗1 as receiver.

- Sample random s1 and act honestly on behalf of P3 for the commitment instance between P3 as

sender and P2 as receiver.

Protocol S1A,4PπseedDist

Figure 7.6: Simulator S1A,4P
πseedDist

for πseedDist with actively corrupt P ∗1 and passively corrupt P ◦4

91

Seed Distribution Phase (one-time): Invoke S
1A,4P
πseedDist (Fig 7.6).

Input Distribution Phase: Obtain x4 as the input provided to simulator.

For input of active P ∗1 (x1):

- Receive (pp1, c12, c13, c14) as broadcasted by P ∗1 . Receive o1i on behalf of Pi, i ∈ {2, 3} and

compute x1i ← Open(pp1, c1i, o1i). If o1i is invalid, set x1i to the default value.

For input of passive P ◦4 (x4):

- Receive (pp4, c41, c42, c43) as broadcasted by P ◦4 . Receive o4i on behalf of Pi, i ∈ {2, 3} and

compute x4i ← Open(pp4, c4i, o4i).

For input of honest P3 (x3):

- On behalf of P3: sample random x31, x34 and compute commitment as (c3i, o3i)← Com(pp3, x
3i)

for i ∈ {1, 4}. Choose a dummy commitment c32 for x32. Broadcast (pp3, c31, c32, c34) and send

o3i privately to Pi. Similar steps are done for the input of P2.

Mask and Blinded Input Transfer:

- On behalf of Pg, g ∈ {2, 3} do the following: For every input wire w with party Pi holding the

value on wire w, broadcast λjw, j ∈ Sg \ Si (for P4, set j ∈ Sg). If λjw sent by parties P ∗1 , Pl in

S1 mismatch, invoke simulator for passive2PC, Spassive2PC with P2 = P \ {P ∗1 , Pl} to complete the

simulation and send the output y to all on behalf of honest parties.

- For input wire w owned by P ∗1 and Pg, g ∈ {2, 3} do the following on behalf of Pg: Compute

λw = ⊕h∈[3]λhw and bw = xw ⊕ λw where xw is the bit on wire w and broadcast bw on behalf of

Pg. Also receive bw as broadcasted by P ∗1 on behalf of the honest parties. If mismatching values

are broadcasted, invoke simulator for passive2PC, Spassive2PC with P2 = P \ {P ∗1 , Pg} to complete

the simulation and send the output y to all on behalf of honest parties.

- For input wire w owned by P2 and P3 do the following on behalf of Pg, g ∈ {2, 3}: Compute

λw = ⊕h∈[3]λhw and bw = xw⊕λw where xw is a dummy value (= 0) for share on wire w. Broadcast

bw on behalf of honest parties.

- For every output wire w, broadcast λjw, j ∈ S1 on behalf of honestPh, h ∈ S1 respectively. If P ∗1

broadcasts a mismatching λjw, invoke simulator for passive2PC, Spassive2PC with P2 = P \ {P ∗1 , Ph}
to complete the simulation and send the output y to all on behalf of honest parties.

Key Transfer: For every input wire w, let {kgw,0, k
g
w,1} denote the two keys derived from seed

sg for g ∈ [3].

- On behalf of Pg, g ∈ {2, 3}: for b ∈ {0, 1}, j ∈ Sg, compute commitments as: (cjw,b, o
j
w,b) ←

Com(ppj , kjw,b) and broadcast (ppj , {cjw,b}b∈{0,1}).
- On behalf of Ph, h ∈ {2, 3}: for input wire w corresponding to share held by P ◦4 and a gar-

bler Pg and b ∈ {0, 1}, split key kgw,b as kgw,b = [kgw,b]
0 ⊕ [kgw,b]

1. Compute ([cgw,b]
0, [ogw,b]

0) ←

Simulator S1A,4Pgod4PC

92

Com(ppg, [kgw,b]
0), ([cgw,b]

1, [ogw,b]
1)← Com(ppj , [kgw,b]

1) and broadcasts (ppg,
{

[cgw,b]
0, [cgw,b]

1
}
b∈{0,1}).

- If P ∗1 broadcasts (ppg, {cgw,b}b∈{0,1}) or (ppg,
{

[cgw,b]
0, [cgw,b]

1
}
b∈{0,1}) is different from that broad-

casted by Ph for {1, h} ∈ Sg, invoke simulator for passive2PC, Spassive2PC with P2 = P \ {P ∗1 , Ph}
to complete the simulation and send the output y to all on behalf of honest parties.

- For the input wire w owned by P ∗1 and Pg, g ∈ {2, 3}, send opening {o1w,bw} to P ◦4 on behalf of

Pg.

- For the input wire w owned by P2 and P3, send openings {ojw,bw}j∈S2 on behalf of P2 and opening

o2w,bw on behalf of P3 to P ◦4 .

- For input wire w held by a garbler P ∗1 and P ◦4 (say x14), the following is done for opening {o1w,bw}:

◦ Invoke FOT with P ∗1 (as receiver) and P2 (as sender). If P ∗1 broadcasts (conflict, P ∗1 , P2),

invoke simulator of passive2PC, Spassive2PC with P2 = P\{P ∗1 , P2} to complete the simulation

and send the output y to all on behalf of honest parties.

◦ Similarly, invoke FOT with P ◦4 (as receiver) and P3 (as sender). Obtain receiver’s choice bit bw

sent by P ◦4 to FOT. Compute x14 = bw ⊕ (⊕g∈[3]λ
g
w). Compute x1 = x12⊕ x13⊕ x14. Invoke

Fgod with (Input, x1), (Input, x4) on behalf of corrupt P ∗1 , P
◦
4 to obtain y.

Similar steps are done for input share x41.

- For input wire w held by a garbler Pg, g ∈ {2, 3} and P ◦4 , do the following for opening {ogw,bw}:

◦ Invoke FOT with Pg (as receiver) and P ∗1 (as sender) to obtain [ogw,bw]0. If invalid, broadcast

(conflict, Pg, P
∗
1) on behalf of Pg and invoke simulator for passive2PC, Spassive2PC with

P2 = P \ {P ∗1 , Pg} to complete the simulation and send the output y to all on behalf of

honest parties. Else, send [ogw,bw]0 on behalf of Pg to P ◦4 .

◦ Similarly, invoke FOT with P ◦4 (as receiver) and Ph, h ∈ [3] \ {1, g} (as sender).

Garbling Phase:

- Using knowledge of s1 (which is not known to the adversary) and output y, behave in Garble3

and Π3AOTGOD in such a way that each ciphertext for the output gate of GCg for g ∈ [3] encrypts

the same output key kgw,z where z = y ⊕ λw.

- If any run of Π3AOTGOD returns F (because of misbehaviour by P ∗1), invoke simulator for passive2PC,

Spassive2PC to complete the simulation and send the output y to all on behalf of honest parties.

- Broadcast GCh for h ∈ Sg on behalf of Pg, g ∈ {2, 3}. Receive GCg as broadcasted by P ∗1 for

g ∈ S1 on behalf of honest parties. If a mismatch occurs in GCg sent by parties in S1, add

parties in S1 to F and invoke simulator for passive2PC, Spassive2PC with P2 = P \ F to complete

the simulation and send the output y to all on behalf of honest parties.

Evaluation and Output Phase:

- Receive Y on behalf of Pg, g ∈ {2, 3} as broadcasted by P ◦4 . Output y.

93

Figure 7.7: Simulator S
1A,4P
god4PC for god4PC with actively corrupt P ∗1 and passively corrupt P ◦4 .

Security against actively corrupt P ∗1 and passively corrupt P ◦4 : We now formally argue that

ideal
Fgod,S

1A,4P
god4PC

c
≈ realgod4PC,A when an adversary A corrupts P1 actively and P4 passively. The

views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realgod4PC,A.

– hyb1: Same as hyb0 except: for share x23 (i.e. the share that the adversary doesn’t get

access to), replace c23 with the commitment of a dummy value in input commit phase.

Do the same for share x32.

– hyb2: Same as hyb1 except: for wire w with share x23 and x32 (i.e. shares held only

by the honest parties) assume a dummy value (= 0), compute commitment (cw, ow) on

bw = xw ⊕ λw using seed s1.

– hyb3: Same as hyb2 except that some of the commitments of input keys sent by P2, P3 wrt

seed s1, which will not be opened are replaced with commitments of dummy values. These

commitments correspond to the labels that do not correspond to any input share.

– hyb4: Same as hyb3 except: invoke FOT appropriately for the transfer of openings of key-

shares corresponding to input wire w owned by garbler Pg, g ∈ [3] and evaluator P ◦4 .

– hyb5: Same as hyb4 except: instead of constructing an honest GC, a simulated GC is

constructed using the knowledge of seed s1 (not known to the adversary), in such a way

that each ciphertext for the output gate encrypts the same output key which corresponds

to z = y ⊕ λw where y is obtained after having invoked Fgod and λw is known from the

information of all seeds.

– hyb6: Same as hyb5 except: in case of a 2PC instance elected because of a public/private

conflict, invoke simulator for passive2PC as in [LP04] instead of running passive2PC.

Note that hyb6 = ideal
Fgod,S

1A,2P
god4PC

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference between the hybrids is that in hyb1, the commitment for

shares x23 and x32 are replaced by commitments of dummy values. Note that these are the

shares whose openings are not revealed to the adversary. Hence, the indistinguishability follows

from the hiding property of the commitment scheme.

94

hyb1
c
≈ hyb2: The only difference in the value of bw computed such that in hyb1, it is w.r.t.

honest share xw while in hyb2, it is w.r.t. dummy share 0. This remains indistinguishable to

the adversary as she is unaware of seed s1 and hence can’t compute the underlying xw.

hyb2
c
≈ hyb3: The only difference between the hybrids is that, in hyb3, the commitments

of input wire labels wrt seed s1, which will not be opened are replaced with commitments on

dummy values. The indistingushability follows from the hiding property of the commitment

scheme.

hyb3
c
≈ hyb4: Indistinguishability of hybrids follows from reduction to the security of the

underlying OT scheme [EGL85].

hyb4
c
≈ hyb5: Indistinguishability follows from reduction to the security of the underlying

garbling scheme which breaks down to the security of PRF.

hyb5
c
≈ hyb6: The indistinguishability follows from the indistinguishability of passive2PC

simulator (follows from the security of [Yao82] provided in [LP04]) to the real execution of

[Yao82].

We now describe the simulator and hybrid arguments for the final case.

- Act honestly on behalf of P3 for the commitment instance between P ◦1 as sender and P3 as receiver

to obtain seed s2.

- Sample random s3 and act honestly on behalf of P2 for the commitment instance between P2 as

sender and P ◦1 as receiver.

- Sample random s1 and act honestly on behalf of P3 for the commitment instance between P3 as

sender and P2 as receiver.

Simulator S4A,1PπseedDist

Figure 7.8: Simulator S4A,1P
πseedDist

for πseedDist with actively corrupt P ∗4 and passively corrupt P ◦1

Seed Distribution Phase (one-time): Invoke S
4A,1P
πseedDist (Fig 7.8).

Input Distribution Phase: Obtain x1 as the input provided to simulator.

Simulator S4A,1Pgod4PC

95

For input of active P ∗4 (x4):

- Receive (pp4, c41, c42, c43) as broadcasted by P ∗4 . Receive o4i on behalf of Pi, i ∈ {2, 3} and

compute x4i ← Open(pp4, c4i, o4i).

For input of passive P ◦1 (x1):

- Receive (pp1, c12, c13, c14) as broadcasted by P ∗1 . Receive o1i on behalf of Pi, i ∈ {2, 3} and

compute x1i ← Open(pp1, c1i, o1i).

For input of honest P3 (x3):

- On behalf of P3: sample random x31, x34 and compute commitment as (c3i, o3i)← Com(pp3, x
3i)

for i ∈ {1, 4}. Broadcast (pp3, c31, c32, c34) and send o3i privately to Pi. Similar steps are done

for input x2.

Mask and Blinded Input Transfer:

- On behalf of Pg, g ∈ {2, 3} do the following: For every input wire w with party Pi holding the

value on wire w, broadcast λjw, j ∈ Sg \ Si (for P ∗4 , set j ∈ Sg).

- For input wire w owned by P ◦1 and Pg, g ∈ {2, 3} do the following on behalf of Pg: Compute

λw = ⊕h∈[3]λhw and bw = xw ⊕ λw where xw is the bit on wire w and broadcast bw on behalf of

Pg. Also receive bw as broadcasted by P ◦1 on behalf of Pg.

- For input wire w owned by P2 and P3 do the following on behalf of Pg, g ∈ {2, 3}: Compute

λw = ⊕h∈[3]λhw and bw = xw⊕λw where xw is a dummy value (= 0) for share on wire w. Broadcast

bw on behalf of honest parties.

- For every output wire w, broadcast λhw, h ∈ Sg on behalf of Pg, g ∈ {2, 3}.

Input and Key Transfer: For every input wire w, let {kgw,0, k
g
w,1} denote the two keys derived

from seed {sg} for g ∈ [3].

- On behalf of Pg, g ∈ {2, 3}: for b ∈ {0, 1}, j ∈ Sg, compute commitments as: (cjw,b, o
j
w,b) ←

Com(ppj , kjw,b) and broadcast (ppj , {cjw,b}b∈{0,1}).
- On behalf of Ph, h ∈ {2, 3}: for input wire w corresponding to share held by P ∗4 and a gar-

bler Pg and b ∈ {0, 1}, split key kgw,b as kgw,b = [kgw,b]
0 ⊕ [kgw,b]

1. Compute ([cgw,b]
0, [ogw,b]

0) ←
Com(ppg, [kgw,b]

0) and ([cgw,b]
1, [ogw,b]

1)← Com(ppj , [kgw,b]
1), broadcasts (ppg,

{
[cgw,b]

0, [cgw,b]
1
}
b∈{0,1}).

Also, receive the same from P ◦1 .

- For the input wire w owned by P ◦1 and Pg, g ∈ {2, 3}, send opening {o1w,bw} to P ∗4 on behalf

of Pg. If P ∗4 broadcasts (conflict, P ∗4 , Pg/P
◦
1), invoke simulator for passive2PC, Spassive2PC with

P2 = P\{P ∗4 , Pg/P ◦1 } to complete the simulation and send the output y to all on behalf of honest

parties.

- For the input wire w owned by P2 and P3, send openings {ojw,bw}j∈S2 on behalf of P2 and opening

o2w,bw on behalf of P3 to P ∗4 . If P ∗4 broadcasts (conflict, P ∗4 , Pg) for g ∈ {2, 3}, invoke simulator

for passive2PC, Spassive2PC with P2 = P \ {P ∗4 , Pg} to complete the simulation and send the output

96

y to all on behalf of honest parties.

- For input wire w held by a garbler P ◦1 and P ∗4 (say x41), the following is done for opening {o1w,bw}:

◦ Invoke FOT with P ◦1 (as receiver) and P2 (as sender). Obtain receiver’s choice bit bw sent by

P ◦1 to FOT. Compute x41 = bw ⊕ (⊕g∈[3]λ
g
w). Compute x4 = x41 ⊕ x42 ⊕ x43. Invoke Fgod

with (Input, x1), (Input, x4) on behalf of corrupt P ◦1 , P
∗
4 to obtain y.

◦ Similarly, invoke FOT with P ∗4 (as receiver) and P3 (as sender). If P ∗4 broadcasts (conflict, P ∗4 ,

P3) , invoke simulator for TwoPC, Spassive2PC with P2 = P \ {P ∗4 , P3} to complete the

simulation and send the output y to all on behalf of honest parties.

- For input wire w held by a garbler Pg, g ∈ {2, 3} and P ∗4 , do the following for opening {ogw,bw}:

◦ Invoke FOT with Pg (as receiver) and P ◦1 (as sender) to obtain [ogw,bw]0. Send [ogw,bw]0 on behalf

of Pg to P ∗4 .

◦ Similarly, invoke FOT with P ∗4 (as receiver) and Ph, h ∈ [3]\{1, g} (as sender). If P ∗4 broadcasts

(conflict, P ∗4 , Ph), invoke simulator for passive2PC, Spassive2PC with P2 = P \ {P ∗4 , Ph} to

complete the simulation and send the output y to all on behalf of honest parties.

Garbling Phase:

- Compute z = y ⊕ λw for the output wire w. Using knowledge of s1 (which is not known to the

adversary) and output y, behave in Garble3 and Π3AOTGOD in such a way that each ciphertext for

the output gate of GCg for g ∈ [3] encrypts the same output key kgw,z.

- On behalf of Pg, g ∈ {2, 3}: Broadcast GCh for h ∈ Sg. Also, receive GCj , j ∈ S1 broadcast by

P ◦1 on behalf of the honest parties.

Evaluation and Output Phase:

- Receive Y on behalf of Pg, g ∈ {2, 3} as broadcasted by P4. If P4 does not broadcast anything or

if Y 6= {khw,z}h∈[3], invoke simulator for passive2PC, Spassive2PC with P2 = P\{P ∗4 , P3} to complete

the simulation and send the output y to all on behalf of honest parties.

Figure 7.9: Simulator S
4A,1P
god4PC for god4PC with actively corrupt P ∗4 and passively corrupt P ◦1 .

Security against actively corrupt P ∗4 and passively corrupt P ◦1 : We now formally argue that

ideal
Fgod,S

4A,1P
god4PC

c
≈ realgod4PC,A when an adversary A corrupts P4 actively and P1 passively. The

views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realgod4PC,A.

– hyb1: Same as hyb0 except: for share x23 (i.e. the share that the adversary doesn’t get

access to), replace c23 with the commitment of a dummy value in input commit phase.

Do the same for share x32.

97

– hyb2: Same as hyb1 except: for wire w with share x23 and x32 (i.e. shares held only by the

honest parties) assume a dummy value (= 0), compute bw = xw ⊕ λw using seed s1.

– hyb3: Same as hyb2 except that some of the commitments of input keys sent by P2, P3 wrt

seed s1, which will not be opened are replaced with commitments of dummy values. These

commitments correspond to the labels that do not correspond to any input share.

– hyb4: Same as hyb3 except: invoke FOT appropriately for the transfer of openings of key-

shares corresponding to input wire w owned by garbler Pg, g ∈ [3] and evaluator.

– hyb5: Same as hyb4 except: instead of constructing an honest GC, a simulated GC is

constructed using the knowledge of seed s1 (not known to the adversary), in such a way

that each ciphertext for the output gate encrypts the same output key which corresponds

to bw = y ⊕ λw where y is obtained after having invoked Fgod and λw is known from the

information of all seeds.

– hyb6: Same as hyb5 except: in hyb4, Y is deemed to be invalid if there does not exist a

bit z such that for each j ∈ Sg, k
j
w obtained from Y matches kjw,z while in hyb5, it Y is

deemed invalid if it is not the one that was encrypted in the simulated GC.

– hyb7: Same as hyb6 except: in case of a 2PC instance elected because of a public/private

conflict, invoke simulator for passive2PC as in [LP04], instead of running passive2PC.

Note that hyb7 = ideal
Fgod,S

4A,1P
god4PC

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference between the hybrids is that in hyb2, the commitment for

shares x32 and x23 are replaced by commitments of dummy values. Note that these are the

shares whose openings are not revealed to the adversary. Hence, the indistinguishability follows

from the hiding property of the commitment scheme.

hyb1
c
≈ hyb2: The only difference in the value of bw computed such that in hyb1, it is w.r.t.

honest share xw while in hyb2, it is w.r.t. dummy share 0. This remains indistinguishable to

the adversary as she is unaware of seed s1 and hence can’t compute the underlying xw.

hyb2
c
≈ hyb3: The only difference between the hybrids is that, in hyb3, the commitments

of input wire labels wrt seed s1, which will not be opened are replaced with commitments on

dummy values. The indistingushability follows from the hiding property of the commitment

98

scheme.

hyb3
c
≈ hyb4: Indistinguishability of hybrids follows from reduction to the security of the

underlying OT scheme [EGL85].

hyb4
c
≈ hyb5: Indistinguishability follows from reduction to the security of the underlying

garbling scheme which breaks down to the security of PRF.

hyb5
c
≈ hyb6: Indistinguishability follows for the two different notions of validity of Y

because a Y valid according to condition in hyb6 is valid according to condition in hyb5. Also

a Y invalid according to condition in hyb6 can possibly be valid according to condition in hyb5

only if the adversary could forge the other output keys (i.e. which were not encrypted in sim-

ulated GC) for all the three seeds which is possible only with negligible probability according

to the security of the garbling scheme.

hyb6
c
≈ hyb7: The indistinguishability follows from the indistinguishability of passive2PC

simulator (follows from the security of [Yao82] presented in [LP04]) to the real execution of

[Yao82].

99

Chapter 8

4PC with Fairness

Relaxing the complexities in god4PC, we present an efficient constant round 4PC protocol

that achieves fairness relying only on pairwise-private channels, against a mixed adversary that

corrupts one party actively and the other passively. We give a quick overview highlighting

the relaxations from god4PC, followed by challenges particular to the goal of fairness and the

measures we take to tackle them. Note that, owing to the weaker security requirement of

fairness, it is acceptable for the execution to abort before any party obtains the output.

8.1 The Construction

We retain the structure of four {P1, P2, P3} garblers and one evaluator P4. The one-time SD is

run as in god4PC. We let go of input distribution phase which was required in GOD protocol for

the purpose of input consistency across executions in 4PC and 2PC. However, P4 still distributes

her input as additive shares among the garblers to employ the tricks of using only semi-honest

OTs for key transfer as in god4PC. The garbling phase is run as in Fig 3.9 and every pair of

garblers (as appointed by seed-distribution) send the GC fragment (common between them) to

P4, who checks the equality of two copies for correctness. Subsequently, P4 evaluates the GC

to obtain the encoded output Y and sends to the garblers for output construction. For the

transfer of input mask-shares to the wire owner, since there exist two senders that can enforce

the owner to abort if the values mismatch, we let go of commitments on input mask shares.

The wire-owner computes the masked input and sends to P4. For the wire w owned by a garbler

Pg, she sends the keys corresponding to the two seeds she knows. To transfer of the third key

kgw,bw of the input super-key, two passive OTs are run as in god4PC. Note that, as robustness is

not a requirement anymore, we strip off the commitments on input keys by the garblers done

in god4PC. An incorrect key can at most lead to an invalid Y by the honest P4. Hence, we

100

enable the garblers to send hash of both output keys as part of the GC to P4 who verifies for

every wire, if all keys in the computed Y correspond to the same masked output bit (valid) or

not.

During the output phase, there happens to be a trivial violation of fairness where a corrupt

P4 selectively sends the Y to garblers on obtaining the output herself. This issue occurs as the

output mask shares are released by the garblers without any promise of output distribution by

a possibly corrupt P4. To tackle this, we ask the garblers to withhold the dispersal of shares

to P4 until a valid Y is received. This, however, shifts the power to a malicious garbler who

can send an invalid mask-share leading to incorrect output. Both these cases are similar to the

concerns described in fair5PC. Although the distribution of seeds ensures the existence of two

senders for each share (one of which is honest/passive), however, the best that can be done is

abort when the senders send mismatching copies. This still violates fairness, as the corrupt

sender would have learnt the output. Hence, we require commit-then-open technique where, an

agreement on the commitments to output mask-shares is made in the garbling phase which are

opened only when a valid Y is received. Now, if the malicious sender sends faulty commitments

in the offline phase, parties can simply abort. Else an agreement on commitments is made and

the opening phase in the output phase is guaranteed to be robust. The SD also enforces the

dependency of a malicious P4 on at least one honest garbler to obtain the output and thus,

rescues fairness to some extent. The only threat that still persists is selective distribution of Y

by P4 which we address by enforcing a garbler who received a valid Y from P4 to further send

the same to co-garblers. This ensures the following sequence of actions by a possibly corrupt

P4: either she does not send a valid Y to any honest party in which case she suffers, else she

sends Y selectively, in which case our strategy ensures that everyone computes the output.

There exists subtle scenario where, despite an honest P4 aborting during the circuit evalu-

ation, a malicious garbler can convince the honest parties of any Y with the knowledge of all

seeds (aided by a semi-honest co-garbler). This initiates the necessity of proof of origin of Y

and is carried out similar to fair5PC. To elaborate, P4 computes a collision resistant hash on

a randomly chosen value in advance and the hash is agreed upon amongst the garblers. Con-

sequently, in the output computation, P4 sends the pre-image of the agreed upon hash along

with Y as proof of origin of Y. With this technique, an honest garbler receiving a valid Y

along with a valid pre-image of the hash can be convinced that Y was indeed sent by P4. The

formal protocol appears in Fig 8.1.

All optimizations done in god4PC protocol can be adopted to fair4PC.

101

Input and Output Each party Pi ∈ P has xi. Each party outputs y = f(x1, x2, x3, x4) or y = ⊥.

Common Inputs The circuit C(x1, x2, x3,⊕j∈[3]x4j) that takes the additive shares of P4 as inputs

and computes f(x1, x2, x3, x4), each input, their shares and output are from {0, 1} (instead of

{0, 1}` for simplicity).

Notation Sg, g ∈ [3] denotes the indices of the seeds held by party Pg as well as the indices of

parties who hold seed sg.

Primitives A secure NICOM (Com,Open) and eNICOM (eCom, eOpen), Oblivious Transfer (OT),

Garble3 (Fig 3.9), Eval3 (Fig 3.10) and collision resistant hash H.

Seed Distribution (one-time): Parties P1, P2 and P3 run πseedDist (Fig 3.7).

Evaluator’s Input Distribution: P4 splits its input as x4 = x41⊕ x42⊕ x43 and sends x4g to

Pg, g ∈ [3].

Proof of Origin Agreement: P4 samples a random proof and computes z = H(proof). P4

sends z to all the garblers who in turn exchange z and abort if all received copies of z are not the

same.

Public Parameter for Equivocal Commitment: For eNICOM public parameter eppg for

g ∈ [3], each Pj , j ∈ [3] \ {g} samples eppgj freshly (not derived from seeds) and sends to all. Each

Pi ∈ P computes eppg = ⊕j∈[3]\{g}eppgj , forwards eppg to all and aborts if any eppgs received

mismatch.

Equivocal commitment on output mask bits: For output wire w: Pg, g ∈ [3] does the

following for j ∈ Sg:

– Computes (cjw, o
j
w) ← eCom(eppj , λjw) and sends (eppj , cjw) to all. Pi ∈ P aborts if two mis-

matching copies of (eppj , cjw) are received.

Garbling Phase: Each garbler Pg, g ∈ [3] runs Garble3(C) (Fig 3.9) using F3AOT (Fig 3.8)

instead of standard OT and sends {GCj}j∈Sg to P4 who aborts if the copies of GCj received

mismatch. Else, P4 sets GC = GC1||GC2||GC3.

Input Phase: Let {kjw,0, k
j
w,1} be the two keys derived from seed sg, g ∈ [3] for input wire

w.

– For input wire w owned by Pg, g ∈ [3] having input bit xg, each Pj , j ∈ [3] \ {g} sends λgw

to Pg who aborts if the two copies of λgw mismatch. Else, computes λw = ⊕j∈[3]λ
j
w and sets

bw = xg⊕λw. Pg sends (bw, k
j
w,bw

)j∈Sg to P4. For key kgw,bw corresponding to seed sg that Pg does

not possess, each Pj , j ∈ [3]\{g} additively shares the keys kgw,0 and kgw,1 as kgw,0 = [kgw,0]
0⊕ [kgw,0]

1

and kgw,1 = [kgw,1]
0 ⊕ [kgw,1]

1 (using randomness from sg). Let {α, β} = [4] \ {g, 4}. Further, the

following is done:

Protocol fair4PC

102

◦ Pg runs a semi-honest OT acting as a receiver with choice bit bw with Pα acting as sender

with inputs [kgw,0]
0, [kgw,1]

0. Similarly, P4 runs a semi-honest OT acting as a receiver with

choice bit bw with Pβ acting as sender with inputs [kgw,0]
1, [kgw,1]

1. Pg receives [kgw,bw]0 as

the OT output and sends to P4 which is XORed by P4 with his OT output i.e. [kgw,bw]1 to

obtain kgw,bw .

– For input wire w belonging to each of P4’s input share x4l, l ∈ [3], party Pg, g ∈ [3] sends

λjw, j ∈ Sg to P4 who aborts if the received copies of λjw mismatch. Also, Pl receives λlw from the

other two garblers and aborts if the copies of λlw mismatch. P4, Pl compute λw = ⊕j∈[3]λ
j
w and

set bw = x4l ⊕ λw. For keys, a similar procedure as described in the previous step is done. Let X

be the set of super-keys obtained for every input wire w i.e. {kgw,bw}g∈[3].

Evaluation and Output Construction:

– P4 runs Eval3 and evaluates the DGC, GC using X to obtain the output super-key Y = {kgw}g∈[3]
and masked output (y⊕λw) for output wire w. P4 computes H(kgw) and aborts if it not consistent

with any hash received from the garblers as part of GC. Else, P4 sends Z = {Y, proof} to all.

– Z sent by P4 is deemed valid by Pg if both the following hold true: (i) there exists a bit bw such

that for each j ∈ Sg, the kjw obtained from Y matches kjw,bw (ii) H(proof) = z. If such a valid Z

is received, Pg, g ∈ [3] forwards Z to the co-garblers and ojw, j ∈ Sg to all.

– A garbler Pα if received Z from a co-garbler but not from P4 checks if Z is valid. If so, Pα sends

(Y, proof, {ojw}j∈Sα) to co-garblers and {ojw}j∈Sα to P4.

– Each Pi ∈ P computes λw = ⊕j∈[3]λ
j
w using the mask shares obtained in the last two rounds (if

sufficient) and obtains the output y by unmasking λw.

Figure 8.1: Protocol fair4PC

We use equivocal commitment scheme to commit to the mask-shares on output wires for the

same reason elaborated in Chapter 4. However, in the instantiation here, two parts of trapdoor

are sufficient (as opposed to 4 in fair5PC) to allow the simulator to learn the complete trapdoor

while hiding it from the adversary in the real execution, owing to the existence of only one

actively corrupt party.

8.2 Properties

Lemma 8.2.1. The protocol fair4PC is correct.

Proof. The input of P4 is well defined by the shares sent to P1, P2, P3. The 2 keys for each

input wire owned by the garblers, along with the 3rd key sent using OTs, define their committed

inputs. Evaluation is done on committed inputs. The correctness of the keys received through

OTs follows from the correctness of FOT [EGL85] along with the additive sharing of keys

103

technique. The correctness of Y and thus y follows from the correctness of garbling and

evaluation (Figs 3.9, 3.10).

Theorem 8.2.2. The protocol fair4PC is securely realizes the functionality Ffair (Fig 2.2) in

the standard model against an adversary corrupting two parties– 1 active, 1 passive, assuming

one-way permutations.

The formal security proof is presented in Section 8.3.

We give the intuition of fairness for completeness. For fairness, we need to guarantee that if

the adversary learns the output, then so do honest parties and converse. We first argue in the

forward direction. Suppose an adversary gets the output. We consider two corruption cases:

Firstly, when P1 and P4 are controlled by the adversary, the adversary obtains the output only

if at least one honest garbler say P2 receives a valid Z from P4 or P1 (valid shares of output

wire mask bits also from P1). If P4 is passive, P2 obtains Z directly from P4 and sends the

received message along with the masking bit shares she owns to all, allowing other parties to

compute the output. The recipient garblers also send out their valid masking bit shares to all

thus making all parties compute the output. When P4 is active and P2 receives valid Z from

P4, then P2 sends Z and the openings on mask shares she holds to all. The recipient garblers

also send out their valid masking bit shares to allow P2 to compute the output. Else if P4 is

malicious and P2 receives valid Z and openings from semi-honest P1, P2 computes the output

and then sends the received message along with the openings of mask shares owned by P2 to

all, to allow each party to compute the output. Secondly, when two garblers P1, P2 are corrupt,

an honest P4 sends Z to all, on successfully evaluating GC. P1, P2, knowing all the seeds, can

construct the output themselves. The honest garblers send the masking bit shares they hold to

all. Thus, every party obtains the output in both cases.

To prove the converse case, suppose the honest parties get the output. We consider the

same corruption cases as above. In the first case, it must be true that at least one of the honest

garblers say P2, received a valid Z who then sends the masking bit shares it owns along with

Z to all. If P2 received Z from P4, then P2 uses the masking bit shares sent by P3 (once P3

obtains output) to compute y. Else, P2 must have received valid Z and the masking bit shares

from P1, which is sufficient to compute y. For the case of corrupt P1, P2, suppose P4 gets the

output. This implies that all garblers must have obtained the output using valid Z sent by

P4 and the masking bit shares received from co-garblers. Consequently, P4 obtains the output

using the masking bit shares sent by honest garblers. This summarizes the intuition.

104

8.3 Security Proof of fair4PC

We now outline the complete security proof of Theorem 8.2.2 that describes the security of the

fair4PC protocol relative to its ideal functionality in the standard security model.

Proof. We describe the simulator Sfair4PC for three cases which exhaustively cover the corruption

scenarios: First, when P1 is actively corrupt and P2 is passively corrupt. Second, when P1 is

actively corrupt and P4 is passively corrupt. Finally, when P4 is actively corrupt and P1 is

passively corrupt. The corruption of any two garblers is symmetric to the case when P1, P2

are corrupt, the corruption of any one actively corrupt garbler and passively corrupt evaluator

is symmetric to the second case and the corruption of any one passively corrupt garbler and

actively corrupt evaluator is symmetric to the third case. The simulator acts on behalf of all

honest parties in the execution. For better understanding we separate out the simulation for

the subroutine πseedDist from the simulation of main protocol in the FOT hybrid model.

We briefly highlight the need for equivocal commitment scheme (eNICOM) for the shares

of output masking bits in our fair protocol as follows: The adversary can decide to abort the

execution as late as when Y needs to be sent (in the worst case). Consequently, this enforces

the simulator to make this decision on behalf of the adversary at the end of evaluation phase

when calling the functionality. Hence, the simulator needs a mechanism to simulate the earlier

rounds appropriately such as sending the GC and committing to the shares of the output

masking bits, without the knowledge of whether the execution will result in a valid output or

not (with no information about the output). The sending of distributed GC is handled as in any

standard distributed garbling proof. To tackle the commitment on shares of output masking

bits, the simulator commits to dummy bits for the seed completely under its control. At a later

point if the execution results in invoking Ffair and obtaining y, the simulator equivocates the

commitments to desired share bits such that for each output wire w, y⊕ λw decodes to correct

y. The trapdoor and public parameter for our eNICOM scheme are derived from relevant seeds

as described in the protocol.

We provide a high level view of the simulation in distributed garbling and evaluation for

completeness. First, in the case of P ∗1 actively corrupt and P ◦2 passively corrupt, the evaluator

P4 is honest. Hence correctness is required from the DGC. The simulator behaves as an honest

P3 following the protocol steps and instructing the functionality to abort in case of any cheating

throughout the garbling since all seeds are known to the adversary. If no cheating is detected

throughout the DGC construction, then the GC is generated as per the Garble3 procedure. The

inputs of corrupt parties are extracted during the garbled input communication. The simulator

sends abort to the functionality if the GC partition sent by P ∗1 is not same as the one generated

105

by honest parties.

Second, in the case of actively corrupt P ∗1 and passively corrupt P ◦4 , the simulator knows the

seeds held by the adversary. In addition the simulator has complete control over the part of GC

generated using seed s1. Since the simulator does not know the output in advance, the masking

bit share λ1w corresponding to output wires w cannot be set in advance. As a result, a fake GC

is constructed using s1 that always evaluates to the same output super-key for the extracted

and random inputs that are known to the simulator. If the evaluation goes through and Y is

received on behalf of the honest parties, then the simulator invokes the functionality to obtain

y, aptly programs the masking bit share under its control by setting λ1w = y ⊕ (⊕i∈[3], i 6= 1)λiw

for each output wire, performs equivocation on the commitment made for share λ1w and sends

the corresponding decommitment to the corrupt parties thus completing simulation. A similar

strategy as explained in the second case is employed for the case when P ◦1 is passively corrupt

and P ∗4 is actively corrupt We describe the simulator steps in detail for πseedDist and the main

protocol separately in Figs 8.2, 8.4, 8.6 and 8.3, 8.5, 8.7 respectively.

- Act honestly on behalf of P3 for the commitment instance between P ∗1 as sender and P3 as receiver

to obtain seed s2.

- Sample random s1 and act honestly on behalf of P3 for the commitment instance between P3 as

sender and P ◦2 as receiver.

- For the commitment instance between P ∗1 as sender and P ◦2 as receiver to commit to seed s3:

◦ Run the ExtCom protocol where P ∗1 and P ◦2 run rounds 1-3 and broadcast their messages

(extcom1
1, extcom

1
2, extcom

1
3).

◦ Rewind the adversary to the end of round 1 for P ∗1 and P ◦2 to rerun rounds 2-3 and broadcast

(extcom2
2, extcom

2
3).

◦ On behalf of P3, Run extractor algorithm Extract of the commitment scheme as in Fig 2.4

using inputs (extcom1
1, {extcomi

2, extcom
i
3}i∈[2]) to extract the committed seed s3.

Simulator S1A,2PπseedDist

Figure 8.2: Simulator S1A,2P
πseedDist

for πseedDist with actively corrupt P ∗1 and passively corrupt P ◦2

Seed Distribution Phase (one-time): Invoke S
1A,2P
πseedDist (Fig 8.2). Extract s3.

Protocol S1A,2Pfair4PC

106

Evaluator’s Input Distribution: Sample random x41, x42 and send x4g, g ∈ [2] to Pg on

behalf of P4.

Proof of Origin Agreement: On behalf of P4: sample a random proof and compute z =

H(proof). Send z to P ∗1 , P
◦
2 . In the next round, on behalf of P3: receive z from P ∗1 , P

◦
2 and send

z to P ∗1 , P
◦
2 . If P ∗1 sent a different value of z from what was computed by simulator, invoke Ffair

(Fig 2.2) with (Input,⊥) on behalf of corrupt P ∗1 and set y = ⊥.

Public parameter of equivocal commitment:

- For eNICOM public parameter eppg for g ∈ [2]: On behalf of P3, sample eppg3 using fresh

randomness (not derived from seeds) and send to P ∗1 , P
◦
2 . On behalf of P3, P4 receive eppgh, h ∈

[2] \ {g} from Ph, compute eppg = eppg3 ⊕ eppgh, send (and receive) eppg to (from) P ∗1 , P
◦
2 and

receive eppg from P ∗1 , P
◦
2 . If a different value of eppg received from P ∗1 , P

◦
2 , invoke Ffair with

(Input,⊥) on behalf of corrupt P ∗1 , P
◦
2 and set y = ⊥.

- For eNICOM public parameter epp3: On behalf of P3, P4, receive epp3g, g ∈ [2] from Pg. Compute

epp3 = epp31 ⊕ epp32 send (and receive) epp3 to (from) P ∗1 , P
◦
2 (on behalf of P4). If a different

value of eppg received from P ∗1 , invoke Ffair with (Input,⊥) on behalf of corrupt P ∗1 and set y = ⊥.

Equivocal commitment on output mask bits: Do the following for output wire w:

- On behalf of P3 and j ∈ S3, compute (cjw, o
j
w) ← eCom(eppj , λjw) and send (eppj , cjw) to all. If

two mismatching copies of (eppj , cjw), j ∈ S1 are received (due to misbehaviour by P ∗1) on behalf

of Pi, i ∈ {3, 4}, invoke Ffair with (Input,⊥) on behalf of corrupt P ∗1 and set y = ⊥.

Garbling Phase: On behalf of P3: Run Garble3 honestly with F3AOT (Fig 3.8) as means to

achieve OT using s1, s2. On behalf of P4, receive GCj from the corrupt garblers. If two mismatching

copies of GCj , j ∈ S1 are received (due to misbehaviour by P ∗1), invoke Ffair with (Input,⊥) on behalf

of corrupt P ∗1 and set y = ⊥. Else, set GC = GC1||GC2||GC3.

Input and Key Transfer: Let {kjw,0, k
j
w,1} be the two keys derived for wire w from seed

sj , j ∈ [3].

- For input wire w belonging to P ∗1 having input bits x1: on behalf of P3, send λ1w to P1. Similar

steps are done for x2 of P ◦2 . Receive λ3w from P ∗1 and P ◦2 for input wire w belonging to P3 having

input bit x3. If they send mismatching copies of λ3w, invoke Ffair with (Input,⊥) on behalf of

corrupt P ∗1 and set y = ⊥. Else, compute λw = ⊕j∈[3]λ
j
w and set bw = λw (assuming a dummy

value of x3 = 0).

- On behalf of P4 and input wire w belonging to Pg, g ∈ [2], receive (bw, k
j
w,bw

)j∈Sg . For key kgw,bw
corresponding to seed sg that Pg does not possess, on behalf of P3: split the keys kgw,0 and kgw,1

as kgw,0 = [kgw,0]
0 ⊕ [kgw,0]

1 and kgw,1 = [kgw,1]
0 ⊕ [kgw,1]

1 using randomness from sg. Further, the

following is done:

107

◦ Receive [kgw,bw]0 (obtained by Pg via OT run with the corrupt co-garbler) on behalf of P4 from

Pg.

- For input wire w belonging to P3: Invoke FOT with P3 (as receiver) and P ∗1 (as sender). Invoke

FOT with P4 (as receiver) and P ◦2 (as sender).

- For input wire w corresponding to each of P4’s input share x4l, l ∈ [3], on behalf of P4: receive

λjw, j ∈ Sg from Pg, g ∈ [2]. On behalf of P3, receive λ3w from P ∗1 and P ◦2 (for wire corresponding to

share x43) and send λgw to Pg, g ∈ [2] (for wire corresponding to share x4g). If mismatching copies

are received (because of misbehaviour by P ∗1), invoke Ffair with (Input,⊥) on behalf of corrupt

P ∗1 , P
◦
2 and set y = ⊥. For the keys, a similar procedure as described in the previous step is done.

Evaluation and Output Construction:

- Let X̃ be the set of super-keys obtained (w.r.t. the inputs of the adversary and the dummy

input values assumed for the honest parties). Invoke Ffair with (Input, x1), (Input, x2) on behalf

of corrupt P ∗1 , P
◦
2 and obtain y. From the knowledge of all seeds, compute bw = y ⊕ λw and

Y = {kgw,bw}g∈[3]. On behalf of P4, send Z = {Y, proof} to P ∗1 , P
◦
2 .

- On behalf of P4, receive ojw for j ∈ Sg from Pg, g ∈ [2]. On behalf of P3, receive (Z, ojw) for j ∈ Sg

from Pg and send (Z, oojw) for j ∈ S3 to P ∗1 , P
◦
2 .

Figure 8.3: Simulator S
1A,2P
fair4PC for fair4PC with actively corrupt P ∗1 and passively corrupt P ◦2 .

The hybrid arguments are as defined below.

Security against actively corrupt P ∗1 and passively corrupt P ◦2 : We now formally argue that

ideal
Ffair,S

1A,2P
fair4PC

c
≈ realfair4PC,A when an adversary A corrupts P1 actively and P2 passively. The

views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realfair4PC,A.

– hyb1: Same as hyb0 except: rerun rounds 2-3 of extractable commitment (with P2 as sender

and P ∗1 as receiver) in the seed-distribution phase to extract seed s3. Run the subsequent

rounds same as hyb0.

– hyb2: Same as hyb1 except: for input wire w held by garbler (say P3) and P ◦4 , to obtain

opening k3w,bw , invoke FOT with P3 as receiver and P ∗1 as sender to obtain [k3w,bw]0. Similarly,

invoke FOT with P ◦4 as receiver and P ◦2 as sender to obtain [k3w,bw]1.

– hyb3: Same as hyb2 except: if the construction of distributed GC fails or X is not obtained,

output ⊥ on behalf of P3.

– hyb4: Same as hyb3 except: if evaluation of distributed GC proceeds, compute z = y ⊕ λw
(where y is the output obtained on invoking Ffair and λw is the mask computed from

108

the knowledge of all seeds) and set Y = {kgw,z}g∈[3] and send Y to the adversary parties

(instead of Y obtained from the evaluation of distributed GC).

Note that hyb4 = ideal
Ffair,S

1A,2P
fair4PC

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference between the hybrids is that, in hyb1, rounds 2-3 of the

extractable commitment are rewound. However, the adversary’s view contains only the final

rewound execution and the previous rewinds are erased. Hence the hybrids hyb0 and hyb1 are

indistinguishable.

hyb1
c
≈ hyb2: Indistinguishability of hybrids follows from the security of the underlying

OT scheme [EGL85].

hyb2
c
≈ hyb3: In hyb2, P3 could have obtained a non-⊥ value for y even though P ◦4 failed

in GC evaluation by if it received a valid Z = (Y, proof) from active P ∗1 such that Y is valid

and z = H(proof). P1 can forge a valid Y because of the knowledge of all seeds. This can be

reduced to the pre-image resistant property of the hash function according to which P ∗1 could

forge a pre-image of z to come up with a valid value of proof only with negligible probability.

hyb3
c
≈ hyb4: The indistinguishability follows from the correctness of the garbling scheme

(follows from Lemma 3.1.4) since Y computed using the Evaluation Phase of garbling would

also result in Y = {kgw,y⊕λw}g∈[3] where y = f(x1, x2, x3, x4).

- Act honestly on behalf of P3 for the commitment instance between P ∗1 as sender and P3 as receiver

to obtain seed s2. Abort if P ∗1 sends incorrect opening.

- Sample random s3 and act honestly on behalf of P2 for the commitment instance between P2 as

sender and P ∗1 as receiver.

- Sample random s1 and act honestly on behalf of P3 for the commitment instance between P3 as

sender and P2 as receiver.

Simulator S1A,4PπseedDist

Figure 8.4: Simulator S1A,4P
πseedDist

for πseedDist with actively corrupt P ∗1 and passively corrupt P ◦4

109

Seed Distribution Phase (one-time): Invoke S
1A,4P
πseedDist (Fig 8.2).

Evaluator’s Input Distribution: On behalf of Pg, g ∈ {2, 3}, receive x4g from P ◦4 .

Proof of Origin Agreement: On behalf of Pg, g ∈ {2, 3}: receive z from P ◦4 . In the next

round, send z to P ∗1 and receive z from P ∗1 . If P ∗1 sends a different value of z from what was received

from P ◦4 , invoke Ffair (Fig 2.2) with (Input,⊥) on behalf of corrupt P ∗1 and set y = ⊥.

Public parameter of equivocal commitment:

- For eNICOM public parameter epp1: On behalf of P2, P3, sample epp12, epp13 using fresh ran-

domness (not derived from seeds) and send to P ∗1 . On behalf of P2, P3 receive epp1 from P ∗1 .

If a different value of epp1 received from P ∗1 on behalf of honest parties, invoke Ffair with

(Input,⊥) on behalf of corrupt P ∗1 and set y = ⊥.

- For eNICOM public parameter eppg, g ∈ {2, 3}: On behalf of Pg, receive eppg1 from P ∗1 . Compute

eppg. Then, send (and receive) eppg to (from) P ∗1 . If a different value of eppg received from

P ∗1 (on behalf of honest Ph, h 6= g), invoke Ffair with (Input,⊥) on behalf of corrupt P ∗1 and

set y = ⊥.

Equivocal commitment on output mask bits: Do the following for output wire w:

- On behalf of Pg, g ∈ {2, 3} and j ∈ Sg, compute (cjw, o
j
w) ← eCom(eppj , λjw) and send (eppj , cjw)

to all. If P ∗1 sends a different copy of (eppj , cjw) for j ∈ S1 from what was computed on behalf of

the honest parties, invoke Ffair with (Input,⊥) on behalf of corrupt P ∗1 and set y = ⊥.

Garbling Phase: On behalf of Pg, g ∈ {2, 3}: Run Garble3 using F3AOT (Fig 3.8) as means to

achieve OT honestly using the knowledge of all seeds such that each ciphertext for the output gate

of GCg for g ∈ [3] encrypts the same output key kgw,z, for z ∈ {0, 1}. Send {GCj} for j ∈ Sg. If

P ◦4 aborts (due to misbehavior by P ∗1), invoke Ffair with (Input,⊥) on behalf of corrupt P ∗1 and set

y = ⊥. Else, set GC = GC1||GC2||GC3.

Input and Key Transfer: Let {kjw,0, k
j
w,1} be the two keys derived for wire w from seed

sj , j ∈ [3].

- For input wire w belonging to P ∗1 having input bit x1: on behalf of Pg, g ∈ {2, 3}, send λ1w to

P ∗1 . Receive λgw from P ∗1 for input wire w belonging to Pg having input bit xg. If P ∗1 sends an

incorrect value (which can be checked based on the knowledge of sg), invoke Ffair with (Input,⊥)

on behalf of corrupt P ∗1 and set y = ⊥. Else, compute λw = ⊕j∈[3]λ
j
w and set bw = λw (assuming

a dummy value of xg = 0).

Simulator S1A,4Pfair4PC

110

- On behalf of Pg, g ∈ {2, 3} and input wire w belonging to Pg, send (bw, k
j
w,bw

)j∈Sg to P ◦4 . For key

kgw,bw corresponding to seed sg that Pg does not possess, on behalf of Ph, h ∈ [3] \ {1, g}: split the

keys kgw,0 and kgw,1 as kgw,0 = [kgw,0]
0 ⊕ [kgw,0]

1 and kgw,1 = [kgw,1]
0 ⊕ [kgw,1]

1 using randomness from

sg. Further, the following is done:

◦ Invoke FOT with Pg (as receiver) and P ∗1 (as sender). Invoke another FOT with P ◦4 (as receiver)

and Ph (as sender).

◦ Send [kgw,bw]0 on behalf of Pg to P ◦4 .

- For input wire w belonging to P ∗1 corresponding to input x1: Invoke FOT with P ∗1 (as receiver)

and P2 (as sender). Invoke FOT with P ◦4 (as receiver) and P3 (as sender) and receive bw sent by

P ◦4 to FOT. Compute x1 = bw ⊕ λw (from the knowledge of all seeds).

- For input wire w corresponding to each of P ◦4 ’s input share x4l, l ∈ [3]: on behalf of Pg, g ∈ {2, 3},
send λjw for j ∈ Sg to P ◦4 . If P ◦4 aborts (due to misbehavior by P ∗1), invoke Ffair with (Input,⊥)

on behalf of corrupt P ∗1 and set y = ⊥.

- For input wire w corresponding to share x4g, g ∈ {2, 3}, on behalf of Pg: receive λgw from P ∗1 .

If P ∗1 sends different value of λgw from what was computed by the simulator (using knowledge of

sg), invoke Ffair (Fig 2.2) with (Input,⊥) on behalf of corrupt P ∗1 and set y = ⊥. For input wire

w corresponding to share x41, send λ1w on behalf of P2, P3 to P ∗1 . If P ∗1 aborts, invoke Ffair with

(Input,⊥) on behalf of corrupt P ∗1 and set y = ⊥. For the keys, a similar procedure as described

in the previous step is done to compute x41.

Evaluation and Output Construction:

- If P ◦4 aborts (due to unsuccessful evaluation), invoke Ffair with (Input,⊥) on behalf of corrupt P ∗1

and set y = ⊥. Else, receive Z = {Y, proof} from P ◦4 on behalf of Pg, g ∈ {2, 3}: compute bw such

that kjw obtained from Y matches with kjw,bw for j ∈ [3]. Invoke Ffair with (Input, x1), (Input, x4)

on behalf of corrupt P ∗1 , P
◦
4 and obtain y.

- Set λ1w = y ⊕ ⊕g∈[3],g 6=1λ
1
w. Run Equiv(c1w, o

′1
w, λ

1
w, t) (where t is the trapdoor corresponding to

epp1) to obtain o1w which opens cc1w to λ1w and send o1w to P ◦4 and (Z, o1w) to P ◦1 on behalf of Pg.

Receive (Z, ojw) from P ◦1 for j ∈ S1 on behalf of Pg.

Figure 8.5: Simulator S
1A,4P
fair4PC for fair4PC with actively corrupt P ∗1 and passively corrupt P ◦4

Security against actively corrupt P ∗1 and passively corrupt P ◦4 : We now formally argue that

ideal
Ffair,S

1A,4P
fair4PC

c
≈ realfair4PC,A when an adversary A corrupts P1 actively and P4 passively. The

views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realfair4PC,A.

– hyb1: Same as hyb0 except: For wire w belonging to Pg, g ∈ {2, 3} with input bit xg, assume

111

a dummy value of xg = 0.

– hyb2: Same as hyb1 except: Invoke FOT appropriately for the transfer of openings of key-

shares corresponding to each input wire w.

– hyb3: Same as hyb2 except that,

• hyb3.1: When the execution results in abort, the commitment to λ1w for output wire

w is created for a dummy value.

• hyb3.2: When the execution results in output y, the commitment c1w for each output

wire w is created for a dummy value and later equivocated to λ1w using o1w computed

via where o1w = Equiv(c1w, o
′1
w, λ

1
w, t) where t is the trapdoor for the commitment c1w.

– hyb4: Same as hyb3 except that that the protocol results in abort if the received Y does

not correspond to the Y resulting from the simulated GC.

Note that hyb4 = ideal
Ffair,S

1A,4P
fair4PC

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference is in the value of bw computed such that in hyb0, it is

w.r.t. honest share xg for g ∈ {2, 3} while in hyb1, it is w.r.t. dummy value 0. This remains

indistinguishable to the adversary because he is unaware of seed s1 and hence can’t compute

the underlying xw.

hyb1
c
≈ hyb2: Indistinguishability of hybrids follows from reduction to the security of the

underlying OT [EGL85].

hyb2
c
≈ hyb3.1: The difference between the hybrids is that the commitment to λ1w for each

output wire w, is created for a dummy value in hyb3.1. The indistinguishability follows via

reduction to the hiding property of eCom.

hyb2
c
≈ hyb3.2: The difference between the hybrids is that in hyb3.2, commitment to λ1w

for each output wire w, is created for a dummy value and later equivocated using o1w computed

via where o1w = Equiv(c1w, o
′1
w, λ

1
w, t) where t is the trapdoor for the commitment c1w. Indistin-

guishability follows via reduction to the hiding property of eCom.

hyb3
c
≈ hyb4: The only difference between the hybrids is that, in hyb3, the protocol aborts

if for some output wire w and index j ∈ Sg, k
j
w,bw

of the received Y does not match with

either (kjw,0, k
j
w,1) or the keys {kjw,bw}j∈Sg in Y do not map to the same bw whereas in hyb4,

112

the protocol results in abort if the received Y does not match the one created with simulated

GC. By security of the garbling scheme, P4 could have forged such a Y only with negligible

probability.

- Act honestly on behalf of P3 for the commitment instance between P ◦1 as sender and P3 as receiver

to obtain seed s2.

- Sample random s3 and act honestly on behalf of P2 for the commitment instance between P2 as

sender and P ◦1 as receiver.

- Sample random s1 and act honestly on behalf of P3 for the commitment instance between P3 as

sender and P2 as receiver.

Simulator S4A,1PπseedDist

Figure 8.6: Simulator S4A,1P
πseedDist

for πseedDist with actively corrupt P ∗4 and passively corrupt P ◦1

Seed Distribution Phase (one-time): Invoke S
4A,1P
πseedDist (Fig 8.2).

Evaluator’s Input Distribution: On behalf of Pg, g ∈ {2, 3}, receive x4g from P ∗4 .

Proof of Origin Establishment: On behalf of Pg, g ∈ {2, 3}: receive z from P ∗4 . If P ∗4 sends

different values of z to P2 and P3, invoke Ffair (Fig 2.2) with (Input,⊥) on behalf of corrupt P ∗4 and

set y = ⊥. Else, in the next round, send z to P ◦1 and receive z from P ◦1 . If P1 sends a different

value of z from what was received from P ∗4 , invoke Ffair with (Input,⊥) on behalf of corrupt P ∗4 and

set y = ⊥.

Public parameter of equivocal commitment:

- For eNICOM public parameter epp1: On behalf of P2, P3, sample epp12, epp13 using fresh ran-

domness (not derived from seeds) and send to P ◦1 , P
∗
4 . On behalf of P2, P3 receive epp1 from

P ∗4 . If a different value of epp1 received from P ∗4 on behalf of honest parties, invoke Ffair with

(Input,⊥) on behalf of corrupt P ∗4 and set y = ⊥.

- For eNICOM public parameter eppg, g ∈ {2, 3}: On behalf of Pg, receive eppg1 from P ◦1 . Compute

eppg. Then, send (and receive) eppg to (from) P ◦1 . If a different value of eppg received from

P ∗4 on behalf of honest parties, invoke Ffair with (Input,⊥) on behalf of corrupt P ∗4 and set

y = ⊥.

Simulator S4A,1Pfair4PC

113

Equivocal commitment on output mask bits: Do the following for output wire w:

- On behalf of Pg, g ∈ {2, 3} and j ∈ Sg, compute (cjw, o
j
w) ← eCom(eppj , λjw) and send (eppj , cjw)

to all. Receive (eppj , cjw), j ∈ S1 from P ◦1 on behalf of honest parties.

Garbling Phase: On behalf of Pg, g ∈ {2, 3}: Run Garble3 using F3AOT (Fig 3.8) as means to

achieve OT honestly using the knowledge of all seeds such that each ciphertext for the output gate

of GCg for g ∈ [3] encrypts the same output key kgw,z for z ∈ {0, 1}. Send {GCj} for j ∈ Sg. If P ∗4

aborts, invoke Ffair with (Input,⊥) on behalf of corrupt P ∗4 and set y = ⊥.

Input and Key Transfer: Let {kjw,0, k
j
w,1} be the two keys derived for wire w from seed

sj , j ∈ [3].

- For input wire w belonging to P ◦1 having input bit x1: on behalf of Pg, g ∈ {2, 3}, send λ1w

to P ◦1 . Receive λgw from P ◦1 for input wire w belonging to Pg having input bit xg. Compute

λw = ⊕j∈[3]λ
j
w and set bw = λw (assuming a dummy value of xg = 0).

- On behalf of Pg, g ∈ {2, 3} and input wire w belonging to Pg, send (bw, k
j
w,bw

)j∈Sg to P4. For key

kgw,bw corresponding to seed sg that Pg does not possess, on behalf of Ph, h ∈ [3] \ {1, g}: split the

keys kgw,0 and kgw,1 as kgw,0 = [kgw,0]
0 ⊕ [kgw,0]

1 and kgw,1 = [kgw,1]
0 ⊕ [kgw,1]

1 using randomness from

sg. Further, the following is done:

◦ Invoke FOT with Pg (as receiver) and P ◦1 (as sender). Invoke another FOT with P ∗4 (as receiver)

and Ph (as sender).

◦ Send [kgw,bw]a on behalf of Pg to P ∗4 .

- For input wire w corresponding to each of P ∗4 ’s input share x4l, l ∈ [3]: on behalf of Pg, g ∈ {2, 3},
send λjw for j ∈ Sg to P ∗4 . If P ∗4 aborts, invoke Ffair with (Input,⊥) on behalf of corrupt P ∗4 and

set y = ⊥.

- For input wire w corresponding to share x4g, g ∈ {2, 3}, on behalf of Pg: receive λgw from P ◦1 .

- For input wire w belonging to P ∗4 corresponding to input x41: Invoke FOT with P ◦1 (as receiver)

and P2 (as sender) and receive bw sent by P ◦1 to FOT. Compute x1 = bw⊕λw (from the knowledge

of all seeds). Invoke FOT with P ∗4 (as receiver) and P3 (as sender). Similar steps are done for x1.

Evaluation and Output Construction:

- On behalf of Pg, g ∈ {2, 3}: receive Z = {Y, proof} from P ∗4 . If Pg receives a valid Z, invoke Ffair

with (Input, x1), (Input, x4) on behalf of corrupt P ◦1 , P
∗
4 and obtain y. Set o1w = Equiv(c1w, o

′1
w, λ

1
w, t)

where t is the trapdoor corresponding to epp1 and send ojw to P ∗4 and (Z, ojw) for j ∈ Sg to P ◦1 on

behalf of Pg. Receive (Z, ojw) from P ◦1 for j ∈ S1 on behalf of Pg.

- On behalf of Pg, g ∈ {2, 3}: If neither Pg receives valid Z from P ∗4 but a valid Z, ojw for j ∈ S1

is received in the subsequent round from P ◦1 , invoke Ffair with (Input, x1), (Input, x4) on behalf of

corrupt P ◦1 , P
∗
4 and obtain y. Set o1w = Equiv(c1w, o

′1
w, λ

1
w, t) where t is the trapdoor corresponding

114

to epp1 and send ojw to P4 and (Z, ojw) for j ∈ Sg to P ◦1 on behalf of Pg.

- If neither Pg for g ∈ {2, 3} receives valid Z from P4 or from P1 in the subsequent round, invoke

Ffair with (Input,⊥) on behalf of corrupt P ∗1 and set y = ⊥.

Figure 8.7: Simulator S
4A,1P
fair4PC for fair4PC with actively corrupt P ∗4 and passively corrupt P ◦1

Security against actively corrupt P ∗4 and passively corrupt P ◦1 : We now formally argue that

ideal
Ffair,S

4A,1P
fair4PC

c
≈ realfair4PC,A when an adversary A corrupts P4 actively and P1 passively. The

views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realfair4PC,A.

– hyb1: Same as hyb0 except: For wire w belonging to Pg, g ∈ {2, 3} with input bit xg, assume

a dummy value of xg = 0.

– hyb2: Same as hyb1 except: Invoke FOT appropriately for the transfer of openings of key-

shares corresponding to each input wire w.

– hyb3: Same as hyb2 except that,

• hyb3.1: When the execution results in abort, the commitment to λ1w for output wire

w is created for a dummy value.

• hyb3.2: When the execution results in output y, the commitment c1w for each output

wire w is created for a dummy value and later equivocated to λ1w using o1w computed

via where o1w = Equiv(c1w, o
′1
w, λ

1
w, t) where t is the trapdoor for the commitment c1w.

– hyb4: Same as hyb3 except that that the protocol results in abort if the received Y does

not correspond to the Y resulting from the simulated GC.

Note that hyb3 = ideal
Ffair,S

4A,1P
fair4PC

. Next, we show that each pair of hybrids is computationally

indistinguishable as follows:

hyb0
c
≈ hyb1: The only difference is in the value of bw computed such that in hyb0, it is

w.r.t. honest share xg for g ∈ {2, 3} while in hyb1, it is w.r.t. dummy value 0. This remains

indistinguishable to the adversary because she is unaware of seed s1 and hence can’t compute

the underlying xw.

hyb1
c
≈ hyb2: Indistinguishability of hybrids follows from reduction to the security of the

underlying OT scheme [EGL85].

115

hyb2
c
≈ hyb3.1: The difference between the hybrids is that the commitment to λ1w for each

output wire w, is created for a dummy value in hyb3.1. The indistinguishability follows via

reduction to the hiding property of eCom.

hyb2
c
≈ hyb3.2: The difference between the hybrids is that in hyb3.2, commitment to λ1w

for each output wire w, is created for a dummy value and later equivocated using o1w computed

via where o1w = Equiv(c1w, o
′1
w, λ

1
w, t) where t is the trapdoor for the commitment c1w. Indistin-

guishability follows via reduction to the hiding property of eCom.

hyb3
c
≈ hyb4: The only difference between the hybrids is that, in hyb3, the protocol aborts

if for some output wire w and index j ∈ Sg, k
j
w,bw

of the received Y does not match with

either (kjw,0, k
j
w,1) or the keys {kjw,bw}j∈Sg in Y do not map to the same bw whereas in hyb4,

the protocol results in abort if the received Y does not match the one created with simulated

GC. By security of the garbling scheme, P4 could have forged such a Y only with negligible

probability.

116

Chapter 9

Empirical Results

In this chapter, we elaborate the empirical results of our protocols. We use the circuits of

AES-128 and SHA-256 as benchmarks. We begin with the details of the setup environment,

both hardware and software and then give a detailed comparison of efficiency.

9.1 Setup

9.1.1 Hardware Details

We provide experimental results both in LAN and WAN (high latency) settings. For the purpose

of LAN, our system specifications include a 32GB RAM; an Intel Core i7− 7700− 4690 octa-

core CPU with 3.6 GHz processing speed with AES-NI support from the hardware. For WAN,

we have employed Microsoft Azure D4s v3 cloud machines with instances located in West US,

South India, East Australia, South UK and East Japan. The average bandwidth measured

using the iperf testing tool corresponds to 169Mbps. The slowest link has a round trip time

(RTT) of 277 ms between East Australia and South UK. RTT denotes the time required to send

a packet from source to destination and subsequently an acknowledgment back from destination

to source. But the transfer of a packet involves only one way communication from source to

destination. So the delay that we consider is half of RTT which is 138.5 ms for our slowest link

(present between garblers P3 − P4). The following are the maximum delays for each garbler

for one way communication: P1: 102 ms, P2: 101 ms, P3: 138 ms, P4: 138.5 ms. (Garbler P4 is

not used in 4PC as only 3 garblers are present) For the evaluator, the maximum delay is close

to 112 ms. The tables indicate the average delay for the role of garbler which turns out to be

between 114− 120 ms.

117

9.1.2 Software Details

For efficiency, the technique of free-XOR is enabled and the implementation is carried out using

libgarble library licensed under GNU GPL license. This library leverages the use of AES-NI

instructions provided by the underlying hardware.We additionally use openSSL 1.02g library

for SHA to instantiate our commitments. The operating system used is Ubuntu 16.04 (64-

bit). Our code follows the standards of C++11 and multi-threading is enabled on all cores

for improved results. Communication is done using sockets whose maximum size is set to 1 MB

and a connection is established between every pair of parties to emulate a complete network

consisting of pair-wise private channels.

9.2 Comparison

We compare our results in the high-latency network with the relevant ones. We highlight the

following parameters for analysis: computation time (CT)– the time spent computing across all

cores, runtime (CT + network time) in terms of LAN, WAN and communication (CC). The

network time emphasizes the influence of rounds and communication size taking into account

the proximity of servers. The state of the art in 3PC [MRZ15, BJPR18] and 4PC [BJPR18]

with honest majority achieving various notions of security, incur significantly less overhead

compared to our setting since they tolerate one corruption which aids in usage of inexpensive

Yao’s garbled circuits [BHR12] and fewer rounds. Thus, the closest result to our setting is

[CGMV17] in terms of both number of corruptions and tools used. Below we make a detailed

comparison with it.

9.2.1 Analysis of 5PC

For fair analysis, we instantiate the protocol of [CGMV17] in our environment and use the

semi-honest 4DG scheme (Fig 3.5) in place of [BLO16] that they rely on. However, we also

instantiate [CGMV17] with the 4DG scheme of [BLO16] to emphasize the saving in computation

time that occurs with the use of Garble4 in place of the scheme of [BLO16]. The tables highlight

average values distinctly for the role of a garbler (Pg, g ∈ [4]) and the evaluator (P5). The results

for [CGMV17], ua5PC, fair5PC appear in Table 9.1. Table 9.2 depicts the results for god5PC.

While having the round complexity of 8 and achieving stronger security, ua5PC and fair5PC

incur an overhead of at most 0.2 MB overall for both circuits over [CGMV17]. The overhead

in both protocols is a result of the proof of origin of output super-key Y and exchange of

Y among garblers. Additionally, in fair5PC, the commit-then-open trick on output mask bits

constitutes extra communication. For the necessary robust broadcast channel in god5PC, we use

118

Dolev Strong [DS83] (DS) to implement authenticated broadcast and fast elliptic-curve based

schemes [BDL+12] to realize public-key signatures therein. These signatures have a one-time

setup to establish public-key, private-key for each party. We do the same for robust 3PC of

[BJPR18] for empirical purposes.

When instantiated with DS broadcast, the round complexity for honest run of GOD is 12

(in the presence of 4 broadcasts) and the shown WAN overhead in Table 9.2 over [CGMV17]

captures this inflation in rounds. For the sake of implementation of all protocols (including

[CGMV17] for fair comparison), we have adopted parallelization wherever possible. Next, if we

observe god5PC, Table 9.2 indicates that the pairwise communication (CC) of god5PC protocol

is almost on par with that of [CGMV17] in Table 9.1 (and less than fair5PC). This is because, the

honest run of our god5PC is almost same as [CGMV17] except for the input commit routine and

the use of broadcast. The input commit routine can be parallelized with the process of garbling

to minimize number of interactions. This implies that the majority overhead is mainly due to

the use of broadcast. The implementation of DS broadcast protocol is done by first setting

up public-key, private key pair for each party involved. Each message sent by the broadcast

sender is then agreed upon by the parties by running 3 (t+1) rounds. If multiple independent

broadcasts exist in one round, they are run parallelly. Also, any private communication that

can be sent along with the broadcast data is also parallelized for improved round complexity.

The broadcast communication is kept minimal and independent of the circuit, input and

output size. As a result, the total data to be broadcasted constitutes only 1.73 KB of the total

communication. In the honest run, when the adversary does not strike, the overall overhead

amounts to a value of at most 1.2 s in WAN over [CGMV17]. The worst case run in god5PC

occurs when the adversary behaves honestly throughout but only strikes in the final broadcast of

Y and a 3PC instance is run from that point. In this case, the overall WAN overhead is at most

2.5 s over [CGMV17]. This overhead is justified considering the strength of security that the

protocol offers when compared to [CGMV17]. Also, the overheads in LAN and communication

are quite reasonable.

In the fair5PC, the higher overhead of 0.2 MB than honest run of god5PC is the result of

commitments on output wire masks and circulation of Y and proof of origin of Y in the output

phase as explained above. Also, fair5PC protocol involves 3 sequential rounds for output phase

compared to single communication of Y by P5 in [CGMV17] and in god5PC. Note that in the

LAN setting, the RTT is of the order of microseconds for one packet send. Our observations

show that, in the LAN setting, the RTT sensitively scales with the communication size whereas

in WAN, the RTT hardly varies for small increase in communication. For instance, we have

noted that, in LAN, the average RTT for 1 KB, 8 KB, 20 KB, 80 KB is 280µs, 391µs, 832µs,

119

1400µs respectively, whereas in WAN the RTT for these communication sizes does not vary.

This implies that two transfers of 1 KB data consumes less time than a single transfer of 20 KB

data in LAN. All the above reasons collectively justify the slight difference in the LAN time.

Having said that, we believe that WAN being a better comparison measure in terms of both

communication data and round complexity, aptly depicts the overhead of all our protocols over

[CGMV17].

Table 9.1: Computation time (CT), LAN run-time (LAN), WAN run-time (WAN) and Communi-
cation (CC) for [CGMV17], ua5PC and fair5PC for g ∈ [4].

Protocol
CT(ms) LAN(ms) WAN(s) CC(MB)

Pg P5 Pg P5 Pg P5 Pg P5

A
E

S
-1

2
8 [CGMV17] (with Garble4) 20.84 13.45 25.01 21.45 2.54 0.99 7.38 0.031

[CGMV17] (with [BLO16]) 24.4 14.17 28.56 22.17 2.58 1.0 7.38 0.03
ua5PC 21.72 13.65 25.66 21.85 2.74 0.99 7.42 0.039
fair5PC 21.79 13.74 26.06 22.3 2.82 1.10 7.43 0.039

S
H

A
-2

5
6 [CGMV17] (with Garble4) 247.69 88.23 290.38 236.53 3.44 4.78 97.26 0.062

[CGMV17](with [BLO16]) 259.99 103.54 302.6 254.21 3.58 4.8 97.26 0.06
ua5PC 247.89 88.75 293.25 241.51 3.69 4.79 97.28 0.078
fair5PC 249.35 88.78 301.33 242.66 3.78 4.81 97.29 0.078

Table 9.2: Computation time (CT), LAN run-time (LAN) and Communication (CC) and Broadcast
(BC) for protocol god5PC for g ∈ [4]. Pg′ is the garbler and Pγ is the evaluator for worst case 3PC
run.

Circuit
CT(ms) LAN(ms) WAN(s) CC(MB) BC(KB)

Pg(Pg′) P5(Pγ) Pg(Pg′) P5(Pγ) Pg(Pg′) P5(Pγ) Pg(Pg′) P5(Pγ) Pg(Pg′) P5(Pγ)

AES-128 21.93 13.34 28.95 24.19 3.70 1.76 7.41 0.032 10.416 10.064
(+1.12) (+0.91) (+2.39) (+2.1) (+1.02) (+1.1) (+0.15) (+0.002) (+4.03) (+4.06)

SHA-256 249.91 90.83 295.3 241.83 4.5 5.6 97.27 0.064 10.416 10.064
(+11.63) (+9.76) (+14.5) (+11.9) (+1.42) (+1.51) (+3.074) (+0.004) (+4.03) (+4.06)

9.2.2 Analysis of 4PC

As efficiency studies considering mixed adversary is limited and no relevant literature exists for

small party domain to the best of our knowledge, we mainly compare with MPC with small

population in the traditional honest majority. In the mixed model protocols, the closest work

to ours is that of [CGMV17] which explores selective abort with 5 parties against 2 active

corruptions since we rely on the tools of SD, AOT, distributed garbling similar to theirs. In

the 4-party domain, the state of the art protocol of [BJPR18] achieves GOD with 1 corruption.

120

Since, the corruption scenario of our mixed protocols lies between the above two results, we

show a detailed comparison with them.

Table 9.3 provides the comparison of fair4PC and god4PC with the 4PC GOD of [BJPR18]

and selective abort protocol of [CGMV17]. We implement the protocols of [BJPR18, CGMV17]

in our environment for fair comparison. From the table, observe that, the performance of our

protocol lies between that of [BJPR18] with one active corruption and [CGMV17] with 2 active

corruptions (as expected). The overhead over [BJPR18] comes from distributed garbled circuit

used in our mixed protocols (due to 2 corruptions) as compared to the use of inexpensive

Yao’s garbled circuit (due to only 1 corruption), thereby minimizing the communication and

rounds. We save over [CGMV17] due to the difference in the number of parties. Nevertheless,

our protocols achieve stronger security of fairness and GOD while going beyond strict honest

majority as opposed to the weakest security of selective abort achieved by [CGMV17] in honest

majority, thus proving ours are better suited to practical systems than [CGMV17]. Also, the

efficiency gap between [BJPR18] and [CGMV17] reflects the difficulty in moving from single

to 2 corruption in the honest majority setting and the same is carried over to the dishonest

majority setting of ours.

Table 9.3: Computation time (CT), LAN run-time (LAN), WAN run-time (WAN) and Communi-
cation (CC) for [CGMV17], fair4PC and god4PC protocol where g ∈ [3] and Pe denotes the evaluator.

Protocol
CT(ms) LAN(ms) WAN(s) CC(MB)

Pg Pe Pg Pe Pg Pe Pg Pe

A
E

S
-1

2
8 [BJPR18] 1.44 0.87 1.95 1.48 0.84 0.87 0.16 0.007

[CGMV17] (with Garble4) 20.84 13.45 25.01 21.45 2.54 0.99 7.38 0.031
fair4PC 16.91 12.68 22.08 20.88 2.17 0.99 5.56 0.039
god4PC 17.3 12.76 22.47 20.94 2.53 1.10 5.58 0.039

(+1.05) (+0.84) (+1.4) (+1.04) (+0.24) (+0.15) (+0.3) (+0.002)

S
H

A
-2

5
6 [BJPR18] 13.97 10.81 17.68 16.72 1.23 1.28 3.02 0.014

[CGMV17] (with Garble4) 247.69 88.23 290.38 236.53 3.44 4.78 97.26 0.062
fair4PC 209.69 65.27 267.24 189.24 2.94 3.79 85.58 0.02
god4PC 210.53 68.82 273 190.82 3.40 4.24 85.62 0.02

(+13.5) (+9.5) (+15.48) (+10.8) (+0.25) (+0.16) (+3) (+0.004)

Table 9.4 provides a unified view of the overall maximum latency in terms of each parameter

and total communication of all protocols implemented with Garble in Chapter 3. The bracketed

values indicate the additional overhead involved in the worst case run of god5PC.

Note that the overhead for SHA-256 is higher compared to AES-128 for 5PC. This difference

maps to the circuit dependent communication involving the inputs and output. Since SHA is

a huge circuit compared to AES, the increase is justified. However, the percentage overheads

get better for SHA compared to AES. Besides, the factor of additional communication over-

121

Table 9.4: The total computation time (Total CT), maximum latency in LAN run-time (LAN) and
WAN run-time (WAN) and total communication (Total CC) of all parties for [CGMV17] and our
protocols using Garble3/Garble4. The figures in brackets indicate the increase for the worst case run of
god5PC and god4PC.

Circuit
LAN(ms) WAN(s) Total CC(MB)

[CGMV17] ua5PC fair5PC god5PC fair4PC god4PC [CGMV17] ua5PC fair5PC god5PC fair4PC god4PC [CGMV17] ua5PC fair5PC god5PC fair4PC god4PC

AES-128 25.01 25.66 26.06 28.95 22.08 22.47 2.54 2.74 2.82 3.7 2.17 2.53 29.55 29.71 29.75 29.72 16.72 16.78
(+ 2.39) (+ 1.4) (+ 1.1) (+ 0.24) (+ 0.32) (+ 0.3)

SHA-256 290.38 293.25 301.33 295.3 267.24 273 4.78 4.79 4.81 5.6 3.79 4.24 389.12 389.2 389.24 389.19 256.76 256.88
(+ 14.5) (+ 15.48) (+ 1.51) (+ 0.25) (+ 6.15) (+ 3.0)

head incurred by our protocols for SHA when compared to AES is far less than the factor of

increase in the total communication for SHA over AES in [CGMV17] thus implying that the

performance of our protocols improves with larger circuits. Further, based on our observation

and in [CGMV17], using AOT instead of OT extension eliminates the expensive public key

operations needed even for the seed OTs between every pair of garblers. Further, AOT needs

just 1 round whereas OT extension needs more. All these factors lead to the improvement

of our Garble3,Garble4 over [WRK17] which relies on large number of Tiny OTs [NNOB12] to

perform authentication.

122

Chapter 10

Summary of the thesis and Future

Scope

10.1 Summary of the Thesis

The thesis began with the introduction to the area of Secure Multi-party Computation, the

threat models and the literature most relevant to our work. Then we presented the security

model and the primitives used. Next we presented the efficient building blocks and distributed

garbling for our five-party and for-party protocols. After presenting some preliminaries and

building blocks, we described our main results. Prior to presenting our results in detail, we

revisited the state-of-the-art protocol on which all our protocols are inspired from. All the

formal constructions were followed by a rigorous security proof. Finally we discussed the em-

pirical results of our protocols compared to the state-of-the-art and their suitability to practical

systems. Specifically,

• Our protocols, ua5PC and fair5PC incur an overhead of at most 0.2 MB overall for both

circuits over [CGMV17]. Despite using broadcast, our god5PC protocol incurs an overall

WAN overhead of at most 2.5 s over [CGMV17]. Our empirical findings emphasize that

the stronger security notions can be achieved with practical efficiency at an expense that

is not too far from the result of [CGMV17] achieving least desired security of selective

abort.

• Our protocols, fair4PC and god4PC incur overhead over [BJPR18] due to the use of dis-

tributed garbled circuit in our mixed protocols (due to 2 corruptions) as compared to the

use of inexpensive Yao’s garbled circuit (due to only 1 corruption), thereby minimizing

the communication and rounds. However, we save over [CGMV17] due to the difference

123

in the number of parties. Nevertheless, our protocols achieve stronger security of fairness

and GOD while going beyond strict honest majority as opposed to the weakest security of

selective abort achieved by [CGMV17] in honest majority, thus proving our threat models

are better suited to practical systems.

10.2 Future Scope

The paramount importance of stronger security notions in practical systems makes the efficiency

study of security notions interesting. The following list mentions a few possible directions for

future work.

• Minimizing the round complexity while preserving / improving the efficiency of our five-

party protocols.

• Efficient construction of four-party protocols achieving stronger security notions that sat-

isfy all corruption cases in the condition 2ta+tp < n that is a single protocol that achieves

stronger security notions while tolerating any of the following corruption cases: simulta-

neous 1 active and 1 passive corruption or 3 passive corruptions or 1 active corruption.

124

Bibliography

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel

Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority

MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In

IEEE Symposium on Security and Privacy, pages 843–862, 2017. 3, 4

[ABT19] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Degree 2 is complete for

the round-complexity of malicious MPC. pages 504–531, 2019. 2

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain.

Round-optimal secure multiparty computation with honest majority. In CRYPTO,

pages 395–424, 2018. 2

[ACGJ19] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Two

round information-theoretic MPC with malicious security. In EUROCRYPT, 2019.

2

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to

round-optimal secure multiparty computation. In CRYPTO, pages 468–499, 2017.

53

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz

Mazurek. Secure multiparty computations on bitcoin. In IEEE Symposium on

Security and Privacy, pages 443–458, 2014. 2

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

High-throughput semi-honest secure three-party computation with an honest ma-

jority. In SIGSAC, pages 805–817, 2016. 1, 3, 4

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. Multiparty computation with low communication,

125

computation and interaction via threshold FHE. In EUROCRYPT, pages 483–501,

2012. 1

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P.

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt

Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure mul-

tiparty computation goes live. In FC, pages 325–343, 2009. 2

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

High-speed high-security signatures. Journal of Cryptographic Engineering, pages

77–89, 2012. 119

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-

homomorphic encryption and multiparty computation. In EUROCRYPT, pages

169–188, 2011. 1

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-

secure multiparty computation with a dishonest minority. In CRYPTO, pages

663–680, 2012. 1, 2

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computation (extended abstract).

In STOC, pages 1–10, 1988. 1, 2

[BH07] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Simple and efficient perfectly-secure

asynchronous MPC. In ASIACRYPT, pages 376–392, 2007. 1

[BH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear

communication complexity. In TCC, pages 213–230, 2008. 1

[BHKL18] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. An end-to-end system

for large scale p2p mpc-as-a-service and low-bandwidth mpc for weak participants.

CCS ’18, pages 695–712, 2018. 1

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled

circuits. In CCS, pages 784–796, 2012. 11, 58, 65, 118

[BIK+17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical

126

secure aggregation for privacy-preserving machine learning. In ACM CCS, 2017.

2

[BJMS18] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Se-

cure MPC: laziness leads to GOD. IACR Cryptology ePrint Archive, 2018:580,

2018. 2, 53

[BJPR18] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. Fast secure computation

for small population over the internet. CCS ’18, pages 677–694, 2018. 1, 3, 4, 6,

36, 55, 58, 60, 63, 64, 65, 67, 68, 69, 70, 72, 76, 118, 119, 120, 121, 123

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.

In CRYPTO, pages 421–439, 2014. 2

[Bla06] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-

based hash function. In Matthew Robshaw, editor, Fast Software Encryption,

pages 328–340, 2006. 13

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure

multiparty computation for the internet. In CCS, pages 578–590, 2016. 4, 12, 22,

25, 27, 31, 34, 118, 120

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast

privacy-preserving computations. In ESORICS, pages 192–206, 2008. 3

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure

protocols (extended abstract). In STOC, pages 503–513, 1990. 1, 12

[BNDDS87] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shift-

ing gears: Changing algorithms on the fly to expedite byzantine agreement. In

Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed

Computing, PODC ’87, 1987. 78, 81

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party

computation for financial data analysis - (short paper). In FC, pages 57–64, 2012.

2, 3

[CCG+19] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail

Ostrovsky. Round optimal secure multiparty computation from minimal assump-

127

tions. Cryptology ePrint Archive, Report 2019/216, 2019. https://eprint.iacr.

org/2019/216. 53

[CCPS19] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh. ASTRA: High-throughput

3PC over Rings with Application to Secure Prediction. In IACR Cryptology ePrint

Archive, 2019. 4

[CDG87] David Chaum, Ivan Damg̊ard, and Jeroen Graaf. Multiparty computations ensur-

ing privacy of each party’s input and correctness of the result. In CRYPTO, pages

87–119, 1987. 1

[CDI05] R. Cramer, I. Damg̊ard, and Y. Ishai. Share Conversion, Pseudorandom Secret-

Sharing and Applications to Secure Computation. In TCC, pages 342–362, 2005.

16

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda

Lindell, and Ariel Nof. Fast large-scale honest-majority MPC for malicious adver-

saries. In CRYPTO, pages 34–64, 2018. 4

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian

Miers. Fairness in an unfair world: Fair multiparty computation from public

bulletin boards. In CCS, pages 719–728, 2017. 2

[CGMV17] Nishanth Chandran, Juan A. Garay, Payman Mohassel, and Satyanarayana

Vusirikala. Efficient, constant-round and actively secure MPC: beyond the three-

party case. In CCS, pages 277–294, 2017. vii, xii, 1, 2, 3, 4, 5, 6, 7, 13, 18, 19, 30,

34, 35, 36, 39, 40, 41, 48, 50, 53, 78, 80, 84, 118, 119, 120, 121, 122, 123, 124

[Cha89] David Chaum. The spymasters double-agent problem: Multiparty computations

secure unconditionally from minorities and cryptographically from majorities. In

CRYPTO, 1989. 2

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and

non-malleable commitment. In STOC, pages 141–150, 1998. 14

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient

three-party computation from cut-and-choose. In CRYPTO, pages 513–530, 2014.

4

128

https://eprint.iacr.org/2019/216
https://eprint.iacr.org/2019/216

[CL14] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in

secure multiparty computation. In ASIACRYPT, pages 466–485, 2014. 5, 7, 9, 10,

55

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are

faulty (extended abstract). In STOC, pages 364–369, 1986. 1, 2, 3

[DDWY93] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure

message transmission. J. ACM, 1993. 2

[DGK09] Ivan Damg̊ard, Martin Geisler, and Mikkel Krøigaard. A correction to ’efficient

and secure comparison for on-line auctions’. IJACT, 2009. 2

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a

black-box pseudorandom generator. In CRYPTO, pages 378–394, 2005. 2

[DI06] Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In

CRYPTO, pages 501–520, 2006. 2

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure mul-

tiparty computation. In CRYPTO, pages 572–590, 2007. 1

[DO10] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest ma-

jority: From passive to active security at low cost. In CRYPTO, pages 558–576,

2010. 1

[DOS18] Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Yet another compiler for active

security or: Efficient MPC over arbitrary rings. In CRYPTO, pages 799–829, 2018.

2, 4

[DPSZ12a] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty Computation

from Somewhat Homomorphic Encryption. In R. Safavi-Naini and R. Canetti,

editors, CRYPTO, pages 643–662, 2012. 1

[DPSZ12b] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty

computation from somewhat homomorphic encryption. In CRYPTO, pages 643–

662, 2012. 1

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine

agreement. SIAM J. Comput., 1983. 5, 119

129

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for

signing contracts. Commun. ACM, 1985. 6, 17, 25, 78, 80, 91, 95, 99, 103, 109,

112, 115

[EOP+19] H. Eerikson, C. Orlandi, P. Pullonen, J. Puura, and M. Simkin. Use your brain!

arithmetic 3pc for any modulus with active security. IACR Cryptology ePrint

Archive, 2019. 4

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy

in unconditional multi-party computation (extended abstract). In CRYPTO, 1998.

2

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput

secure three-party computation for malicious adversaries and an honest majority.

In EUROCRYPT, pages 225–255, 2017. 1, 4

[Gei07] Martin Geisler. Viff: Virtual ideal functionality framework. http://viff.dk,

2007. 3

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure

MPC from indistinguishability obfuscation. In TCC, pages 74–94, 2014. 53

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure

multiparty computation. In CRYPTO, 2002. 2

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness

and guarantee of output delivery. In CRYPTO, pages 63–82, 2015. 2, 10, 53

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game

or A completeness theorem for protocols with honest majority. In STOC, pages

218–229, 1987. 1

[GRW18] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. Secure computation with low

communication from cross-checking. IACR Cryptology ePrint Archive, 2018:216,

2018. 4

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrish-

nan Venkitasubramaniam. Round-optimal secure multi-party computation. In

CRYPTO, 2018. https://eprint.iacr.org/2017/1056. 53

130

http://viff.dk
https://eprint.iacr.org/2017/1056

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the

random oracle model and the ideal cipher model, revisited. In STOC, pages 89–98,

2011. 13

[HLM13] Martin Hirt, Christoph Lucas, and Ueli Maurer. A dynamic tradeoff between

active and passive corruptions in secure multi-party computation. In CRYPTO,

2013. 3

[HMZ08] Martin Hirt, Ueli M. Maurer, and Vassilis Zikas. MPC vs. SFE : Unconditional

and computational security. In ASIACRYPT, 2008. 2

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky.

Secure computation with minimal interaction, revisited. In CRYPTO, pages 359–

378, 2015. 2, 3, 4

[IKP+16] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua

Yu. Secure protocol transformations. In CRYPTO, 2016. 53

[ISN89] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing

general access structure. Electronics and Communications in Japan (Part III:

Fundamental Electronic Science), 1989. 16

[KMO01] Jonathan Katz, Steven Myers, and Rafail Ostrovsky. Cryptographic counters and

applications to electronic voting. In EUROCRYPT, 2001. 2

[LADM14] John Launchbury, Dave Archer, Thomas DuBuisson, and Eric Mertens.

Application-scale secure multiparty computation. In Programming Languages and

Systems, pages 8–26, 2014. 3

[LP04] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-

party computation. Cryptology ePrint Archive, Report 2004/175, 2004. https:

//eprint.iacr.org/2004/175. 65, 86, 90, 91, 94, 95, 98, 99

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient con-

stant round multi-party computation combining BMR and SPDZ. In CRYPTO,

pages 319–338, 2015. 1

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for

machine learning. IACR Cryptology ePrint Archive, 2018:403, 2018. 2, 3

131

https://eprint.iacr.org/2004/175
https://eprint.iacr.org/2004/175

[MRSV17] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren.

PICS: private image classification with SVM. IACR Cryptology ePrint Archive,

2017:1190, 2017. 3

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party

computation: The garbled circuit approach. In CCS, pages 591–602, 2015. 1, 3,

4, 65, 80, 118

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–

158, 1991. 14

[NBK15] Divya G. Nair, V. P. Binu, and G. Santhosh Kumar. An improved e-voting scheme

using secret sharing based secure multi-party computation. CoRR, 2015. 2

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. A new approach to practical active-secure two-party computation. In

CRYPTO, 2012. 1, 122

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in

honest-majority MPC by batchwise multiplication verification. In ACNS, pages

321–339, 2018. 4

[PR18] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-party

computation. In CRYPTO, pages 425–458, 2018. 1, 2, 3, 4

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge

with logarithmic round-complexity. In (FOCS, 2002. 16

[PST17] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested

execution secure processors. In EUROCRYPT, pages 260–289, 2017. 2

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from

one-way functions. In TCC, 2009. 15, 16

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols

with honest majority (extended abstract). In STOC, pages 73–85, 1989. 1, 2

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In TCC,

2004. 16

132

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics:

Definitions, implications, and separations for preimage resistance, second-preimage

resistance, and collision resistance. In FSE, pages 371–388, 2004. 17

[Sha49] C. E. Shannon. Communication theory of secrecy systems. The Bell System

Technical Journal, 28(4):656–715, 1949. 13

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty

computation. In CCS, pages 39–56, 2017. 1, 4, 18, 122

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In

FOCS, pages 160–164, 1982. 1, 3, 6, 65, 78, 79, 82, 85, 86, 90, 91, 95, 99

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing

data transfer in garbled circuits using half gates. In EUROCRYPT, pages 220–250,

2015. 6

133

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Other Publications
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Literature
	1.2 Our Contribution
	1.3 Outline of this Thesis

	2 Preliminaries
	2.1 Security Model and Notations
	2.2 Primitives
	2.2.1 Garbling Scheme
	2.2.1.1 Properties of Garbling Scheme

	2.2.2 Distributed Garbled Circuit
	2.2.3 Non-Interactive Commitment Schemes
	2.2.3.1 Instantiations

	2.2.4 Equivocal Non-Interactive Commitment Schemes
	2.2.4.1 Instantiations

	2.2.5 Extractable Commitment Schemes
	2.2.5.1 Instantiation

	2.2.6 Secret Sharing Schemes
	2.2.7 Collision Resistant Hash
	2.2.8 Oblivious Transfer

	3 Distributed Garbling and More
	3.1 Building Blocks for 5PC
	3.1.1 Seed Distribution
	3.1.2 Attested Oblivious Transfer
	3.1.3 The semi-honest 4DG and Evaluation
	3.1.3.1 4DG with AOT and Seed distribution
	3.1.3.2 Efficiency of 4DG
	3.1.3.3 Correctness and Security of 4DG

	3.2 Building Blocks for 4PC
	3.2.1 Seed-distribution
	3.2.2 Attested Oblivious Transfer
	3.2.3 The semi-honest 3DG and Evaluation

	I Five-Party Computation with Honest Majority
	4 5PC with Fairness
	4.1 Technical Overview
	4.1.1 Overview of ChandranGMV17
	4.1.2 Our Techniques

	4.2 The construction
	4.2.1 Optimizations

	4.3 Properties
	4.4 n-party Extension of fair5PC
	4.5 Security Proof of fair5PC

	5 5PC with Unanimous Abort
	5.1 Technical Overview and the Construction
	5.2 Properties
	5.3 n-party Extension of ua5PC
	5.4 Security Proof of ua5PC

	6 5PC with GOD
	6.1 The Construction
	6.2 Optimizations
	6.3 Properties
	6.4 3PC with GOD
	6.5 Transition from 5PC to 3PC
	6.6 Security Proof of god5PC

	II Four-Party Computation with Mixed Adversary
	7 4PC with GOD
	7.1 The Construction
	7.1.1 Optimizations

	7.2 Properties
	7.3 Security Proof of god4PC

	8 4PC with Fairness
	8.1 The Construction
	8.2 Properties
	8.3 Security Proof of fair4PC

	9 Empirical Results
	9.1 Setup
	9.1.1 Hardware Details
	9.1.2 Software Details

	9.2 Comparison
	9.2.1 Analysis of 5PC
	9.2.2 Analysis of 4PC

	10 Summary of the thesis and Future Scope
	10.1 Summary of the Thesis
	10.2 Future Scope

	Bibliography

