
A Robust PPML Framework for Three Servers

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Faculty of Engineering

BY

Mahak Pancholi

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2020

Declaration of Originality

I, Mahak Pancholi, with SR No. 04-04-00-10-42-18-1-15493 hereby declare that the ma-

terial presented in the thesis titled

A Robust PPML Framework for Three Servers

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2018-2020.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

c© Mahak Pancholi

July, 2020

All rights reserved

DEDICATED TO

My Dear

Ma

Acknowledgements

Firstly, I thank my advisor, Dr. Arpita Patra, for being a great research mentor and guiding

me throughout my journey here at IISc. Her enthusiasm for research is a constant source of

inspiration for me. I would also like to extend my gratitude towards my incredible labmates.

They are truly a dream team; understanding, supportive, pushing me to do my best. A shout

out to Ajith and Nishat, my research buddies and semi-mentors. I thank you for the great

brainstorming sessions and for teaching me everything I know about research. I want to thank

Divya for being like a big sister to me, and Protik for being the calm presence in my life. His

aplomb and support has got me through some tough spots. And to all my friends, without

whom it would not have been so much fun, Pratheek, Pooja, Stanly, Swapnil, Harsh, I cannot

thank you enough. Finally, I would like to thank my Mum and my brother for believing in me

and never letting me settle for the ordinary.

i

Abstract

Machine Learning (ML) techniques are integral tools in many diverse fields from health care to

self driving auto-mobiles. Consequently, performing ML tasks while maintaining data privacy,

i.e Privacy Preserving Machine Learning, is an emergent field of research. To circumvent the

high computing power generally required for PPML tasks, there has been a visible shift towards

adoption of Secure Outsourced Computation (SOC), which allows computation to be outsourced

on a set of external servers in a secure way. The services if such servers can be availed at pay-

per-basis. In this work we propose a robust PPML framework for a range of ML algorithms

in SOC setting, that guarantees output delivery to the users irrespective of any adversarial

behaviour. Robustness is a highly desirable feature as it evokes user participation without

the fear of denial of service. Our framework relies on a highly efficient, maliciously-secure,

three-party computation (3PC) over rings that provides guaranteed output delivery (GOD) in

the honest-majority setting. To the best of our knowledge, our work is the first robust PPML

framework in 3PC setting. The state-of-the-art work in the same setting, BLAZE, only provides

fairness, i.e it ensures either all or none receive the output, whereas GOD ensures guaranteed

output delivery no matter what. Moreover, we do this with an overhead of just one element in

the preprocessing phase, while the communication cost remains the same in the online phase.

We also demonstrate the practical efficiency by benchmarking two important applications– i)

ML algorithms: Logistic Regression and Neural Network, and ii) Biometric matching, both

over a 64-bit ring in WAN setting.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Related Work . 2

1.2 Robustness in Machine Learning . 3

1.2.1 Computation over Rings . 3

1.3 Our Contribution . 3

1.4 Organization of Thesis . 5

2 Preliminaries 7

2.1 GOD functionality . 7

2.2 Shared Key Setup . 8

2.3 Collision Resistant Hash . 9

2.4 Commitment Scheme . 9

3 Robust 3PC Protocols 10

3.1 Sharing Semantics . 10

3.1.1 Linearity of the sharing schemes . 10

3.2 Joint Message Passing primitive . 11

3.3 Input Sharing Protocol . 14

iii

CONTENTS

3.4 Joint Sharing Protocol . 15

3.5 Addition Protocol . 16

3.6 Multiplication Protocol . 16

3.7 Output Reconstruction . 20

3.8 Input Sharing and Output Reconstruction in an SOC setting 21

3.9 The Complete 3PC . 22

4 Building Blocks for PPML 23

4.1 MSB Extraction . 23

4.1.1 Bit2A Conversion protocol . 24

4.2 Bit Injection . 24

4.3 Dot Product . 25

4.4 Truncation . 26

4.5 Dot Product with Truncation . 27

4.6 Secure Comparison . 27

4.7 Activation Function . 28

5 Security of the 3PC Constructions 29

5.0.1 Joint Message Passing (jmp) Protocol . 30

5.0.2 Sharing Protocol . 31

5.0.2.1 Joint Sharing Protocol . 32

5.0.3 Multiplication Protocol . 32

5.0.4 Reconstruction Protocol . 33

5.0.5 Truncation . 34

6 PPML Applications 35

Bibliography 39

iv

List of Figures

2.1 3PC: Ideal functionality for evaluating a function f 8

2.2 3PC: Ideal functionality for shared-key setup . 9

3.1 3PC: Ideal functionality for jmp primitive . 11

3.2 3PC: Joint Message Passing Protocol . 13

3.3 3PC: Generating JvK-shares by server Pi . 14

3.4 J·K-sharing of a value v ∈ Z2` by servers Pi, Pj . 15

3.5 Multiplication Protocol . 19

3.6 Reconstructing the secret v from J·K-shares . 21

3.7 3PC: Input Sharing and Output Reconstruction in SOC Setting 22

4.1 3PC: Bit2A Protocol . 24

4.2 Dot Product Protocol . 26

4.3 3PC: Generating Random Truncated Pair (r, rd) . 26

4.4 3PC: Dot Product Protocol with Truncation . 27

5.1 Simulator SPi
jmp4 for corrupt sender Pi . 30

5.2 Simulator S
Pk
jmp for corrupt receiver Pk . 31

5.3 Simulator SP0
sh for corrupt P0 . 31

5.4 Simulator SP1
sh for corrupt P1 . 32

5.5 Simulator Sjsh for corrupt P0 . 32

5.6 Simulator SP0
mult for corrupt P0 . 33

5.7 Simulator SP1
mult for corrupt P1 . 33

5.8 Simulator Srec for corrupt P0 . 34

5.9 Simulator SP0
trgen for corrupt P0 . 34

5.10 Simulator SP1
trgen for corrupt P1 . 34

v

List of Tables

1.1 Comparison of this work with its closest competitors in terms of Communication and Round

Complexity . 5

3.1 The columns depict the three distinct possibility of input contributing pairs. The first

row shows the assignment to various components of the sharing. The last row, along

with three sub-rows, specify the shares held by the three servers. 15

3.2 The 〈·〉-sharing of values d and e . 17

4.1 The J·KB-sharing corresponding to ith bit of v0 = βv, v1 = − [αv]1 and v2 = − [αv]2.

Here i ∈ {0, . . . , `− 1}. 23

6.1 Minimum ED distance. The values are reported for biometric samples of size 40. 36

6.2 Logistic Regression training and inference. TP is given in (#it/min) for training and (#queries/min)

for inference. 37

6.3 NN Inference. TP is given in (#queries/min).. Benchmarking is done over MNIST [28] dataset

and the throughput (TP) is given in (#queries/min). 38

vi

Chapter 1

Introduction

Machine Learning (ML) has enjoyed a boom in interest as advancements in the area have

wide-scale, and far reaching applications in real life. More interesting and useful applications

of ML are found in critical and impactful fields such as health care wherein ML tools are

increasingly being sought out to aide experts in medical diagnosis. However, the wide scale

deployment of ML as a service is hampered by many challenges. First and foremost, is the

requirement of high accuracy of the algorithms which is necessary in mission critical fields

such as health care. Accuracy can generally be improved by availability of data from varied

sources. This entails sharing of information and data between organisations which might not be

possible either because of policies like the European Union General Data Protection Regulation

(GDPR), or because of the sensitive nature of the data as is the case with medical and financial

records. Another concern for the service provider is the leakage of model parameters rendering

its services redundant. Hence, the crucial requirement of security and privacy accompanied

with the huge interest in ML has led to flourishing research in the field of privacy-preserving

machine learning (PPML). Wide spread adoption of ML tools is also inhibited by the high

computational demands of the ML algorithms. PPML, furthermore, makes to the already

compute-intensive ML algorithms even more demanding. Many everyday users lack the needed

computing resources to obtain high accuracy. It is more preferable to outsource an ML task

to a better equipped, and more powerful server. However, at the same time, the privacy of

the data should not be compromised. Towards this, Secure Outsourced Computation (SOC)

promises to provide a viable solution. It allows end-users to securely outsource computation to

a set of specialized cloud servers and avail its services on a pay-per-use basis, guaranteeing that

individual data of the end-users remain private, while tolerating reasonable collusion amongst

the servers.

Realisation of PPML in an SOC setting, can be done by relying on techniques form Secure

1

Multiparty Computation (MPC), which allows n mutually distrusting parties to perform com-

putations together on their private inputs, so that an adversary controlling at most t parties,

cannot learn any information beyond what is already known and allowed by the computation.

MPC for a small number of parties in the honest majority setting, specifically the setting of

3 parties (3PC) with one corruption, has become popular over the last few years, as it allows

highly efficient constructions that use only light-weight primitives [2, 3, 23, 29, 14, 33, 26, 10, 7].

The setting of 3PC with honest majority also allows strong security guarantees such as fairness

(the adversary gets the output if and only if the honest parties do), and in the presence of a

broadcast channel Guaranteed Output Delivery (GOD) (all parties obtain the output irrespec-

tive of adversary’s behaviour).

1.1 Related Work

MPC protocols for a small population can be cast into two domains: low latency protocols

[35, 10, 11], and high throughput protocols [6, 2, 3, 23, 14, 12, 34, 36, 8, 1, 21]. In the 3PC

setting, [2, 12] provide efficient semi-honest protocols, wherein ASTRA [12] improved upon [2]

by casting the protocols in the preprocessing model and provided a fast online phase. It further

provided security with fairness in the malicious setting with an improved online phase compared

to [3]. Later, a maliciously-secure 3PC protocol based on distributed zero-knowledge techniques

was proposed by [7] providing abort security. Further, building on [7] and enhancing the security

to GOD, Boyle et al. [8] proposed a concretely efficient 3PC protocol with an amortized

communication cost of 3 field elements (can be extended to work over rings) per multiplication

gate. Concurrently, BLAZE [36] provided a fair protocol in the preprocessing model, which

required communicating 3 ring elements in each phase. However, BLAZE eliminated the reliance

on the computationally intensive distributed zero-knowledge system (whose efficiency kicks in

for large circuit or many multiplication gates) from the online phase and pushed it to the

preprocessing phase. This resulted in a faster online phase compared to [8].

In the PPML domain, MPC has been used for various ML algorithms such as Decision

Trees [30], Linear Regression [20, 37], k-means clustering [27, 9], SVM Classification [41, 39],

Logistic Regression [38]. In the 3PC SOC setting, the works of ABY3 [31] and SecureNN [40],

provide security with abort. This was followed by ASTRA [12], which improves upon ABY3

and achieves security with fairness. ASTRA presents primitives to build protocols for Linear

Regression and Logistic Regression inference. Recently, BLAZE improves over the efficiency

of ASTRA and additionally tackles training for the above ML tasks, which requires building

additional PPML building blocks, such as truncation and bit to arithmetic conversions.

2

1.2 Robustness in Machine Learning

In this work, we strongly motivate the need for robustness, i.e guaranteed output delivery, over

fairness in the domain of PPML. Robustness provides the guarantee of output delivery to all

protocol participants, no matter how the adversary misbehaves. It becomes extremely crucial

for real world deployment and usage of PPML techniques. Consider the following scenario

wherein an ML model owner wishes to provide inference service. The model owner shares the

model parameters between the servers, while the end-users share their queries. A protocol

that provides security with abort or fairness will not suffice as in both the cases the adversary

(controlling one of the servers maliciously) can act in a way so that the protocol results in an

abort which means that the user will not get the desired output. This leads to denial of service

and heavy economic losses for the service provider. From the point of view of data providers who

want to collaboratively build a model on their data, more training data leads to a better, more

accurate model, which enables them to provide better ML services and, consequently, attract

more clients. A robust framework encourages active involvement from multiple data providers.

Hence, for seamless adoption of PPML solutions in real world, robustness of the protocol is

of utmost importance. The prior result of [15] suggests that an honest-majority amongst the

servers is necessary to achieve robustness. We are interested in the smallest possible honest

majority setting of three servers with one corruption (3PC).

1.2.1 Computation over Rings

We choose to build our protocols over rings. Generally, computer architectures have their

primitive data-types over 32 and 64 bit rings. As a result, to boost efficiency of arithmetic

computation, they have specialised optimizations for such data types. A protocol designed to

work for rings can fully leverage these optimizations. Many prior works, in a bid to boost

efficiency, are designed over rings [6, 18, 3, 21, 12] as opposed to fields, which are usually 10-20x

slower since they have to rely on external libraries. Hence, our protocol too is well suited for

implementation in the real-world architectures.

1.3 Our Contribution

We propose an efficient PPML framework in the outsourced computation with 3 servers, at

most one of which can be maliciously corrupt, via secure MPC over rings Z2` . Concretely, we

provide all required building blocks for PPML with respect to logistic regression (training and

prediction) and neural networks (prediction), such as dot-product, truncation, bit extraction

(given arithmetic sharing of a value v, this is used to generate boolean sharing of the most

3

significant bit (msb) of the value), bit to arithmetic sharing conversion (converts the boolean

sharing of a single bit value to its arithmetic sharing), bit injection (computes the arithmetic

sharing of b·v, given the boolean sharing of a bit b and the arithmetic sharing of a ring element

v).

To achieve GOD guarantees, we introduce a new primitive called Joint Message Passing

(jmp) that allows two servers to relay a common message to the third server such that either

the relay is successful or an honest server (alternatively, a conflicting pair) is identified. In-

terestingly, jmp requires communication of just one element (amortized) per relay. Without

any extra cost, it allows us to replace several private communications, that may lead to abort,

either because the malicious sender does not send anything or sends a wrong message.

We leverage jmp in design of a new 3PC multiplication protocol that provides GOD, with

an additional cost of just one element in the processing phase compared to the state-of-the-art

protocol of BLAZE [36], and the same online cost. Since our multiplication protocol is built in

the preprocessing model, the cost of heavy machinery for distributed zero-knowledge proofs, as

used in [8, 7], is pushed to the preprocessing phase, leaving the online phase computationally

light. The cost of zero-knowledge proofs in the aforementioned works gets amortized only for

large circuits which are unlikely in the online phase of PPML. However, as the main task of the

preprocessing phase is to generate random multiplication triples, which can be done in batches

of millions, the cost of zero-knowledge machinery gets amortized. We also provide an improved

and more efficient protocol for input sharing and output reconstruction for an SOC setting.

We then modify the protocols for PPML building blocks in order to exploit jmp and obtain

GOD. The comparison of concrete communication complexity with the closest related work

(BLAZE), appears in Table 1.1. Finally, we demonstrate the practicality of our protocols by

benchmarking Biometric Matching and PPML. For the latter, Logistic Regression (training and

inference) and Neural Networks (inference) are considered. The NN training requires mixed-

world conversions [32, 13, 19], which we leave as future work.

4

Building

Blocks
Ref.

Pre. Online
Security

Comm. (`) Rounds Comm. (`)

Multiplication

[7] 1 1 2 Abort

[8] - 3 3 GOD

BLAZE 3 1 3 Fair

This 4 1 3 GOD

Dot Product
BLAZE 3n 1 3 Fair

This 3n + 1 1 3 GOD

Dot Product

with Truncation

BLAZE 3n + 2 1 3 Fair

This 3n + 3 1 3 GOD

Bit

Extraction

BLAZE 9 1 + log ` 9 Fair

This 12 1 + log ` 9 GOD

Bit to

Arithmetic

BLAZE 9 1 4 Fair

This 11 1 4 GOD

Bit

Injection

BLAZE 12 2 7 Fair

This 15 2 7 GOD

Table 1.1: Comparison of this work with its closest competitors in terms of Communication and Round
Complexity

1.4 Organization of Thesis

The rest of the thesis is organised as follows:

1. In chapter 2 we introduce our system model, preliminaries and notations used. We also

briefly describe well defined primitives like collision resistant hash function, commitment

scheme, etc.

2. In chapter 3 we give the details of our constructs in the 3PC setting. This includes a

new and crucial primitive: Joint Message Passing(jmp). This primitive is central to all of

our constructions. This is followed by the secret-sharing schemes, addition protocol and

a new multiplication protocol. Together these protocols describe how an arithmetic can

be securely and robustly evaluated in a 3PC setting.

3. The details of the essential ML building blocks such as dot product, MSB extraction,

truncation, etc required for a robust machine learning framework are included chapter 4.

5

4. Chapter 5 includes the benchmarking results for our framework for popular applications

of Biometric Matching and PPML. For the latter, Logistic Regression (training and in-

ference) and Neural Networks (inference) are considered.

6

Chapter 2

Preliminaries

We consider a set of three servers P = {P0, P1, P2} that are connected by pair-wise private

and authentic channels in a synchronous network, and a static, malicious adversary that can

corrupt at most one server. We use a broadcast channel for 3PC which is inevitable [16].

The function to be computed is expressed as a public circuit ckt, and is evaluated over an

arithmetic ring Z2` or boolean ring Z2 . To deal with floating-point values, we use Fixed-Point

Arithmetic (FPA)[32, 31, 12, 11, 13, 36] representation in which a decimal value is represented

as an `-bit integer in signed 2’s complement representation. The most significant bit (msb)

represents the sign bit and x least significant bits are reserved for the fractional part. The

`-bit integer is then treated as an element of Z2` and operations are performed modulo 2`.We

set ` = 64 and x = 13, leaving `− x− 1 bits for the integral part.

2.1 GOD functionality

Guaranteed Output Delivery allows all the parties to compute the output irrespective of the

behaviour of the adversary. We prove the security of our protocols in the standard real/ideal

world paradigm in which we compare the view of the adversary in the real world and ideal

world. The ideal world execution proceeds as follows. It consists of a set of three servers, an

ideal adversary S who can corrupt at most one server, and a functionality f , which is efficiently

represented as an arithmetic circuit ckt. The servers want to compute a publicly known function

f on their secret inputs. Each server sends its input to an incorruptible trusted third party

(TTP), who computes the desired function f on these inputs and sends the output back to

the parties. The real world execution involves the servers executing the prescribed protocol Π,

which entails interaction between the servers, and a real world adversary A who controls at

7

most one server. We let IDEALf,S(1
κ, z) denote the output of the honest parties and the view

of the ideal-world adversary S from the ideal execution with respect to the security parameter

1κ and auxiliary input z. Similarly, let REALΠ,A(1κ, z) denote the output of the honest parties

and the view of the adversary A from the real execution of the protocol Π with respect to the

security parameter and auxiliary input z. We say that the protocol Π securely computes f for

every PPT real world adversary A, there exists a PPT ideal world adversary S, corrupting the

same parties, such that the following two distributions are computationally indistinguishable

IDEALf,S(1
κ, z) ≡c REALΠ,A(1κ, z). The ideal functionality F3PC for evaluating ckt in the 3PC

setting appears in Fig. 2.1.

F3PC interacts with the servers in P and the adversary S. Let f denote the functionality to be

computed. Let xs be the input corresponding to the server Ps, and ys be the corresponding output,

i.e (y0, y1, y2) = f(x0, x1, x2).

Step 1: F3PC receives (Input, xs) from Ps ∈ P, and computes (y0, y1, y2) = f(x0, x1, x2).

Step 2: F3PC sends (Output, ys) to Ps ∈ P.

Functionality F3PC

Figure 2.1: 3PC: Ideal functionality for evaluating a function f

2.2 Shared Key Setup

Let f : {0, 1}κ × {0, 1}κ → X be a secure pseudo-random function PRF, with co-domain X

being Z2` . The set of keys established between the servers for 3PC is as follows:

– One key shared between every pair– k01, k02, k12 for the parties

(P0, P1), (P0, P2)and(P1, P2), respectively.

– One shared key known to all the servers– kP.

Suppose P0, P1 wish to sample a random value r ∈ Z2` non-interactively. To do so they invoke

Fk01(id01) and obtain r. Here, id01 denotes a counter maintained by the servers, and is updated

after every PRF invocation. The appropriate keys used to sample is implicit from the context,

from the identities of the pair that sample or from the fact that it is sampled by all, and, hence, is

omitted. The functionality Fsetup (put reference) appears below (Fig.2.2) and can be instantiated

using any standard MPC protocol in the respective setting.

8

Fsetup interacts with the servers in P and the adversary S. Fsetup picks random keys kij for i, j ∈
{0, 1, 2} and kP. Let ys denote the keys corresponding to server Ps. Then

– ys = (k01, k02 and kP) when Ps = P0.

– ys = (k01, k12 and kP) when Ps = P1.

– ys = (k02, k12 and kP) when Ps = P2.

Functionality Fsetup

Figure 2.2: 3PC: Ideal functionality for shared-key setup

2.3 Collision Resistant Hash

Consider a hash function family H = K × L → Y. The hash function H is said to be collision

resistant if, for all probabilistic polynomial-time adversaries A, given the description of Hk

where k ∈R K, there exists a negligible function negl() such that Pr[(x1, x2) ← A(k) : (x1 6=
x2) ∧ Hk(x1) = Hk(x2)] ≤ negl(κ), where m = poly(κ) and x1, x2 ∈R {0, 1}m.

2.4 Commitment Scheme

Let Com(x) denote the commitment of a value x. The commitment scheme Com(x) possesses

two properties; hiding and binding. The former ensures privacy of the value v given just its

commitment Com(v), while the latter prevents a corrupt party from opening the commitment

to a different value x′ 6= x. The practical realization of a commitment scheme is via a hash

function H() given below, whose security can be proved in the random-oracle model (ROM)–

for (c, o) = (H(x||r), x||r) = Com(x; r).

9

Chapter 3

Robust 3PC Protocols

In this section, we present a robust and efficient 3PC protocol with security against one ma-

licious adversary. We first introduce the sharing semantics for three servers. This is followed

by the details of our new Joint Message Passing (jmp) primitive, which plays a crucial role in

obtaining the strongest security guarantee of GOD. Finally we describe our protocols in the

three server setting.

3.1 Sharing Semantics

We use the following variants of secret-sharing schemes in this work. The sharing schemes are

either over Z2` (Arithmetic sharing), or over Z21 (Boolean sharing). The latter is denoted as

J·KB.

◦ [·]-sharing: A value v ∈ Z2` is [·]-shared among P1, P2, if Ps for s ∈ {1, 2} holds [v]s ∈ Z2`

such that v = [v]1 + [v]2.

◦ 〈·〉-sharing: A value v ∈ Z2` is 〈·〉-shared among P, if

– there exists v0, v1, v2 ∈ Z2` such that v = v0 + v1 + v2.

– Ps holds (vs, v(s+1)%3) for s ∈ {0, 1, 2}.

◦ J·K-sharing: A value v ∈ Z2` is J·K-shared among P, if

– there exists αv ∈ Z2` that is [·]-shared among P1, P2.

– there exists βv, γv ∈ Z2` such that βv = v + αv and P0 holds ([αv]1 , [αv]2 , βv + γv) while Ps

for s ∈ {1, 2} holds ([αv]s , βv, γv).

3.1.1 Linearity of the sharing schemes

Given the [·]-shares of v1, v2, and public constants c1, c2, servers can locally compute the [·]-share

of c1v1 + c2v2 as c1 [v1] + c2 [v2]. It is trivial to see that the linearity property is satisfied by 〈·〉

10

and J·K-sharing as well.

3.2 Joint Message Passing primitive

The primitive jmp allows two servers to relay a common value to the third server such that

either the value is relayed correctly or an honest server is identified. Interestingly, for a message

of ` elements, it only incurs a communication of ` elements (in amortized sense). jmp is crucial

for achieving GOD and lies at the heart of all of our 3PC constructions. The ideal functionality

for jmp appears in Fig. 3.1.

Fjmp interacts with the servers in P and the adversary S.

Step 1: Fjmp receives (Input, vs) from Ps for s ∈ {i, j}, while it receives (Select, ttp) from S. Here

ttp denotes the server that S wants to choose as the TTP. Let P ? ∈ P denote the server corrupted

by S.

Step 2: If vi = vj and ttp = ⊥, then set msgi = msgj = ⊥,msgk = vi and go to Step 5.

Step 3: If ttp ∈ P \ {P ?}, then set msgi = msgj = msgk = ttp.

Step 4: Else, TTP is set to be the honest party with smallest index. Set msgi = msgj = msgk = TTP

Step 5: Send (Output,msgs) to Ps for s ∈ {0, 1, 2}.

Functionality Fjmp

Figure 3.1: 3PC: Ideal functionality for jmp primitive

Given two servers Pi, Pj possessing a common value v ∈ Z2` , protocol Πjmp proceeds as follows:

First, Pi sends v to Pk while Pj sends a hash of the same (H(v)) to Pk. If Pk receives consistent

values, the protocol is done. For the case of an inconsistency, Πjmp allows the servers to identify

a set of disputing servers and an honest server who will be employed as the TTP. At a high

level, this is accomplished by first making all the servers aware of the inconsistency observed

by Pk , after which they broadcast H(v), wherein Pk broadcasts the hash of v received from Pi

. Two servers are said to be in dispute if the values broadcast by them are not consistent.

First we discuss how Pk informs the other servers that it receive inconsistent values.Towards

this, each Ps for s ∈ {i, j, k} maintains an inconsistency bit bs initialized to 0. Pk sets bit bk

to 1 and send this to both Pi , Pj . In the next round, Pi, Pj mutually exchanges the bit bk

received from Pk.Pi (resp.Pj) sets bi (resp.bj) to 1 if it sees at least one variant of bk bit with

value 1 in any of the two rounds. In the third round, all the servers with inconsistency bit set

to 1 broadcast hash of the value (H(v)). Here, Pk will be broadcasting the hash of the value

received from Pi . If Pk does not broadcast hash, this implies that everything is correct at Pk

’s end and the protocol is complete. Hence, servers proceed to identify a TTP, only if at least

two servers broadcast, one of which is Pk . We observe that, in case of a genuine inconsistency

11

there will be at least two broadcasts; a corrupt sender might simply choose not to broadcast.

Now, we discuss in detail how the servers identify a TTP. Let Hs be the hash broadcast by

Ps ∈ {Pi, Pj, Pk}.If any of the senders Pi, Pj do not broadcast the hash, while Pk does, we can

safely assume Pk to be the TTP. Consider the case where all three servers broadcast. If Hi 6= Hj

, this implies that one of Pi or Pj is corrupt, and hence Pk is identified as the TTP. Similarly, if

Hi 6= Hk , Pj is chosen as the TTP, and if Hj 6= Hk , Pi is chosen as the TTP. Finally, if all the

hash values broadcast are consistent, we let Pi to be the TTP. To see this, we show that this

case can never occur when Pi is corrupt. A corrupt Pi implies that all other servers are honest.

Thus, an inconsistency is a result of Pi sending a different v′ to Pk , which causes Pk to set its

inconsistency bit bk to be 1. This is followed by the two round of exchange, as discussed above,

at the end of which Pj also sets its bit to 1. Now, the servers broadcast the hash of v. Notice

that Pk broadcasts H(v′) while Pj broadcasts H(v). Hence, no matter what Pi broadcasts, all

the hash values will not be consistent. Thus, such a case never arises when Pi is corrupt.

We ensure that, in each step, a party raises a public alarm (via broadcast) accusing a party who

is silent when it is not supposed to be, and the protocol terminates immediately by labelling

the party as TTP who is neither the complainer nor the accused. We say that Pi, Pj jmp-send

v to Pk when they invoke Πjmp(Pi, Pj, Pk, v).

The formal protocol is as follows (Fig.3.2).

12

– Each server Ps for s ∈ {i, j, k} initializes bit bs = 0.

– Pi sends v to Pk, while Pj sends H(v) to Pk.

– Pk broadcasts "(accuse,Pi)", if Pi is silent and TTP = Pj . Analogously for Pj . If Pk accuses

both Pi, Pj , then TTP = Pi. Otherwise, Pk receives some ṽ and either sets bk = 0 when the value

and the hash are consistent or sets bk = 1. Pk then sends bk to Pi, Pj and terminates if bk = 0.

– If Pi does not receive a bit from Pk, it broadcasts "(accuse,Pk)" and TTP = Pj . Analogously

for Pj . If both Pi, Pj accuse Pk, then TTP = Pi. Otherwise, Ps for s ∈ {i, j} sets bs = bk.

– Pi, Pj exchange their bits to each other. If Pi does not receive bj from Pj , it broadcasts

"(accuse,Pj)" and TTP = Pk. Analogously for Pj . Otherwise, Pi resets its bit to bi ∨ bj and

likewise Pj resets its bit to bj ∨ bi.

– Ps for s ∈ {i, j, k} broadcasts Hs = H(v∗) if bs = 1, where v∗ = v for s ∈ {i, j} and v∗ = ṽ

otherwise. If Pk does not broadcast, terminate. If either Pi or Pj does not broadcast, then TTP =

Pk. Otherwise,

• If Hi 6= Hj : TTP = Pk.

• Else if Hi 6= Hk: TTP = Pj .

• Else if Hi = Hj = Hk: TTP = Pi.

Protocol Πjmp(Pi, Pj , Pk, v)

Figure 3.2: 3PC: Joint Message Passing Protocol
Looking ahead, all our protocols will use jmp and consequently our final construction, either

of general MPC or of any PPML task, will have several calls to jmp. For the amortization to

work, the broadcast of values is executed once and for all for a fixed ordered pair of senders in

the end.

Lemma 3.1 (Communication). Protocol Πjmp (Fig. 3.2) requires 1 round and an amortized

communication of 1` bits overall.

Proof. Server Pi sends the value v to Pk while Pj sends hash of the same. This accounts for

1 round and communication of 1` bits. Then Pk sends back its inconsistency bit to Pi, Pj,

who then exchange it; this takes two rounds in all. The hash of the value v and distribution of

inconsistency bit can be combined for several instances of this protocol and hence gets amortized

over multiple instances. This is followed by a servers broadcasting hashes on their values and

selecting a TTP based on it, which takes 1 round. This too can be clubbed for multiple instances

and hence amortizes the cost and rounds.

13

3.3 Input Sharing Protocol

Protocol Πsh (Fig. 3.3) allows a server Pi to generate J·K-shares of a value v ∈ Z2` . In the

preprocessing phase, P0, Pj for j ∈ {1, 2} along with Pi sample a random JαvKj ∈ Z2` , while

P1, P2, Pi sample random γv ∈ Z2` . This allows Pi to know both αv and γv in clear. During

the online phase, if Pi = P0, then P0 sends βv = v + αv to P1. P0, P1 then jmp-send βv to P2

to complete the secret sharing. If Pi = P1, P1 sends βv = v + αv to P2. Then P1, P2 jmp-send

βv +γv to P0. The case for Pi = P2 proceeds similar to that of P1. The correctness of the shares

held by each server is assured by the guarantees of Πjmp.

Preprocessing:

– If Pi = P0 : P0, Pj , for j ∈ {1, 2}, together sample random [αv]j ∈ Z2` , while P together sample

random γv ∈ Z2` .

– If Pi = P1 : P0, P1 together sample random [αv]1 ∈ Z2` , while P together sample a random

[αv]2 ∈ Z2` . Also, P1, P2 together sample random γv ∈ Z2` .

– If Pi = P2: Symmetric to the case when Pi = P1.

Online:

– If Pi = P0 : P0 computes βv = v + αv and sends βv to P1. P1, P0 jmp-send βv to P2.

– If Pi = Pj , for j ∈ {1, 2} : Pj computes βv = v + αv, sends βv to P3−j . P1, P2 jmp-send βv + γv to

P0.

Protocol Πsh(Pi, v)

Figure 3.3: 3PC: Generating JvK-shares by server Pi

Lemma 3.2 (Communication). Protocol Πsh (Fig. 3.3) is non-interactive in the preprocessing

phase and requires 2 round and an amortized communication of 2` bits in the online phase.

Proof. During the preprocessing phase, servers non-interactively sample the shares of αv and

γv values using the shared key setup. In the online phase, when Pi = P0, he/she computes βv

and sends it to P1, resulting in 1 round and 1` bits communicated. They then execute Πjmp

to provide P2 with βv, which requires additional 1 round in an amortized sense, and 1` bits to

be communicated. For the case when Pi = P1, she sends βv to P2, resulting in 1 round and a

communication of 1` ring elements. This is followed by one invocation of Πjmp to relay βv + γv

towards P0. This again requires an additional 1 round and 1` bits. The analysis is similar in

the case of Pi = P2.

14

3.4 Joint Sharing Protocol

Protocol Πjsh (Fig. 3.4) allows two servers Pi, Pj to jointly generate a J·K-sharing of a value

v ∈ Z2` that is known to both. Towards this, servers execute the preprocessing of Πsh (Fig.

3.3) to generate [αv] and γv. If (Pi, Pj) = (P1, P0), then P1, P0 jmp-send βv = v + αv to P2. The

case when (Pi, Pj) = (P2, P0) proceeds similarly. The case for (Pi, Pj) = (P1, P2) is optimized

further as follows: servers locally set [αv]1 = [αv]2 = 0. P1, P2 together sample random γv ∈ Z2` ,

set βv = v and jmp-send βv + γv to P0.

Preprocessing:

– If (Pi, Pj) = (P1, P0): Servers execute the preprocessing of Πsh(P1, v) and then locally set γv = 0.

– If (Pi, Pj) = (P2, P0): Similar to the case above.

– If (Pi, Pj) = (P1, P2): P1, P2 together sample random γv ∈ Z2` . Servers locally set [αv]1 = [αv]2 =

0.

Online:

– If (Pi, Pj) = (P1, P0): P0, P1 computes βv = v + [αv]1 + [αv]2. Servers execute Πjmp(P0, P1, P2, βv)

to enable P2 obtain βv.

– If (Pi, Pj) = (P2, P0): Similar to the case above.

– If (Pi, Pj) = (P1, P2): P1, P2 locally set βv = v. Servers then execute Πjmp(P1, P2, P0, v + γv) to

enable P0 obtain βv + γv.

Protocol Πjsh(Pi, Pj , v)

Figure 3.4: J·K-sharing of a value v ∈ Z2` by servers Pi, Pj
When v is available to Pi and Pj in the preprocessing phase, protocol Πjsh can be made non-

interactive in the following way: P sample a random r ∈ Z2` and locally set their share according

to

(P1, P2) (P1, P0) (P2, P0)

[αv]1 = 0, [αv]2 = 0

βv = v, γv = r − v

[αv]1 = −v, [αv]2 = 0

βv = 0, γv = r

[αv]1 = 0, [αv]2 = −v
βv = 0, γv = r

P0

P1

P2

(0, 0, r)

(0, v, r − v)

(0, v, r − v)

(−v, 0, r)

(−v, 0, r)

(0, 0, r)

(0, −v, r)
(0, 0, r)

(0, −v, r)

Table 3.1: The columns depict the three distinct possibility of input contributing pairs. The first row
shows the assignment to various components of the sharing. The last row, along with three sub-rows,
specify the shares held by the three servers.

15

Lemma 3.3 (Communication). Protocol Πjsh (Fig. 3.4) is non-interactive in the preprocessing

phase and requires 1 round and an amortized communication of at most 1` bits in the online

phase.

Proof. In this protocol, servers execute Πjmp protocol once. Hence the overall cost follows from

that of an instance of the Πjmp protocol (Lemma 3.1).

3.5 Addition Protocol

Given the J·K-shares on input wires x, y, servers can use the linearity property of the sharing

scheme to locally compute J·K-shares of the output of addition gate, z = x+y as JzK = JxK+ JyK.

3.6 Multiplication Protocol

Given the J·K-shares on input wires x, y, protocol Πmult(P, JxK, JyK) (Fig. 3.5) allows servers to

securely evaluate JzK, where z = xy. Our protocol provides stronger security notion of GOD

at the cost of 4` and 3` elements communicated (amortized) in the preprocessing and the

online phase, respectively. We first explain the protocol in the semi-honest setting. During

the preprocessing phase, P0, Pj for j ∈ {1, 2} sample random [αz]j ∈ Z2` , while P1, P2 sample

random γz ∈ Z2` . In addition, P0 locally computes Γxy = αxαy and generates [·]-sharing of the

same between P1, P2. Since
βz = z + αz = xy + αz = (βx − αx)(βy − αy) + αz

= βxβy − βxαy − βyαx + Γxy + αz (3.1)

holds, servers P1, P2 locally compute [βz]j = (j − 1)βxβy − βx [αy]j − βy [αx]j + [Γxy]j + [αz]j
during the online phase and mutually exchange their shares to reconstruct βz. P1 then sends

βz + γz to P0, completing the semi-honest protocol. The correctness that asserts z = xy or in

other words βz − αz = xy holds due to Eq. 3.1.

In case of a malicious adversary, the following issues arise. We explain how to handle each issue

in a robust way.

1) When P0 is corrupt, the [·]-sharing of Γxy performed by P0 might not be correct, i.e. Γxy 6=
αxαy.

2) When P1 (or P2) is corrupt, the [·]-share of βz handed over to the fellow honest evaluator

during the online phase might not be correct, causing reconstruction of an incorrect βz.

3) When P1 is corrupt, the value βz + γz that is sent to P0 during the online phase may not be

correct.

16

The last issue is trivially handled by making P1, P2 jmp-send βz+γz to P0 (after βz is computed).

This either leads to success or a TTP selection. We explain the rest of the cases assuming that

P0, Pi posses the correct and consistent values for [χ]i , [Γxy]i and servers P1, P2 have the correct

ψ. P0 first computes β?z and sends it to P1, P2, who compute βz as: βz = β?z +βxβy−ψ. However,

this does not solve the problem; a corrupt P0 can send an incorrect value for β?z causing the

honest evaluators to compute a wrong value for βz. To fix this, we make use of the observation

that servers P0, Pi, for i ∈ {1, 2}, given correct and consistent [·]-shares of χ and Γxy, can

compute a [·]-share of β?z locally as: [β?z]i = −(βx+γx) [αy]i−(βy+γy) [αx]i+2 [Γxy]i+[αz]i+[χ]i.

For P1 to obtain β?z in clear it needs [β?z]2, which is available with both P0, P2. Hence, the servers

jmp-send [β?z]2 to P1. This guarantees that P1 obtains the correct β?z from which it can compute

βz, or, in case of a dispute, all servers identify a TTP. Similarly, servers jmp-send [β?z]1 to allow

P2 to compute correct βz. In case a TTP is identified, all servers send their inputs in clear to

the TTP, who evaluates the circuit and sends back the output. With these modifications, the

online phase of the multiplication protocol is now robust.

For the online phase to proceed successfully, the servers P0, Pi need correct and consistent

values for [χ]i , [Γxy]i and servers P1, P2 need the correct ψ. We now explain how to generate

these values correctly in the preprocessing phase. To extract the required values, the following

relation is exploited. d, e, f set as d = (γx − αx), e = (γy − αy) and f = (γxγy + ψ) − χ, form a

multiplication triple. Servers compute a 〈·〉-sharing of f from 〈·〉-sharing of d, e, which are set

according to the table 3.2.

P0 P1 P2

〈v〉 ([λv]1 , [λv]1) ([λv]1 , v + λv) ([λv]2 , v + λv)

〈d〉 ([αx]1 , [αx]2) ([αx]1 , γx) ([αx]2 , γx)

〈e〉 ([αy]1 , [αy]1) ([αy]1 , γy) ([αy]2 , γy)

Table 3.2: The 〈·〉-sharing of values d and e

This is followed by an execution of a maliciously secure of [7], henceforth referred to as ΠmulZK,

as a result of which they receive 〈f〉 = ([λf] , f + λf). χ,Γxy and ψ are then extracted as follows:
[χ]1 = [λf]1 and [χ]2 = [λf]2 → χ = [λf]1 + [λf]2

γxγy + ψ = f + λf → ψ = f + λf − γxγy

[Γxy]j = γx [αy]j + γy [αx]j + [ψ]j − [χ]j [j ∈ {1, 2}]
Here, [·]-shares of ψ are generated by P1, P2 non-interactively; P1, P2 together sample a random

r ∈ Z2` , P1 sets [ψ]1 = r, while P2 sets [ψ]2 = ψ − r. Γxy set in this way provides P1, P2 with

[·]-shares of Γxy.

17

Finally, to complete the picture two subtle issues need to tackled. Note that, in the online phase,

P0, P1, P2 should have consistent [·]-shares of Γxy, which cannot be done non-interactively. We

observe that P0 does not have the same shares as those possessed by P1, P2 owing to the re-

randomization of these shares that took place while extracting χ and ψ. To enable P0 to obtain

consistent shares as those held by P1, P2, the following observation is used.

The protocol ΠmulZK first runs a semihonest protocol and then verifies correctness in zero-

knowledge.The underlying semihonest protocol requires P0 to compute and distribute [·]-shares

of λde = λdλe = αxαy. P0 obtains consistent [·]-share of Γxy from the [·]-shares of λde computed

in the underlying semi-honest protocol in ΠmulZK. [Γxy] as set by P1, P2 can be viewed as re-

randomized shares of αxαy. P0, Pi for i ∈ {1, 2} retain [λde]i from the underlying semi-honest

protocol in ΠmulZK. Using these shares, P1 computes ∆ = [λf]1 − [Γxy]1 and P2 compute the

∆ = [Γxy]2 − [λf]2. Servers jmp-send ∆ to P0. Using [·]-shares of λxy and ∆, P0 can locally

re-compute consistent [·]-shares of Γxy as: [Γxy]1 = [λf]1 −∆ and [Γxy]2 = [λf]2 + ∆. Secondly,

the protocol ΠmulZK as in [7] gives a security with abort. However, we need a robust version in

order to get an overall robust protocol. We use techniques from [8] to get a modified version

ΠmulZK that provides security with guaranteed output delivery. Precisely, in the verification

phase, instead of simply exchanging shares of the proof, a verifier and the prover jmp-send the

missing share of the proof to the second verifier.

18

Preprocessing:

– Servers P0, Pj for j ∈ {1, 2} together sample a random [αz]j ∈ Z2` , while P1, P2 sample a random

γz ∈ Z2` .

– Servers in P locally compute 〈·〉-sharing of d = γx − αx and e = γy − αy by setting the shares as

(as per Tale 3.2):

[λd]1 = [αx]1 , [λd]2 = [αx]2 , (d + λd) = γx

[λe]1 = [αy]1 , [λe]2 = [αy]2 , (e + λe) = γy

– Servers in P execute ΠmulZK(P, d, e) to generate 〈f〉 = 〈de〉.

– P0, Pj for j ∈ {1, 2} locally set [χ]j = [λf]j , while P1, P2 set ψ = f + λf − γxγy. P0 then computes

χ = [χ]1 + [χ]2.

– P1, P2 sample random r ∈ Z2` and set [ψ]1 = r, [ψ]2 = ψ − r.

– Pj for j ∈ {1, 2} set [Γxy]j = γx [αy]j + γy [αx]j + [ψ]j − [χ]j

– P1 sets ∆ = [λxy]1 − [Γxy]1, P2 sets ∆ = [Γxy]2 − [λxy]2. Servers execute

Πjmp(P1, P2, P0,∆).

– If a TTP is identified in the previous step, then all servers send their inputs in clear to the TTP

who computes the circuit and distributes the output. Else, P0 computes [Γxy]1 = [λxy]1 −∆ and

[Γxy]2 = [λxy]2 + ∆.

Online:

– P0, Pj , for j ∈ {1, 2}, compute [β?z]j = −(βx + γx) [αy]j − (βy + γy) [αx]j + [αz]j + 2 [Γxy]j + [χ]j .

– Servers in P execute Πjmp(P0, P1, P2, [β
?
z]1) and Πjmp(P0, P2, P1, [β

?
z]2) in parallel.

– If a TTP is not identified then :

– Pj for j ∈ {1, 2} computes [β?z] = [β?z]1 + [β?z]2, βz = β?z + βxβy − ψ.

– Servers execute Πjmp(P1, P2, P0, βz + γz).

– If a TTP is identified in any of the previous step, then all servers send their inputs in clear to the

TTP who computes the circuit and distributes the output.

Protocol Πmult(P, JxK, JyK)

Figure 3.5: Multiplication Protocol

Lemma 3.4 (Communication). Protocol Πmult (Fig. 3.5) requires an amortized cost of 4` bits

in the preprocessing phase, and 1 round and amortized cost of 3` bits in the online phase.

Proof. In the preprocessing phase, the servers first generate αv and γv non-interactively using

shared key setup. This is followed by one execution of ΠmulPre, and one jmp-send for ∆, which

requires an amortized communication cost of 4` bits. During the online phase, servers P0, P1

19

locally compute share β? which is relayed to P2 using Πjmp. Simultaneously, P0, P2 relay the

second share of β? to P1. This requires 1 round and amortized cost of 2` bits. This is followed

by computation of βv + γv by P1, P2 who send it to P0 with yet another invocation of Πjmp,

which again requires 1 round and communication cost of 1` bits. However, sending of βv + γv

can be delayed till the end of the protocol, and will require only one round for the entire circuit

and can be amortized. Thus, the total number of rounds required for multiplication is 1.

3.7 Output Reconstruction

Protocol Πrec(P, JvK) (Fig. 3.6) allows servers to robustly reconstruct a secret v ∈ Z2` from

its J·K-shares. Notice that each server has all but one share required to reconstruct v in clear.

This missing share is held by the other two servers. For reconstruction of v, P0, P1, P2 need

γv, JαvK2 and JαvK1, respectively. To reconstruct robustly, servers first agree on a commitment

on these shares. Concretely, in the preprocessing phase, P0, P1 together, using their shared

randomness, prepare a commitment on JαvK1. They then execute Πjmp to provide P2 with the

correct commitment. Similarly, using Πjmp, P0, P2 together commit JαvK2 towards P1 and P1, P2

together commit γv towards P0. At this point, note that the agreement on commitments takes

place in the preprocessing phase, which makes the online phase very efficient. Now, in the

online phase, each server receives the missing share along with the opening to the commitment

from the other two servers. The commitments allow the recipient to identify the correct missing

share. Moreover, it is guaranteed to get at least one correct missing share, commitment pair,

which helps to reconstruct the output robustly.

20

Preprocessing:

– P0, Pj , for j ∈ {1, 2}, generate commitment of JαvKj (Com(JαvKj)) and send it to P3−j . P1, P2

generate commitment of γv (Com(γv)) and send it to P0. Servers use randomness sampled from

the PRF key-setup for the commitments.

– Servers in P execute Πjmp(P0, P1, P2,Com(JαvK1)),

Πjmp(P0, P2, P1,Com(JαvK2)) and Πjmp(P1, P2, P0,Com(γv) in parallel.

Online:

– If a TTP has been identified then parties send inputs to the TTP in clear. The TTP will evaluate

the circuit and distribute the output to all other servers.

– If no TTP has been identified,

– P0, P1 open Com(JαvK1) towards P2.

– P0, P2 open Com(JαvK2) towards P1.

– P1, P2 open Com(γv) towards P0.

– Servers reconstruct the output using the share that is consistent with the commitment.

Protocol Πrec(P, JvK)

Figure 3.6: Reconstructing the secret v from J·K-shares

Lemma 3.5 (Communication). Protocol Πrec (Fig. 3.6) requires 1 round and amortized com-

munication of 6` bits in the online phase.

Proof. In the preprocessing phase, servers generate commitments on shares of αv and γv and

then invoke three instances of Πjmp protocol parallelly in order to provide all with consistent

commitments. The commitment can be instantiated using a hash function and can be clubbed

for multiple instances amortizing its cost. During the online phase, each server gets an opening

from other two servers, which requires 1 round and overall 6` bits to be communicated.

3.8 Input Sharing and Output Reconstruction in an

SOC setting

Protocol ΠSOC
sh (Fig. 3.7) extends input sharing to the SOC setting and allows a user U to gener-

ate the J·K-shares of its input v among the three servers. Note that the necessary commitments

to facilitate the sharing are generated in the preprocessing phase by the servers which are then

communicated to U, along with the opening, in the online phase. U selects the commitment

forming the majority (for each share) owing to the presence of an honest majority among the

servers, and accepts the corresponding shares. Analogously, protocol ΠSOC
rec (Fig. 3.7) allows

the servers to reconstruct a value v towards user U. In either of the protocols, if at any point,

21

a TTP is identified, then servers signal the TTP’s identity to U. U selects the TTP as the one

forming a majority and sends its input in clear to the TTP, who computes the function output

and sends it back to U.

Input Sharing:

– P0, Ps, for s ∈ {1, 2}, together sample random [αv]s ∈ Z2` , while P1, P2 together sample random

γv ∈ Z2` .

– P0, P1 jmp-send Com([αv]1) to P2, while P0, P2 jmp-send Com([αv]2) to P1, and P1, P2 jmp-send

Com(γv) to P0.

– Each of the servers sends (Com([αv]1),Com([αv]2),Com(γv)) to U who accepts the values that form

the majority. Also, P0, Ps, for s ∈ {1, 2}, open [αv]s towards U while P1, P2 open γv towards U.

– U accepts the consistent opening, recovers [αv]1 , [αv]2 , γv, computes βv = v + [αv]1 + [αv]2, and

sends βv + γv to all three servers.

– Servers broadcast the received value and accept the majority value if it exists, and a default value,

otherwise. P1, P2 locally compute βv from βv + γv using γv to complete the sharing of v.

Output Reconstruction:

– Servers execute the preprocessing of Πrec(P, JvK) to agree upon commitments of [αv]1 , [αv]2 and

γv.

– Each of the servers send βv + γv as well as commitments on [αv]1 , [αv]2 and γv to U, who accepts

the values forming majority.

– Now, P0, P1 open [αv]1 to U, P0, P2 open [αv]2, while P1, P2 open γv to U.

– U accepts the consistent opening and computes v = (βv + γv)− [αv]1 − [αv]2 − γv.

Protocol ΠSOC
sh (U, v) and ΠSOC

rec (U, JvK)

Figure 3.7: 3PC: Input Sharing and Output Reconstruction in SOC Setting

3.9 The Complete 3PC

In order compute an arithmetic circuit over Z2` , the servers first execute the setup phase where

they obtain the respective shared keys via Fsetup. then, in the input sharing phase, Pi ∈ P shares

its input xi by executing Πsh (Fig. 3.3) protocol. This is followed by the circuit evaluation phase,

where severs evaluate the gates in the circuit in the topological order, with addition gates (and

multiplication-by-a-constant gates) being computed locally, whereas multiplication gates being

computed by invoking Πmult (Fig. 3.5) protocol. Finally, servers run Πrec protocol (Fig. 3.6) on

the output wires to reconstruct the function output.

22

Chapter 4

Building Blocks for PPML

In this chapter we provide details on robust realizations of the following building blocks for

PPML in 3-server setting– i) Dot Product, ii) Truncation, iii) Dot Product with Truncation,

iv) Secure Comparison, and v) Non-linear Activation functions– Sigmoid and ReLU.

4.1 MSB Extraction

The Bit Extraction Protocol, Πbitext allows servers to compute the boolean sharing of the most

significant bit (msb) of a value v given its arithmetic sharing JvK. To compute the msb, we

use the optimized 2-input Parallel Prefix Adder (PPA) boolean circuit proposed by ABY3 [31].

The PPA circuit consists of 2` − 2 AND gates and has a multiplicative depth of log `. Let

P0 P1 P2

Jv0[i]KB (0, 0, 0) (0, v0[i], v0[i]) (0, v0[i], v0[i])
Jv1[i]KB (v1[i], 0, 0) (v1[i], 0, 0) (0, 0, 0)
Jv2[i]KB (0, v2[i], 0) (0, 0, 0) (0, v2[i], 0)

Table 4.1: The J·KB-sharing corresponding to ith bit of v0 = βv, v1 = − [αv]1 and v2 = − [αv]2. Here
i ∈ {0, . . . , `− 1}.

v0 = βv, v1 = − [αv]1 and v2 = − [αv]2. Then v = v0 + v1 + v2. Servers first locally compute

the boolean shares corresponding to each bit of the values v0, v1 and v2 according to Table 4.1.

It has been shown in ABY3 that v = v0 + v1 + v2 can also be expressed as v = 2c + s where

FA(v0[i], v1[i], v2[i]) → (c[i], s[i]) for i ∈ {0, . . . , ` − 1}. Here FA denotes a Full Adder circuit

while s and c denote the sum and carry bits respectively. To summarize, servers execute `

instances of FA in parallel to compute JcKB and JsKB. The FA’s are executed independently and

require one round of communication. The final result is then computed as msb(2JcKB + JsKB)

using the optimized PPA circuit.

23

Lemma 4.1 (Communication). Protocol Πbitext requires a communication cost of 12` bits in

the preprocessing phase and require log `+ 1 rounds and an amortized communication of 9` bits

in the online phase.

4.1.1 Bit2A Conversion protocol

Given the boolean sharing of a bit b, denoted as JbKB, protocol Πbit2A (Fig. 4.1) allows servers

to compute the arithmetic sharing JbRK. Here bR denotes the equivalent value of b over ring

Z2` . It can be seen that bR = (βb ⊕ αb)
R = βR

b + αR
b − 2βR

b α
R
b . Also αR

b = ([αb]1 ⊕ [αb]2)R =

[αb]
R
1 + [αb]

R
2 − 2 [αb]

R
1 [αb]

R
2 . During the preprocessing phase, P0, Pj for j ∈ {1, 2} execute

Πjsh on [αb]
R
j to generate J[αb]

R
j K. Servers then execute Πmult on J[αb]

R
1 K and J[αb]

R
2 K to generate

J[αb]
R
1 [αb]

R
2 K followed by locally computing JαR

b K. During the online phase, P1, P2 execute Πjsh on

βR
b to jointly generate JβR

b K. Servers then execute Πmult protocol on JβR
b K and JαR

b K to compute

JβR
b α

R
b K followed by locally computing bR. The formal details for Πbit2A protocol appears in Fig.

4.1.

Preprocessing:

– P0, Pj for j ∈ {1, 2} execute Πjsh on [αb]Rj to generate J[αb]Rj K.

– Servers execute Πmult(P, [αb]R1 , [αb]R2) to generate JuK where u = [αb]R1 [αb]R2 , followed by locally

computing JαR
b K = J[αb]R1 K + J[αb]R2 K− 2JuK.

– Servers in P execute the preprocessing phase of Πmult(P, β
R
b , α

R
b) where v = βRb α

R
b .

Online:

– P1, P2 execute Πjsh(P1, P2, β
R
b) to generate JβRb K.

– Servers execute online phase of Πmult(P, β
R
b , α

R
b) to generate JvK where v = βRb α

R
b , followed by

locally computing JbRK = JβRb K + JαR
b K− 2JvK.

Protocol Πbit2A(P, JbKB)

Figure 4.1: 3PC: Bit2A Protocol

Lemma 4.2 (Communication). Protocol Πbit2A (Fig. 4.1) requires an amortized communication

cost of 11` bits in the preprocessing phase and requires 1 round and an amortized communication

of 4` bits in the online phase.

4.2 Bit Injection

Given the binary sharing of a bit b, denoted as JbKB, and the arithmetic sharing of v ∈ Z2` ,

protocol ΠBitInj computes J·K-sharing of bv. Towards this, servers first execute Πbit2A on JbKB

24

to generate JbK. This is followed by servers computing JbvK by executing Πmult protocol on JbK
and JvK.

Lemma 4.3 (Communication). Protocol ΠBitInj requires an amortized communication cost of

15` bits in the preprocessing phase and requires 2 rounds and an amortized communication of

7` bits in the online phase.

Proof. Protocol ΠBitInj is essentially an execution of Πbit2A (Lemma 4.1) followed by one invo-

cation of Πmult (Lemma 3.4) and the costs follow.

4.3 Dot Product

Given the J·K-sharing of vectors ~x and ~y, protocol Πdotp (Fig. Fig. 4.2) allows servers in P to

generate J·K-sharing of ~x�~y robustly. By J·K-sharing of a vector ~x of size n, we mean that each

element xi ∈ Z2` in the vector, for i ∈ [n], is J·K-shared. Servers P0, P1 locally compute a [·]
share of β?z as: [β?z]1 = −

∑n
i=1(βxi +γxi) [αyi]1−

∑n
i=1(βyi +γyi) [αxi]1 +[αz]1 +2 [Γxy]1 +[χ]1 and

jmp-send to allow P2 to correctly reconstruct β?z . Similarly, P1 reconstructs β?z . P1, P2 locally

compute βz = β?z +
∑n

i=1 βxiβyi−ψ. Servers then execute Πjmp to provide P0 with correct βz+γz.

The formal details are as follows.

Preprocessing:

– For each pair (xi, yi), such that i ∈ [n] and zi = xiyi, servers in P execute preprocessing phase of

Πmult(P, xi, yi), so that P0 obtains χi, and Ps obtains [Γxiyi]s and ψi for s ∈ {1, 2}. P0, Ps also store

[λxiyi]s from the underlying protocol.

– P0 computes χ =
∑n

i=1 χi. P0, Ps for s ∈ {1, 2} compute [λxy]s =
∑n

i=1 [λxiyi]s. Ps for s ∈ {1, 2}
computes ψ =

∑
i ψi and [Γxy]s =

∑n
i=1 [Γxiyi]s.

– P1 sets ∆ = [λxy]1 − [Γxy]1, P2 sets ∆ = [Γxy]2 − [λxy]2. P1, P2 jmp-send ∆ to P0 who locally

recomputes [Γxy]1 and [Γxy]2 .

– P0, Ps for s ∈ {1, 2} compute [αz]s =
∑n

i=1 [αzi]s. P1, P2 compute γz =
∑n

i=1 γzi . P0 computes

Online Phase:

– P0, Ps for s ∈ {1, 2} compute [β?z]s = −
∑n

i=1(βxi + γxi) [αyi]s −
∑n

i=1(βyi + γyi) [αxi]s + [αz]s +

2 [Γxy]s + [χ]s.

– P0, Ps for s ∈ {1, 2} jmp-send [β?z]s to P3−s.

– P1, P2 locally compute β?z = [β?z]1 + [β?z]2 and βz = β?z +
∑n

i=1 βxiβyi − ψ.

– P1, P2 jmp-send βz + γz to P0.

Protocol Πdotp(P, {JxiK, JyiK}i∈[n])

25

Figure 4.2: Dot Product Protocol

Lemma 4.4 (Communication). Protocol Πdotp requires an amortized communication cost of

3n + 1` bits in the preprocessing phase and requires 1 rounds and an amortized communication

of 3` bits in the online phase.

4.4 Truncation

For truncation, servers execute Πtrgen (Fig. 4.3) to generate a random pair of the form ([r] , JrdK).
Here, r denotes a random ring element, while rd represents the truncated value of r. By truncated

value, we mean that the value is right-shifted by d bit positions, where d is the number of bits

allocated for the fractional part in the FPA representation. Given (r, rd), the truncated value

of v denoted by vd can be computed from v as vd = (v − r)d + rd.

– P0, Pj for j ∈ {1, 2} together sample random Rj ∈ Z2` . P0 sets r = R1 +R2 while Pj sets [r]j = Rj .

Pj sets [rd]j as the ring element that has last d bits of rj in the last d positions and 0 elsewhere.

– P0 locally truncates r to obtain rd and executes Πsh(P0, r
d) to generate JrdK.

– P0, P1 set
[
rd
]
1

= βrd − [αrd]1, while P0, P2 set
[
rd
]
2

= − [αrd]2.

– P0, P1 compute u = [r]1 − 2d
[
rd
]
1
− [rd]1. P0, P1 jmp-send H(u)) to P2.

– P2 locally computes v = 2d
[
rd
]
2

+ [rd]2 − [r]2. If H(u) 6= H(v), P2 broadcast "(accuse,P0)" and

P1 is chosen as the TTP.

Protocol Πtrgen(P)

Figure 4.3: 3PC: Generating Random Truncated Pair (r, rd)
To generate ([r] , JrdK), servers proceed as follows: P0, Pj for j ∈ {1, 2} sample random Rj ∈ Z2` .

P0 locally computes r = R1 + R2 and truncates r to obtain rd. P0 then executes Πsh on rd to

generate JrdK. As shown in BLAZE, the correctness of sharing performed by P0 is checked using

the relation r = 2drd + rd, where rd denotes the ring element r with the higher order ` − d bit

positions set to 0. In detail, P0, Pj for j ∈ {1, 2} locally computes [aj] for a = (r − 2drd + rd).

P0, P1 then jmp-send H([a]1) to P2. P2 checks if the received hash value matches with H(− [a]2).

In case of any inconsistency, P2 accuses P0 and then P1 is identified as the TTP. The correctness

of Πtrgen follows from BLAZE.

Lemma 4.5 (Communication). Protocol Πdotpt requires an amortized communication cost of

2` bits in the preprocessing phase.

26

4.5 Dot Product with Truncation

Given the J·K-sharing of vectors ~x and ~y, protocol Πdotpt (Fig. 4.4) allows servers to generate

JzdK, where zd denotes the truncated value of z = ~x� ~y. The preprocessing phase now consists

of the execution of one instance of Πtrgen (Fig. 4.3) and the preprocessing corresponding to Πdotp

(Fig. 4.2). At a high level, the online phase proceeds as follows: P0, Pj for j ∈ {1, 2} locally

compute [z? − r]j (instead of [β?z]j as in Πdotp) where z? = β?z − αz. P0, P1 jmp-send [z? − r]1 to

P2 while P0, P2 jmp-send [z? − r]2 to P1. Both P1, P2 then compute (z − r) locally, truncate it

to obtain (z− r)d and execute Πjsh to generate J(z− r)dK. Finally, servers locally compute the

result as JzdK = J(z− r)dK + JrdK. We defer the formal details of the protocol Πdotpt to §??.

Preprocessing:

– Servers execute the preprocessing of Πdotp(P, {JxiK, JyiK}i∈[n]).

– In parallel, servers execute Πtrgen(P) to generate the truncation pair ([r] , JrdK). Also, P0 obtains

both the values [r]1 and [r]2.

Online:

– P0, Pj , for j ∈ {1, 2}, compute [Ψ]j = −
∑n

i=1((βxi + γxi) [αyi]j + (βyi + γyi) [αxi]j)− [r]j and sets

[(z− r)?]j = [Ψ]j + [χ]j .

– P1, P0 jmp-send [(z− r)?]1 to P2 and P2, P0 jmp-send [(z− r)?]2 to P1.

– P1, P2 locally compute (z−r)? = [(z− r)?]1+[(z− r)?]2 and set (z−r) = (z− r)?+
∑n

i=1(βxiβyi)+ψ.

– P1, P2 locally truncate (z − r) to obtain (z− r)d and execute Πjsh(P1, P2, (z− r)d) to generate

J(z− r)dK.

– Servers locally compute JzK = J(z− r)dK + JrdK .

Protocol Πdotpt(P, {JxiK, JyiK}i∈[n])

Figure 4.4: 3PC: Dot Product Protocol with Truncation

Lemma 4.6 (Communication). Protocol Πdotp requires an amortized communication cost of

3n + 3` bits in the preprocessing phase and requires 1 rounds and an amortized communication

of 3` bits in the online phase.

4.6 Secure Comparison

Secure comparison allows servers to compare two values x, y ∈ Z2` given their J·K-shares, i.e check

whether x < y or not. In fixed-point arithmetic representation, checking whether v = x − y

gives the desired result. This is done by checking the msb of v in the following way. Servers

first locally compute JvK = JxK − JyK, then extract the msb using protocol Πbitext on JvK. In

27

case an arithmetic sharing is desired, servers can further apply the Bit2A protocol Πbit2A on the

outcome of Πbitext.

4.7 Activation Function

We consider two of the most prominently used activation functions: i) Rectified Linear Unit

(ReLU) and (ii) Sigmoid (Sig).

– ReLU: The ReLU function, relu(v) = max(0, v), can be viewed as relu(v) = b · v, where the bit

b = 1 if v < 0 and 0 otherwise. Here b denotes the complement of b. Given JvK, servers first

execute Πbitext on JvK to generate JbKB. The J·K-sharing of b is then locally computed by setting

βb = 1⊕ βb. Servers then execute ΠBitInj protocol on JbKB and JvK to obtain the desired result.

– Sig: In this work, we use the MPC-friendly variant of the Sigmoid function [32, 31, 12] as

given below:

sig(v) =

0 v < −1

2

v + 1
2

−1
2
≤ v ≤ 1

2

1 v > 1
2

Note that sig(v) = b1b2(v + 1/2) + b2, where b1 = 1 if v + 1/2 < 0 and b2 = 1 if v − 1/2 < 0.

To compute Jsig(v)K, servers proceed in a similar fashion as the ReLU, and hence, we skip the

formal details.

28

Chapter 5

Security of the 3PC Constructions

This chapter involves detailed security proofs for all of our 3PC constructions. We prove security

using the real-world/ ideal-word simulation based technique. We provide proofs in the Fsetup-

hybrid model for the case of 3PC, where Fsetup (Fig. 2.2) denotes the ideal functionality for the

three server shared-key setup.

Let A denote the real-world adversary corrupting at most one server in P, and S denote the

corresponding ideal world adversary. The strategy for simulating the computation of function f

(represented by a circuit ckt) is as follows: The simulation begins with the simulator emulating

the shared-key setup (Fsetup) functionality and giving the respective keys to the adversary. This

is followed by the input sharing phase in which S extracts the input of A, using the known keys,

and sets the inputs of the honest parties to be 0. S now knows all the inputs and can compute

all the intermediate values for each of the building blocks in clear. Also, S can obtain the

output of the ckt in clear. S now proceeds simulating each of the building block in topological

order using the aforementioned values (inputs of A, intermediate values and circuit output).

In some of our sub protocols, adversary is able to decide on which among the honest parties

should be chosen as the Trusted Third Party (TTP) in that execution of the protocol. To

capture this, we consider corruption-aware functionalities [4] for the sub-protocols, where the

functionality is provided the identity of the corrupt server as an auxiliary information.

For modularity, the simulation steps are provided for each of the sub-protocols separately.

These steps, when carried out in the respective order, result in the simulation steps for the

entire 3PC protocol. If a TTP is identified during the simulation of any of the sub-protocols,

simulator will stop the simulation at that step. In the next round, the simulator receives the

input of the corrupt party in clear on behalf of the TTP for the 3PC case.

29

5.0.1 Joint Message Passing (jmp) Protocol

We begin with the case for a corrupt sender, Pi. The case for a corrupt Pj is similar and hence

we omit details for the same.

– SPi
jmp initializes ttp = ⊥ and receives vi from A on behalf of Pk.

– In case, A fails to send a value SPi
jmp broadcasts "(accuse,Pi)", sets ttp = Pj , vi = ⊥, and skip

to the last step.

– Else, it checks if vi = v, where v is the value computed by SPi
jmp based on the interaction with A,

and using the knowledge of the shared keys. If the values are equal, SPi
jmp sets bk = 0, else, sets

bk = 1, and sends the same to A on the behalf of Pk.

– If A broadcasts "(accuse,Pk)", SPi
jmp sets vi = ⊥, ttp = Pj , and skips to the last step.

– SPi
jmp computes and sends bj to A on behalf of Pj and receives bA from A on behalf of honest Pj .

– If SPi
jmp does not receive a bA on behalf of Pj , it broadcasts "(accuse,Pi)", sets vi = ⊥, ttp = Pk.

If A broadcasts "(accuse,Pj)", SPi
jmp sets vi = ⊥, ttp = Pk. If ttp is set, skip to the last step.

– If (vi = v) and bA = 1, SPi
jmp broadcasts Hj = H(v) on behalf of Pj .

– Else if vi 6= vj : SPi
jmp broadcasts Hj = H(v) and Hk = H(vi) on behalf of Pj and Pk, respectively.

If A does not broadcast, SPi
jmp sets ttp = Pk. Else if, A broadcasts a value HA:

• If HA 6= Hj : SPi
jmp sets ttp = Pk.

• Else if HA 6= Hk : SPi
jmp sets ttp = Pj .

– SPi
jmp invokes Fjmp on (Input, vi) and (Select, ttp) on behalf of A.

Simulator SPi
jmp

Figure 5.1: Simulator SPi
jmp4 for corrupt sender Pi

The case for a corrupt receiver, Pk is provided in Fig. 5.2.

30

– S
Pk
jmp initializes ttp = ⊥, computes v honestly and sends v and H(v) to A on behalf of Pi and Pj ,

respectively.

– If A broadcasts "(accuse,Pi)", set ttp = Pj , else if A broadcasts "(accuse,Pj)", set ttp = Pi.

If both messages are broadcast, set ttp = Pi. If ttp is set skip to the last step.

– On behalf of Pi, Pj , S
Pk
jmp receives bA from A. Let bi (resp. bj) denote the bit received by Pi

(resp. Pj) from A.

– If A failed to send bit bA to Pi, S
Pk
jmp broadcasts "(accuse,Pk)", set ttp = Pj . Similarly, for Pj .

If both Pi, Pj broadcast "(accuse,Pk)", set ttp = Pi. If ttp is set, skip to the last step.

– If bi ∨ bj = 1 : S
Pk
jmp broadcasts Hi,Hj where Hi = Hj = H(v) on behalf of Pi, Pj , respectively.

– If A does not broadcast S
Pk
jmp sets ttp = ⊥. If A broadcasts a value HA:

• If HA 6= Hi : S
Pk
jmp sets ttp = Pj .

• Else if HA = Hi = Hj : S
Pk
jmp sets ttp = Pi.

– S
Pk
jmp invokes Fjmp on (Input,⊥) and (Select, ttp) on behalf of A.

Simulator SPk
jmp

Figure 5.2: Simulator S
Pk
jmp for corrupt receiver Pk

5.0.2 Sharing Protocol

Here we give he simulation steps for Πsh. The case for a corrupt P0 is provided in Fig.

5.5.

Preprocessing: SP0
sh emulates Fsetup and gives the keys (k01, k02, kP) to A. The values that are

commonly held along with A are sampled using appropriate shared key. Otherwise, values are

sampled randomly.

Online:

– If the dealer Ps = P0:

• SP0
sh receives βv on behalf of P1 and sets msg = v accordingly.

• Steps for Πjmp protocol are simulated according to SPi
jmp (Fig. 5.1), where P0 plays the role of one

of the senders.

– If the dealer Ps = P1:

• SP0
sh sets v = 0 by assigning βv = αv.

• Steps for Πjmp protocol are simulated similar to S
Pk
jmp (Fig. 5.2), with P0 acting as the receiver.

– If the dealer if P2 : Similar to the case when Ps = P1.

Simulator SP0
sh

31

Figure 5.3: Simulator SP0
sh for corrupt P0

The case for a corrupt P1 is provided in Fig. 5.4. The case for a corrupt P2 is simi-

lar.

Preprocessing: SP1
jsh emulates Fsetup and gives the keys (k01, k12, kP) to A. The values that are

commonly held along with A are sampled using appropriate shared key. Otherwise, values are

sampled randomly.

Online:

– If dealer Ps = P1 : SP1
sh receives βv from A on behalf of P2.

– If Ps = P0 : SP1
sh sets v = 0 by assigning βv = αv and sends βv to A on behalf of Ps.

– If Ps = P2 : Similar to the case where Ps = P0.

– Steps of Πjmp, in all the steps above, are simulated similar to SPi
jmp (Fig. 5.1), ie. the case of corrupt

sender.

Simulator SP1
sh

Figure 5.4: Simulator SP1
sh for corrupt P1

5.0.2.1 Joint Sharing Protocol

Here we give he simulation steps for Πjsh. The case for a corrupt P0 is provided in Fig. 5.5.

The case for a corrupt P1, P2 is similar.

Preprocessing: SP0
sh emulates Fsetup and gives the keys (k01, k02, kP) to A. The values that are

commonly held along with A are sampled using appropriate shared key. Otherwise, values are

sampled randomly.

Online:

– If (Pi, Pj) = (P1, P0) : Sjsh computes βv = v+αv on behalf of P1. The steps of Πjmp are simulated

similar to SPi
jmp, where the A acts as one of the senders.

– If (Pi, Pj) = (P2, P0) : Similar to the case when (Pi, Pj) = (P1, P0).

– If (Pi, Pj) = (P1, P2) : Sjsh sets v = 0 by setting βv = αv. The steps of Πjmp are simulated similar

to S
Pk
jmp, where the A acts as the receiver.

Simulator Sjsh

Figure 5.5: Simulator Sjsh for corrupt P0

5.0.3 Multiplication Protocol

Here we give he simulation steps for Πmult. The case for a corrupt P0 is provided in Fig.

5.6.

32

Preprocessing:

– SP0
mult samples [αz]1 , [αz]2 and γz on behalf of P1, P2 and generates the 〈·〉-shares of d, e honestly.

– SP0
mult emulates FMulPre, and extracts [Γxy]1 , [Γxy]2 ψ, [χ]1 , [χ]2 on behalf of P1, P2.

– SP0
mult extracts ∆ on behalf of P1, P2 and jmp-send it to P0.

Online:

– SP0
mult computes [β?z]1 , [β

?
z]2 and steps of Πjmp are simulated according to SPi

jmp with A as one of the

sender for both [β?z]1, and [β?z]2.

– SP0
mult computes βz + γz on behalf of P1, P2 and steps of Πjmp are simulated according to S

Pk
jmp with

A as the receiver for βz + γz.

Simulator SP0
mult

Figure 5.6: Simulator SP0
mult for corrupt P0

The case for a corrupt P1 is provided in Fig. 5.7. The case for a corrupt P2 is similar.

Preprocessing:

– SP1
mult samples [αz]1 , γz and [αz]2 on behalf of P0, P2. SP1

mult generates the 〈·〉-shares of d, e honestly.

– SP1
mult emulates FMulPre, and extracts ψ, [χ]1 , [χ]2 on behalf of P0, P2. It also extracts [Γxy]2 on

behalf of P2

– SP1
mult participates in jmp-send to send ∆ to P0.

Online:

– SP1
mult computes [β?z]1 , [β

?
z]2 on behalf of P0, P2, and steps of Πjmp are simulated according to SPi

jmp

with A as one of the sender for [β?z]1, and as the receiver for [β?z]2.

– SP1
mult computes βz + γz on behalf of P2 and steps of Πjmp are simulated according to SPi

jmp with A

one of the senders for βz + γz.

Simulator SP1
mult

Figure 5.7: Simulator SP1
mult for corrupt P1

5.0.4 Reconstruction Protocol

Here we give he simulation steps for Πrec. The case for a corrupt P0 is provided in Fig. 5.8.

The case for a corrupt P1, P2 is similar.

33

Preprocessing:

– Srec computes commitments on [αv]1 , [αv]2 and γv on behalf of P1, P2, using the respective shared

keys.

– The steps of Πjmp are simulated similar to S
Pk
jmp with A acting as the receiver for Com(γv), and

SPi
jmp with A acting as one of the senders for Com([αv]1) and Com([αv]2).

Online:

– Srec receives openings for Com([αv]1),Com([αv]2) on behalf of P2 and P1, respectively.

– Srec opens Com(γv) to A on behalf of P1, P2.

Simulator Srec

Figure 5.8: Simulator Srec for corrupt P0

5.0.5 Truncation

Here we give he simulation steps for Πtrgen. The case for a corrupt P0 is provided in Fig.

5.9.

– SP0
trgen samples R1, R2 using the respective keys with A.

– Steps corresponding to Πsh are simulated similar to the steps SP0
Πsh

for corrupt P0.

– SP0
trgen computes u, and steps corresponding to Πjmp are simulated similar to SPi

Πjmp
.

– SP0
trgen computes v. If H(u) 6= H(v), SP0

trgen broadcasts "(accuse,P0)", and sets ttp = P1.

Simulator SP0
trgen

Figure 5.9: Simulator SP0
trgen for corrupt P0

The case for a corrupt P1 is provided in Fig. 5.10. The case for a corrupt P2 is simi-

lar.

– SP1
trgen samples R1 using the key k01 with A, and samples random R2. SP1

trgen sets r = R1 +R2, and

truncates it to obtain rd.

– Steps corresponding to Πjsh are simulated similar to the steps in SΠjsh
. SP1

trgen computes u, and

steps corresponding to Πjmp are simulated similar to the steps in SPi
Πjmp

.

Simulator SP1
trgen

Figure 5.10: Simulator SP1
trgen for corrupt P1

Observe from the simulation steps, that the view of A in the real world and the ideal world is

indistinguishable.

34

Chapter 6

PPML Applications

In this section, we empirically show the practicality of our protocols for two widely used appli-

cations: Biometric Matching and PPML.

Benchmarking Environment We use a 64-bit ring (Z264). The benchmarking is performed

over a WAN that was instantiated using n1-standard-8 instances of Google Cloud1, with ma-

chines located in East Australia (P0), South Asia (P1), South East Asia (P2), and West Europe

(P3). The machines are equipped with 2.3 GHz Intel Xeon E5 v3 (Haswell) processors support-

ing hyper-threading, with 8 vCPUs, and 30 GB of RAM Memory and with a bandwidth of 50

Mbps. The average round-trip time (rtt) was taken as the time for communicating 1 KB of

data between a pair of parties, and the rtt values were

P0-P1 P0-P2 P1-P2

151.40ms 59.95ms 92.94ms

Software Details We implement our protocols using the publicly available ENCRYPTO

library [17] in C++17. We obtained the code of BLAZE and FLASH from the respective

authors and executed them in our environment. The collision-resistant hash function was

instantiated using SHA-256. We have used multi-threading and our machines were capable of

handling a total of 32 threads. Each experiment is run for 20 times and the average values are

reported.

Biometric Matching Biometric computation is central to many real-world tasks such as

face recognition [22, 25] and fingerprint-matching [5, 24]. The objective is, given a database D

of m biometric samples stored as vectors (~s1, . . . ,~sm) each of size n, and a user with its own

sample ~u, identify the “closest” sample to ~u in D. This task can be accomplished by considering

1https://cloud.google.com/

35

various distance metrics, the most prominent of which is the Euclidean Distance (ED). In this

work, we consider ED as the metric, and hence the problem boils down to identifying a sample

vector in D which has the least ED for ~u. Note that, in our setting, each entry in the database

D is J·K-shared among the servers. The client with an input query ~u generates J·K- shares of the

same along with the servers. Let xi denote the ith element in the vector ~x. As was introduced

in [32], ED between two n length vectors ~x, ~y is computed as ED~x~y =
∑i=n

i=1(xi − yi)
2 = ~z� ~z

where ~z = ((x1 − y1), . . . , (xn − yn)). Hence, the servers first compute J·K-shares for vector ~z

locally, as JziK = JxiK − JyiK for i ∈ [n], followed by an execution of Πdotp on J~zK, J~zK. For

biometric computation, the servers create a distance vector DV by computing the ED between

~u and every sample vector ~si in D, i.e DVi = ED~u~si for i ∈ [m]. The next task now is to find

the minimum among the m values in DV.

Minimum among m values: Consider vector ~x = (x1,. . . , xm) of size m, where each element

is J·K-shared among the servers. We follow the standard tree based approach to compute

the minimum element. This is as follows. First the elements of the vector are grouped

into pairs, which are then securely compared to find the pairwise minimum. For instance,

J·K-shares of (x1, x2), (x3, x4), . . ., (xm−1, xm) are compared to obtain J·K-shares of y1, . . . , ym/2.

Let ~y = (y1, y2, . . . , ym/2). This process is recursively applied on ~y, until a single element is

obtained. This requires O (log(m)) rounds of recursion to obtain the minimum value in ~x. Note

that the minimum of any two elements, say x1, x2 can be computed as y1 = b · (x1 − x2) + x2,

where b = 0 if x1 > x2, or 1, otherwise. This can be achieved using one invocation of bit

extraction protocol Πbitext on (x1 − x2) to obtain J·KB-shares of b, followed by one execution of

bit injection ΠBitInj on bB and (x1 − x2).

Setting Ref.

m = 1024 m = 16384

Pre. Online Pre. Online

Com [KB] R Com [KB] C [KB] R Com [KB]

3PC
BLAZE 1127.1 102 151.1 18036.0 142 2419.9

This 1131.3 103 151.9 18041.8 143 2420.7

Table 6.1: Minimum ED distance. The values are reported for biometric samples of size 40.

Table 6.1 presents the benchmarking for biometric matching. Following SecureML [32], we

chose the size of the biometric sample n to be 40. As is evident from the Table 6.1, we incur a

minimal loss in performance over BLAZE but guarantee the security of GOD instead of fairness.

Privacy-preserving Machine Learning We consider training and inference for Linear Re-

gression and Logistic Regression and inference for Neural Networks (NN). Note that, NN train-

36

ing requires additional tools to allow mixed world computations, which we leave as future work.

We refer readers to SecureML [32], ABY3 [31], and BLAZE [36] for a detailed description of

the training and inference steps for the aforementioned ML algorithms. All our benchmarking

is done over the publicly available MNIST [28] dataset that has n = 784 features. For training,

we used a batch size of B = 128. In 3PC, we compare our results against the best-known

framework BLAZE in this setting that provides fairness. Our results imply that we get GOD

at no additional cost compared to BLAZE.

Benchmarking Parameter We use throughput (TP) as the benchmarking parameter follow-

ing BLAZE and ABY3 [31] as it would help to analyse the effect of improved communication

and round complexity in a single shot. Here, TP denotes the number of operations (“iterations”

for the case of training and “queries” for the case of inference) that can be performed in unit

time. We consider minute as the unit time since most of our protocols over WAN requires

more than a second to complete. An iteration in ML training consists of a forward propagation

phase followed by a backward propagation phase. In the former phase, servers compute the

output from the inputs while in the latter, the model parameters are adjusted according to the

difference in the computed output and the actual output. The inference can be viewed as one

forward propagation of the algorithm alone.

Logistic Regression In Logistic Regression, one iteration comprises updating the weight

vector ~w using the gradient descent algorithm (GD). It is updated according to the function

given below: ~w = ~w − α
B
XT
i ◦ (sig(Xi ◦ ~w)−Yi) . where α and Xi denote the learning rate,

and a subset of batch size B, randomly selected from the entire dataset in the ith iteration,

respectively. The forward propagation comprises of computing the value Xi ◦ ~w followed by

an application of a sigmoid function on it. The weight vector is updated in the backward

propagation, which internally requires the computation of a series of matrix multiplications,

and can be achieved using a dot product. The update function can be computed using J·K
shares as: J~wK = J~wK− α

B
JXT

j K◦(sig(JXjK◦J~wK)−JYjK). We summarize our results in Table 6.2.

Setting Ref.
Pre. Online (TP in ×103)

Com [KB] Latency (s) Com [KB] TP

3PC

Training

BLAZE 4757.11 1.17 50.23 2525.36

This 4760.29 1.23 50.31 2393.38

3PC

Inference

BLAZE 18.69 1.08 0.25 2728.65

This 19.71 1.08 0.28 2727.38

37

Table 6.2: Logistic Regression training and inference. TP is given in (#it/min) for training and (#queries/min)
for inference.

We observe that the online TP is slightly lower compared to that of BLAZE, though the

amortized online communication cost is the same for both. This is because the total number

of rounds for both training and inference phase of Logistic Regression is slightly higher in

our case due to the additional rounds introduced by the verification mechanism. This gap

becomes less evident for protocols with more number of rounds, as is demonstrated in the case

of NN (presented next), where verification for several iterations is clubbed together, making

the overhead for verification insignificant.

NN Inference In this work, we consider a NN with two hidden layers, each consisting of 128

nodes each and an output layer with 10 nodes [31, 36]. Each of the layers is fully connected.

Inference in NN requires several dot product calls followed by an application of the ReLU

function. This process will be carried out for each layer in a sequential manner. 6.3 summarises

our benchmarking results for NN inference and confirms that our performance is comparable

to BLAZE.

Setting Ref.
Pre. Online (TP in ×103)

Com [MB] Latency (s) Com [MB] TP

3PC

Inference

BLAZE 351.70 2.81 4.91 26.40

This 353.52 2.91 4.91 26.40

Table 6.3: NN Inference. TP is given in (#queries/min).. Benchmarking is done over MNIST [28] dataset
and the throughput (TP) is given in (#queries/min).

38

Bibliography

[1] Mark Abspoel, Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof. An efficient passive-

to-active compiler for honest-majority MPC over rings. Cryptology ePrint Archive, Report

2019/1298, 2019. https://eprint.iacr.org/2019/1298. 2

[2] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-

throughput semi-honest secure three-party computation with an honest majority. In ACM

CCS, pages 805–817, 2016. 2

[3] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof,

Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority MPC for

malicious adversaries - breaking the 1 billion-gate per second barrier. In IEEE S&P, pages

843–862, 2017. 2, 3

[4] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly secure

multiparty computation. J. Cryptology, pages 58–151, 2017. 29

[5] Marina Blanton and Paolo Gasti. Secure and efficient protocols for iris and fingerprint

identification. In ESORICS, pages 190–209, 2011. 35

[6] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-

preserving computations. In ESORICS, pages 192–206, 2008. 2, 3

[7] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-

knowledge proofs on secret-shared data via fully linear pcps. In CRYPTO, pages 67–97,

2019. 2, 4, 5, 17, 18

[8] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully secure three-party

computation via sublinear distributed zero-knowledge proofs. In ACM CCS, pages 869–

886, 2019. 2, 4, 5, 18

39

https://eprint.iacr.org/2019/1298

BIBLIOGRAPHY

[9] Paul Bunn and Rafail Ostrovsky. Secure two-party k-means clustering. In ACM CCS,

pages 486–497, 2007. 2

[10] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. Fast secure computation for

small population over the internet. In ACM CCS, pages 677–694, 2018. 2

[11] Megha Byali, Carmit Hazay, Arpita Patra, and Swati Singla. Fast actively secure five-party

computation with security beyond abort. In ACM CCS, pages 1573–1590, 2019. 2, 7

[12] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. ASTRA: High

Throughput 3PC over Rings with Application to Secure Prediction. In ACM CCSW@CCS,

2019. URL https://eprint.iacr.org/2019/429. 2, 3, 7, 28

[13] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Trident: Efficient 4PC Framework

for Privacy Preserving Machine Learning. NDSS, 2020. URL https://arxiv.org/abs/

1912.02631. 4, 7

[14] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and

Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. In CRYPTO,

pages 34–64, 2018. 2

[15] Richard Cleve. Limits on the security of coin flips when half the processors are faulty

(extended abstract). In ACM STOC, pages 364–369, 1986. 3

[16] Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. Characterization of secure mul-

tiparty computation without broadcast. J. Cryptology, pages 587–609, 2018. 7

[17] Cryptography and Privacy Engineering Group at TU Darmstadt. ENCRYPTO Utils.

https://github.com/encryptogroup/ENCRYPTO_utils, 2017. 35

[18] Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Yet another compiler for active security

or: Efficient MPC over arbitrary rings. In CRYPTO, pages 799–829, 2018. 3

[19] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient

mixed-protocol secure two-party computation. In NDSS, 2015. 4

[20] Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative scientific computa-

tions. In IEEE CSFW-14, pages 273–294, 2001. 2

40

https://eprint.iacr.org/2019/429
https://arxiv.org/abs/1912.02631
https://arxiv.org/abs/1912.02631
https://github.com/encryptogroup/ENCRYPTO_utils

BIBLIOGRAPHY

[21] Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille Pullonen, Joonas Puura, and Mark

Simkin. Use your brain! arithmetic 3pc for any modulus with active security. Cryptology

ePrint Archive, Report 2019/164, 2019. https://eprint.iacr.org/2019/164. 2, 3

[22] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald Lagendijk, and

Tomas Toft. Privacy-preserving face recognition. In PETS, pages 235–253, 2009. 35

[23] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-

party computation for malicious adversaries and an honest majority. In EUROCRYPT,

pages 225–255, 2017. 2

[24] Wilko Henecka and Thomas Schneider. Faster secure two-party computation with less

memory. In ASIA CCS, pages 437–446, 2013. 35

[25] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehren-

berg. TASTY: tool for automating secure two-party computations. In ACM CCS, pages

451–462, 2010. 35

[26] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure

computation with minimal interaction, revisited. In CRYPTO, pages 359–378, 2015. 2

[27] Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving distributed k-means

clustering over arbitrarily partitioned data. In ACM SIGKDD, pages 593–599, 2005. 2

[28] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:

//yann.lecun.com/exdb/mnist/. vi, 37, 38

[29] Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic

circuits with malicious adversaries and an honest-majority. In ACM CCS, pages 259–276,

2017. 2

[30] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. J. Cryptology, pages

177–206, 2002. 2

[31] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine

learning. In ACM CCS, pages 35–52, 2018. 2, 7, 23, 28, 37, 38

[32] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving

machine learning. In IEEE S&P, pages 19–38, 2017. 4, 7, 28, 36, 37

41

https://eprint.iacr.org/2019/164
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY

[33] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party computation:

The garbled circuit approach. In ACM CCS, pages 591–602, 2015. 2

[34] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-

majority MPC by batchwise multiplication verification. In ACNS, pages 321–339, 2018.

2

[35] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-party com-

putation. In CRYPTO, pages 425–458, 2018. 2

[36] Arpita Patra and Ajith Suresh. BLAZE: Blazing Fast Privacy-Preserving Machine Learn-

ing. NDSS, 2020. URL https://eprint.iacr.org/2020/042. 2, 4, 7, 37, 38

[37] Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and Jerome P. Reiter. Privacy preserving

regression modelling via distributed computation. In ACM SIGKDD, pages 677–682, 2004.

2

[38] Aleksandra B. Slavkovic, Yuval Nardi, and Matthew M. Tibbits. Secure logistic regression

of horizontally and vertically partitioned distributed databases. In ICDM, pages 723–728,

2007. 2

[39] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. Privacy-preserving SVM classification.

Knowl. Inf. Syst., pages 161–178, 2008. 2

[40] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure compu-

tation for neural network training. PoPETs, pages 26–49, 2019. 2

[41] Hwanjo Yu, Jaideep Vaidya, and Xiaoqian Jiang. Privacy-preserving SVM classification

on vertically partitioned data. In PAKDD, pages 647–656, 2006. 2

42

https://eprint.iacr.org/2020/042

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Related Work
	1.2 Robustness in Machine Learning
	1.2.1 Computation over Rings

	1.3 Our Contribution
	1.4 Organization of Thesis

	2 Preliminaries
	2.1 GOD functionality
	2.2 Shared Key Setup
	2.3 Collision Resistant Hash
	2.4 Commitment Scheme

	3 Robust 3PC Protocols
	3.1 Sharing Semantics
	3.1.1 Linearity of the sharing schemes

	3.2 Joint Message Passing primitive
	3.3 Input Sharing Protocol
	3.4 Joint Sharing Protocol
	3.5 Addition Protocol
	3.6 Multiplication Protocol
	3.7 Output Reconstruction
	3.8 Input Sharing and Output Reconstruction in an SOC setting
	3.9 The Complete 3PC

	4 Building Blocks for PPML
	4.1 MSB Extraction
	4.1.1 Bit2A Conversion protocol

	4.2 Bit Injection
	4.3 Dot Product
	4.4 Truncation
	4.5 Dot Product with Truncation
	4.6 Secure Comparison
	4.7 Activation Function

	5 Security of the 3PC Constructions
	5.0.1 Joint Message Passing (jmp) Protocol
	5.0.2 Sharing Protocol
	5.0.2.1 Joint Sharing Protocol

	5.0.3 Multiplication Protocol
	5.0.4 Reconstruction Protocol
	5.0.5 Truncation

	6 PPML Applications
	Bibliography

