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Abstract

Privacy-preserving machine learning (PPML) via Secure Multi-party Computation (MPC) has

gained momentum in the recent past. Assuming a minimal network of pair-wise private chan-

nels, we propose an efficient four-party PPML framework over rings Z2` , FLASH, the first of

its kind in the regime of PPML framework, that achieves the strongest security notion of Guar-

anteed Output Delivery (all parties obtain the output irrespective of adversary’s behaviour).

The state of the art ML frameworks such as ABY3 by Mohassel et.al (ACM CCS’18) and

SecureNN by Wagh et.al (PETS’19) operate in the setting of 3 parties with one malicious

corruption but achieve the weaker security guarantee of abort. We demonstrate PPML with

real-time efficiency, using the following custom-made tools that overcome the limitations of the

aforementioned state-of-the-art– (a) dot product, which is independent of the vector size unlike

the state-of-the-art ABY3, SecureNN and ASTRA by Chaudhari et.al (ACM CCSW’19), all of

which have linear dependence on the vector size.(b) Truncation, which is constant round and

free of circuits like Ripple Carry Adder (RCA), unlike ABY3 which uses these circuits and has

round complexity of the order of depth of these circuits. We then exhibit the application of our

FLASH framework in the secure server-aided prediction of vital algorithms– Linear Regression,

Logistic Regression, Deep Neural Networks, and Binarized Neural Networks. We substantiate

our theoretical claims through improvement in benchmarks of the aforementioned algorithms

when compared with the current best framework ABY3. All the protocols are implemented

over a 64-bit ring in LAN and WAN. Our experiments demonstrate that, for MNIST dataset,

the improvement (in terms of throughput) ranges from 11× to 1395× over Local Area Network

(LAN) and Wide Area Network (WAN) together.
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Chapter 1

Introduction

Secure Multi-party Computation (MPC) [Yao82, BGW88, GMW87, IKNP03, DPSZ12] has

evolved over the years in its pursuit of enabling a set of n mutually distrusting parties to

compute a joint function f , in a way that no coalition of t parties can disrupt the true output of

computation (correctness) or learn any information beyond what is revealed by the output of the

computation (privacy). The area of secure MPC can be broadly categorized into honest majority

[BGW88, MRZ15, ABF+16, BJPR18] and dishonest majority [Yao82, DPSZ12, DKL+13, MF06,

GMW87]. Over the years, MPC has progressed from being simply of theoretical interest to

providing real-time practical efficiency. In terms of efficient constructions, the special case of

dishonest-majority setting, namely two-party computation (2PC) [Yao82, LP07, Lin16, NO16]

has been in limelight over the last decade. However lately, the setting of three parties (3PC)

[ABF+17, ABF+16, MRZ15, BJPR18] and four parties (4PC) [IKKPC15, BJPR18, GRW18]

have drawn phenomenal attention due to the customization in techniques and efficiency that

the constructions have to offer. In this direction, the area of MPC in a small domain with an

honest majority is quite fascinating due to variety of reasons mentioned below.

First, the most widely known real-time applications such as Danish Sugar-Beet Auction

[BCD+09], Distributed Credential Encryption [MRZ15], Fair-play MPC [BNP08], VIFF [Gei07],

Sharemind [BLW08] explore MPC with 3 parties. Second, the expensive public-key primitives

such as Oblivious Transfer (OT) known to be necessary for 2PC can be eliminated in the honest

majority setting. Thus, the resulting constructions use only light-weight primitives and can

even be information-theoretically secure. Third, the recent advances in secure Machine Learning

(ML) have indicated real-time applications involving a small number of parties [MZ17, MRSV18,

WGC19, CCPS19, MR18, AFS19]. Furthermore, the stronger security notions of fairness (the

adversary gets the output if and only if the honest parties do) and robustness/guaranteed

output delivery (GOD) (all parties obtain the output irrespective of adversary’s behavior) are

1



guaranteed only in the honest majority setting [Cle86].

1.1 Related Work

In the regime of MPC over a small domain, interesting works that achieve guaranteed output

delivery have been carried out mainly in the class of low-latency (consisting of small constant

number of rounds) protocols [PR18, BJPR18, BHPS19]. However, in the view of practical

efficiency, high throughput (light in communication and computation complexity) is desirable.

Yet the literature of high throughput protocols has seen limited work [GRW18] in guaranteeing

security notions stronger than abort. The existing state-of-the-art includes notable works that

are highly efficient, but trade security for efficiency [ABF+17, AFL+16, ABF+16, CGH+18,

FLNW17, NV18]. In this work, we attempt to bridge the gap between the security achieved

and the corresponding efficiency, thus providing highly efficient PPML framework using robust

4PC as the backbone. Below we summarize the contributions closest to our setting.

The study of MPC in high-throughput networks accelerated with the celebrated work of

[DSZ15]. The works of [ABF+17, AFL+16, ABF+16, CGH+18, FLNW17, NV18] swiftly fol-

lowed. These works focus on the evaluation of arithmetic circuits over rings or finite fields.

[AFL+16] is semi-honest and operates over both rings and fields. The works of [ABF+17,

FLNW17, DOS18] achieve abort security over rings with one malicious corruption. A compiler

to transform semi-honest security to malicious-security was proposed by [CGH+18]. This con-

version is obtained at twice the cost of the semi-honest protocol. The work of [GRW18] explores

4PC and the security notions of fairness and guaranteed output delivery. However, [GRW18]

is dual execution based and relies on expensive public-key primitives and broadcast channel to

achieve guaranteed output delivery. [NV18] improvises over [CGH+18] by presenting a batch

multiplication technique and additionally explores the notion of fairness.

The influence of ML has found its way in a broad range of areas such as facial recogni-

tion [SKP15], banking, medicine [EKN+17], recommendation systems and so on. Consequently,

technology giants such as Amazon, Google are providing ML as a service (MLaaS) for both train-

ing and prediction purposes, where the parties outsource their computation to a set of servers.

However, for confidential purposes, government regulations and competitive edge, such data

cannot be made publicly available. Thus, there is a need for privacy of data while still enabling

customers to perform training and prediction. This need for privacy has given rise to the culmi-

nation of MPC and ML. Recent works [MZ17, MR18, MRSV18, WGC19, CCPS19, RWT+18]

have shown the need of MPC in achieving efficient techniques for privacy-preserving machine

learning in server aided setting, where parties outsource their data to a set of servers and

the servers compute for purposes of training or prediction. There have been works dedicated

2



to linear regression [MR18, CCPS19, MZ17], logistic regression [MR18, CCPS19, MZ17] and

neural networks [MR18, MZ17, WGC19, JVC18, RWT+18] for both training and prediction.

The first work to consider secure neural network prediction was the work of Gilad-Barach

et al. [DGBL+16], which used homomorphic encryption techniques to provide secure predic-

tion. To improve efficiency of the neural network, they approximated non-linear functions,

such as the ReLU activation function to a quadratic function. Since this approximation result

led to loss in accuracy, follow up works approximated ReLU using higher degree polynomi-

als [HAJ+17], but incurred higher cost. The work of SecureML [MZ17] provided protocols

for secure training and prediction of neural networks with MPC friendly non-linear activation

functions, using a combination of arithmetic and garbled circuit techniques. They provided

computational security against 2 party (2PC) one semi-honest corruption setting. The work

of MiniONN [LJLA17] further optimized the protocols of SecureML [MZ17] for the case of

prediction in 2PC against one semi-honest corruption. Concurrent to this work, the works of

Chameleon [RWT+18] and Gazelle [JVC18] provided secure prediction protocols in the 3PC

and 2PC setting, respectively. Chameleon removed the need of expensive oblivious transfer

protocols by using a trusted third party as a dealer, while Gazelle focused on making the linear

layers (such as matrix multiplication and convolution) more efficient in terms of communication

complexity by providing specialized packing schemes for additively homomorphic encryption

schemes. Later ABY3 [MR18] and SecureNN [WGC19] proposed protocols for 3 party against

one corruption setting to achieve better throughput (# queries/sec) by assuming one additional

honest party. SecureNN [WGC19] proposed protocols in the semi-honest setting and a new way

to tackle division over rings which did not require a division garble circuit as used by earlier

works [MZ17] for training and prediction. ABY3 [MR18] took it a step up and proposed a

general framework to efficiently switch between the 3 worlds of Arithmetic, Boolean and Yao

and showed it’s application to neural network training and prediction in the stronger security

notion of malicious adversary. Recent works have also dived into variants of neural networks

like Deep Neural Networks (DNNs) [MR18, MMH+19, RWT+18], Convolutional Neural Net-

works (CNNs) [WGC19, RWT+18, JVC18], Binarized Neural Networks (BNNs) [KCY+18] and

Quantized Neural Networks (QNNs) [ADAM19, JBAP19]. DNNs and CNNs have become one

of the most powerful machine learning models in recent history with amount of data available

to train them and are one of the most widely considered models for training and prediction

tasks for low power devices. MOBIUS [KCY+18] was the first to explore secure prediction

in BNNs for semi-honest 2PC. Later [MNBN19] came up with different set of protocols to

tackle BNN, but some of the stages in their protocols primarily depended on fields. There

have also been substantial work on other machine learning algorithms like decision trees and
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k-means clustering. Private decision tree evaluation was first considered in [JPVE07], with

application to private evaluation of remote diagnostic programs. Bost et al. [BPTG15] used

additively homomorphic encryption to evaluate the decision tree expressed as a polynomial.

Recently, Wu et al. [WTMK16], Tai et al. [TMZC17] and Joye and Salehi [JS18] improved the

state-of-the-art of private decision tree evaluation protocols. These works relied on additively

homomorphic encryption using Diffie-Hellman assumption and presented protocols that achieve

security against semi-honest adversaries or malicious clients. Tai et al.[TMZC17] eliminated

the dependency (exponential in size) on the depth of the tree that was present in [WTMK16]

by representing decision trees as linear functions. This led to enormous improvement when

large decision trees were considered. [ÁMJ+19, AFS19] further improved upon [WTMK16] and

[TMZC17] and proposed protocols with the non-exponential dependency for secure DT evalu-

ation for 2PC in both semi-honest and malicious setting. Similarly, earlier works on k-means

clustering (k-MC) [PR07, GR05] proposed solutions based on MPC, but lacked in efficiency and

implementation. Recently, efforts have been made towards a more efficient secure k-MC. [SK09]

proposed secure k-MC for n-party setting and [MZR11] tackled k-MC in 3PC with one semi

honest corruption.

1.2 Need for Robustness in Machine Learning

In this work, we strongly motivate the need for robustness in privacy-preserving machine learn-

ing as a service (MLaaS) and then go on to explore the setting of 4PC and demonstrate that

our constructions are highly efficient compared to the existing state of the art 3PC ML frame-

works. The guarantee of robustness is of utmost importance in the area of MLaaS. Consider the

following scenario where an entity owns a trained ML model and wants to provide prediction as

a service. The model owner outsources her trained model parameters to a set of three servers,

which uses one of the aforementioned 3PC ML frameworks for secure prediction. These frame-

works keep the privacy of the model parameters and the queries of the clients intact even when

one of the servers is maliciously corrupted, but cannot guarantee an output to a given client’s

query as the adversary can cause the protocol to abort. Thus in the practical setting, one

simple strategy of the adversary would be to make the protocol abort for all the client queries.

Eventually, this would steer the entity towards loss of monetary value and trust of the clients.

The specific problem of MPC with 4-parties tolerating one corruption is of special interest to

us. There are three primary motivations for us to consider this setting for achieving GOD–

(a) avoid theoretical necessity of broadcast channel; (b) avoid expansive public-key primitives

and (c) communication efficiency. We elaborate these points below. The popular setting of

3PC, when considered to achieve robustness, suffers from the necessity of an expensive robust
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broadcast channel as proven in the result of [CL14]. By moving to 4PC from 3PC, the need for

a broadcast channel is removed, which results in highly efficient constructions [BJPR18] when

compared to 3PC [CCPS19, MR18, WGC19]. Additionally in 4PC, for any message sent by

a party that needs an agreement, a simple honest majority rule over the residual three par-

ties suffices. Such a property cannot be counted on in 3PC which leads to the use of costly

workarounds than 4PC. [GRW18] was the most recent work to propose guaranteed output

delivery (robustness) in the 4PC setting. A major concern with GOD variant of multiplica-

tion protocol in [GRW18] was utilizing Digital Signatures and expensive public-key primitives:

Broadcast and a PKI Setup. Since our end goal is an efficient and robust framework for ML, we

let go their approach and propose a simple primitive coupled with a new secret sharing scheme

which requires only symmetric-key primitives to achieve robustness.

Moreover, the state-of-the-art 3PC ML frameworks, like ABY3 and ASTRA, focused on

highly efficient frameworks for machine learning in the semi-honest setting but suffered from

efficiency loss for the primitives dot product, MSB extraction, and truncation in the malicious

setting. For example, many of the widely used ML algorithms like Linear Regression, Logistic

Regression, and Neural Networks use dot product computation as its building block. While the

above frameworks incur a communication cost which is linearly dependent on the underlying

size of the feature vector, we are able to eliminate this limitation and provide a dot product

protocol whose communication is independent of the vector size. Additionally, we also make

almost all our building blocks constant round and free of any circuits, unlike ABY3 which uses

expensive non-constant round circuits like Ripple Carry Adder (RCA) in their protocols.

1.2.1 Computation over Rings

Lastly, we choose build our framework over rings. Most of the computer architectures, Intel

x64 for example, have their primitive data-types over rings. These architectures have specially

designed hardware which can support fast and efficient arithmetic operations over rings. This

led the way for efficient protocols over rings [BLW08, DOS18, ABF+17, EOP+19, CCPS19,

BBC+19] as opposed to fields, which are usually 10-20x slower since they have to rely on exter-

nal libraries. Thus, our protocols over rings give the additional advantage of faster performance

when implemented in the real-world architectures.

1.3 Our Contribution

We propose FLASH, the first robust framework for privacy-preserving machine learning in the

four party (4PC) honest majority setting over a ring Z2` . We summarize our contributions
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below:

1.3.1 Robust 4PC protocol

We present an efficient and robust MPC protocol for four parties tolerating one malicious cor-

ruption. Concretely, for the multiplication operation, we require an overall communication of

just 12 elements in the amortized sense. This is ≈ 2× improvement in terms of communication

over the state-of-the-art protocol of [GRW18]. Moreover, our solution forgoes the need for Dig-

ital Signatures and expensive primitives like Broadcast and Public-Key Setup, unlike [GRW18].

The removal of this additional setup of Digital Signatures, PKI and Broadcast primarily comes

from two factors – i) a new secret sharing scheme which we call as mirrored-sharing, enables

two disjoint sets of parties to perform the computation and perform an effective validation in

a single execution, and ii) a simple yet novel bi-convey primitive, which enables two designated

parties, say S1, S2, to send a value to a designated party R with the help of a fourth party T .

The bi-convey primitive guarantees that if both S1 and S2 are honest, then party R will

receive the value x for sure. If not, either the party R will be able to obtain x or both the

parties R and T identify that one among S1, S2 is corrupt. Our construction for the bi-convey

primitive requires a commitment scheme as the only cryptographic tool, which is considered

inexpensive. Moreover, the commitments can be clubbed together for several instances and

thus the cost of commitment gets amortized as well. Looking ahead, most of our constructions

are designed in such a way that every message to be communicated will be made available to

at least two parties and thus we can use the bi-convey primitive for the same.

1.3.2 Building Blocks for Machine Learning

We propose practically efficient building blocks that form the base for secure prediction. While

ABY3 and SecureNN propose building blocks for security with abort, ASTRA elevates the

security of these blocks from abort to fairness. We further strengthen the security and make all

the building blocks robust. Additionally, we achieve significant efficiency improvements in all

the building blocks due to the aid provided by an additional honest party in our setting. The

improvements for each block are summarized as follows:

• Dot Product: The aforementioned 3PC frameworks involve communication, linear in the

order of vector size, we overcome this limitation with an efficient technique, independent

of the vector size. This independence stems from the peculiar structure of our mirrored

sharing alongside the multiplication protocol in 4PC.
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Protocol Equation
ABY3 ASTRA FLASH

Rounds Comm. Rounds Comm. Rounds Comm.

Multiplication JxK.JyK→ Jx.yK 5 21` 7 25` 5 12`

Dot Product J~x� ~yK = J
∑d

i=1 xiyiK 5 21m` 7 23m`+ 2` 5 12`

MSB Extraction JxK→ Jmsb(x)KB log `+ 5 63` 6 ≈ 9κ` log `+ 5 28`

Truncation JxK.JyK→ J(xy)tK 2`− 1 ≈ 108` − − 5 14`

Bit Conversion JbKB → JbK 6 42` − − 5 14`

Bit Insertion JbKBJxK→ JbxK 7 63` − − 5 18`

Table 1.1: Comparison of FLASH framework with ABY3 and ASTRA; `, κ and m denote the
ring size, security parameter and number of features respectively.

• Truncation: Overflow caused by repeated multiplications may cause accuracy loss which

can be prevented with truncation. Truncation has been expensive in the 3PC framework,

especially ABY3 uses a Ripple Carry Adder (RCA) circuit which consumes around 108

ring elements to achieve MSB Extraction. We propose a simple yet efficient technique

with a total of just 14 ring elements and does not require any circuits. The technical

novelty comes from the specific roles played by the parties, in conjunction with the mul-

tiplication protocol of 4PC. We defer the detailed analysis of our truncation protocol and

the corresponding roles of the parties to Section 4.4.

• MSB Extraction: Comparing two arithmetic values in a privacy-preserving manner is one

of the major hurdles in realizing efficient privacy-preserving ML algorithms. The state

of the art SecureML[MZ17] and ABY3 made an effort in this direction with the use of

a garbled circuit technique and a boolean parallel prefix adder (PPA) respectively. We

extend the technique proposed by ABY3 of using a boolean PPA circuit for our 4PC

setting. We provide a detailed analysis in Section 4.3 of how the boolean PPA circuit is

instantiated in our setting.

• Bit Conversion and Insertion: Operating interchangeably in the arithmetic and boolean

worlds often demand conversion of a boolean bit to its arithmetic equivalent (bit conver-

sion) or the multiplication of a boolean bit with an arithmetic value (bit insertion). We

propose efficient techniques to achieve the same with innovations coming from our mir-

rored secret sharing and its linearity property. Ours is the first work in 4PC that proposes

these transformations and is even superior to the state-of-the-art 3PC ML frameworks

ABY3 and ASTRA, in terms of both efficiency and security guarantee. Table 1.1 provides
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a detailed comparison in terms of communication (Comm.) and rounds with ABY3 and

ASTRA.

1.3.3 Secure Prediction

We aim at secure prediction in a server-aided setting. Here, the model owner (M) holds a set

of trained model parameters which are used to predict output to client’s (C) input query, while

preserving the privacy of the inputs of both the parties. The servers perform computation and

reconstruct the output towards the client. Security is provided against a malicious adversary

corrupting one server along with either model owner or client. We extend our techniques for

vital machine learning algorithms namely: i) Linear Regression, ii) Logistic Regression, iii) Deep

Neural Network (DNN) and iv) Binarized Neural Network (BNN). While Linear Regression is

extensively used in Market Analytics, Logistic Regression is used in a variety of applications like

customer segmentation, insurance fraud detection and so on. Despite being computationally

cheap and smaller in size, the performance accuracy of BNNs is comparable to that of deep

neural networks. They are the go-to networks for running neural networks on low-end devices.

These use cases exhibit the importance of these algorithms in real-time and we make an effort

to efficiently perform the secure evaluation for these algorithms.

ML Algorithm

Setting

LAN WAN

Linear Regression 1395× 124×

Logistic Regression 400× 29×

Deep Neural Network 314× 13×

Binarized Neural Network 268× 11.5×

Table 1.2: Improvement over ABY3 in terms of throughput for MNIST dataset

We provide implementation results for all our protocols over a ring Z264 . We summarize

the efficiency gain of our protocols over the state-of-the-art ABY3 and ASTRA, albeit more

elaborate details follow in Section 6.2. The latency and throughput (the number of operations

per unit time) of the protocols are measured in the LAN (1Gbps) and WAN (20Mbps) setting

while communication complexity is measured independent of the network.

The improvements for DNN and BNN stated in Table 1.2 are for a network having 2 hidden

layers, each layer consisting of 128 nodes. Table 1.2 clearly shows that apart from making

the building blocks robust, our framework also achieves impressive improvements over ABY3

framework.
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1.3.4 Extension to 4PC Abort

As an extension, we also propose protocols for the weaker abort setting (honest parties abort if

the adversary deviates from the protocol). The abort variant for the aforementioned protocols

are achieved by simply tweaking the bi-convey primitive present in the robust protocols. We

give a detailed analysis and comparison with state-of-the-art works in Section 4.7.

1.4 Organization of Thesis:

The thesis is written as follows:

i) We begin by introducing the preliminaries in chapter 2 where we define our security model

and the security notion of Guaranteed Output Delivery. We also briefly describe well

defined primitives like collision resistant hash function, commitment scheme, etc.

ii) Chapter 3 begins with description of our new sharing scheme called ”mirrored sharing”. We

then describe the construction of our ”Bi-Convey” primitive that acts as the backbone

for all our protocols. The protocols for addition and multiplication are also described in

the same chapter.

iii) Chapter 4 provides the details of ML building blocks such as dot product, MSB extraction,

truncation, etc which are essential for our robust machine learning framework.

iv) The final chapter provides the benchmarking results of our framework for different datasets

over LAN and WAN setting strengthening our earlier claims.
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Chapter 2

Preliminaries

We consider a set of four parties P = {V1,V2,E1,E2} connected by pair-wise private and au-

thentic channels in a synchronous network. E1, E2 define the role of the parties as evaluators in

the computation while parties V1, V2 enact the role of verifiers in the computation. We use E

and V to denote the set of evaluators {E1,E2} and verifiers {V1,V2} respectively. The function

f to be evaluated is expressed as a circuit ckt, with a publicly known topology and is evaluated

over either an arithmetic ring Z2` or a Boolean ring Z21 , consisting of 2-input addition and

multiplication gates. d denotes the multiplicative depth of ckt. We also use a collision-resistant

hash function, denoted by H() and a commitment scheme, denoted by com(), in our protocols

for practical efficiency. The details of the same can be found in Section 2.3 and 2.4 respectively.

2.1 Security Model:

For MPC, each party is modelled as a non-uniform probabilistic polynomial time (PPT) inter-

active Turing Machine. We operate in a static security model with an honest majority, where

a PPT adversary A can corrupt a party at the onset of the protocol. A can be malicious in

our setting i.e, the corrupt parties can arbitrarily deviate from the protocol specification. The

computational security parameter is denoted by κ.

2.1.1 Robustness or Guaranteed Output Delivery:

A protocol is said to be robust if all the parties can compute the output of the protocol irrespec-

tive of the behaviour of the adversary. We prove the security of our protocols in the standard

real/ideal world paradigm where we compare the view of the adversary in the real world and

ideal world. In an ideal world execution, each party sends its input to an incorruptible trusted

third party (TTP), who computes the given function f(·) using the inputs received and sends

back the respective output to each party. The ideal world execution involves a set of parties P,
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where |P| = 4, an ideal adversary S who may corrupt one of the parties, and a functionality

F. The real world execution involves the PPT set of parties P, and a real world adversary

A who may corrupt at most one of the parties. We let IDEALF,S(1
κ, z) denote the output of

the honest parties and the view of the ideal-world adversary S from the ideal execution with

respect to the security parameter 1κ and auxiliary input z. Similarly, let REALπ,S(1
κ, z) denote

the output of the honest parties and the view of the adversary A from the real execution with

respect to the security parameter and auxiliary input z. We say that π securely realizes F if for

every PPT real world adversary A, there exists a PPT ideal world adversary S, corrupting the

same parties, such that the following two distributions are computationally indistinguishable

IDEALF,S
c
≈ REALπ,S. We define an ideal world functionality Frobust that realizes a function f

with guaranteed output delivery in the 4PC setting in Fig 2.1 below.

Frobust receives input (Input, x) from party P ∈ {V1,V2,E1,E2}. While honest parties send their

input correctly, corrupt parties may send arbitrary inputs as instructed by the adversary A.

– For every party P , Frobust sets x to some predetermined value if either x = ∗ or x is outside the

domain of values allowed for input of P .

–Frobust computes output y = f(x1, x2, x3, x4) and sends (Output, y) to all the parties in

{V1,V2,E1,E2}.

Figure 2.1: Functionality Frobust for 4PC protocol

2.2 Shared Key Setup:

We adopt a one-time key setup to minimize the overall communication of the protocol. We

use three types of key setup namely, between i) a pair of parties, ii) a committee of three

parties and iii) all the four parties. In each type, the parties in consideration can run an MPC

protocol to agree on a randomness and use it as the key for pseudo-random function (PRF) to

derive any subsequent co-related randomness. We model the protocol for the shared key setup

as functionality Fsetup (Fig 2.2) that establishes the shared randomness among the 4 parties

(V1,V2,E1,E2).

Fsetup interacts with the parties in P and the adversary S. Fsetup picks random keys kE, kV, kE,V1 ,

kE,V2 , kV,E1 , kV,E2 , kP ∈ {0, 1}κ. Let yi denote the keys corresponding to party Pi. Then

– yi = (kV, kE,V1 , kV,E1 , kV,E2 , kP) when Pi = V1.

– yi = (kV, kE,V2 , kV,E1 , kV,E2 , kP) when Pi = V2.

– yi = (kE, kV,E1 , kE,V1 , kE,V2 , kP) when Pi = E1.
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– yi = (kE, kV,E2 , kE,V1 , kE,V2 , kP) when Pi = E2.

Output: Fsetup sends the keys yi to party Pi.

Figure 2.2: Functionality Fsetup

2.3 Collision Resistant Hash:

Consider a hash function family H = K × L → Y. The hash function H is said to be collision

resistant if for all probabilistic polynomial-time adversaries A, given the description of Hk

where k ∈R K, there exists a negligible function negl() such that Pr[(x1, x2) ← A(k) : (x1 6=
x2) ∧ Hk(x1) = Hk(x2)] ≤ negl(κ), where m = poly(κ) and x1, x2 ∈R {0, 1}m.

2.4 Commitment Scheme:

We use com(x) to denote commitment of a value x. The commitment scheme (com()) pos-

sess two properties, namely – i) hiding, which ensures the privacy of value x given just the

commitment, and ii) binding, which prevents a corrupt party from opening the commitment

to a different value x′ 6= x. The commitment scheme can be implemented via a hash func-

tion H(), whose security can be proved in the random-oracle model (ROM). For example,

(c, o) = (H(x||r), x||r) = Com(x; r).
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Chapter 3

Robust 4PC

In this section, we present a robust and efficient 4PC protocol with security against one ma-

licious adversary. Our protocol incurs 12 ring elements per multiplication and removes the

need for any additional setup of Broadcast, Digital Signatures, and Public-Key Setup, unlike

[GRW18]. We begin this section by introducing our sharing semantics followed by giving a high

level overview of our input sharing phase of our protocol. We then introduce our most crucial

building block ”bi-convey primitive”, which forms the core for the majority of our constructions.

As mentioned in the introduction, bi-convey primitive enables two designated parties to send a

value x to the third party with the aid of fourth party. The remainder of the section describes

a high-level overview of our circuit evaluation and output computation stages of our protocol.

3.1 Sharing Semantics

We use additive secret sharing of secrets over either an arithmetic ring Z2` or a Boolean ring

Z21 . We define two variants of secret sharing that are used in this work.

• Additive sharing ([·]-sharing): A value x is additively shared between two parties if

x = x1 + x2, where one party holds the first share x1 while the other party holds x2. We

use [x] = (x1, x2) to denote [·]-sharing of x.

• Mirrored sharing (J·K-sharing): A value x is said to be J·K-shared among the parties in

P if:

– There exist values σx, µx such that µx = x+ σx.

– σx is [·]-shared among parties in E as [σx]E1 = σ1
x and [σx]E2 = σ2

x, while parties in V

hold both σ1
x and σ2

x.
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– µx is [·]-shared among parties in V as [µx]V1 = µ1
x and [µx]V2 = µ2

x, while parties in E

hold both µ1
x and µ2

x.

The shares of each party can be summarized as:

E1 : JxKE1
= (σ1

x, µ
1
x, µ

2
x) V1 : JxKV1

= (σ1
x, σ

2
x, µ

1
x)

E2 : JxKE2
= (σ2

x, µ
1
x, µ

2
x) V2 : JxKV2

= (σ1
x, σ

2
x, µ

2
x)

We use the notation JxK = ([σx], [µx]) to denote J·K-sharing of value x. Sharing techniques

and protocols for the boolean variant (Z21) are identical to their arithmetic counterparts

apart from addition and subtraction operations being replaced with XOR and multipli-

cation with AND. We use J·KB to denote the sharing over a boolean ring.

Unless specified, the sharing is done over Z2` .

• Linearity of [·]-sharing and J·K-sharing: Given [x] = (x1, x2), [y] = (y1, y2) and public

constants c1, c2 ∈ Z2` , we have

[c1x+ c2y] = (c1x
1 + c2y

1, c1x
2 + c2y

2) = c1[x] + c2[y]

Thus, [c1x + c2y] and c1[x] + c2[y] are equivalent and implies that parties can compute

shares of any linear function of [·]-shared values locally. It is easy to see that the linearity

property extends to our J·K-sharing as well.

3.2 Input Sharing

The goal is to robustly generate a J·K-sharing of a party’s input. We call a party who wants

to share the input as a Dealer. On a high level, if a dealer D wants to share a value x, parties

start by locally sampling σ1
x, σ

2
x and µ1

x, according to the defined sharing semantics. The dealer

then sets the last share as µ2
x = x + σx − µ1

x. In case when the dealer is a verifier (say V1),

we enforce V1 to send µ2
x to both the evaluators and com(µ2

x) to V2. Now, all parties except

V1, exchange com(µ2
x) and compute the majority. If there exists no majority then V1 is known

to be corrupt and eliminated from the computation. The remaining parties can then run a

semi-honest three-party protocol to compute the output. A similar idea follows for the case

when the dealer is an evaluator. We provide the formal details of our Πsh and the corresponding

ideal functionality Fsh in Fig 3.2 and Fig 3.1 respectively.
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– Fsh receives x from party/ dealer D who wants to generate J·K-sharing of x. Other parties input

⊥ to the functionality.

– Fsh randomly samples σ1
x, σ

2
x and µ1

x ∈ Z2` and set µ2
x = x+ σ1

x + σ2
x − µ1

x.

– The output shares sent by Fmul are as follows:

V1: (σ1
x, σ

2
x, µ

1
x), V2: (σ1

x, σ
2
x, µ

2
x)

E1: (σ1
x, µ

1
x, µ

2
x), E2: (σ2

x, µ
1
x, µ

2
x)

– Dealer D also receives the fourth missing share from Fsh

Figure 3.1: Functionality Fsh: Ideal Functionality for Input Sharing of x

• Input: Party D inputs value x while others input ⊥.

• Output: Parties obtain JxK as the output.

– If D = E1: Parties in V and E1 locally sample σ1
x, while all the parties in P locally sample σ2

x.

Parties in V and E1 locally compute σx = σ1
x + σ2

x. Similar steps are done for D = E2.

– If D = Vi for i ∈ {1, 2}: Parties in V and E1 locally sample σ1
x, while parties in V and E2

locally sample σ2
x. Parties in V locally compute σx = σ1

x + σ2
x.

– If D = V1: Party V1 computes µx = x+ σx. Parties in E and V1 locally sample µ1
x. Party V1

computes and sends µ2
x = µx − µ1

x to parties in E and V2. Parties in E and V2 exchange the

received copy of µ2
x. If there exists no majority, then they identify V1 to be corrupt and engage

in semi-honest 3PC excluding V1 (with default input for V1). Else, they set µ2
x to the computed

majority. Similar steps are done for D = V2.

– If D = Ei for i ∈ {1, 2}: Party Ei computes µx = x+ σx. Parties in E and V1 locally sample

µ1
x. Party Ei computes and sends µ2

x = µx − µ1
x to V2 and the co-evaluator. Ei sends com(µ2

x) to

V1. Parties other than the dealer exchange the commitment of µ2
x to compute majority (the

co-evaluator and V2 also exchange their copies of µ2
x). If no majority exists, then they identify

Ei to be corrupt and engage in semi-honest 3PC excluding Ei (with default input for Ei). Else,

they set µ2
x to the computed majority.

Figure 3.2: Πsh(D, x): Protocol to generate JxK by dealer D.

Lemma 1. Each party either commits to his/her input in Πsh or is identified to be corrupt.

Proof. In Πsh, the mirrored sharing of inputs by each party is as in Πsh with an additional step

of identifying the adversary in case of mismatch. The step of eliminating the adversary uses the

computation of honest majority on the dispersed shares. Since only, one corruption can occur,

an honest party’s input always gets committed irrespective of the behavior of the adversary.

However, the case of no honest majority can occur only when the dealer is corrupt. Hence only

a corrupt party is eliminated if she does not commit to her input and a default value is taken.
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The uniqueness of the share also follows from collision resistant hash. Else, the chosen input is

committed.

3.2.1 Security of Input Sharing

We begin by first discussing the general strategy of simulation for the entire circuit to tackle the

corrupt party. The simulator S for the entire circuit begins by simulating the Fsetup functionality

and giving the keys to the adversary. This way the keys used in the PRF setup by the corrupt

party during the course of circuit evaluation is also known to the simulator. During the input

sharing phase the simulator on receiving the input shares from the corrupt party, on behalf of

the honest parties, is able to extract the adversary’s input using the keys given to him. This

is possible because the inputs of each party are shared in mirrored sharing format (Section

3.1). Additionally the simulator, on behalf of the honest parties set their inputs as 0. The

simulator S now knows the inputs of all the parties and can compute all the intermediate

values of each one of the building block in the circuit as well as the final output of the circuit in

clear. Additionally the corrupt party receives only the input shares of the honest parties and

hence cannot distinguish if the underlying value was 0 (received from the simulator) or the true

values of the honest parties.

In this section, we describe a detailed security proof for our Πsh protocol. Specifically, we

prove Theorem 1 in the Fsetup hybrid model.

Theorem 1. Assuming one-way functions, the protocol Πsh securely realizes the functionality

Fsh in the Fsetup hybrid model against one malicious corruption in the standard model.

We describe the simulator for the case of a corrupt V1 and a corrupt E1. Other cases are

similar to these and hence can be worked out in a similar way.

1) If D = E1, SV1
Πsh

samples σ1
x on behalf of V2 and E1 and samples σ2

x on behalf of all honest

parties respectively to compute σx = σ1
x + σ2

x. Similar steps are done for D = E2.

2) If D = V1, SV1
Πsh

samples σ1
x and σ2

x on behalf of V2,E1 and V2,E2 respectively to compute

σx = σ1
x + σ2

x. Similar steps are done for D = V2.

3) If D = V1, SV1
Πsh

samples µ1
x on behalf of E1,E2. Receive µ2

x from V1 on behalf of all honest

parties. If the received copies have no majority, set flag = 1.

– If flag = 1 : SV1
Πsh

sets the input of V1 as x = 0 (default value) and executes a semi-honest

3PC on behalf of the remaining three honest parties. SV1
Πsh

then sends the final output to

V1.
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– Else If flag = 0 : SV1
Πsh

extracts the input of V1 by computing x = µx − σx and invokes Fsh

with input as x on behalf of V1.

4) If D = V2, locally sample µ1
x on behalf of parties in E and V2. Send com(µ2

x) to V1 on behalf

of V2,E1,E2 on a random µ2
x. Similar steps are done for D = Ei, i ∈ {1, 2}.

Figure 3.3: SV1
Πsh

: Simulator for corrupt V1 in Πsh

This completes the simulation for the case of a corrupt V1. We now describe the simulator

for the case of a corrupt E1.

1) If D = E1, SE1
Πsh

samples σ1
x on behalf of verifiers and samples σ2

x on behalf of verifiers and E2

to compute σx = σ1
x + σ2

x. Similar steps are done for D = E2.

2) If D = Vi, i ∈ [2], sample σ1
x and σ2

x on behalf of verifiers and E2 to compute σx = σ1
x + σ2

x.

3) If D = E1, SE1
Πsh

samples µ1
x on behalf of V1,E2 and receives µ2

x from E1 on behalf of V2,E2 and

com(µ2
x) on behalf of V1. If there exists no majority, set flag = 1.

– If flag = 1 : SE1
Πsh

sets the input of E1 as x = 0 (default value) and executes a semihonest

3PC on behalf of the remaining three honest parties. SE1
Πsh

then sends the final output to

E1.

– Else if flag = 0 : SE1
Πsh

extracts the input of E1 by computing x = µx − σx and invokes Fsh

with input x on behalf of E1.

4) If D = E2, locally sample µ1
x on behalf of parties in E2 and V2. Send µ2

x to E1 on behalf of E2

on a random µ2
x. Also, send com(µ2

x) to E1 on behalf of V2,V1. Similar steps are done for

D = Vi, i ∈ {1, 2}.

Figure 3.4: SE1
Πsh

: Simulator for corrupt E1 in Πsh

3.3 Bi-Convey Primitive

Bi-convey primitive enables either i) two parties, say S1, S2, to convey a value x ∈ Z2` to a

designated party R or ii) allows party R to identify that one among S1, S2 is corrupt. The

technical innovation of our construction for the 4 party case lies in using the fourth party

available, say T , in an efficient manner. To elaborate, the protocol proceeds as follows. Parties

S1, S2 both send the value x to R. In parallel, they send a commitment of the same (com(x)) to

the fourth party T . Note that the randomness used to prepare the commitment is picked from

the common source of the randomness of S1, S2 and R. If the received copies of x match, party

R accepts the value and sends continue to T , and discards any message received from T . If
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not, R will identify that one among (S1, S2) is corrupt and thus T is honest. She then sends her

internal randomness to T and waits for a message from T . Note that, the internal randomness

of R which is forwarded to T , in our setting are all the keys of R (established during the shared

key setup phase) that are not available with T . Party T , on the other hand, first checks if the

commitments received from S1, S2 match or not. If they match, she will forward com(x) to R

else, she will identify that one among (S1, S2) is corrupt and thus sends her internal randomness

to R. Now, if R receives com(x) from T , then she will accept the version of x that matches

with the received com(x) and stops. If not, then both R and T have identified that one among

(S1, S2) is corrupt. The formal protocol appears in Figure 3.6 and the details for corresponding

ideal world functionality Fbic appears in Figure 3.5.

Fbic receives x, x′, IR and IT from the parties S1, S2, R and T respectively. Here IR and IT denote

the internal randomness of parties R and T respectively. Fbic sets msgS1
= msgS2

= ⊥.

– If x = x′, then Fbic sets msgT = ⊥ and msgR = x. Else it sets msgT = IR and msgR = IT .

– Fbic sends msgS1
,msgS2

,msgR and msgT to parties S1, S2, R and T respectively.

Figure 3.5: Functionality Fbic: Ideal Functionality for party R to receive value x from S1 and
S2.

• Input: Parties S1, S2, R and T input x, x, IR and IT respectively.

• Output: Parties S1, S2 receive ⊥. Parties R and T receive x and ⊥ as outputs respectively,

when S1, S2 are honest. For the case when one among S1, S2 is corrupt, party R obtains either

x or IT , while party T obtains either IR or ⊥, depending on the adversary’s strategy.

– Parties S1, S2 send the value x to party R. In parallel, S1, S2 compute commitment of x,

com(x), using shared randomness known to R as well (sampled from the key shared amongst

S1, S2 and R established during the shared key setup phase) and send it to T .

– If the received values match, party R sets msgR = continue, accept the value x and discard

any further message from T . Else, he sets msgR = IR, where IR denotes the internal randomness

of R.

– If the received commitments match, party T sets msgT = com(x), else sets msgT = IT , where

IT denotes the internal randomness of T .

– Parties R and T mutually exchange the msg values.

– If msgR = IR and msgT = com(x), then R accepts the value x that is consistent with com(x).

Figure 3.6: Πbic(S1, S2, x, R, T ): Protocol for S1, S2 to convey a value x to R with the help of T

We now provide a brief motivation for the need of bi-convey primitive in our framework.

Looking ahead, the bi-convey primitive is used as a black-box in almost all of our subsequent
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protocol constructions. Consider the case where a call to this primitive from the outer protocol

results in exchange of internal randomness among two parties. This implies both the parties

conclude one among the remaining parties is corrupt and can safely trust each other. Thus both

the honest parties combined, act as a single trusted party and use the received randomness to

compute the inputs of all the parties in clear. Note that, both the honest parties together are

able to compute the inputs in clear primarily because of the specific design of our mirrored

sharing format (Section 3.1) where two parties together posses all the shares to reconstruct

the inputs of the circuit. The honest parties then compute the final circuit output and send

it to the remaining two parties ensuring guaranteed output delivery. We give a more detailed

explanation of a use case of bi-convey primitive fitting in a larger protocol in Section 3.4.

Lemma 2. The designated receiver R either receives a given value x correctly in Πbic or receiver

R and helper T mutually exchange all their internal randomness.

Proof. The case of R and T (who act as pair of honest parties) mutually exchanging their

internal randomness occurs when when one of the senders (S1, S2) are corrupt and copies of x

received by R and the hashes H(x) received by T mismatch. In all the other cases there always

exists a majority among the copies of x received by R. Thus R is able to correctly obtain x in

the remaining cases.

Lemma 3. Πbic protocol requires a communication cost (amortized) of 2` bits and at most 2

rounds.

Proof. For a given value x, the communication cost is equal to 2` bits as the senders S1, S2 send

x to the designated party R. Round complexity wise, in case of a corrupt sender, he/she can

delay party R from receiving x by at most 2 rounds. This case occurs when in the first round

the copies of x received by R mismatch and the hashes H(x) received by party T match. The

second round simply involves party T sending H(x) to R who accepts the copy which matches

with the received hash. The case when R or T is corrupt, Πbic will take exactly 1 round as S1

and S2 will always send the correct copies.

3.3.1 Security of Bi-Convey Primitive

In this section, we describe a detailed security proof for our Bi-Convey Primitive (Πbic), which

forms the backbone for most of our constructions, in the stand-alone model. Specifically, we

prove Theorem 2 in the Fsetup hybrid model.

Theorem 2. Assuming one-way functions, the protocol Πbic securely realizes the functionality

Fbic in the Fsetup hybrid model against one malicious corruption in the standard model.
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SPΠbic
denotes the simulator for the case of a corrupt party P ∈ {V1,V2,E1,E2}. We begin

with case of a corrupt S1. Since party S1 is not receiving any messages in the protocol Πbic,

there is no need for SS1
Πbic

to simulate any messages. Based on the messages received from S1,

simulator prepares the input value of corrupt S1 and invoke the ideal functionality Fbic (Figure

3.5). A detailed description of SS1
Πbic

is given in Figure 3.7. Note that, SS1
Πbic

has the knowledge

of input value x, since it plays the role of an honest S2.

1) SS1
Πbic

receives x′ and com(x′′) from S1 on behalf of parties R and T respectively.

2) If x′ 6= x or com(x′′) 6= com(x), SS1
Πbic

sets the input message of S1 as xS1 = ⊥. Else it sets

xS1 = x.

3) SS1
Πbic

invokes the ideal functionality Fbic on behalf of S1 with input xS1 .

Figure 3.7: SS1
Πbic

: Simulator for the case of corrupt S1

It is easy to see that the view of the adversary A in the real and simulated worlds are

indistinguishable. The case for a corrupt S2 follows similarly.

For the case of a corrupt R, SRΠbic
(Figure 3.8) samples a random x on behalf of S1, S2 and

prepares the commitment of x honestly. This is followed by sending the values x, x and com(x)

to R on behalf of S1, S2 and T .

1) SRΠbic
samples a random value x on behalf of S1, S2. It then prepares the commitment com(x)

using a randomness shared with R.

2) SRΠbic
sends x, x and com(x) to R on behalf of S1, S2 and T respectively.

3) SRΠbic
invokes the simulator for ideal functionality Fsetup and obtains the internal randomness

of R, IR. SRΠbic
invokes the ideal functionality Fbic on behalf of R with IR as the input.

Figure 3.8: SRΠbic
: Simulator for the case of corrupt R

For the case of a corrupt T , STΠbic
(Figure 3.9) proceeds as follows: STΠbic

samples a random

value x on behalf of S1, S2 and prepares the commitment of x honestly. This is followed by

sending the values com(x), com(x) and ⊥ to T on behalf of S1, S2 and R respectively.

1) STΠbic
samples a random value x on behalf of S1, S2. It then prepares the commitment com(x).

2) STΠbic
sends com(x), com(x) and continue to T on behalf of S1, S2 and R respectively.

3) STΠbic
invokes the simulator for ideal functionality Fsetup and obtains the internal randomness

of T , IT . STΠbic
invokes the ideal functionality Fbic on behalf of T with IT as the input.

Figure 3.9: STΠbic
: Simulator for the case of corrupt T
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In each of the cases, since the simulator behaves entirely as an honest party in the protocol

simulation, the view of the adversary A in the real and simulated worlds are indistinguishable

in a very straightforward manner. This concludes the proof.

3.4 Circuit Evaluation

The circuit is evaluated in topological order where for every gate g the following invariant is

maintained: given the J·K-sharing of the inputs, the output is generated in the J·K-shared format.

When g is an addition gate (z = x + y), the linearity of J·K-sharing suffices to maintain this

invariant.

For a multiplication gate g (z = xy), the goal is for the evaluators to robustly compute µz

where

µz = xy + σz = (µx − σx)(µy − σy) + σz

= µxµy − µxσy − µyσx + σxσy + σz

followed by evaluators setting µ2
z share and robustly sending it to V2. On a high level, we view

the aforementioned equation of µz as: µz = µxµy +A+B, where A = −µ1
xσy−µ1

yσx +δxy +σz +∆

is solely possessed by V1 and B = −µ2
xσy − µ2

yσx−∆ is possessed V2. In order for evaluators to

compute µz, E1 and E2 needs to robustly receive A+B. Note that µxµy is already available with

the evaluators. Thus A is further split into A1+A2, such that each Aj ∈ {1, 2} is possessed by V1

and Ej. Similarly, B is split such that each Bj ∈ {1, 2} is possessed by V2 and Ej. Now parties

need to simply invoke Πbic protocol, one for each Aj and Bj with the co-evaluator acting as the

receiving party. Thus evaluators are able to compute A + B correctly. After computing µz, the

evaluators set µ2
z = µz − µ1

z and call Πbic protocol to send µ2
z to V2, where µ1

z is collectively

sampled by parties in E and V1. We provide the formal details of our Πmult(x, y, z) and the

corresponding ideal functionality Fmul in Fig 3.11 and Fig 3.15 respectively.

Functionality Fmul receives the inputs from the parties as follows:

– V1: JxKV1 , JyKV1 and internal randomness IV1 .

– V2: JxKV2 , JyKV2 and internal randomness IV2 .

– E1: JxKE1 , JyKE1 and internal randomness IE1 .

– E2: JxKE2 , JyKE2 and internal randomness IE2 .

On receiving the inputs Fmul performs the following steps:

– Fmul sets flag = 1, if the copies σ1
x received from V1,V2 and E1 mismatch. Fmul also performs
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similar checks for σ2
x, µ

1
x, µ2

x and the shares of JyK.

– If flag = 1 :

– Fmul uses the internal randomness of the parties, computes all the inputs i1, . . . , in of the circuit

in clear.

– Fmul computes O = f(i1, . . . , in) locally, where O denotes the output of the entire circuit

evaluation.

– Fmul sends the final output O to all the parties.

– Else If flag = 0 :

– Fmul computes x = µ1
x + µ2

x − σ1
x − σ2

x, y = µ1
y + µ2

y − σ1
y − σ2

y and sets z = xy.

– Fmul randomly samples σ1
z , σ

2
z and µ1

z ∈ Z2` and sets µ2
z = z + σ1

z + σ2
z − µ1

z.

– The output shares sent by Fmul are as follows:

V1: (σ1
z , σ

2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z, µ

2
z), E2: (σ2

z , µ
1
z, µ

2
z)

Figure 3.10: Fmul: Ideal Functionality for multiplication of x and y

• Input: Parties input their JxK and JyK shares.

• Output: Parties obtain JzK as the output, where z = xy.

– Parties in V and E1 collectively sample σ1
z and δ1

xy, while parties in V and E2 together sample

σ2
z .

– Verifiers V1,V2 compute δxy = σxσy, set δ2
xy = δxy − δ1

xy and invoke

Πbic(V1,V2, δ
2
xy,E2,E1), which makes sure that E2 receives δ2

xy.

– Parties in V and E1 collectively sample ∆1. Parties V1 and E1 compute

A1 = −µ1
xσ

1
y −µ1

yσ
1
x + δ1

xy +σ1
z + ∆1 and invoke Πbic(V1,E1,A1,E2,V2) , such that E2 receives A1.

– Similarly, parties in V and E2 collectively sample ∆2. Parties V1 and E2 compute

A2 = −µ1
xσ

2
y − µ1

yσ
2
x + δ2

xy + σ2
z + ∆2 and invoke Πbic(V1,E2,A2,E1,V2), such that E1 receives A2.

– Parties V2 and E1 compute B1 = −µ2
xσ

1
y − µ2

yσ
1
x −∆1 and invoke

Πbic(V2,E1,B1,E2,V1). Similarly, V2 and E2 compute B2 = −µ2
xσ

2
y − µ2

yσ
2
x −∆2 and invoke

Πbic(V2,E2,B2,E1,V1).

– Evaluators compute µz = A1 + A2 + B1 + B2 + µxµy locally. Parties in E and V1 collectively

sample µ1
z followed by evaluators setting µ2

z = µz − µ1
z and invoking Πbic(E1,E2, µ

2
z,V2,V1)for

V2 to receive µ2
z.

Figure 3.11: Πmult(x, y, z): Multiplication Protocol

For correctness of µz,
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µz = xy + σz = (µx − σx)(µy − σy) + σz

= µxµy − µxσy − µyσx + σxσy + σz

= (−µ1
xσy − µ1

yσx + δ1
xy + σ1

z + ∆1 + ∆2)

+ (−µ2
xσy − µ2

yσx + δ2
xy + σ2

z −∆1 −∆2)

= µxµy + (A1 + A2) + (B1 + B2)

where Aj = −µ1
xσ

j
y − µ1

yσ
j
x + δjxy + σjz + ∆j and Bj = −µ2

xσ
j
y − µ2

yσ
j
x −∆j for j ∈ {1, 2}. The

evaluators receive A1,A2,B1 and B2, whose correctness is guaranteed by Πbic protocol. Thus the

evaluators can correctly compute µz = µxµy + (A1 + A2) + (B1 + B2). Verifier V2 also correctly

receives µ2
z share from the evaluators, by the underlying correctness guarantee of Πbic protocol.

We now analyze how Πbic primitive fits into the larger Πmult protocol to make it robust.

Consider Step 2 of the protocol Πmult where parties invoke Πbic(V1,V2, δ
2
xy,E2,E1). As mentioned

in Section 3.3, primitive Πbic guarantees that either i) party E2 receives the correct value δ2
xy

or ii) both E1 and E2 identify that one among (V1,V2) is corrupt. In the first case, parties can

proceed with the execution of the protocol. For the second case, parties E1 and E2 mutually

exchange their internal randomness (this includes the keys established during the shared key

setup phase). Using the received randomness, both E1 and E2 can compute the missing part

of her share corresponding to the J·K-sharing of the inputs and hence obtain all the inputs in

clear. Given the inputs in clear, both E1 and E2 can compute the function output in clear and

send it to the remaining two parties.

Lemma 4. For a gate g = (x, y, z), given the J·K-shares of inputs x and y, protocols Πadd and

Πmult compute J·K-share of the output wire z.

Proof. By linearity property of J·K-sharing, the addition gates preserve the J·K-sharing of their

inputs. For every multiplication gate g = (z = xy), the evaluators robustly compute µz,

after which they set µ2
z = µz−µ1

z( µ
1
z chosen non-interactively) for consistent J·K-sharing of z to

preserve the invariant. The share µ2
z for every multiplication gate is later robustly communicated

to the verifier V2 to maintain a consistent J·K-sharing for the entire circuit.

Lemma 5. Πmult protocol requires a communication cost (amortized) of 12` bits and at most

5 rounds.

Proof. Πbic of δ2
xy,A1, A2, B1 and B2 takes 10` bits followed by Πbic of µ2

z takes another 2` bits.

Round complexity wise, in case of a corrupt verifier, Πbic of δ2
xy takes at most 2 rounds. Πbic

of A1, A2, B1 and B2 also takes at most 2 rounds followed by evaluators executing Πbic of µ2
z

consumes 1 round. A similar argument can be made when one of the evaluator is corrupt.
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Lemma 6. The protocol Π4PC is correct.

Proof. We argue that the computed z corresponds to unique set of inputs. By Lemma 1, a

corrupt party either commits to its input in which case, we proceed to evaluation or is identified

to be corrupt and eliminated in which case, the output is computed on default input of the

corrupt party. In the evaluation step, the computation of addition gates is local by the linearity

property. For a multiplication gate Πmult(x, y, z), the correctness of A1,A2,B1,B2 and δ2
xy sharing

follows from the correctness of Πbic protocol. Hence evaluators correctly compute µz, and set

µ2
z = µz − µ1

z. Verifier V2 also correctly receives µ2
z, from the underlying correctness of Πbic

protocol. The protocol Π4PC, relies on the the routines Πsh,Πmult and Πoc and thus its correctness

follows from their correctness.

3.4.1 Security of Multiplication

In this section, we describe a detailed security proof for our Πmult and prove security in the

standard model. Specifically, we prove Theorem 3 in the Fsetup hybrid model.

Theorem 3. Assuming one-way functions, the protocol Πmult securely realizes the functionality

Fmul in the Fsetup hybrid model against one malicious corruption in the standard model.

We first begin by describing the simulator for the case of a corrupt V1. Note that, SV1
Πmult

already has the knowledge of IV1 , δ
2
xy, A1 and A2. Without loss of generality, we observe that

only for the case of when V1 acts as a sender in the Πbic protocol, the output of Πbic can lead

to pair of honest parties exchanging their internal randomness with each other. Thus SV1
Πmult

emulates the Fbic functionality on behalf of V1 for each of δ2
xy, A1 and A2. The simulator then

checks if any of the output leads to exchange of internal randomness among two pair of honest

parties, in which case SV1
Πmult

sets JxKV1 = (⊥,⊥,⊥) and JyKV1 = (⊥,⊥,⊥) and invokes the Fmul

functionality on behalf of V1. This will ensure that Fmul, on receiving the inputs, will find a

mismatch in the copies of shares received and will directly compute the output of the entire

circuit. A similar strategy is used in other simulation proofs.

1) SV1
Πmult

emulates Fbic on behalf of V1 acting as the sender, for δ2
xy. If the internal flag variable of

Fbic set to 1, simulator SV1
Πmult

sets flag = 1 and goes to step 3). Similar steps are followed for the

case of A1 and A2.

2) If flag = 0:

• SV1
Πmult

emulates Fbic on behalf of V1 acting as the helper T . The simulator also invokes Fmul

on behalf of V1, with inputs as JxKV1 , JyKV1 and IV1 .
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3) Else If flag = 1 :

– SV1
Πmult

sets JxKV1 = (⊥,⊥,⊥), JyKV1 = (⊥,⊥,⊥) and invokes the ideal functionality Fmul on

behalf of V1 .

– SV1
Πmult

sends the final circuit output O to V1 on behalf of the pair of honest parties and discards

any incoming message from V1.

Figure 3.12: SV1
Πmult

: Simulator for the case of corrupt V1

This completes the simulation for the case of a corrupt V1. We now describe the simulator

for the case of a corrupt V2. Simulator SV2
Πmult

already has knowledge of δ2
xy, B1 and B2.

1) SV2
Πmult

emulates Fbic on behalf of V2 acting as the sender, for δ2
xy. If the internal flag variable of

Fbic set to 1, simulator SV2
Πmult

sets flag = 1 and goes to step 3). Similar steps are followed for the

case of B1 and B2.

2) If flag = 0:

– SV2
Πmult

emulates Fbic on behalf of V2 acting as the receiver R. The simulator also invokes the

ideal functionality Fmul on behalf of V2, with inputs as JxKV2 , JyKV2 and IV2 .

3) Else If flag = 1 :

– SV2
Πmult

sets JxKV2 = (⊥,⊥,⊥), JyKV2 = (⊥,⊥,⊥) and invokes the ideal functionality Fmul on

behalf of V2 .

– SV2
Πmult

sends the final circuit output O to V2 on behalf of the pair of honest parties and discards

any incoming message from V2.

Figure 3.13: SV2
Πmult

: Simulator for the case of corrupt V2

We describe the simulator for the case of a corrupt E1. The case of a corrupt E2 is similar

to this case and hence can be worked out in a similar way. Note that, SE1
Πmult

has knowledge of

A1, B1 and µ2
z .

1) SE1
Πmult

emulates Fbic on behalf of E1 acting as the sender, for each A1 and B1.If the internal flag

variable of Fbic set to 1, simulator SE1
Πmult

sets flag = 1 and goes to step 3).

2) If flag = 0:

– SE1
Πmult

emulates Fbic on behalf of E1, for the case of µ2
z , where z = xy.If the internal flag variable

of Fbic set to 1, simulator SE1
Πmult

sets flag = 1 and goes to step 3). Else the simulator invokes

Fmul, with inputs as JxKE1 , JyKE1 and IE1 .

3) Else If flag = 1 :
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– SE1
Πmult

sets JxKE1 = (⊥,⊥,⊥), JyKE1 = (⊥,⊥,⊥) shares and invokes Fmul on behalf of E1.

– SE1
Πmult

sends the final circuit output O to E1 on behalf of the pair of honest parties and discards

any incoming message from E1.

Figure 3.14: SE1
Πmult

: Simulator for the case of corrupt E1

3.5 Output Computation

The output computation phase is comparatively simple. The missing share of the output

with respect to each party is possessed by the remaining three parties. Thus two out of the

three parties send the missing share and the third party sends the corresponding hash. Thus

each party sets the missing share as the majority among the received values and reconstruct the

output. The formal details of our robust output computation protocol Πoc and its corresponding

ideal functionality Foc is given in Fig 3.16 and Fig 3.5 respectively.

– Functionality Foc receives the inputs from the parties as follows:

V1: JzKV1 , V2: JzKV2 , E1: JzKE1 , E2: JzKE2

– On receiving the inputs Foc computes z = µ2
z + µ1

z − σ1
z − σ2

z and sends it to all the parties.

Figure 3.15: Foc: Ideal Functionality for Output Reconstruction

• Input: Parties input their JzK shares.

• Output: Parties obtain z as the output.

– For i, j ∈ {1, 2} and i 6= j, Ei receives σjz from parties in V and H(σjz) from Ej .

– V2 receives µ1
z from parties in E and H(µ1

z) from V1.

– V1 receives µ2
z from parties in E and H(µ2

z) from V2.

– Each party sets the missing share as the majority among the received values and outputs

z = µ1
z + µ2

z − σ1
z − σ2

z .

Figure 3.16: Πoc: Protocol for Output Reconstruction

Lemma 7. The protocol Πoc is correct.

Proof. The correctness for output computation follows from the fact that each party receives

2 copies and a corresponding hash for its missing share from the remaining parties. Thus each

party correctly reconstructs the output as a majority always exists.
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3.5.1 Security of Output Computation

In this section, we provide a detailed security proof for our Πoc protocol and prove security in

the standard model. Specifically, we prove Theorem 4 in the Fsetup hybrid model.

Theorem 4. Assuming one-way functions, the protocol Πoc securely realizes the functionality

Foc in the Fsetup hybrid model against one malicious corruption in the standard model.

We describe the simulator for the case of a corrupt V1 and a corrupt E1. Other cases are

similar to these and hence can be worked out in a similar way. We first consider the case of a

corrupt V1.

– Send µ2
z and H(µ2

z) to V1 on behalf of honest evaluators and honest V2 respectively.

Additionally, SV1
Πoc

also receives σ1
z , σ

2
z and H(µ1

z) from V1 on behalf of honest parties.

– Invoke Foc with input as JzKV1 on behalf of V1 and obtains z.

Figure 3.17: SV1
Πoc

: Simulator for Πoc with a corrupt V1

This completes the simulation for the case of a corrupt V1. We now describe the simulator

for the case of a corrupt E1.

– Send σ2
z and H(σ2

z) to V1 on behalf of honest verifiers and honest E2 respectively. Additionally,

SE1
Πoc

also receives µ1
z, µ

2
z and H(σ1

z) from E1 on behalf of honest parties.

– Invoke Foc with input as JzKE1 on behalf of E1 and obtains z.

Figure 3.18: SE1
Πoc

: Simulator for Πoc with a corrupt E1
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Chapter 4

Building Blocks

In this section, we provide constructions for our crucial building blocks necessary to achieve

secure training and prediction for algorithms namely– i) Linear Regression, ii) Logistic Regres-

sion, iii) Deep Neural Network (DNN) and iv) Binarized Neural Network (BNN).

4.1 Arithmetic/Boolean Couple Sharing

Two parties, either {V1,V2} (set V) or {E1,E2} (set E) own a common value x and want to

create a J·K- sharing of x. We abstract out this procedure and define it as couple sharing of

a value. The formal details of the protocol ΠcSh and the corresponding functionality FcSh are

given in Fig. 4.2 and Fig 4.1 respectively.

Case 1: (S = E)

– FcSh receives x from parties E1 and E2 who wants to generate J·K-sharing of x. Other parties

input ⊥ to the functionality. Each party also send its internal randomness to FcSh. Functionality

FcSh sets flag = 1, if the received copies of x mismatch.

– If flag = 1 :

– FcSh uses the internal randomness of the parties, computes all the inputs i1, . . . , in of the

circuit in clear.

– FcSh computes O = f(i1, . . . , in) locally, where O denotes the output of the entire circuit

evaluation.

– FcSh sends the final output O to all the parties.

– If flag = 0 :
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– FcSh randomly samples µ1
x ∈ Z2` and sets σ1

x = 0, σ2
x = 0 and µ2

x = x− µ1
x.

– The output shares sent by FcSh are as follows:

V1: (0, 0, µ1
x), V2: (0, 0, µ2

x)

E1: (0, µ1
x, µ

2
x), E2: (0, µ1

x, µ
2
x)

Case 2: (S = V)

– FcSh receives x from parties V1 and V2 who wants to generate J·K-sharing of x. Other parties

input ⊥ to the functionality. Each party also send its internal randomness to FcSh. Functionality

FcSh sets flag = 1, if the received copies of x mismatch.

– If flag = 1 :

– FcSh uses the internal randomness of the parties, computes all the inputs i1, . . . , in of the

circuit in clear.

– FcSh computes O = f(i1, . . . , in) locally, where O denotes the output of the entire circuit

evaluation.

– FcSh sends the final output O to all the parties.

– If flag = 0 :

– FcSh randomly samples σ1
x ∈ Z2` and sets µ1

x = 0, µ2
x = 0 and σ2

x = x− σ1
x.

– The output shares sent by FcSh are as follows:

V1: (σ1
x, σ

2
x, 0), V2: (σ1

x, σ
2
x, 0)

E1: (σ1
x, 0, 0), E2: (σ2

x, 0, 0)

Figure 4.1: Functionality FcSh: Ideal Functionality for Couple Sharing of x

Case 1: (S = E)

• Input: E1 and E2 input x while others input ⊥.

• Output: Parties obtain JxK as the output.

– Parties set σ1
x = 0 and σ2

x = 0. Parties in E and V1 collectively sample random µ1
x ∈ Z2` .

– E1 and E2 set µ2
x = x − µ1

x. Parties then execute Πbic(E1,E2, µ
2
x,V2,V1), such that V2 receives

µ2
x.

Case 2: (S = V)
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• Input: V1 and V2 input x while others input ⊥.

• Output: Parties obtain JxK as the output.

– Parties set µ1
x = 0 and µ2

x = 0. Parties in V and E1 collectively sample random σ1
x ∈ Z2` .

– V1 and V2 set σ2
x = x − σ1

x. Parties then execute Πbic(V1,V2, σ
2
x,E2,E1), such that E2 receives

σ2
x.

Figure 4.2: ΠcSh(S, x): Protocol to generate couple sharing of x

On a high level when set S = E, in order to share a value x, parties set σ1
x = σ2

x = 0. A

random µ1
x is collectively sampled and the owners of the value set µ2

x such that µ1
x + µ2

x = x

and send µ2
x to V2 using Πbic protocol. The shares of parties can be viewed as:

E1 : JxKE1
= (0, µ1

x, µ
2
x) V1 : JxKV1

= (0, 0, µ1
x)

E2 : JxKE2
= (0, µ1

x, µ
2
x) V2 : JxKV2

= (0, 0, µ2
x)

For the case when set S = V and value x, parties in V and E1 collectively sample random

σ1
x followed by V setting σ2

x = −x−σ1
x and robustly sending it to E2. Now, the shares of parties

are viewed as:

E1 : JxKE1
= (σ1

x, 0, 0) V1 : JxKV1
= (σ1

x, σ
2
x, 0)

E2 : JxKE2
= (σ2

x, 0, 0) V2 : JxKV2
= (σ1

x, σ
2
x, 0)

Lemma 8. ΠcSh protocol requires a communication cost (amortized) of 2` bits and at most 2

rounds when parties in E couple share.

Proof. The communication cost of 2` bits comes directly from the cost of Πbic protocol as the

rest of the steps are local, which includes collectively sampling µ1
x. Round complexity argument

also follow from Πbic protocol.

Lemma 9. ΠcSh protocol requires a communication cost (amortized) of 2` bits and at most 2

rounds when parties in V couple share .

Proof. The communication cost of 2` bits comes directly from the cost of Πbic protocol as the

rest of the steps are local, which includes collectively sampling σ1
x. Round complexity argument

also follow from Πbic protocol.

4.1.1 Security of Couple Sharing

In this section, we describe a detailed security proof for our Dot Product Protocol and prove

security in the standard model. Specifically, we prove Theorem 5 in the Fsetup hybrid model.
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Theorem 5. Assuming one-way functions, the protocol ΠcSh securely realizes the functionality

FcSh in the Fsetup hybrid model against one malicious corruption in the standard model.

We first begin by describing the simulator for the case of a corrupt V1 for both the cases of

S = E and V. In case of S = E, simulator SV1
ΠcSh

emulates the Fbic functionality on behalf of V1

as the helper for µ2
x. In case of S = V, simulator SV1

ΠcSh
emulates the Fbic functionality on behalf

of V1 as the sender for σ2
x. The simulator then checks if any of the output leads to exchange

of internal randomness among two pair of honest parties, in which case SV1
ΠcSh

sets x = ⊥, and

invokes the FcSh functionality on behalf of V1. The case of a corrupt V2 is similar to this case

and hence can be worked out in a similar way.

Case 1: (S = E)

1) SV1
ΠcSh

emulates Fbic on behalf of V1 acting as the helper, for µ2
x.

2) The simulator invokes the ideal functionality FcSh on behalf of V1, with input as x.

Case 2: (S = V)

1) SV1
ΠcSh

emulates Fbic on behalf of V1 acting as the sender, for σ2
x. If the internal flag variable of

Fbic set to 1, simulator SV1
ΠcSh

sets flag = 1 and goes to step 3).

2) If flag = 0:

– The simulator invokes the ideal functionality FcSh on behalf of V1, with input as x.

3) Else If flag = 1 :

– The simulator invokes the ideal functionality FcSh on behalf of V1, with input as ⊥.

– SV1
ΠcSh

sends the final circuit output O to V1 on behalf of the pair of honest parties and discards

any incoming message from V1.

Figure 4.3: SV1
ΠcSh

: Simulator for the case of corrupt V1

We describe the simulator for the case of a corrupt E1. The simulation steps for a corrupt

E2 is similar to this case and hence can be worked out in a similar way.

Case 1: (S = E)

1) SE1
ΠcSh

emulates Fbic on behalf of E1 acting as the sender, for µ2
x. If the internal flag variable of

Fbic set to 1, simulator SV1
ΠcSh

sets flag = 1 and goes to step 3).
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2) If flag = 0:

– The simulator invokes the ideal functionality FcSh on behalf of E1, with input as x.

3) Else If flag = 1 :

– The simulator invokes the ideal functionality FcSh on behalf of E1, with input as ⊥.

– SE1
ΠcSh

sends the final circuit output O to E1 on behalf of the pair of honest parties and discards

any incoming message from E1.

Case 2: (S = V)

1) SE1
ΠcSh

emulates Fbic on behalf of E1 acting as the helper, for σ2
x.

2) The simulator invokes the ideal functionality FcSh on behalf of E1, with input as x.

Figure 4.4: SE1
ΠcSh

: Simulator for the case of corrupt E1

4.2 Dot Product

Given vectors ~x and ~y, each of size d, the goal is to compute the dot product z = ~x � ~y =∑d
i=1 xiyi. The recent works of ABY3 and ASTRA have tackled dot product computation in

the semi-honest setting with cost equal to that of a single multiplication thus, making the total

cost independent of the vector size. However, in the malicious setting, their techniques become

expensive, with cost dependent on the vector size. In this work, we remove this dependency and

retain the cost to be the same as that of a single multiplication. This independence stems from

the peculiar structure of our sharing and our robust multiplication method. On a high level,

instead of calling Πbic protocol for A1i,A2i,B1i and B2i corresponding to each product zi = xiyi,

the parties add up their shares and then invoke Πbic once for each of the summed up share.

To facilitate this modification, verifiers also adjust δ2
xy =

∑d
i=1 δxiyi − δ1

xy before sending to E2.

Formal details of the ideal functionality Fdp and the protocol Πdp are presented in Fig.4.5 and

Fig.4.6 respectively.

Functionality Fdp receives the inputs from the parties as follows:

– V1: J~xKV1 , J~yKV1 and internal randomness IV1 .

– V2: J~xKV2 , J~yKV2 and internal randomness IV2 .

– E1: J~xKE1 , J~yKE1 and internal randomness IE1 .

– E2: J~xKE2 , J~yKE2 and internal randomness IE2 .

On receiving the inputs Fdp performs the following steps:
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– If for any σ1
xi ∈ σ

1
~x, the copies of σ1

xi received from V1,V2 and E1 mismatch, Fdp sets flag = 1.

Fdp also performs similar checks for σ2
~x, µ

1
~x, µ2

~x and the shares of J~yK.

– If flag = 1 :

– Fdp uses the internal randomness of the parties, computes all the inputs i1, . . . , in of the circuit

in clear.

– Fdp computes O = f(i1, . . . , in) locally, where O denotes the output of the entire circuit evalu-

ation.

– Fdp sends the final output O to all the parties.

– Else If flag = 0 :

– Fmul computes ∀i, xi = µ1
xi + µ2

xi − σ
1
xi − σ

2
xi , yi = µ1

yi + µ2
yi − σ

1
yi − σ

2
yi and set z = Σd

i=1xiyi.

– Fmul randomly samples σ1
z , σ

2
z and µ1

z ∈ Z2` and set µ2
z = z + σ1

z + σ2
z − µ1

z.

– The output shares sent by Fmul are as follows:

V1: (σ1
z , σ

2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z, µ

2
z), E2: (σ2

z , µ
1
z, µ

2
z)

Figure 4.5: Fdp: Ideal Functionality for dot product of two values x and y

• Input: Parties input their J~xK and J~yK shares.

• Output: Parties obtain JzK as output, where z = ~x� ~y.

– Parties in V and E1 collectively sample σ1
z and δ1

xy, while parties in V and E2 together sample

σ2
z .

– Verifiers V1,V2 compute δxy = Σd
i=1σxiσyi , set δ2

xy = δxy− δ1
xy and invoke Πbic(V1,V2, δ

2
xy,E2,E1),

such that E2 receives δ2
xy.

– Parties in V and E1 collectively sample ∆1. Parties V1 and E1 compute A1 = Σd
i=1(−µ1

xiσ
1
yi −

µ1
yiσ

1
xi) + σ1

z + δ1
xy + ∆1 and invoke Πbic(V1,E1,A1,E2,V2), such that E2 receives A1.

– Similarly, parties in V and E2 collectively sample ∆2. Parties V1 and E2 compute A2 =

Σd
i=1(−µ1

xiσ
2
yi − µ

1
yiσ

2
xi) + σ2

z + δ2
xy + ∆2 and invoke

Πbic(V1,E2,A2,E1,V2), such that E1 receives A2.

– V2 and E1 compute B1 = Σd
i=1(−µ2

xiσ
1
yi − µ

2
yiσ

1
xi)−∆1 and invoke

Πbic(V2,E1,B1,E2,V1). Similarly, V2 and E2 compute B2 = Σd
i=1(−µ2

xiσ
2
yi − µ

2
yiσ

2
xi) − ∆2 and

execute Πbic(V2,E2,B2,E1,V1).

– Evaluators compute µz = µxµy + A1 + A2 + B1 + B2 locally. Parties in E and V1 collectively

sample µ1
z followed by evaluators setting µ2

z = µz − µ1
z and execute Πbic(E1,E2, µ

2
z,V2,V1) for V2

to receive µ2
z.

Figure 4.6: Πdp(J~xK, J~yK): Dot Product of two vectors
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Lemma 10. Πdp protocol requires a communication cost (amortized) of 12` bits and at most

5 rounds.

Proof. The communication cost of 12` bits comes directly from the cost of Πmult protocol as

the rest of the steps are local. Round complexity argument also follow from Πmult protocol.

4.2.1 Security of Dot Product

In this section, we describe a detailed security proof for our Dot Product Protocol and prove

security in the standard model. Specifically, we prove Theorem 6 in the Fsetup hybrid model.

Theorem 6. Assuming one-way functions, the protocol Πdp securely realizes the functionality

Fdp in the Fsetup hybrid model against one malicious corruption in the standard model.

We first begin by describing the simulator for the case of a corrupt V1. Thus SV1
Πdp

emulates

the Fbic functionality on behalf of V1 for each of δ2
xy, A1 and A2. The simulator then checks if

any of the output leads to exchange of internal randomness among two pair of honest parties,

in which case SV1
Πdp

sets J~xKV1 = (⊥,⊥,⊥), J~yKV1 = (⊥,⊥,⊥) and invokes the Fdp functionality

on behalf of V1.

1) SV1
Πdp

emulates Fbic on behalf of V1 acting as the sender, for δ2
xy. If the internal flag variable of

Fbic set to 1, simulator SV1
Πdp

sets flag = 1 and goes to step 3). Similar steps are followed for the

case of A1 and A2.

2) If flag = 0:

– SV1
Πdp

emulates Fbic on behalf of V1 acting as the helper T . The simulator also invokes the ideal

functionality Fdp on behalf of V1, with inputs as J~xKV1 , J~yKV1 and IV1 .

3) Else If flag = 1 :

– SV1
Πdp

sets J~xKV1 = (⊥,⊥,⊥), J~yKV1 = (⊥,⊥,⊥) shares and invokes the ideal functionality Fdp

on behalf of V1 .

– SV1
Πdp

sends the final circuit output O to V1 on behalf of the pair of honest parties and discards

any incoming message from V1.

Figure 4.7: SV1
Πdp

: Simulator for the case of corrupt V1

This completes the simulation for the case of a corrupt V1. We now describe the simulator

for the case of a corrupt V2.

34



1) SV2
Πdp

emulates Fbic on behalf of V2 acting as the sender, for δ2
xy. If the internal flag variable of

Fbic set to 1, simulator SV2
Πdp

sets flag = 1 and goes to step 3). Similar steps are followed for the

case of B1 and B2.

2) If flag = 0:

• SV2
Πdp

emulates Fbic on behalf of V2 acting as the receiver R. The simulator also invokes the

ideal functionality Fdp on behalf of V2, with inputs as J~xKV2 , J~yKV2 and IV2 .

3) Else If flag = 1 :

– SV2
Πdp

sets J~xKV2 = (⊥,⊥,⊥), J~yKV2 = (⊥,⊥,⊥) shares and invokes the ideal functionality Fdp

on behalf of V2 .

– SV2
Πdp

sends the final circuit output O to V2 on behalf of the pair of honest parties and discards

any incoming message from V2.

Figure 4.8: SV2
Πdp

: Simulator for the case of corrupt V2

We describe the simulator for the case of a corrupt E1. The case of a corrupt E2 is similar

to this case and hence can be worked out in a similar way.

1) SE1
Πdp

emulates Fbic on behalf of E1 acting as the sender, for each A1 and B1.If the internal flag

variable of Fbic set to 1, simulator SE1
Πdp

sets flag = 1 and goes to step 3).

2) If flag = 0:

– SE1
Πdp

emulates Fbic on behalf of E1, for the case of µ2
z , where z = Σd

i=1xiyi. If the internal flag

variable of Fbic set to 1, simulator SE1
Πdp

sets flag′ = 1 and goes to step 3). Else the simulator

invokes Fdp, with inputs as J~xKE1 , J~yKE1 and IE1 .

3) Else If flag = 1 :

– SE1
Πdp

sets J~xKE1 = (⊥,⊥,⊥), J~yKE1 = (⊥,⊥,⊥) shares and invokes Fdp on behalf of E1.

– SE1
Πdp

sends the final circuit output O to E1 on behalf of the pair of honest parties and discards

any incoming message from E1.

Figure 4.9: SE1
Πdp

: Simulator for the case of corrupt E1

4.3 MSB Extraction

All machine learning models which perform the task of classification require comparison be-

tween two values as a building block during their process of training and prediction. Efficient

comparison of two arithmetic values u and v in a private fashion has been an ongoing challeng-

ing problem. Concretely, given the arithmetic shares JuK and JvK, the goal is to check if u < v.
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In fixed point arithmetic setting, we check msb(a) = 1 , if a = v − u < 0 and vice-versa. Thus

the goal of the parties reduces to computing the J·KB shares of msb(a) given the J·K shares of

a. SecureML made an effort in this direction with the use of a garbled circuit technique to

compute msb(a) in the 2PC setting. Later, ABY3 and ASTRA proposed protocols to tackle

MSB extraction for the the 3PC setting. ASTRA proposed a constant round protocol but it

required a garble circuit version of Parallel Prefix Adder (PPA) to perform the MSB extraction

leading to a high communication cost (dependent on the security parameter κ), whereas ABY3

proposed a protocol which used the boolean variant of the PPA circuit trading off the rounds

(dependent on the circuit depth) for a more efficient communication cost (independent of the

security parameter κ). As our goal is to get a communication efficient protocol we trade-off

the rounds and use the boolean variant of PPA circuit proposed by ABY3. The proposed PPA

circuit requires 2` AND gates leading to a total communication cost of 24` bits and has a mul-

tiplicative depth of log ` rounds. Concretely, given the shares JuK and JvK, parties first locally

compute JaK = JuK− JvK, where a = (µ1
a +µ2

a)− (σ1
a +σ2

a) . We observe that, the optimized PPA

circuit is a two input circuit which takes two inputs in boolean format and outputs the MSB

of the sum of the two inputs. Thus, given JaK = {σ1
a , σ

2
a , µ

1
a, µ

2
a}, we first prepare the following

valid inputs: i) Jµ1
a + µ2

aK
B

and ii) J−σ1
a − σ2

aK
B

for the PPA circuit in order to obtain Jmsb(a)KB

as the output. This is achieved by parties executing ΠB
cSh(E, µ1

a + µ2
a) and ΠB

cSh(V,−σ1
a − σ2

a)

protocols respectively. Parties then input their respective shares to the PPA circuit, execute

Πmult protocol for each AND gate in the circuit and finally obtain the J·KB sharing of msb(a).

The ideal functionality Fmsb is presented in Fig 4.10 below.

Functionality Fmsb receives the inputs from the parties as follows:

– V1: JxKV1 and internal randomness IV1 .

– V2: JxKV2 and internal randomness IV2 .

– E1: JxKE1 and internal randomness IE1 .

– E2: JxKE2 and internal randomness IE2 .

On receiving the inputs Fmsb performs the following steps:

– Fmsb sets flag = 1, if the copies σ1
x received from V1,V2 and E1 mismatch. Fmsb also performs

similar checks for σ2
x, µ

1
x and µ2

x.

– If flag = 1 :

– Fmsb uses the internal randomness of the parties, computes all the inputs i1, . . . , in of the circuit

in clear.

– Fmsb computes O = f(i1, . . . , in) locally, where O denotes the output of the entire circuit
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evaluation.

– Fmsb sends the final output O to all the parties.

– Else If flag = 0 :

– Fmsb computes x = µ1
x + µ2

x − σ1
x − σ2

x and set b = msb(x).

– Fmsb randomly samples σ1
b , σ

2
b and µ1

b ∈ Z21 and set µ2
b = b⊕ σ1

b ⊕ σ2
b ⊕ µ1

b .

– The output shares sent by Fbin are as follows:

V1: (σ1
b , σ

2
b , µ

1
b), V2: (σ1

b , σ
2
b , µ

2
b)

E1: (σ1
b , µ

1
b , µ

2
b), E2: (σ2

b , µ
1
b , µ

2
b)

Figure 4.10: Fmsb: Ideal Functionality for extraction of the MSB bit b from value x

Lemma 11. Πmsb protocol requires a communication cost (amortized) of 28` bits and around

log`+ 5 rounds.

Proof. To prepare the input for the optimized Parallel Prefix Adder (PPA) circuit takes 2 calls

to ΠcSh protocol which takes 4` bits and at most 2 rounds. The remaining communication and

round cost comes from computing the PPA circuit which requires computation of 2` AND gates

over a depth of log `+ 3 rounds. The communication cost of each AND gate is 12 bits (Lemma

5), thus making the total cost of the circuit as 12× 2` = 24` bits.

4.3.1 Security of MSB Extraction

In this section, we describe security proof for our MSB Extraction protocol and prove security

in the standard model. Specifically, we prove Theorem 7 in the Fsetup hybrid model.

Theorem 7. Assuming one-way functions, the protocol Πmsb securely realizes the functionality

Fmsb in the Fsetup hybrid model against one malicious corruption in the standard model.

We give a description of the simulator for the case of a corrupt V1. The case of a corrupt

V2, E1 and E2 is similar to this case and hence can be worked out in a similar way. Note that

the PPA circuit primarily consists of AND gates and hence the simulator for Fmsb is required

to emulate the simulation steps corresponding to FcSh to prepare the inputs for the PPA circuit

followed by Fmul functionality, with respect to each AND gate in the circuit. For the case

of corrupt V1, simulator SV1
Πmsb

first emulates FcSh functionality on behalf of V1 to prepare the

PPA circuit inputs followed by emulating Fmul on behalf of V1 for each AND gate in the PPA

circuit with the appropriate inputs. Thus at any point if the adversary behaves maliciously the

underlying FcSh or Fmul functionality will take care of the misbehavior and give the final circuit

output.
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4.4 Truncation

We use `-bit integers in signed 2′s complement form to represent a decimal value where the sign

of the decimal value is represented by the most significant bit (MSB). Consider a decimal value

z represented in the signed 2’s complement form. We use dz to denote the least significant bits

that represent its fractional part and iz = `−dz to represent its integral part. It is observed that

in the face of repeated multiplications, dz and iz needed to represent the output z keeps doubling

with every multiplication and can eventually lead to an overflow. To avoid this multiplication

overflow while preserving the accuracy and correctness, truncation is performed at the output

of a multiplication gate. Truncation of a value z is defined as zt = z/2dz , where the value z is

right arithmetic shifted by dz bits.

SecureML [MZ17] proposed an efficient truncation method for the two-party setting, where

the parties locally truncate the shares after a multiplication. They showed that this technique

introduces at most 1 bit error in the least significant bit (LSB) position and thus causes a

minor reduction in the accuracy. Later ABY3 [MR18] showed that this idea cannot be trivially

extended to three party setting and proposed an alternative technique to achieve truncation.

Their main idea revolves around generating (JrK, JrtK) pair, where r is a random ring element

and rt = r/2d. Parties then compute z−r in clear and locally truncate it to obtain (z− r)t. This

is followed by generating J(z− r)tK and adding it to JrtK to obtain JztK. Similar to SecureML,

this technique may also incur a one-bit error in the LSB position of zt. To generate (JrK, JrtK),

ABY3 requires two expensive circuit evaluations and leading to a total cost of more than 100

ring elements per multiplication. While we adopt ABY3’s idea of using (r, rt) pair in our Πmult

protocol to achieve truncation, we remove the need of expensive circuits and maintain the total

cost to 14 ring elements.

We begin with the generation of (r, rt) pair. Parties in V and E1 sample random r1 ∈ Z2` ,

while parties in V and E2 sample r2. Verifiers V1 and V2 set r = r1 + r2. Then parties V1 and

V2 locally truncate r to obtain rt and execute ΠcSh to generate JrtK. Thus, the pair ([r], JrtK)

is generated. Unlike Πmult (Figure 3.11), evaluators instead reconstruct (z − r), followed by

locally truncating it to obtain (z− r)t. Evaluators execute ΠcSh to generate J(z− r)tK followed

by locally adding to JrtK to obtain JztK. The formal details of our protocol ΠmulTr and the

corresponding functionality FmulTr appears in Fig 4.12 and Fig 4.11 respectively.

Functionality FmulTr receives the inputs from the parties as follows:

– V1: JxKV1 , JyKV1 and internal randomness IV1 .

– V2: JxKV2 , JyKV2 and internal randomness IV2 .
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– E1: JxKE1 , JyKE1 and internal randomness IE1 .

– E2: JxKE2 , JyKE2 and internal randomness IE2 .

On receiving the inputs FmulTr performs the following steps:

– FmulTr computes δxy = σxσy using the shares of V1. Similarly, FmulTr computes another copy δ′xy

using the shares of V2. If δxy 6= δ′xy, FmulTr sets flag = 1 else FmulTr samples δ1
xy ∈ Z2` and sets

δ2
xy = δxy − δ1

xy.

– FmulTr computes A1 = −µ1
xσ

1
y − µ1

yσ
1
x + δ1

xy + σ1
z + ∆1 using the shares of V1. Similarly, FmulTr

computes another copy A′1 using the shares of E1. If A1 6= A′1, FmulTr sets flag = 1. Similar steps

are performed for the case of A2, B1 and B2.

– If flag = 1 :

– FmulTr uses the internal randomness of the parties, computes all the inputs i1, . . . , in of the

circuit in clear.

– FmulTr computes O = f(i1, . . . , in) locally, where O denotes the output of the entire circuit

evaluation.

– FmulTr sends the final output O to all the parties.

– Else If flag = 0 :

– FmulTr computes x = µ1
x + µ2

x − σ1
x − σ2

x, y = µ1
y + µ2

y − σ1
y − σ2

y and set z = (xy)t, where value

xy is truncated by d bits.

– FmulTr randomly samples σ1
z , σ

2
z and µ1

z ∈ Z2` and set µ2
z = z + σ1

z + σ2
z − µ1

z.

– The output shares sent by FmulTr are as follows:

V1: (σ1
z , σ

2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z, µ

2
z), E2: (σ2

z , µ
1
z, µ

2
z)

Figure 4.11: FmulTr: Ideal Functionality for truncation of values x and y

• Input: Parties input their JxK and JyK shares.

• Output: Parties obtain JztK as output, where zt = (xy)t.

– Parties in V and E1 collectively sample σ1
z and r1, while parties in V and E2 together sample

σ2
z and r2.

– Verifiers set r = r1 + r2 and truncate r by d bits to obtain rt. Parties execute ΠcSh(V, rt) to

generate JrtK sharing.

– Verifiers locally set δxy = σx ·σy and compute δ2
xy = δxy − δ1

xy, where δ1
xy is collectively sampled

by parties in V and E1. Parties then execute Πbic(V1,V2, δ
2
xy,E2,E1), such that E2 receives δ2

xy.

– Parties in V and E1 collectively sample ∆1. Parties V1 and E1 compute
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A1 = −µ1
xσ

1
y −µ1

yσ
1
x + δ1

xy− r1 + ∆1 and execute Πbic(V1,E1,A1,E2,V2), such that E2 receives A1.

– Similarly, parties in V and E2 collectively sample ∆2. Parties V1 and E2 compute

A2 = −µ1
xσ

2
y −µ1

yσ
2
x + δ2

xy− r2 + ∆2 and execute Πbic(V1,E2,A2,E1,V2) , such that E1 receives A2.

– Parties V2 and E1 compute B1 = −µ2
xσ

1
y − µ2

yσ
1
x −∆1 and execute Πbic(V2,E1,B1,E2,V1) .

Similarly, V2 and E2 compute B2 = −µ2
xσ

2
y − µ2

yσ
2
x −∆2 and execute Πbic(V2,E2,B2,E1,V1) .

– Evaluators compute z− r = µxµy + A1 + A2 + B1 + B2 and truncate it by d bits to obtain

(z− r)t .

– Parties execute ΠcSh(E, (z− r)t) to generate J(z− r)tK sharing and locally add to obtain

JztK = J(z− r)tK + JrtK

Figure 4.12: ΠmulTr(x, y): Truncation Protocol

Lemma 12. ΠmulTr protocol requires a communication cost (amortized) of 14` bits and at most

5 rounds.

Proof. ΠcSh of JrtK and δxy takes 4` bits in total. Πbic of A1, A2, B1 and B2 takes 8` bits followed

by ΠcSh of (z− r)t takes another 2` bits. Round complexity wise, in case of a corrupt verifier,

ΠcSh of JrtK and δxy takes at most 2 rounds. Πbic of A1, A2, B1 and B2 also takes at most 2

rounds followed by ΠcSh of (z− r)t consumes 1 round. A similar argument can be made when

one of the evaluator is corrupt.

4.4.1 Security of Truncation

In this section, we describe the detailed security proof for our Truncation protocol and prove

security in the standard model. Specifically, we prove Theorem 8 in the Fsetup hybrid model.

Theorem 8. Assuming one-way functions, the protocol ΠmulTr securely realizes the functionality

FmulTr in the Fsetup hybrid model against one malicious corruption in the standard model.

We first begin by describing the simulator for the case of a corrupt V1. Note that, SV1
ΠmulTr

already has the knowledge of IV1 , δ
2
xy, A1, A2 and rt. Note that only for the case of when V1 acts

as a sender in the Πbic protocol, the output of Πbic can lead to pair of honest parties exchanging

their internal randomness with each other. Thus SV1
ΠmulTr

emulates the Fbic functionality on behalf

of V1 for each of δ2
xy, σ

2
rt A1 and A2. The simulator then checks if any of the output leads to

exchange of internal randomness among two pair of honest parties, in which case SV1
ΠmulTr

sets

JxKV1 = (⊥,⊥,⊥), JyKV1 = (⊥,⊥,⊥) shares and invoke the FmulTr functionality on behalf of V1.
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1) SV1
ΠmulTr

emulates Fbic on behalf of V1 acting as the sender, for σ2
rt . If the internal flag variable

of Fbic set to 1, simulator SV1
ΠmulTr

sets flag = 1 and goes to step 3). Similar steps are followed for

the case of δ2
xy, A1 and A2.

2) If flag = 0:

• SV1
ΠmulTr

emulates Fbic on behalf of V1 acting as the helper T . The simulator also invokes the

ideal functionality FmulTr on behalf of V1, with inputs as JxKV1 , JyKV1 and IV1 .

3) Else If flag = 1 :

– SV1
ΠmulTr

sets JxKV1 = (⊥,⊥,⊥), JyKV1 = (⊥,⊥,⊥) shares and invokes FmulTr on behalf of V1 .

– SV1
ΠmulTr

sends the final circuit output O to V1 on behalf of the pair of honest parties and discards

any incoming message from V1.

Figure 4.13: SV1
ΠmulTr

: Simulator for the case of corrupt V1

This completes the simulation for the case of a corrupt V1. We now describe the simulator

for the case of a corrupt V2.

1) SV2
ΠmulTr

emulates Fbic on behalf of V2 acting as the sender, for σ2
rt . If the internal flag variable

of Fbic set to 1, simulator SV2
Πmult

sets flag = 1 and goes to step 3). Similar steps are followed for

the case of δ2
xy, B1 and B2.

2) If flag = 0:

• SV2
ΠmulTr

emulates Fbic on behalf of V2 acting as the receiver R. The simulator also invokes the

ideal functionality Fmul on behalf of V2, with inputs as JxKV2 , JyKV2 and IV2 .

3) Else If flag = 1 :

– SV2
ΠmulTr

sets JxKV2 = (⊥,⊥,⊥), JyKV2 = (⊥,⊥,⊥) shares and invokes FmulTr on behalf of V2 .

– SV2
ΠmulTr

sends the final circuit output O to V2 on behalf of the pair of honest parties and discards

any incoming message from V2.

Figure 4.14: SV2
ΠmulTr

: Simulator for the case of corrupt V2

We describe the simulator for the case of a corrupt a corrupt E1. The case of a corrupt E2

is similar to this case and hence can be worked out in a similar way.

1) SE1
ΠmulTr

emulates Fbic on behalf of E1 acting as the sender, for each A1 and B1.If the internal

flag variable of Fbic set to 1, simulator SE1
ΠmulTr

sets flag = 1 and goes to step 3).

2) If flag = 0:
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– SE1
ΠmulTr

emulates Fbic on behalf of E1, for the case of µ2
z , where z = xy.If the internal flag

variable of Fbic set to 1, simulator SE1
ΠmulTr

sets flag′ = 1 and goes to step 3). Else the simulator

invokes FmulTr, with inputs as JxKE1 , JyKE1 and IE1 .

3) Else If flag = 1 :

– SE1
ΠmulTr

sets JxKE1 = (⊥,⊥,⊥), JyKE1 = (⊥,⊥,⊥) shares and invokes FmulTr on behalf of E1.

– SE1
ΠmulTr

sends the final circuit output O to E1 on behalf of the pair of honest parties and discards

any incoming message from E1.

Figure 4.15: SE1
ΠmulTr

: Simulator for the case of corrupt E1

4.5 Bit Conversion

Here, we describe a protocol to transform J·KB-sharing of bit b to its arithmetic equivalent. For

this transformation, we use the following equivalence relation:

b = σb ⊕ µb = µb′ + σb′ − 2µb′σb′

where µb′ and σb′ denote the bits µb and σb respectively over Z2` . Parties who hold µb and

σb in clear convert them to µb′ and σb′ respectively. Parties generate J·K-sharing of σb′ and

µb′ by executing ΠcSh followed by multiplication of Jµb′K and Jσb′K. The formal details of the

resultant protocol Πbtr and the corresponding functionality Fbtr are given in 4.17 and Fig 4.16

respectively.

Functionality Fbin receives the inputs from the parties as follows:

– V1: JbKBV1
and internal randomness IV1 .

– V2: JbKBV2
and internal randomness IV2 .

– E1: JbKBE1
and internal randomness IE1 .

– E2: JbKBE2
and internal randomness IE2 .

On receiving the inputs Fbtr performs the following steps:

– Fbtr sets flag = 1, if the copies σ1
b received from V1,V2 and E1 mismatch. Fbtr also performs

similar checks for σ2
b , µ

1
b and µ2

b .

– If flag = 1 :

– Fbtr uses the internal randomness of the parties, computes all the inputs i1, . . . , in of the circuit

in clear.

– Fbtr computes O = f(i1, . . . , in) locally, where O denotes the output of the entire circuit evalu-
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ation.

– Fbtr sends the final output O to all the parties.

– Else If flag = 0 :

– Fbtr computes b = µ1
b ⊕ µ2

b ⊕ σ1
b ⊕ σ2

b and set z = b.

– Fbin randomly samples σ1
z , σ

2
z and µ1

z ∈ Z2` and set µ2
z = z + σ1

z + σ2
z − µ1

z.

– The output shares sent by Fbin are as follows:

V1: (σ1
z , σ

2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z, µ

2
z), E2: (σ2

z , µ
1
z, µ

2
z)

Figure 4.16: Fbtr: Ideal Functionality for conversion of bit b

• Input: Parties input their JbKB shares.

• Output: Parties obtain JbK as the output.

– Parties execute ΠcSh(V, σb′) and ΠcSh(E, µb′) to generate Jσb′K and Jµb′K respectively.

– Parties execute Πmultµb′σb′ to generate Jµb′σb′K, followed by locally computing

JbK = Jµb′K + Jσb′K− 2 Jµb′σb′K.

Figure 4.17: Πbtr(JbK
B): Conversion of a bit to arithmetic equivalent

We observe that cost of multiplication in Πbtr can be reduced from 12` to 10` bits. Note that

the value σµb′ is set to zero, when ΠcSh is executed to generate Jµb′K. This implies δµb′σb′ = 0

and thus removes the extra call to Πbic protocol.

Lemma 13. Πbtr protocol requires a communication cost (amortized) of 14` bits and at most

5 rounds.

Proof. Firstly, the protocol ΠcSh used to generate the arithmetic equivalent J·K-sharing of bit

σb and µb consumes 4` bits in total. The optimized multiplication of µb′ .σb′ consumes 10` bits

in total as δµb′σb′ = 0 so ΠcSh is not required the same. In case of a corrupt verifier ΠcSh of σb

can take at most 2 rounds, followed by 3 rounds for optimized multiplication (as δµb′σb′ = 0)

making the total rounds equal to 5. A similar argument can be made for the case when one of

the evaluator is corrupt.

4.5.1 Security of Bit Conversion

In this section, we describe the ideal functionality followed by a detailed security proof for

our Bit Conversion protocol and prove security in the standard model. Specifically, we prove

Theorem 9 in the Fsetup hybrid model.
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Theorem 9. Assuming one-way functions, the protocol Πbtr securely realizes the functionality

Fbtr in the Fsetup hybrid model against one malicious corruption in the standard model.

We first begin by describing the simulator for the case of a corrupt V1. The case of a corrupt

V2 is similar to this case and hence can be worked out in a similar way.

1) SV1
Πbtr

emulates Fbic on behalf of V1 acting as the helper for µ2
µb′

and acting as the sender for

σ2
σb′

. If the internal flag variable of Fbic set to 1, simulator SV1
Πbtr

sets flag = 1 and goes to step 4).

2) Simulator SV1
Πmsb

then simulates the steps of SV1
Πmult

(Figure 3.12) on behalf of V1 for the product

µb′σb′ .

3) If flag = 0:

• The simulator also invokes the ideal functionality Fbtr on behalf of V1, with inputs as JbKBV1

and IV1 .

4) Else If flag = 1 :

– SV1
Πbtr

sets JbKBV1
= (⊥,⊥,⊥) and invokes Fbtr on behalf of V1 .

– SV1
Πbtr

sends the final circuit output O to V1 on behalf of the pair of honest parties and discards

any incoming message from V1.

Figure 4.18: SV1
Πbtr

: Simulator for the case of corrupt V1

We now describe the simulator for the case of a corrupt a corrupt E1. The case of a corrupt

E2 is similar to this case and hence can be worked out in a similar way.

1) SE1
Πbtr

emulates Fbic on behalf of E1 acting as the helper for σ2
σb′

and acting as the sender for

µ2
µb′

. If the internal flag variable of Fbic set to 1, simulator SE1
Πbtr

sets flag = 1 and goes to step 4).

2) SE1
Πmsb

then simulates the steps of SE1
Πmult

(Figure 3.14) on behalf of E1 for the product µb′σb′ .

3) If flag = 0:

• The simulator also invokes Fbtr on behalf of E1, with inputs as JbKBE1
and IE1 .

4) Else If flag = 1 :

– SE1
Πbtr

sets JbKBE1
= (⊥,⊥,⊥) and invokes Fbtr on behalf of E1 .

– SE1
Πbtr

sends the final circuit output O to E1 on behalf of the pair of honest parties and discards

any incoming message from E1.

Figure 4.19: SE1
Πbtr

: Simulator for the case of corrupt E1

44



4.6 Bit Insertion

Given a bit b ∈ {0, 1} in J·KB-shared form and x ∈ Z2` in J·K-shared form, we have to compute

JbxK. A trivial solution is to convert JbKB to JbK using Πbtr followed by a multiplication with

JxK, which requires a total of 26 ring elements and 10 rounds. Instead, we propose a better

solution that requires 18` ring elements and 5 rounds in total. We can view the equation for

bit insertion as follows:

µbx = (µb ⊕ σb) · (µx − σx) + σbx

= (µb′ + σb′ − 2µb′σb′) · (µx − σx) + σbx

= γb′x − µb′σx + (µx − 2γb′x)σb′ + (2µb′ − 1)δb′x + σbx

= γb′x + (−µ1
b′σx + (µ1

x − 2γ1
b′x)σb′ + (2µ1

b′ − 1)δb′x + σbx)

+ (−µ2
b′σx + (µ2

x − 2γ2
b′x)σb′ + (2µ2

b′ − 1)δb′x)

= γb′x + (A1 + A2) + (B1 + B2)

where γb′x = µb′µx, δb′x = σb′σx and µb′ , σb′ represent µb and σb over Z2` respectively. In

the above equation, we observe that, given the [·]-shares of µb′ , σb′ , γb′x and δb′x, parties

can robustly compute J·K-sharing of µbx. The protocol proceeds as follows: Parties begin by

generating [·]-shares of µb′ , γb′x towards set V and σb′ , δb′x towards set E, so that parties can

compute A1, A2, B1 and B2. This is followed by parties executing Πbic protocol for each Ai and

Bi, so that E1 and E2 are able to compute µbx. The formal details of the protocol Πbin and the

corresponding functionality Fbin appear in Fig 4.21 and Fig 4.20 respectively.

Functionality Fbin receives the inputs from the parties as follows:

– V1: JxKV1 , JbKBV1
and internal randomness IV1 .

– V2: JxKV2 , JbKBV2
and internal randomness IV2 .

– E1: JxKE1 , JbKBE1
and internal randomness IE1 .

– E2: JxKE2 , JbKBE2
and internal randomness IE2 .

On receiving the inputs Fbin performs the following steps:

– Fbin sets flag = 1, if the copies σ1
b received from V1,V2 and E1 mismatch. Fbin also performs

similar checks for σ2
b , µ

1
b and µ2

b .

– A similar check is performed by Fbin for the shares of JxK.

– If flag = 1 :

– Fbin uses the internal randomness of the parties, computes all the inputs i1, . . . , in of the circuit
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in clear.

– Fbin computes O = f(i1, . . . , in) locally, where O denotes the output of the entire circuit evalu-

ation.

– Fbin sends the final output O to all the parties.

– Else If flag = 0 :

– Fbin computes x = µ1
x + µ2

x − σ1
x − σ2

x, b = µ1
b ⊕ µ2

b ⊕ σ1
b ⊕ σ2

b and set z = bx, where z = x if

b = 1 else z = 0.

– Fbin randomly samples σ1
z , σ

2
z and µ1

z ∈ Z2` and set µ2
z = z + σ1

z + σ2
z − µ1

z.

– The output shares sent by Fbin are as follows:

V1: (σ1
z , σ

2
z , µ

1
z), V2: (σ1

z , σ
2
z , µ

2
z)

E1: (σ1
z , µ

1
z, µ

2
z), E2: (σ2

z , µ
1
z, µ

2
z)

Figure 4.20: Fbin: Ideal Functionality for bit insertion of bit b into value x

• Input: Parties input their JbKB and JxK shares.

• Output: Parties obtain JbxK as the output.

– Parties in V and E1 collectively sample random σ1
bx ∈ Z2` , while parties in V and E2 together

sample random σ2
bx.

– Parties in V and E1 collectively sample random σ1
b′ followed by V1 and V2 setting σ2

b′ = σb′−σ1
b′ .

Parties then execute Πbic(V1,V2, σ
2
b′ ,E2,E1), such that E2 receives σ2

b′ . The same procedure is

used for E2 to receive δ2
b′x.

– Parties in E and V1 collectively sample random µ1
b′ followed by E1 and E2 setting µ2

b′ = µb′−µ1
b′ .

Parties then execute Πbic(E1,E2, µ
2
b′ ,V2,V1), such that V2 receives µ2

b′ . The same procedure is

used for V2 to receive γ2
b′x.

– Parties in V and E1 collectively sample ∆1. Parties V1 and E1 compute A1 = −µ1
b′σ

1
x + (µ1

x −
2γ1

b′x)σ1
b′ + (2µ1

b′ − 1)δ1
b′x + σ1

bx + ∆1 and invoke

Πbic(V1,E1,A1,E2,V2).

– Similarly, parties in V and E2 collectively sample ∆2. Parties V1 and E2 compute A2 = −µ1
b′σ

2
x+

(µ1
x − 2γ1

b′x)σ2
b′ + (2µ1

b′ − 1)δ2
b′x + σ2

bx + ∆2 and invoke Πbic(V1,E2,A2,E1,V2).

– Parties V2 and E1 compute B1 = −µ2
b′σ

1
x + (µ2

x − 2γ2
b′x)σ1

b′ + (2µ2
b′ − 1)δ1

b′x − ∆1 and invoke

Πbic(V2,E1,B1,E2,V1) . Similarly, V2 and E2 compute B2 = −µ2
b′σ

2
x + (µ2

x − 2γ2
b′x)σ2

b′ + (2µ2
b′ −

1)δ2
b′x −∆2 and invoke Πbic(V2,E2,B2,E1,V1).

– Evaluators compute µb′x = A1 + A2 + B1 + B2 + γb′x locally. Parties in E and V1 collectively

sample µ1
b′x followed by evaluators setting µ2

b′x = µb′x−µ1
b′x and invoking Πbic(E1,E2, µ

2
b′x,V2,V1).

Figure 4.21: Πbin(JbKB, JxK): Insertion of bit b in a value
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Lemma 14. Πbin protocol requires a communication cost (amortized) of 18` bits and at most 5

rounds.

Proof. Four calls to Πbic for σ2
b′ , µ

2
b′ , γb′x and δb′x consumes 8` bits in total. Again four calls

to Πbic each for A1, A2, B1 and B2 consumes another 8` bits followed by evaluators invoking

Πbic of µ2
b′x which consumes 2` bits. Round complexity wise, in case of a corrupt verifier, Πbic

for σ2
b′ , µ

2
b′ , γb′x and δb′x takes at most 2 rounds, followed by Πbic of A1, A2, B1 and B2 which

consumes at most 2 more rounds. Finally, Πbic of µ2
b′x which requires 1 round. A similar

argument can be made when one of the evaluator is corrupt.

4.6.1 Security of Bit Conversion

In this section, we describe the ideal functionality followed by a detailed security proof for

our Bit Insertion protocol and prove security in the standard model. Specifically, we prove

Theorem 10 in the Fsetup hybrid model.

Theorem 10. Assuming one-way functions, the protocol Πbin securely realizes the functionality

Fbin in the Fsetup hybrid model against one malicious corruption in the standard model.

We first describe the simulator for the case of a corrupt V1. Note that, SV1
Πbin

already has the

knowledge of IV1 , σ
2
b′ , δ

2
xy, A1 and A2. SV1

Πbin
emulates the Fbic functionality on behalf of V1 for

each of σ2
b′ , δ

2
xy, A1 and A2. The simulator then checks if any of the output leads to exchange

of internal randomness among two pair of honest parties, in which case SV1
Πbin

prepares incorrect

JxKV1 and JbKBV1
shares and invoke the Fbin functionality on behalf of V1.

1) SV1
Πbin

emulates Fbic on behalf of V1 acting as the sender, for σ2
b′ . If the internal flag variable of

Fbic is set to 1, simulator SV1
Πbin

sets flag = 1 and goes to step 4). Similar steps are followed for

the case of δ2
xy, A1 and A2.

2) SV1
Πbin

also emulates Fbic on behalf of V1 acting as the helper, for µ2
b′ .

3) If flag = 0:

• SV1
Πbin

emulates Fbic on behalf of V1 acting as the helper T . The simulator also invokes the ideal

functionality Fbin on behalf of V1, with inputs as JxKV1 , JbKBV1
and IV1 .

4) Else If flag = 1 :

– SV1
Πbin

sets JxKV1 = (⊥,⊥,⊥), JbKBV1
= (⊥,⊥,⊥) and invokes Fbin on behalf of V1 .

– SV1
Πbin

sends the final circuit output O to V1 on behalf of the pair of honest parties and discards

any incoming message from V1.
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Figure 4.22: SV1
Πbin

: Simulator for the case of corrupt V1

This completes the simulation for the case of a corrupt V1. We now describe the simulator

for the case of a corrupt V2.

1) SV2
Πbin

emulates Fbic on behalf of V2 acting as the sender, for σ2
b′ . If the internal flag variable of

Fbic is set to 1, simulator SV2
Πbin

sets flag = 1 and goes to step 4). Similar steps are followed for

the case of δ2
xy, B1 and B2.

2) SV2
Πbin

additionally emulates Fbic on behalf of V2 acting as the receiver, for µ2
b′ .

3) If flag = 0:

• SV2
Πbin

emulates Fbic on behalf of V2 acting as the receiver R. The simulator also invokes the

ideal functionality Fbin on behalf of V2, with inputs as JxKV2 , JbKBV2
and IV2 .

4) Else If flag = 1 :

– SV2
Πbin

sets JxKV2 = (⊥,⊥,⊥), JbKBV2
= (⊥,⊥,⊥) and invokes Fbin on behalf of V2 .

– SV2
Πbin

sends the final circuit output O to V2 on behalf of the pair of honest parties and discards

any incoming message from V2.

Figure 4.23: SV2
Πmult

: Simulator for the case of corrupt V2

We describe the simulator for the case of a corrupt a corrupt E1. The case of a corrupt E2

is similar to this case and hence can be worked out in a similar way.

1) SE1
Πbin

emulates Fbic on behalf of E1 acting as the sender, for µ2
b′ . If the internal flag variable of

Fbic is set to 1, simulator SE1
Πbin

sets flag = 1 and goes to step 3). Similar steps are followed for

the case of A1 and B1. Additionally, SE1
Πbin

emulates Fbic on behalf of E1 acting as the helper, for

σ2
b′ .

2) If flag = 0:

– SE1
Πbin

emulates Fbic on behalf of E1, for the case of µ2
z , where z = b′x. If the internal flag

variable of Fbic set to 1, simulator SE1
Πbin

sets flag′ = 1 and goes to step 3). Else the simulator

invokes Fbin, with inputs as JxKE1 , JbKBE1
and IE1 .

3) Else If flag = 1 :

– SE1
Πbin

sets JxKE1 = (⊥,⊥,⊥), JbKBE1
= (⊥,⊥,⊥) and invokes Fbin on behalf of E1.

– SE1
Πbin

sends the final circuit output O to E1 on behalf of the pair of honest parties and discards

any incoming message from E1.

Figure 4.24: SE1
Πmult

: Simulator for the case of corrupt E1
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4.7 Extension to 4PC Abort

All the aforementioned robust protocols can be easily converted to the abort variant by tweaking

the Bi-convey primitive (Section 3.3). In case of abort setting, parties S1 and S2 in the Bi-

Convey primitive send x and H(x) respectively to R, who accepts x if the hashes match else

aborts. Thus by swapping with the abort variant of the primitive, all the building blocks achieve

security with abort. Table 4.1 provides round and communication complexity comparison of

both the variants of the protocols.

Protocol Equation
FLASH (Abort) FLASH (Robust)

Rounds Comm. Rounds Comm.

Multiplication JxK.JyK→ Jx.yK 2 6` 5 12`

Dot Product J~x� ~yK = J
∑d

i=1 xiyiK 2 6` 5 12`

MSB Extraction JxK→ Jmsb(x)KB log `+ 4 14` log `+ 5 28`

Truncation JxK.JyK→ J(xy)tK 2 7` 5 14`

Bit Conversion JbKB → JbK 2 7` 5 14`

Bit Insertion JbKBJxK→ JbxK 2 9` 5 18`

Table 4.1: Comparison of Abort and Robust variants in FLASH.

As observed in Table 4.1, for the abort setting our cost of multiplication protocol is 6

elements which turns out to be the same as [GRW18]. But from a practical viewpoint, if we

cast ours and GRW18 multiplication protocol into the offline-online paradigm, where the offline

phase generates the necessary offline values in order for a fast online phase to be executed when

the client query becomes available, our protocol requires only 3 parties to be active (V2, E1 and

E2) in the online phase, whereas [GRW18] needs all parties to be active throughout the entire

execution.

Work Equation
Offline Phase Online Phase

Rounds Comm. Rounds Comm.

[GRW18]
JxK.JyK→ Jx.yK

1 2` 1 4`

Ours 1 3` 1 3`

Table 4.2: Comparison of FLASH with [GRW18] for the Abort setting.
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This is helpful, because now the server associated with party V1 is only needed to generate

offline values and can be shut down for the entirety of the online phase which will, in turn, save

a lot in terms of monetary cost for running the server on the cloud (WAN) setting. Hence, even

though the communication and round complexity of both the works turns out to be the same

with respect to a single multiplication, our work has better practical efficiency in terms of the

number of servers required in the online phase. Table 4.2 provides a concrete comparison of

our framework with [GRW18].
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Chapter 5

Secure Prediction

In this section, we provide detailed protocols for the prediction phase of the following ML

algorithms – i) Linear Regression, ii) Logistic Regression, iii) Deep Neural Network and iv)

Binarized Neural Network, using the building blocks constructed earlier in Chapter 4.

5.1 Our Model

We consider a server-aided setting where both model owner M and client C outsource their

trained model parameters and query to a set of four non-colluding servers {V1,V2,E1,E2}, in a

J·K-shared fashion. The servers then compute the function using our 4PC protocol and finally

reconstruct the result towards C. We assume the existence of a malicious adversary A, who can

corrupt either M or C and at most one among {V1,V2,E1,E2}. Recall that E and V denote

the set of servers {E1,E2} and {V1,V2} respectively. We begin with the assumption that both

M and C have already outsourced their input vectors to {V1,V2,E1,E2}.

5.1.1 Notations:

We use bold smalls to denote a vector. Given a vector ~a, the ith element in the vector is denoted

by ai. Model Owner M holds a vector of trained model parameters denoted by ~w. C’s query is

denoted by ~z. Both ~w and ~z are vectors of size d, where d denotes the number of features.

5.2 Linear Regression

In case of linear regression model, the output of the prediction phase for a query ~z is given by

~w � ~z =
∑d

i=1 wizi. Thus the prediction phase boils down to servers executing Πdp protocol

with inputs as J~wK and J~zK, to obtain J·K shares of ~w � ~z.
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5.3 Logistic Regression

The prediction phase of logistic regression model for a query ~z is given by sig(w̃ � z̃) , where

sig(·) denotes the sigmoid function. The sigmoid function is defined as sig(u) = 1
1+e−u . SecureML

[MZ17] showed the drawbacks of using sigmoid function for a general MPC setting and proposed

a MPC friendly approximation, defined as follows :

sigx(u) =


0 u < −1

2

u + 1
2

−1
2
≤ u ≤ 1

2

1 u > 1
2

The above equation can also be viewed as, sigx(u) = b1b2(u + 1/2) + b2, where bit b1 = 1

if u + 1/2 < 0, bit b2 = 1 if u − 1/2 < 0. Servers execute Πmsb(u + 1/2) and Πmsb(u− 1/2)

to generate Jb1K
B and Jb2K

B respectively. Servers can locally compute JbiK
B

from JbiK
B. After

this, ΠB
mult(Jb1K, Jb2K) is executed to generate JbKB, where b = b1b2. Servers then invoke Πbin on

JbKB and J(u + 1/2)K to generate Jb1b2(u + 1/2)K, and Πbtr(Jb2K
B

) to generate Jb2K. Servers then

locally add their shares to obtain Jsigx(u)K. Thus the cost for one query prediction in a logistic

regression model is the same as the cost of linear regression, plus the additional overhead of

computing sigx(~w ◦ ~z).

5.4 Deep Neural Networks (DNN)

All the techniques used to tackle the above models can be easily extended to support neural

network prediction. We follow a similar procedure as ABY3, where each node across all layers,

use ReLU (rel(·)) as its activation function. It comprises of computation of activation vectors

for all the layers of the network. The activation vector for a given layer i of the network is

defined as ~ai = rel(~ui), where ~ui = Wi × ~ai−1 is a matrix multiplication of weight matrix Wi

with the activation vector of the previous layer. Weight matrix Wi ∈ Rni×ni−1 contains all

the weights connecting the nodes between layers i and i − 1, where ni represents the number

nodes in layer i. We set matrix ~a0 = ~z, where ~z is the input query of the client. All the above

operations, that are needed for prediction, are simply a composition of several multiplications,

dot products along with the evaluation of many ReLU functions. We now define the ReLU

function below and also explain how to tackle it in our setting.

ReLU: The ReLU function is given as max(0, u). We view it as rel(u) = bu, where bit b = 1 if

u < 0, and b is the complement of b. Servers execute Πmsb(u) to generate JbKB. Servers locally

compute JbK
B

from JbKB, followed by executing Πbin on JbK
B

and JuK to generate JbuK.
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5.5 Binarized Neural Network (BNN)

MOBIUS [KCY+18] proposed a secure prediction protocol for BNN in two party setting with one

semi-honest corruption over Z2` . In the original work of BNN [HCS+16], a batch normalization

operation is performed at the output of every hidden layer of the binarized network, which

requires bit-shifting mechanism. Performing bit-shifting in two party setting is very expensive.

As a countermeasure, MOBIUS proposed an alternate solution for batch normalization with

cost equal to that of one multiplication. The alternate solution is as follows: Suppose xil be

the output of node i in the lth hidden layer, instead of using bit-shifting to normalize xil, they

perform x′il = pilx
i
l+q

i
l , where x′il is the normalized output and pil, q

i
l are the normalization batch

parameters for node i of hidden layer l, which are provided by M .

MOBIUS also showed that this method drops the accuracy by a negligible amount. Inspired

from the ideas of MOBIUS, we now provide a secure prediction protocol for our setting. Note

that, J·K-shares of the weight matrices Wl ∈ {−1, 1}nl×nl−1 , batch normalization parameters

~pl, ~ql, ∀l ∈ {1, . . . , lfinal} and the query ~z are already available among the servers.

We describe our protocol layer by layer. We use nl to denote the number of nodes in layer l.

The computation in each layer l consists of three stages: i) The first stage comprises of matrix

multiplication ~xl = Wl × f(~x′l−1), where ~x′l−1 denotes an nl−1-sized vector and f(~x′l−1) denotes

the vector obtained by applying activation function f on it. The activation function for a given

value a is defined as

f(a) =

{
−1 a < 0

1 a ≥ 0

The matrix multiplication can be viewed as nl dot product (protocol Πdp) computations. ii)

Servers, then perform batch normalization process on vector ~xl to obtain ~x′l = ~pl◦~xl+~ql, where

◦ denotes element wise multiplication. As evident, we use nl multiplications and additions to

compute the J·K-sharing of ~x′l. iii) This stage consists of passing the ~x′l through the activation

function f to obtain f(~x′l).

To compute the activation function f(a) in a J·K-shared fashion, servers execute Πmsb on

JaK to extract the MSB msb(a), followed by executing Πbtr on Jmsb(a)KB to generate Jmsb(a)K.

Finally, the servers locally compute Jf(a)K = 2Jmsb(a)K− 1. For the input layer (l = 0), servers

set f(~x′0) = ~z. Note that stage three is not required at the output layer.
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Chapter 6

Implmentation

We show the practicality of our framework by providing implementation results and compare

with ABY3, in their respective settings over a ring of Z264 .

6.1 Experimental Setup:

Our experiments have been carried out both in the LAN and WAN setting. In the LAN setting,

our machines are equipped with Intel Core i7-7790 CPU with 3.6 GHz processor speed and 32

GB RAM. Each of the four cores were able to handle eight threads, resulting in a total of 32

threads. We had a bandwidth of 1Gbps and an average round-trip time (rtt) of ≈ 0.26ms.

In the WAN setting, we use Microsoft Azure Cloud Services (Standard D8s v3, 2.4 GHz Intel

Xeon R© E5-2673 v3 (Haswell), 32GB RAM, 8 vcpus) with machines located in North Central

US (S1), South East Asia (S2), Australia East (S3) and West Europe (S4). Each of the eight

cores was capable of handling 16 threads resulting in a total of 128 threads. The bandwidth

was limited to 20Mbps and the average rtt times are as follows:

S1-S2 S1-S3 S1-S4 S2-S3 S2-S4 S3-S4

161.76ms 197.03ms 97.32ms 116.36ms 225.34ms 236.56ms

We build on the ENCRYPTO library [CaTD17], following the standards of C++11. Due to

the unavailability of the code of ABY3 [MR18], we implement their framework for comparison.

For our executions, we report the average values over a run of 15 times. Flash Implementation

provides the link for our code.
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6.1.1 Parameters for Comparison:

We consider three parameters for comparison– a) Latency (calculated as the maximum runtime

of the servers), b) Communication complexity and c) Throughput (number of operations per

unit time). The latency and throughput are evaluated over both LAN and WAN settings. The

communication complexity is measured independent of the network. For the aforementioned

algorithms, the throughput is calculated as the number of queries that can be computed per

second and min in LAN and WAN respectively.

6.1.2 Server Assignment:

We assign the roles to the servers to maximize the performance of each of the frameworks, that

we use for benchmarking. The table below provides the assignment of roles to the corresponding

servers. For the 4PC setting, V1,V2 represent the set of verifiers while E1,E2 represent the set

of evaluators. P0, P1, P2 represent the parties, in the 3PC setting. we omit comparison with

ASTRA framework as ABY3 outperforms ASTRA in terms of total communication (ref. Table

1.1).

Work S1 S2 S3 S4

FLASH E1 E2 V1 V2

ABY3 P1 P2 P3 −

Table 6.1: Server Assignment for FLASH and ABY3 frameworks

6.1.3 Datasets:

We pick real-world datasets to measure the throughput for the prediction phase. The datasets

we pick have features ranging from 13 to 784, which cover a range of feature sizes for a wide

span of commonly used datasets.

For Linear Regression, we use Boston Housing Prices Dataset (Boston) [HR78] and the

dataset obtained from [NOA17] about the Weather Conditions in World War Two (Weather).

The Boston dataset has ≈ 500 samples, each with 14 features, while the Weather dataset has

≈ 119, 000 samples with 31 features.

For Logistic Regression we use the dataset from [Dar17] which categorizes and gives the

rating for recipes (Recipes) and Candy Power Ranking (Candy) dataset from [Hic17] which

predicts the most popular Halloween candy. The Candy dataset is small with only 13 features

and ≈ 85 samples whereas the Recipe dataset is large with 680 features and ≈ 20, 000 samples.
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ML Algorithm Dataset #features #samples

Linear Reg.
Boston Housing Prices [HR78] 14 ≈500
Weather Conditions [NOA17] 31 ≈119000

Logistic Reg.
Candy Power Ranking [Hic17] 13 ≈85
Food Recipes [Dar17] 680 ≈20000

DNN & BNN MNIST [LC10] 784 ≈70000

Table 6.2: Real World datasets for Comparison

For Deep Neural Network and Binarized Neural Network, we use MNIST [LC10] dataset

which contains 784 pixel images of handwritten numbers, each of size 28 × 28. We also use

synthetic datasets as it provides freedom to tune the number of features parameter and showcase

the improvement with increasing feature size.

6.2 ML Building Blocks

We begin by comparing our protocols for some of the crucial ML building blocks, namely i)

Dot Product, ii) MSB Extraction and iii) Truncation, against the state of the art protocols of

ABY3 [MR18]. The comparison is mainly to show the substantial improvement we achieve in

each building block when we shift from 3PC to 4PC setting, along with robustness guarantee.

Later in Section 6.3 and 6.4 we show how the improvement in these blocks help us achieve

massive improvements (Table.1.2) for our ML algorithms.

6.2.1 Dot Product:

Dot Product is one of the vital building blocks for many machine learning algorithms like Linear

Regression, Logistic Regression and Neural Network to name a few.

Work LAN Latency (ms) WAN Latency (s)

ABY3 3.55 1.10

FLASH 1.51 1.08

Table 6.3: Latency of 1 dot product computation for 784 features

Table 6.3 gives the comparison of our work with ABY3 with respect to the completion of

one dot product computation for d = 784 features. We observe that for the LAN setting, even

though the number of rounds required for completion of one dot product execution for both
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frameworks is 5 rounds, the latency of ABY3 is still twice of our FLASH. This discrepancy hap-

pens because the rtt of the network varies drastically with increase in the size of communication.

In case of ABY3, due to their dot product protocol being dependent on the number of features

the per party communication turns out to be 42.8KB, whereas our protocol incurs a tiny cost

of 0.09KB. Such a discrepancy is not observed in WAN as the communication threshold to vary

the rtt is very high, under which all our protocols operate. We also plot the number of dot

product computations that can be performed per sec, for varying feature sizes.
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Figure 6.1: # of dot product computations with increasing features.

It is clear from Figure.6.1 that varying the number of features has minimal impact on our

throughput, since the communication cost of ours is independent of the feature size, while

ABY3 suffers with increase in number of features. Thus for any machine learning algorithm

which is heavily dependent on dot product computations, our protocol outperforms ABY3.

6.2.2 MSB Extraction:

MSB Extraction is the crux for many classification algorithms. Deep Neural Network and

Binarized Neural Network where a large number of sequential comparisons are required. Table

6.4 gives the comparison of our work with ABY3, with respect to the completion of one MSB

Extraction.

Work LAN Latency (ms) WAN Latency (s)

ABY3 3.53 2.22

FLASH 3.51 2.28

Table 6.4: Latency for single execution of MSB Extraction protocol

We also provide a latency graph with respect to the number of sequential comparisons.
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Figure 6.2: Latency with increasing sequential comparisons

We observe from Figure 6.2 that the time taken for both protocols to complete a set of

sequential comparisons are almost similar. Our completion time for sequential comparisons is

slightly more than ABY3 in the WAN setting as the average rtts across the three servers (Table

6.1) in case of ABY3 is lesser as compared to ours where we require all four servers. Note that

we omit the plot for the LAN setting as the average rtts between all servers are almost identical

leading to both the plotted lines to practically overlap. Even though the average completion

time for the both are almost identical, we require a communication cost of only ≈ 0.19KB

per comparison as opposed to ABY3’s cost of ≈ 0.33KB. Thus, for the prediction phase of an

ML algorithm like Deep Neural Network, the gap in the communication cost will keep growing

bigger with the increase in the number of hidden nodes in the neural network.

6.2.3 Truncation:

To showcase the effect of our efficient truncation protocol, we compare our protocol with that

of ABY3. Table 6.5 gives the comparison with respect to the completion of a single execution

of the protocol.

Work LAN Latency (ms) WAN Latency (s)

ABY3 1.52 1.11

FLASH 1.51 1.07

Table 6.5: Latency for a single execution of Truncation protocol

In the case of ABY3, though the truncation protocol takes 2`−1 rounds, the latency of both

the frameworks in Table.6.5 are almost identical. This is because the goal of ABY3 was to have
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a high throughput framework, thus they compute ≈ 220 parallel instances of ([r], JrtK) pairs so

that the amortized time for a single execution of truncation protocol reduces. On the flip side,

we do not have any such restriction on the number of ([r], JrtK) pair instances and the latency

remains the same even if only one pair is required. Table 6.6 provides the throughput, measured

as the number of multiplications with truncation performed, over both LAN (#mult/sec) and

WAN (#mult/min) settings.

Work
LAN WAN

#mult/sec Improv. #mult/min Improv.

ABY3 0.45M
8.8× 4.76M

8.81×
FLASH 3.97M 0.54M

Table 6.6: Throughput Comparison wrt # multiplications with truncation

We observe a minimum improvement of 8.8× over ABY3. The improvement comes from the

fact that ABY3 requires ≈ 6300 bits per truncation as compared to 896 bits for our case, when

instantiated over a 64 bit ring. Our protocol will outperform ABY3 for all the ML algorithms

that require repeated multiplications in the prediction phase.

6.3 Linear and Logistic Regression

In this section, we compare the concrete improvement of our framework against ABY3, for

Linear and Logistic Regression. The performance is reported in terms of throughput of the

protocol, the units being # queries/sec over LAN and # queries/min over WAN.

Setting # Features Ref.
Linear
Reg.

Logistic
Reg.

LAN
(ms)

10
ABY3 1.67 5.57

FLASH 1.53 5.36

100
ABY3 2.05 5.91

FLASH 1.49 5.37

1000
ABY3 3.61 7.55

FLASH 1.54 5.39

WAN
(sec)

10/100/1000
ABY3 1.12 3.77

FLASH 1.09 3.73

Table 6.7: Latency of frameworks for Linear and Logistic Reg.
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We begin by comparing our framework with ABY3 over synthesized datasets as it provides

us the freedom to tune the number of features parameter and showcase the improvement with

the increase in #features. Table 6.7 provides a throughput comparison for #features d = 10, 100

and 1000.
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Figure 6.3: Throughput Comparison (# queries/sec) for Linear and Logistic Regression in LAN
setting
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Figure 6.4: Throughput Comparison (# queries/min) for Linear and Logistic Regression in
WAN setting

As mentioned earlier in Section.6.2.1, the increase in feature size changes the LAN latency

for ABY3 from 1.68ms to 3.63ms and 5.59ms to 7.54ms for Linear and Logistic regression

respectively, whereas our latency stays stable to ≈ 1.5ms and ≈ 5.36ms for the same. The
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reason for the stability in our latency is the underlying dot product which is independent of

the feature size.

We now test on real-world datasets as mentioned in Table 6.2 for Linear and Logistic Regres-

sion. Figures 6.3 and 6.4 provide a comparison with ABY3 in terms of the number of queries

computed per second and minute in LAN and WAN setting respectively. For Linear Regression,

we observe a minimum throughput gain of ≈ 35×. The improvement primarily comes from the

underlying Πdp protocol and its independence of feature size property. Similarly, for Logistic

Regression, we observe a throughput gain of around 29×, where protocols Πdp and Πmsb become

the prime contributors for the improvements in Logistic Regression.

6.4 Deep and Binarized Neural Network

In this section, we compare our framework with ABY3, for DNN and BNN. The accuracy of our

predictions has the same bit-error that ABY3 mentions due to the similarity in the approach

to truncation. We begin by comparing (Table 6.8) over synthesized datasets and show the

improvement in terms of latency for #features d = 10, 100 and 1000.

Setting # Features Ref. DNN BNN

LAN
(ms)

10
ABY3 58.98 59.18

FLASH 28.78 31.46

100
ABY3 67.79 67.83

FLASH 28.86 31.71

1000
ABY3 146.42 147.22

FLASH 29.04 31.98

WAN
(sec)

10/100/1000
ABY3 13.67 13.68

FLASH 12.59 14.21

Table 6.8: Latency of frameworks for DNN and BNN

Figure 6.5 also shows how the depth of the neural network affects the throughput of the

two frameworks. We consider a neural network with each hidden layer having 128 nodes and

the final output layer having 10 nodes. The network is tested on MNIST dataset with d = 784

features.

It is clear from Figure 6.5, that we achieve impressive throughput gains of ≈ 155× and

≈ 8.5× for LAN and WAN setting respectively, even when the depth of the neural network

goes up to 8 hidden layers. Such massive improvements primarily come from amalgamation of

the improvements observed in the underlying building blocks (Section 6.2). Similar to DNN,
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Figure 6.5: Throughput Comparison for DNN with increasing number of hidden layers.

we also achieve similar massive improvements for the case of BNN due to the aforementioned

reasons. When tested on MNIST dataset (d = 784 features) for a BNN having 2 hidden layers,

we observed throughput gains of ≈ 268× in LAN and ≈ 11.5× in WAN setting.
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