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Abstract

Secure multi-party computation (MPC) allows a group of n mutually distrustful parties to

jointly perform a computation on their private inputs in a secure way, so that no adversary

A actively corrupting a subset of the parties can learn more information than their outputs

(privacy), nor can they affect the outputs of the computation other than by choosing their own

inputs (correctness). The round complexity of MPC protocols is a fundamental question in the

area of secure computation and its study constitutes a phenomenal body of work in the MPC

literature. The research goal of this thesis is to advance the state of the art by expanding this

study of round complexity to various realistic adversarial settings and network models. The

questions addressed in the thesis are of both theoretical and practical importance.

The first part of the thesis studies round-optimal (more generally, round-efficient) MPC

protocols for small population, namely involving 3 (3PC) and 4 (4PC) parties tolerating single

active corruption (honest majority). We address two broad categories of questions -

- We settle the exact round complexity of 3PC in honest-majority setting, for a range

of security notions such as selective abort (sa), unanimous abort (ua), fairness (fn) and

guaranteed output delivery (god). sa, the weakest in the lot, allows the corrupt parties

to selectively deprive some of the honest parties of the output. In the mildly stronger

version of ua, either all or none of the honest parties receive the output. fn implies that

the corrupted parties receive their output only if all honest parties receive output and

lastly, the strongest notion of god implies that the corrupted parties cannot prevent honest

parties from receiving their output. We focus on two network settings– pairwise-private

channels without and with a broadcast channel.

- On the more practical side, we present efficient, constant-round 3PC and 4PC proto-

cols in the honest-majority setting that achieve strong security notions of fn and god.

Being constant-round and striking a good balance between the complexity measures of

communication, computation and round complexity, our constructions are suitable for

high-latency networks such as the Internet.

iii



Abstract

The second part of the thesis extends the study of round complexity beyond the traditional

settings and towards more realistic adversarial settings. Our contributions are:

- The two traditional streams of MPC protocols consist of– (a) protocols achieving god or

fn in the honest-majority setting and (b) protocols achieving (ua, sa) in the dishonest-

majority setting. The favorable presence of honest majority amongst the participants

is necessary to achieve the stronger notions of god or fn[65]. Unfortunately, a protocol

in one setting completely breaks down in the other setting. We overcome this demar-

cation of study of round complexity of MPC based on resilience (i.e honest majority or

dishonest majority) and explore round complexity for an interesting class of protocols

called the Best-of-both-Worlds (BoBW) MPC which simultaneously achieve fn / god in

honest majority and ua in dishonest majority. We nearly settle the question of exact

round complexity of BoBW protocols under the assumption of no setup (plain model),

public setup (common random / reference string a.k.a CRS) and private setup (public-key

infrastructure a.k.a PKI).

- In a generalised adversarial setting where the adversary is allowed to corrupt both pas-

sively (corrupt parties follow the protocol specifications but the adversary learns the

internal state) and actively (corrupt parties deviate arbitrarily from the protocol), the

necessary bound for a n-party fair or robust (achieving god) protocol turns out to be

ta + tp < n, where ta, tp denote the threshold for active and passive corruption with

the latter subsuming the former. Subsuming the traditional settings as boundary special

cases, we study the dynamic corruption setting which opens up a range of possible corrup-

tion scenarios for the adversary. While dynamic corruption includes the entire range of

thresholds for (ta, tp) starting from (dn
2
e−1, bn/2c) to (0, n−1), the boundary corruption

restricts the adversary only to the boundary cases of (dn
2
e − 1, bn/2c) and (0, n− 1). We

overcome the demarcation of study of round complexity of MPC based on single type of

corruption (i.e passive or active) and settle the exact round complexity of fair and robust

MPC against dynamic and boundary adversaries under the assumption of public setup

(CRS).

While the above two parts include results in the computational (assumes polynomially-

bounded adversaries) and fully synchronous setting (assumes network channels with bounded-

delay), the final part of the thesis involves information-theoretic setting (tolerates computa-

tionally unbounded adversaries) and introduces asynchrony in the network as well. We address

the following fundamental questions wrt MPC and VSS (Verifiable Secret Sharing, which is
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Abstract

a fundamental building block for many distributed cryptographic tasks including MPC). Our

main contribution is as follows:

- Perfectly-secure (information-theoretic with no error) VSS and MPC protocols in asyn-

chronous network (allows arbitrary network delays) tolerate only at most one-fourth of

corruption, while their counterparts in synchronous network sustain against at most one-

third corruption. Moreover property-wise, synchronous protocols provide much stronger

guarantees than the asynchronous counterparts. Taking note of the fact that asynchronous

network is more realistic on one hand and on the other, synchrony of a network has pos-

itive impact on several aspects of distributed protocols including properties and fault-

tolerance, we explore the power of hybrid networks that combines best of both the worlds

by supporting a few synchronous rounds at the onset of a protocol execution, before

turning to asynchronous mode. In hybrid networks, we investigate various feasibility

questions pertaining to protocols giving guarantees attainable in synchronous as well as

asynchronous networks. Specifically, we wish to add and find the minimum synchrony

assumption needed. For asynchronous protocols, we wish to bridge the fault-tolerance

gap between synchronous and asynchronous protocols with minimum synchrony assump-

tion needed, leveraging the initial synchronous rounds. For synchronous protocols, we

explore if the known lower bounds on round complexity can be circumvented, leveraging

the asynchronous phase available in the hybrid network.
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Chapter 1

Introduction

Secure Multi-party Computation (MPC)[182, 107, 55, 30, 56], arguably regarded as the “holy

grail” of cryptography, allows a group of n mutually distrustful parties to jointly perform a

computation on their private inputs in a secure way, so that no adversary A actively corrupting

a subset of the parties can learn more information than their outputs (privacy), nor can they

affect the outputs of the computation other than by choosing their own inputs (correctness).

In the presence of a trusted third party (TTP), the above problem is trivial since all parties

could privately send their inputs to the TTP, which would compute the desired function and

subsequently return the output to the parties. Intuitively, an MPC protocol replaces the TTP

and guarantees the same level of security that the TTP provides.

The field of MPC originated with the seminal work of [182] which introduced the classical

“Yao’s millionaire problem” (the question of how two millionaires can determine who is richer

while keeping their actual wealth private). Since then, MPC has evolved into an active area of

research with a rich body of work comprising of both theoretical and practical achievements.

Its study is motivated not only by the fact that it gives us a general framework to study

cryptography (as most cryptographic tasks can be casted as secure computation problems)

but also since it enables various privacy-preserving applications such as secure auctions [41],

secure machine learning [158, 155, 157, 53], secure benchmarking [77], statistical data analysis

[40], email-filtering [144], financial data analysis [40] and privacy-preserving data mining [149].

In more detail, a motivating example of a real-life scenario that demands privacy-preserving

computation is the following - Consider an airline company that has a private database of its

list of passengers and the government which owns a database with sensitive information of

blacklisted passengers. It is of mutual interest to both these entities to find the intersection of

their individual databases without compromising on privacy, which is enabled by MPC. MPC

has been studied extensively in various settings that explore different kinds of adversaries, setup

1



and network models.

1.1 Dimensions of MPC

The various facets of real-life computing environments are captured by the fundamental dimen-

sions of MPC which includes the underlying communication network, type of adversary and

the setup to name a few. We outline the most prominent dimensions below. Looking ahead,

throughout this thesis, we use various combinations of the below mentioned models of network,

adversary and setup.

1.1.1 Network Model

The standard network model in MPC is the complete network which assumes that every pair

of distinct parties is directly connected by point-to-point secure and authentic channels. Some-

times, the presence of a broadcast channel is additionally assumed; where a broadcast channel

allows any party to send a message identically to all other parties in the network. An important

network dimension is synchrony based on which there are three categories:

- Synchronous: In the synchronous setting, it is assumed that all parties have access to a

common global clock and the delay of messages in the channels of the network is bounded

by a known constant. This allows protocols to proceed in rounds, with the strong delivery

guarantee that every message sent in any given round is delivered to all the recipients in

the same round.

- Asynchronous: In contrast to the above, in the asynchronous setting, there is no global

clock. It is assumed that the channels in the network may have arbitrary delays and may

deliver messages in any arbitrary order, with the only restriction that every sent message

must eventually be delivered. In order to model the worst case, the adversary is allowed

to control the scheduling of messages in the network.

- Hybrid: A network that is asynchronous in nature and yet supports a few synchronous

rounds at the onset of a protocol execution is denoted as hybrid network [23, 167]. While

we consider this notion, an alternative notion of hybrid networks appears in [75] where

a synchronization point is considered (the network is asynchronous before and after the

point).

1.1.2 Adversarial Model

Throughout this thesis, we consider a static and threshold adversary; where the former assumes

that the adversary decides on the set of parties it would corrupt before the protocol begins
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(as opposed to the adaptive model where the adversary is allowed to choose which parties

to corrupt during the protocol execution) and the latter assumes that the number of corrupt

parties is bounded by a threshold t (as opposed to a non-threshold where an adversary structure

comprising a set of subset of the parties is defined, among which the adversary can corrupt one

of the subsets). Following is the discussion on the most relevant dimensions related to the

adversarial model.

1.1.2.1 Computational Power

Based on the computational power of the adversary, the two main categories are the information-

theoretic and cryptographic settings. While the former assumes that the adversary may have

unbounded computing power, the latter assumes a PPT adversary i.e bounded by probabilistic

polynomial time. The information-theoretic setting further has two categories of protocols - (a)

perfectly-secure (tolerate no error) and (b) statistically-secure (tolerate negligible error proba-

bility, where a negligible function is considered to be one that grows slower than any inverse

polynomial; details in Chapter 2).

1.1.2.2 Type of Misbehaviour / Corruption

Based on the allowed misbehaviour, an adversary can be categorized into the following types:

- Passive / Semi-honest: The corrupt parties in this adversarial model are honest-but-

curious i.e they follow the protocol specifications but the adversary learns the internal

state of the corrupt parties which it may use to learn more information (i.e more than

what is allowed as per the security guarantees of the protocol).

- Active / Malicious: In this setting, the adversary exercises total control over the corrupt

parties who may deviate from the protocol steps in any arbitrary manner.

- Mixed: This is a generalized adversarial model where the adversary may simultaneously

perform both types of corruption i.e he may corrupt a subset of parties actively, and

additionally corrupt few others passively.

1.1.3 Setup

Based on the type of setup assumed, there are three well-studied models in the MPC literature

- (a) plain model which does not assume any kind of trusted setup, (b) public setup, also

referred to as the CRS model which assumes that a trusted common random / reference string

(CRS) is available to the parties and (c) private setup, also referred to as the PKI model

which assumes that parties have access to a public-key infrastructure (sometimes in addition

to access to a CRS).
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1.2 Attributes of MPC

While the setting of an MPC protocol is defined by the above discussed dimensions of adver-

sarial, network and the setup models; the analysis and comparison of protocols in the same

setting is done by means of the following attributes:

- Resilience: This is a measure of the number of corrupt parties that can be tolerated

i.e the defined threshold t. Among the protocols in the same setting and providing the

same security guarantees, the one having higher resilience is considered preferable. The

most common categorization based on resilience is the honest majority (t < n/2) and the

dishonest majority (t < n) settings.

- Quality / Degree of Robustness: Based on the degree of robustness, the categorization

is as follows (starting from the strongest i.e the most desirable to the weakest i.e the least

preferred)

- Guaranteed output delivery (god): The adversary cannot prevent honest parties from

receiving their output. This is the most desirable security notion. We refer to such

protocols as being robust.

- Fairness (fn): The adversary obtains the output if and only if the honest parties do.

In other words, either all or none of the parties receive output.

– Unanimous Abort (ua): Either all or none of the honest parties obtain the output.

Here, the protocols may be unfair i.e the adversary may get the output while the

honest parties don’t but there is an agreement amongst the honest parties with

respect to the output.

– Selective Abort (sa): This is the weakest security notion where the adversary may

selectively deprive a subset of the honest parties of the output.

Other notions include identifiable abort (idua) and identifiable fairness (idfair) where pro-

tocols achieving ua and fn respectively satisfy the following useful identifiability property:

if the parties do not receive the function output, then every party learns the identity of

atleast one corrupted party.

- Complexity Measures: The complexity of an MPC protocol is measured in terms of

the following fundamental parameters:
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- Round Complexity : For MPC protocols in the synchronous network, the round com-

plexity is a measure of the number of rounds i.e the number of sequential interactions

in the protocol execution.

- Communication Complexity : This is measured as the total number of bits commu-

nicated by the honest parties in the protocol.

- Computation Complexity : This captures the computational resources utilized by the

parties during the protocol executions. More concretely, this can be measured in

terms of the number and type of mathematical operations, running time etc.

The lesser the number of rounds / bits / computation involved in a protocol, the more

round / communication / computation - efficient it is considered as being. Looking ahead,

the focus of this thesis is the round complexity of MPC in various settings.

Before moving on to the contributions of the thesis related to round complexity of MPC

under various settings, we outline the relevant literature below.

1.3 Related Work on Round Complexity of MPC

The phenomenal body of work done on round complexity catering to various adversarial settings

and network models emphasises its theoretical importance and practical relevance. For instance,

the exact round complexity of MPC independently in honest and dishonest majority has been

examined and the recent literature is awash with a bunch of upper bounds that eluded for

quite a long time [93, 35, 113, 15]. We review the round complexity of the honest-majority

and dishonest-majority MPC in the computational setting below as it is most relevant to the

contributions in this thesis. To begin with, 2 rounds are known to be necessary to realize any

MPC protocol, regardless of the setting, no matter whether a setup is assumed or not as long as

the setup (when assumed) is independent of the inputs of the involved parties. This is because

in a 1-round protocol, a corrupt party could repeatedly evaluate the “residual function” with

the inputs of the honest parties fixed on many different inputs of its own (referred as “residual

function” attack) [112].

Dishonest Majority. When no setup is assumed (plain model), 5 rounds are known to be

necessary in non-simultaneous message model for actively-secure 2PC [136]. This bound can be

improved to 4 even for the general case of dishonest majority in simultaneous message model

[95]. Tight upper bounds appear in [44, 3, 64, 113, 15, 60], with the latter three presenting

constructions under polynomial-time assumptions. In the presence of a public setup (Common

Reference String a.k.a. CRS setting), the lower bound comes down to 2 rounds [112]. A series of
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work present matching upper bounds under various assumptions [94, 160, 92], culminating with

the works of [93, 35] that attain the goal under the minimal assumption of 2-round oblivious

transfer (OT).

Honest Majority. In the honest majority setting which is shown to be necessary [65] and

sufficient [30, 56, 66] for the feasibility of protocols with fn (fairness) and god (guaranteed output

delivery), the study on round complexity has seen the following interesting results. In the plain

model, 3 rounds are shown to be necessary for fn (hence for god) protocols, in the presence

of pairwise-private and broadcast channels for t ≥ 2 active corruptions [102] and for any t as

long as n/3 ≤ t < n/2 [166]. Circumventing this 3-round lower bound for fn, [129, 126] show

2-round protocols for n ≥ 4 against a single active corruption achieving god even without a

broadcast channel. The matching upper bounds in the plain model appear in [4] for the general

case under public-key assumption, [16] based on threshold multi-key FHE (fully-homomorphic

encryption) and in [166] for the special case of 3PC under the minimal assumption of (injective)

one-way functions (OWF). In the CRS model, 3 rounds remains to be the lower bound for fn in

a setting where broadcast is the only medium of communication (broadcast-only setting) [108]

and additionally with point-to-point channels [166, 102, 168]. Given PKI, the bound can be

improved to 2 [108].

1.4 The Contribution of this Thesis

The research goal of this thesis is to advance the state of the art by expanding the scope

of the existing study of round complexity (outlined above in Section 1.3) to various realistic

adversarial settings and network models. The questions addressed in the thesis are of both

theoretical and practical importance. We establish new lower bounds on round complexity of

MPC in different settings and present matching upper bound constructions. Most of our upper

bound constructions are based on garbled circuits (referred to as GC, elaborated in Chapter

2), which is a celebrated and standard technique to construct MPC protocols and constitutes

the basis of numerous constructions in the MPC literature. Following are our contributions:

1.4.1 MPC for small population

We study round-optimal (more generally, round-efficient) MPC protocols for small population,

namely involving 3 (3PC) and 4 (4PC) parties tolerating single active corruption (honest ma-

jority). MPC with small number of parties maintaining an honest majority make a fascinating

area of research due to myriad reasons as highlighted below. First, they present useful use-cases

in practice, as it seems that the most likely scenarios for secure MPC in practice would involve a

small number of parties. In fact, the first large scale implementation of secure MPC, namely the
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Danish sugar beet auction [41] was designed for the three-party setting. Several other applica-

tions solved via 3PC / 4PC include statistical data analysis [40], email-filtering [144], financial

data analysis [40], distributed credential encryption service [159] and secure machine learning

[158, 155, 157, 53, 171, 47]. The practical efficiency of these protocols has thus got considerable

emphasis and some of them have evolved to technologies [96, 39, 143, 144, 57, 91, 7]. Second, in

practical deployments of secure computation between multiple servers that may involve long-

term sensitive information, three or more servers are preferred as opposed to two. This enables

recovery from faults in case one of the servers malfunctions. Third and importantly, practical

applications usually demand strong security goals such as fn and god which are feasible only in

honest majority setting [65].

Driven by the above motivation, we address two broad categories of questions - (1) First,

we settle the exact round complexity of 3PC in honest-majority setting, for a range of security

notions such as selective abort (sa), unanimous abort (ua), fairness (fn) and guaranteed output

delivery (god). We focus on two network settings– pairwise-private channels without and with

a broadcast channel. (2) On the more practical side, we present efficient, constant-round 3PC

and 4PC protocols in the honest-majority setting that achieve strong security notions of fn and

god. Being constant-round and striking a good balance between the complexity measures of

communication, computation and round complexity, our constructions are suitable for high-

latency networks such as the Internet. We elaborate on the results below.

1.4.1.1 On the Exact Round Complexity of 3PC

We set our focus on the exact round complexity of 3PC protocols with one active corruption in

the plain model achieving a range of security notions, namely sa, ua, fn and god in a setting with

pair-wise private channels and without or with a broadcast channel. In the minimal setting of

pair-wise private channels, it is known that 3PC with sa is feasible in just two rounds [129],

while god is infeasible to achieve irrespective of the number of rounds [67]. No bound on round

complexity is known for ua or fn. In the setting with a broadcast channel, the result of [159]

implies 3-round 3PC with ua. Neither the round optimality of the [159] construction, nor any

bound on round complexity is known for protocols with fn and god.

We settle all the above questions via two lower bound results and three upper bounds. Both

our lower-bounds extend for general n and t with strict honest majority i.e. n/3 ≤ t < n/2

and hold even in the CRS model [168]. They imply tightness of several known constructions of

[129] and complement the lower bound of [102] which holds for only t > 1. Our upper bounds

are from injective (one-to-one) one-way functions (referred to as OWF, one-way function is a

function that is easy to compute on every input, but hard to invert given the image of a random
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input; elaborated in Chapter 2). The fundamental concept of garbled circuits (GC) contributes

as their key basis, following several prior works in this domain [58, 129, 159]. The techniques

in our upper bounds do not seem to extend for t > 1, leaving open designing round-optimal

protocols for the general case with various security notions (with minimal assumptions).

Without Broadcast Channel. We show that three rounds are necessary to achieve 3PC

with ua and fn, in the absence of a broadcast channel. The sufficiency is proved via a 3-round

fair protocol (which also achieves ua security). Our lower bound result immediately implies

tightness of the 3PC protocol of [129] achieving sa in two rounds, in terms of security achieved.

This completely settles the questions on exact round complexity of 3PC in the minimal setting

of pair-wise private channels.

With Broadcast Channel. With access to a broadcast channel, we show that it takes just

two rounds to get 3PC with ua, implying non-optimality of the 3-round construction of [159].

On the other hand, we show that three rounds are necessary to construct a 3PC protocol with fn

and god. The sufficiency for fn already follows from our 3-round fair protocol without broadcast.

The sufficiency for god is shown via yet another construction in the presence of broadcast. The

lower bound result restricted for t = 1 complements the lower bound of [102] making three

rounds necessary for MPC with fn in the honest majority setting for all the values of t. The

lower bound further implies that for two-round fair (or robust i.e achieving god) protocols with

one corruption, the number of parties needs to be at least four, making the 4PC protocol of

[129] an optimal one. Notably, our result does not contradict with the two-round protocol of

[108] that assumes PKI (where the infrastructure contains the public keys of a ‘special’ FHE),

CRS and also broadcast channel.

The above results on exact round complexity of 3PC appeared in [166] (for full version,

refer [168]). The table below captures the complete picture of the round complexity of 3PC.

Notably, broadcast facility only impacts the round complexity of ua and god, leaving the round

complexity of sa and fn unperturbed.

Security Without References With References

Broadcast Necessity/Sufficiency Broadcast Necessity/Sufficiency

Selective Abort (sa) 2 [112] / [129] 2 [112] / [129]

Unanimous Abort (ua) 3 Our Work [166] / Our Work [166] 2 [112] / Our Work [166]

Fairness (fn) 3 Our Work [166] / Our Work [166] 3 Our Work [166] / Our Work [166]

Guaranteed output delivery (god) Impossible [67] 3 Our Work [166] / Our Work [166]

1.4.1.2 Fast Secure Computation for 3PC and 4PC over the Internet

We present efficient constant-round constructions of 3PC and 4PC achieving strong security

notions of fn and god that tolerate one active corruption. Our constructions, all based on
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symmetric-key primitives are built from garbled circuits (GC). We outline our results below.

For empirical purpose, the circuits of AES-128, SHA-256 and MD5 are used as benchmarks.

3PC with fairness. In the minimal network setting of pairwise-private channels, our 3PC

protocol with fn consumes four rounds and involves transmission and evaluation of a sin-

gle GC. Our protocol shows a minimal overhead of 0.06–0.16 ms, 0.03–0.8 ms, 0.21–0.5 s and

5.63–10.74 KB over the 3PC of [159] (that achieves security with selective abort), in terms of the

average computation time, LAN runtime, WAN runtime and communication, where average is

taken over the number of parties and the range is taken over the choice of benchmark circuits.

The nominal overhead to trade fairness over abort security makes our construction a better

choice for practical purposes. This protocol has a natural extension to more than 3 parties

(still for one corruption) with neither inflating the round complexity nor the number of GCs.

3PC with guaranteed output delivery. With an additional broadcast channel, we present

a 5-round 3PC protocols with god at the cost of communication of a single GC. A broadcast

channel is inevitable in this regime owing to the results of [67]. We ensure that the broadcast

communication is nominal and most importantly, independent of the circuit size. Our imple-

mentation, using a physical UDP broadcast channel available on LAN, shows that the average

computation time, LAN runtime and communication overhead are 0.16–0.3 ms, 1.52–3 ms and

0.19–0.46 KB respectively over that of [159]. For the worst case run when the execution is

stretched to 5 rounds, there is negligible change in the computation and LAN runtime, but

communication overhead is witnessed to increase to a value between 0.21–0.57 KB. We do not

implement the protocol in WAN as it would require an implementation of a robust broadcast

protocol. When the adversary remains semi-honest, this protocol too terminates in 3 rounds

and the extra communication and computation needed in the last two rounds is almost nothing.

4PC with guaranteed output delivery. In the 4-party setting, we present an efficient

protocol that achieves god in five rounds, assuming just pairwise-private channels. Our pro-

tocol involves communication of a single GC compared to the 2-round protocol of [129] that

incurs a cost of 12 GCs. Our protocol has asymmetric roles for each party involved and as a

result, interestingly, our protocol gives better performance compared to the 3PC of [159]. The

protocol terminates in three rounds when no malicious behaviour takes place and has minimal

communication (and negligible computation) done in last two rounds. We take reading for

both 3-round run and 5-round run of the protocol. For the former, our protocol shows a gain

of 0.19–2.61 ms, 0.17–2.45 ms and 18.63–500.56 KB respectively compared to the 3PC of [159] in

terms of average computation time, LAN runtime and communication. The overhead for WAN

runtime is minimal and amounts to 0.02–0.31 s. When the protocol is stretched to 5 rounds,
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the gains reported above remain unaffected (or witness negligible decrease). In terms of av-

erage WAN runtime, the overhead increases to 0.51 – 0.83 s, reflecting the increase in round

complexity. At the expense of one extra GC, we also present a 4-round 4PC primarily as a

theoretical contribution, which also terminates in three rounds when no malicious behaviour

takes place.

Theoretical and Empirical Comparison. The above discussed protocols appear in [46].

We present a comparison of our protocols with the relevant state-of-the-art protocols in terms

of number of GCs, rounds and security below.

Ref. # Parties # GCs Rounds Security Broadcast

[159] 3 1 3 sa 7

Our Work [46] 3 1 4 fn 7

Our Work [46] 3 1 5 god 3 [67]

[129] 4 12 2 god 7

Our Work [46] 4 2 4 god 7

Our Work [46] 4 1 5 god 7

Below, we summarize the overhead or gain (indicated by g) of our protocols compared

to the 3PC of [159] in terms of average computation time, LAN runtime, WAN runtime and

communication cost, where the average is taken over the number of parties and the range is

taken over the choice of circuits. We show in bracket the increase in the overhead or decrease in

the gain for the worst case 5-round run of our 3PC and 4PC with guaranteed output delivery.

With respect to our 4-round 4PC with guaranteed output delivery, in the worst case run, we

save one round at the expense of one garbled circuit over our 5-round 4PC which amounts to

a value in the range 72 KB− 1530 KB for the benchmark circuits.

Ref. Computation LAN WAN Communication

( ms) ( ms) ( s) ( KB)

fair 3PC 0.06 – 0.16 0.03 – 0.8 0.21 – 0.5 5.63 – 10.74

4PC with god 0.19 – 2.61 (g) 0.17 – 2.45 (g) 0.02 (+.49) – 0.31 (+.52) 18.63 (−.01) – 500.56 (−.1) (g)

3PC with god 0.16 – 0.3 1.52 – 3 - 0.19 (+.02) – 0.46 (+.11)

1.4.2 On the Exact Round Complexity of Best-of-both-Worlds Multi-

party Computation

The two traditional streams of multiparty computation (MPC) protocols consist of– (a) proto-

cols achieving guaranteed output delivery (god) or fairness (fn) in the honest-majority setting
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[30, 56, 177, 19, 18, 72, 4] and (b) protocols achieving unanimous or selective abort (ua, sa) in

the dishonest-majority setting [107, 73, 94, 44, 3, 113, 15]. The favorable presence of honest

majority amongst the participants is necessary to achieve the stronger notions of god or fn[65].

With complementary challenges and techniques, each stream independently stands tall with

spectacular body of work. Yet, the most worrisome shortcoming of these generic protocols is

that: a protocol in one setting completely breaks down in the other setting i.e. the security

promises are very rigid and specific to the setting. For example, a protocol for honest majority

might no longer even be “private” or “correct” if half (or more) of the parties are corrupted. A

protocol that guarantees security with ua for arbitrary corruptions cannot pull off the stronger

security of god or fn even if only a “single” party is corrupt. In many real-life scenarios, it is

highly unlikely for anyone to guess upfront how many parties the adversary is likely to cor-

rupt. In such a scenario, the best a practitioner can do, is to employ the ‘best’ protocol from

her favorite class and hope that the adversary will be within assumed corruption limit of the

employed protocol. If the guess fails, the employed protocol, depending on whether it is an

honest or dishonest majority protocol, will suffer from the above mentioned issues. The quest

for attaining the best feasible security guarantee in the respective settings of honest and dis-

honest majority in a single protocol sets the beginning of a brand new class of MPC protocols,

termed as ‘Best of Both Worlds (BoBW)’ [124, 134, 127]. In critical applications such as vot-

ing [138, 161], secure auctions [74], secure aggregation [42], federated learning and prediction

[157, 158, 53] and many more, where privacy of the inputs of an honest party needs protection

at any cost and yet a robust completion is called for (as much as theoretically feasible), BoBW

protocols are arguably the best fit.

Denoting the threshold of corruption in honest and dishonest majority case by t and s

respectively, an ideal BoBW MPC should promise the best possible security in each corruption

scenario for any population of size n, as long as t < n/2 and s < n. Unfortunately, existing

feasibility results indicate that non-reactive or standard functionalities are impossible to realise

as long as t + s ≥ n in expected polynomial time (in the security parameter) [134, 127]. A

number of meaningful relaxations were proposed in the literature to get around the impossibility

of BoBW security when t + s ≥ n [134, 127]. The most relevant to our work is the relaxation

proposed in [152] where the best possible security of god is compromised to the second-best

notion of fn in the honest-majority setting.

We consider two types of BoBW MPC protocols and study their exact round complexity:

(a) MPC achieving the best security of god and ua in the honest and dishonest majority setting

respectively assuming s + t < n, referred as (god|ua)-BoBW; (b) MPC achieving second-best

security notion of fn in the honest majority and the best possible security of ua in the dishonest
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majority for any n, referred as (fn|ua)-BoBW. The adversary is considered malicious, rushing

and polynomially-bounded in either world. The latter notion (introduced in [152]) is an elegant

and meaningful relaxation that brings back the true essence of BoBW protocols with no con-

straint on n, apart from the natural bounds of t < n/2 and s < n. Furthermore, fn is almost as

good as god for many practical applications where the adversary is rational enough and does

not wish to fail the honest parties at the expense of losing its own output.

We nearly settle the exact round complexity for two classes of BoBW protocols, (god|ua)-

BoBW and (fn|ua)-BoBW, under the assumption of no setup (plain model), public setup (CRS)

and private setup (CRS + PKI or simply PKI). The adversary is assumed to be rushing, active

and static. The parties are connected via pair-wise private channels and an additional broadcast

channel. All our upper bounds are based on polynomial-time assumptions and assume black-box

simulation. We summarise our results below.

(fn|ua)-BoBW. We settle the exact round complexity of this class of BoBW protocols by

establishing the necessity and sufficiency of: (a) 5 rounds in the plain model and (b) 3 rounds

in both the public (CRS) and private (CRS+PKI) setup setting. In the CRS model, the

necessity of 3 rounds for honest-majority MPC achieving fn (and hence for (fn|ua)-BoBW) has

been demonstrated in [108, 102, 166] (as discussed in Section 1.3), the former in a setting where

broadcast is the only mode of communication (broadcast-only) and the latter two additionally

with pairwise-private channels. However, these results do not hold in the presence of PKI. Our

lower bound argument, on the other hand, is resilient to the presence of both CRS and PKI,

and further holds in the presence of broadcast and pairwise-private channels.

(god|ua)-BoBW. In this regime, we demonstrate that 4, 3 and 2 are the respective lower

bounds in the no-setup, public setup and private setup setting. The first lower bound follows

from the fact that BoBW MPC in this class trivially subsumes the dishonest majority MPC

when t = 0 and the lower bound for dishonest-majority MPC is 4 [95]. The last lower bound

follows from the standard 2-round bound for MPC [112]. Regarding the lower bound of 3 for

the public setup (CRS) setting, we point that it follows directly from the 2-round impossibility

of MPC with fn for honest majority in the CRS model [108, 166, 102] for most values of (t, s, n)

satisfying s + t < n. However, these existing results do not rule out the possibility of 2-round

(god|ua)-BoBW MPC for (t = 1, s > t, n ≥ 4). (In fact the protocols of [126, 129] circumvent

the 3-round lower bound for fn when t = 1, n ≥ 4 ). We address this gap by giving a unified

proof that works even for s > t, for all values of t (including t = 1). This is non-trivial and it

demonstrably breaks down in the presence of PKI. The bounds are totally different from the

ones for previous class, owing to the different feasibility condition of s+ t < n. While our upper
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bound falls merely one short of matching the first lower bound in case of no-setup, the upper

bounds of the other two settings are tight. We leave the question of designing or alternately

proving the impossibility of 4-round (god|ua)-BoBW MPC protocol as open.

The above results are currently under submission. We summarize our results along with the

bounds known in the honest and dishonest majority setting below.

No setup (Plain Model) Public Setup (CRS) Private Setup (CRS + PKI)

Honest Majority

t < n/2

fn / god

Round: 3

Lower Bound: [166, 102]

Upper Bound: [4, 16]

Round: 3

Lower Bound: [166, 102]

Upper Bound: [108, 4, 16]

Round: 2

Lower Bound: [112]

Upper Bound: [108]

Dishonest Majority

s < n

sa / ua

Round: 4

Lower Bound: [95]

Upper Bound: [113, 15, 60]

(sa only)

Round: 2

Lower Bound: [112]

Upper Bound: [94, 160]

[92, 93, 35]

Round: 2

Lower Bound: [112]

Upper Bound: [94, 160]

[92, 93, 35]

(fn|ua)-BoBW

t < n/2, s < n

fn & ua

Round: 5

Lower Bound: Our Work

Upper Bound: Our Work

Round: 3

Lower Bound: [102, 166]

Upper Bound: Our Work

Round: 3

Lower Bound: Our Work

Upper Bound: Our Work

(god|ua)-BoBW

t < n/2, t+ s < n

god & ua

Round: –

Lower Bound: 4 [95]

Upper Bound: 5 Our Work

Round: 3

Lower Bound: Our Work

Upper Bound: Our Work

Round: 2

Lower Bound: [112]

Upper Bound: Our Work

1.4.3 On the Round Complexity of Fair and Robust MPC against

Dynamic and Boundary Adversaries

Two of the most sought-after properties of MPC protocols are fn and god. Both these properties

are trivially attainable in the presence of any number of passive (semi-honest) corruption where

the corrupt parties follow the protocol specifications but the adversary learns the internal state

of the corrupt parties. However, in the face of stringent active (malicious) corruption where

the parties controlled by the adversary deviate arbitrarily from the protocol; fn and god can be

achieved only if the adversary corrupts atmost minority of the parties (referred to as malicious

minority) [65]. Opening up the possibility of corrupting parties in both passive and active

style, the generalized feasibility condition for a n-party fair or robust protocol turns out to

be ta + tp < n, where ta, tp denote the threshold for active and passive corruption, with the

latter subsuming the former [122]. We emphasize that tp is a measure of the total number of

passive corruptions that includes the actively corrupt parties; therefore the feasibility condition

ta + tp < n implies ta ≤ dn/2e− 1. In its most intense and diverse avatar, referred as dynamic-

admissible, the adversary can take control of the parties in one of the ways drawn from the entire
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range of admissible possibilities of (ta, tp) starting from (dn
2
e−1, bn/2c) to (0, n−1). In a milder

setting, referred as boundary-admissible, the adversary is restricted only to the boundary cases,

namely (dn/2e − 1, bn/2c) and (0, n − 1). Subsuming the traditional malicious-minority and

passive-majority (majority of the parties controlled by passive adversary) setting for achieving

fn and god as special cases, both dynamic as well as boundary setting give the adversary more

freedom and consequently more strength to the protocols. Notably, both empower an adversary

to control majority of the parties, yet ensuring the count on active corruption never goes beyond

dn
2
e − 1.

The study of protocols in dynamic and boundary setting is well motivated and driven by

theoretical and practical reasons. Theoretically, the study of generalized adversarial corruptions

gives deeper insight into how passive and active strategies combine to influence complexity pa-

rameters of MPC such as efficiency, security notion achieved and round complexity. Practically,

the protocols in dynamic and boundary setting offer strong defence and are more tolerant and

better-fit in practical scenarios where the attack can come in many unforeseen ways. Indeed,

deploying such protocols in practice is far more safe than traditional malicious-minority and

passive-majority protocols that completely break down in the face of boundary adversaries, let

alone dynamic adversaries. For instance, consider MPC in server-aided setting where instead

of assuming only actively corrupt clients and honest servers, the collusion of client-server is

permitted where some of the servers can be passively monitored. This model is quite realistic

as it does not contradict the reputation of the system (since the passive servers follow protocol

specifications and can thereby never be exposed / caught). The option of allowing corruption

in both passive and active styles is quite relevant in such scenarios.

Driven by the above credible reasons, we extend the study of exact round complexity of

fair and robust (achieving god) protocols beyond the traditional malicious-minority setting

[102, 108, 166] and settle the same for the regime of dynamic and boundary corruption. This

is achieved via 3 lower bounds that hold assuming both CRS and PKI setup and 5 upper

bounds that assumes CRS alone. In terms of network setting, while our lower bounds hold

assuming both pairwise-private and broadcast channels, all our upper bounds use broadcast

channel alone. All our upper bounds are generic compilers that transform a 2-round protocol

achieving ua (either all honest parties obtain output or none of them do) or identifiable abort

(corrupt parties are identified in case honest parties do not obtain the output) against malicious

majority to a protocol achieving the stronger guarantees of fn / god against stronger adversaries

(namely, dynamic and boundary adversaries). The need for CRS in our constructions stems

from the underlying 2-round protocol achieving ua or identifiable abort. We leave open the

question of constructing tight upper bounds or coming up with new lower bounds in the plain
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model. We elaborate on the results below.

Dynamic Adversary. We recall that in this challenging setting, the adversary has the free-

dom to choose from the entire range of thresholds for (ta, tp) starting from (dn/2e−1, bn/2c) to

(0, n− 1). Our first lower bound establishes that dn/2e+ 1 rounds are necessary to achieve fn

against dynamic adversary. Since god is a stronger security notion, the same lower bound holds

for god as well. This result not only rules out the possibility of constant-round fair protocols

but also gives the exact lower bound. We give two matching upper bounds, one for fn and

the other for god, where the former is subsumed by and acts as a stepping stone to the latter.

These results completely settle the round complexity of this setting in the CRS model.

Boundary Adversary. The leap in round complexity ebb in the milder boundary adversarial

setting where adversary is restricted to the boundary cases of (dn/2e− 1, bn/2c) and (0, n− 1).

Our two lower bounds of this setting show that 4 and 3 rounds are necessary to achieve god

and fn respectively against the boundary adversary. Our first 4-round lower bound is partic-

ularly interesting, primarily due to two reasons. (1) As mentioned earlier, when n is odd, the

boundary cases reduce to pure active (ta = tp when (ta, tp) = (dn/2e − 1, bn/2c)) and pure

passive ((ta, tp) = (0, n−1)) corruptions. We note that security against malicious-minority and

passive-majority are known to be attainable independently in just 2 rounds assuming access

to CRS and PKI [108, 93, 35]. Hence, our 4-round lower bound encapsulates the difficulty

in designing protocols tolerant against an adversary who can choose among his two boundary

corruption types arbitrarily. (2) This lower bound can be circumvented in case of single mali-

cious corruption i.e against a special-case boundary adversary restricted to corruption scenarios

(ta, tp) = (1, bn/2c) and (ta, tp) = (0, n − 1). (We refer to such an adversary as special-case

boundary adversary with ta ≤ 1). This observation augments the rich evidence in literature

[172, 13, 129] which show the impact of single corruption on feasibility results. With respect to

our second lower bound for fn against boundary adversary, we first note that the 3-round lower

bound for fn in the presence of CRS is trivial given the feasibility results of [102, 108, 166].

However, they break down assuming access to PKI. Thus, the contribution of our second

lower bound is to show that the 3-round lower bound holds for boundary adversary even in

the presence of PKI. We complement these two lower bounds by three tight upper bounds.

The upper bounds achieving god include a 4-round protocol for the general case and a 3-round

protocol for the special-case of one malicious corruption that demonstrates the circumvention

of our first lower bound. Lastly, our third upper bound is a 3-round construction achieving fn,

demonstrating the tightness of our second lower bound.

The results above appeared in [169]. We summarize them in the table below with comparison
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to the round complexity in the traditional settings of achieving fn and god. Since PKI (private)

setup subsumes CRS (public) setup which further subsumes plain model (no setup), the lower

and upper bounds are specified with their maximum tolerance and minimum need respectively

amongst these setup assumptions. The results provide us further insights regarding how dis-

parity in adversarial setting affects round complexity. Note that the round complexity of fair

protocols in the CRS model against an adversary corrupting minority of parties maliciously,

remains unaffected in the setting of boundary adversary; which is a stronger variant of the

former. On the other hand, this switch of adversarial setting causes the lower bound of robust

protocols in the model assuming both CRS and PKI to jump from 2 to 4. Lastly, the gravity

of dynamic corruption on round complexity is evident in the leap from constant-rounds of 3, 4

in the boundary corruption case to dn/2e+ 1.

Adversary Security Rounds Lower bound Upper Bound

Passive-majority fn, god 2 [112] (private) [93, 35] (plain)

Malicious-minority
fn, god 3 [108, 166] (public) [4, 16] (plain)

fn, god 2 [112] (private) [108] (private)

Boundary
fn 3 Our Work [169] (private) Our Work [169] (public)

god 4 (3 when ta ≤ 1) Our Work [169] (private) Our Work [169] (public)

Dynamic fn, god dn
2
e+ 1 Our Work [169] (private) Our Work [169] (public)

1.4.4 On the Power of Hybrid Networks in Multi-Party Computa-

tion

Verifiable Secret Sharing (VSS) [59, 30, 107, 69, 101] is a fundamental building block for many

distributed cryptographic tasks including MPC and Byzantine Agreement [135, 1]. VSS is a two

phase protocol (Sharing and Reconstruction) carried out among n parties with a designated

party called dealer in the presence of an adversary A who can corrupt up to any t parties

including the dealer. The goal of the VSS protocol is to let the dealer share a secret, s, among

the n parties during the sharing phase in a way that would later allow for a unique reconstruction

of this secret in the reconstruction phase (correctness), while preserving the secrecy of s until

the reconstruction phase (privacy). Perfectly-secure (information-theoretically secure with no

error) verifiable secret sharing (VSS) and multi-party computation (MPC) protocols among n

parties secure against a coalition of t actively corrupt parties are known to exist if and only if

– t < n/3, when the underlying network is synchronous, and

– t < n/4, when the underlying network is asynchronous, respectively.
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The above feasibility results indicate that synchrony of a network has positive impact on the

fault-tolerance of distributed protocols. More generally, asynchronous protocols are known to

suffer from low fault-tolerance, high communication complexity and relatively weaker guaran-

tees compared to their synchronous counterparts. The asynchronous VSS suffers from dealer-

dependent termination where termination of the sharing phase is guaranteed only when the

dealer is honest. Similarly, asynchronous MPC suffers from input deprivation that refers to a

property where inputs of t honest parties may be excluded from computation. All the above

are supposedly caused by the following inherent and trademark difficulty in the asynchronous

model.

In an asynchronous network, an honest party whose message is delayed in the network cannot

be told apart from a corrupted party who did not send a message at all. So an honest party

in an asynchronous protocol, unlike in a synchronous protocol, cannot wait for the messages

from all the parties, as it would potentially risk him to wait infinitely. To avoid the risk, an

honest party’s computation in an asynchronous protocol should be carried on with the receipt

of (n − t) parties at any given step. Unfortunately, this may risk ignoring the values of up to

t potentially honest parties at any given step. There exist well-known gaps in the feasibility

results of the synchronous and asynchronous VSS and MPC that corroborate with the above

inherent difficulty faced in asynchronous protocols.

We set our focus on perfectly-secure protocols and seek to close the theoretical feasibility gap

of synchronous and asynchronous VSS and MPC protocols. To this effect, we explore the hybrid

networks that is asynchronous in nature and yet supports a few synchronous rounds at the onset

of a protocol execution. We wish to add and find the minimum synchrony assumption needed.

More specifically, we address the following : For asynchronous protocols, we wish to bridge the

fault-tolerance gap between synchronous and asynchronous protocols with minimum synchrony

assumption needed, leveraging the initial synchronous rounds. For synchronous protocols, we

explore if the known lower bounds on round complexity can be circumvented, leveraging the

asynchronous phase available in the hybrid network. Denoting synchronous/asynchronous VSS

(SVSS/AVSS) and synchronous/asynchronous MPC (SMPC/AMPC) to refer to the properties

of the protocols that can be achieved in the respective networks, we present our findings below.

Results for AVSS and AMPC. Concerning AVSS and AMPC, we ask the following fun-

damental question: What is the minimum number of initial synchronous rounds necessary and

sufficient in a hybrid network to construct perfectly-secure AVSS and AMPC protocols with the

same fault-tolerance of synchronous protocols? On the positive side, we show that one syn-

chronous round is sufficient for AVSS which is clearly optimal. On the negative side, we show
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the same is not true for AMPC. Our results are summarised in the following theorems:

Theorem 1.1 (Informal) There exists a perfectly-secure AVSS with t < n/3 over hybrid net-

works with one synchronous round.

Theorem 1.2 (Informal) Perfectly-secure AMPC with n ≤ 4t is impossible over a hybrid

network that supports a single synchronous round.

Notably no broadcast oracle is invoked in the synchronous round of our AVSS protocol. The

latter result on AMPC implies at least two initial synchronous rounds are necessary for MPC.

With three synchronous rounds, we design a perfectly-secure SMPC (and thus AMPC) 1 pro-

tocol. The question of designing an AMPC protocol in a hybrid network with two synchronous

rounds with or without broadcast oracle access is left as an interesting open question. In this

regard, we believe that our proposed AVSS protocol that achieves strong properties useful for

building MPC can be an important building block. Our AVSS construction is efficient and

therefore can be of independent interest too.

Results for SVSS and SMPC. We further investigate if the asynchronous phase of the

hybrid network can be leveraged to save on the synchronous rounds required for SVSS and

SMPC. It is known that three synchronous rounds are necessary and sufficient for SVSS with

t < n/3 [101]. This makes the feasibility of SVSS with t < n/3 in a hybrid network with three

synchronous rounds trivial. The same question seems intriguing when one or two synchronous

rounds are assumed. We answer this question in the negative and prove the following theorem.

Theorem 1.3 (Informal) Perfectly-secure SVSS with n ≤ 4t is impossible over a hybrid net-

work that supports two synchronous rounds.

In contrast, a hybrid network with one synchronous round is sufficient for AVSS with t < n/3.

Since VSS is a special case of MPC, the above theorem implies the necessity of three syn-

chronous rounds for SMPC in the same setting. We deduce the sufficiency of three synchronous

rounds for SMPC over hybrid networks by combining known techniques from [63, 62, 139] and

have the following theorem. In contrast, we note that one synchronous round is sufficient for

cryptographic SMPC over hybrid networks [23].

Theorem 1.4 (Informal) A hybrid network that supports three synchronous rounds is sufficient

to achieve perfectly-secure SMPC with t < n/3.

1SMPC realizes all properties of AMPC and provides input provision additionally
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While a lower bound of three rounds is known for information-theoretic MPC over synchronous

networks [102], the known popular protocols relying on ‘gate-by-gate’ evaluation strategy

([55, 30] and their derivatives) are shown to necessarily require a round complexity that grows

linearly with the multiplicative depth of the circuit [78]. As protocols tend to run faster over

asynchronous network, our SMPC over hybrid network may offer lower latency than any syn-

chronous MPC running for rounds proportional to the circuit depth.

The above results appear in [167]. We summarize the feasibility results of SVSS/AVSS and

SMPC/AMPC in hybrid networks in terms of initial synchronous rounds needed in the table

below. Finding a tight upper bound for AMPC with two rounds remains an interesting open

question.

Feasibility for SVSS/AVSS and SMPC/AMPC with t < n/3 in Hybrid networks
Security Asynchronous Synchronous

VSS
Necessary One [Trivial] Three (Our Work) [167]

Sufficiency One (Our Work) [167] Three [101]

MPC
Necessary Two (Our Work) [167] Three (Our Work) [167]

Sufficiency Three (Our Work) [167] Three (Our Work) [167]

1.5 Organization of the Thesis

We divide the thesis in three parts.

Part I comprises of two chapters (Chapters 3 - 4) that include our results related to MPC

for small population that considers 3-party and 4-party setting with single active corruption

(honest majority). Chapter 3 presents our results on the exact round complexity of secure

three-party computation (discussed in Section 1.4.1.1). Chapter 4 presents our communication

and computation efficient constant-round constructions of 3PC and 4PC achieving fn and god;

suitable for high-latency networks like the Internet (discussed in Section 1.4.1.2).

Part II comprises of two chapters (Chapters 5 - 6) that extend the study of round complexity

beyond the traditional settings. In Chapter 5, we overcome the demarcation of study of round

complexity of MPC based on resilience (i.e honest majority or dishonest majority) and explore

this question for an interesting class of protocols called the Best-of-both-Worlds MPC. This class

of protocols simultaneously achieve fn / god in honest majority and ua in dishonest majority

(discussed in Section 1.4.2). In Chapter 6, we overcome the demarcation of study of round

complexity of MPC based on single type of corruption (i.e passive or active) and investigate

the round complexity of fair and robust MPC against two powerful mixed adversaries called

the dynamic and boundary adversary (discussed in Section 1.4.3).
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While the above two parts include results in the computational and fully synchronous set-

ting, the final part of the thesis involves information-theoretic setting and introduces asynchrony

in the network as well. Part III comprises of one chapter (Chapter 7) that explores the power

of hybrid networks to bridge the feasibility gap between perfectly-secure synchronous and asyn-

chronous VSS and MPC protocols (discussed in Section 1.4.4).

The preliminaries and conclusion of the thesis appear in Chapter 2 and 8 respectively.
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Chapter 2

Preliminaries

In this chapter, we present the relevant background including the notation, definitions, security

model and an overview of some of the common primitives used in our constructions.

2.1 Notation

We denote the cryptographic security parameter by κ. A negligible function in κ is denoted by

negl(κ) (Definition 2.1 below). We write PPT for probabilistic polynomial-time. Composition

of two functions, f and g (say, h(x) = g(f(x))) is denoted as g � f . We use [n] to denote the

set {1, . . . n} and [a, b] to denote the set {a, a + 1 . . . b} when a ≤ b or the set {a, a − 1, . . . b}
when a > b. We denote by a ←R A the random sampling of a from a distribution A. For

any x ∈R {0, 1}m, xi denotes the bit of x at index i for i ∈ [m]. We use ||i∈[n]xi to denote

concatenation of strings xi. Let S be an infinite set and X = {Xs}s∈S, Y = {Ys}s∈S be

distribution ensembles. We say X and Y are computationally indistinguishable, if for any PPT

distinguisher and all sufficiently large s ∈ S, we have |Pr[(Xs) = 1]− Pr[(Ys) = 1]| < 1/p(|s|)
for every polynomial p(·).

We use P,C,H to denote the set of all parties, set of corrupt parties and set of honest parties

respectively. Lastly, as mentioned earlier, the security notions of guaranteed output delivery,

fairness, unanimous abort and selective abort, identifiable abort and identifiable fairness are

denoted as god, fn, ua, sa, idua and idfair respectively.

2.2 Definitions

Definition 2.1 (Negligible functions) A function negl is negligible iff ∀c ∈ N ∃n0 ∈ N such

that ∀n > n0, negl(n) < n−c.

Definition 2.2 (One-Way functions) A function f : {0, 1}n → {0, 1}m is one-way iff ∃ poly-
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nomial time M such that ∀x M(x) = f(x), and ∀ non-uniform PPT adversary A, the following

holds: Prx∈R{0,1}n [A(f(x), 1n) ∈ f−1(f(x))] = negl(n).

2.3 Security Model

We prove the security of our protocols in the standard real/ideal world paradigm. Essentially,

the security of a protocol is analyzed by comparing what an adversary can do in the real

execution of the protocol to what it can do in an ideal execution, that is considered secure

by definition (in the presence of an incorruptible trusted party). In an ideal execution, each

party sends its input to the trusted party over a perfectly secure channel, the trusted party

computes the function based on these inputs and sends to each party its respective output.

Informally, a protocol is secure if whatever an adversary can do in the real protocol (where

no trusted party exists) can be done in the above described ideal computation. We refer to

[50, 104, 146, 66] for further details regarding the security model. The security definition and

the required functionalities are given below.

The “ideal” world execution involves n parties {P1, P2 . . . Pn}, an ideal adversary S who

may corrupt a subset of the parties, and a functionality F. The “real” world execution involves

the PPT parties {P1, P2 . . . Pn} and a real world adversary A who may corrupt one of the

parties. We let idealF,S(1
κ, z) denote the output pair of the honest parties and the ideal-world

adversary S from the ideal execution with respect to the security parameter 1κ and auxiliary

input z. Similarly, let realΠ,A(1κ, z) denote the output pair of the honest parties and the

adversary A from the real execution with respect to the security parameter 1κ and auxiliary

input z.

Definition 2.3 For n ∈ N, let F be a functionality and let Π be a n-party protocol. We say

that Π securely realizes F if for every PPT real world adversary A, there exists a PPT ideal

world adversary S, corrupting the same parties, such that the following two distributions are

computationally indistinguishable:

idealF,S
c
≈ realΠ,A.

Statistical and perfect security are defined w.r.t an unbounded adversary A analogously

where the distributions are statistically close and identical respectively.

Target Functionalities. Taking motivation from [66, 108], we define ideal functionalities Fua,

Ffair,Fgod in Figure 2.1, Figure 2.2, Figure 2.3, Figure 2.4 for secure MPC of a function f with

selective abort (sa), unanimous abort (ua), fairness (fn) and guaranteed output delivery (god)
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respectively. Additionally, we also define the ideal functionalities Fidua and Fidfair in Figure 2.5,

Figure 2.6 for identifiable abort (idua) and identifiable fairness (idfair) respectively.

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if (sid, Input, ∗) message

was received from Pi, then ignore. Otherwise record it internally. If xi is outside of the domain

for Pi (i ∈ [n]), consider xi = abort.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send (sid,Output,⊥) to all the

parties. Else, send (sid,Output, y) to the adversary, where y = f(x1 . . . xn).

Output to selected honest parties: Receive (select, {I}) from adversary, where {I} denotes a

subset of the honest parties. If an honest party belongs to I, send (sid,Output, y), else send

(sid,Output,⊥).

Figure 2.1: Ideal Functionality for sa (selective abort)

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if (sid, Input, ∗) message

was received from Pi, then ignore. Otherwise record it internally. If xi is outside of the domain

for Pi (i ∈ [n]), consider xi = abort.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send (sid,Output,⊥) to all the

parties. Else, send (sid,Output, y) to the adversary, where y = f(x1 . . . xn).

Output to honest parties: Receive either continue or abort from adversary. In case of continue,

send y to honest parties, whereas in case of abort send them ⊥.

Figure 2.2: Ideal Functionality for ua (unanimous abort)

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if (sid, Input, ∗) message

was received from Pi, then ignore. Otherwise record it internally. If xi is outside of the domain

for Pi (i ∈ [n]), consider xi = abort.

Output: If there exists i ∈ [n] such that xi = abort, send (sid,Output,⊥) to all the parties. Else,

send (sid,Output, y) to party Pi for every i ∈ [n], where y = f(x1, . . . , xn).

Figure 2.3: Ideal Functionality for fn (fairness)

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if (sid, Input, ∗) message

was received from Pi, then ignore. Otherwise record it internally. If xi is outside of the domain

for Pi, set xi to be some predetermined default value.

Output: Compute y = f(x1, . . . , xn) and send (sid,Output, y) to party Pi for every i ∈ [n].

Figure 2.4: Ideal Functionality for god (guaranteed output delivery)
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Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if (sid, Input, ∗) message

was received from Pi, then ignore. Otherwise record it internally. If xi is outside of the domain

for Pi (i ∈ [n]), consider xi = (abort, i).

Output to adversary: If there exists a set I ⊂ C with |I| ≥ 1 such that xi = (abort, i) for i ∈ I,

send (sid,Output, (⊥, I)) to all the parties. Else, send (sid,Output, y) to the adversary, where

y = f(x1, . . . xn).

Output to honest parties: Receive either continue or (abort, I) from adversary where I ⊂ C

and |I| ≥ 1. In case of continue, send (sid,Output, y) to honest parties, whereas in case of

abort send (sid,Output, (⊥, I)) to all honest parties.

Figure 2.5: Ideal Functionality for idua (identifiable abort)

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if (sid, Input, ∗) message

was received from Pi, then ignore. Otherwise record it internally. If xi is outside of the domain

for Pi (i ∈ [n]), consider xi = (abort, i).

Output: If there exists a set I ⊂ C with |I| ≥ 1 such that xi = (abort, i) for i ∈ I, send

(sid,Output, (⊥, I)) to all the parties. Else, send (sid,Output, y) to all, where y = f(x1, . . . xn).

Figure 2.6: Ideal Functionality for idfair (identifiable fairness)

2.4 Primitives

2.4.1 Garbling Schemes

The term ‘garbled circuit’ (GC) was coined by Beaver [19], but it had largely only been a

technique used in secure protocols until they were formalized as a primitive by Bellare et al. [27].

‘Garbling Schemes’ as they were termed, were assigned well-defined notions of security, namely

correctness, privacy, obliviousness, and authenticity. A garbling scheme G is characterised by a

tuple of PPT algorithms G = (Gb,En,Ev,De) described below.

• Gb(1κ, C) is invoked on a circuit C in order to produce a ‘garbled circuit’ C, ‘input

encoding information’ e, and ‘output decoding information’ d.

• En(x, e) encodes a clear input x with encoding information e in order to produce a gar-

bled/encoded input X.

• Ev (C,X) evaluates C on X to produce a garbled/encoded output Y.

• De (Y, d) translates Y into a clear output y as per decoding information d.
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We give an informal intuition of the notion captured by each of the security properties,

namely correctness, privacy, obliviousness, and authenticity. Correctness enforces that a cor-

rectly garbled circuit, when evaluated, outputs the correct output of the underlying circuit.

Privacy aims to protect the privacy of encoded inputs. Authenticity enforces that the evaluator

can only learn the output label that corresponds to the value of the function. Obliviousness

captures the notion that when the decoding information is withheld, the garbled circuit evalua-

tion leaks no information about any underlying clear values; be they of the input, intermediate,

or output wires of the circuit. The formal definitions appear below.

Definition 2.4 (Correctness) A garbling scheme G is correct if for all input lengths n ≤
poly(κ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the following probability is

negligible in κ: Pr
(

De(Ev(C,En(e, x)), d) 6= C(x) : (C, e, d)← Gb(1κ, C)
)
.

Definition 2.5 (Static Privacy) A garbling scheme G is private if for all input lengths n ≤
poly(κ), circuits C : {0, 1}n → {0, 1}m, there exists a PPT simulator Sprv such that for all inputs

x ∈ {0, 1}n, for all probabilistic polynomial-time adversaries A, the following two distributions

are computationally indistinguishable:

• (C, x) : run (C, e, d)← Gb(1κ, C), and output (C,En(x, e), d).

• idealSprv(C,C(x)): output (C′,X, d′)← Sprv(1
κ, C, C(x))

Definition 2.6 (Authenticity) A garbling scheme G is authentic if for all input lengths n ≤
poly(κ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all PPT adversaries A, the

following probability is negligible in κ:

Pr

(
Ŷ 6= Ev(C,X)

∧De(Ŷ, d) 6= ⊥
:

X = En(x, e), (C, e, d)← Gb(1κ, C)

Ŷ ← A(C,X)

)
.

Definition 2.7 (Obliviousness) A garbling scheme G achieves obliviousness if for all input

lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, there exists a PPT simulator Sobv such

that for all inputs x ∈ {0, 1}n, for all probabilistic polynomial-time adversaries A, the following

two distributions are computationally indistinguishable:

• (C, x) : run (C, e, d)← Gb(1κ, C), and output (C,En(x, e)).

• idealSobv
(C): output (C′,X)← Sobv(1

κ, C)
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We are interested in a class of garbling schemes referred to as projective in [27]. When

garbling a circuit C : {0, 1}n → {0, 1}m, a projective garbling scheme produces encoding infor-

mation of the form e = (K0
i ,K

1
i )i∈[n], and the encoded input X corresponding to x = (xi)i∈[n]

can be interpreted as X = En(x, e) = (Kxi
i )i∈[n]. One of our constructions in Chapter 3 uses a

privacy-free garbling scheme [133, 90] which demands only the properties of correctness and

authenticity. Lastly, some of the constructions in Chapter 3- 4, uses an additional decoding

mechanism denoted as soft decoding algorithm sDe [159] that can decode garbled outputs with-

out the decoding information d. The soft-decoding algorithm must comply with correctness:

sDe(Ev(C,En(e, x)), d) = C(x) for all (C, e, d). While both sDe and De can decode garbled

outputs, the authenticity needs to hold only with respect to De. In practice, soft decoding in

typical garbling schemes can be achieved by simply appending the truth value to each output

wire label.

2.4.1.1 Adaptive Garbling

In one of our constructions in Chapter 5, we use garbling schemes with stronger privacy no-

tion, referred to as adaptive [27]. Informally, such garbling schemes remain private against an

adversary A who obtains the garbled circuit C and then selects the input x.

Definition 2.8 (Adaptive Privacy) A garbling scheme G satisfies adaptive privacy if for all

input lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, there exists a PPT simulator Sad such

that for all inputs x ∈ {0, 1}n, for all probabilistic polynomial-time adversaries A, the following

is negligible in κ:

|Pr[Expad
A,Sad

(1λ, 0) = 1]− Pr[Expad
A,Sad

(1λ, 1) = 1]|

where the experiment Expad
A,Sad

is defined as follows:

• The adversary A specifies the circuit C, corresponding to which it obtains (C, d) created

as follows:

◦ If b = 0: (C, e, d)← Gb(1λ, C). Return (C, d)

◦ If b = 1: Return (C, d)← Sad(1λ, θ(C), 0). A call with ‘0’ indicates Sad to return (C, d)

and θ(C) refers to the side-information about C. Side-information function θ(C)

deterministically maps the circuit C to a string θ(C) which captures the information

that the garbled circuit is allowed to reveal about C such as its size, topology (the

circuit structure without the gate information), the original circuit itself or something

else.
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Figure 2.7: Transformation of statically-secure garbling scheme (Gb′,En′,Ev′,De′) to adaptively-
secure garbling scheme (Gb,En,Ev,De)

Gb(1κ, C)

- (C′, e′, d′)← Gb′(1κ, C)

- Let Cpad ← {0, 1}|C′|; dpad ← {0, 1}|d′|

- C← C′ ⊕ Cpad, d← d′ ⊕ dpad

e← (e′, Cpad, dpad)

- return (C, e, d)

En(e, x)

- (e′, Cpad, dpad)← e

- X′ ← En′(e′, x)

- Return X = (X′, Cpad, dpad)

Ev(C,X)

- (X′, Cpad, dpad)← X

- C′ ← C⊕ Cpad; Y′ ← Ev′(C′,X′)

- Return Y = (Y′, dpad)

De(Y, d)

- (Y′, dpad)← Y

- d′ ← d⊕ dpad

- Return De′(Y′, d′)

• Next, A provides an input x of his choice, corresponding to it obtains the encoded input

X created as follows: Return ⊥ if x is invalid. Else,

◦ If b = 0: Return X← En(e, x).

◦ If b = 1: Let y ← C(x). Return X ← Sad(y, 1). A call with ‘1’ indicates Sad to return

X.

We now recall the transformation of [26] which transforms a garbling scheme (Gb′,En′,Ev′,De′)

satisfying static privacy (such as Yao’s garbled circuits [182]) to an adaptively-secure garbling

scheme (Gb,En,Ev,De). The side-information θ(C) is assumed to be the topology of the circuit

C. The transformation uses one-time pads to mask C and d produced by the statically-secure

scheme, and then appends the pads to X. This will ensure that the adversary learns nothing

about C and d until it fully specifies function C and x.

The transformation of garbling scheme G1 = (Gb′,En′,Ev′,De′) with static privacy (Defini-

tion 2.5) to garbling scheme G2 = (Gb,En,Ev,De) with adaptive privacy (refer Definition 2.8)

is described in Figure 2.7. The idea is to use one-time pads to mask the garbled circuit C′ and

decoding information d′ obtained by running Gb′ of G1 and append the pads to the encoding
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information and the encoded input. This ensures that the adversary learns nothing about the

garbled circuit C′ and decoding information d′ until the input is specified. The simulator Sad of

the garbling scheme G2, when invoked with (1κ, θ(C), 0) simply returns random (C, d). In the

second phase, given y, Sad runs the simulator of G1 (say, S) to obtain (C′,X′, d′)← S(1κ, θ(C), y)

and returns X = (X′,C⊕ C′, d⊕ d′). We point that while this transformation does not need G1

to be projective, if G1 is projective, so is G2. Thus, a projective adaptive garbled circuit can be

obtained by applying this transformation on Yao’s projective garbling scheme satisfying static

privacy. For details, we refer to [26].

2.4.2 Non-Interactive Commitment Schemes (NICOM)

A non-interactive commitment scheme (NICOM) consists of two algorithms (Com,Open) defined

as follows. Given a security parameter κ, a common parameter pp, message x and random

coins r, PPT algorithm Com outputs commitment c and corresponding opening information o.

Given κ, pp, a commitment and corresponding opening information (c, o), PPT algorithm Open

outputs the message x. The algorithms should satisfy correctness, binding (i.e. it must be hard

for an adversary to come up with two different openings of any c and any pp) and hiding (a

commitment must not leak information about the underlying message) properties. We need this

kind of strong binding as the same party who generates the pp and commitment is required to

open later. Two such instantiations of NICOM based on symmetric key primitives (specifically,

injective one-way functions) and the formal definitions of the properties are given below.

Properties.

– Correctness: For all pp, x ∈M and r ∈ R, if (c, o)← Com(x; r) then Open(c, o) = x.

– Binding: For all PPT adversaries A and all pp, it is with negligible probability that A(pp)

outputs (c, o, o′) such that Open(c, o) 6= Open(c, o′) and ⊥ /∈ {Open(c, o),Open(c, o′)}

– Hiding: For all PPT adversaries A, the following difference is negligible (over uniform

choice of pp and the random coins of A) for all x, x′ ∈M:

∣∣ Pr
(c,o)←Com(x)

[A(c) = 1]− Pr
(c,o)←Com(x′)

[A(c) = 1]
∣∣

Instantiations. Here we present two instantiations of NICOM. In the random oracle model,

commitment is (c, o) = (H(x||r), x||r) = Com(x; r). The pp can in fact be empty. In the

standard model, we can use the following bit-commitment scheme from any injective one-way

function. Let f : {0, 1}n → {0, 1}n be a one-way permutation and h : {0, 1}n → {0, 1} a hard

core predicate for f(·). Then the commitment scheme for a single bit x is:
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- Com(x; r): set c = (f(r), x⊕ h(r)); where r ∈R {0, 1}n; set o = (r, x).

- Open(c, o = (r, x)): return x if c = (f(r), x⊕ h(r)); otherwise return ⊥.

For commitment of multi-bit string, the Goldreich-Goldwasser-Micali [106] construction

from a one-way permutation f can be used. Recall the GGM construction: given one-way

permutation f : {0, 1}k → {0, 1}k with hard-core predicate h : {0, 1}k → {0, 1}, first construct a

length-doubling pseudorandom generator G : {0, 1}k → {0, 1}k via: G(s) = fk(s) h(fk−1(s)) . . .

h(s). Let G0(s) denote the first k bits of G(s), and let G1(s) denote the last k bits of G(s). For

a binary string s, the commitment c can be defined as c = F(s, 0`) = G0(. . . (G0(G0(s))) . . . )

with o = (s). It is shown in [106] that the function family F = {F κ} with F κ = {F(s)}s∈{0,1}κ is

pseudorandom. Now, note that F(s, 0`) = f `.κ(s). Since f is a permutation, this means that the

function g(x) = F(x, 0`) is a permutation, and hence the commitment scheme has the binding

property. Hiding follows from the property of PRF F [137].

2.4.2.1 Equivocal Non-interactive Commitment Schemes (eNICOM)

In some of our constructions, we also need a NICOM scheme that admits equivocation property.

An equivocal non-interactive commitment (eNICOM) is a NICOM that allows equivocation of a

certain commitment to any given message with the help of a trapdoor. An eNICOM comprises

of the following algorithms, apart from the ones needed in NICOM:

– eGen(1κ) returns a public parameter and a corresponding trapdoor (epp, t), where epp is used

by both eCom and eOpen. The trapdoor t is used for equivocation.

– Equiv(c, o′, x, t) is invoked on a certain commitment c and its corresponding opening o′, given

message x and the trapdoor t and returns o such that x← eOpen(epp, c, o).

An eNICOM satisfies correctness, hiding and binding properties much like the NICOM does.

The hiding property of eNICOM is slightly changed compared to that of NICOM taking the

equivocation property into account. This new definition implies the usual hiding definition.

The formal definitions and instantiations of an eNICOM appear below.

Properties.

– Correctness: For all (epp, t) ← eGen(1κ), x ∈ M and r ∈ R, if (c, o) ← eCom(x; r) then

eOpen(c, o) = x.

– Binding: For all (epp, t) ← eGen(1κ) and for all PPT adversaries A, it is with negligible

probability that A(epp) outputs (c, o, o′) such that eOpen(c, o) 6= eOpen(c, o′) and ⊥ /∈
{eOpen(c, o), eOpen(c, o′)}
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– Hiding: For all (epp, t) ← eGen(1κ) and for all PPT adversaries A, and all x, x′ ∈ M, the

following difference is negligible:

∣∣ Pr
(c,o)←eCom(x)

[A(c, o) = 1]− Pr
(c,o)←eCom(x′),o←Equiv(c,x,t)

[A(c, o) = 1]
∣∣

Instantiations. We first present the equivocal bit commitment scheme of [71], which is based

on Naor’s commitment scheme [162] for single bit message. This scheme avoids the use of

public-key primitives. Let G : {0, 1}n → {0, 1}4n be a pseudorandom generator.

- eGen(1κ): set (epp, t) = (σ, (r0, r1)), where σ = G(r0)⊕ G(r1)

- eCom(x; r): set c = G(r) if x = 0, else c = G(r)⊕ σ; set o = (r, x)

- eOpen(c, o = (r, x)): return x if c = G(r) ⊕ x · σ (where (·) denotes multiplication by

constant); otherwise return ⊥.

- Equiv(c = G(r0),⊥, x, t): return o = (r, x) where r = r0 if x = 0, else r = r1.

Next, we present the instantiation based on Pedersen commitment scheme [175]. Let p, q

denote large primes such that q divides (p− 1), Gq is the unique subgroup of Z∗p of order q and

g is a generator of Gq.

- eGen(1κ): set (epp, t) = ((g, h), α) where α ∈ Zq; h = gα

- eCom(x; r): set c = gxhr; set o = (r, x).

- eOpen(c, o = (r, x)): return x if c = gxhr; otherwise return ⊥.

- Equiv((c = eCom(x′; r′)) , (x′, r′), x, t): return o = (r, x) where r = r′ + x′−x
t

While in Naor-based instantiation, a specific commitment c = G(r0) can be decommitted to

either 0 or 1, the Pedersen commitment scheme allows equivocation of any commitment.

2.4.3 Threshold Secret Sharing

Informally, a d (denoting threshold) out of n threshold secret sharing scheme distributes a secret

among n participants, in such a way that any group of d+ 1 or more participants can together

reconstruct the secret but no group of fewer than d + 1 players can. Shamir secret sharing is

an instance of a threshold secret-sharing [180]. We present the formal definition below.
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Definition 2.9 A d-out-of-n threshold secret sharing scheme, defined for a finite set of secrets

K and a set of P participants, comprises of two protocols– Sharing and Reconstruction (Sh,Re),

with the following requirements:

- Correctness. The secret can be reconstructed by any set of (d + 1) parties via Re. That is,

∀s ∈ K and ∀S = {i1, . . . id+1} ⊆ {1, . . . n} of size (d+ 1), Pr[Re(si1 . . . sid+1
) = s] = 1.

- Privacy. Any set of d parties cannot learn anything about the secret from their shares. That

is: ∀s1, s2 ∈ K, ∀S = {i1, . . . id} ⊆ {1, . . . n} of size d, and for every possible vector of

shares {sj}j∈S, Pr[{{Sh(s1)}S = {sj}ij∈S] = Pr[{{Sh(s2)}S = {sj}ij∈S], where {Sh(si)}S
denotes the set of shares assigned to the set S as per Sh when si is the secret for i ∈ {1, 2}.

2.4.4 Symmetric-Key Encryption with Special Correctness

Definition 2.10 A CPA-secure symmetric-key encryption scheme π = (Gen,Enc,Dec) satisfies

special correctness if there is some negligible function ε such that for any message m we have:

Pr[Deck2(Enck1(m)) 6= ⊥ : k1, k2 ← Gen(1κ)] ≤ ε(κ)

Instantiation. Here we present an instantiation borrowed from [132, 148]. Let F = {fk} be

a family of pseudorandom functions where fk = {0, 1}κ → {0, 1}κ+s, for k ∈ {0, 1}κ and s is a

parameter denoting message length.

- Enck(m) = (r, fk(r)⊕m0κ) where m ∈ {0, 1}s, r ← {0, 1}κ and m0κ denotes the concate-

nation of m with a string of 0s of length κ.

- Deck(c) which parses c = (r, z), computes w = z ⊕ fk(r) and if the last κ bits of w are

0’s, it outputs the first s bits of w, else it outputs ⊥
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Part I

MPC for Small Population
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Chapter 3

On the Exact Round Complexity of

Secure Three-Party Computation

In this chapter, we settle the exact round complexity of three-party computation (3PC) in

honest-majority setting, for a range of security notions such as selective abort (sa), unanimous

abort (ua), fairness (fn) and guaranteed output delivery (god). We focus on two network

settings– pairwise-private channels without and with a broadcast channel.

3.1 Introduction

The setting of 3 parties with single active corruption (honest-majority) is interesting for numer-

ous reasons such as its relevance to practice, feasibility of attaining strong notions of fn and god

as outlined in Section 1.4.1. The world of MPC for small population in honest majority setting

witnesses a few more interesting phenomena. Firstly, there are evidences galore that having to

handle a single corrupt party can be leveraged conveniently and taken advantage of to circum-

vent known lower bounds and impossibility results. A lower bound of three rounds has been

proven in [102] for fair MPC with t ≥ 2 and arbitrary number of parties, even in the presence of

broadcast channels. [129] circumvents the lower bound by presenting a two-round 4PC protocol

tolerating a single corrupt party that provides god without even requiring a broadcast channel.

Verifiable secret sharing (VSS) which serves as an important tool in constructing MPC proto-

cols are known to be impossible with t ≥ 2 with one round in the sharing phase irrespective of

the computational power of the adversary [101, 172, 13]. Interestingly enough, a perfect VSS

with (n = 5, t = 1) [101], statistical VSS with (n = 4, t = 1) [172, 129] and cryptographic

VSS with (n = 4, t = 1) [13] are shown to be achievable with one round in the sharing phase.

Further, assumption-wise, MPC with 3, 4 and 5 parties can be built from just One-way func-
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tions (OWF) or injective one-way functions/permutations [129, 159, 52], shunning public-key

primitives such as Oblivious Transfer (OT) entirely, which is the primary building block in

the 2-party setting. Last but not the least, the known constructions for small population in

the honest majority setting perform arguably better than the constructions with two parties

while offering the same level of security. For instance, 3PC with honest majority [129, 159]

allows to circumvent certain inherent challenges in malicious 2PC such as enforcing correctness

of garbling which incurs additional communication. The exact round complexity is yet another

measure that sets apart the protocols with three parties over the ones with two parties. For

instance, 3PC protocol is achievable just in two rounds with the minimal network setting of

pairwise-private channels [129]. The 2PC (and MPC with dishonest majority) protocols achiev-

ing the same level of security (with abort) necessarily require 4 rounds [136] and have to resort

to a common reference string (CRS) to shoot for the best possible round complexity of 2 [112].

With the impressive list of motivations that are interesting from both the theoretical and

practical viewpoint, we explore the exact round complexity of 3PC in the honest majority

setting tolerating a malicious adversary. We summarize the related work in Table 3.1 (details

in Section 1.3). Here NIZK [36, 82, 37] and Zaps [81] refer to the tools of non-interactive zero

knowledge and 2-round witness indistinguishable proofs respectively.

Table 3.1: Relevant work in honest majority setting
Ref. Setting Round Network Setting / Assumption Security Comments

[11] t < n/2 ≥ 5 private channel, Broadcast / CRS, FHE, NIZK fn upper bound

[108] t < n/2 3 broadcast-only / CRS, FHE god upper bound

[108] t < n/2 2 broadcast-only / CRS, PKI, FHE god upper bound

[16] t < n/2 3 broadcast-only / Zaps, FHE god upper bound

[4] t < n/2 3 broadcast-only / Zaps, public-key encryption god upper bound

[126] n = 5, t = 1 2 private channel / OWF god upper bound

[129] n = 3, t = 1 2 private channel / OWF sa upper bound

[129] n = 4, t = 1 2 private channel / (injective) OWF god upper bound

[159] n = 3, t = 1 3 private channel, Broadcast / PRG ua upper bound

[108] t < n/2 3 broadcast-only / CRS fn lower bound

[102] n; t > 1 3 private channel, Broadcast fn lower bound

Our Results. While details of our results appear in Section 1.4.1.1, we briefly discuss them

below (for easy reference, summary appears below in Table 3.2). In the minimal setting of

pairwise-private channels, 3PC with sa is known to be feasible in just two rounds, while god is

infeasible to achieve irrespective of the number of rounds. Settling the quest for exact round

complexity of 3PC in this setting, we show that three rounds are necessary and sufficient for

ua and fn. Extending our study to the setting with an additional broadcast channel, we show

that while ua is achievable in just two rounds, three rounds are necessary and sufficient for fn
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and god. Our lower bound results extend for any number of parties in honest majority setting

and imply tightness of several known constructions.

The fundamental concept of garbled circuits underlies all our upper bounds. Concretely,

our constructions involve transmitting and evaluating only constant number of garbled circuits.

Assumption-wise, our constructions rely on injective (one-to-one) one-way functions.

Table 3.2: Our results on exact round complexity of 3PC in honest majority
Security Without References With References

Broadcast Necessity/Sufficiency Broadcast Necessity/Sufficiency

Selective Abort (sa) 2 [112] / [129] 2 [112] / [129]

Unanimous Abort (ua) 3 Our Work [166] / Our Work [166] 2 [112] / Our Work [166]

Fairness (fn) 3 Our Work [166] / Our Work [166] 3 Our Work [166] / Our Work [166]

Guaranteed output delivery (god) Impossible [67] 3 Our Work [166] / Our Work [166]

3.1.1 Technical Overview

Lower Bounds. We present two lower bounds– (a) three rounds are necessary for achieving

fn in the presence of pair-wise channels and a broadcast channel; (b) three rounds are necessary

for achieving ua in the presence of just pair-wise channels. The lower bounds are shown by

taking a special 3-party function and by devising a sequence hybrid executions under different

adversarial strategies, allowing to conclude any 3PC protocol computing the considered function

cannot be simultaneously private and achieve fn or ua.

Upper Bounds. We present three upper bounds– (a) 3-round protocol with fn; (b) 2-round

protocol with ua and (c) 3-round protocol with god. The former in the presence of just pairwise

channels, the latter two with an additional broadcast channel. The known generic transforma-

tions such as, ua to identifiable fairness (idfair) [130] or idfair to god [66], does not help in any of

our constructions. For instance, any 3-round fair protocol without broadcast cannot take the

former route as it is not round-preserving and ua in two rounds necessarily requires broadcast

as shown in this work. A 3-round protocol with god cannot be constructed combining both the

transformations due to inflation in round complexity.

Building on the protocol of [159], the basic building block of our protocols needs two of the

parties to enact the role of the garbler and the remaining party to carry out the responsibility

of circuit evaluation. Constrained with just two or three rounds, our protocols are built from

the parallel composition of three sub-protocols, each one with different party enacting the role

of the evaluator (much like [129]). Each sub-protocol consumes two rounds. Based on the

security needed, the sub-protocols deliver distinct flavours of security with ‘identifiable abort’.

For the fn and ua protocols, the identifiability is in the form of conflict that is local (privately

known) and public/global (known to all) respectively, while for the protocol with god, it is local
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identification of the corrupt. Achieving such identifiability in just two rounds (sometime without

broadcast) is challenging in themselves. Pulling up the security guarantee of these subprotocols

via entwining three executions to obtain the final goals of fn, ua and god constitute yet another

novelty of this work.

Maintaining the input consistency across the three executions pose another challenge that

are tackled via mix of novel techniques (that consume no additional cost in terms of communi-

cation) and existing tricks such as ‘proof-of-cheating’ or ‘cheat-recovery’ mechanism [145, 58].

The issue of input consistency does not appear in the construction of [159] at all, as it does

not deal with parallel composition. On the other hand, the generic input consistency technique

adopted in [129] can only (at the best) detect a conflict locally and cannot be extended to

support the stronger form of identifiability that we need.

Below, we present the common issues faced and approach taken in all our protocols before

turning towards the challenges and way-outs specific to our constructions. Two of the major

efficiency bottlenecks of 2PC from garbled circuits, namely the need of multiple garbled cir-

cuits due to cut-and-choose approach and Oblivious Transfer (OT) for enabling the evaluator

to receive its input in encoded form are bypassed in the 3PC scenario through two simple tricks

[129, 159]. First, the garblers use common randomness to construct the same garbled circuit

individually. A simple comparison of the GCs received from the two garblers allows to conclude

the correctness of the GC. Since at most one party can be corrupt, if the received GCs match,

then its correctness can be concluded. Second, the evaluator shares its input additively among

the garblers at the onset of the protocol, reducing the problem to a secure computation of a

function on the garblers’ inputs alone. Specifically, assuming P3 as the evaluator, the com-

putation now takes inputs from P1 and P2 as (x1, x31) and (x2, x32) respectively to compute

C(x1, x2, x31, x32) = f(x1, x2, x31⊕x32). Since the garblers possess all the inputs needed for the

computation, OT is no longer needed to transfer the evaluator’s input in encoded form to P3.

Next, to force the garblers to input encoding and decoding information (the keys) that are

consistent with the GCs, the following technique is adopted. Notice that the issue of input

consistency where a corrupt party may use different inputs as an evaluator and as a garbler

in different instances of the sub-protocols is distinct and remains to be tackled separately. To-

gether with the GC, each garbler also generates the commitment to the encoding and decoding

information using the common shared randomness and communicates to the evaluator. Again

a simple check on whether the set of commitments are same for both the garblers allows to

conclude their correctness. Now it is infeasible for the garblers to decommit the encoded input

corresponding to their own input and the evaluator’s share to something that are inconsistent

to the GC without being caught. Following a common trick to hide the inputs of the garblers,
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the commitments on the encoding information corresponding to every bit of the garblers’ input

are sent in permuted order that is privy to the garblers. The commitment on the decoding

information is relevant only for the fair protocol where the decoding information is withheld

to force a corrupt evaluator to be fair. Namely, in the third round of the final protocol, the

evaluator is given access to the decoding information only when it helps the honest parties to

compute the output. This step needs us to rely on the obliviousness of our garbling scheme,

apart from privacy. The commitment on the decoding information and its verification by cross-

checking across the garblers are needed to prevent a corrupt party to lie later. Now we turn to

the challenges specific to the constructions.

Achieving fn in 3 rounds. The sub-protocol for our fair construction only achieves a weak

form of identifiability, a local conflict to be specific, in the absence of broadcast. Namely,

the evaluator either computes the encoded output (‘happy’ state) or it just gets to know that

the garblers are in conflict (‘confused’ state) in the worst case. The latter happens when

it receives conflicting copies of GCs or commitments to the encoding/decoding information.

In the composed protocol, a corrupt party can easily breach fairness by keeping one honest

evaluator happy and the other confused in the end of round 2 and selectively enable the happy

party to compute the output by releasing the decoding information in the third round (which

was withheld until Round 2). Noting that the absence of a broadcast channel ensues conflict

and confusion, we handle this using a neat trick of ‘certification mechanism’ that tries to enforce

honest behaviour from a sender who is supposed to send a common information to its fellow

participants.

A party is rewarded with a ‘certificate’ for enacting an honest sender and emulating a broad-

cast by sending the same information to the other two parties, for the common information

such as GCs and commitments. This protocol internally mimics a ‘Conditional Disclosure of

Secrets’ (CDS) protocol [103] for equality predicate, with an additional property of ‘authentic-

ity’, a departure from the traditional CDS. An authenticated CDS allows the receiver to detect

correct receipt of the secret/certificate (similar to authenticated encryption where the receiver

knows if the received message is the desired one). As demonstrated below, the certificate allows

to identify the culprit behind the confusion on one hand, and to securely transmit the decoding

information from a confused honest party to the happy honest party in the third round, on

the other. The certificate, being a proof of correct behaviour, when comes from an honest

party, say Pi, the other honest party who sees conflict in the information distributed by Pi

communicated over point-to-point channel, can readily identify the corrupt party responsible

for creating the conflict in Round 3. This aids the latter party to compute the output using the
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encoded output of the former honest party. The certificate further enables the latter party to

release the decoding information in Round 3 in encrypted form so that the other honest party

holding a certificate can decrypt it. The release of encryption is done only for the parties whose

distributed information are seen in conflict, so that a corrupt party either receives its certificate

or the encryption but not both. Consequently, it is forced to assist at least one honest party in

getting the certificate and be happy to compute the output, as only a happy party releases the

decoding information on clear. In a nutshell, the certification mechanism ensures that when

one honest party is happy, then no matter how the corrupt party behaves in the third round,

both the honest parties will compute the output in the third round. When no honest party is

happy, then none can get the output. Lastly, the corrupt party must keep one honest party

happy, for it to get the output.

Yet again, we use garbled circuits to implement the above where a party willing to receive

a certificate acts as an evaluator for a garbled circuit implementing ‘equality’ check of the

inputs. The other two parties act as the garblers with their inputs as the common informa-

tion dealt by the evaluator. With no concern of input privacy, the circuit can be garbled in

a privacy-free way [133, 90]. The certificate that is the key for output 1 is accessible to the

evaluator only when it emulates a broadcast by dealing identical copies of the common infor-

mation to both the other parties. Notably, [123] suggests application of garbling to realise CDS.

Achieving ua in 2 rounds. Moving on to our construction with ua, the foremost challenge comes

from the fact that it must be resilient to any corrupt Round 2 private communication. Because

there is no time to report this misbehaviour to the other honest party who may have got the

output and have been treated with honest behaviour all along. Notably, in our sub-protocols,

the private communication from both garblers in second round inevitably carries the encoded

share of the evaluator’s input (as the share themselves arrives at the garblers’ end in Round

1). This is a soft spot for a corrupt garbler to selectively misbehave and cause selective abort.

While the problem of transferring encoded input shares of the evaluator without relying on sec-

ond round private communication seems unresolvable on the surface, our take on the problem

uses a clever ‘two-part release mechanism’. The first set of encoding information for random

inputs picked by the garblers themselves is released in the first round privately and any misbe-

haviour is brought to notice in the second round. The second set of encoding information for

the offsets of the random values and the actual shares of the evaluator’s input is released in the

second round via broadcast without hampering security, while allowing public detection. Thus

the sub-protocol achieves global/public conflict and helps the final construction to exit with ⊥
unanimously when any of the sub-protocol detects a conflict.
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Achieving god in 3 rounds. For achieving this stronger notion, the sub-protocol here needs a

stronger kind of identifiability, identifying the corrupt locally to be specific, to facilitate all par-

ties to get output within an additional round no matter what. To this effect, our sub-protocol

is enhanced so that the evaluator either successfully computes the output or identifies the cor-

rupt party. We emphasise that the goals of the sub-protocols for ua and god, namely global

conflict vs. local identification, are orthogonal and do not imply each other. The additional

challenge faced in composing the executions to achieve god lies in determining the appropriate

‘committed’ input of the corrupt party based on which round and execution of sub-protocol it

chooses to strike.

Tackling input consistency. We take a uniform approach for all our protocols. We note that a

party takes three different roles across the three composed execution: an evaluator, a garbler

who initiate the GC generation by picking the randomness, a co-garbler who verifies the sanity

of the GC. In each instance, it gets a chance to give inputs. We take care of input consistency

in two parts. First, we tie the inputs that a party can feed as an evaluator and as a garbler who

initiates a GC construction via a mechanism that needs no additional communication at all.

This is done by setting the permutation strings (used to permute the commitments of encoding

information of the garblers) to the shares of these parties’ input in a certain way. The same trick

fails to work in two rounds for the case when a party acts as a garbler and a co-garbler in two

different executions. We tackle this by superimposing two mirrored copies of the sub-protocol

where the garblers exchange their roles. Namely, in the final sub-protocol, each garbler initiates

an independent copy of garbled circuit and passes on the randomness used to the fellow garbler

for verification. The previous trick is used to tie the inputs that a party feeds as an evaluator

and as a garbler for the GC initiated by it (inter-execution consistency). The input consistency

of a garbler for the two garbled circuits (one initiated by him and the other by the co-garbler) is

taken care using ‘proof-of-cheating’ mechanism [145] where the evaluator can unlock the clear

input of both the other parties using conflicting output wire keys (intra-execution consistency).

While this works for our protocols with ua and god, the fair protocol faces additional challenges.

First, based on whether a party releases a clear or encoded input, a corrupt garbler feeding two

different inputs can conclude whether f leads to the same output for both his inputs, breaching

privacy. This is tackled by creating the ciphertexts using conflicting input keys. Second, inspite

of the above change, a corrupt garbler can launch ‘selective failure attack’ [156, 140] and breach

privacy of his honest co-garbler. We tackle this using ‘XOR-tree approach’ [147] where every

input bit is broken into s shares and security is guaranteed except with probability 2−(s−1) per
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input bit. We do not go for the refined version of this technique, known as probe-resistant

matrix, [147, 181] for simplicity.

On the assumption needed. While the garbled circuits can be built just from OWF, the ne-

cessity of injective OWF comes from the use of commitments that need binding property for

any (including adversarially-picked) public parameter. Our protocols, having 2-3 rounds, seem

unable to spare rounds for generating and communicating the public parameters by a party

who is different from the one opening the commitments.

On concrete efficiency. Though the focus is on the round complexity, the concrete efficiency of

our protocols is comparable to Yao [182] and require transmission and evaluation of few GCs

(upto 9) (in some cases we only need privacy-free GCs which permit more efficient constructions

than their private counterparts [133, 90]). The broadcast communication of the optimized

variants of our protocols is independent of the GC size via applying hash function. We would

like to draw attention towards the new tricks such as the ones used for input consistency,

getting certificate of good behaviour via garbled circuits, which may be of both theoretical and

practical interest. We believe the detailed take on our protocols will help to lift them or their

derivatives to practice in future.

3.1.2 Roadmap

The adversarial and network model for this work appears below. Our lower bound results

appear in Section 3.2. We present our 3-round protocol with fn, 2-round protocol with ua and

3-round protocol with god in Section 3.3, 3.4 and 3.5 respectively. The respective security

proofs appear in Sections 3.7.1, 3.7.2 and 3.7.3 and the common optimizations in Section 3.6.

Lastly, we define authenticated CDS in Appendix 3.8 and show its realisation from one of the

sub-protocol used in our 3-round fair protocol.

3.1.3 Model

We consider a set of n = 3 parties P = {P1, P2, P3}, connected by pair-wise secure and authentic

channels. Each party is modelled as a probabilistic polynomial time Turing (PPT) machine.

We assume that there exists a PPT adversary A, who can actively corrupt at most t = 1 out

of the n = 3 parties and make them behave in any arbitrary manner during the execution

of a protocol. We assume the adversary to be static, who decides the set of t parties to be

corrupted at the onset of a protocol execution. For our 2-round protocol achieving ua and

3-round protocol achieving god, a broadcast channel is assumed to exist.
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3.2 Lower Bounds

In this section, we present two lower bounds– (a) three rounds are necessary for achieving fn

in the presence of pair-wise private channels and a broadcast channel; (b) three rounds are

necessary for achieving ua in the presence of just pair-wise private channels (and no broadcast).

The second result holds even if broadcast was allowed in the first round. Our results extend

for any n and t with 3t ≥ n > 2t via standard player-partitioning technique [153]. Our results

imply the following. First, sa is the best amongst the four notions (considered in this work) that

we can achieve in two rounds without broadcast (from (b)). Second, ua as well as fn require 3

rounds in the absence of broadcast (from (b)). Third, broadcast does not help to improve the

round complexity of fn (from (a)). Lastly, god requires 3 rounds with broadcast (from (a)).

Both our lower bounds hold even in the presence of public setup (CRS model) but break down

in the presence of private setup (PKI model).

3.2.1 The Impossibility of 2-round Fair 3PC

In this section, we show that it is impossible to construct a 2-round 3PC with fn for general

functions. [108] presents a lower bound of three rounds assuming non-private point-to-point

channels and a broadcast channel (their proof crucially relies on the assumption of non-private

channels). [102] presents a three-round lower bound for fair MPC with t ≥ 2 (arbitrary number

of parties) in the same network setting as ours. Similar to the lower bounds of [108] and [102]

(for the function of conjunction of two input bits), our lower bound result does not exploit the

rushing nature of the adversary and hence holds for non-rushing adversary as well. Finally,

we observe that the impossibility of 2-round 3PC for the information-theoretic setting follows

from the impossibility of 2-round 3-party statistical VSS of [172] (since VSS is a special case of

MPC). We now prove the impossibility formally.

Theorem 3.1 There exist functions f such that no two-round 3PC protocol with fn can compute

f , even in the honest majority setting and assuming access to pairwise-private and broadcast

channel.

Proof: Let P = {P1, P2, P3} denote the set of 3 parties and the adversary A may corrupt any

one of them. We prove the theorem by contradiction. We assume that there exists a two-round

3PC protocol π with fn that can compute f(x1, x2, x3) defined below for Pi’s input xi:

f(x1, x2, x3) =

1 if x2 = x3 = 1

0 otherwise
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At a high level, we discuss two adversarial strategies A1 and A2 of A. We consider party Pi

launching Ai in execution Σi (i ∈ [2]) of π. Both the executions are assumed to be run for the

same input tuple (x1, x2, x3) and the same random inputs (r1, r2, r3) of the three parties. (Same

random inputs are considered for simplicity and without loss of generality. The same arguments

hold for distribution ensembles as well.) When strategy A1 is launched in execution Σ1, we

would claim that by correctness of π, A corrupting P1 should learn the output y = f(x1, x2, x3).

Here, we note that the value of f(x1, x2, x3) depends only on the inputs of honest P2, P3 (i.e

input values x2, x3) and is thus well-defined. We refer to f(x1, x2, x3) as the value determined

by this particular combination of inputs (x2, x3) henceforth. Now, since A corrupting P1 learnt

the output, due to property of fn, P2 should learn the output too in Σ1. Next strategy A2 is

designed so that P2 in Σ2 can obtain the same view as in Σ1 and therefore it gets the output too.

Due to fairness, we can claim that P3 receives the output in Σ2. A careful observation then lets

us claim that P3 can, in fact, learn the output at the end of Round 1 itself in π. Lastly, using

the above observation, we show a strategy for P3 that explicitly allows P3 to breach privacy.

We use the following notation: Let pri→j denote the pairwise communication from Pi to Pj

in round r and bri denote the broadcast by Pi in round r, where r ∈ [2], {i, j} ∈ [3]. Vi denotes

the view of party Pi at the end of execution of π. Below we describe the strategies A1 and A2.

A1: P1 behaves honestly during Round 1 of the protocol. In Round 2, P1 waits to receive the

messages from other parties, but does not communicate at all.

A2: P2 behaves honestly towards P3 in Round 1, i.e sends the messages p1
2→3, b

1
2 according to

the protocol specification. However P2 does not communicate to P1 in Round 1. In Round

2, P2 waits to receive messages from P3, but does not communicate to the other parties.

Next we present the views of the parties in the two executions Σ1 and Σ2 in Table 3.3.

The communications that could potentially be different from the communications in an honest

execution (where all parties behave honestly) with the considered inputs and random inputs

of the parties are appended with ? (e.g. p2
1→3(?)). We now prove a sequence of lemmas to

complete our proof.

Table 3.3: Views of P1, P2, P3 in Σ1 and Σ2
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Σ1 Σ2

V1 V2 V3 V1 V2 V3

Initial Input (x1, r1) (x2, r2) (x3, r3) (x1, r1) (x2, r2) (x3, r3)

Round 1
p1

2→1, p1
3→1 p1

1→2, p1
3→2, p1

1→3, p1
2→3, –, p1

3→1, p1
1→2, p1

3→2, p1
1→3, p1

2→3,

b1
2, b

1
3 b1

1, b
1
3 b1

1, b
1
2 b1

2, b
1
3 b1

1, b
1
3 b1

1, b
1
2

Round 2
p2

2→1, p2
3→1, –, p2

3→2, –, p2
2→3, –, p2

3→1, p2
1→2(?), p2

3→2, –, p2
1→3(?),

b2
2, b

2
3 b2

3 b2
2 b2

3 b2
1(?), b2

3 b2
1(?)

Lemma 3.1 A corrupt P1 launching A1 in Σ1 should learn the output y = f(x1, x2, x3).

Proof: The proof follows easily. Since P1 behaved honestly during Round 1, it received all the

desired communication from honest P2 and P3 in Round 2 (refer to Table 3.3 for the view of P1

in Σ1 in the end of Round 2). So it follows from the correctness property that his view at the

end of the protocol i.e V1 should enable P1 to learn the correct function output f(x1, x2, x3).

2

Lemma 3.2 A corrupt P2 launching A2 in Σ2 should learn the output y.

Proof: We prove the lemma with the following two claims. First, the view of P2 in Σ2

subsumes the view of honest P2 in Σ1. Second, P2 learns the output in Σ1 due to the fact that

the corrupt P1 learns it and π is fair. We now prove our first claim. In Σ1, we observe that P2

has received communication from both P1 and P3 in the first round, and only from P3 in the

second round. So V2 = {x2, r2, p
1
1→2, b

1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3} (refer to Table 3.3). We now analyze

P2’s view in Σ2. Both P1 and P3 are honest and must have sent {p1
1→2, b

1
1, p

1
3→2, b

1
3} according

to the protocol specifications in Round 1. Since P3 received the expected messages from P2 in

Round 1, P3 must have sent {p2
3→2, b

2
3} in Round 2. Note that we can rule out the possibility of

P3’s messages in this round having been influenced by P1 possibly reporting P2’s misbehavior

towards P1. This holds since P3 would send the messages in the beginning of Round 2. We

do not make any assumption regarding P1’s communication to P2 in Round 2 since P1 has

not received the expected message from P2 in Round 1. Thus, overall, P2’s view V2 comprises

of {x2, r2, p
1
1→2, b

1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3} (refer to Table 3.3). Note that there may also be some

additional messages from P1 to P2 in Round 2 which can be ignored by P2. These are marked

with ‘(?)′ in Table 3.3. A careful look shows that the view of P2 in Σ2 subsumes the view of

honest P2 in Σ1. This concludes our proof. 2

Lemma 3.3 P3 in Σ2 should learn the output y by the end of Round 1.
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Proof: According to the previous lemma, P2 should learn the function output in Σ2. Due

to property of fn, it must hold that an honest P3 learns the output as well (same as obtained

by P2 i.e y with respect to x2). First, we note that as per strategy A2, P2 only communicates

to P3 in Round 1. Second, we argue that the second round communication from P1 does not

impact P3’s output computation as follows.

We observe that the function output depends only on (x2, x3). Clearly, Round 1 messages

{p1
1→3, b

1
1} of P1 does not depend on x2. Next, since there is no private communication to P1

from P2 as per strategy A2, the only information that can possibly hold information on x2 and

can impact the round 2 messages of P1 is b1
2. However, since this is a broadcast message, P3

holds this by the end of Round 1 itself. 2

Lemma 3.4 A corrupt P3 violates the privacy property of π.

Proof: The adversary corrupting P3 participates in the protocol honestly by fixing input

x3 = 0. Since P3 can get the output from P2’s and P1’s round 1 communication (Lemma 3.3), it

must be true that P3 can evaluate the function f locally by plugging in any value of x3. (Note

that P2 and P1’s communication in round 1 are independent of the communication of P3 in the

same round.) Now a corrupt P3 can plug in x3 = 1 locally and learn x2 (via the output x2∧x3).

In the ideal world, corrupt P3 must learn nothing beyond the output 0 as it has participated in

the protocol with input 0. But in the execution of π (in which P3 participated honestly with

input x3 = 0), P3 has learnt x2. This is a clear breach of privacy as P3 learns x2 regardless of

his input. 2

Hence, we have arrived at a contradiction, completing the proof of Theorem 3.1. 2

Before concluding the section, we point that the above lower bound holds even in the

presence of public setup (such as the CRS model). However, it breaks down given access to

private setup such as public-key infrastructure i.e PKI (as demonstrated by [170]). Essentially,

the argument breaks down because Lemma 3.3 does not hold in the presence of private setup

for the following reason: If a setup such as PKI is established, P1 may hold some private

information unknown to P3 at the end of Round 1, such as the decryption of P2’s Round 1

broadcast using its exclusive secret key. This may aid in output computation by P3; thereby it

cannot be claimed that P3 obtains the output at the end of Round 1 itself.

3.2.2 The Impossibility of 2-round 3PC with Unanimous Abort

In this section, we show that 2-round 3PC with ua is impossible to achieve in the minimal

setting of pairwise-private channels.
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Theorem 3.2 There exist functions f such that no two-round 3PC protocol achieving ua can

compute f assuming access to pairwise-private channels, even in the honest majority setting.

Proof: We prove the theorem by contradiction. We assume that there exists a two-round

3PC protocol π achieving ua that can compute the same function f(x1, x2, x3) considered in

the proof of Theorem 3.1.

At a high level, we discuss three adversarial strategies A1,A2,A3 of A. We consider party P1

launches A1 in execution Σ1, and P2 launches A2,A3 in executions Σ2,Σ3 of π respectively. For

the sake of simplicity, the executions are assumed to be run for the same input tuple (x1, x2, x3)

and the same random inputs (r1, r2, r3) (without loss of generality) of the three parties. We use

the notation Vj
i to denote the view of party Pi at the end of execution Σj of π. The skeleton

of the proof goes as follows: We first claim that strategy A1 leads to honest P2 computing

the output y = f(x1, x2, x3). Here, we note that the value of f(x1, x2, x3) depends only on the

inputs of honest P2, P3 (i.e input values x2, x3) and is thus well-defined. We refer to f(x1, x2, x3)

as the value determined by this particular combination of inputs (x2, x3) henceforth. Since the

protocol achieves ua, honest P3’s view V1
3 at the end of Σ1 must lead to output computation

of y by P3. Next, strategy A2 executed by P2 during Σ2 results in P3 having the same view

as in Σ1 i.e V1
3 = V2

3. Thus, honest P3 computes the output and to preserve the property of

ua, honest P1 with view V2
1 must also compute the output. Finally, we present a strategy A3

by P2 during Σ3 that results in P1 having the same view as in Σ2 i.e V2
1 = V3

1. It follows that

honest P1 computes the output and therefore honest P3 with view V3
3 must be able to compute

the output too. This results in a contradiction as we conclude that if P3’s view V3
3 enables

output computation, P3 must be able to compute the output at the end of Round 1 itself which

violates privacy as proved in Lemma 3.4.

Let pri→j denote the pairwise communication from Pi to Pj in round r, where r ∈ [2], {i, j} ∈
[3]. Below we describe the strategies A1,A2 and A3.

A1: P1 behaves honestly during Round 1 of the protocol. In Round 2, P1 behaves honestly

towards P2. P1’s communication to P3 in Round 2 is according to the protocol specification

for the scenario when P1 didn’t receive the expected message (or nothing) from P2 in

Round 1. In more detail, suppose p2
1→3 is the message that should be sent by P1 to P3

according to the protocol incase P1 didn’t receive anything from P2 in Round 1. Then as

per A1, corrupt P1 sends p2
1→3 to P3 in Round 2.

A2: P2 does not communicate at all to P1 but behaves honestly to P3 throughout π.
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A3: In Round 1, P2 does not communicate to P1 but behaves honestly to P3. In Round 2, P2

does not communicate at all.

Next we present the views of the parties in Σ1, Σ2 and Σ3 in Table 3.4. Here, p2
1→3 is the

message that should be sent by P1 to P3 according to the protocol incase P1 didn’t receive

anything from P2 in Round 1. Besides this, the communications that could potentially be dif-

ferent from the communications in an honest execution with the considered inputs and random

inputs of the parties are appended with ? (e.g. p2
1→2(?)). We now prove a sequence of lemmas

to complete our proof.

Table 3.4: Views of P1, P2, P3 in Σ1, Σ2, Σ3

Σ1 Σ2 Σ3

V1 V2 V3 V1 V2 V3 V1 V2 V3

Initial Input (x1, r1) (x2, r2) (x3, r3) (x1, r1) (x2, r2) (x3, r3) (x1, r1) (x2, r2) (x3, r3)

Round 1
p1

2→1, p1
3→1 p1

1→2, p1
3→2, p1

1→3, p1
2→3, –, p1

3→1, p1
1→2, p1

3→2, p1
1→3, p1

2→3, –, p1
3→1, p1

1→2, p1
3→2, p1

1→3, p1
2→3,

Round 2
p2

2→1, p2
3→1, p2

1→2, p2
3→2, p2

1→3, p2
2→3, –, p2

3→1, p2
1→2(?), p2

3→2, p2
1→3, p2

2→3, –, p2
3→1, p2

1→2(?), p2
3→2, p2

1→3, –

Lemma 3.5 P3 computes the output y = f(x1, x2, x3) at the end of Σ1.

Proof: The proof follows easily. During Σ1, as per strategy A1, corrupt P1 behaved honestly

to P2 throughout π. Therefore P2 would compute the output y = f(x1, x2, x3). Due to property

of ua, honest P3 must learn the output as well. 2

Lemma 3.6 P3 computes the output y = f(x1, x2, x3) at the end of Σ2.

Proof: We observe that the view of P3 during Σ1,Σ2 is same. As per both strategies A1, and

A2, P3 receives communication from P1, P2 as per honest execution in Round 1. In Round 2,

according to A1, corrupt P1 sends p2
1→3 as per protocol specification for case when P1 receives

nothing from P2 in Round 1. A similar message would be sent by honest P1 to P3 who did not

receive anything from P2 in Round 1 (as per A2) during Σ2. It is now easy to check (refer Table

3.4) that V1
3 = V2

3. Finally, since V1
3 leads to output computation of y as per Lemma 3.5, P3’s

view at the end of Σ2 i.e V2
3 must result in P3 computing the output y. 2

Lemma 3.7 P3 learns the output at the end of Σ3.

46



Proof: Firstly, it follows from lemma 3.6 and property of ua that honest P1 must compute

the output at the end of Σ2. Next, it is easy to check that V2
1 = V3

1 (refer Table 3.4). We can

thus conclude that honest P1 computes the output at the end of Σ3. Therefore, honest P3 must

also be able to compute the output at the end of Σ3 (by assumption that π achieves ua). 2

Finally, we now prove that P3 learns the output at the end of Round 1 (similar to Lemma

3.3).

Lemma 3.8 P3 in Σ3 should learn the output y by the end of Round 1.

Proof: According to lemma 3.7, P3 should learn the function output in Σ3. First, we note

that as per strategy A3, corrupt P2 only communicates to P3 in Round 1. Second, we argue

that the second round communication from P1 does not impact P3’s output computation as

follows.

We observe that the function output depends only on (x2, x3). Clearly, the first round

messages {p1
1→3} of P1 does not depend on x2. Next, since there is no communication to P1

from P2 as per strategy A3, round 2 messages of P1 hold no information about x2. 2

If P3 is able to compute output at the end of Round 1, we know that protocol π violates

privacy (proved in Lemma 3.4). We have thus arrived at a contradiction, concluding the proof

of Theorem 3.2. 2

We observe that even if broadcast was allowed in the first round, all the above arguments

would still hold. We state this as a corollary below.

Corollary 3.1 There exist functions f such that no two-round 3PC protocol achieving ua can

compute f assuming access to pairwise-private and broadcast channels in Round 1 and only

pairwise-private channels in Round 2; even in the honest majority setting.

Proof: We observe that the following minor tweaks to the proof of Theorem 3.2 imply

Corollary 3.1: We redefine p2
1→3 to be the message that should be sent by P1 to P3 in Round

2 according to the protocol incase P1 didn’t receive anything privately (over pairwise-private

channel) from P2 in Round 1 (if Round 1 includes broadcast communication from P2, then

we assume P1 has received P2’s broadcast communication). A1 remains the same with p2
1→3

defined as above. We emphasize that there is no broadcast channel available in Round 2 and

p2
1→3 is communicated via pairwise-private channel between P1 and P3. Strategies A2 and A3

are tweaked to include honest behavior of P2 in broadcast communication of Round 1. It is now

easy to check that the arguments of Lemma 3.5 - 3.7 hold. We can now conclude that P3 learns

the output at the end of Σ3 where the only communication from P2 throughout the protocol
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includes broadcast communication in Round 1 and private communication to P3 in Round 1.

Finally, similar to Lemma 3.8 we can argue that P3 learns the output at the end of Round 1

itself which violates privacy.

We clarify that while the above argument holds for the plain model and public setup (such

as CRS model), it does not hold in the presence of private setup such as PKI. The argument

breaks down for the same reason as demonstrated by [170] in the context of our lower bound

of Section 3.2.1 (elaborated at the end of Section 3.2.1). 2

Alternative functions. While it suffices to show impossibility with respect to a particular

function to rule out the possibility of having generic protocols, we cite yet another function that

can lead to the same conclusion. Consider a function f ′ that outputs the message m which is

the decryption of ciphertext c (P2’s input) where the decryption key k constitutes P3’s input.

All our arguments still hold except Lemma 3.4: Instead of the argument of how privacy could

be breached by corrupt P3 who gets access to output at the end of Round 1, in the context

of this function f ′, a corrupt P3 (who gets access to the output at the end of Round 1 itself)

would be able to get decryptions of the ciphertext c corresponding to multiple keys k of his

choice which violates correctness.

3.3 3-round 3PC with Fairness

This section presents a tight upper bound for 3PC achieving fn in the setting with just pair-wise

private channels. Our result from Section 3.2.2 rules out the possibility of achieving fn in 2

rounds in the same setting. Our result from Section 3.2.1 further shows tightness of 3 rounds

even in the presence of a broadcast channel.

Building on the intuition given in the introduction, we proceed towards more detailed dis-

cussion of our protocol. Our fair protocol is built from parallel composition of three copies

of each of the following two sub-protocols: (a) Fairi where Pi acts as the evaluator and the

other two as garblers for computing the desired function f . This sub-protocol ensures that

honest Pi either computes its encoded output or identifies just a conflict in the worst case. The

decoding information is committed to Pi, yet not opened. It is released in Round 3 of the final

composed protocol under subtle conditions as elaborated below. (b) Certi where Pi acts as

the evaluator and the other two as garblers for computing an equality checking circuit on the

common information distributed by Pi in the first round of the final protocol. Notably, though

the inputs come solely from the garblers, they are originated from the evaluator and so the

circuit can be garbled in a privacy-free fashion. This sub-protocol ensures either honest Pi gets

its certificate, the key for output 1 (meaning the equality check passes through), or identifies a
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conflict in the worst case. The second round of Certi is essentially an ‘authenticated’ CDS for

equality predicate tolerating one active corruption as discussed in Appendix 3.8. Three global

variables are maintained by each party Pi to keep tab on the conflicts and the corrupt. Namely,

Ci to keep the identity of the corrupt, flagj and flagk (for distinct i, j, k ∈ [3]) as indicators of

detection of conflict with respect to information distributed by Pj and Pk respectively. The

sub-protocols Fairi and Certi assure that if neither the two flags nor Ci is set, then Pi must be

able to evaluate the GC successfully and get its certificate respectively.

Once {Fairi,Certi}i∈[3] complete by the end of round 2 of the final protocol Fair, any honest

party will be in one of the three states: (a) no corruption and no conflict detected ( (Ci =

∅)∧(flagj = 0)∧(flagk = 0)); (b) corruption detected (Ci 6= ∅); (c) conflict detected (flagj = 1)∨
(flagk = 1). An honest party, guaranteed to have computed its encoded output and certificate

only in the first state, releases these as well as the decoding information for both the other

parties unconditionally in the third round. In the other two states, an honest party conditionally

releases only the decoding information. This step is extremely crucial for maintaining fairness.

Specifically, a party that belongs to the second state, releases the decoding information only to

the party identified to be honest. A party that belongs to the third state, releases the decoding

information in encrypted form only to the party whose distributed information are not agreed

upon, so that the encryption can be unlocked only via a valid certificate. A corrupt party will

either have its certificate or the encrypted decoding information, but not both. The former

when it distributes its common information correctly and the latter when it does not. The

only way a corrupt party can get its decoding information is by keeping one honest party in

the first state, in which case both the honest parties will be able to compute the output as

follows. The honest party in state one, say Pi, either gets it decoding information on clear

or in encrypted form. The former when the other honest party, Pj is in the first or second

state and the latter when Pj is in the third state. Pi retrieves the decoding information no

matter what, as it also holds the certificate to open the encryption. An honest party Pj in

the second state, on identifying Pi as honest, takes the encoded output of Pi and uses its own

decoding information to compute the output. The case for an honest party Pj in the third state

is the most interesting. Since honest Pi belongs to the first state, a corrupt party must have

distributed its common information correctly as otherwise Pi will find a conflict and would be in

third state. Therefore, Pj in the third state must have found Pi’s information on disagreement

due the corrupt party’s misbehaviour. Now, Pi’s certificate that proves his correct behaviour,

allows Pj to identify the corrupt, enter into the second state and compute the output by taking

the encoded output of honest Pi. In the following, we describe execution Fairi assuming input

consistency, followed by Certi. Entwining the six executions, tackling the input consistency and
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the final presentation of protocol Fair appear in the end.

3.3.1 Protocol Fairi

At a high level, Fairi works as follows. In the first round, the evaluator shares its input additively

between the two garblers making the garblers the sole input contributors to the computation.

In parallel, each garbler initiates construction of a GC and commitments on the encoding and

decoding information. While the GC and the commitments are given to the evaluator Pi, the

co-garbler, acting as a verifier, additionally receives the source of the used randomness for GC

and openings of commitments. Upon verification, the co-garbler either approves or rejects the

GC and commitments. In the former case, it also releases its own encoded input and encoded

input for the share of Pi via opening the commitments to encoding information in second round.

In the latter case, Pi sets the flag corresponding to the generator of the GC to true. Failure

to open a verified commitment readily exposes the corrupt to the evaluator. If all goes well,

Pi evaluates both circuits and obtains encoded outputs. The correctness of the evaluated GC

follows from the fact that it is either constructed or scrutinised by a honest garbler. The

decoding information remains hidden (yet committed) with Pi and the obliviousness of GC

ensures that Pi cannot compute the output until it receives the correct opening.

To avoid issues of adaptivity, the GCs are not sent on clear in the first round to Pi who may

choose its input based on the GCs. Rather, a garbler sends a commitment to its GC to Pi and

it is opened only by the co-garbler after successful scrutiny. The correctness of evaluated GC

still carries over as a corrupt garbler cannot open to a different circuit than the one committed

by an honest garbler by virtue of the binding property of the commitment scheme. We use

an eNICOM for committing the GCs and decoding information as equivocation is needed to

tackle a technicality in the security proof. The simulator of our final protocol needs to send the

commitments on GC, encoding and decoding information without having access to the input of

an evaluator Pi (and thus also the output), while acting on behalf of the honest garblers in Fairi.

The eNICOM cannot be used for the encoding information, as they are opened by the ones who

generate the commitments and eNICOM does not provide binding in such a case. Instead, the

GCs and the decoding information are equivocated based on the input of the evaluator and the

output.

Protocol Fairi appears in Figure 3.1 where Pi returns encoded outputs Yi = (Yj
i ,Y

k
i ) (ini-

tially set to ⊥) for the circuits created by Pj, Pk, the commitments to the respective decoding

information Cdec
j , Cdec

k and the flags flagj, flagk (initially set to false) to be used in the final

protocol. The garblers output their respective corrupt set, flag for the fellow garbler and open-

ing for the decoding information corresponding to its co-garbler’s GC and not its own. This
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is to ensure that it cannot break the binding of eNICOM which may not necessarily hold for

adversarially-picked public parameter.

Inputs: Party Pα has xα for α ∈ [3].

Common Inputs: The circuit C(x1, x2, x3, x4) that computes f(x1, x2, x3 ⊕ x4).

Output: A garbler Pl (l ∈ {j, k}) outputs corrupt set Cl, flag{j,k}\l and Odec
i . Pi outputs (Ci,

Yi = (Yji ,Y
k
i ), Cdec

j , Cdec
k , flagj , flagk) where Yi denote a pair of encoded outputs or ⊥.

Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and oblivious, a NICOM

(Com,Open), an eNICOM (eGen, eCom, eOpen,Equiv) and a PRG G.

Round 1:

– Pi randomly secret shares his input xi as xi = xij ⊕ xik and sends xij to Pj and xik to Pk.

– Pl for l ∈ {j, k} samples sl ∈R {0, 1}κ, eppl and ppl for G, eNICOM and NICOM resp. and:

◦ compute garbled circuit (Cl, el, dl) ← Gb(1κ, C) using randomness from G(sl). Assume

{K0
lα,K

1
lα}α∈[`], {K0

l(`+α),K
1
l(`+α)}α∈[`], {K0

l(2`+α),K
1
l(2`+α)}α∈[2`] denote the encoding infor-

mation for the input of Pj , Pk and the secret shares of Pi respectively.

◦ compute commitments for GC and decoding information. (cl, ol) ← eCom(eppl,Cl) and

(cdec
l , odec

l )← eCom(eppl, dl).

◦ sample permutation strings plj , plk ∈R {0, 1}` for the inputs of Pj and Pk. Compute com-

mitments to encoding information as: for b ∈ {0, 1}, (cblα, o
b
lα)← Com(ppl, e

pαlj⊕b
lα ), (cbl(`+α),

obl(`+α)) ← Com(ppl, e
pαlk⊕b
l(`+α)) when α ∈ [`], (cbl(2`+α), o

b
l(2`+α)) ← Com(ppl, e

b
l(2`+α)) when

α ∈ [2`].

◦ send Dl = (eppl, ppl, cl, {cblα, }α∈[4`],b∈{0,1}, c
dec
l ) to both the other parties and send {sl, plj , plk,

ol, {oblα, }α∈[4`],b∈{0,1}, o
dec
l } only to co-garbler P{j,k}\l.

– Pj sets Cj = Pk if Dk and {sk, pkj , pkk, ok, {obkα, }α∈[4`],b∈{0,1}, o
dec
k } are inconsistent. Else, set

Odec
i = odec

k .

Pk performs similar steps for the values received from Pj .

Round 2:

– Pi sends Dj to Pk and Dk to Pj . Pj sets flagk = 1 if Dk received from Pi and Pk does not match.

Similar step is executed by Pk.
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– Pj computes the indicator strings mjj = pjj ⊕ xj ,mkj = pkj ⊕ xj for its inputs. If Pk /∈ Cj , then

send
(
OK,Dk, (ok, {o

mαkj
kα , o

xαij
k(2`+α)}α∈[`],mkj), ({o

mαjj
jα , o

xαij
j(2`+α)}α∈[`],mjj)

)
to Pi. Else, send nOK

to Pi. Pk performs similar steps.

– (Local Computation) Pi sets Yji = ⊥ and flagj = 1 when (a) Pk sent nOK or (b) Dj sent by Pj

and Pk do not match. Otherwise, Pi sets Cdec
j = cdec

j ∈ Dj and does:

◦ open Cj ← eOpen(eppj , cj , oj) with oj received from Pk. Set Ci = Pk if Cj = ⊥.

◦ open Xαj = Open(ppj , c
mαjj
jα , o

mαjj
jα ), Xαij = Open(ppj , c

xαij
j(2`+α), o

xαij
j(2`+α)), for α ∈ [`], for the

opening received from Pj and the commitments taken from Dj . Include Pj in Ci if any of

the opened input labels above is opened to ⊥.

◦ open Xαk = Open(ppj , c
mαjk
j(`+α), o

mαjk
j(`+α)) and Xαik = Open(ppj , c

xαik
j(3`+α), o

xαik
j(3`+α)) for α ∈ [`], for

the opening received from Pk and the commitments taken from Dj . Include Pk in Ci if any

of the opened input labels above is opened to ⊥.

◦ If Ci = ∅, set X = Xj |Xk|Xij |Xik, run Yji ← Ev(Cj ,X). Else set Yji = ⊥

Similar steps for Ck will be executed to compute Yki , populate Ci and update flagk.

Figure 3.1: Protocol Fairi

Lemma 3.9 During Fairi, Pβ /∈ Cα holds for honest Pα, Pβ.

Proof: An honest Pα would include Pβ in Cα only if one of the following hold: (a) Both

are garblers and Pβ sends commitments to garbled circuit, encoding and decoding information

inconsistent with the randomness and openings shared privately with Pα (b) Pα is an evaluator

and Pβ is a garbler and either (i) Pβ’s opening of a committed garbled circuit fails or (ii) Pβ’s

opening of a committed encoded input fails. It is straightforward to verify that the cases will

never occur for honest (Pα, Pβ). 2

Lemma 3.10 If honest Pi has Ci = ∅ and flagj = flagk = 0, then Yi = (Yj
i ,Y

k
i ) 6= ⊥.

Proof: According to Fairi, Pi fails to compute Yi when it identifies the corrupt or finds a

mismatch in the common information Dj or Dk or receives a nOK signal from one of its garblers.

The first condition implies Ci 6= ∅. The second condition implies, Pi would have set either flagj

or flagk to true. For the third condition, if Pj sends nOK then Pi would set flagk = 1. Lastly, if

Pk sends nOK, then Pi sets flagj = 1. Clearly when Ci = ∅ ∧ flagj = 0 ∧ flagk = 0, Pi evaluates

both Cj,Ck and obtains Yi = (Yj
i ,Y

k
i ) 6= ⊥. 2
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3.3.2 Protocol Certi

When a party Pi in Fairi is left in a confused state and has no clue about the corrupt, it is

in dilemma on whether or whose encoded output should be used to compute output and who

should it release the decoding information (that it holds as a garbler) to in the final protocol.

Protocol Certi, in a nutshell, is introduced to help a confused party to identify the corrupt and

take the honest party’s encoded output for output computation, on one hand, and to selectively

deliver the decoding information only to the other honest party, on the other. Protocol Certi

implements evaluation of an equality checking function that takes inputs from the two garblers

and outputs 1 when the test passes and outputs the inputs themselves otherwise. In the final

protocol, the inputs are the common information (GCs and commitments) distributed by Pi

across all executions of Fairj. The certificate is the output key corresponding to output 1. Since

input privacy is not a concern here, the circuit is enough to be garbled in privacy-free way and

authenticity of garbling will ensure a corrupt Pi does not get the certificate. Certi follows the

footstep of Fairi with the following simplifications: (a) Input consistency need not be taken

care across the executions implying that it is enough one garbler alone initiates a GC and the

other garbler simply extends its support for verification. To divide the load fairly, we assign

garbler Pj where i = (j + 1) mod 3 to act as the generator of GC in Certi. (b) The decoding

information need not be committed or withheld. We use soft decoding that allows immediate

decoding.

Similar to Fairi, at the end of the protocol, either Pi gets its certificate (either the key for 1

or the inputs themselves), or sets its flags (when GC and commitment do not match) or sets

its corrupt set (when opening of encoded inputs fail). Pi outputs its certificate, the flag for the

GC generator and corrupt set, to be used in the final protocol. The garblers output the key

for 1, flag for its fellow garbler and the corrupt set. Notice that, when Certi is composed in the

bigger protocol, Pi will be in a position to identify the corrupt when the equality fails and the

certificate is the inputs fed by the garblers. The protocol appears in Figure 3.2.

Common Inputs: The circuit C(γj , γk) that outputs 1 if (γj = γk) and (0, γj , γk) otherwise. For

distinct i, j, k ∈ [3], Pi is assumed to be the evaluator and (Pj , Pk) as the garblers. We

assume i = (j + 1) mod 3, k = (j + 2) mod 3.

Primitives: A correct, authentic, privacy-free garbling scheme G = (Gb,En,Ev,De) that has the

property of soft decoding, a PRG G, a NICOM (Com,Open)

Output: A garbler Pl for l ∈ {j, k} outputs corrupt set Cl and padi. Pi outputs
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(certi,Ci, flagj , flagk). Garbler Pk additionally outputs flagj .

Round 1: Pj does the following:

– Choose a seed si ∈R {0, 1}κ for G and construct a garbled circuit (Ci, ei, di)← Gb(1κ, C).

Generate commitment on garbled circuit Ci as (ci, oi)← Com(Ci) and on the encoding

information ei as (ci, oi)← Com(ei) using randomness from G(si). Let Wi = {ci, ci}. Send

(si,Wi) to Pk and Wi to Pi.

– (Local Computation by Pk) Pk adds Pj to Ck if (si,Wi) are inconsistent and is not as per what

an honest Pj should do. Pj and Pk output padi equals to the key for output 1 of Ci.

Round 2:

– Pi sends Wi to Pk. Pk sets flagj = 1 if Wi received from Pi and Pj is not identical.

– Pj opens its encoded input X (corresponding to γj) to Pi by sending the opening of the

corresponding commitment in ci.

– If Pj ∈ Ck, Pk sends nOK to Pi. Else Pk sends Wi, opening for garbled circuit oi and its encoded

input Xk (for γk) to Pi.

– (Local Computation by Pi) If Pi does not receive identical Wi from Pj and Pk or receives nOK

from Pk, Pi sets certi = ⊥ and flagj = 1. Else, Pi uses the opening information sent by

Pj , Pk to retrieve Xj ,Xk. Pi adds Pl (l ∈ {j, k}) to Ci and sets certi = ⊥ if any of the

openings sent by Pl result in ⊥. Else, Pi runs Y ← Ev(Ci,Xj ,Xk). If sDe(Y) = 1, then set

certi = Y, else set certi = (γ′j , γ
′
k) where these two are decoded from Y.

Figure 3.2: Protocol Certi

Lemma 3.11 During Certi, Pβ /∈ Cα holds for honest Pα, Pβ.

Proof: An honest Pα would include Pβ in Cα only if one of the following holds: (a) Pβ sends

inconsistent (sβ,Wβ) to Pα. (b) Pβ’s opening of committed encoded input or garbled circuit

fails. It is straightforward to verify that the cases will never occur for honest (Pβ, Pα). 2

Lemma 3.12 If an honest Pi has Ci = ∅ and flagj = flagk = 0, then, certi 6= ⊥.

Proof: The proof follows easily from the steps of the protocol. 2

3.3.3 Protocol Fair

Building on the intuition laid out before, we only discuss input consistency that is taken care

in two steps: Inter-input consistency (across executions) and intra-input consistency (within an
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execution). In the former, Pi’s input as an evaluator in Fairi is tied with its input committed

as garblers for its own garbled circuits in Fairj and Fairk. In the latter, the consistency of Pi’s

input for both garbled circuits in Fairj (and similarly in Fairk) is tackled. We discuss them one

by one.

We tackle the former in a simple yet clever way without incurring any additional overhead.

We explain the technique for enforcing P1’s input consistency on input x1 as an evaluator

during Fair1 and as a garbler during Fair2,Fair3 with respect to his GC C1. Since the protocol is

symmetric in terms of the roles of the parties, similar tricks are adopted for P2 and P3. Let in the

first round of Fair1, P1 shares its input x1 by handing x12 and x13 to P2 and P3 respectively. Now

corresponding to C1 during Fair2, P1 and P3 who act as the garblers use x13 as the permutation

vector p11 that defines the order of the commitments of the bits of x1. Now input consistency

of P1’s input is guaranteed if m11 transferred by P1 in Fair2 is same as x12, P1’s share for P2

in Fair1. For an honest P1, the above will be true since m11 = p11 ⊕ x1 = x13 ⊕ x1 = x12. If

the check fails, then P2 identifies P1 as corrupt. This simple check forces P1 to use the same

input in both Fair1 and Fair2 (corresponding to C1). A similar trick is used to ensure input

consistency of the input of P1 across Fair1 and Fair3 (corresponding to C1) where P1 and P2

who act as the garblers use x12 as the permutation vector p11 for the commitments of the bits

of x1. The evaluator P3 in Fair3 checks if m11 transferred by P1 in Fair3 is same as x13 that P3

receives from P1 in Fair1. While the above technique enforces the consistency with respect to

P1’s GC, unfortunately, the same technique cannot be used to enforce P1’s input consistency

with respect to C2 in Fair3 (or Fair2) since p21 cannot be set to x12 which is available to P2 only

at the end of first round. While, P2 needs to prepare and broadcast the commitments to the

encoding information in jumbled order as per permutation string p21 in the first round itself.

We handle it differently as below.

The consistency of Pi’s input for both garbled circuits in Fairj (and similarly in Fairk) is

tackled via ‘cheat-recovery mechanism’ [145]. We explain with respect to P1’s input in Fair3.

P2 prepares a ciphertext (cheat recovery box) with the input keys of P1 corresponding to the

mismatched input bit in the two garbled circuits, C1 and C2 in Fair3. This ciphertext encrypts

the the input shares of garblers that P3 misses, namely, x12 and x21. This would allow P3 to

compute the function on clear inputs directly. To ensure that the recovered missing shares are

as distributed in Fair1 and Fair2, the shares are not simply distributed but are committed via

NICOM by the input owners and the openings are encrypted by the holders. Since there is no

way for an evaluator to detect any mismatch in the inputs to and outputs from the two GCs

as they are in encoded form, we use encryption scheme with special correctness (Definition

2.10) to enable the evaluator to identify the relevant decryptions. Crucially, we depart from
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the usual way of creating the cheat recovery boxes using conflicting encoded outputs. Based

on whether the clear or encoded output comes out of honest P3 in round 3, corrupt garbler P1

feeding two different inputs to C1 and C2 can conclude whether its two different inputs lead

to the same output or not, breaching privacy. Note that the decoding information cannot be

given via this cheat recovery box that uses conflicting encoded outputs as key, as that would

result in circularity.

Despite using the above fix, the mechanism as discussed above is susceptible to ‘selective

failure attack’, an attack well-known in the 2-party domain. While in the latter domain, the

attack is launched to breach the privacy of the evaluator’s input based on whether it aborts or

not. Here, a corrupt garbler can prepare the ciphertexts in an incorrect way and can breach

privacy of its honest co-garbler based on whether clear or encoded output comes out of the

evaluator. We elaborate the attack in Fair3 considering a corrupt P1 and single bit inputs. P1

is supposed to prepare two ciphertexts corresponding to P2’s input bit using the following key

combinations– (a) key for 0 in C1 and 1 in C2 and (b) vice-versa. Corrupt P1 may replace one

of the ciphertexts using key based on encoded input 0 of P2 in both the GCs. In case P2 indeed

has input 0 (that he would use consistently across the 2 GCs during Fair3), then P3 would be

able to decrypt the ciphertext and would send clear output in Round 3. P1 can readily conclude

that P2’s input is 0. This attack is taken care via the usual technique of breaking each input

bit to s number of xor-shares, referred as ‘XOR-tree approach’ [147] (probe-resistance matrix

[147, 181] can also be used; we avoid it for simplicity). The security is achieved except with

probability 2−(s−1).

Given that input consistency is enforced, at the end of round 2, apart from the three states–

(a) no corruption and no conflict detected (b) corrupt identified (c) conflict detected, a party

can be in yet another state. Namely, no corruption and no conflict detected and the party is

able to open a ciphertext and compute f on clear. A corrupt party cannot be in this state

since the honest parties would use consistent inputs and therefore the corrupt would not get

access to conflicting encoded inputs that constitute the key of the ciphertexts. If any honest

party is in this state, our protocol results in all parties outputting this output. In Round 3, this

party can send the computed output along with the opening of the shares he recovered via the

ciphertexts as ‘proof’ to convince the honest party of the validity of the output. The protocol

Fair appears in Figure 3.3 and the schematic diagram is given in Section 3.7.1.1.

We now prove the correctness of Fair.
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Inputs: Party Pi has xi for i ∈ [3].

Output: y = f(x1, x2, x3) or ⊥ where the inputs and the function output belong to {0, 1}`.

Subprotocols: Fairi for i ∈ [3] (Figure 3.1), Certi for i ∈ [3] (Figure 3.2), SKE (Enc,Dec) with

‘special correctness’ (Definition 2.10).

Round 1: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}

– Each Pi computes an encoding of length `s corresponding to its input xi. For each bit b of xi, the

encoding b1, . . . bs is such that b = ⊕sα=1bα. Reusing the notation, we refer to this encoding as

Pi’s input xi and its length by `.

– Round 1 of Certi is run.

– Round 1 of Fairi are run with the following amendments: (1) The circuit in Fairi is changed as

follows: each input wire is replaced by a gate whose input consists of s new input wires and

whose output is the exclusive-or of these wires. (2) Pj and Pk work with the permutation

strings pjj and pkk respectively as xjk and xkj .

– Pi samples ppi, generates (cij , oij)← Com(ppi, xij), (cik, oik)← Com(ppi, xik) and sends {ppi, cij ,

cik} to Pj , Pk. Additionally, Pi sends oij , oik to Pj , Pk respectively.

– (Local Computation by Pi) Pi adds P` in Ci if Open(cli, oli) 6= xli. Pj adds Pk in Cj if: (a) pkk

not taken as xkj or (b) the check in Fairi or Certi fails. Pk adds Pj in Ck if: (a) pjj not taken

as xjk or (b) the check in Fairi or Certi fails.

Round 2: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}:

– If Pi 6∈ Cj , Pj sends (ppi, cij , cik) to Pk. If Pi 6∈ Ck, Pk sends (ppi, cij , cik) to Pj . They set flagi = 1

in case of mismatch or no communication.

– If Pi 6∈ Cj , Pj participates in Certi as a garbler with input γj as {Dj
i ,D

k
i ,Wk, ppi, cij , cik} where

D
j
i ,D

k
i , Wk and (ppi, cij , cik) was received from Pi during Round 1 of Fairj ,Fairk, Certk (as-

suming k = (i+ 1) mod 3) and Fair respectively. Similar step is taken by Pk.

– If certi = (γ′j , γ
′
k), Pi sets Ci = Pl if γ′l 6= {D

j
i ,D

k
i ,Wk, ppi, cij , cik} for l ∈ {j, k}.

– If Pi /∈ Cj , Pj participates in Round 2 of Fairi. When Pk 6∈ Cj , Pj additionally sends the

ciphertexts ctβjα for β ∈ {0, 1} and α ∈ [`] created as follows. Let {X0
l(`+α),X

1
l(`+α)}, denote the

encoding information of co-garbler Pk’s input wire α corresponding to Cl (l ∈ {j, k}). Then
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ctβjα = Enc
skβα

(ojk, okj) for sk0
α = X0

j(`+α) ⊕ X1
k(`+α) and sk1

α = X1
j(`+α) ⊕ X0

k(`+α). Pk takes

similar steps.

– (Local Computation by Pi) Include Pl in Ci if mll 6= xli for l ∈ {j, k}. If Ci = ∅, flagj = 0, flagk = 0,

then use key X
mαjk
j(`+α) ⊕ X

mαkk
k(`+α) (α ∈ [`]) to decrypt the ciphertexts ct0

jα or ct1
jα obtained

from Pj . If the decryption succeeds, retrieve okj , ojk. Execute xkj ← Open(ckj , okj) and

xjk ← Open(cjk, ojk). If the opening succeeds, then evaluate f on (xi, xji ⊕ xjk, xki ⊕ xkj) to

obtain y. Similarly, steps are taken with respect to Pj ’s input, using the key X
mαjj
jα ⊕ X

mαkj
kα to

decrypt the ciphertexts ct0
kα or ct1

kα obtained from Pk.

A party Pi is said to be in stα for α ∈ [4] if the following conditions are satisfied. Let (Yi, C
dec
j , Cdec

k ),

Odec
j and Odec

k denote the output of Pi in Fairi, Fairj and Fairk, respectively. Let certi, padj , and

padk denotes the output of Pi in Certi, Certj and Certk respectively.

(i) st1(output is already computed): If y and proofs (ojk, okj) are computed in Round 2.

(ii) st2 (no corruption and no conflict detected): If ((Ci = ∅) ∧ (flagj = 0) ∧ (flagk = 0)) (which

implies Yi 6= ⊥ and certi 6= ⊥)

(iii) st3 (corruption detected): If (Ci 6= ∅)

(iv) st4 (conflict detected, but no corruption detected): If (flagj = 1) ∨ (flagk = 1)

Round 3: Each Pi for i ∈ [3] does the following based one of the four states that it belongs to.

– If in st1, then send y to Pj , Pk. Send ojk to Pj and okj to Pk as proofs.

– If in st2, then send (Yi, certi, O
dec
l ) to Pl for l ∈ {j, k}.

– If in st3, then send Odec
l to Pl for l ∈ {j, k} only if Pl 6∈ Ci.

– If in st4, then send zl = Encpadl(O
dec
l ) to Pl only if flagl = 1. If flagj = 1 and certj received from

Pj is same as padj , then set Ci = Pk. Similar steps are taken to check and identify if Pj is

corrupt. Update state from st4 to st3 if corrupt is identified.

– If in st1, then output y.

– If in {st2, st3, st4} and if any other party is identified to be in st1, namely if y is received from

Pj or Pk with oki or oji respectively such that Open(ppi, cli, oli) 6= ⊥ for l ∈ {j, k}, then output

the received y.

– If in st2, then compute y as follows: Retrieve Odec
i from either zi (with certi as the key) received

from Pj or from direct communication of Pj . If d← eOpen(eppk, C
dec
k , Odec

i ) is not ⊥, then use
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d to compute y ← De(Yki , d). Similar steps are executed with respect to Pk’s communication

if y is not computed yet.

– If in st3, then output y ← De(Yil , d) where Yl is received from (honest) Pl 6∈ Ci and decoding

information d is known as garbler during Fairl. Otherwise output y = ⊥.

– If in st4, output y = ⊥.

Figure 3.3: A Three-Round Fair 3PC protocol

Lemma 3.13 During Fair, Pj /∈ Ci holds for honest Pi, Pj.

Proof: An honest Pi will not include Pj in its corrupt set in the sub-protocols {Fairα,Certα}α∈[3]

following Lemma 3.9, Lemma 3.11. Now we prove the statement individually investigating the

three rounds of Fair.

In Round 1 of Fair, Pi includes Pj as corrupt only if (a) Pi, Pj are garblers and Pj sets

pjj 6= xji or (b) Pj sends ppj, cji, oji, xji to Pi such that Open(ppj, cji, oji) 6= xji. None of them

will be true for an honest Pj. In Round 2 of Fair, Pi includes Pj as corrupt only if (a) Pj is a

garbler and Pi is an evaluator and mjj 6= xji or (b) Pi obtains certi = (γ′j, γ
′
k) and detects Pj’s

input γ′j in Certi to be different from the information sent by him. The former will not be true

for an honest Pj. The latter also cannot hold for honest Pj by correctness of the privacy-free

garbling used. In the last round of Fair, Pi will identify Pj as corrupt, if it has flagk = 1 and yet

receives certk which is same as padk from Pk. A corrupt Pk receives padk only by handing out

correct and consistent common information to Pi and Pj until the end of Round 1. Namely, the

following must be true for Pk to obtain padk (except for the case when it breaks the authenticity

of the GC): (i) γi and γj for Certk must be same and (ii) Pk must not be in the corrupt set of

any honest party at the end of Round 1. In this case, flagk cannot be 1. 2

Lemma 3.14 No corrupt party can be in st1 by the end of Round 1, except with negligible

probability.

Proof: For a corrupt Pk, its honest garblers Pi and Pj creates the ciphertexts cts using keys

with opposite meaning for their respective inputs from their garbled circuits. Since honest

Pi and Pj use the same input for both the circuits, Pk will not have a key to open any of the

ciphertexts. The openings (oij, oji) are therefore protected due to the security of the encryption

scheme. Subsequently, Pk cannot compute y. 2
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Definition 3.1 A party Pi is said to be ‘committed’ to a unique input xi, if Pj holds (cij, cik, oij, xij)

and Pk holds (cij, cik, oik, xik) such that: (a) xi = xij ⊕ xik and (b) cij opens to xij via oij and

likewise, cik opens to xik via oik.

We next prove that a corrupt party must have committed its input if some honest party

is in st1 or st2. To prove correctness, the next few lemmas then show that an honest party

computes its output based on its own output or encoded output if it is in st1 or st2 or relies on

the output or encoded output of the other honest party. In all cases, the output will correspond

to the committed input of the corrupt party.

Lemma 3.15 If an honest party is in {st1, st2}, then corrupt party must have committed a

unique input.

Proof: An honest Pi is in {st1, st2} only when Ci = ∅, flagj = 0, flagk = 0 hold at the end

of Round 2. Assume Pk is corrupt. Pk has not committed to a unique xk implies either it

has distributed different copies of commitments (cki, ckj) to the honest parties or distributed

incorrect opening information to some honest party. In the former case, flagk will be set by Pi.

In the latter case, at least one honest party will identify Pk to be corrupt by the end of Round

1. If it is Pi, then Ci 6= ∅. Otherwise, Pj populates its corrupt set with Pk, leading to Pi setting

flagk = 1 in Round 2. 2

Lemma 3.16 If an honest party is in st1, then its output y corresponds to the unique input

committed by the corrupt party.

Proof: An honest Pi is in st1 only when Ci = ∅, flagj = 0, flagk = 0 hold at the end of Round

2 and it computes y via decryption of the ciphertexts ct sent by either Pj or Pk. Assume Pk

is corrupt. By Lemma 3.15, Pk has committed to its input. The condition flagj = 0 implies

that Pk exchanges the commitments on the shares of Pj’s input, namely {cji, cjk}, honestly.

Now if Pi opens honest Pj’s ciphertext, then it unlocks the opening information for the missing

shares, namely (okj, ojk) corresponding to common and agreed commitments (ckj, cjk). Using

these it opens the missing shares xkj ← Open(ckj, okj) and xjk ← Open(cjk, ojk) and finally

computes output on (xi, xji⊕xjk, xki⊕xkj). Next, we consider the case when Pi computes y by

decrypting a ct sent by corrupt Pk. In this case, no matter how the ciphertext is created, the

binding property of NICOM implies that Pk will not be able to open cjk, ckj to anything other

than xjk, xkj except with negligible probability. Thus, the output computed is still as above

and the claim holds. 2
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Lemma 3.17 If an honest party is in st2, then its encoded output Y corresponds to the unique

input committed by the corrupt party.

Proof: An honest Pi is in st2 only when Ci = ∅, flagj = 0, flagk = 0 hold at the end of Round

2. The conditions also imply that Pi has computed Yi successfully (due to Lemma 3.10) and

Pk has committed to its input (due to Lemma 3.15). Now we show that Yi correspond to the

unique input committed by the corrupt Pk. We first note that Pk must have used the same

input for both the circuits Cj and Ck in Fairi. Otherwise one of the ciphertexts prepared by

honest Pj must have been opened and y would be computed, implying Pi belongs to st1 and

not in st2 as assumed. We are now left to show that the input of Pk for its circuit Ck in Fairi

is the same as the one committed.

In Fair, honest Pj would use permutation string pkk = xkj for permuting the commitments

in Dk corresponding to xk. Therefore, one can conclude that the commitments in Dk are

constructed correctly and ordered as per xkj. Now the only way Pk can decommit x′k is by

giving mkk = pkk ⊕ x′k. But in this case honest Pi would add Pk to Ci as the check mkk = xki

would fail (mkk = pkk ⊕ x′k 6= pkk ⊕ xk) and will be in st3 and not in st2 as assumed.

2

Lemma 3.18 If an honest party is in st2, then its output y corresponds to the unique input

committed by the corrupt party.

Proof: Note that an honest party Pi in st2 either uses y of another party in st1 or com-

putes output from its encoded output Yi. The proof for the former case goes as follows. By

Lemma 3.14, a corrupt Pk can never be in st1. The correctness of y computed by an honest Pj

follows directly from Lemma 3.16. For the latter case, Lemma 3.17 implies that Yi corresponds

to the unique input committed by the corrupt party. All that needs to be ensured is that Pi gets

the correct decoding information. The condition flagj = flagk = 0 implies that the commitment

to the decoding information is computed and distributed correctly for both Cj and Ck. Now

the binding property of eNICOM ensures that the decoding information received from either Pj

(for Ck) or Pk (for Cj) must be correct implying correctness of y (by correctness of the garbling

scheme). 2

Lemma 3.19 If an honest party is in st3 or st4, then its output y corresponds to the unique

input committed by the corrupt party.

Proof: An honest party Pi in st3 either uses y of another party in st1 or computes output

from encoded output Yj of Pj who it identifies as honest. For the latter case note that an honest
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Pj will never be identified as corrupt by Pi, due to Lemma 3.13. The claim now follows from

Lemma 3.14, Lemma 3.16 and the fact that corrupt Pk cannot forge the ‘proof’ oij (binding

of NICOM) for the former case and from Lemma 3.17 and the fact that it possesses correct

decoding information as a garbler for Yj for the latter case. An honest party Pi in st4 only uses

y of another party in st1. The lemma follows in this case via the same argument as before. 2

Theorem 3.3 Protocol Fair is correct.

Proof: In order to prove the theorem, we show that if an honest party, say Pi outputs y that is

not ⊥, then it corresponds to x1, x2, x3 where xj is the input committed by Pj (Definition 3.1).

We note that an honest Pi belong to one among {st1, st2, st3, st4} at the time of output

computation. The proof now follows from Lemmas 3.15,3.16,3.18,3.19. 2

The property of fn implies: (a) if a corrupt party gets the output then so does the honest

parties; (b) if an honest party gets the output then so does the other parties. We give the

intuition for both below starting with (a). The formal proof appears in Section 3.7.1.2.

A corrupt Pk cannot be in st1 (due to Lemma 3.14). The only way it can retrieve the output

is by having an honest party in st1 or st2. An honest party in st3 only releases the decoding

information and it never release it to a corrupt party (Lemma 3.13 implies it identifies the

honest party correctly). An honest party in st4 releases the encrypted decoding information

zk under key padk to Pk conditionally when flagk = 1. The condition flagk = 1 implies that Pk

must have distributed the common information incorrectly and so γi and γj are not same. This

further implies certk is not same as padk and so Pk does not have access to the key to open zk

and cannot recover the decoding information. So the corrupt Pk getting the output implies that

at least one honest party is in {st1, st2}. Lemma 3.15 implies that in this case, Pk must have

committed to a unique input. By Lemma 3.16 and Lemma 3.18, the y and encoded output Y

computed by any honest party in st1 and in st2 respectively will correspond Pk’s committed

input. Further, if Pk computes encoded output Yk, it also correspond to Pk’s committed input.

So no matter how the corrupt party compute the output, it will be with respect to unique

(x1, x2, x3). We need to show that both honest parties receive the same output. This easily

follows when at least one honest party is in st1. We now prove the lemma based on the following

cases. (a) Both Pi, Pj are in st2: They receive the decoding information from each other on

the clear and use their respective computed encoded output to compute the output y. (b) Pi

is in st2 and Pj in st3: Pi uses the decoding information sent exclusively to him by Pj and

decode the output as in the previous case. Pj uses the encoded output of Pi, Yi and its decoding

information (held as a garbler) to compute the output. (c) Pi is in st2 and Pj in st4: Pj must

be in st4 because of flagi = 1. If flagk = 1, Pi will have the same status for this flag and would
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belong to st4. Now since flagi = 1, Pj sends encryption of the decoding information zi to Pi

who can use certi to decrypt zi and compute the output as in the previous two cases. Pj, on

noting that flagi = 1, yet Pi obtained certi = padi, will identify Pk to be corrupt, upgrade to

st3 and compute the output as in the previous case.

Next, we argue for part (b). For an honest party to compute the output y, at least one

honest party must be in {st1, st2}. If both belong to {st3, st4}, then neither Pk has committed

any input (due to Lemma 3.15) nor anyone gets the output. The latter follows by the argument

below. An honest party in st3 only outputs based on the encoded output of the other honest

party. But since the other honest party is in {st3, st4}, it will output ⊥. An honest party in

st4 outputs ⊥, except for the case it finds one in st1 which is not true for both Pj and Pk

(Lemma 3.14). The corrupt Pk does not get the output too following the fact that it cannot

be in st1 (Lemma 3.14) and it does not receive decoding information from an honest party.

An honest party Pi in st3 sends the decoding information only to the identified honest party.

An honest party Pi in st4 may send the encrypted decoding information zk under key padk

to Pk when flagk = 1. But the condition flagk = 1 implies that Pk must have distributed the

common information incorrectly and so γi and γj are not same. This further implies certk is

not same as padk and so Pk does not have access to the key to open zk and cannot recover

the opening information. Now we are left to show that when at least one honest party is in

{st1, st2}, then everyone gets the output. This already follows from the argument given for

the other direction.

3.4 2-round 3PC with Unanimous Abort

This section presents a tight upper bound for 3PC achieving ua in the setting with pair-wise

private channels and a broadcast channel. The impossibility of one-round protocol in the same

setting follows from “residual function” attack [112]. Our result from Section 3.2.2 rules out the

possibility of achieving unanimous abort in the absence of a broadcast channel in two rounds.

This protocol can be used to yield a round-optimal fair protocol with broadcast (lower bound in

Section 3.2.1) by application of the transformation of [130] that compiles a protocol with ua to

fn via evaluating the circuits that compute shares (using error-correcting secret sharing) of the

function output using the protocol with ua and then uses an additional round for reconstruction

of the output.

In an attempt to build a protocol with ua, we note that any protocol with ua must be robust

to any potential misbehaviour launched via the private communication in the second round.

Simply because, there is no way to report the abort to the other honest party who may have

seen honest behaviour from the corrupt party all along and has got the output, leading to sa.
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Our construction achieves unanimity by leveraging the availability of the broadcast channel

to abort when a corrupt behaviour is identified either in the first round or in the broadcast

communication in the second round, and behaving robustly otherwise. In summary, if the

corrupt party does not strike in the first round and in the broadcast communication of the

second round, then our construction achieves robustness.

Turning to the garbled circuit based constructions such as the two-round protocol of [129]

achieving sa or the composition of three copies of the sub-protocol Fairi of Fair, we note that the

second round private communication that involves encoding information for inputs is crucial

for computing the output and cannot transit via broadcast because of input privacy breach. A

bit elaborately, the transfer of the encoding information for the inputs of the garblers can be

completed in the first round itself and any inconsistency can be handled via unanimous abort

in the second round. However, a similar treatment for the encoding information of the shares

of the evaluator seems impossible as they are transferred to garblers only in the first round.

We get past this seemingly impossible task via a clever ‘two-part release mechanism’ for the

encoding information of the shares of the evaluator. Details follow.

Similar to protocol Fair, we build our protocol UAbort upon three parallel executions of a

sub-protocol UAborti (i ∈ [3]), each comprising of two rounds and with each party Pi enacting

the role of the evaluator once. With Fairi as the starting point, each sub-protocol UAborti

allows the parties to reach agreement on whether the run was successful and the evaluator got

the output or not. A flag flagi is used as an indicator. The protocol UAbort then decides on

unanimous abort if at least one of the flags from the three executions UAborti for i ∈ [3] is set

to true. Otherwise, the parties must have got the output. Input consistency checks ensure that

the outputs are identical. Intra-execution input consistency is taken care by cheat-recovery

mechanism (similar and simplified version of what protocol Fair uses), while inter-execution

input consistency is taken care by the same trick that we use in our fair protocol. Now looking

inside UAborti, the challenge goes back to finding a mechanism for the honest evaluator to

get the output when a corrupt party behaves honestly in the first round and in the broadcast

communication of the second round. In other words, its private communication in the second

round should not impact robustness. This is where the ‘two-part release mechanism’ for the

encoding information of the shares of the evaluator kicks in. It is realized by tweaking the

function to be evaluated as f(xj, xk, (zj ⊕ rj) ⊕ (zk ⊕ rk)) in the instance UAborti where Pi

enacts the role of the evaluator. Here rj, rk denote random pads chosen by the garblers Pj, Pk

respectively in the first round. The encoding information for these are released to Pi privately

in the first round itself. Any inconsistent behaviour in the first round is detected, the flag is

set and the the protocol exits with ⊥ unanimously. Next, zj and zk are the offsets of these
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random pads with the actual shares of Pi’s input and are available only at the end of first

round. The encoding information for these offsets and these offsets themselves are transferred

via broadcast in the second round for public verification. As long as the pads are privately

communicated, the offsets do not affect privacy of the shares of Pi’s input. Lastly, note that

the encoding information for a garbler’s input for its own generated circuit can be transferred

in the first round itself. This ensures that a corrupt garbler misbehaves either in the first round

or in the broadcast communication in the second round or lets the evaluator get the output

via its own GC. We describe execution UAborti, assuming input consistency. Entwining the

three executions, tackling the input consistency and the final presentation of protocol UAbort

are done next. Lastly, we present the security proof.

3.4.1 Protocol UAborti

With the goal to achieve agreement among the honest parties regarding whether the evaluator

got the output or not, UAborti starts with Fairi and makes the following changes. First, the

broadcast channel is used to reach agreement on the commitments to GCs and the encoding

information. Second, a garbling scheme with soft decoding property is used to allow immediate

output decoding. Third, a garbler opens its encoded input for its own GC in the first round

itself. In addition, we implement the two-part release mechanism for Pi’s shares where apart

from the garblers, Pi too broadcasts the offsets in the second round. A flag flagi is used to

keep track if a complaint is raised for the first round communication by broadcast in the second

round or the offsets broadcasted in parallel by both Pi and respective garblers do not match

or the opening of the encoded input for the offsets fails. When flagi remains to be false for the

honest parties, an honest Pi must be able to evaluate and output from the GC prepared by

the corrupt garbler. Because, the commitments to that GC and encoding information has been

scrutinized by the honest co-garbler, the encoded input of the corrupt party has been verified

by the evaluator, the release of the encoded inputs for the shares of the evaluator has been

verified publicly and the offsets themselves matched. Lastly, since the flag when set to be true

by any honest party in the end of first round can be propagated to all in the second round and

is only set based on the broadcasts in the second round, all honest parties exit UAborti with an

agreement on flagi. We now present our protocol in Figure 3.4 assuming input consistency and

prove its properties needed later.

Inputs: Party Pα has xα for α ∈ [3].

Common Inputs: The circuit C((xj , rj , zj), (xk, rk, zk),⊥) that computes f(xj , xk, (zj⊕rj)⊕(zk⊕

Protocol UAborti
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rk)) such that zj ⊕ rj = xij , zk ⊕ rk = xik and xij ⊕ xik = xi and where the inputs belong to

{0, 1}`. For distinct i, j, k ∈ [3], Pi acts as the evaluator and (Pj , Pk) as the garblers.

Output: All parties output boolean flagi, initially set to 0. Pi outputs (yj , yk).

Primitives: A correct, private and authentic garbling scheme G = (Gb,En,Ev,De) with soft decod-

ing, an eNICOM (eGen, eCom, eOpen,Equiv), a PRG G and a NICOM (Com,Open)

Round 1:

– Pi randomly secret shares his input xi as xi = xij ⊕ xik and sends xij to Pj and xik to Pk.

– Pl for l ∈ {j, k} samples sl ∈R {0, 1}κ, eppl and ppl for G, eNICOM and NICOM resp. and:

◦ compute garbled circuit (Cl, el, dl) ← Gb(1κ, C) using randomness from G(sl). Assume

{K0
lα,K

1
lα}α∈[`], {K0

l(`+α),K
1
l(`+α)}α∈[`], {K0

l(2`+α),K
1
l(2`+α)}α∈[2`], {K0

l(4`+α),K
1
l(4`+α)}α∈[2`] cor-

respond to the encoding information for the input of Pj , Pk (i.e. xj , xk), the random inputs

chosen by Pj , Pk (i.e. rj , rk) and the offsets between the random pads and the secret shares

of Pi (i.e. zj , zk) respectively.

◦ compute commitment for the GC as (cl, ol)← eCom(eppl,Cl)

◦ sample permutation strings plj , plk ∈R {0, 1}` for the inputs of Pj and Pk and compute

commitments of encoding information as: For b ∈ {0, 1}, (cblα, o
b
lα) ← Com(ppl, e

pαlj⊕b
lα ) ,

(cbl(`+α), o
b
l(`+α)) ← Com(ppl, e

pαlk⊕b
l(`+α)) when α ∈ [`], (cbl(2`+α), o

b
l(2`+α)) ← Com(ppl, e

b
l(2`+α)),

(cbl(4`+α), o
b
l(4`+α))← Com(ppl, e

b
l(4`+α)) when α ∈ [2`].

◦ broadcast Dl = (eppl, ppl, cl, {cblα}α∈[6`],b∈{0,1}) and send {sl, plj , plk, ol, {oblα}α∈[6`],b∈{0,1}}
privately to the co-garbler P{j,k}\l.

– Pj computes indicator string mjj = pjj ⊕ xj , picks its share of pad rj ∈R {0, 1}` and sends(
{o
mαjj
jα , o

rαj
j(2`+α)}α∈[`],mjj , rj

)
to Pi. Similarly, Pk computes mkk, picks rk and sends to Pi(

{om
α
kk

k(`+α), o
rαk
k(3`+α)}α∈[`],mkk, rk

)
.

– (Local Computation by garblers) Pj sets flagi = 1 if Dk and {sk, pkj , pkk, ok, {obkα}α∈[6`],b∈{0,1}}
received from Pk are not consistent. Pk performs similar steps with respect to the values

received from Pj .

– (Local Computation by evaluator) Pi sets flagi = 1 if (a) the openings of the input labels sent by Pj

fail to open some commitment in Dj i.e Open(ppj , c
mαjj
jα , o

mαjj
jα ) = ⊥ or Open(ppj , c

rαj
j(2`+α), o

rαj
j(2`+α))

= ⊥ for some α ∈ [`] OR (b) the openings for the input labels sent by Pk fail to open some

commitment in Dk.

Round 2:
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– Pj broadcasts abort if flagi = 1. Else, it computes its indicator string mkj = pkj ⊕ xj for Pk’s

circuit and the offset zj = xij ⊕ rj , sends
(
OK, ok, {o

mαkj
kα , o

rαj
k(2`+α), o

zαj
k(4`+α)}α∈[`],mkj

)
privately

to Pi and broadcasts Wj =
(
zj , {o

zαj
j(4`+α)}α∈[`]

)
. Pk performs similar steps.

– Pi broadcasts abort if flagi = 1. Else, it broadcasts zj = xij ⊕ rj and zk = xik ⊕ rk

– Every party sets flagi = 1 if (a) abort was received or sent via broadcast in Round 2 OR (b)

either zj broadcast by (Pj , Pi) or zk broadcast by (Pk, Pi) do not match OR (c) Dj ,Wj is not

consistent i.e Open(ppj , c
zαj
j(4`+α), o

zαj
j(4`+α)) = ⊥ or similarly Dk,Wk is not consistent.

– (Local Computation by Pi) Output yj = yk = ⊥ if flagi = 1. Else, with respect to Cj :

◦ open Cj ← eOpen(eppj , cj , oj) where the opening is received from Pk.

◦ open Xαj = Open(ppj , c
mαjj
jα , o

mαjj
jα ), Rαj = Open(ppj , c

rαj
j(2`+α), o

rαj
j(2`+α)), and Qα

j = Open(ppj ,

c
zαj
j(4`+α), o

zαj
j(4`+α)), for the openings received from Pj .

◦ open Xαk = Open(ppj , c
mαjk
j(`+α), o

mαjk
j(`+α)), Rαk = Open(ppj , c

rαk
j(3`+α), o

rαk
j(3`+α)) and Qα

k = Open(ppj ,

c
zαk
j(5`+α), o

zαk
j(5`+α)) for α ∈ [`], for openings are received from Pk.

◦ If any of the above openings fail, set yj = ⊥. Else set X = Xj |Xk|Rj |Rk|Qj |Qk, run Yj ←
Ev(Cj ,X) and yj ← sDe(Yj).

Similar steps as above with respect to Ck is executed to compute Yk and yk.

Figure 3.4: Protocol UAborti

Lemma 3.20 At the end of protocol UAborti, all honest parties output the same flagi.

Proof: We have two cases based on whether atleast one honest party set flagi = 1 at the

end of Round 1. If this is true, then the honest party would broadcast abort in Round 2 and

all honest parties would output flagi = 1. Otherwise, an honest party sets flagi based on the

following conditions (a) abort was broadcast in Round 2 or (b) either zj broadcast by (Pj, Pi)

or zk broadcast by (Pk, Pi) do not match or (c) (Dj,Wj) or (Dk,Wk) is inconsistent. All these

checks are with respect to broadcast messages. Therefore, we can conclude that every honest

party will output identical flagi. 2

Lemma 3.21 Assuming input consistency, if flagi = 0, then yk 6= ⊥ where Pk is corrupt.

Proof: First, Lemma 3.20 implies that both Pi, Pj output identical flagi = 0. Now flagi = 0

implies that: (a) Ck and the commitments to the encoding information are computed correctly;
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(b) the opening of encoding information Xk,Rk for Ck is correct in Round 1 with high probability

due to binding property of eNICOM and NICOM; (c) the opening of the remaining encoding

information Qk is correct with high probability due to binding property of NICOM. Pj being

honest would open the encoding relevant to his input for Ck, namely, Xj,Rj,Qj. So Pi has got

complete encoded input X for Ck and will evaluate Ck to obtain yk. Thus, if flagi = 0, then yk

will not be ⊥. 2

3.4.2 Protocol UAbort

Our two-round 3PC protocol UAbort achieving ua composes UAborti for i ∈ [3] in parallel. As-

suming input consistency, entwining the three executions requires tapping all the flags returned

by the three executions and outputting the result computed as an evaluator when none of them

are set to true and ⊥, otherwise. This works since when a flag for an execution UAborti is false,

then the evaluator Pi is guaranteed to get the output. The challenge that remains to handle

is input consistency within and across executions which ensures the outputs computed are the

same irrespective of the execution and GC. The inter-execution input consistency, i.e the con-

sistency of the input committed by Pi in UAborti and the inputs given to the GCs constructed

by Pi as garbler in the remaining two executions are enforced using the same trick that we use

in Fair via setting the permutation strings as the shares of the parties’ input.

Dealing with the input consistency within an execution UAborti to make sure the garblers

provide the same input for both the GCs without inflating the round complexity constitutes

yet another challenge. Noting that this misbehaviour has no way to show up in the common

flag as this is targeted via the private communication in the second round, the evaluator must

find a way to robustly compute the output when conflicted outputs are computed from the

two garbled circuits. This output must be based on the input of the corrupt garbler that it

has committed as an evaluator and received output based on. We use the trick of “proof-of-

cheating” mechanism [145] to enable an (honest) evaluator with conflicting outputs to retrieve

the inputs committed by both garblers in their respective instances. To be specific, the output

keys corresponding to the mismatched output bit in the two garbled circuits, say C1 and C3 in

UAbort2, enables the evaluator P2 to unlock the missing shares, namely, x31 and x13 of the two

garblers from UAbort3 and UAbort1 respectively. To ensure that the recovered missing shares

are as distributed in UAbort1 and UAbort3, the shares are committed via NICOM by the input

owners and the openings are encrypted by the holders (as in Fair). The binding of NICOM,

prevents a corrupt P1 to lie on (x13, x31). This allows the honest party to compute the same

output that P1 gets from UAbort1. Lastly, the flag in execution UAborti also takes into account

consistent dealing of the commitments by its evaluator Pi. Our protocol appears in Figure
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Figure 3.5, the proof of correctness and the proof of security below. We use Definition 3.1 for

input commitment.

Inputs: Party Pi has xi for i ∈ [3].

Output: y = f(x1, x2, x3) or ⊥.

Sub-protocols: UAborti for i ∈ [3] (Figure 3.4), a NICOM (Com,Open), CPA-secure SKE Enc.

Round 1: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}

– Round 1 of UAborti are run parallel. In UAborti, Pj and Pk work with the permutation strings

pjj and pkk respectively as xjk and xkj .

– Pi samples ppi, generates (cij , oij)← Com(ppi, xij), (cik, oik)← Com(ppi, xik), broadcasts {ppi, cij ,

cik} and sends oij , oik to Pj , Pk respectively.

– (Local Computation) Pi sets flagi = 1 if Open(cli, oli) 6= xli or mll 6= xli for l ∈ {j, k}. Pj sets

flagi = 1 if: (a) pkk not taken as xkj or (b) the check in UAborti fails. (c) Open(cij , oij) 6=
xij . Pk sets flagi = 1 if: (a) pjj not taken as xjk or (b) the check in UAborti fails. (c)

Open(cik, oik) 6= xik.

Round 2:

– Round 2 of UAborti for i ∈ [3] are run parallel. In UAborti, the garbler Pj (similar steps will be

taken by Pk) does the following additionally if flagi 6= 1. Let {Y0
l ,Y

1
l }, denote the encoding

information for output wire corresponding to Cl (l ∈ {j, k}). It sends two ciphertexts (ct0
j , ct1

j )

where ct0
j = EncY0

j⊕Y1
k
(ojk, okj) and ct1

j = EncY1
j⊕Y0

k
(ojk, okj).

– For i ∈ [3], party Pi computes output as follows:

◦ If flagα = 1 for some α ∈ [3], then output y = ⊥ .

◦ Otherwise, output y as yj when yj = yk or yk = ⊥, as yk when yj = ⊥ where (yj , yk) are

output from UAborti.

◦ Otherwise, let the encoded outputs corresponding to Cj ,Ck in UAborti are Yj ,Yk. It uses

key Y
yj
j ⊕ Yykk to decrypt the ciphertext ct

yj
j obtained from Pj to retrieve (ojk, okj). It

executes xkj ← Open(ckj , okj) and xjk ← Open(cjk, ojk). If xkj or xjk = ⊥, then they

are recomputed as above using ct
yj
k obtained from Pk. Then Pi evaluates f on inputs

(xi, xji ⊕ xjk, xki ⊕ xkj) to obtain y.

Protocol UAbort()

Figure 3.5: A Two-Round 3PC protocol achieving unanimous abort
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Lemma 3.22 If a corrupt party Pk has not committed its input or does not use the committed

input in its GCs in {UAborti,UAbortj}, then each honest party outputs y = ⊥.

Proof: Pk has not committed to a unique input implies it has not dealt correct opening to one

or both the honest parties. In either case, abort is raised in the second round, leading to an

output that is ⊥. Now assume Pk uses input x′k 6= xk during UAborti for its own GC. Pk should

use xkj as the permutation string pkk in execution UAborti for permuting the commitments

corresponding to xk. If it does not, then honest Pj sets flagi = 1 in Round 1 and broadcasts

abort in Round 2. Otherwise, the commitments are constructed correctly and ordered as per

xkj. Now the only way Pk can decommit x′k is by giving mkk = pkk⊕x′k. But in this case honest

Pi would set flagi = 1 in Round 1 and broadcast abort in Round 2 as the check mkk = xki

would fail (mkk = pkk ⊕ x′k 6= pkk ⊕ xk). Thus, every honest party outputs y = ⊥. 2

Theorem 3.4 Protocol UAbort is correct.

Proof: In order to prove the theorem, we show that if an honest party, say Pi outputs y that

is not ⊥, then it corresponds to (x1, x2, x3) where xj is the input committed by Pj. Assume

that Pk is corrupt. Recall that Pi outputs yj and yk in UAborti on evaluating the GCs of the

garblers Pj and Pk respectively. We have the following cases.

– y = yk. Follows from Lemma 3.21, 3.22.

– y 6= yk. In this case, y 6= yj either as y is set to yj when yj = yk or yk = ⊥. Following

Lemma 3.21, yk cannot be ⊥. So it must be that Pi retrieves the output via opening

the ciphertexts. If the output is computed just from the ciphertext of honest Pj, then y

is computed as f(xi, xji ⊕ xjk, xki ⊕ xkj) using openings okj, ojk given by Pj. Since an

honest Pj correctly reveals the opening okj of the share of Pk’s input given to Pj and

ojk corresponding to his input share, f(xi, xji ⊕ xjk, xki ⊕ xkj) corresponds to the correct

value. If the output is computed from the ciphertext of corrupt Pk, then y computed

must be still as above as a corrupt Pk cannot open the shares xjk, xkj in an incorrect way

(following binding property of NICOM).

2

The intuition for achieving ua follows from the correctness and Lemma 3.20 that implies the

honest parties will be on the same page for all flags. The formal proof appears in Section 3.7.2.
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3.5 3-round 3PC with Guaranteed Output Delivery

In this section, we present a three-round 3PC protocol achieving god, given access to pairwise-

private channels and a broadcast channel. The protocol is round-optimal following 3-round

lower bound for fair 3PC proven in Section 3.2.1. The necessity of the broadcast channel for

achieving god with strict honest majority follows from [67].

Our tryst starts with the known generic transformations that are relevant such as the trans-

formations from the ua to idfair (identifiable fairness) protocol [130] or idfair to god [66]. How-

ever, these transformations being non-round-preserving do not turn out to be useful. Turning

a 2-round protocol offering ua (or even sa) with identifiability (when the honest parties learn

about the identity of the corrupt when deprived of the output) to a 3-round protocol with god

in a black-box way show some promise. The third round can be leveraged by the honest parties

to exchange their inputs and compute output on the clear. We face two obstacles with this

approach. First, there is neither any known 2-round construction for sa / ua with identifiability

nor do we see how to transform our ua abort protocol to one with identifiability in two rounds.

Second, when none of the parties (including the corrupt) receive output from the sa/ua protocol

and the honest parties compute it on the clear in the third round by exchanging their inputs

and taking a default value for the input of the corrupt party, it is not clear how the corrupt

party can obtain the same output (note that the ideal functionality demands delivering the

output to the adversary).

We get around the above issues by taking a non-blackbox approach and tweaking UAborti

and Fairi to get yet another sub-protocol GODi that achieves a form of local identifiability.

Namely, the evaluator Pi in GODi either successfully computes the output or identifies the

corrupt party. As usual, our final protocol GOD is built upon three parallel executions of GODi

(i ∈ [3]), each comprising of two rounds and with each party Pi enacting the role of the evaluator

once. Looking ahead, the local identifiability helps in achieving god as follows. In a case when

both honest parties identify the corrupt party and the corrupt party received the output by

the end of Round 2, the honest parties can exchange their inputs and reconstruct the corrupt

party’s input using the shares received during one of the executions of GODi and compute the

function on clear inputs in the third round. Otherwise, the honest party who identifies the

corrupt can simply accept the output computed and forwarded by the other honest party. The

issue of the corrupt party getting the same output as that of the honest parties when it fails

to obtain any in its instance of GODi is taken care as follows. First, the only reason a corrupt

party in our protocol does not receive its output in its instance of GODi is due to denial of

committing its input. In this case it is detected early and the honest parties exchange inputs in
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the second round itself so that at least one honest party computes the output using a default

input of the corrupt party by the end of Round 2 and hands it over to others in Round 3.

In the following, we describe one execution GODi. Entwining the three executions, tackling

the input consistency and the final presentation of protocol GOD are done next. The security

proof appears in Section 3.7.3.

3.5.1 Protocol GODi

Recall that the goal of GODi for i ∈ [3] comprising of two rounds, is either successful compu-

tation of output or successful identification of the corrupt party by the evaluator Pi. Starting

with the ideas of UAborti, we note that UAborti only ensures detection of the corrupt party by

some honest party that is not necessarily the evaluator in case of a failed output computation.

Specifically, a garbler would identify his co-garbler to be corrupt when the broadcast commu-

nication of co-garbler is not consistent with the privately shared randomness. In such a case,

the evaluator neither gets the output nor has any clue on the identity of the corrupt, which is

not in accordance with the goal of GODi. In the absence of broadcast, Fairi gives even weaker

guarantee where the best any party gets to know is a conflict. The above is handled by having

the garblers send their inputs on clear to the evaluator on finding inconsistent behaviour of

the fellow garbler in the first round. If both the garblers are in conflict with each other, the

evaluator gets their inputs and computes the function on clear. Otherwise, the evaluator can

either evaluate at least one of the GCs or identify the corrupt. Lastly, as we do not require

unanimity of any form at the end of two rounds, we simplify GODi by removing the two-part

release mechanism and the flag altogether. Like UAborti, we do not take care of the possibility

of a corrupt garbler handing out inconsistent input for the two GCs in GODi. This is taken care

in the main protocol GOD via the input consistency. Pi outputs (y = (yj, yk),Yi = (Yj
i ,Y

k
i ),Ci),

the outputs computed from two GCs, the encoded outputs and its corrupt set, all initially set

to ⊥ and to be used in the main construction. If both (yj, yk) are ⊥, then the corrupt set

will be non-empty. The garblers output their corrupt set. We now prove a few lemmas. The

protocol GODi appears in Figure 3.6.

Inputs: Party Pα has xα for α ∈ [3].

Common Inputs: Same as Fairi (Figure 3.1).

Output: A garbler Pl for l ∈ {j, k} outputs Cl. Pi outputs (y = (yj , yk),Yi = (Yji ,Y
k
i ),Ci) where y

is the output (initially set to ⊥) and Ci denotes the corrupt set maintained by Pi.

Protocol GODi
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Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and authentic, an eNI-

COM (eGen, eCom, eOpen,Equiv) and a PRG G.

Round 1: Same as Round 1 of Fairi (Figure 3.1) except that the garblers do not commit to the

decoding information and Dl computed by garbler Pl (l ∈ {j, k}) is communicated via broadcast.

Round 2:

– Pj computes indicator string mjj = pjj ⊕ xj ,mkj = pkj ⊕ xj . If Pk /∈ Cj , then send to

Pi

(
OK, (ok, {o

mαkj
kα , o

xαij
k(2`+α)}α∈[`],mkj), ({o

mαjj
jα , o

xαij
j(2`+α)}α∈[`],mjj)

)
. Otherwise, it sends to Pi(

nOK, xj , ({o
mαjj
jα , o

xαij
j(2`+α)}α∈[`],mjj)

)
. Pk performs similar steps.

– (Local Computation) If nOK is received from both Pj , Pk, then compute yj = yk = f(x1, x2, x3)

using xj , xk. Otherwise, one of the parties has sent OK. Assume, for simplicity that Pk has

sent OK. Then, compute Yji as in Fairi. If Yji 6= ⊥, then yj ← sDe(Yji ). If Pj sent OK, then

similar steps as above for Ck will be executed and yk will be set.

Figure 3.6: Protocol GODi

Lemma 3.23 Pβ /∈ Cα holds for honest Pα, Pβ.

Proof: An honest Pα would include Pβ in Cα only if one of the following holds: (a) Both

Pα, Pβ are garblers and Pβ broadcasts Dβ inconsistent with values privately shared with Pα

(b) Pα is an evaluator and Pβ is a garbler and Pβ’s opening of a committed encoded input or

garbled circuit approved by him fails. It is easy to verify that the cases will never occur for

honest (Pα, Pβ). 2

Lemma 3.24 Assuming input consistency, at the end of protocol GODi, an honest evaluator

Pi either computes the output or identifies the corrupt party.

Proof: Assume that Pk is the corrupt garbler. We have two cases.

– Pk sends nOK: If Pj sends nOK too, Pi receives xl from Pl for l ∈ {j, k} (else Pk is identified

to be corrupt) and computes f on inputs xi, xj, xk. If Pj sends OK, then the garbled

circuit Ck is correctly constructed and the corresponding encoding information is correctly

committed. The only way a corrupt garbler Pk can stop Pi from evaluating Ck (and avoid

being caught by Pi) is by sending encoded inputs corresponding to (xk, xik) that are

inconsistent with Ck via breaching the binding property of NICOM which happens only

with negligible probability.
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– Pk sends OK: In this case, the binding property of eNICOM ensures that with high proba-

bility the correct Cj is opened (otherwise Pk is caught). The arguments now follow as the

previous case where the probability that Pi does not get the output and does not detect

Pk reduces to the probability of breaching binding of NICOM.

2

3.5.2 Protocol GOD

Our three-round 3PC protocol achieving god composes GODi for i ∈ [3], with each party acting

as the evaluator in parallel. At a high level, the protocol assures that every party either outputs

y that is not ⊥ or identifies the corrupt by end of second round. In the third round, a party

simply sends his output if it is non-⊥, else it sends its input and share of the corrupt party’s

input to the honest party alone. A party outputs its own output computed in second round

if it is not ⊥. Otherwise, it outputs the non-⊥ output received from the non-faulty party

or computes the output using the input and share sent by the non-faulty party. The input

consistency is handled exactly as in UAbort. Additionally every party maintains a corrupt set

and populates it when it identifies the corrupt. The overall composition maintains god as below

based on when a corrupt party chooses to expose itself.

The cases when a corrupt Pi is detected by the end of first round itself, the honest party

who makes the identification, halts the execution where it plays the evaluator with the corrupt

set as the output and also halts GODi to stop letting Pi get output in GODi. Since the detection

may be owing to non-commitment of any input by Pi in GODi, the unique input of Pi has to

be set to the one that it commits in the running execution or as a default value when either

there is no running execution or Pi does not commit to anything in the running execution.

Specifically, if both the honest parties identify Pi to be corrupt by the end of first round, both

would have exchanged their input as per the code of GOD protocols and a default common

value is taken as the input of Pi to compute the function output by the end of second round

itself and the output is handed over to Pi in third round. Handing the output to corrupt Pi

is necessary to technically realise the functionality correctly where the corrupt party also gets

the output. If just one of the parties detects the corrupt party Pi, say Pj, it stops its execution

as the evaluator in GODj and as garbler in GODi to prevent Pi getting any output in GODi.

Now Pi has two options: either it passes on its input on clear to Pk or it lets Pk to evaluate

the garbled circuit of Pj by giving its encoded input. In either case, this input of Pi is taken as

his committed input and the output computed by Pk is the one to be outputted by all. (Note

that Pi’s own GC will not be approved by its co-garbler who has identified it as corrupt by the

end of first round.) Pk can simply pass on the output to Pi and Pj in the third round and Pj
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simply takes the output of Pk who it knows to be honest. Our protocol appears in Figure 3.7.

The proof of correctness appear below and the full proof in Section 3.7.3.

Inputs: Party Pi has xi for i ∈ [3].

Output: y = f(x1, x2, x3).

Sub-protocols Used: GODi, i ∈ [3] (Figure 3.6), a NICOM (Com,Open), CPA-secure SKE Enc.

Round 1: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}

– Round 1 of GODi are run parallel. In GODi, Pj and Pk work with the permutation strings pjj

and pkk respectively as xjk and xkj .

– Pi samples ppi, generates (cij , oij)← Com(ppi, xij), (cik, oik)← Com(ppi, xik), broadcasts {ppi, cij ,

cik} and sends oij , oik to Pj , Pk respectively.

– (Local Computation) Pi adds P` in Ci if Open(cli, oli) 6= xli. Pj adds Pk in Cj if: (a) pkk not

taken as xkj or (b) the check in GODi fails. Pk adds Pj in Ck if: (a) pjj not taken as xjk or

(b) the check in GODi fails.

Round 2: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}

– If Pi 6∈ Cj , then Pj participates in GODi. If Pk 6∈ Cj , it additionally sends the following ciphertexts

{ct0
j , ct1

j} created as below. Let {Y0
l ,Y

1
l }, denote the encoding information for output wire

corresponding to Cl (l ∈ {j, k}). Then ct0
j = EncY0

j⊕Y1
k
(ojk, okj) and ct1

j = EncY1
j⊕Y0

k
(ojk, okj).

– Pi includes Pl in Ci if mll 6= xli for l ∈ {j, k}.

– (Local Computation by Pi) If Ci = ∅, then compute y = (yj , yk) as in GODi. If yj = yk ( 6= ⊥)

or one of them is non-⊥, set y to one of them in the former and to the not-⊥ in the latter.

If yj 6= yk, use key Y
yj
j ⊕ Yykk to decrypt the ciphertexts ct

yj
j obtained from Pj to retrieve

(ojk, okj). Execute xkj ← Open(ckj , okj) and xjk ← Open(cjk, ojk). If xkj or xjk = ⊥,

then they are recomputed as above using ct
yj
k obtained from Pk. Then evaluate f on inputs

(xi, xji⊕xjk, xki⊕xkj) to obtain y. If Ci 6= ∅, y = ⊥ and Pi receives xl from Pl /∈ Ci, compute

y as the value of f on xi, xl and a default value for the remaining party’s input.

Round 3: Each Pi for i ∈ [3] either has y 6= ⊥ or Ci 6= ∅. It does the following

– If y 6= ⊥, send y to Pj , Pk. Send (xi, xji) to Pk when Pj ∈ Ci or (xi, xki) to Pj when Pk ∈ Ci.

Protocol GOD
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– If y 6= ⊥, output y. Else if Pl 6∈ Ci sends y, output y. Else if Pj 6∈ Ci sends (xj , xkj), then compute

y as the output of f on (xi, xj , xkj ⊕ xki). Similar steps are executed when Pk 6∈ Ci and it

sends (xk, xjk) i.e y is derived from (xi, xk, xjk ⊕ xji).

Figure 3.7: A Three-Round 3PC protocol achieving god

Lemma 3.25 Pβ /∈ Cα holds for honest Pα, Pβ in protocol GODi, where i ∈ [3].

Proof: This lemma follows from Lemma 3.23 and the fact that the following will not be true

for honest (Pα, Pβ): (a) Pβ sends oβα, xβα to Pα such that Open(cβα, oβα) 6= xβα (b) Both Pα, Pβ

are garblers and pββ 6= xβα. (c) Pβ is the garbler, Pα is an evaluator and mββ 6= xβα 2

Lemma 3.26 Every party Pi uses its ‘committed’ input xi (Definition 3.1) in its GCs in

{GODj,GODk}. Otherwise, it is identified by at least one of the honest parties.

Proof: Pi has not committed to its input implies it has not dealt correct opening to one or

both the honest parties. In either case, at least one of the honest parties identify him. Now

assume Pi has committed to input xi but uses input x′i 6= xi during GODj for the garbled

circuit constructed by Pi. Pi should use xik as the permutation string pii in execution GODj for

permuting the commitments corresponding to xi. If Pi does otherwise, then it is identified by

honest Pk. Otherwise, the commitments are constructed correctly and ordered as per xik. Now

the only way Pi can decommit x′i is by giving mii = pii ⊕ x′i. But Pj identifies Pi as corrupt as

mii = pii ⊕ x′i 6= pii ⊕ xi. 2

We now prove correctness of the protocol accounting exhaustively all the scenarios: the

corrupt party

– belongs to the corrupt set of both the honest parties,

– belongs to the corrupt set of exactly one of the honest parties and

– does not belong to the corrupt set of the honest parties

by the end of the first round. For simplicity, we assume that Pk is the corrupt party and Pi, Pj

are the honest parties.

Lemma 3.27 Assuming that the corrupt party belongs to the corrupt set of both the honest

parties by the end of the first round, protocol GOD is correct.
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Proof: In this case, Pi and Pj does not communicate at all in the second round of GODk

preventing Pk to compute an output. In GODi and GODj, Pj and Pi, respectively send their

inputs on clear to each other along with nOK signal. Both compute y on the inputs xi, xj that

are exchanged and a default common value for xk by the end of round 2. In the third round,

Pk receives y from the honest parties and the honest parties output y. In this case the unique

input of the corrupt party taken for computation is the default commonly-agreed value. 2

Lemma 3.28 Assuming that the corrupt party belongs to the corrupt set of exactly one of the

honest parties by the end of the first round, protocol GOD is correct.

Proof: For simplicity Pk ∈ Ci at the end of first round. (The proof follows in a similar way

when Pk ∈ Cj.) This implies Pi, as an evaluator, ignores communication from both the garblers

in its execution GODi and will conclude the second round with y = ⊥ and Ci = Pk. Pi does

not participate in GODk as a garbler making sure Pk cannot compute an output by the end of

second round. In GODj, Pi sends xi on clear to Pj with nOK signal which implies evaluation of

the GC created by Pk is ruled out. Now based on whether Pk commits to any input or not,

Pj computes the output in the following way. If nOK signal is sent along with its input xk,

then Pj computes y = yi = yk using its own input xj and the inputs sent by Pi and Pk. If Pk

sends OK with its encoded input which verifies correctly with respect to the committed encoded

information, Pj obtains y = yi upon GC (Ci) evaluation. In the case when Pk does not commit

to any input either on clear or in encoded form (namely, the encoded input does not verify

against the committed encoded input), Pj must have identified Pk to be corrupt and computes

y using its own input xj, the input sent by Pi and using a default value for xk. The third round

is finally used by Pi and Pk to obtain the output of Pj and correctness follows. The unique

input of Pk is taken as the one that it sends either on clear or in encoded form to Pj in the

former case and a default value in the latter. 2

Lemma 3.29 Assuming that the corrupt party does not belong to the corrupt set of both the

honest parties by the end of the first round, protocol GOD is correct.

Proof: In this case, Pk must have ‘committed’ (Definition 3.1) to his input (else would be

identified by atleast one of the honest parties at end of Round 1) and obtained output y based

on its committed input during GODk. Further, Pk is not detected yet by the end of first round,

implies that it has played the role of the garblers in GODi and GODj honestly in the first

round. In this case, we prove that no matter how Pk behaves in the second round, the honest

parties will obtain y based on their inputs and Pk’s committed input. We present the argument
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for honest Pi. Similar argument holds for Pj. Based on the observation that Pi must have

attempted to evaluate Ck since Pj must have sent OK signal in GODi, we consider the following

cases:

– Pi is unsuccessful in evaluating the circuit Ck of garbler Pk in GODi. This implies Pk has

given inconsistent encoded input for its circuit to Pi. So Pi concludes the second round

with y = ⊥ and Ci = Pk.

– Pi is successful in evaluating the circuit Ck of garbler Pk in GODi. By Lemma 3.26, Pk must

have given encoded input corresponding to its committed input xk for Ck. This implies the

output obtained via Ck (i.e yk) is the desired y in this case. Now we have two cases based

on whether Pk approves the garbled circuit constructed by Pj or not. In each case we show

that, Pi outputs the desired y by the end of second round itself. If Pk disapproves, then

yj = ⊥ and Pi outputs the value y = yk obtained via the GC Ck as per the specification

of GODi. Otherwise, Pi evaluates both circuits, namely Cj and Ck. If the outputs are

the same, then the guarantee provided by Lemma 3.26 implies Pi outputs the desired y.

Else if Pi has got conflicting outputs (yj 6= yk), then it gets access to the key Y
yj
j ⊕ Yyk

k

and uses it to decrypt at least one of the ciphertexts {ct
yj
j , ct

yj
k } generated by Pj and

Pk. If the decryption of only the honest party Pj’s ciphertext succeeds, then Pi obtains

(ojk, okj), retrieves his missing shares xjk, xkj and computes y using xi, xj = xji⊕xjk and

xk = xki ⊕ xkj where Pi and Pj receives xki and xkj respectively from Pk in GODk. Even

if corrupt Pk’s ciphertext is decrypted successfully, the y computed is still as above due

the fact that Pk cannot open a different value for xjk, xkj due to the binding property of

NICOM. Pi retains this output in the third round.

In the former case, if both Pi and Pj outputs ⊥ in the end of second round, then the third

round is used by Pi and Pj to exchange their inputs and the shares of xk that they possess.

By the end of third round Pi (and Pj as well) outputs the desired y. If Pj was successful in

computing y in GODj, then Pj sends the output directly in third round which Pi takes as the

output. In the latter case, Pi retains his output in the third round. 2

Theorem 3.5 Protocol GOD is correct.

Proof: The proof follows from Lemma 3.27,3.28,3.29 as we have considered all the cases

exhaustively based on whether the corrupt party Pk is identified by none, exactly one or both

the honest parties by the end of first round. 2
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3.6 Optimizations

In this section, we propose some optimizations to our protocols Fair, UAbort and GOD that

will reduce their communication. To reduce total communication, the transmission of garbled

circuits should be kept minimal since they constitute the dominant part of communication.

We note that the protocols already ensure that each distinct GC is communicated only once

to the evaluator, namely when a garbler sends the opening of the co-garbler’s circuit. Next, a

proposed optimization to reduce communication is that H of the GC could be committed rather

than the GC itself, where H denotes a collision-resistant hash function. Infact since broadcast

communication is considered more expensive than private communication, corresponding to

broadcast of a message, say m, let H(m) be the message broadcast by the sender while m

is sent privately over pairwise channels. The same trick can be applied on the redundant

common messages sent over pairwise channels as well i.e if both P1, P2 are supposed to send

m to P3, then have P1 send m and P2 send H(m). P3 can locally compute the hash of the

message which would suffice to verify if P1 and P2 agree on a common m. The above techniques

reduce total communication and makes the broadcast communication complexity of the protocol

independent of the circuit size. Lastly, an optimization with respect to protocol Fair is that the

inputs to the subprotocol Certi can be modified to hash of the relevant inputs instead, reducing

considerably the size of the equality-checking circuit in Certi.

3.7 Security Proofs

3.7.1 Round Optimal 3PC with fairness

3.7.1.1 Schematic Diagram

We present the schematic diagram of the 3-round Fair protocol in Figures 3.8 - 3.9.

3.7.1.2 Formal Proof of Security for Protocol Fair

In this section, we present the proof of security of Fair relative to the ideal functionality for

fn (Figure 2.3). For better clarity, we assume without loss of generality that P1 is corrupt

(denoted as P ∗1 ) and describe the simulator SFair. Since the roles of the parties are symmetric

in Fair, similar proof would hold in case of corrupt P2, P3 as well. The simulator plays the role

of the honest parties P2, P3 and simulates each step of the protocol Fair. Recall that during

the first two rounds of Fair, the two round protocols Fairi (i ∈ [3]) and Certi (i ∈ [3]) run

in parallel. We divide the description of SFair as follows: We describe SFair during Fair1,Cert1

where corrupt P ∗1 is the evaluator and during Fair2,Cert2 when corrupt P ∗1 acts as a garbler.
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Input Output

Fair1

x1 C1,Y
2
1,Y

3
1, C

dec
2 , Cdec

3 , flag2, flag3

x2 C2, flag3, O
dec
1

x3 C3, flag2, O
dec
1

Fair2

x1 C1, flag3, O
dec
2

x2 C2,Y
1
2,Y

3
2, C

dec
1 , Cdec

3 , flag1, flag3
x3 C3, flag1, O

dec
2

Fair3

x1 C1, flag2, O
dec
3

x2 C2, flag1, O
dec
3

x3 C3,Y
1
3,Y

2
3, C

dec
1 , Cdec

2 , flag1, flag2

Cert1

– cert1,C1, flag2, flag3
γ2 = {D2

1,D
3
1,W2, pp1, c12, c13} C2, pad1

γ3 = {D2
1,D

3
1,W2, pp1, c12, c13} C3, pad1

Cert2

γ1 = {D1
2,D

3
2,W3, pp2, c21, c23} C1, pad2

– cert2,C2, flag1, flag3
γ3 = {D1

2,D
3
2,W3, pp2, c21, c23} C3, pad2

Cert3

γ1 = {D1
3,D

2
3,W1, pp3, c31, c32} C1, pad3

γ2 = {D1
3,D

2
3,W1, pp3, c31, c32} C2, pad3

– cert3,C3, flag1, flag2

P1’s view at end of R2 = {C1,Y
2
1,Y

3
1, C

dec
2 , Cdec

3 , flag2, flag3, O
dec
2 , Odec

3 , pad2, pad3}

Additionally, P1 may receive as part of Fair1 from P2 if P3 /∈ C2 (Similar message from P3 also):

ctβ2α = Enc
skβα

(o23, o32) for sk0
α = X0

2(`+α) ⊕ X1
3(`+α) ; sk1

α = X1
2(`+α) ⊕ X0

3(`+α)(α ∈ [`]).

States of P1:

–st1: if decrypted ctβ2α or ctβ3α successfully for some α to retrieve o23, o32

–st2: If ((C1 = ∅) ∧ (flag2 = 0) ∧ (flag3 = 0)) (which implies Y2
1,Y

3
1 6= ⊥ and cert1 6= ∅)

–st3: If C1 6= ∅
–st4: If (flag2 = 1) ∨ (flag3 = 1)

Figure 3.8: Schematic Diagram of Fair protocol (Round 1 and 2)

The steps corresponding to Fair3, and Cert3 would follow symmetrically from that described

corresponding to Fair2,Cert2. Finally, we describe the steps corresponding to the third round.

The simulator SFair appears in Figure 3.10 with R1/R2/R3 indicating simulation for round 1,

2 and 3 respectively and f/c/F denoting the steps corresponding to subprotocol Fairi,Certi,Fair

respectively.
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Figure 3.9: Schematic Diagram of Protocol Fair (Round 3 wrt P1)

st1:

P1

P2

P3
y, o32

y, o23

st3 :

P1

(C1 = P3)

P2

P3
–

Odec
2

st2:

P1

P2

P3
Y1, cert1, O dec

3

Y1, cert1, O
dec
2

st4:

P1

(flag3 = 1)

P2

P3
z3 = Encpad3 (Odec

3 )

–

Output Computation:

– st1: Output y

– {st2, st3, st4}: Output y if y received from P2 or P3 with valid o13 or o12 respectively

– st2: Retrieve Odec
1 either directly or using z1 (with cert1 as the key) from P2.

If d← eOpen(epp3, C
dec
3 , Odec

1 ) is not ⊥, compute y ← De(Y3
1, d). (Similar steps wrt P3)

– st3: (Let C1 = P3) If received Y2 from P2, output y ← De(Y1
2, d). Else output ⊥

– st4: (Let flag3 = 1) If cert3 = pad3 received from P3, update C1 = P2 and go to st3.
Else output ⊥.

When simulating Fair1, the simulator does not have access to the inputs of the honest parties.

Further, it does not know if and what P1 commits as its input in Round 1, when simulating

and sending the commitments for GC and encoding information in parallel in Round 1. Nor

does it know if all the parties will get the output (relative to corrupt P1’s committed input from

Round 1) or not, when it opens the encoded input and GC in Round 2. The decision comes

from P1’s behaviour in Round 2. A privacy simulator Sprv cannot be invoked for emulating

Round 2 message, as Ffair cannot be invoked yet and so y is not available. Instead oblivious

simulator Sobv is invoked that works without y. Later if and when Ffair is invoked and y is

known, Sprv is invoked which simply returns the decoding information that makes the fake GC

returned by Sobv output y.

SFair during Fair1,Cert1,Fair

Simulator SFair
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P2

p22 = x23
p33 = x32

P ∗1

m22 = x21
m33 = x31P3

x12

x13

R1 f: Sample epp2, epp3 for eCom, having trapdoor t2, t3. Choose m22 = x21 (sent during Fair2),

m33 = x31 (sent during Fair3), m23, m32 at random. On behalf of Pi (i ∈ {2, 3}) compute

(Ci, ei, di)← Gb(1κ, C) using uniform randomness. Send Di = (eppi, ppi, ci, {cbiα}α∈[4`],b∈{0,1},

cdec
i ) to P ∗1 where ci, {c

mαi2
iα , c

mαi3
i(`+α), c

0
i(2`+α), c

1
i(2`+α), c

0
i(3`+α), c

1
i(3`+α)}α∈[`] be computed as per

the protocol. Let cdec
i and remaining {cbiα} commit to dummy values. (For Naor-based eNI-

COM, set ci, cdec
i to the specific commitment supporting equivocation)

R1 c: As per the protocol, compute and send W1 to P ∗1 on behalf of P3.

R1 f: Receive x12, x13 from P ∗1 on behalf of P2, P3 respectively.

R1 F: Receive (pp1, c12, c13, o12) on behalf of P2 and (pp1, c12, c13, o13) on behalf of P3 from P ∗1 . Set

Ci = {P1}, i ∈ {2, 3} if Open(ppi, c1i, o1i) 6= x1i.

R2 f: If P1 6∈ C2,C3, run C′i ← Sobv(1κ, C,Xi = {em
α
i2

iα , e
mαi3
i(`+α), e

xα12
i(2`+α), e

xα13
i(3`+α)}α∈[`]). Using trapdoor

ti, compute oi = Equiv(ci,C
′
i, ti). Send OK message on behalf of P2, P3 as per protocol using

computed o2, o3.

R2 f: Else if P1 6∈ Ci, then act on behalf of Pi as per the protocol (For Naor-based eNICOM

equivocate ci to Ci using ti.)

R2 F: Set flag1 = 1 on behalf of both P2, P3 if either P1 ∈ C2 or P1 ∈ C3 or {pp1, c12, c13} received

on behalf of P2, P3 are not identical.

R2 F: Send ciphertext ct on dummy message on behalf of Pi if P1 /∈ Ci (i ∈ {2, 3}).

R2 F: If P1 /∈ Ci, γi = {D1
1,D

3
1,W2, pp1, c12, c13} received from P1 on behalf of Pi (i ∈ {2, 3}).

R2 c: If P1 /∈ C2, send o1,W1 (same as computed on behalf of P3 in Round 1) and (opening of)

encoding of γ2 to P1 on behalf of P2 as per the protocol.

R2 c: If P1 /∈ C3, send (opening of) encoding of γ3 to P1 on behalf of P3.

SFair during Fair2,Cert2,Fair
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P ∗1

p11 = x13
p33 = x31

P2

m11 = x12
m33 = x32P3

x21

x23

R1 f: Choose x21 at random and send to P ∗1 on behalf of P2.

R1 F: Let p33 = x31 (sent during Fair3).

R1 F: Sample pp2 to compute (c21, o21)← Com(pp2, x21). Send {pp2, c21, c23, o21} to P ∗1 where c23

is dummy commitment.

R1 f: Compute and send D3 and the information associated with D3 to P ∗1 on behalf of P3 according

to the protocol.

R1 f: Receive D1 and associated information privately from P ∗1 on behalf of P3. Do all the verifi-

cations as an honest P3 would perform for P1 and update C3.

R1 F: Add P1 to C3 if p11 6= x13 (received in Fair1).

R1 c: Receive W2 from P ∗1 on behalf of P2.

R1 c: Receive (s2,W2) from P ∗1 on behalf of P3. Do all the verifications and update C3 as per the

protocol.

R2 f: Send D3 (as computed on behalf of P3) to P ∗1 on behalf of P2.

R2 f: Set flag1 = 1 and Y1
2 = ⊥ on behalf of P2 if P1 ∈ C3 (equivalent to receiving nOK from P3) or

P1 /∈ C3 but P1 sends something other than D1 (known to P2 as simulator runs on behalf of

P3)

R2 f: Set flag3 = 1 and Y3
2 = ⊥ on behalf of P2 if P1 sends nOK or sends OK with something other

than D3 (known to P2 as simulator runs on behalf of P3).

R2 f: If flag1 = flag3 = 0 wrt P2, set C2 = P1 if any of the decommitments (corresponding to C3 or

encoded inputs corresponding to C1,C3) sent by P ∗1 opens to something other than what was

originally committed (known on behalf of P3).

R2 F: Set C2 = P1 if m11 6= x12

R2 F: Send {pp2, c21, c23} (as sent on behalf of P2) to P ∗1 on behalf of P3. Set flag2 = 1 wrt P3 if

nothing / other than {pp2, c21, c23} received from P ∗1 .
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R2 c: Set cert2 = ⊥ and flag1 = 1 on behalf of P2 if either P1 ∈ C3 (equivalent to receiving nOK

from P3) or C3 = ∅ but P ∗1 sends W2 different from one received on behalf of P3 in Round 1.

R2 F: Else, set C2 = P1 if P1 sends opening of encoded input (known on behalf of P3) that opens

to anything other than the encoding of value γ1 = {D1
2,D

3
2,W3, (pp2, c21, c23)} sent on behalf

of P2 during Fair1,Fair3,Cert3 and Fair respectively.

SFair during Round 3:

R3 Suppose C2 = ∅, flag1 = flag3 = 0 wrt P2: If P1 sends encoded inputs corresponding to mis-

matched input bit across C1,C3 during Fair2 (known on behalf of P3), mark P2 as being in

st1. Invoke Ffair with (sid, Input, x1) to obtain y where x1 = x12 ⊕ x13. Send (y, o13) to P1 on

behalf of P2. Similar steps are executed on behalf of P3 if C3 = ∅, flag1 = flag2 = 0.

R3 For every input bit of P3, choose s bits uniformly at random, say b1, . . . bs. Using key based on

P3’s consistent input bα (α ∈ [s]) used in C1,C3 during Fair2, try to decrypt ciphertext ctβ1α
for (β ∈ {0, 1}) received from P1 in Round 2. If the decryption is successful and the openings

retrieved are same as (o13, o31), mark P2 as being in st1 and do the following: invoke Ffair

with (sid, Input, x1) to obtain y where x1 = x12 ⊕ x13. Send (y, o13) to P1 on behalf of P2.

Similar steps are executed by the simulator on behalf of P3

R3 If P2 or P3 is in st2, let x1 = x12 ⊕ x13. Invoke Ffair with (sid, Input, x1) to obtain y.

R3 If P2 in st2, to retrieve decoding information odec
3 : Run (C3, d

1
3)← Sprv(1κ, C, y,X = {em

α
i2

3α , e
mαi3
3(`+α)

, e
xα12
3(2`+α), e

xα13
3(3`+α)}α∈[`]). Equivocate the commitment on decoding information in Fair1 (cdec

3 )

to get odec
3 = Equiv(cdec

3 , d1
3, t3). Send (Y2, cert2, o

dec
3 ) to P ∗1 on behalf of P2. Here cert2 is set

as encoding of 1 on output wire of C2 during Cert2 and Y2 is the encoding corresponding to

output y of C1,C3 during Fair2; both of which are known as simulator acts on behalf of P3.

R3 Similar steps as above if P3 is in st2.

R3 Invoke Ffair with (sid, Input, abort) if neither P2 nor P3 belong to {st1, st2}.

R3 Send dummy ciphertext z1 to P ∗1 on behalf of Pi, i ∈ {2, 3} if Pi in st4 with flag1 = 1.

Figure 3.10: Description of SFair

We now argue that idealFfair,SFair

c
≈ realFair,A, when A corrupts P1. The views are shown

to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realFair,A.

– hyb1: Same as hyb0, except that P2, P3 in Fair1 use uniform randomness rather than
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pseudo-randomness for the garbled circuit construction.

– hyb2: Same as hyb1, except that some of the commitments of encoded inputs which

will not be sent to P1 during Fair1 are replaced with commitments on dummy values.

Specifically, these are corresponding to indices not equal to m22,m23, x12, x13 for C2 and

not equal to m32,m33, x12, x13 for C3.

– hyb3 : Same as hyb2, except the following:

- hyb3.1: When the execution results in P1 evaluating GCs during Fair1 but results

in abort, C2 is created as C′2 ← Sobv(1
κ, C,X2 = {em

α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]).

The commitment c2 is later equivocated to C′2 using o2 computed via o2 ← Equiv(c2,

C′2, t2). The commitment to the decoding information is created for a dummy value.

Since the encoding information are committed in round 1 using committing commit-

ments that cannot be equivocated, we invoke Sobv using an X that corresponds to the

correct shares of P1 and it returns a fake GC (consistent with the labels in X) such

that indistinguishability holds. We note that most of the known garbling schemes

based on Yao and optimizations [182, 183, 141] have simulators that comply with

the above.

- hyb3.2: When the execution results in P1 evaluating GCs during Fair1 and output y,

the GC is created as (C′2, d2)← Sprv(1
κ, C, y,X2 = {em

α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]).

The commitment c2 is later equivocated to C′2 using o2 computed via o2 ← Equiv(c2,

C′2, t2). The commitment cdec
2 to the decoding information is created for a dummy

value and later equivocated to d2 using od2 computed via od2 ← Equiv(cdec
2 , d2, t2).

The set of ciphertexts ct and z1 (if) generated use d2 .

– hyb4 : Same as hyb2, except the following:

- hyb4.1: When the execution results in P1 evaluating GCs during Fair1 but results

in abort, C3 is created as C′3 ← Sobv(1
κ, C,X3 = {em

α
32

3α , e
mα33
3(`+α), e

xα12
3(2`+α), e

xα13
3(3`+α)}α∈[`]).

The commitment c3 is later equivocated to C′3 using o3 computed via o3 ← Equiv(c3,

C′3, t3). The commitment to the decoding information is created for a dummy value.

- hyb4.2: When the execution results in P1 evaluating GCs during Fair1 and output y,

the GC is created as (C′3, d3)← Sprv(1
κ, C, y,X3 = {em

α
32

3α , e
mα33
3(`+α), e

xα12
3(2`+α), e

xα13
3(3`+α)}α∈[`]).

The commitment c3 is later equivocated to C′3 using o3 computed via o3 ← Equiv(c3,

C′3, t3). The commitment cdec
3 to the decoding information is created for a dummy
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value and later equivocated to d3 using od3 computed via od3 ← Equiv(cdec
3 , d3, t3).

The set of ciphertexts ct and z1 (if) generated uses d3.

– hyb5: Same as hyb4, except that during Fair2, C2 is set to P1 if P2 receives o3 that opens

to a value other than the originally committed C3.

– hyb6: Same as hyb5, except that during Fair3, C3 is set to P1 if P3 receives o2 that opens

to a value other than the originally committed C2.

– hyb7: Same as hyb6, except that during Fair2, C2 is set to P1 if P2 accepts any encoded

input not consistent with C1,C3

– hyb8: Same as hyb7, except that during Fair3, C3 is set to P1 if P3 accepts any encoded

input not consistent with C1,C2

– hyb9: Same as hyb8, except that when the execution does not result in P1 getting access

to the opening of commitment c23 (corresponding to x23) sent by P2 during Fair2, the

commitment is replaced with commitment of dummy value.

– hyb10: Same as hyb9, except that when the execution does not result in P1 getting

access to the opening of commitment c32 (corresponding to x32) sent by P3 during Fair3,

the commitment is replaced with commitment of dummy value.

– hyb11: Same as hyb10, except that when the execution Fair1 does not result in P1 getting

encoded inputs corresponding to mismatched input bit across the two garbled circuits

corresponding to any garbler, the set of ct is replaced by encryption of a dummy message.

– hyb12: Same as hyb11, except that during Cert2, P2 (with flag1 = 0) adds P1 to C2 if

(opening of) encoded input sent by P1 corresponding to C2 is anything other than the

opening of the originally committed encoded information corresponding to value γ =

{D1
2,D

3
2,W3, (pp2, c21, c23)} sent by P2 in Round 1.

– hyb13: Same as hyb12, except that during Cert3, P3 (with flag2 = 0) adds P1 to C3 if

(opening of) encoded input sent by P1 corresponding to C3 is anything other than the

opening of the originally committed encoded information corresponding to value γ =

{D1
3,D

2
3,W1, (pp3, c31, c32)} sent by P3 in Round 1.

– hyb14: Same as hyb13, except that during Cert1, when P1’s evaluation of C1 does not

result in output 1, z1 (if) sent to P1 is replaced with encryption of dummy message.
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– hyb15: Same as hyb14, except that Y1
2,Y

3
2 is computed via De(Y1

2, d1) = y, De(Y3
2, d3) =

y, (where d1, d3 correspond to decoding information of C1,C3 during Fair2) rather than

Y1
2 = Ev(C1,X), Y3

2 = Ev(C3,X).

– hyb16: Same as hyb15, except that Y1
3,Y

2
3 is computed via De(Y1

3, d1) = y, De(Y2
3, d2) = y

(where d1, d2 correspond to decoding information of C1,C2 during Fair3) rather than Y1
3 =

Ev(C1,X), Y2
3 = Ev(C2,X).

– hyb17: Same as hyb16, except that during Cert2, if P2 gets access to Y2 ← (C2,X) such

that sDe(Y2) = 1, cert2 = Y2 is computed via De(Y2, d2) = 1 (where d2 corresponds to

decoding information of C2 during Cert2) rather than Y2 = Ev(C2,X)

– hyb18: Same as hyb17, except that during Cert3, if P3 gets access to Y3 ← (C3,X) such

that sDe(Y3) = 1, cert3 = Y3 is computed via De(Y3, d3) = 1 (where d3 corresponds to

decoding information of C3 during Cert3) rather than Y3 = Ev(C3,X)

– hyb19: Same as hyb18, except that P2 sends (y, o13) to P1 if decryption of ct sent by

P1 during Fair2 is successful (and includes openings of x13, x31 corresponding to original

commitments) using P3’s encoding corresponding to random input.

– hyb20: Same as hyb19, except that P3 sends (y, o12) to P1 if decryption of ct sent by

P1 during Fair3 is successful (and includes openings of x12, x21 corresponding to original

commitments) using P2’s encoding corresponding to random input.

Since hyb20 := idealFfair,SFair
, we show that every two consecutive hybrids are computation-

ally indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that P2, P3 in Fair1 use uniform random-

ness in hyb1 rather than pseudorandomness as in hyb0. The indistinguishability follows via

reduction to the security of the PRG G.

hyb1
c
≈ hyb2: The difference between the hybrids is some of the commitments of encoded in-

puts which will not be sent to P1 during Fair1 are replaced with commitments on dummy values.

The indistinguishability between the hybrids follows from the hiding property of NICOM.

hyb2
c
≈ hyb3.1: The difference between the hybrids is in the way (C2,X) is generated when the

execution results in abort. In hyb2, (C2, e, d) ← Gb(1κ, C) is run, which gives (C2,En(x, e)).

In hyb3.1, it is generated as C′2 ← Sobv(1
κ, C,X2 = {em

α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]). The
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commitment to the garbled circuit is later equivocated to C′2 using o2 computed via o2 ←
Equiv(c2,C

′
2, t2). Additionally, the commitment to the decoding information is created for a

dummy value in hyb3.1. The indistinguishability follows via reduction to the obliviousness of

the garbling scheme and the usual hiding property of commitment schemes which is implied by

the hiding property of eCom.

hyb2
c
≈ hyb3.2: The difference between the hybrids is in the way (C2,X, d) is generated. In

hyb2, (C2, e, d) ← Gb(1κ, C) is run, which gives (C2,En(x, e), d). In hyb3.2, it is generated

as (C′2, d
1
2) ← Sprv(1

κ, C, y,X2 = {em
α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]). The commitment to the

garbled circuit is later equivocated to C′2 using o2 computed via o2 ← Equiv(c2,C
′
2, t2). Addi-

tionally, the commitment to the decoding information is created for a dummy value and later

equivocated to d1
2 using odec

2 computed via odec
2 ← Equiv(cdec

2 , d1
2, t2). The indistinguishability

follows via reduction to the privacy of the garbling scheme and the hiding property of eCom.

hyb3
c
≈ hyb4: Similar argument as above with respect to C3.

hyb4
c
≈ hyb5: The difference between the hybrids is that in hyb4, P2 sets C2 = P1 if the o3 sent

by P1 in Fair2 output ⊥ while in hyb5, P2 sets C2 = P1 if o3 sent by P1 in Fair2 opens to any

value other than C3. Since the commitment scheme eCom is binding, in hyb4, P1 could have

decommitted successfully to a different garbled circuit than what was originally committed,

only with negligible probability. Therefore, the hybrids are indistinguishable.

hyb5
c
≈ hyb6: Similar argument as above with respect to P3 in Fair3.

hyb6
c
≈ hyb7: The difference between the hybrids is that in hyb6, P2 sets C2 = P1 if the

encoded inputs sent by P1 in Fair2 is inconsistent with D1, D3, while in hyb7 C2 is set to P1 if

P2 accepts any encoded input not consistent with C1,C3. It follows from the biding property

of NICOM that in hyb6, P1 could have sent an encoded input not consistent with C1,C3 but

consistent with D1, D3, only with negligible probability. Therefore, the hybrids are indistin-

guishable.

hyb7
c
≈ hyb8: Similar argument as above with respect to P3 in Fair3.

hyb8
c
≈ hyb9: The difference between the hybrids is that when the execution does not result

in P1 getting access to the opening of commitment c23 (corresponding to x23) sent by P2, c23
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corresponds to the actual input share x23 in hyb8 while it corresponds to dummy value in hyb9.

The indistinguishability follows from the hiding property of NICOM.

hyb9
c
≈ hyb10: Similar argument as above with respect to commitment c32 sent by P3.

hyb10
c
≈ hyb11: The difference between the hybrids is that when the execution Fair1 does not

result in P1 getting encoded inputs corresponding to mismatched input bits of any garbler on

two garbled circuits, in hyb10, the set of ct is the encryption of a opening of input shares while

in hyb11, it is replaced with encryption of dummy message. Assuming the encryption key is

unknown to P1 (holds except with negligible probability due to privacy of garbling scheme),

indistinguishability follows from the security of the encryption scheme with special correctness.

hyb11
c
≈ hyb12: The difference between the hybrids is that while in hyb11, during Cert2, P2

adds P1 to C2 if opening of encoded input sent by P1 results in ⊥ or C2 evaluates to 0 revealing

P1’s input being not equal to γ = {D1
2,D

3
2,W3, pp2, c21, c23}; while in hyb12 P1 is added to C2

if he sends anything other than opening of the originally committed encoded information of C2

corresponding to value γ = {D1
2,D

3
2,W3, pp2, c21, c23}. The indistinguishability follows from the

binding of NICOM and the correctness of the privacy-free garbling scheme (used during Cert2).

hyb12
c
≈ hyb13: Similar argument as above with respect to P3 during Cert3.

hyb13
c
≈ hyb14: The difference between the hybrids is that in hyb12, z1 is set as encryption of

the decoding information of Fair1 while in hyb13, z1 is replaced with encryption of a dummy

message when P1’s evaluation of C1 during Cert1 does not lead to output 1. Assuming the

encryption key is unknown to P1 (holds except with negligible probability due to authenticity

of privacy-free garbling scheme used in Cert1), indistinguishability follows from the security of

the encryption scheme.

hyb14
c
≈ hyb15: The difference between the hybrids is that in hyb14, P2 computes Y2 = (Y1

2,Y
3
2)

via Ev(C1,X), Y3
2 = Ev(C3,X), while in hyb15, Y1

2,Y
3
2 is computed such that De(Y1

2, d1) = y,

De(Y3
2, d3) = y (where d1, d3 is the decoding information corresponding to C1,C3 during Fair2).

Due to the correctness of the garbling scheme, the equivalence of Y1
2,Y

3
2 computed via Ev(C1,X),

Ev(C3,X) or such that De(Y1
2, d1) = y, De(Y3

2, d3) = y holds.

hyb15
c
≈ hyb16: Similar argument as above with respect to Y3 computed by P3 during Fair3.
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hyb16
c
≈ hyb17: The difference between the hybrids is that in hyb16, if P2 obtains Y2 ←

Ev(C2,X) such that sDe(Y) = 1, then P2 sets cert2 = Y2 while in hyb15, in this case cert2

is set to Y2 computed such that De(Y2, d2) = 1 (where d2 is the decoding information corre-

sponding to C2 during Cert2). Due to the correctness of the privacy-free garbling scheme, the

equivalence of Y2 computed via Ev(C2,X) or such that De(Y2, d2) = y holds.

hyb17
c
≈ hyb18: Similar argument as above with respect to cert3 computed by P3 during Cert3.

hyb18
c
≈ hyb19: The difference between the hybrids is that in hyb18, P2 sends (y, o13) to P1

if decryption of ct sent by P1 during Fair2 is successful using keys based on P3’s encoding of

actual input, whereas in hyb19, P2 sends (y, o13) to P1 if decryption of ct sent by P1 during

Fair2 is successful using keys based on P3’s encoding of random input. The indistinguishability

between the hybrids follows from the following claim: Consider single bit input for simplicity.

For any two different inputs x and x′ of P3, the difference between the probability that P2 sends

(y, o13) to P1 when P3’s input is x and when P3’s input is x′ is at most 2−s+1. The argument

can be divided into three cases (similar to [147]). (1) Suppose for some α ∈ [s], P1 replaces

both ciphertexts ct0
1α, ct1

1α : one based on consistent input 0 of P3 and other based on consistent

input 1 of P3 (say, sk0
α = X0

1(s+α) ⊕ X0
3(s+α) and sk1

α = X1
1(s+α) ⊕ X1

3(s+α)). In this case, P2 would

be able to decrypt the ciphertext successfully regardless of P3’s input with probability 1 and

would send (y, o13) to P2. (2) Suppose P1 replaces exactly one of the two ciphertexts with

consistent input corresponding to 1 ≤ j < s. Since the values assigned (in encoding) by P3

to any proper subset of the s bits are independent of P3’s actual input, P2 would be able to

decrypt the ciphertext successfully with probability 1− 2−j regardless of the actual value of its

original input. (3) Suppose P1 replaces one ciphertext based on consistent input for each of

the α ∈ [s] (say all based on consistent value ‘1’). Then if x had encoding with any one such

value (‘1’ in the example), the ciphertext would be decrypted successfully with probability 1,

whereas decryption would be successful with probability 1− 2−s+1 if x′ had the other value (in

the example, P2 will be unable to decrypt if x′ = 0 and the encoding of x′ = 0 was chosen as

x′α = 0 for all α ∈ [s] (where x′ = ⊕sα=1xα) which occurs with probability 2−s+1).

hyb19
c
≈ hyb20: Similar argument as above with respect to ct received by P3 during Fair3.
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3.7.2 Proof of Security for Protocol UAbort

In this section, we present the proof of security of UAbort relative to the ideal functionality for

ua (Figure 2.2). For clarity, we assume without loss of generality that P1 is corrupt (denoted as

P ∗1 ) and describe the simulator SUAbort. Since the roles of the parties are symmetric in UAbort,

similar proof would hold in case of corrupt P2, P3 as well. The simulator plays the role of the

honest parties P2, P3 and simulates each step of the protocol UAbort. We divide the description

of SUAbort as follows: We describe SUAbort during UAbort1 where corrupt P ∗1 is the evaluator and

during UAbort2 when corrupt P ∗1 acts as a garbler. The steps corresponding to UAbort3, would

follow symmetrically from that described corresponding to UAbort2. The simulator SUAbort ap-

pears in Figure 3.11 with R1/R2 indicating simulation for round 1 and 2 respectively and a/A

denoting the steps corresponding to subprotocol UAborti,UAbort respectively. When simulating

UAbort1, the commitments for GC and encoding information need to be simulated and sent in

Round 1 itself, while the privacy simulator Sprv can only be invoked on noting the adversary’s

behaviour in Round 1 that decides what input it commits and whether it obtains output or

⊥. Using equivocality of the commitment of GC, we can equivocate the GC as returned by

the simulator. But since commitments on the encoding information are committing and the

simulator didn’t have access to X during simulation of Round 1, the encoded input X returned

by Sprv cannot be explained. So we use a slightly modified version of Sprv which takes an en-

coded input (correspond to what will be opened to corrupt P1) as parameter and returns just

the fake GC compatible with it. Yao’s privacy simulator can be made to work as above for

any encoded input and the indistinguishability will hold with respect to the fake GC and given

encoded input.

SUAbort during UAbort1,UAbort

P2

p22 = x23
p33 = x32

P ∗1

m22 = x21
m33 = x31P3

x12

x13

R1 a: Receive (x12, x13) privately from P ∗1 on the behalf of P2, P3.

R1 A: Receive (pp1, c12, c13) via broadcast and o12, o13 privately from P ∗1 on behalf of P2, P3. Set

flag1 = 1 on behalf of Pi if Open(c1i, o1i) 6= x1i for i ∈ {2, 3}.

Simulator SUAbort
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R1 a: Sample epp2, epp3 for eCom, having trapdoor t2, t3. Choose m22 = x21 (sent during UAbort2),

m33 = x31 (sent during UAbort3), m23, m32, r2, r3 at random. On behalf of Pi (i ∈ {2, 3})
compute (Ci, ei, di) ← Gb(1κ, C) using uniform randomness. Broadcast Di = (ppi, eppi, ci,

{cbiα}α∈[6`],b∈{0,1}) where ci, {c
mαi2
iα , c

mαi3
i(`+α), c

rα2
i(2`+α), c

rα3
i(3`+α), c

0
i(4`+α), c

1
i(4`+α), c

0
i(5`+α), c

1
i(5`+α)}α∈[`]

be computed as per the protocol. (If Naor-based eNICOM is used, ci should be set to the spe-

cific commitment that suppports equivocation as per eppi.) Let the remaining {cbiα} commit

to dummy values.

R1 a: Send ({om
α
22

2α , o
rα2
2(2`+α)}α∈[`],m22, r2) to P ∗1 on behalf of P2. Send ({om

α
33

3(`+α), o
rα3
3(3`+α)}α∈[`],m33,

r3) privately to P ∗1 on behalf of P3.

R2 a: If flag1 = 1 for either P2 or P3, invoke Fua with (sid, Input, abort) on behalf of P ∗1 .

R2 a: Broadcast abort on behalf of Pi (i ∈ {2, 3}) if flag1 = 1 on behalf of Pi.

R2 a: If flag1 = 0 wrt Pi for exactly one i ∈ {2, 3}, then act on behalf of Pi as per the protocol

opening the garbled circuit (equivocate ci to Ci in case of Naor-based eNICOM ) and encoded

input as per m23 or m32 accordingly chosen as above. Broadcast Wi using zi = ri⊕x1i as per

the protocol.

R2 a: If flag1 = 0 for both P2 and P3, invoke Fua with (sid, Input, x1) on behalf of P ∗1 to obtain output

y, where x1 = x12⊕x13. Let z2 = r2⊕x12 and z3 = r3⊕x13. For (i ∈ {2, 3}), run (C′i,Xi, di)←
Sprv(1κ, C, y, {em

α
i2

iα , e
mαi3
i(`+α), e

rα2
i(2`+α), e

rα3
i(3`+α)e

zα2
i(4`+α), e

zα3
i(5`+α)}α∈[`]). Using trapdoor ti, compute

oi = Equiv(ci,C
′
i, ti). Send OK message privately to P ∗1 on behalf of P2, P3 as per the protocol

using computed o2, o3. Broadcast W2,W3 on behalf of P2, P3 as per protocol.

R2 A: If flag1 6= 1 wrt Pi, send set of ct on behalf of Pi (i ∈ {2, 3}) using a dummy message.

R2 a: Set flag1 = 1 on behalf of both P2, P3 if either (a) abort was sent or received via broadcast

in Round 2 (b) P1 broadcasts z2 6= x12 ⊕ r2 or z3 6= x13 ⊕ r3

SUAbort during UAbort2,UAbort

P ∗1

p11 = x13
p33 = x31

P2

m11 = x12
m33 = x32P3

x21

x23

R1 A:Set p33 = x31 (sent during UAbort3)
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R1 a: Compute and broadcast D3 (using p33) on behalf of P3 according to the protocol. Send

{s3, p31, p33, o3, {ob3α}α∈[6`],b∈{0,1}} to P ∗1 .

R1 a: Choose x21 at random and send to P ∗1 on behalf of P2.

R1 A: Sample pp2 to compute (c21, o21) ← Com(pp2, x21). Broadcast {pp2, c21, c23} where c23 is

commitment of dummy value and send o21 to P ∗1 on behalf of P2.

R1 a: Receive {s1, p11, p13, o1, {ob1α}α∈[6`],b∈{0,1}} from P ∗1 on behalf of P3. Do all the verifications

as an honest P3 would perform for P1 and update flag2 with respect to (wrt) P3.

R1 A: Set flag2 = 1 on behalf of P3 if p11 6= x13 (x13 received in UAbort1)

R1 a: Set flag2 = 1 on behalf of P2 if P ∗1 sends encoded inputs inconsistent with D1

R1 A: Set flag2 = 1 on behalf of P2 if Open(c12, o12) 6= x12 or m11 6= x12 (x12 received during

UAbort1 ).

R2 a: On behalf of P3: If flag2 = 0 wrt P3, choose random z3 and broadcast W3 as per the protocol.

Else broadcast abort.

R2 a: On behalf of P2: If flag2 = 0 wrt P2, broadcast z1, z3 where z1 is computed as per the protocol

as z1 = x21 ⊕ r1, where x21 sent to P ∗1 in Round 1 and r1 received from P ∗1 . z3 is either same

as chosen above (if flag2 = 0 wrt P3) or random (if flag2 = 1 wrt P3). Else broadcast abort.

R2 a: Set flag2 = 0 on behalf of both P2, P3 if (a) abort was sent or received via broadcast in

Round 2 (b) P ∗1 broadcasts anything other than (z1, o
zα1
1(4`+α)) (o

zα1
1(4`+α) known on behalf of P3)

where z1 = x21 ⊕ r1 (r1, x21 known to P2)

SUAbort after UAbort1,UAbort2,UAbort3

If flagi = 1 (on behalf of both P2, P3) for any i ∈ [3], invoke Fua with abort on behalf of P ∗1 . Else

invoke Fua with continue on behalf of P ∗1 .

Figure 3.11: Simulator SUAbort

We now argue that idealFua,SUAbort

c
≈ realUAbort,A, when A corrupts P1. The views are shown

to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realUAbort,A.

– hyb1: Same as hyb0, except that P2, P3 in UAbort1 use uniform randomness rather than

pseudo-randomness for the garbled circuit construction.
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– hyb2: Same as hyb1, except that some of the commitments of encoded inputs which

will not be sent to P1 during UAbort1 are replaced with commitment on dummy values.

Specifically, these are corresponding to indices not equal to m22,m23, r2, r3, z2, z3 for C2

and not equal to m32,m33, r2, r3, z2, z3 for C3.

– hyb3 : Same as hyb2, except that when the execution results in P1 evaluating GCs during

UAbort1, the GC C2 is created as (C′2, d2)← Sprv(1
κ, C, y,X2 = {em

α
22

2α , e
mα23
2(`+α), e

rα2
2(2`+α), e

rα3
2(3`+α),

e
zα2
2(4`+α), e

zα3
2(5`+α)}α∈[`]). The commitment c2 is later equivocated to C′2 using o2 computed

via o2 ← Equiv(c2,C
′
2, t2). The set of ciphertexts ct generated uses d2 in their keys.

– hyb4 : Same as hyb3, except that when the execution results in P1 evaluating GCs during

UAbort1, the GC C3 is created as (C′3, d3)← Sprv(1
κ, C, y,X3 = {em

α
32

3α , e
mα33
3(`+α), e

rα2
3(2`+α), e

rα3
3(3`+α),

e
zα2
3(4`+α), e

zα3
3(5`+α)}α∈[`]). The commitment c3 is later equivocated to C′3 using o3 computed

via o3 ← Equiv(c3,C
′
3, t3). The set of ciphertexts ct generated uses d3 in their keys.

– hyb5: Same as hyb4, except that during UAbort2, flag2 is set to 1 if W1 broadcast by P1

has anything other than (opening of) encoded input corresponding to z1 in C1.

– hyb6: Same as hyb5, except that during UAbort3, flag3 is set to 1 if W1 broadcast by P1

has anything other than (opening of) encoded input corresponding to z1 in C1.

– hyb7: Same as hyb6, except that when the execution does not result in P1 getting access

to the opening of commitment c23 (corresponding to x23) broadcast by P2 during UAbort2,

the commitment is replaced with commitment of dummy value.

– hyb8: Same as hyb7, except that when the execution does not result in P1 getting access

to the opening of commitment c32 (corresponding to x32) broadcast by P3 during UAbort3,

the commitment is replaced with commitment of dummy value.

– hyb9: Same as hyb8, except that when the execution UAbort1 does not result in P1

getting conflicting output on two garbled circuits, the set of ct is replaced by encryption

of a dummy message.

Since hyb9 := idealFua,SUAbort
, we show that every two consecutive hybrids are computation-

ally indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that P2, P3 in UAbort1 use uniform ran-

domness in hyb1 rather than pseudorandomness as in hyb0. The indistinguishability follows
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via reduction to the security of the PRG G.

hyb1
c
≈ hyb2: The difference between the hybrids is some of the commitments of encoded

inputs which will not be sent to P1 during UAbort1 are replaced with commitment on dummy

messages. The indistinguishability follows from the hiding property of NICOM.

hyb2
c
≈ hyb3: The difference between the hybrids is in the way (C2,X, d2) is generated.

In hyb2, (C2, e2, d2) ← Gb(1κ, C) is run, which gives (C2,En(x, e), d2). In hyb3, it is gen-

erated as (C′2, d2) ← Sprv(1
κ, C, y,X2 = {em

α
22

2α , e
mα23
2(`+α), e

rα2
2(2`+α), e

rα3
2(3`+α), e

zα2
2(4`+α), e

zα3
2(5`+α)}α∈[`]).

The commitment to the garbled circuit is later equivocated to C′2 using o2 computed via

o2 ← Equiv(c2,C
′
2, t2). The indistinguishability follows via reduction to the privacy of the

garbling scheme and the hiding property of eCom.

hyb3
c
≈ hyb4: Similar argument as above with respect to C3.

hyb4
c
≈ hyb5: The difference between the hybrids is that in hyb4, flag2 is set to 1 if W1

broadcast by P1 during UAbort2 has (opening of) encoded input that is inconsistent with com-

mitment corresponding to z1 in D1, while in hyb5, flag2 is set to 1 if W1 broadcast by P1 has

(opening of) encoded input anything other than encoding of z1 corresponding to C1. It follows

from the binding property of NICOM that P1 could have sent an encoded input not consistent

with C1 but consistent with D1, only with negligible probability. Therefore, the hybrids are

indistinguishable.

hyb5
c
≈ hyb6: Similar argument as above with respect to W1 broadcast by P1 during UAbort3.

hyb6
c
≈ hyb7: The difference between the hybrids is that when the execution does not result

in P1 getting access to the opening of commitment c23 (corresponding to x23) broadcast by P2

during UAbort2, c23 corresponds to the actual input share x23 in hyb8 while it corresponds to

dummy value in hyb9. The indistinguishability follows from the hiding property of NICOM

Com.

hyb7
c
≈ hyb8: Similar argument as above with respect to commitment c32 broadcast by P3

during UAbort3.

hyb8
c
≈ hyb9: The difference between the hybrids is that when the execution UAbort1 does
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not result in P1 getting conflicting output on two garbled circuits, in hyb8, the set of ct is the

encryption of opening of shares of input while in hyb9, it is replaced with encryption of dummy

message. Assuming the encryption key is unknown to P1 (holds except with negligible proba-

bility due to authenticity), indistinguishability follows from the CPA security of the encryption

scheme.

3.7.3 Proof of Security for Protocol GOD

In this section, we present the proof of security of GOD relative to the ideal functionality for

god (Figure 2.4). For better clarity, we assume without loss of generality that P1 is corrupt

(denoted as P ∗1 ) and describe the simulator SGOD. Since the roles of the parties are symmetric

in GOD, similar proof would hold in case of corrupt P2, P3 as well. The simulator plays the role

of the honest parties P2, P3 and simulates each step of the protocol GOD.

Similar to SUAbort, we divide the description of SGOD as follows: We describe SGOD during

GOD1 where corrupt P ∗1 is the evaluator and during GOD2 when corrupt P ∗1 acts as a garbler.

The steps corresponding to GOD3, would follow symmetrically from that described correspond-

ing to GOD2. We then describe the steps of the simulator SGOD corresponding to the third

round. In the protocol GOD, the behavior of corrupt P1 in Round 1, 2 determines his com-

mitted input. Hence, the privacy simulator can only be invoked earliest after the simulation of

the first round. Similar to SUAbort, since the commitments on encoding information is sent in

the first round itself, we use a modified version of the privacy simulator of the garbling scheme

which additionally takes an encoded input as parameter (see Section 3.7.2). The simulator

SGOD appears in Figure 3.12 with R1/R2/R3 indicating simulation for round 1, 2 and 3 and

and g/G denoting the steps corresponding to subprotocol GODi,GOD respectively.

SGOD during GOD1,GOD

P2

p22 = x23
p33 = x32

P ∗1

m22 = x21
m33 = x31P3

x12

x13

R1 g: Receive x12, x13 from P ∗1 on behalf of P2, P3.

R1 G: Receive (pp1, c12, c13) via broadcast and (o12, o13) privately from P ∗1 on behalf of P2, P3. Set

Simulator SGOD
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Ci = {P1} if Open(c1i, o1i) 6= x1i for i ∈ {2, 3}

R1 g: Sample epp2, epp3 for eCom, having trapdoor t2, t3. Choose m22 = x21 (sent during GOD2),

m33 = x31 (sent during GOD3), m23, m32 at random. On behalf of Pi (i ∈ {2, 3}) do the follow-

ing: compute (Ci, ei, di)← Gb(1κ, C) using uniform randomness. Broadcast Di = (eppi, ppi, ci,

{cbiα}α∈[4`],b∈{0,1}) where ci, {c
mαi2
iα , c

mαi3
i(`+α), c

0
i(2`+α), c

1
i(2`+α), c

0
i(3`+α), c

1
i(3`+α)}α∈[`] be computed

as as per the protocol. Let the remaining {cbiα} commit to dummy values. (For Naor-based

eNICOM, ci set to the specific commitment that suppports equivocation)

R2 g: If P1 6∈ C2,C3, invoke Fgod with (sid, Input, x1) on behalf of P ∗1 to obtain output y, where

x1 = x12⊕x13. For (i ∈ {2, 3}), run (C′i, di)← Sprv(1κ, C, y,Xi = {em
α
i2

iα , e
mαi3
i(`+α), e

xα12
i(2`+α), e

xα13
i(3`+α)

}α∈[`]). Using trapdoor ti, compute oi = Equiv(ci,C
′
i, ti). Send OK msg on behalf of P2, P3 as

per the protocol using computed o2, o3.

R2 g: Else if P1 6∈ Ci for i ∈ {2, 3}, act on behalf of Pi as per the protocol opening the garbled

circuit (equivocate ci to Ci in case of Naor-based eNICOM) and encoded input as per m23

and m32

R2 g: If P1 /∈ Ci (i ∈ {2, 3}), send set of ct on behalf of Pi using a dummy message.

SGOD during GOD2,GOD

P ∗1

p11 = x13
p33 = x31

P2

m11 = x12
m33 = x32P3

x21

x23

R1 G: Set p33 = x31 (sent during GOD3) on behalf of P3.

R1 g: Compute and broadcast D3 (using p33) on behalf of P3 and send private information to P ∗1

as per protocol

R1 G: Compute (c21, o21) ← Com(pp2, x21) with randomly chosen x21. Broadcast {pp2, c21, c23}
where c23 is commitment of dummy value

R1 g: Send {x21, o21} to P ∗1 on behalf of P2.

R1 g: Do all the verifications wrt D1 as an honest P3 would perform for P1 and update C3.

R1 G: Add P1 to C2 if m11 6= x12.
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R2 g: Add P1 to C2 if any of the openings sent by P1 (for C3 or encoded inputs) is anything other

than originally committed (known on behalf of P3).

R2 g: If P1 /∈ C2 and P1 ∈ C3: Extract P1’s input x1 if committed: (a) either on clear with nOK

(b) or in encoded form as x1 = m31 ⊕ p31. Invoke Fgod with (sid, Input, x1) on behalf of P ∗1 to

obtain output y. Else, (P1’s input not committed) invoke Fgod with (sid, Input, x1) on behalf

of P ∗1 to obtain output y for default x1.

SGOD during R3

If P1 ∈ C2,C3 at the end of round 1, invoke Fgod with (sid, Input, x1) on behalf of P ∗1 to obtain y for

a default x1. Send y to P ∗1 on behalf of both P2 and P3 if P1 ∈ C2,C3 in the end of round one. Send

y to P ∗1 on behalf of only P2 (P3) if P1 ∈ C3 (C2) in the end of round one.

Figure 3.12: Description of SGOD

We now argue that idealFgod,SGOD

c
≈ realGOD,A, when A corrupts P1. The views are shown

to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realGOD,A.

– hyb1: Same as hyb0, except that P2, P3 in GOD1 use uniform randomness rather than

pseudo-randomness for the garbled circuit construction.

– hyb2: Same as hyb1, except that some of the commitments that will not be opened by

P1 during GOD1 are replaced with commitment on dummy values. Specifically, these

are corresponding to indices not equal to m22,m23, x12, x13 for C2 and not equal to

m32,m33, x12, x13 for C3.

– hyb3 : Same as hyb2, except that when the execution results in P1 evaluating GCs during

GOD1, the GC C2 is created as (C′2, d2)← Sprv(1
κ, C, y,X2 = {em

α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}

α∈[`]). The commitment c2 is later equivocated to C′2 using o2 computed via o2 ←
Equiv(c2,C

′
2, t2). The set of ciphertexts ct generated uses d2 in their keys.

– hyb4 : Same as hyb3, except that when the execution results in P1 evaluating GCs during

GOD1, the GC C3 is created as (C′3, d3)← Sprv(1
κ, C, y,X3 = {em

α
32

3α , e
mα33
3(`+α), e

xα12
3(2`+α), e

xα13
3(3`+α)}

α∈[`]). The commitment c3 is later equivocated to C′3 using o3 computed via o3 ←
Equiv(c3,C

′
3, t3). The set of ciphertexts ct generated uses d3 in their keys.

– hyb5: Same as hyb4, except that during GOD2, C2 is set to P1 if P2 receives o3 that opens

to a value other than the originally committed C3.
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– hyb6: Same as hyb5, except that during GOD3, C3 is set to P1 if P3 receives o2 that opens

to a value other than the originally committed C2.

– hyb7: Same as hyb6, except that during GOD2, C2 is set to P1 if P2 accepts any encoded

input not consistent with C1,C3

– hyb8: Same as hyb7, except that during GOD3, C3 is set to P1 if P3 accepts any encoded

input not consistent with C1,C2

– hyb9: Same as hyb8, except that when the execution does not result in P1 getting access

to the opening of commitment c23 (corresponding to x23) broadcast by P2 during GOD2,

the commitment is replaced with commitment of dummy value.

– hyb10: Same as hyb9, except that when the execution does not result in P1 getting access

to the opening of commitment c32 (corresponding to x32) broadcast by P3 during GOD3,

the commitment is replaced with commitment of dummy value.

– hyb11: Same as hyb10, except that when the execution GOD1 does not result in P1

getting conflicting output on two garbled circuits, the set of ct is replaced by encryption

of a dummy message.

Since hyb11 := idealFgod,SGOD
, we show that every two consecutive hybrids are computation-

ally indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that P2, P3 in GOD1 use uniform random-

ness in hyb1 rather than pseudorandomness as in hyb0. The indistinguishability follows via

reduction to the security of the PRG G.

hyb1
c
≈ hyb2: The difference between the hybrids is some of the commitments that will not

be opened by P1 during GOD1 are replaced with commitments on dummy values. The indis-

tinguishability follows from the hiding property of the commitment scheme.

hyb2
c
≈ hyb3: The difference between the hybrids is in the way (C2,X, d2) is generated. In

hyb2, (C2, e2, d2) ← Gb(1κ, C) is run, which gives (C2,En(x, e), d2). In hyb3, it is generated

as (C′2, d2) ← Sprv(1
κ, C, y,X2 = {em

α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]). The commitment to the

garbled circuit is later equivocated to C′2 using o2 computed via o2 ← Equiv(c2,C
′
2, t2). The

indistinguishability follows via reduction to the privacy of the garbling scheme and the hiding
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property of eCom.

hyb3
c
≈ hyb4: Similar argument as above with respect to C3.

hyb4
c
≈ hyb5: The difference between the hybrids is that in hyb4, P2 sets C2 = P1 if the

o3 sent by P1 in GOD2 output ⊥ while in hyb5, P2 sets C2 = P1 if o3 sent by P1 in GOD2

opens to any value other than C3. Since the commitment scheme eCom is binding and epp

was chosen uniformly at random by P3, in hyb4, P1 could have decommitted successfully to a

different garbled circuit than what was originally committed, only with negligible probability.

Therefore, the hybrids are indistinguishable.

hyb5
c
≈ hyb6: Similar argument as above with respect to P3 in GOD3.

hyb6
c
≈ hyb7: The difference between the hybrids is that in hyb6, P2 sets C2 = P1 if opening of

commitment on the encoded inputs sent by P1 in GOD2 results in ⊥ while in hyb7, C2 is set to P1

if P2 accepts the opening of any commitment to a value other than what was originally commit-

ted. The indistinguishability between the hybrids follows from the binding property of NICOM.

hyb7
c
≈ hyb8: Similar argument as above with respect to P3 in GOD3.

hyb8
c
≈ hyb9: The difference between the hybrids is that when the execution does not result

in P1 getting access to the opening of commitment c23 (corresponding to x23) broadcast by P2

during GOD2, c23 corresponds to the actual input share x23 in hyb8 while it corresponds to

dummy value in hyb9. The indistinguishability follows from the hiding property of Com.

hyb9
c
≈ hyb10: Similar argument as above with respect to commitment c32 broadcast by P3

during GOD3.

hyb10
c
≈ hyb11: The difference between the hybrids is that when the execution GOD1 does not

result in P1 getting conflicting output on two garbled circuits, in hyb10, the set of ct is the

encryption of an input and a share of input while in hyb11, it is replaced with encryption of

dummy message. Assuming the encryption key is unknown to P1 (holds except with negligi-

ble probability due to authenticity), indistinguishability follows from the CPA security of the

encryption scheme.
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3.8 Appendix: Authenticated Conditional Disclosure of

Secret

The subprotocol Certi (Figure 3.2) used in our protocol Fair is reminiscent of the notion of

‘conditional disclosure of secrets (CDS)’ which was first introduced in [103]. Informally, the

problem of conditional disclosure of secrets involves two parties Alice and Bob, who hold inputs

x and y respectively and wish to release a common secret s to Carol (who knows both x and y) if

only if the input (x, y) satisfies some predefined predicate f . The model allows Alice and Bob to

have access to shared random string (hidden from Carol) and the only communication allowed

is a single unidirectional message sent from each player (Alice and Bob) to Carol. Traditionally,

CDS involves two properties, namely correctness (if f(x, y) is true, then Carol is always able

to reconstruct s from her input and the messages she receives) and privacy (if f(x, y) is false,

Carol obtains no information about the secret s). Formally,

Definition 3.2 (Conditional Disclosure of Secret) [5] Let f : X× Y → {0, 1} be a predi-

cate. Let F1 : X× S× R→ T1 and F2 : Y× S× R→ T2 be deterministic encoding algorithms,

where S is the secret domain. Then, the pair (F1, F2) is a CDS scheme for f if the function

F (x, y, s, r) = (F1(x, s, r), F2(y, s, r)) that corresponds to the joint computation of F1 and F2 on

a common s and r, satisfies the following:

• δ-correctness: There exists a deterministic algorithm Dec, called a decoder, such that for

every 1-input (x, y) of f and any secret s ∈ S, the following holds: Prr←R[Dec(x, y, F (x, y, s,

r)) 6= s] ≤ δ

• ε-privacy: There exists a simulator S such that for every 0-input (x, y) of f and any

secret s ∈ S, it holds that |Pr[D(S(x, y) = 1)] − Pr[D(F (x, y, s, r)) = 1]| ≤ ε for every

distinguisher D. (S, D assumed to be poly-time or computationally unbounded depending

on computational / information-theoretic setting).

Interestingly, we find that the functionality realized by subprotocol Certi subsumes the

above properties under computational variant adapted to tolerate active corruption of single

party and gives some stronger guarantees. We thus formally define a variant of CDS known

as ‘Authenticated Conditional Disclosure of Secret’ below and show realization of the same by

Certi.

Definition 3.3 (Authenticated Conditional Disclosure of Secret) Let A, B denote two

parties holding inputs x ∈ X and y ∈ Y respectively and having access to common secret s ∈ S
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and C denote an external party. We assume a PPT adversary A who can actively corrupt at

most 1 party among A, B and C. An authenticated CDS protocol is secure against A if the

following properties hold:

• δ-correctness holds for honest A, B, and C where δ = negl(κ).

• ε-privacy holds against A corrupt C, where ε = negl(κ).

• Authenticity: For 1-input (x, y) of f and any secret s, Dec may result in ⊥ when either

A or B is corrupt, in which case C either identifies a corrupt party or a pair of parties

in conflict that includes the corrupt party.

Our Certi gives an authenticated CDS as follows. The garblers Pj, Pk take the role of A

and B and the evaluator takes the role of C. The common randomness r is the seed for the

PRG used for generating the entire randomness for GC generation etc. The secret s is the key

corresponding to 1 in the circuit. The predicate is the circuit that we garble in Certi. While

for the purpose of our 3-round fair protocol, the predicate is equality checking, in theory, we

can garble any predicate. F1 and F2 are the codes of Pj and Pk respectively. Dec is the code

that Pi executes. The correctness and privacy follow from the correctness and authenticity of

the garbling scheme. The authenticity follows from the fact that Pi either receives the correct

secret or detects a conflict or corrupt.
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Chapter 4

Fast Secure Computation for 3PC and

4PC over the Internet

In this chapter, we present efficient, constant-round 3-party (3PC) and 4-party (4PC) proto-

cols in the honest-majority setting that achieve strong security notions of fn and god. Being

constant-round, our constructions are suitable for Internet-like high-latency networks and are

built from garbled circuits (GC).

4.1 Introduction

While the earlier works in MPC literature traditionally been focused on theoretical aspects,

lately, with increasing demand for efficient constructions suitable in real-time applications,

there has been a growing interest to improve the concrete efficiency of protocols. The domain

of MPC can be broadly classified into honest majority [30, 177, 19, 18, 72, 33, 20, 21] and

dishonest majority [107, 73, 34, 76, 11, 94, 151] settings. The special case of two-party (2PC) in

dishonest majority setting has enjoyed overwhelming focus over the years in terms of improving

its efficiency [147, 150, 145, 2, 163]. In contrast, the special cases of honest majority setting

have not been in the limelight until recently when practically efficient MPC constructions of

[52, 159, 7, 91] leveraged presence of small number of parties. Having honest majority is not

only advantageous since it enables strong desirable security notions of fn and god but also since

it allows us to obtain constructions relying on weaker cryptographic assumptions and light-

weight cryptographic tools. For example, the protocols of [129, 159] are built using symmetric-

key primitives whereas 2PC protocols require Oblivious Transfer (OT) [182, 147, 125]. In this

work, we consider the honest-majority setting for small number of parties (n = 3 and n = 4)

tolerating at most one malicious corruption (t = 1). While most works outlined in Section 1.3
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considered round-optimal protocols, we outline the relevant literature related to constant-round

efficient MPC with small number of parties beyond the two-party case below.

4.1.1 Related Work.

The regime of MPC over small population has seen growth both in the domain of low-latency

and high-throughput protocols. Relying on garbled circuits, the unique selling point of the

former is constant rounds and these serve better in high-latency networks such as the Internet.

Whereas, the added edge of the latter category is low communication overhead (band-width)

and simple computations. Building on secret sharing, this category however takes number of

rounds proportional to the depth of the circuit representing the function to be computed. These

primarily cater to low-latency networks.

In the domain of constant-round protocols which is the focus of this work, [159] presents a 3-

round efficient 3-party (3PC) protocol tolerating at most one malicious corruption and involving

transmission and evaluation of a single garbled circuit. Concurrently, in the 3-party setting,

[129] achieves a 2-round protocol whose cost is essentially that of 3 garbled circuits. However,

both these protocols achieve a weaker notion of security i.e sa. In the presence of a broadcast

channel, the 3PC of [159] can additionally achieve ua, albeit for specific class of functions that

give same output to all. The work of [129] presents a 2-round 4-party (4PC) protocol tolerating

single corruption that achieves god in the absence of broadcast channel. Since the focus of [129]

is on minimizing the number of rounds of interaction, the protocol comprises of several parallel

instances of private simultaneous message (PSMs) which when instantiated with garbled circuit

(GC) would sum upto communication of 12 GCs. The recent work of [166] explores the exact

round complexity of 3PC protocols under various security notions including fn and god. While

the protocols are round-optimal, they involve a minimum of 3 GCs. The work of [52] explores

the case of 5-party with two malicious corruptions and relies on distributed garbling approach

of [29] (which is more expensive than Yao’s garbling). Recent paper of [28], improving on the

distributed garbling techniques of [29], proposes an honest majority protocol with n > 3t and

shows practical implementation for 31 parties. The results mentioned above are designed in the

honest majority. [58] studies 3PC in dishonest majority setting. In summary, the most relevant

work that is close to our work efficiency-wise is that of [159] which we compare with.

There have been a flurry of works in the high-throughput domain recently [7, 91, 6, 8]. In 3-

party setting, [7] and [91, 109] presents semi-honest and maliciously secure protocols respectively

that are extremely fast on standard hardware. [8] significantly improves over the protocol of

[91], achieving the computation rate of 1.15 billion AND gates/second. In the 4 party setting,

the work of [109] provides a construction that is secure against one malicious corruption based
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on the dual execution approach. They incur communication of 1.5 bits per party per gate for

boolean circuits and thus offer a performance that is 4.5 times better than that of [8]. [109]

also includes protocol variants for achieving fn and god.

4.1.2 Our Results.

While our contributions appear in detail in Section 1.4.1.2, we give a quick summary below

(illustrated in Tables 4.1, 4.2 as well).

Assuming the minimal model of pairwise-private channels, we present two protocols that

involve computation and communication of a single GC– (a) a 4-round 3PC with fn, (b) a 5-

round 4PC with god. Empirically, our protocols are on par with the best known 3PC protocol

of [159] that only achieves sa, in terms of the computation time, LAN runtime, WAN runtime

and communication cost. In fact, our 4PC outperforms the 3PC of [159] significantly in terms

of per-party computation and communication cost. With an extra GC, we improve the round

complexity of our 4PC to four rounds. The only 4PC in our setting, given by [129], involves

12 GCs. Assuming an additional broadcast channel, we present a 5-round 3PC with god that

involves computation and communication of a single GC. A broadcast channel is inevitable in

this setting for achieving god, owing to the impossibility result of [67]. The overall broadcast

communication of our protocol is nominal and most importantly, is independent of the circuit

size. This protocol too induces a nominal overhead compared to the protocol of [159].

Table 4.1: Theoretical and Empirical Comparison
Ref. # Parties # GCs Rounds Security Broadcast

[159] 3 1 3 sa 7

Our Work [46] 3 1 4 fn 7

Our Work [46] 3 1 5 god 3 [67]

[129] 4 12 2 god 7

Our Work [46] 4 2 4 god 7

Our Work [46] 4 1 5 god 7

Table 4.2: Experimental Results
Ref. Computation LAN WAN Communication

( ms) ( ms) ( s) ( KB)

3PC with fn 0.06 – 0.16 0.03 – 0.8 0.21 – 0.5 5.63 – 10.74

4PC with god 0.19 – 2.61 (g) 0.17 – 2.45 (g) 0.02 (+.49) – 0.31 (+.52) 18.63 (−.01) – 500.56 (−.1) (g)

3PC with god 0.16 – 0.3 1.52 – 3 - 0.19 (+.02) – 0.46 (+.11)

Table 4.2 shows the overhead or gain (indicated by g) of our protocols compared to the 3PC

of [159] in terms of average computation time, LAN runtime, WAN runtime and communication

cost, where the average is taken over the number of parties and the range is taken over the
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choice of circuits. The increase in the overhead or decrease in the gain for the worst case 5-

round run of our 3PC and 4PC with god is shown in the bracket. With respect to our 4-round

4PC with god, in the worst case run, we save one round at the expense of one garbled circuit

over our 5-round 4PC which amounts to a value in the range 72 KB−1530 KB for the benchmark

circuits.

Roadmap: The preliminaries appear in Section 4.2. Our efficient 3PC protocols achieving fn

and god are presented in Section 4.3 and 4.6 respectively. The 4PC protocol with rounds 5 and

4 appear in Section 4.4 and 4.5 respectively. The experimental results are presented in Section

4.7. The security proofs of the four protocols appear in Sections 4.8.1 - 4.8.4.

4.2 Preliminaries

4.2.1 Model and Notations

We consider a set P of at most four PPT parties, denoted by P1, P2, P3, P4. We assume that any

two parties are connected by pair-wise secure and authentic channels. We assume the existence

of a broadcast channel only for the 3PC protocol achieving god. Our model assumes a PPT

adversary A, who can statically and maliciously corrupt at most one party out of the 3 or 4

parties. For any subset X of P, ind(X) refers to the indexes of the parties. For example, when

X = {P1, P2}, then ind(X) = {1, 2}.

4.2.2 Primitives

In addition to the primitives defined in Chapter 2, we use the following:

Replicated Secret Sharing (RSS) [70, 131] We use a 3-party replicated secret sharing

scheme private against one corruption (1-private). Informally, for a secret s to be shared over

a boolean field F2, we randomly choose r1, r2 and compute r3 such that s = r1⊕ r2⊕ r3 (where

r3 = s ⊕ r1 ⊕ r2). We refer to r1, r2, r3 as the three shares of s. Each of the 3 participating

parties say P1, P2, P3 are given access to two among the three shares i.e (r2, r3), (r1, r3) and

(r1, r2) respectively. Reconstruction of s is possible by combining the shares held by any two

among the three parties. However, given only the shares of a single party, the distribution of

shares appears random and hence s remains private. We say that two parties say P1, P3 hold

consistent shares if r′2 = r2 where (r′2, r3) are the shares held by P1 and (r1, r2) are the shares

held by P3 [129].

Pre-Image Resistance Hash [178] Consider a hash function family H: K ×M → Y. The

hash function H is said to be pre-image resistant if for all probabilistic polynomial-time ad-

versaries A, given y = Hk(x) where k ∈R K;x ∈R {0, 1}m, Pr[x′ ← A(k, y) : Hk(x
′) = y] is
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negligible in κ, where m = poly(κ).

Collision-Resistant Hash [178] Consider a hash function family H′: K×M→ Y. The hash

function H′ is said to be collision resistant if for all probabilistic polynomial-time adversaries

A, given H′k where k ∈R K;x ∈R {0, 1}m, Pr[(x, x′) ← A(k) : (x 6= x′) ∧ H′k(x) = H′k(x
′)] is

negligible in κ, where m = poly(κ).

4.3 3PC with fn

In this section, we present an efficient fair 3PC protocol that consumes 4 rounds in a network

constituting of only pairwise-private channels. The starting point of our protocol is that of

[159]. In the protocol of [159], P1, P2 act as garblers while P3 acts as an evaluator. The garblers

use common randomness to construct the same GC individually. Since at most one party can be

corrupt, a comparison of GCs received from the garblers allows the evaluator P3 to conclude its

correctness. Besides, P3 additively shares his input among the at the beginning of the protocol.

This eliminates the need of oblivious transfer (OT) to transfer the evaluator’s encoded input,

as the garblers can directly send the encoded inputs corresponding to their own input as well as

the share of P3’s input held by them. To force the garblers to input encoded inputs (the keys)

that are consistent with the GCs, the following technique is adopted. Together with the GC,

each garbler also generates the commitment to the encoding information using the common

shared randomness and communicates to the evaluator. Again a simple check on whether the

set of commitments are same for both the garblers allows to conclude their correctness. Now it

is infeasible for the garblers to decommit the encoded input corresponding to their own input

and the evaluator’s share to something that are inconsistent to the GC without being caught.

Following a common trick to hide the inputs of the garblers, the commitments on the encoding

information corresponding to every bit of the garblers’ input are sent in permuted order that is

private to the garblers. Now if evaluation of the GC by P3 is successful, P3 computes the output

using soft decoding on the encoded output Y. P3 then sends Y to the garblers, enabling them

to decode the output. For a function where all parties receive same output, depending upon

whether Y is broadcast or sent over pairwise channel, the protocol achieves ua or sa respectively.

Specifically, in the latter case when Y is sent over point-to-point channel, a corrupt P3 may

choose to send Y to only one of the garblers, thereby achieving sa.

In the protocol of [159], the only scenario in which fn is violated is when a malicious P3

computes the output via soft decoding but chooses not to send (or sends wrong) encoded output

Y to the garblers. At a high-level, we overcome this limitation by using oblivious garbling instead

and withholding the decoding information d from P3 until he forwards Y. Obliviousness ensures
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that P3 gets no information regarding output as long as d is unknown to him. A corrupt P3 is

forced to send Y to the garblers if he wants to learn the output, in which case at least one the

garblers P1, P2 also learn the output. Authenticity ensures that P3 cannot forge an encoded

output Y′ 6= Y such that its decoding is valid. Even if P3 chooses to abort, fn is achieved as

no party learns the output. However, this new step gives rise to the following issues: (a) A

corrupt garbler may send incorrect decoding information to an honest P3 who forwarded Y; (b)

A corrupt P3 may send the correct encoded output Y (obtained by GC evaluation) to only one

of the garblers. To tackle (a), the garblers are made to commit to the decoding information

which P3 can verify by means of cross-checking across garblers. The binding property of the

commitment scheme prevents the corrupt garbler from lying about the decoding information

later. The second issue is trivial to resolve with a broadcast channel. Without a broadcast

channel, each garbler is made to forward the encoded output received from the evaluator to

its co-garbler with a “proof” that he indeed received the encoded output from P3. Without a

proof, a corrupt garbler may “pretend” to have received the encoded output from honest P3,

whereas in reality P3 was unable to evaluate the GC.

We facilitate this “proof” using a preimage-resistant cryptographic hash H function (alter-

nately, one-way function can be used). In Round 1, each garbler Pi chooses a random value

ri (which will serve as the proof) and sends its digest hi = H(ri) to the other two parties,

while it sends ri only to P3. In Round 2, each garbler Pi forwards the digest received from its

co-garbler (in Round 1) to P3. For each digest hi, P3 verifies its validity (whether hi = H(ri))

and consistency (whether both garblers are in agreement with respect to hi) and aborts in case

the checks fail. If no abort has occurred, an honest P3 who is able to obtain Y upon successful

GC evaluation additionally sends the preimage of a garbler’s digest with the fellow garbler.

This preimage helps a garbler to convince its fellow garbler about the fact that Y (which is also

valid) was received from P3. When an honest P3 was unable to evaluate GC, the property of

pre-image resistance of the hash ensures that the corrupt garbler P1 will not have access to any

r′2 such that H(r′2) = h2 except with negligible probability. Therefore, he will not be able to fool

his honest co-garbler P2 to accept. On the flip side, consider a corrupt P3 who sends Y to P1

alone. If P3 sends any proof, say r′2 to P1 that verifies (may not be the same r2 received from

P2; note that given r2, it may be possible for corrupt P3 to compute r′2 such that H(r′2) = h2

since we do not assume H is second-preimage resistant), then P1 would check H(r′2) = h2 holds,

accept the output, forward the proof and the output to P2. Importantly, pre-image resistance

suffices for an honest P2 who hasn’t received Y from P3, to conclude that P3 is corrupt upon

receiving any r′2 (may not be equal to r2 picked by him) from P1 such that H(r′2) = h2. Thus,

P2 can simply accept output from P1.
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The protocol f3PC appears in Figure 4.1. We use an eNICOM (Section 2.4.2.1) to commit to

the decoding information. This is due to a technicality that arises in the security proof explained

in Section 4.8.1. Our proofs and proposed optimizations for f3PC which are incorporated in

our implementation are explained subsequently. Lastly, the protocol f3PC cannot be naively

extended to obtain god even in the presence of a broadcast channel (which is necessary due

to [67]). When the evaluator fails to obtain the encoded output, there should be a way to

compute the output which either seems to need more parties to enact the role of the evaluator

and consequently involvement of more than one GCs or seems to require more than four rounds.

We take the latter way-out and design a 5-round protocol in Section 4.6.

Inputs: Party Pα has xα for α ∈ [3].

Common Inputs: The circuit C(x1, x2, x3, x4) that computes f(x1, x2, x3⊕x4) where x1, x2, x3, x4

as well as function output belong to {0, 1}` for ` ∈ poly(κ). P3 is assumed to be the evaluator

and (P1, P2) as the garblers.

Output: y = C(x1, x2, x3, x4) = f(x1, x2, x3 ⊕ x4) or ⊥.

Primitives: G = (Gb,En,Ev,De) that is correct, private, oblivious and authentic, a NICOM (Com,

Open), an eNICOM (eGen, eCom, eOpen,Equiv), a PRG G and a preimage-resistant Hash H.

Round 1:

– P1 chooses random seed s ∈R {0, 1}κ for G and sends s to P2.

– P1 does the following (Similar steps will be executed by P2): Sample t1 corresponding to its

share epp1 for eNICOM. Compute h1 = H(r1), where r1 is chosen uniformly at random. Send

{epp1, h1} to P2 and {h1, r1} to P3.

– P3 samples pp for the NICOM and sends (x31, pp) to P1, (x32, pp) to P2.

Round 2:

– Pi(i ∈ [2]) does the following:

◦ Compute epp using eppi and the share eppj received from Pj (j ∈ [2] \ i). Forward hj

received from Pj to P3.

◦ Compute GC (C, e, d) ← Gb(1κ, C) using randomness from G(s). Assume {K0
α,K

1
α}α∈[`],

{K0
`+α,K

1
`+α}α∈[`], {K0

2`+α,K
1
2`+α}α∈[2`] correspond to the encoding information for the in-

put of P1, P2 and shares of P3 respectively.

Protocol f3PC
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◦ Choose permutation strings p1, p2 ∈R {0, 1}` for the garblers’ input wires and generate com-

mitments to e and d using randomness from G(s). For b ∈ {0, 1}, (cbα, o
b
α)← Com(pp, e

pα1⊕b
α ),

(cb`+α, o
b
`+α)← Com(pp, e

pα2⊕b
`+α ) for α ∈ [`] and (cb2`+α, o

b
2`+α)← Com(pp, eb2`+α) for α ∈ [2`].

Let (c, o)← eCom(epp, d). Set B =
{

epp,C, {cbα}α∈[4`],b∈{0,1}, c
}

.

– P1 computes m1 = x1 ⊕ p1 and sends to P3: B, the openings of the commitments corresponding

to (x1, x31) i.e {om
α
1

α , o
xα31
2`+α}α∈[`] and m1. Similarly, P2 computes m2 = x2 ⊕ p2 and sends to

P3: B, the openings of the commitments corresponding to (x2, x32) i.e {om
α
2

`+α, o
xα32
3`+α}α∈[`] and

m2.

– P3 does the following computation locally.

◦ Abort if B or (h1, h2) received from P1, P2 is not identical or H(ri) 6= hi for some i ∈ [2].

◦ Abort if (X1,X2,X31,X32) contains ⊥ where for α ∈ [`] : Xα1 = Open(pp, c
mα1
α , o

mα1
α ), Xα2 =

Open(pp, c
mα2
`+α, o

mα2
`+α),Xα31 = Open(pp, c

xα31
2`+α, o

xα31
2`+α),Xα32 = Open(pp, c

xα32
3`+α, o

xα32
3`+α).

◦ Else set X = X1|X2|X31|X32 and run Y ← Ev(C,X) for C ∈ B.

Round 3: If Y 6= ⊥, P3 sends (Y, r2) to P1 and (Y, r1) to P2.

Round 4: Pi (i ∈ [2]) does the following: Let (j ∈ [2]\i). Execute y ← De(Y, d), compute z = H(r′j)

if (Y, r′j) received from P3. If y 6= ⊥ and z = hj (received from Pj in Round 1), send o to P3 and

(y, r′j) to Pj . Else set y = ⊥.

The parties do the following.

– P3 runs d ← eOpen(epp, c, o) where P3 received o from Pi (i ∈ [2]). For d 6= ⊥, P3 outputs

y ← De(Y, d).

– Pi (i ∈ [2]) does the following if y = ⊥: If received (y′, r′i) from P[2]\i such that H(r′i) = hi, set

y = y′.

Figure 4.1: Protocol f3PC

4.3.1 Correctness and Security

Theorem 4.1 The protocol f3PC is correct.

Proof: The inputs committed by P3 is defined by the shares it distributes to the garblers

in the first round. The inputs committed by the garblers are defined based on their openings

of commitments. The encoded output obtained upon evaluation is based on the committed

inputs. The correctness of the output follows from the correctness of the garbling scheme. 2
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While the formal proof is deferred to Section 4.8.1, we give intuition for fn and state the

theorem below. We need to argue that a corrupt party gets the output of the computation

if and only if the honest parties receive the output. For the forward direction assume that a

corrupt party gets the output. Say the evaluator P3 is corrupt. Due to oblivious garbling, P3

would obtain the output only if given access to decoding information. This would occur only

if he had sent a valid (Y, rj) to at least one of the garblers say Pi (Pj is the co-garbler) i.e.,

De(Y, d) 6=⊥ and H(rj) = hj. Pi would communicate (Y, rj) to Pj as well which would be

verified and subsequently accepted by Pj. Thus all parties would learn the output. The case

of corrupt garbler, say P1 obtaining the output is straightforward - it would occur only in the

case when the honest P3 is able to evaluate the garbled circuit successfully. In this case, it is

easy to see that the honest garbler P2 and evaluator P3 would be able to obtain the output

using encoded output and decoding information received from the other respectively.

For the opposite direction, suppose an honest P3 gets the output. Both garblers must have

obtained the output via the encoded output sent by P3. Finally an honest garbler, say P1

who gets the output by decoding Y received from P3, would forward the decoding information

enabling P3 to get the output as well. Next, an honest P1 would accept the output only if he

has a valid proof r′2 corresponding to his co-garbler P2 i.e H(r′2) = h2. This proof would be

verified and output accepted by P2. This completes the intuition.

Theorem 4.2 If one way functions exists, then protocol f3PC securely realizes the functionality

Ffair (Figure 2.3) against a malicious adversary that corrupts at most one party.

4.3.2 Optimizations and generalization

We propose the following optimizations to improve communication efficiency. Firstly, P1 and

P2 treat the common message B sent privately to P3 in Round 2 as a string B, divided into

equal halves B = B1||B2. P1 sends B1 and H′(B2) while P2 sends H′(B1) and B2 to P3, where

H′ refers to a collision-resistant hash function (definition in Section 4.2) This would suffice for

P3 to verify if P1, P2 agree on a common B. This optimization technique not only reduces the

communication, but also improves the latency (transmission time) when both P1, P2 run at the

same time [159]. The second optimization is to use equivocal commitment on the hash of the

decoding information (collision-resistant hash), rather than simply committing on the decoding

information.

Our protocol design has a natural extension to more than 3 parties (still for one corrup-

tion) without inflating the round complexity and number of GCs. The generalized protocol

comprises of (n− 1) garblers who use common randomness for garbling and a single evaluator
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who additively shares her input amongst the garblers. For n > 3, the correctness of GC can be

concluded based on majority rule on the GCs received from the garblers.

4.4 4PC with god

In this section, we propose an efficient 5-round 4PC secure against one active corruption,

assuming pairwise channels. Our protocol involves communication and computation of just one

GC, in contrast to the protocol of [129] that requires 12 GCs. We take the route of employing

two garblers and one evaluator as in our fair 3PC protocol. The fourth party simply shares

its input amongst the rest. When the evaluator is honest, our protocol ensures that either an

honest party identifies the corrupt party or a conflict (assured to include the corrupt party), or

the honest evaluator is successful in GC evaluation by the end of Round 2. In the former case,

the honest party would identify at least one honest party, to whom she sends her possessed

input shares in Round 3. We use replicated secret sharing (RSS) that allows reconstruction

of the output based on views of any two (honest) parties. In the latter scenario, the encoded

output obtained upon GC evaluation is instantly used for output computation by all the parties

in Round 3. Thus, in either scenario, at least one of the honest parties will be able to compute

the output latest by Round 3 and everyone will receive it by Round 4. On the other hand, a

corrupt evaluator can drag the honest parties up to Round 4 to reveal its identity. This is the

only case that makes our protocol run for 5 rounds where the last round is used by the honest

parties to exchange their possessed shares to compute the output on clear.

With the above high level idea, we describe a sub-protocol that enforces input consistency

as per RSS and then we present our 5-round protocol g4PC. Each party Pi (i ∈ [4]) maintains

a pair of global sets– a corrupt set Ci and a conflict set Fi which respectively hold identities of

the party detected to be corrupt and pairs of parties detected to be in conflict.

4.4.1 Protocol for Input Consistency

Our protocol InputCommiti that runs for two rounds, enforces input consistency of party Pi’s

secret xi as per RSS. Recall that as per RSS for three shareholders, Pi makes three shares of

its secret xi as xi = ⊕Pj∈Pixij where Pi = [4] \ i denotes the shareholders (i.e. all but Pi).

The share xij goes to all but Pi and Pj, namely to the set of parties in Pij = P \ {Pi, Pj}.
Now to ensure that a corrupt Pi remains committed to its secret or a corrupt shareholder Pj

later cannot open a share of Pi differently, we use commitments on the shares. Namely, in

the first round, commitments on input shares are distributed by Pi to all while the openings

are sent only to the relevant shareholders. In the second round, the shareholders exchange

the commitments received in the first round, while the openings are exchanged only with the
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relevant shareholders. A simple majority rule suffices to conclude on the commitment cij of

the ‘committed’ share xij. When no honest majority is found, it can be concluded that Pi is

corrupt and his input is taken as a default value by all parties. When the commitment and the

opening distributed by Pi is found to be inconsistent, then Pi is identified as corrupt. When

the commitment as distributed by Pi and forwarded by Pj contradict, then Pi and Pj are put

in conflict set.

A share xij is said to be ‘committed’ if each honest Pα ∈ Pi holds cij and each honest

Pβ ∈ Pij holds oij such that cij opens to xij via oij. A secret xi is said to be ‘committed’ if

each of its three shares are committed. An honest party always ‘commits’ to its secret. When

a corrupt party does not commit to a secret, it is either identified as corrupt or found to be in

conflict by at least one honest party. For the commitments, we use a strong NICOM according

to which binding holds even for adversarially chosen public parameter of the NICOM (Section

2.4.2). Looking ahead the strong NICOM ensures that Pi itself cannot change its committed

secret later and also cannot keep two different parties on different pages in terms of the opening

information oij. Protocol InputCommiti appears in Figure 4.2.

Inputs: Party Pi has xi and others have no input.

Notation: Pi and Pij denote the set P \ Pi and respectively P \ {Pi, Pj}. ind(S) denotes the set of

indices belonging to the parties in a set S.

Output: Each Pk ∈ Pi outputs ({cij}j∈ind(Pi), {oij , xij}j∈ind(Pik),Ck,Fk). {cij , oij} denote the com-

mitment and opening of the share xij . Ck and Fk denote the corrupt and conflict set respec-

tively.

Primitives: A NICOM (sCom, sOpen) with strong binding property (Section 2.4.2), a 3-party 1-

private RSS (Section 4.2).

Round 1:

– Pi shares his input as xi = ⊕j∈ind(Pi)xij .

– Pi samples ppi and generates commitments on shares xij for j ∈ ind(Pi) as (cij , oij)← sCom(ppi, xij)

– For every xij , Pi sends (ppi, cij) to Pi and oij to Pij .

Protocol InputCommiti()
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Round 2: With respect to every share xij , every Pk in Pij sets Ck = {Pi} if sOpen(ppi, cij , oij) =

⊥. Otherwise, Pk forwards (ppi, cij) to Pi and oij to Pij . Now Pk does the following local

computation.

– Set Ck = {Pl} if Pl forwards an invalid opening i.e sOpen(ppi, cij , oij) = ⊥ holds for (ppi, cij , oij)

sent by Pl.

– Set Fk = {Pi, Pl} if (ppi, cij) received from Pi and forwarded by Pl do not match.

– Set Ck = {Pi}, if there is no majority among the versions of (ppi, cij) forwarded by the parties

in Pi. If Pk ∈ Pij , set xij to a default value (and commitments are assumed appropriately).

Otherwise, set (ppi, cij) as the majority value, oij as the corresponding opening, and xij =

sOpen(ppi, cij , oij).

Figure 4.2: Protocol InputCommiti()

Lemma 4.1 If Pi is honest, its chosen input xi is committed in InputCommiti.

Proof: Since the corrupt party forms a minority in Pi, irrespective of its behaviour in Round

2, every xij and therefore xi remains committed. 2

Lemma 4.2 When corrupt Pi misbehaves, it belongs to either Cj or Fj of some honest Pj by

the end of InputCommiti.

Proof: For the jth (j ∈ ind(Pi)) share of Pi, it can misbehave in the following ways: (a)

Pi sends different versions of (ppi, cij) to the parties in Pi; (b) Pi sends invalid opening oij (or

does not send any opening) to some party in Pij. In the former case, all the honest parties will

populate their corrupt set if there is no majority in Pi’s commitments else they populate their

conflict set with a pair, consisting of Pi. In the latter case, the honest recipient of the invalid

opening will include Pi in its corrupt set. So the lemma holds. 2

Lemma 4.3 Either corrupt Pi ‘commits’ to an input or all honest parties agree on a default

value by the end of InputCommiti.

Proof: For the jth (j ∈ ind(Pi)) share of Pi, there are two cases based on whether Pi

sends the same common message (ppi, cij) to at least two among the parties in Pi with valid

corresponding opening oij sent to every party in Pij. If not, the exchange of messages among

the honest parties in Round 2 will not constitute a majority and all the honest parties would

detect Pi to be corrupt and a default value will be taken as xij. Else, cij would be accepted as
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the commitment for the jth share. The exchange of opening oij among the parties in Pij ensure

that they have access to the corresponding unique committed share xij. The uniqueness of the

share is ensured by the binding property of commitment scheme. 2

4.4.2 Our protocol

Without loss of generality, P1, P2 take the role of garblers and P3 enacts the role of evaluator in

our protocol g4PC. In parallel to running the input commitment sub-protocol for every party

Pi, protocol g4PC, in similar spirit to our previous protocols, proceeds by having the garblers P1

and P2 share and utilize common randomness to compute individually the same garbled circuit

and permuted commitments of the encoding information corresponding to the three shares of

the inputs of all the parties. The permutation strings are used for all the shares for the sake of

uniformity. Then the strings corresponding to the shares possessed by an evaluator are simply

disclosed to her, emulating the case in the three-party protocols where no permutation string is

needed for the shares of an evaluator to protect them from a bad garbler. As per RSS, a party

Pα would ideally hold the shares {xij}i∈[4],j∈ind(Piα) that include its three shares {xαj}j∈Pα and

the two designated shares {xij}j∈Piα of every other party Pi by the end of Round 1. Note that

the latter shares may not be the committed ones and final committed values may differ by the

end of Round 2 (say, if the majority turns out to be different or if a default value is assumed).

In the second round, while the garblers send the GCs, committed encoding information in

permuted order, the relevant permutation strings on clear, the opening of the shares held by

it, an evaluator checks the sanity of the received information, often leveraging the fact that at

least one of the garblers is honest and would have computed the information correctly. The

round-saving trick of composing the input commitment with the release of the encoded inputs

for the shares in parallel leads to release of encoded inputs for non-committed shares, which in

turn results in evaluation of the circuit on non-committed inputs. Evaluating the circuit only

when no corrupt and no conflict is detected by the end of Round 2 would solve the problem for

an honest evaluator, as this ensures encoded input for committed shares alone has been dealt.

The trick to prevent a corrupt evaluator from getting output on non-committed inputs is to

withhold (yet commit in Round 1) the decoding information for an oblivious garbling scheme

and release the (hash of) decoding information only upon a confirmation that an encoded

output is computed using committed inputs. The simple check that a corrupt evaluator has

no conflict with any of the garblers ensures that the garblers must be in possession of the

committed shares of the corrupt evaluator by the end of first round itself and so the released

encoded inputs correspond to the committed shares (and the encoded output corresponds to

committed inputs).
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The repetitive disbursal of shares in RSS brings along another issue. Both the garblers

possess the share x34. An evaluator receives encoded input for these shares from both the

garblers, as per the protocol. A corrupt evaluator P3 can exploit this step to obtain encoded

inputs for two different versions of the share x34 (by dealing to the garblers) and subsequently

evaluates the circuit on multiple inputs. While having the decoding information hidden would

not leak the clear outputs, the corrupt evaluator, on holding the the encoded outputs, can

conclude if its two different chosen inputs lead to the same output or not. While the issue is

very subtle, the fix is quite easy where only one pre-determined garbler is given responsibility

of releasing the encoded input for the common share x34. In order to avoid repeated disclosing

of encoded outputs of the common shares between the garblers, this approach is taken for all

the common shares, namely {x13, x14, x23, x24, x34, x43}. To balance load, we ask P1 to open

encoded inputs for {x13, x14, x34} and P2 to take care of the rest.

In Round 3, if any party identifies the corrupt or any conflict, it sends the openings for

all the shares that it possesses from the input commitment protocol to a party who remains

outside the corrupt and conflict sets and thus guaranteed to be honest. This special party is

denoted as TTP who takes care of reconstructing all the inputs and computing the output on

clear and lastly handing it over to all the parties in the next round. Even a corrupt evaluator

cannot make an honest TTP to compute an output on anything other than committed inputs.

The strong binding property of the commitments does not allow a corrupt evaluator to change

its own committed shares. To disambiguate about the identity of TTP, a party when disclosing

its opening to its selected TTP notifies the identity of the designated TTP to all. When a TTP

takes responsibility, all the parties safely accept the output relayed by the TTP in the next

round, for a TTP is never corrupt. An honest party will never elect a corrupt party as a TTP

and a corrupt evaluator does not have a corrupt companion to enact a TTP. Therefore, if an

honest party elects a TTP in Round 3, all terminate the protocol with output by Round 4.

On the other hand when no conflict and no corrupt is detected, an honest evaluator computes

the encoded output and forwards the same to the garblers in Round 3. Similarly, an honest

garbler opens the (hash of) decoding information to P3 and P4. We use preimage-resistant hash

to enable P3 and P4 to compute the output while preserving the authenticity of the garbling

scheme. For an honest evaluator, then all parties compute the output by the end of Round

3 itself via the encoded output and decoding information. A corrupt evaluator, however, can

keep the honest parties on different pages in terms of the identity of TTP, while not disclosing

its possessed shares to anyone. In this case, the honest parties realize that the evaluator P3 is

corrupt earliest at the end of Round 4. They can then exchange their shares in Round 5 to

compute the output on clear like a TTP does. The protocol appears in Figure 4.3.
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Inputs: Party Pα has xα for α ∈ [4].

Common Inputs: The circuit C(x1, x2, x3, x4) that computes f(x12⊕x13⊕x14, x21⊕x23⊕x24, x31⊕
x32 ⊕ x34, x41 ⊕ x42 ⊕ x43) each input, their shares and output are from {0, 1}`. P3 is the

evaluator and (P1, P2) are the garblers.

Output: y = C(x1, x2, x3, x4)

Primitives: G = (Gb,En,Ev,De) that is correct, private, oblivious and authentic, a NICOM (Com,

Open), a PRG G, a preimage-resistant Hash H and sub-protocol InputCommitα (Figure 4.2)

for every Pα ∈ P.

Round 1: Round 1 of InputCommitα() for every Pα ∈ P is run. In parallel,

– P1 chooses random seed s ∈R {0, 1}κ for G and sends s to P2.

– P3 samples pp3 for NICOM and sends to P1, P2.

Round 2: Round 2 of InputCommitα() is run. In parallel,

– Pg(g ∈ [2]) locally computes the following:

◦ Compute garbled circuit (C, e, d) ← Gb(1κ, C) using randomness from G(s). Assume

{K0
α,K

1
α}α∈[3`], {K0

3`+α,K
1
3`+α}α∈[3`], {K0

6`+α,K
1
6`+α}α∈[3`], {K0

9`+α,K
1
9`+α}α∈[3`] correspond

to the encoding information for the input shares of P1, P2, P3, P4 respectively (w.l.o.g).

◦ Let pij ∈R {0, 1}` be permutation string for input wires derived from randomness G(s)

corresponding to Pi’s shares i.e {xij}j∈ind(Pi) for i ∈ [4] and pi ← ||j∈ind(Pi)pij .

◦ Generate commitments to e and d using randomness from G(s). For b ∈ {0, 1} and

α ∈ [3`], compute (cbα, o
b
α) ← Com(pp3, e

pα1⊕b
α ), (cb3`+α, o

b
3`+α) ← Com(pp3, e

pα2⊕b
3`+α), (cb6`+α,

ob6`+α)← Com(pp3, e
pα3⊕b
6`+α), (cb9`+α, o

b
9`+α)← Com(pp3, e

pα4⊕b
9`+α). Let (c, o)← Com(pp3,H(d)).

Set B =
{

C, {cbα}α∈[12`],b∈{0,1}, c, {pij}i∈[4],j∈ind(Pi3)

}
, where {pij}i∈[4],j∈ind(Pi3) refer to the

permutation strings of wires corresponding to the shares known to P3.

– Pg(g ∈ [2]) sends B to P3 and c to P4. If Cg = ∅, Pg sends the openings of the commitments in B

corresponding to {xij}i∈[4],j∈ind(Pig) i.e the input shares that it holds at end of Round 1 and

Mg = {mij}i∈[4],j∈ind(Pig) where mαβ = pαβ ⊕ xαβ. The common shares, however, are opened

by one garbler. The openings corresponding to commitment of {x13, x14, x34} are sent only by

P1. The openings corresponding to commitment of {x23, x24, x43} are sent only by P2.

– P3 locally does

Protocol g4PC()
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◦ Add {P1, P2} to F3 if B received from P1, P2 is not identical.

◦ If C3 = F3 = ∅ (indicating no conflict with the garblers so far), then (a) add Pg to C3 (g ∈ [2])

when the indices {m̄ij = pij ⊕ xij}i∈[4],j∈ind(Pi3), computed using its version of xij and pij ,

received from Pg, mismatches with {mij}i∈[4],j∈ind(Pi3) received from Pg; (b) add (P1, P2) to

F3 when M1,M2 received from them is not consistent w.r.t. {m13,m14,m23,m24,m34,m43}.

◦ If C3 = F3 = ∅, then add Pg to C3 when any of the openings sent by Pg (g ∈ [2]) results to

⊥. Otherwise, it sets X = ||i∈[4],j∈ind(Pi)Xij , where Xij contains encoded input for xij and

computes Y ← Ev(C,X) with C ∈ B.

– P4 locally adds {P1, P2} to F4 if c received from them do not match.

Round 3:

– If Cα 6= ∅ ∨ Fα 6= ∅, Pα (α ∈ [4]) sends Vα = {oij}i∈[4],j∈ind(Piα) to Pβ where Pβ /∈ Cα ∪ Fα and

(TTP, β) to all.

– If Cg = Fg = ∅, Pg (g ∈ [2]) sends o to P3, P4.

– If C3 = F3 = ∅, P3 sends Y to P1, P2 and P4.

– If Pα (α ∈ [4]) receives Vβ from Pβ in Round 3, it uses Vβ to open its missing shares {xiα}i∈[4]\{α}.

If one of the opening leads to ⊥, set Cα = Pβ. Else compute y = f(⊕j∈ind(P1)x1j ,⊕ind(P2)x2j ,

⊕ind(P3)x3j ,⊕ind(P4)x4j).

– If Pg (g ∈ [2]) receives Y from P3 such that P3 /∈ Cg and (P3, P1), (P3, P2) /∈ Fg, then compute

y ← De(Y, d). If P4 receives Y as above and o from one of the Pgs, it computes y after recovering

H(d)← Open(pp, c, o). If P1/P2/P4 receives invalid Y, they populate their respective corrupt

set C with P3. If P3 receives o, then it computes H(d) and subsequently y.

Round 4:

– If Pα computed y, it sends (y,TTP) when elected as TTP and y otherwise to all and terminates.

– If (TTP, β) is received in Round 3 and (y,TTP) is received from Pβ, a party Pα outputs y and

terminates. If only the former condition is true, then Pα identifies the sender of the message

(TTP, β) as corrupt.

– If Cα 6= ∅ and y is received from a party not in Cα, Pα outputs y and terminate.

Round 5: If Pα (α ∈ [4]) has not terminated yet, it sends its view Vα to every party in P \ Cα. On

receiving Vβ from some Pβ 6∈ Cα, it computes y as a TTP does and terminates.

Figure 4.3: Protocol g4PC()
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4.4.3 Correctness and Security

We prove the correctness via a sequence of lemmas.

Lemma 4.4 For honest Pi, Pj, Pi /∈ Cj holds.

Proof: An honest Pj would add Pi to Cj if one of the following are true: (a) During

InputCommiti if either there is no majority among the version of (ppi, cij) received from the

set of parties Pi or Pj receives an invalid opening corresponding to commitment on input share

from Pi; (b) garbler Pi sends labels inconsistent with the message that it sent to evaluator Pj

in Round 1; (c) garbler Pi’s opening of committed encoded input of GC sent to evaluator Pj

fails; (d) evaluator Pi sends an invalid Y to Pj; (e) Pi assigns Pj to be the TTP and sends Vi

comprising of invalid openings of committed shares; (f) Pj received (TTP, β) from Pi but no

output is received from Pβ in Round 4. Since none of the above can occur for honest Pi and

Pj, the lemma holds. 2

Lemma 4.5 A pair of honest parties cannot belong to Fi of an honest Pi.

Proof: An honest Pi would add (Pj, Pk) to Fi if one of the following holds: (a) During

execution of InputCommitj, the versions of Pj’s commitment on its input shares received by Pi

from Pj and Pk were inconsistent (analogous condition w.r.t. InputCommitk); (b) when (Pj, Pk)

are garblers, Pi = P4 and o received from Pj, Pk is not identical; (c) (Pj, Pk) are garblers, Pi = P3

and: (c.1) B received from Pj, Pk is not identical (c.2) when Fi = ∅ at the end of of all the

four executions of InputCommit but the indices received by Pi from the garblers corresponding

to the common shares held by them do not match i.e when Mj,Mk received from them is not

consistent. It is easy to verify that cases (a), (b) and (c.1) cannot occur for honest Pj, Pk.

Regarding case (c.2), the argument follows from the fact that Pj, Pk must be in agreement

with respect to corrupt party’s (say Pl) input shares at the end of Round 1 itself. If not, then

the version forwarded by at most one among (Pj, Pk) (say Pj) during InputCommitl can match

with the one Pi received by Pl, leading to Pi populating Fi with {Pl, Pk}. This contradicts

the assumption in case (c.2) regarding Fi = ∅ at the end of of all executions of InputCommit;

completing the proof. 2

Lemma 4.6 The encoded output Y computed by an honest P3 corresponds to the committed

inputs of all parties.
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Proof: An honest P3 evaluates the GC and computes Y when both F3 and C3 are empty. This

implies that the corrupt party ‘commits’ to its input in Round 1 of its InputCommit instance

(by Lemma 4.2). We can thus conclude that the honest garbler would possess committed input

shares of all parties at the end of Round 1 itself and open the encoded inputs accordingly. A

potentially corrupt garbler is forced to send the encoded inputs corresponding to committed

inputs. Because– (a) if corrupt garbler tries to open different encoded inputs for the shares

known to P3, then he is added to C3; (b) if it tries to open different encoded inputs for the

shares not known to P3, then P3 would add the pair of garblers to F3. Thus, in either case, P3

does not evaluate as at least one among F3, C3 is non-empty. 2

Lemma 4.7 If the encoded output Y of a corrupt evaluator P3 is used for output computation

by an honest garbler, then it must correspond to committed inputs of all parties.

Proof: An honest garbler, say Pg releases the opening information o for H(d) and uses the

encoded output Y (such that De(Y, d) 6= ⊥) received from evaluator P3 to compute output

if P3 /∈ Cg and (P3, P1), (P3, P2) /∈ Fg. Lemma 4.2 implies that P3 did not misbehave in

InputCommit3 at all and has committed a unique input in Round 1. This implies that P3

receives encoded inputs for committed shares and authenticity ensures that Y corresponds

to the committed inputs of all the parties. Note that authenticity of the garbling scheme is

preserved since P3 receives only the preimage-resistant hash of the decoding information in the

form H(Y0)||H(Y1) corresponding to each output wire (enabling P3 to compute the output).

Here, Y0,Y1 refer to the labels for values 0 and 1 respectively corresponding to an output wire.

2

Lemma 4.8 Protocol g4PC is correct.

Proof: We argue that the output y computed corresponds to the unique inputs committed

by each Pi (i ∈ [4]) during InputCommiti. It follows from Lemmas 4.3, 4.1 respectively that

a corrupt party is forced to commit to a unique input and the honest parties’ inputs are

established as the committed inputs with public commitments by the end of parallel executions

of InputCommit. According to the protocol, an honest party Pα computes output in one of the

following ways: (a) via decoding the encoded output Y; (b) via the Vβ received from Pβ on

being elected as TTP; (c) on receiving y from an honest party; (d) on receiving (y,TTP) from

Pβ and (TTP, β) from some other party. In case (a), irrespective of whether P3 is honest or

corrupt, correctness follows from Lemma 4.6–4.7. The strong binding property of commitment

scheme implies the output computed in case (b) is correct irrespective of whether Pβ is honest
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or corrupt. The correctness for case (c) follows from case (a) and the fact that the message

was received from an honest party. The last case is argued as follows. The chosen TTP, Pβ, is

honest, irrespective of whether the message (TTP, β) is received from a corrupt or an honest

party. While the former follows from the fact that a corrupt party does not have a corrupt

companion to elect, the latter follows from Lemma 4.4–4.5. Now the correctness follows in case

(d) from case (b). 2

While the full proof of security appears in Section 4.8.2, we provide intuition for guaranteed

output delivery and state the theorem below. If the corrupt party misbehaves in one of the

InputCommit instances or while communicating the GC and openings on commitment of input

labels (as a garbler in round 2), then an honest party invokes TTP on identifying the corrupt

or detecting a conflict in Round 3. All the parties get output in Round 4. Otherwise, if P3 is

honest and gives out Y, then all the honest parties compute output by the end of Round 3 itself

using hash of the decoding information sent by one of the garblers and Y. A corrupt P3 can

neither receive decoding information for his non-committed input nor convince honest parties

about the corresponding Y. If Y corresponds to its committed input but it sends it only to

some honest party or none, the remaining honest parties will receive output from the honest

party who receives Y or through Vβs sent by other honest parties in Round 5.

Theorem 4.3 Assuming one-way permutations, protocol g4PC securely realizes the function-

ality Fgod (Figure 2.4) against a malicious adversary that corrupts at most one party.

4.4.4 Optimizations

The communication efficiency of our g4PC can be boosted similar to as described for f3PC in

Section 4.3.2.

4.5 4PC with god in four rounds

In this section, we propose an efficient 4-round 4-party protocol secure against one active

corruption, assuming pairwise channels. Deviating from the approach of [129, 159] and our

proposals for 3PC and 4PC, we explore the setting of multiple evaluators, namely two evaluators

and two garblers. With a guarantee of an honest evaluator, this protocol achieves guaranteed

output delivery at the expense of communication and computation of two copies of the same

GC.

The protocol ensures that the honest evaluator is either successful in GC evaluation or some

honest party identifies a corrupt party or a pair of parties in conflict (assured to include the

corrupt party) by the end of Round 2. In the former case, the encoded output obtained upon
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GC evaluation is used for output computation in Round 3 itself. In the latter case, the honest

party, having identified at least one honest party, sends his possessed input shares in Round 3.

The use of replicated secret sharing (RSS) allows reconstruction of the output based on views

of two honest parties by the end of Round 3. All parties obtain output by the end of Round 4.

The single evaluator and three garblers approach seems to require a minimum of 5 rounds

(when the evaluator is corrupt) while requiring the same amount of communication. With the

above high level idea, we proceed to present our protocol. We reuse the protocol for input

consistency (Figure 4.2). Similar to our g4PC protocol, each party Pi (i ∈ [4]) maintains a pair

of global sets– a corrupt set Ci and a conflict set Fi which respectively hold identities of the

party detected to be corrupt and pairs of parties detected to be in conflict.

4.5.1 Our protocol

Without loss of generality, P1, P2 take the role of garblers and P3, P4 enact the role of evaluators

in our protocol g4PC4. We reuse most of the tricks from our 5-round protocol and leverage

the presence of an honest evaluator. Specifically, the corrupt evaluator, unlike in our 5-round

protocol, cannot drag all the honest parties all the way to Round 4 for its detection. If everything

goes as per the protocol and so no honest party elects a TTP in the end of Round 2, the honest

evaluator must be able to compute the encoded output Y by the end of Round 2 and help all

to get the output in Round 3. Otherwise, all the parties get output via a TTP by Round 4.

The presence of an additional evaluator needs communicating one extra copy of the GC. We

present the protocol g4PC4 in Figure 4.4

Inputs: Party Pα has xα for α ∈ [4].

Common Inputs: The circuit C(x1, x2, x3, x4) that computes f(x12⊕x13⊕x14, x21⊕x23⊕x24, x31⊕
x32⊕ x34, x41⊕ x42⊕ x43) each input, their shares and output are from {0, 1}`. P3, P4 are the

evaluators and (P1, P2) are the garblers.

Output: y = C(x1, x2, x3, x4)

Primitives: G = (Gb,En,Ev,De) that is correct, private, oblivious and authentic, a NICOM (Com,

Open) a PRG G, a 3-party 1-private RSS, pre-image resistant Hash H and sub-protocol

InputCommitα (Figure 4.2) for every Pα ∈ P.

Round 1: Round 1 of InputCommitα for every Pα ∈ P is run. In parallel,

– P1 chooses random seed s ∈R {0, 1}κ for G and sends s to P2.

Protocol g4PC4()
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– Pv (v ∈ {3, 4}) samples ppv for NICOM and sends to P1, P2.

Round 2: Round 2 of InputCommitα is run. In parallel,

– Pg(g ∈ [2]) locally computes B3 exactly the way B is computed in Protocol g4PC. It also computes

B4 with respect to pp4 in a similar way.

– Pg(g ∈ [2]) sends B3 to P3. If Cg = ∅, Pg sends the openings of the commitments in B3 cor-

responding to {xij}i∈[4],j∈ind(Pig) i.e the input shares that it holds at end of Round 1 and

Mg = {mij}i∈[4],j∈ind(Pig) where mαβ = pαβ ⊕ xαβ. Analogous steps are executed with respect

to P4. The common shares, however, are opened by one garbler. The openings correspond-

ing to commitment of {x13, x14, x34} are sent only by P1. The openings corresponding to

commitment of {x23, x24, x43} are sent only by P2.

– Pv (v ∈ {3, 4})) local computation step is same as that of P3 in g4PC (with respect to Cv and Fv).

Round 3:

– If Cα 6= ∅ ∨ Fα 6= ∅, Pα (α ∈ [4]) sends Vα = {oij}i∈[4],j∈ind(Piα) to Pβ where Pβ /∈ Cα ∪ Fα and

(TTP, β) to all.

– If Cg = Fg = ∅, Pg (g ∈ [2]) sends o to P3, P4.

– If Cv = Fv = ∅, Pv (v ∈ {3, 4}) sends Y to all.

– If Pα (α ∈ [4]) receives Vβ from Pβ in Round 3, it uses Vβ to open its missing shares {xiα}i∈[4]\{α}.

If one of the opening leads to ⊥, set Cα = Pβ. Else compute y = f(⊕j∈ind(P1)x1j ,⊕ind(P2)x2j ,

⊕ind(P3)x3j ,⊕ind(P4)x4j).

– If Pg (g ∈ [2]) receives a valid Y from Pv such that Pv /∈ Cg and (Pv, P1), (Pv, P2) /∈ Fg, then

compute y ← De(Y, d). If Pv receives o from one of the Pgs, it computes y after recovering

H(d)← Open(pp, c, o).

Round 4:

– If Pα computed y via being elected as TTP, it sends (y,TTP) to all and terminates.

– If (TTP, β) is received in Round 3 and (y,TTP) is received from Pβ, a party Pα outputs y and

terminates.

Figure 4.4: Protocol g4PC4()
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4.5.2 Correctness and Security

The proof for correctness appear below.

Lemma 4.9 For honest Pi, Pj, Pi /∈ Cj holds.

Proof: The proof follows directly from the Lemma 4.4. 2

Lemma 4.10 Consider honest Pi. A pair of honest parties cannot belong to Fi.

Proof: An honest Pi would add (Pj, Pk) to Fi if one of the following holds: (a) During

execution of InputCommitj, the versions of Pj’s commitment on its input shares received by Pi

from Pj and Pk were inconsistent. (Analogous condition wrt InputCommitk) (b) When (Pj, Pk)

are garblers, Pi is evaluator and: (b.1) Bi received from Pj, Pk is not identical (b.2) When

Fi = ∅ at the end of all executions of InputCommitm(m ∈ [4]) but the indices received by Pi

from the garblers corresponding to the common shares held by them do not match i.e when

Mj,Mk received from them is not consistent. It is easy to verify that cases (a) and (b.1) cannot

occur for honest Pj, Pk. For case (b.2), the argument follows from the fact that Pj, Pk must

be in agreement with respect to corrupt party’s (say Pl) input shares at the end of Round

1 itself. If not, then the version forwarded by atmost one among (Pj, Pk) (say Pj) during

InputCommitl could match the one Pi received by Pl, leading to Pi populating Fi with {Pl, Pk}.
This contradicts the assumption in case (b.2) regarding Fi = ∅ at the end of of all executions

of InputCommit; completing the proof. 2

Lemma 4.11 The encoded output Y computed by an honest evaluator corresponds to the com-

mitted inputs of all parties.

Proof: Consider an honest evaluator Pi. If i = 3, the proof follows exactly as described in

Lemma 4.6. Else if i = 4, the proof of Lemma 4.6 still holds, except in that P3,F3,C3 are

replaced with P4,F4,C4. 2

Lemma 4.12 If the encoded output sent by a potentially corrupt evaluator is used for output

computation by an honest garbler, it must correspond to committed inputs of all parties.

Proof: Similar to our g4PC protocol, an honest garbler, say Pg uses the encoded output Y

(such that De(Y, d) 6= ⊥) received from evaluator Pv to compute output only if Pv /∈ Cg and

(Pv, P1), (Pv, P2) /∈ Fg at the end of round 2. Correspondingly, if Cg = Fg = ∅, Pg would

also send o to both the evaluators in round 3. This ensures that Y corresponds to committed
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inputs as follows: Although Pv may be corrupt, however, Lemma 4.2 implies that Pv did not

misbehave in InputCommitv at all and has committed a unique input in Round 1. As a result,

Pv receives encoded inputs for committed shares and authenticity ensures that Y corresponds

to the committed inputs of all the parties. Note that authenticity of the garbling scheme is

preserved since Pv receives only the preimage-resistant hash of the decoding information. 2

Theorem 4.4 Protocol g4PC4 is correct.

Proof: We argue that the output y computed corresponds to the unique inputs committed

by each Pi (i ∈ [4]) during InputCommiti. It follows from Lemmas 4.1, 4.3 that a corrupt party

is forced to commit to its input and the honest parties’ inputs are established as the committed

inputs with public commitments by the end of parallel executions of InputCommit. According

to the protocol, output computation is done by one of the following cases: (a) by decoding the

encoded output Y sent by an evaluator (b) by Vα received from Pα on being elected as a TTP.

(c) by receiving (y,TTP) from a party Pβ when (TTP, β) was received in round 3. Case (a)

follows directly from Lemma 4.12 and 4.11. In case (b), since the TTP is honest, the strong

binding property of commitments established by Round 2 ensures the correctness of output

computed by the TTP, irrespective of whether Pα is honest or not. For case (c), the chosen

TTP, Pβ, is honest, irrespective of whether the message (TTP, β) is received from a corrupt or

an honest party. While the former follows from the fact that a corrupt party does not have a

corrupt companion to elect, the latter follows from Lemma 4.10 and 4.9. Now the correctness

follows in case (c) from case (b). 2

While the sketch of proof of security appears in Section 4.8.3 (the full proof and intuition

for achieving guaranteed output delivery is similar to our 5-round 4PC), we state the theorem

below.

Theorem 4.5 Assuming one-way permutations, our protocol g4PC4 securely realizes the func-

tionality Fgod (Figure 2.4) against a malicious adversary that can corrupt at most one party.

4.5.3 Optimizations

The communication efficiency of our g4PC4 can be boosted similar to as described for f3PC in

Section 4.3.2. Additionally, computation of commitment on encoding information by a garbler

wrt pp (for NICOM) sent by each of the two evaluators can be avoided as follows: P3 alone

chooses pp used for commitment on encoding information and sends pp to all. The message

from garblers can include pp, allowing P4 to check if the garblers and P3 are in agreement with

respect to pp or populate the conflict set accordingly based on mismatch.
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4.6 3PC with god

In this section, we describe our efficient 3PC protocol, g3PC with god. This protocol nec-

essarily requires a broadcast channel [67]. In accordance with our goal of computation and

communication efficiency, the broadcast communication complexity of our (optimized) protocol

is independent of circuit size. In terms of communication over private channels, g3PC involves

a single GC and is therefore comparable to [159].

Starting with the protocol of [159], the main idea of our protocol is centered around the

following neat trick. In a situation where it is publicly known that a pair of parties is in conflict,

it must be the case that one among the two specific parties is corrupt. It follows that the third

party is honest and therefore entitled to act as the trusted-third party (TTP). Suppose such

a TTP is established during the protocol, the other parties send their inputs on clear to this

TTP who computes the function on direct inputs and forwards the output to all. Banking on

this intuition, we now proceed to give a high-level description of our protocol.

In the first round, similar to f3PC, P3 shares his input while the garblers agree upon common

randomness. In round 2, garblers broadcast the common message computed using shared

randomness, namely the GC and commitment on encoding information. Additionally, the

garblers privately send the opening of relevant commitments, namely corresponding to their

own input and the input share of P3 held by them. If the broadcast messages are identical and

openings are valid then P3 can begin evaluating the GC. However, if the broadcast messages

mismatch, it can be publicly inferred that P1, P2 are in conflict and therefore P3 is eligible to

enact the role of TTP. We extend this idea to the case when broadcast messages are identical

but P3 locally identifies one of the garblers to be corrupt. In this scenario, say P3 identified P2

to be corrupt. Then, P3 makes this conflict public in Round 3 via broadcast. Consequently P1

is entitled to act as the TTP. The protocol ensures that if P3 fails to evaluate the GC, a TTP

is established at most by Round 3. If the TTP is established, the parties send their inputs on

clear to the TTP in Round 4 who computes and subsequently sends the output to all in the

final round of the protocol.

An issue that surfaces in the above approach is that a corrupt P3 who has successfully

evaluated the GC with respect to his input x3 shared in the round 1, might pretend to be in

conflict with one of the garblers, say P2. Now P1 would be established as the TTP. P3 can

now send x′3 6= x3 to P1 and get the output corresponding to x′3 as well. This violates security

since P3 gets outputs corresponding to his two chosen inputs. To handle this, we adopt the

following strategy: The evaluator P3 broadcasts the commitment on his shares in Round 1 and

sends the openings of shares to the respective garbler. A garbler who receives invalid opening is
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allowed to publicly raise a conflict with P3 in Round 2, establishing his co-garbler as the TTP.

If valid openings are issued, P3 is committed to each of his shares and therefore his input. The

binding property of commitment ensures that the TTP computes output with respect to P3’s

shares distributed in Round 1. Tying up the loose ends, if P3 is identified to be corrupt by both

garblers, then P1 is chosen to be the TTP by default.

In a nutshell, P3 acts as TTP only when common message broadcast by garblers are not

identical. Contrarily, a garbler, say P1, is TTP when either P3 locally identified P2 to be corrupt

at the end of Round 2 (due to invalid opening of commitment on encoded inputs) or P2 found

P3 to be corrupt at the end of Round 1 (inconsistent opening of commitment of P3’s input share

sent to P2). Also, P1 is chosen as TTP by default when both garblers identify P3 to be corrupt.

The formal description of the protocol appears in Figure 4.5 and its proofs appear below. Our

proposed optimizations which are incorporated in our implementation are given below.

Inputs: Party Pα has xα for α ∈ [3].

Common Inputs: Same as f3PC.

Output: y = C(x1, x2, x3, x4) = f(x1, x2, x3 ⊕ x4)

Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and authentic with the

property of soft decoding, a NICOM (Com,Open) and a PRG G.

Round 1:

– P1 chooses random seed s ∈R {0, 1}κ for G and sends s to P2.

– P3 picks x31, x32 ∈R {0, 1}` with x3 = x31 ⊕ x32. P3 samples pp for NICOM and gener-

ates (c31, o31) ← Com(pp, x31), (c32, o32) ← Com(pp, x32), broadcasts {pp, c31, c32} and sends

(x31, o31), (x32, o32) to P1, P2 respectively.

Round 2:

– Pi(i ∈ [2]) broadcasts (Conflict, P3) if Open(c3i, o3i) 6= x3i. Else, it does the following:

◦ Compute GC (C, e, d) ← Gb(1κ, C) using randomness from G(s). Assume {K0
α,K

1
α}α∈[`],

{K0
`+α,K

1
`+α}α∈[`], {K0

2`+α,K
1
2`+α}α∈[2`] correspond to the encoding information for the in-

put of P1, P2 and the shares of P3 respectively (w.l.o.g).

◦ Compute permutation strings p1, p2 ∈R {0, 1}` for the garblers’ input wires and generate

commitments to e using randomness from G(s). For b ∈ {0, 1}, (cbα, o
b
α)← Com(pp, e

pα1⊕b
α ),

Protocol g3PC
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(cb`+α, o
b
`+α)← Com(pp, e

pα2⊕b
`+α ) for α ∈ [`] and (cb2`+α, o

b
2`+α)← Com(pp, eb2`+α) for α ∈ [2`].

Set Bi =
{

C, {cbα}α∈[4`],b∈{0,1}
}

. Broadcast Bi.

◦ P1 computes m1 = x1⊕p1 and sends to P3: the openings of the commitments corresponding

to (x1, x31) i.e {om
α
1

α , o
xα31
2`+α}α∈[`] and m1. Similarly, P2 computes m2 = x2⊕p2 and sends to

P3: the openings of the commitments corresponding to (x2, x32) i.e {om
α
2

`+α, o
xα32
3`+α}α∈[`] and

m2.

– Every party sets TTP as follows. If exactly one Pi(i ∈ [2]) broadcasts (Conflict, P3) in Round

2, set TTP = P[2]\i. If both raise conflict, set TTP = P1. If B1 6= B2, set TTP = P3.

Round 3: If TTP = ∅, P3 does the following:

◦ Assign Xα1 = Open(pp, c
mα1
α , o

mα1
α ) and Xα31 = Open(pp, c

xα31
2`+α, o

xα31
2`+α) for α ∈ [`]. Broadcast

(Conflict, P1) if Open results in ⊥

◦ Assign Xα2 = Open(pp, c
mα2
`+α, o

mα2
`+α) and Xα32 = Open(pp, c

xα32
3`+α, o

xα32
3`+α) for α ∈ [`]. Broadcast

(Conflict, P2) if Open results in ⊥

◦ Else, set X = X1|X2|X31|X32, run Y ← Ev(C,X) and y ← sDe(Y). Broadcast Y.

If P3 broadcasts (Conflict, Pi), then set TTP = P[2]\i. If TTP = ∅ and P3 broadcasts Y, Pi (i ∈ [2])

does the following: Execute y ← De(Y, d). If y = ⊥, set TTP = P1.

Round 4: If TTP 6= ∅: Pi (i ∈ [2]) sends xi and o3i (if valid) to TTP. P3 sends o31, o32 to TTP.

Round 5: TTP computes x3i = Open(c3i, o3i) using openings sent by P1, P2 (if available), else uses

the openings sent by P3. If valid opening is not received, a default value is used for shares of x3.

Compute y = f(x1, x2, x31 ⊕ x32) and send y to others.

Every party computes output as follows. If y = ⊥ and received y′ from TTP, set y = y′.

Figure 4.5: Protocol g3PC

4.6.1 Correctness and security

Below we give the proof of correctness.

Lemma 4.13 A pair of honest parties can never be in conflict.

Proof: It is easy to note that a pair of honest garblers will never be in conflict since the

message B broadcast by them in Round 2 must be identical. Next, a garbler, say P1 and

evaluator P3 would be in conflict only if one of the following hold: (a) The commitment and
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opening of the input share sent by P3 to P1 is inconsistent (b) P1’s opening of committed

encoded input of garbled circuit sent to P3 fails. It is easy to check that the above cannot occur

for honest P1, P3. 2

Lemma 4.14 An honest evaluator either evaluates the GC successfully at the end of round 2

or a TTP is established latest by Round 3.

Proof: Consider an honest P3. If a garbler raises a conflict with P3 in Round 2, then his

co-garbler is established as the TTP. Else, if P3 receives broadcast and pairwise messages as per

the protocol in round 2, then P3 evaluates the circuit. On the other hand, if P3 discovers that

the broadcast messages sent by the garblers do not match, then P3 is unanimously established

as the TTP. Finally, in case P3 locally identifies one of the garblers to be corrupt due to

inconsistent/invalid pairwise message received in round 2, he raises a conflict, establishing the

other garbler as the TTP. Thus the lemma holds. 2

Theorem 4.6 The protocol g3PC is correct i.e output obtained by the parties corresponds to a

valid computation performed on unique set of inputs.

Proof: We analyze the cases based on whether TTP is established during the protocol or

not. If not, since none of the garblers raised a conflict with P3 in Round 2, each of them must

have a valid opening corresponding to P3’s public commitment of its input shares. In such

a case, these shares constitute P3’s committed input. With respect to garblers, input labels

sent by them in round 2 corresponding to their own input establish their committed inputs.

It now follows from correctness of garbling and authenticity (potentially corrupt P3 could not

have forged Y) that the output obtained by all corresponds to the evaluation of garbled circuit

on above mentioned committed inputs. We now consider the case when TTP is established.

Here, the inputs sent by garblers on clear to the TTP constitute their committed inputs. The

committed input of P3 depends on whether the TTP is established during or after Round 2. In

the former where none of the garblers raised conflict in Round 2, it is clear from the protocol

description that P3’s committed input is based on its shares distributed in Round 1 (enforced

by binding of commitment on input shares). Else, the committed input of P3 is considered as

the one sent on clear to the TTP. Finally, the correctness of output computation based on

committed inputs follows from the fact that the TTP must be honest (Lemma 4.13 shows that

the pair of parties in conflict must involve the corrupt). 2

While the full proof of security appear in Section 4.8.4, the intuition on why the protocol

achieves god and the theorem statement follow. Based on whether the evaluator is honest or
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corrupt, god is argued below. By Lemma 4.14, an honest evaluator either identifies a TTP

or evaluates the GC successfully at the end of round 2. If evaluation is performed, then an

honest evaluator would obtain output by soft decoding and enable the garblers to get output by

sending the encoded output. If TTP is identified by an honest evaluator all parties accept the

output sent by the TTP. Next, consider a corrupt evaluator. In case a corrupt evaluator does

not communicate the encoded output to the garblers or sends an invalid Y, then the garblers

would unanimously identify the evaluator to be corrupt. Then, P1 would be chosen as a TTP

and eventually each party receives the output through the computation performed by TTP.

Even in the case when a corrupt evaluator falsely raises a conflict, the TTP chosen by him must

be honest and each party would obtain the output from the TTP.

Theorem 4.7 Assuming one-way functions, protocol g3PC securely realizes the functionality

Fgod (Figure 2.4) against a malicious adversary that corrupts at most one party.

4.6.2 Optimizations

We propose several optimizations for g3PC to reduce its communication. Firstly, since broadcast

communication is considered more expensive than private communication, a broadcast of a

message, say m is replaced with broadcast of H′(m), where H′ denotes a collision-resistant hash

while the message m is sent privately over point-to-point channel to the receiver. Besides, the

trick described for f3PC (Section 4.3.2) can be applied where the common message of garblers

B is divided into equal halves B = B1||B2; each garbler sends one part on clear and the

other in compressed form. Second, we elaborate on the optimization applied to broadcast of

Y in round 3 by P3: P3 broadcasts H′(Y) where Y denotes the encoded output comprising of

concatenation of the output label of each output wire obtained by GC evaluation. Additionally,

P3 sends Y privately to each of the garblers enabling them to compute the hash of the message

received privately and check against the broadcast message to conclude its consistency. Thus,

the optimization applied on broadcast of B and Y makes broadcast independent of circuit size.

Finally, we point that the description of protocol in Figure 4.5 includes certain redundancies

such as a party established as TTP sending message to itself and the protocol proceeding till

the last round even in cases where termination can occur earlier. This was done only to keep

the protocol description simple and facilitate better understanding. In the implementation, the

redundant messages are avoided. Further, when TTP is established in round 2 itself, round 3

can be skipped and the last two rounds executed, enabling the protocol to terminate within 4

rounds.
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Table 4.3: Computation time (CT), Runtime for LAN (LAN), WAN (WAN) and Communication (CC) for
the 3PC of [159].

Circuit
CT( ms) LAN( ms) WAN( s) CC( KB)

P1/P2 P3 P1/P2 P3 P1/P2 P3 ( s) P1/P2 P3

AES 0.96 0.72 1.19 0.86 0.62 1.04 153.2 2.1
SHA-256 11.36 9.4 13.3 10.7 1.05 1.65 3073.6 4.5
MD5 4.5 3.0 4.9 3.9 0.83 1.24 1036.4 2.5

4.7 Experimental results

In this section, we provide empirical results for our protocols. We use the circuits of AES-128,

SHA-256 and MD5 as benchmarks. We start with the description of the setup environment,

both software and hardware.

Hardware Details. We have experimented both in LAN and WAN setting. The specifica-

tions of our systems used for LAN include 32GB RAM; an Intel Core i7-7700-4690 octa-core

CPU with 3.6 GHz processing speed. The hardware supports AES-NI instructions. For WAN

setting, we use Microsoft Azure Cloud Services with machines located in West USA, East Asia

and India. Our 3PC protocols have exactly one party at each location while for 4PC results,

two of the four parties are located in East Asia and one party each in West USA and India.

We used machines with 1.75GB RAM and single core processor. The bandwidth is limited

to 100Mbps for the WAN network between the machines in West USA and East Asia and

it is limited to 8Mbps from the machine in India. Before running our experiments, we mea-

sured sample round trip delay between India-West USA, India-East Asia and East Asia-West

USA for communication of one byte of data. These values average to 0.42 s, 0.14 s and 0.18 s

respectively.

Software Details. For efficient implementation, the garbling technique used throughout is

that of Half Gates [183]. The code is built on libgarble library whose starting point is the

JustGarble library, both licensed under GNU GPL License. The libgarble library operates with

AES-NI support from hardware. The operating system used for LAN and WAN results are

Ubuntu 17.10 (64-bit) and Ubuntu 16.04 (64-bit) respectively. Our code follows the standards

of C++11. We make use of openSSL 1.0.2g library for commitments. We use SHA-256 to

implement a commitment scheme. We have benchmarked our results with 3 circuits AES, SHA-

256, MD5. The circuit description is obtained as a simple text file (.txt) for implementation

purposes. Communication is done with the help of sockets. We instantiate multiple threads

to facilitate communication between the garblers and evaluator. The garblers also share a

connection between each other to share the randomness. All our results indicate the average

values over a set of 20 runs of the experiments.
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Table 4.4: Computation time (CT), Runtime for LAN (LAN), WAN (WAN) and Communication (CC) for
f3PC protocol.

Circuit
CT( ms) LAN ( ms) WAN ( s) CC( KB)

P1/P2 P3 P1/P2 P3 P1/P2 P3 P1/P2 P3

AES 1.04 0.74 1.17 1.0 0.83 1.27 161.55 2.27
SHA-256 11.55 9.5 13.6 12.5 1.65 1.97 3089.7 4.5
MD5 4.61 3.05 4.96 4.32 1.39 1.54 1044.93 2.52

Table 4.5: Computation time (CT), Runtime for LAN (LAN), WAN (WAN) and Communication (CC) for
g4PC protocol.

Circuit
CT( ms) LAN( ms) WAN( s) CC( KB)

P1/P2 P3 P4 P1/P2 P3 P4 P1/P2 P3 P4 P1/P2 P3 P4

AES 0.95 0.8 0.04 1.21 0.96 0.27 0.78 1.08 0.47 163.3 8.1 2.1
SHA-256 11.3 9.72 0.09 13.67 12.06 0.54 1.86 2.0 0.54 3091.9 14.1 2.1
MD5 4.42 3.03 0.07 5.05 4.1 0.43 1.24 1.66 0.52 1046.8 8.13 2.1

Table 4.6: Computation time (CT), Runtime for LAN (LAN) and Communication (CC) both over private
(pp) and broadcast (bc) channels for g3PC protocol.

Circuit
CT( ms) LAN( ms) pp CC( KB) bc CC( KB)

P1/P2 P3 P1/P2 P3 P1/P2 P3 P1/P2 P3

AES 1.12 0.9 2.62 2.58 153.36 2.23 0.032 0.06
SHA-256 11.63 9.76 16.25 13.8 3074.16 4.62 0.032 0.06
MD5 4.73 3.22 7.18 5.88 1036.66 2.51 0.032 0.06

Comparison. We compare our results with the related ones for the high-latency networks

(such as the Internet) in the honest majority setting. The most relevant is that of [159] and

we elaborate on the comparison with it below. With regard to the 4-party protocol of [129], it

is expected to lag in performance compared to g4PC since its computation and communication

is significantly higher. As per our calculations, the overhead of transmitting 12 GCs instead

of 1 is more than the efficiency gain of having 2 rounds instead of 5, even with bandwidth of

100Mbps for our benchmark circuits of SHA-256 and MD5. In case of limited bandwidth of

around 8Mbps, our protocol would perform better than that of [129] for all our benchmark

circuits including AES. The difference in performance will be even more significant for larger

circuits or when multiple MPC executions are run in parallel. Another work close to our

setting is that of [52] that explores 5PC in the honest majority setting. Similar to [159], it

only provides sa. It uses distributed garbling and requires 8 rounds. Our 3 party and 4 party

protocols perform better than the protocol of [52], in spite of achieving better security notions

of fn and god. The total communication for any of our protocol constitutes only 1 - 3.5 % of

the total communication of their implementation in the malicious setting and 3 - 6 % of the

total communication of their implementation in the semi-honest setting.

For comparing with [159], four parameters are considered– computation time (CT), commu-

nication cost (CC) and runtime both in LAN (LAN) and WAN (WAN). The LAN and WAN
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Table 4.7: The average computation time (aCT), runtime in LAN (aLAN), WAN (aWAN) and communi-
cation (aCC) per party for [159] and our protocols. The figures in bracket indicate the increase for the worst
case 5-round runs of g4PC and g3PC.

Circuit
aCT( ms) aLAN( ms) aWAN( s) aCC( KB)

[159] f3PC g4PC g3PC [159] f3PC g4PC g3PC [159] f3PC g4PC [159] f3PC g4PC g3PC

AES 0.88 0.94 0.69 1.04 1.08 1.11 0.91 2.60 0.76 0.97 0.78 (+.49) 102.83 108.46 84.2 (+.01) 103.02 (+.02)
SHA-256 10.70 10.87 8.1 11.01 12.43 13.23 9.98 15.43 1.25 1.75 1.56 (+.52) 2050.56 2061.3 1550 (+.1) 2051.02 (+.08)
MD5 4.0 4.09 2.98 4.22 4.56 4.74 3.65 6.74 0.96 1.44 1.16 (+.49) 691.76 697.46 525.97 (+.03) 691.98 (+.09)

runtime are computed by adding the computation time and the corresponding network time.

Noting that the roles of the parties in the protocols are asymmetric, we show the computation

time, LAN and WAN runtime and communication cost separately for the parties with distinct

roles. The trend of WAN runtime across the tables indicates the influence of round complexity

and the location of servers. For a fair comparison with our protocols, we instantiate the pro-

tocol of [159] in our environment and the results appear in Table 4.3. The results for our 3PC

with fn, 4PC (5 rounds) and 3PC with god appear in Tables 4.4, 4.5 and 4.6 respectively. With

respect to our 4-round 4PC with god, in the worst case run, we save a round at the expense of

one garbled circuit over our 5-round 4PC which amounts to 72 KB− 1530 KB for the benchmark

circuits. For the 3PC with god, we provide implementation result only for LAN setting where

the broadcast channel is emulated using an UDP physical broadcast. We calculate separately

the cost of communication over private channels and broadcast channel and demonstrate that

the latter communication is independent of the circuit size. Our protocols providing god run

in 3 rounds when the adversary does not strike. The round complexity stretches to 5 in the

worst case for our 5-round protocols. Tables 4.5-4.6 show performance for the 3-round runs.

With minimal communication and computation in the last two rounds, the overhead shows up

mainly in the WAN runtime by a factor of half a second and communication by less than 1 KB.

For a unified comparison with [159], we compute the average of the above parameters per

party for all the protocols and the results appear in Table 4.7. In terms of average computation

time, LAN runtime and communication cost our 4PC turns out to be the winner inspite of

providing the strongest notion of security. The improvement per party comes from the fact

that the costs of this protocol are almost similar to that of 3PC protocols inspite of having one

extra party in the system. It closely trails [159] in terms of WAN runtime due to the additional

communication involved in the InputCommit routine and the delayed opening of the committed

decoding information both of which are not present in the protocol of [159]. Our 3PC with fn is

almost on par with [159] and yet achieves a stronger security notion. The extra overhead over

[159] occurs primarily as a consequence of commitments to the decoding information and the

postponed opening of decoding information by the garblers in order to achieve fn. However,
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Figure 4.6: Performance Comparison (avg/party) of various Protocols for fn and god. (5) denotes worst case
execution of the protocol in consideration.
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The x-axes indicate the type of the circuit used for evaluation 1-AES, 3-MD5, 5-SHA-256. The y-axis indicates
Runtime in ms, s for graphs (a), (b) respectively and communication data in MB for (c).

in [159], the use of soft-decoding avoided the need for additional communication to deliver the

decoding information. The variation in the communication overhead over the circuits reflects

the fact that the output size and thus the size of information (openings of the commitments)

related to decoding information are different over the circuits. For example, the SHA-256 has

256 bit output, whereas the output size of AES is half of it. Therefore, the communication over-

head for SHA-256 for our protocol is almost double that of AES, namely 10.74 KB vs. 5.63 KB.

The WAN runtime overhead reflects the increased round requirement of our fair protocol. The

communication overhead of our 3PC with god is almost nominal over [159] as both protocols

use of soft-decoding. In Table 4.7, we show in bracket the increase for the 5-round runs of our

4PC (5-round) and 3PC protocols providing god. The performance of our protocols compared

to that of [159] is plotted in Figure. 4.6.
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4.8 Security Proofs

4.8.1 Security Proof of f3PC Protocol

In this section, we provide a complete proof for the Theorem 4.2 that states the security of

f3PC relative to its ideal functionality.

We first explain the technicality behind using an equivocal commitment scheme (eNICOM)

to commit to the decoding information. In our protocol, the adversary can decide whether

to let the computation succeed or fail till round 3. This forces the simulator to make the

same decision on adversary’s behalf at the end of round 3. As a result, the simulator can

get access to the output, only after simulation of round three is completed, at the earliest.

Therefore, the simulator needs to send the GC, encoding information and the commitment

on decoding information without access to the output, while acting on behalf of the honest

parties. This is achieved by invoking oblivious simulator of GC which neither takes the output,

nor returns the decoding information. Consequently, the simulator commits to a dummy value

in round 2. Later if and when Ffair is invoked and y is known, Sprv is invoked with the same

randomness which simply returns the decoding information that makes the fake GC returned by

Sobv output y. Correspondingly, the simulator equivocates to the correct decoding information

that it obtains from the privacy simulator in round 4. Equivocality is enabled via a trapdoor

which in our protocol remains distributed between the garblers. The public parameter for

eNICOM is generated jointly by the garblers (Section 2.4.2.1).

We now describe the simulator Sf3PC for the case when P1, P3 is corrupt. The case of P2 being

corrupt is symmetric to that of P1. Since the protocol may result either in output computation

or abort based on the corrupt party’s behaviour until Round 3, the privacy simulator Sprv (Ref.

[27]) that demands the output can only be invoked only at the end of Round 3. Therefore, the

oblivious simulator of the garbling scheme Sobv (Ref. [27]) that does not need output is invoked

first as a part of GC generation. We assume a garbling scheme such that Sobv and Sprv when

invoked on same randomness return the same (C,X) (Most known garbling schemes based on

Yao comply with this [182, 183, 141]). Later, if the adversary behaves such that the protocol

results in output computation, the evaluator’s input is extracted, used to obtain output y via

Ffair and Sprv is invoked to retrieve decoding information. Since this can be done earliest after

Round 3, we use an equivocal commitment to explain the commitment on decoding information

sent in Round 2. The description of simulator S3
f3PC corresponding to P3 (evaluator) corrupt

and S1
f3PC corresponding to P1 (garbler) corrupt is available in Figure 4.7 with R1/R2/R3/R4
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indicating simulation for round 1, 2, 3 and 4 respectively.

S3
f3PC (P ∗3 is corrupt)

R1 Receive (pp1, x31) and (pp2, x32) privately from P ∗3 on the behalf of P1, P2 respectively. If the

input share is not received / invalid, consider a default value.

R1 Send (h1, r1) and (h2, r2) to P3 according to the protocol on behalf of P1, P2 respectively.

R2 Use uniform randomness r on behalf of P1, P2 and run (C,X) ← Sobv(1κ, C), where Sobv is the

oblivious simulator of the garbling scheme.

R2 Choose m1,m2 at random. Let {cm
α
1

α , c
mα2
`+α, c

xα31
2`+α, c

xα32
3`+α}α∈[`] be commitments to the entries of

X, corresponding to pp1. If pp1 6= pp2, the above is computed with respect to pp2 as well.

Commit to dummy values corresponding to other input wire labels. Using eCom (sample

epp with trapdoor t1, t2), create c as a commitment to a dummy value (Incase of Naor-based

NICOM, set c to the specific commitment supporting equivocation). Set Bi (i ∈ [2]) to include

C, the set of commitments computed with respect to ppi and c. Send Bi on behalf of Pi. Send

({om
α
1

α , o
xα31
2`+α}α∈[`],m1), ({om

α
2

`+α, o
xα32
3`+α}α∈[`],m2) on behalf of P1, P2 to P ∗3 .

R4 Suppose on behalf of some Pi (i ∈ [2], j ∈ [2] \ i) received (Y = Ev(C,X), r′j) from P ∗3 in Round

3 such that H(r′j) = hj . Then invoke Ffair with (Input, x3) on behalf of P ∗3 (where x3 is

computed as x3 = x31 ⊕ x32) to obtain output y. Run (C,X, d′) ← Sprv(1κ, C, y) where Sprv

refers to the privacy simulator of the garbling scheme. Send o to P ∗3 on behalf of Pi where

o = Equiv(c, d′, t1, t2).

R4 Else invoke Ffair with (Input, abort) on behalf of P ∗3 .

S1
f3PC (P ∗1 is corrupt)

R1 Send a random share x31 and pp on behalf of P3. Choose r2 uniformly at random to compute

h2 = H(r2). Send (epp2, h2) to P ∗1 on behalf of P2 according to the protocol.

R1 Receive (s, h1, epp1) on behalf of P2 and (h1, r1) on behalf of P3. Compute B on behalf of P2

as per protocol.

R2 Invoke Ffair with (sid, Input, abort) on behalf of P ∗1 and set y = ⊥ if (a) h1 received on behalf of

P2, P3 does not match or H(r1) 6= h1 or (b) B received from P ∗1 on behalf of P3 does not match

the B computed on behalf of P2 or (c) any of the decommitments corresponding to encoded

Simulator Sf3PC
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inputs sent by P ∗1 to P3 opens to something other than what was originally committed (known

on behalf of P2).

R2 Else, extract P ∗1 ’s input as x1 = m1⊕p1, where p1,m1 is known on behalf of P2, P3 respectively.

Invoke Ffair with (sid, Input, x1) to get output y.

R3 Compute Y such that De(Y, d) = y (d known on behalf of P2). Send (Y, r2) to P ∗1 on behalf of

P3.

R4 If y 6= ⊥, send (y, r1) to P ∗1 on behalf of P2.

Figure 4.7: Description of Sf3PC

Security against corrupt P ∗3 . We now argue that idealFfair,S
3
f3PC

c
≈ realf3PC,A, when A

corrupts P3. The views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realf3PC,A.

– hyb1: Same as hyb0, except that P1, P2 use uniform randomness rather than pseudo-

randomness.

– hyb2: Same as hyb1, except that some of the commitments of input wire labels sent by P1, P2,

which will not be opened are replaced with commitments of dummy values. Specifically, these

are the commitments with indices 6= m1,m2, x31, x32.

– hyb3 : Same as hyb2, except the following:

- hyb3.1: When the execution results in abort, the GC is created as (C′,X) ← Sobv(1
κ, C)

and the commitment to the decoding information is created for a dummy value.

- hyb3.2: When the execution results in output y, the GC is created as (C′,X, d′) ←
Sprv(1

κ, C, y), the commitment c to the decoding information is created for a dummy value

and later equivocated to d′ using o computed via o← Equiv(c, d′, t1, t2).

– hyb4: Same as hyb3, except that the protocol results in abort if neither P1 nor P2 receive Y

obtained upon GC evaluation from P3.

Since hyb4 := idealFfair,Sf3PC
, we show that every two consecutive hybrids are computation-

ally indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that P1, P2 use uniform randomness in

hyb1 rather than pseudorandomness as in hyb0. The indistinguishability follows via reduction
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to the security of the PRG G.

hyb1
c
≈ hyb2: The difference between the hybrids is that some of commitments of the in-

put labels in hyb1 that will not be opened are replaced with commitments of dummy values in

hyb2. The indistinguishability follows via reduction to the hiding property of Com that holds

even though pp was chosen by corrupt P3.

hyb2
c
≈ hyb3.1: The difference between the hybrids is in the way (C,X) is generated when

the execution results in abort. In hyb2, (C, e, d)← Gb(1κ, C ′) is run, which gives (C,En(x, e)).

In hyb3.1, it is generated as (C′,X) ← Sobv(1
κ, C ′). Additionally, the commitment to the de-

coding information is created for a dummy value in hyb3.1. The indistinguishability follows via

reduction to the obliviousness of garbling and the hiding property of eCom.

hyb2
c
≈ hyb3.2: The difference between the hybrids is in the way (C,X, d) is generated. In

hyb2, (C, e, d) ← Gb(1κ, C ′) is run, which gives (C,En(x, e), d). In hyb3.2, it is generated as

(C′,X, d′) ← Sprv(1
κ, C ′, y). Additionally, the commitment to the decoding information is cre-

ated for a dummy value and later equivocated to d′ using o computed via o← Equiv(c, d′, t1, t2).

The indistinguishability follows via reduction to the privacy of the garbling scheme and the hid-

ing property of eCom.

hyb3
c
≈ hyb4: The difference between the hybrids is that in hyb3, the protocol results

in abort if neither P1 nor P2 receive Y such that De(Y, d) 6= ⊥ from P3; while in hyb4, the

protocol results in abort if neither P1 nor P2 receive the Y that P3 obtained upon GC evalua-

tion. Due to authenticity of the garbling scheme, P3 could have sent Y such that Y 6= Ev(C,X)

but De(Y, d) 6= ⊥ only with negligibility probability. Therefore, the hybrids are indistiguishable.

Security against corrupt P ∗1 . We now argue that idealFfair,S
1
f3PC

c
≈ realf3PC,A, when A

corrupts P1. The views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realf3PC,A.

– hyb1: Same as hyb0, except that P3 aborts if it accepts any decommitment that opens to a

value other than what was originally committed.

– hyb2: Same as hyb1, except that Y is computed via De(Y, d) = y rather that Y = Ev(C,X).
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– hyb3: Same as hyb2, except that P2 outputs ⊥ if GC could not be evaluated by P3 success-

fully.

Since hyb3 := idealFfair,SFair
, we show that every two consecutive hybrids are computationally

indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that in hyb0, P3 aborts if the decom-

mitments sent by P1 output ⊥ while in hyb1, P3 aborts if the decommitments sent by P1 opens

to any value other than what was originally committed. Since the commitment scheme Com is

binding and pp was chosen uniformly at random by P3, in hyb0, P1 could have decommitted

successfully to a different input label than what was originally committed, only with negligible

probability.

hyb1
c
≈ hyb2: The difference between the hybrids is that in hyb1, P3 computes Y via

Ev(C,X), while in hyb2, Y is computed such that De(Y, d) = y. Due to the correctness of the

garbling scheme, the equivalence of Y computed via Ev(C,X) or such that De(Y, d) = y holds.

hyb2
c
≈ hyb3: The difference between the hybrids is that in hyb2, P2 may output non-⊥ if

it receives a valid ‘proof’ from P1 even though P3 was unable to evaluate the GC successfully,

while in hyb3, P2 outputs ⊥ in this scenario. Due to the preimage resistance property of Hash

H, P1 could have been able to compute a valid proof i.e r′2 such that H(r′2) = h2 only with

negligible probability.

4.8.2 Security Proof for g4PC

In this section, we present the complete security proof of the Theorem. 4.3 that states the

security of g4PC relative to its ideal functionality.

We describe the simulator Sg4PC for the case when P1, P3 and P4 is corrupt. The simulator

acts on behalf of all the honest parties in the execution. The corruption of P2 is symmetric

to the case when P1 is corrupt. For better clarity, we separate out the simulation for the

subroutine InputCommiti. Specifically, we describe the simulator corresponding to InputCommit1

(simulation of InputCommit2, InputCommit3, InputCommit4 follow analogously) for the case of

corrupt P1 and P2. The cases of P3, P4 being corrupt during InputCommit1 is symmetric to

the case of P2. Figure 4.8 and Figure 4.9 describes the simulator with R1, R2, R3, R4, R5

depicting simulation for rounds 1, 2, 3, 4 and 5 respectively.

We first give brief overview of the main technicalities of the simulator. During simulation
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of InputCommiti corresponding to corrupt Pi, it is possible for the simulator acting on behalf of

the honest parties to extract the committed input of the corrupt in the first round itself based

on whether Pi had sent consistent messages to at least majority of the honest parties (else a

default value is used). Thus, the extracted input can be used to obtain output y via Fgod at

the end of Round 1 of simulation. The main technicality arises with respect to simulation in

case of corrupt P3. In this case, either the oblivious simulator of the garbling scheme Sobv (Ref.

[27]) or the privacy simulator Sprv (can be invoked with output y obtained) is invoked based on

whether corrupt P3 would get access to input labels corresponding to any of his non-committed

input shares or not respectively in Round 2. This is known by the simulator acting on behalf of

both the honest garblers since the committed input of the corrupt P3 is known to simulator at

end of Round 1. Finally in the former case when GC returned by Sobv is used, the commitment

on hash of decoding information is dummy (never has to be opened); while in the latter case

when GC returned by Sprv is used, commitment on hash of decoding information is done on

the value d returned by the simulator. With this background, we now proceed to the formal

description.

S1
InputCommit1

(P ∗1 is corrupt)

R1 Receive commitments c12, c13, c14 on behalf of each among P2, P3, P4. Receive o12 on behalf of

P3, P4; o13 on behalf of P2, P4 and o14 on behalf of P2, P3.

R1 Set Ck = P1 on behalf of Pk (k ∈ {2, 3, 4}) if sOpen(pp1, c1j , o1j) (j ∈ ind(P1k)) received from

P ∗1 results in ⊥.

R1 If there does not exist majority in the versions of (pp1, c12, c13, c14) received on behalf of P2, P3, P4

from P ∗1 , assume a default value for P1’s input share and add P ∗1 to Ck, where k ∈ {2, 3, 4}.

R1 Else, set (pp1, c12, c13, c14) as the majority value and (o12, o13, o14) as the corresponding opening.

Compute x1 = x12 ⊕ x13 ⊕ x14 where x1j = sOpen(pp1, c1j , o1j) for j ∈ {2, 3, 4}. Invoke Fgod

with (Input, x1) on behalf of P ∗1 to obtain output y.

R1 If received different versions of (pp1, c12, c13, c14) on behalf of Pα, Pβ (where α, β ∈ {2, 3, 4}),
add (P1, Pα) in Fβ and (P1, Pβ) in Fα.

S2
InputCommit1

(P ∗2 is corrupt)

Simulator SInputCommit1
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R1 On behalf of P1: Sample pp1 and compute c1j as commitments on randomly chosen x1j for

j ∈ ind(P12) (input shares of P1 available to corrupt P ∗2 ) and commitment of dummy value

corresponding to j /∈ ind(P12). Send (pp1, c12, c13, c14) and openings (o13, o14) to P ∗2 .

R2 Send (pp1, c12, c13, c14) and o14 to P ∗2 on behalf of P3. Send (pp1, c12, c13, c14) and o13 to P ∗2 on

behalf of P4 .

R2 Receive (pp′1, c
′
12, c

′
13, c

′
14) from P ∗2 on behalf of Pk (k ∈ {3, 4}). Add (P1, P2) to Fk if the version

received from P ∗2 is not identical to the one sent on behalf of P1 in Round 1. Additionally,

receive o′13, o′14 on behalf of P4 and P3 respectively. Add P2 to Ck (k ∈ {3, 4}) if the opening

received on behalf of Pk is anything other than what was originally sent on behalf of P1 in

Round 1.

Figure 4.8: Description of SInputCommit1

S3
g4PC (P ∗3 is corrupt)

R1 Simulation of Round 1 of S3
InputCommitα

(α ∈ [4]) (Figure 4.8). Let y denote the output

computed.

R1 Receive pp1
3 and pp2

3 from P ∗3 on behalf of P1 and P2 respectively.

R2 Simulation of Round 2 of S3
InputCommitα

(α ∈ [4]) (Figure 4.8).

R2 If P3 ∈ Ci (i ∈ {1, 2}) or (P1, P3) ∈ F2 or (P2, P3) ∈ F1 (i.e an honest garbler may not have

access to P3’s committed share at end of Round 1), use uniform randomness r on behalf of

P1, P2 instead of pseudorandomness and run (C′,X′)← Sobv(1κ, C), where Sobv is the

oblivious simulator of the garbling scheme. Choose {mij}i∈[4],j∈ind(Pi) at random. Let

mi ← ||j∈ind(Pi)mij and {cm
α
1

α , c
mα2
3`+α, c

mα3
6`+α, c

mα4
9`+α}α∈[`] be commitments to the entries of X,

corresponding to pp1
3. Commit to dummy values corresponding to other input wire labels.

Let B1 =
{

C′, {cbα}α∈[12`],b∈{0,1}, c
′, {pij}i∈[4],j∈ind(Pi3)

}
where pij ’s are computed as follows:

With respect to i ∈ ind(P3), j ∈ ind(Pi3), it is computed as pij = xij ⊕mij consistent with

the (opening of) shares distributed to P ∗3 during simulation of InputCommiti. Corresponding

to P3’s shares, it is computed with respect to the opening received on behalf of P1 (if valid,

else take default) during simulation of InputCommit3. Here, c′ is a commitment to dummy

value. Send B1 to P ∗3 on behalf of P1. If P3 /∈ C1, additionally send M1 and (openings of)

encoding information corresponding to indices {mij}i∈[4],j∈ind(Pi1) (corresponding to

{x13, x14, x34}) as per protocol. Analogous steps are executed on behalf of P2.

Simulator Sg4PC
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R2 Else, run (C′,X′, d′)← Sprv(1κ, C, y). Execute similar steps as above except that c′ is computed

as commitment on H(d′).

R3 If Cα 6= ∅ ∨ Fα 6= ∅, Pα (α ∈ {1, 2, 4}), send (TTP, β) to P ∗3 where Pβ /∈ Cα ∪ Fα.

R3 If Cg = Fg = ∅ (g ∈ [2]) send opening of hash of decoding information o to P ∗3 on behalf of Pg.

R4 If received Y = Ev(C,X) from P3 on behalf of Pg(g ∈ [2]), send y to P ∗3 on behalf of Pg.

R4 If received a valid view V3 from P ∗3 (comprising of openings corresponding to P3’s committed

shares and the shares sent on behalf of honest parties in Round 1) along with (TTP, l),

l ∈ [4] \ {3} on behalf of Pl during Round 3, send (y,TTP) to P ∗3 in Round 4 on behalf of Pl.

R4 If had sent (TTP, β) to P ∗3 on behalf of either P1, P2, P4 in Round 3, send (y,TTP) to P ∗3 on

behalf of Pβ.

S1
g4PC (P ∗1 is corrupt)

R1 Simulation of Round 1 of S1
InputCommitα

(α ∈ [4]) (Figure 4.8). Let y denote the output

computed.

R1 Receive s from P ∗1 on behalf of P2.

R1 Send pp3 to P ∗1 on behalf of P3.

R2 Simulation of Round 2 of S1
InputCommitα

(α ∈ [4]) (Figure 4.8).

R2 On behalf of P3: Receive B comprising of the garbled circuit, commitments on encoding and

decoding information information and permutation strings pij for (i ∈ [4], j ∈ ind(Pi3)) from

P ∗1 . Additionally, the openings corresponding to the input labels xij for (i ∈ [4], j ∈ ind(Pi1))

(except the labels for x23, x24, x43) are received.

R2 Following steps are executed: (a) Set F3 = {P1, P2} if B is not consistent with B computed

using randomness G(s) and pp3, where s received on behalf of P2 in Round 1. (b) If

C3 = F3 = ∅, set P1 to C3 if (openings of) encoding information for xij , for

i ∈ [4], j ∈ ind(Pi3) are anything other than the originally committed labels (known on behalf

of P2). If any of the labels corresponding to xij(i ∈ [4], j /∈ ind(Pi3)) do not correspond to the

originally committed label (known on behalf of P2), then set F3 = {P1, P2}. Here, xij refers

to the value sent to P ∗1 during InputCommiti (for i ∈ ind(P1)) on behalf of Pi or received on

behalf of P3 from P ∗1 (during InputCommit1).
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R2 Receive c from P ∗1 on behalf of P4. Add {P1, P2} to F4 if c received from P ∗1 is not consistent

with B computed using s received on behalf of P2.

R3 If C3 = F3 = ∅, compute Y such that De(Y, d) = y (d known as simulator acts on behalf of P2).

Send Y to P ∗1 on behalf of P3.

R3 If Cα 6= ∅ ∨ Fα 6= ∅, Pα (α ∈ {2, 3, 4}), send (TTP, β) to P ∗1 where Pβ /∈ Cα ∪ Fα.

R4 If Y was sent to P ∗1 on behalf of P3, send y to P ∗1 on behalf of P2, P4.

R4 If received a valid view V1 from P ∗1 (comprising of openings corresponding to P1’s committed

shares and the shares sent on behalf of honest parties in Round 1) along with (TTP, l),

l ∈ [4] \ {1} on behalf of Pl during Round 3, send (y,TTP) to P ∗1 in Round 4 on behalf of Pl.

R4 If had sent (TTP, β) to P ∗1 on behalf of either P2, P3, P4 in Round 3, send (y,TTP) to P ∗1 on

behalf of Pβ.

S4
g4PC (P ∗4 is corrupt)

R1 Simulation of Round 1 of S4
InputCommitα

(α ∈ [4]) (Figure 4.8). Let y denote the output

computed.

R2 Simulation of Round 2 of S4
InputCommitα

(α ∈ [4]) (Figure 4.8).

R2 Use uniform randomness to compute c as commitment on H(d). Send c to P ∗4 on behalf of

P1, P2.

R3 If Cg = Fg = ∅ for Pg(g ∈ [2]), send o (opening of hash of decoding information) to P ∗4 .

R3 If C3 = F3 = ∅, compute Y such that De(Y, d) = y. Send Y to P ∗4 on behalf of P3.

R3 If Cα 6= ∅ ∨ Fα 6= ∅, Pα (α ∈ {1, 2, 3}), send (TTP, β) to P ∗1 where Pβ /∈ Cα ∪ Fα.

R4 If Y was sent to P ∗4 , send y to P ∗4 on behalf of P1, P2.

R4 If received a valid view V4 from P ∗4 (comprising of openings corresponding to P4’s committed

shares and the shares sent on behalf of honest parties in Round 1) along with (TTP, l),

l ∈ [4] \ {1} on behalf of Pl during Round 3, send (y,TTP) to P ∗4 in Round 4 on behalf of Pl.

R4 If had sent (TTP, β) to P ∗4 on behalf of either P1, P2, P3 in Round 3, send (y,TTP) to P ∗4 on

behalf of Pβ.

Figure 4.9: Description of Sg4PC
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Security against corrupt P ∗3 . We now argue that idealFgod,S
3
g4PC

c
≈ realg4PC,A, when an ad-

versary A corrupts P3. The views are shown to be indistinguishable via a series of intermediate

hybrids.

– hyb0: Same as realg4PC,A.

– hyb1: Same as hyb0, except that when the execution does not result in P3 getting access to

the opening of commitment cij (i ∈ ind(P3), j /∈ ind(Pi3)) sent by Pi, the commitment is

replaced with commitment of dummy value.

– hyb2: Same as hyb1 except that P3 is added to Ck (k ∈ ind(P3)) if the opening forwarded

by P3 to Pk during InputCommiti corresponding to Pi’s committed share (i ∈ ind(P3k)) is

anything other than what was originally committed.

– hyb3: Same as hyb2, except that P1, P2 use uniform randomness rather than pseudo-

randomness.

– hyb4: Same as hyb3, except that some of the commitments of input wire labels sent on

behalf of P1, P2, which will not be opened are replaced with commitments of dummy

values.

– hyb5: Same as hyb4, except the following:

– hyb5.1: When the execution results in P3 getting access to labels corresponding to its

non-committed input for the garbled circuit, the GC is created as (C′,X) ← Sobv(1
κ, C)

and the commitment to the hash of the decoding information is created for a dummy

value.

– hyb5.2: When the execution results in P3 getting access to labels corresponding to its

committed input, the GC is created as (C′,X, d′) ← Sprv(1
κ, C, y). The commitment c is

computed on decoding information H(d′).

– hyb6: Same as hyb5, except that P3 does not receive y in Round 4 if neither P1 nor P2

receive Y obtained upon GC evaluation from P3 in Round 3.

– hyb7: Same as hyb6 except that the TTP assigned by P3 sends y only if the view V3 sent by

P3 comprises of decommitments that opens to the input shares of the parties that were

originally committed.
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Since hyb7 := idealFgod,S
3
g4PC

, we show that every two consecutive hybrids are computationally

indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that when the execution does not

result in P3 getting access to the opening of commitment cij (i ∈ ind(P3), j /∈ ind(Pi3)) sent by

Pi, cij corresponds to the actual input share xij in hyb0 while it corresponds to dummy value

in hyb1. The indistinguishability follows from the hiding property of sCom.

hyb1
c
≈ hyb2: The difference between the hybrids is that while in hyb1, P3 is added to

Ck (k ∈ ind(P3)) if the opening forwarded by P3 to Pk during InputCommiti (i ∈ ind(P3k))

corresponding to Pi’s committed share results in ⊥; in hyb2, Ck is set to P3 if P3 sends opening

anything other than what was originally committed. Since the commitment scheme sCom is

binding, in hyb2, P3 could have decommitted successfully to a different input share of Pi other

than what was originally committed, only with negligible probability. Therefore, the hybrids

are indistinguishable.

hyb2
c
≈ hyb3: The difference between the hybrids is that P1, P2 use uniform randomness in

hyb3 rather than pseudorandomness as in hyb2. The indistinguishability follows via reduction

to the security of the PRG G.

hyb3
c
≈ hyb4: The difference between the hybrids is that some of commitments of the input

wire labels in hyb3 that will not be opened are replaced with commitments of dummy values in

hyb4. The indistinguishability follows via reduction to the hiding property of the commitment

scheme Com.

hyb4
c
≈ hyb5.1: The difference between the hybrids is in the way (C,X) is generated when

the execution results in P3 getting access to labels corresponding to its non-committed input.

In hyb4, (C, e, d) ← Gb(1κ, C ′) is run, which gives (C,En(x, e)). In hyb5.1, it is generated as

(C′,X)← Sobv(1
κ, C ′). Additionally, the commitment to the decoding information is created for

a dummy value in hyb5.1. The indistinguishability follows via reduction to the obliviousness of

the garbling scheme and the hiding property of commitment scheme.

hyb4
c
≈ hyb5.2: The difference between the hybrids is in the way (C,X, d) is generated.

In hyb4, (C, e, d) ← Gb(1κ, C ′) is run, which gives (C,En(x, e), d). In hyb5.2, it is generated

as (C′,X, d′) ← Sprv(1
κ, C ′, y). Additionally, the commitment to the decoding information is
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computed on d′. The indistinguishability follows via reduction to the privacy of the garbling

scheme and the hiding property of Com.

hyb5
c
≈ hyb6: The difference between the hybrids is that in hyb5, P3 does not receive y

in Round 4 if neither P1 nor P2 receive Y such that De(Y, d) 6= ⊥ from P3; while in hyb6, P3

does not receive y if neither P1 nor P2 receive Y = Ev(C,X). Due to authenticity of the gar-

bling scheme and the property of preimage-resistant hash used in the decoding information, P3

could have sent Y such that Y 6= Ev(C,X) but De(Y, d) 6= ⊥ only with negligibility probability.

Therefore, the hybrids are indistiguishable.

hyb6
c
≈ hyb7: The difference between the hybrids is that in hyb6, the TTP assigned by

P3 would return y to P3 if the view V3 sent by P3 comprises of decommitments that lead to

non-⊥ (corresponding to the commitments on shares output by the subroutine InputCommit);

while in hyb7, the TTP assigned by P3 would return y to P3 only if the view V3 sent by P3

contains decommitments that open to the input shares that were originally committed. Since

the commitment scheme sCom is (strong) binding even against an adversarially chosen pp; in

hyb6, P3 could have decommitted successfully to a different input share than what was orig-

inally committed, only with negligible probability. Therefore, the hybrids are indistinguishable.

Security against corrupt P ∗1 . We now argue that idealFgod,S
1
g4PC

c
≈ realg4PC,A, when an ad-

versary A corrupts P1. The views are shown to be indistinguishable via a series of intermediate

hybrids.

– hyb0: Same as realg4PC,A.

– hyb1: Same as hyb0, except that when the execution does not result in P1 getting access to

the opening of commitment cij (i ∈ ind(P1), j /∈ ind(Pi1)) sent by Pi, the commitment is

replaced with commitment of dummy value.

– hyb2: Same as hyb1 except that P1 is added to Ck (k ∈ ind(P1)) if the opening forwarded

by P1 to Pk during InputCommiti corresponding to Pi’s committed share (i ∈ ind(P1k)) is

anything other than what was originally commited.

– hyb3: Same as hyb2, except that when C3 = F3 = ∅ at the end of Round 2, P1 is added to C3

if P3 receives anything other than the encoding information corresponding to committed

share xij (i ∈ [4], j ∈ ind(Pi3)).
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– hyb4: Same as hyb3, except that when C3 = F3 = ∅ at the end of Round 2, {P1, P2} is

added to F3 if P3 receives anything other than the encoding information corresponding

to committed share xij (i ∈ [4], j /∈ ind(Pi3)).

– hyb5: Same as hyb4, except that Y is computed via De(Y, d) = y in place of Y = Ev(C,X).

– hyb6: Same as hyb5 except that the TTP assigned by P1 sends y only if the view V1 sent by

P1 comprises of decommitments that opens to the input shares of the parties that were

originally committed.

Since hyb6 := idealFgod,S
1
g4PC

, we show that every two consecutive hybrids are computation-

ally indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that when the execution does not

result in P1 getting access to the opening of commitment cij(i ∈ ind(P1), j /∈ ind(Pi1)) sent by

Pi, cij corresponds to the actual input share xij in hyb0 while it corresponds to dummy value

in hyb1. The indistinguishability follows from the hiding property of sCom.

hyb1
c
≈ hyb2: The difference between the hybrids is that while in hyb1, P1 is added to

Ck (k ∈ ind(P1)) if the opening forwarded by P1 to Pk during InputCommiti (i ∈ ind(P1k))

corresponding to Pi’s committed share results in ⊥; in hyb2, Ck is set to P1 if P1 sends opening

anything other than what was originally committed. Since the commitment scheme sCom is

binding, in hyb2, P1 could have decommitted successfully to a different input share of Pi other

than what was originally committed, only with negligible probability. Therefore, the hybrids

are indistinguishable.

hyb2
c
≈ hyb3: The difference between the hybrids is that in hyb1, when C3 = F3 = ∅ at

the end of Round 2, P1 is added to C3 if the decommitments (corresponding to encoding of

committed share xij (i ∈ [4], j ∈ ind(Pi3))) sent by P1 output ⊥ while in hyb2, P1 is added

to C3 if the decommitments sent by P1 open to any value other than the originally committed

encoding information corresponding to xij. Since the commitment scheme Com is binding and

pp was chosen uniformly at random by P3; in hyb1, P1 could have decommitted successfully

to a different input label than what was originally committed, only with negligible probability.

Therefore, the hybrids are indistinguishable.

hyb3
c
≈ hyb4: The difference between the hybrids is that in hyb3, when C3 = F3 = ∅ at

the end of Round 2, {P1, P2} is added to F3 if the index of the decommitments (corresponding
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to encoding of committed share xij (i ∈ [4], j /∈ ind(Pi3))) sent by P1 are inconsistent with that

known on behalf of P2, while in hyb4, {P1, P2} is added to F3 if the decommitments sent by P1

open to any value other than the originally committed encoding information corresponding to

xij. Since the commitment scheme Com is binding and pp was chosen uniformly at random by

P3; in hyb3, P1 could have sent opening corresponding to the consistent index but decommitted

successfully to a different input label than what was originally committed, only with negligible

probability. Therefore, the hybrids are indistinguishable.

hyb4
c
≈ hyb5: The difference between the hybrids is that in hyb4, Y is computed via

Ev(C,X), while in hyb5, Y is computed such that De(Y, d) = y. Due to the correctness of the

garbling scheme, the equivalence of Y computed via Ev(C,X) or such that De(Y, d) = y holds.

hyb5
c
≈ hyb6: The difference between the hybrids is that in hyb5, the TTP assigned by P1

would return y to P1 if the view V1 sent by P1 comprises of decommitments that lead to non-⊥
(corresponding to the commitments on shares output by the subroutine InputCommiti); while

in hyb6, the TTP assigned by P1 would return y to P1 only if the view V1 sent by P1 contains

decommitments that open to the input shares that were originally committed. Since the com-

mitment scheme sCom is binding even against an adversarially chosen pp; in hyb5, P1 could

have decommitted successfully to a different input share than what was originally committed,

only with negligible probability. Therefore, the hybrids are indistinguishable.

Security against corrupt P ∗4 . We now argue that idealFgod,S
4
g4PC

c
≈ realg4PC,A, when an ad-

versary A corrupts P4. The views are shown to be indistinguishable via a series of intermediate

hybrids.

– hyb0: Same as realg4PC,A.

– hyb1: Same as hyb0, except that when the execution does not result in P4 getting access to

the opening of commitment cij (i ∈ ind(P4), j /∈ ind(Pi4)) sent by Pi, the commitment is

replaced with commitment of dummy value.

– hyb2: Same as hyb1 except that P4 is added to Ck (k ∈ ind(P4)) if the opening forwarded

by P4 to Pk during InputCommiti corresponding to Pi’s committed share (i ∈ ind(P4k)) is

anything other than what was originally committed.

– hyb3: Same as hyb2, except that P1, P2 use uniform randomness rather than pseudo-

randomness.
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– hyb4: Same as hyb4, except that Y is computed via De(Y, d) = y in place of Y = Ev(C,X).

– hyb5: Same as hyb4 except that the TTP assigned by P4 sends y only if the view V4 sent by

P4 comprises of decommitments that opens to the input shares of the parties that were

originally committed.

Since hyb5 := idealFgod,S
4
g4PC

, we show that every two consecutive hybrids are computationally

indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that when the execution does not

result in P4 getting access to the opening of commitment cij (i ∈ ind(P4), j /∈ ind(Pi4) sent by

Pi, cij corresponds to the actual input share xij in hyb0 while it corresponds to dummy value

in hyb1. The indistinguishability follows from the hiding property of sCom.

hyb1
c
≈ hyb2: The difference between the hybrids is that while in hyb1, P4 is added to

Ck (k ∈ ind(P1)) if the opening forwarded by P4 to Pk during InputCommiti (i ∈ ind(P4k))

corresponding to Pi’s committed share results in ⊥; in hyb2, Ck is set to P4 if P4 sends opening

anything other than what was originally committed. Since the commitment scheme sCom is

binding, in hyb2, P4 could have decommitted successfully to a different input share of Pi other

than what was originally committed, only with negligible probability. Therefore, the hybrids

are indistinguishable.

hyb2
c
≈ hyb3: The difference between the hybrids is that P1, P2 use uniform randomness in

hyb1 rather than pseudorandomness as in hyb1. The indistinguishability follows via reduction

to the security of the PRG G.

hyb3
c
≈ hyb4: The difference between the hybrids is that in hyb3, Y is computed via

Ev(C,X), while in hyb4, Y is computed such that De(Y, d) = y. Due to the correctness of the

garbling scheme, the equivalence of Y computed via Ev(C,X) or such that De(Y, d) = y holds.

hyb4
c
≈ hyb5: The difference between the hybrids is that in hyb4, the TTP assigned by

P4 would return y to P4 if the view V4 sent by P4 comprises of decommitments that lead to

non-⊥ (corresponding to the commitments on shares output by the subroutine InputCommit);

while in hyb5, the TTP assigned by P4 would return y to P4 only if the view V4 sent by P4

contains decommitments that open to the input shares that were originally committed. Since

the commitment scheme sCom is binding even against an adversarially chosen pp; in hyb4,
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P4 could have decommitted successfully to a different input share than what was originally

committed, only with negligible probability. Therefore, the hybrids are indistinguishable. This

completes the proof.

4.8.3 Security Proof for g4PC4

In this section, we provide a high-level overview of the proof of Theorem 4.5 that states the

security of g4PC4 relative to its ideal functionality.

We describe the simulator Sg4PC4 for the cases of corrupt P1 and P3. The corruption of P2

and P4 is analogous to the case of P1 and P3 respectively. We give only a sketch of the simulator

below since the simulation proceeds almost exactly as the simulation of g4PC described formally

in Section 4.8.2.

For the case when P3 is corrupt, simulator S3
g4PC4 acts on behalf of honest P1, P2, P4 as follows:

In round 1 of InputCommitα, α ∈ P3, S3
g4PC4 chooses random values corresponding to the shares

of honest parties accessible to P3, namely xij (i ∈ P3, j ∈ Pi3) and acts according to the protocol.

Commitments on the remaining shares of honest parties are dummy. Correspondingly, on behalf

of the honest parties, simulator receives commitments corresponding to x3j(j ∈ P3) in round 1

of InputCommit3 and checks if there exists a majority commitment corresponding to each of the

shares. If not, P3 is added to Ci (i ∈ P3) and Fgod is invoked with default value to retrieve y.

Else, P3’s input is extracted using the shares corresponding to the majority commitment and

its opening. Consequently, Fgod is invoked using the committed input of P3 and y is obtained.

The corrupt and conflict sets of the honest parties are populated according to the protocol. For

simulation of Round 2 on behalf of garblers, we consider two cases depending on whether: (a)

P3 gets access to the labels corresponding to any of its non-committed input shares (b) P3 gets

access to labels corresponding to its committed input shares. The case that will follow can be

determined at the end of Round 1 itself by simulator acting on behalf of the honest garblers

since P3’s committed input is known to simulator by then. Accordingly in Round 2, either the

oblivious simulator of the garbling scheme Sobv or the privacy simulator Sprv (can be invoked

with output y obtained) is invoked for case (a) and (b) respectively. In case (a) when GC

returned by Sobv is used, the commitment on hash of the decoding information is dummy and

never has to be opened to P3 according to the protocol steps as for each garbler Pg atleast one

of Cg 6= ∅/Fg 6= ∅ holds. In the latter case when GC returned by Sprv is used, the commitment

is done on the value H(d), where d is returned by Sprv. This commitment is opened during

Round 3 by simulator acting on behalf of garbler Pg if Cg = Fg = ∅.
Next, if P3 sends a (TTP, β) message to a party in P3 and sends a valid V3 (with openings
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of committed shares known to simulator) to Pβ in Round 3, (y,TTP) is sent to P3 on behalf of

Pβ. Additionally, the conflict and corrupt set of Pi, i ∈ P3 that are locally computed (during

simulation of InputCommit3) are used by Pi to identify TTP as per the protocol and (TTP, β)

message is sent accordingly to P3 in Round 3. Subsequently, (y,TTP) is sent to P3 on behalf

of the Pβ.

For the case when P1 is corrupt, simulator S1
g4PC4 acts on behalf of P2, P3, P4 as follows:

Simulation of InputCommitα, α ∈ [4] is the same as described for S3
g4PC4 which would lead to

extraction of P1’s committed input and retrieval of y via Fgod. On behalf of the evaluator,

say P3 if C3 = F3 = ∅ (populated during simulation of executions of InputCommitα()), the

simulator checks if P1 (a) sends GC consistent with randomness shared with P2 (b) sends

encoding of committed input shares. If either of the checks fails, the corrupt or conflict set of

P3 is populated accordingly (for (b), incase of shares known to P3, corrupt set is populated;

else conflict is populated with {P1, P2} corresponding to shares that are not held by P3 and

held by both garblers) and the TTP is assigned as per the protocol. The output y is sent to

P1 on behalf of the TTP in Round 4. If the checks pass and Ci = Fi = ∅, i ∈ {3, 4}, then Y

is computed such that it decodes to output y and sent to P1 on behalf of Pi in round 3. This

completes the simulation sketch of g4PC4.

4.8.4 Security Proof for protocol g3PC

In this section, we present the proof of Theorem 4.7 that states the security of GOD relative

to its ideal functionality. We describe the simulator Sg3PC for the case when P1, P3 is corrupt.

The case of P2 being corrupt is symmetric to that of P1. The description of the simulator is

available in Figure 4.10 with R1/R2/R3/R4/R5 indicating simulation for round 1, 2, 3, 4

and 5 respectively.

S3
g3PC (P ∗3 is corrupt)

R1 Receive (pp, c31, c32) via broadcast and (x31, x32, o31, o32) privately from P ∗3 on behalf of P1, P2.

R2 Broadcast (Conflict, P3) on behalf of Pi if Open(c3i, o3i) 6= x3i for i ∈ [2]. If for exactly one i

the check doesn’t pass, set TTP to P[2]\i and broadcast B as per protocol on behalf of P[2]\i .

If check doesn’t pass for both i ∈ [2], set TTP = P1.

R2 If TTP = ∅, extract x3 = x31 ⊕ x32 and invoke Fgod with (Input, x3) on behalf of P ∗3 to retrieve

output y. Use uniform randomness r on behalf of P1, P2 and run (C,X, d)← Sprv(1κ, C, y).

Simulator Sg3PC
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R2 If TTP = ∅, choose m1,m2 at random. Let {cm
α
1

α , c
mα2
`+α, c

xα31
2`+α, c

xα32
3`+α}α∈[`] be commitments to the

entries of X. Commit to dummy values corresponding to other input labels. Set B to include C

and set of commitments. Broadcast B on behalf of both P1, P2. Send ({om
α
1

α , o
xα31
2`+α}α∈[`],m1),

({om
α
2

`+α, o
xα32
3`+α}α∈[`],m2) on behalf of P1, P2 respectively.

R3 If received broadcast of (Conflict, Pi)(i ∈ [2]) from P3, set TTP = P[2]\i. Else if received

Y 6= (C,X), set TTP = P1.

R4 If TTP 6= ∅ and y = ⊥: Invoke Fgod with (Input, x3) to get output y where x3 is computed using

o31, o32 received in Round 1 on behalf of honest parties, else received from P ∗3 on behalf of

TTP in Round 4 (take default value if not received or invalid).

R5 Send y to P ∗3 on behalf of TTP if TTP 6= ∅.

S1
g3PC (P ∗1 is corrupt)

R1 Choose x31, pp at random. Compute (c31, o31) ← Com(pp, x31). Broadcast {pp, c31, c32} where

c32 is commitment of dummy value. Send {x31, o31} to P ∗1 on behalf of P3.

R2 Compute and broadcast B2 on behalf of P2, using s received from P ∗1 as per protocol.

R2 Set TTP = P3 if B1 6= B2. Set TTP = P2 if P1 broadcasts (Conflict, P3)

R3 Suppose TTP = ∅: Check if any of the decommitments sent by P ∗1 to P3 in Round 2 opens to

something other than what was originally committed (known on behalf of P2). If so, broadcast

(Conflict, P1) on behalf of P3 and set TTP = P2.

R3 If TTP = ∅, extract P ∗1 ’s input as x1 = m1 ⊕ p1, where p1,m1 is known on behalf of P2, P3

respectively. Invoke Fgod with (Input, x1) to receive output y. Compute Y such that De(Y, d) =

y (d known to P2) and broadcast Y on behalf of P3.

R4 If TTP 6= ∅, receive x1 from P ∗1 (take default value if not received) on behalf of TTP. Invoke

Fgod with (Input, x1) to retrieve output y.

R5 If TTP 6= ∅, send y to P ∗1 on behalf of TTP.

Figure 4.10: Description of Sg3PC

Security against corrupt P ∗3 . We now argue that idealFgod,S
3
g3PC

c
≈ realg3PC,A, when A

corrupts P3. The views are shown to be indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realg3PC,A.
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– hyb1: Same as hyb0, except that P1, P2 use uniform randomness rather than pseudo-

randomness.

– hyb2: Same as hyb1, except that some of the commitments of input wire labels sent by P1, P2,

which will not be opened are replaced with commitments of dummy values. Specifically,

these are the commitments with indices 6= m1,m2, x31, x32.

– hyb3 : Same as hyb2, except that when the execution results in P3 evaluating the garbled

circuit (GC), the GC is created as (C′,X, d′)← Sprv(1
κ, C, y).

– hyb4 : Same as hyb3, except that P1 is set to TTP if P3 broadcasts Y 6= (C,X).

Since hyb4 := idealFgod,S
3
g3PC

, we show that every two consecutive hybrids are computationally

indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that P1, P2 use uniform randomness in

hyb1 rather than pseudorandomness as in hyb0. The indistinguishability follows via reduction

to the security of the PRG G.

hyb1
c
≈ hyb2: The difference between the hybrids is that some of commitments of the input

wire labels in hyb1 that will not be opened are replaced with commitments of dummy values in

hyb2. The indistinguishability follows via reduction to the hiding property of the commitment

scheme Com that holds even though pp was chosen by corrupt P3.

hyb2
c
≈ hyb3: The difference between the hybrids is in the way (C,X, d) is generated. In

hyb2, (C, e, d) ← Gb(1κ, C) is run, which gives (C,En(x, e), d). In hyb3, it is generated as

(C′,X, d1) ← Sprv(1
κ, C, y). The indistinguishability follows via reduction to the privacy of the

garbling scheme.

hyb3
c
≈ hyb4: The difference between the hybrids in that while in hyb3, P1 is set to TTP

when P3 broadcasts Y such that De(Y, d) = ⊥; in hyb4, P1 is set to TTP when P3 broadcasts

Y 6= (C,X). It follows from the authenticity property of garbling that P3 will be able to come

up with Y such that Y 6= (C,X) but De(Y, d) 6= ⊥ only with negligible probability.

Security against corrupt P ∗1 . We now argue that idealFgod,S
1
g3PC

c
≈ realg3PC,A, when A

corrupts P1. The views are shown to be indistinguishable via a series of intermediate hybrids.
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– hyb0: Same as realg3PC,A

– hyb1: Same as hyb0, except that P3 raises a conflict with P1 if it accepts any decommitment

that opens to a value other than what was originally committed.

– hyb2: Same as hyb1, except that when the execution does not result in P1 getting access to

the opening of commitment c32 (corresponding to x32) broadcast by P3, the commitment

is replaced with commitment of dummy value.

– hyb3: Same as hyb2, except that Y is computed via De(Y, d) = y rather than Y = Ev(C,X)

Since hyb3 := idealFgod,S
1
g3PC

, we show that every two consecutive hybrids are computationally

indistinguishable which concludes the proof.

hyb0
c
≈ hyb1: The difference between the hybrids is that in hyb0, P3 raises a conflict with

P1 if the decommitments sent by P1 output ⊥ while in hyb1, P3 raises a conflict if the de-

commitments sent by P1 opens to any value other than what was originally committed. Since

the commitment scheme Com is binding and pp was chosen uniformly at random by P3; in

hyb1, P1 could have decommitted successfully to a different input label than what was orig-

inally committed, only with negligible probability. Therefore, the hybrids are indistinguishable.

hyb1
c
≈ hyb2: The difference between the hybrids is that when the execution does not

result in P1 getting access to the opening of commitment c32 (corresponding to x32) broadcast

by P3, c32 corresponds to the actual input share x32 in hyb1 while it corresponds to dummy

value in hyb2. The indistinguishability follows from the hiding property of Com.

hyb2
c
≈ hyb3: The difference between the hybrids is that in hyb2, P3 computes Y via

Ev(C,X), while in hyb3, Y is computed such that De(Y, d) = y. Due to the correctness of the

garbling scheme, the equivalence of Y computed via Ev(C,X) or such that De(Y, d) = y holds.
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Part II

Round Complexity of MPC : Beyond

Traditional Adversaries
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Chapter 5

On the Round Complexity of

Best-of-Both-Worlds Multi-party

Computation

In this chapter, we study the exact round complexity of ‘Best of Both Worlds (BoBW)’ MPC

protocols, a much sought-after species of MPC protocols that offer the best possible security

depending on the actual corruption. Specifically, such protocols simultaneously provide fn /

god in honest majority setting and ua in dishonest majority setting.

5.1 Introduction

While highly sought-after, fairness (fn) and guaranteed output delivery (god) can only be re-

alised, when majority of the involved population is honest [65]. In the absence of this favorable

condition, uananimous abort (ua) is the best security notion that can be attained. With these

distinct affordable goals, MPC with honest majority [30, 56, 177, 19, 17, 72, 4] and dishonest

majority [107, 73, 94, 44, 3, 113, 15] mark one of the earlier demarcations in the world of

MPC. While the constructions of each type are abound in the literature, one class of protocols

does not seem to withstand the threat model of the other. For instance, the honest-majority

protocols do not guarantee privacy of the inputs of the honest parties in the face of dishonest

majority and likewise the dishonest-majority protocols cannot achieve god and fn, tolerating

even a single corruption, let alone dishonest minority. In many real-life scenarios, it is highly

unlikely for anyone to guess upfront how many parties the adversary is likely to corrupt. In such

a scenario, the best a practitioner can do, is to employ the ‘best’ protocol from her favorite

class and hope that the adversary will be within assumed corruption limit of the employed
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protocol. If the guess fails, the employed protocol, depending on whether it is an honest or

dishonest majority protocol, will suffer from the above mentioned issues. To overcome this

worrisome shortcoming, an unconventional yet much sought-after species of MPC, termed as

‘Best-of-Both-Worlds’ (BoBW) which offers the best possible security depending on the actual

corruption scenario was introduced in [124, 134, 127].

Denoting the threshold of corruption in honest and dishonest majority case by t and s

respectively, an ideal BoBW MPC should promise the best possible security in each corruption

scenario for any population of size n, as long as t < n/2 and s < n. Quite contrary to the

expectation, the grand beginning of BoBW MPC with the works of [124, 134, 127] is mostly

marred with pessimistic results showing the above goal is impossible for many scenarios. For

reactive functionalities that receive inputs and provide outputs in multiple rounds maintaining

a state information between subsequent invocations, it is impossible to achieve BoBW security

[124]. While theoretical feasibility is not declined, non-reactive or standard functionalities are

shown to be impossible to realise as long as t + s ≥ n in expected polynomial time (in the

security parameter), making any positive result practically irrelevant [134, 127]. A number of

meaningful relaxations were proposed in the literature to get around the impossibility of BoBW

security when t + s ≥ n [134, 127]. The most relevant to our work is the relaxation proposed

in [152] where the best possible security of god is compromised to the second-best notion of fn

in the honest-majority setting. Other attempts to circumvent the impossibility result appear

in [124] and [134, 24] where the security in dishonest-majority setting is weakened to allowing

the adversary to learn s evaluations of the function (each time with distinct inputs exclusively

corresponding to the corrupt parties) in the former and achieving a weaker notion of O(1/p)-

security with abort (actions of any polynomial-time adversary in the real world can be simulated

by a polynomial-time adversary in the ideal world such that the distributions of the resulting

outcomes cannot be distinguished with probability better than O(1/p)) in the latter. [124]

shows yet another circumvention by weakening the adversary in dishonest-majority case from

active to passive. On the contrary, constructions are known when t + s < n is assumed [124],

tolerating active corruptions and giving best possible security in both the honest and dishonest

majority case.

In this work, we consider two types of BoBW MPC protocols and study their exact round

complexity: (a) MPC achieving the best security of god and ua in the honest and dishonest

majority setting respectively assuming s+t < n, referred as (god|ua)-BoBW; (b) MPC achieving

second-best security notion of fn in the honest majority and the best possible security of ua in

the dishonest majority for any n, referred as (fn|ua)-BoBW. We nearly settle the exact round

complexity of these two classes under the assumption of no setup (plain model), public setup
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(CRS) and private setup (CRS + PKI or simply PKI).

5.1.1 Related Work

We refer to Section 1.3 for relevant literature on exact round complexity of MPC in the tra-

ditional settings of honest and dishonest majority and outline works related to BoBW MPC

below. An orthogonal notion of BoBW security is considered in [54, 119, 152] where information-

theoretic and computational security is the desired goal in honest and dishonest majority setting

respectively. Avoiding the relaxation to computational security in dishonest-majority setting,

the work of [114] introduces the best possible information-theoretic guarantee achievable in

the honest and dishonest majority settings simultaneously; i.e the one that offers standard

information-theoretic security in honest majority and offers residual security (the adversary

cannot learn anything more than the residual function of the honest parties’ inputs) in dishonest-

majority setting. A more fine-grained graceful degradation of security is dealt with in the works

of [152, 120, 121, 122, 169] considering a mixed adversary that can simultaneously corrupt in

both active and semi-honest style. [99] studies the communication efficiency in the BoBW set-

ting. In spite of immense practical relevance of BoBW protocols, the question of their exact

round complexity has not been tackled so far. Constant-round protocols are presented in (or

can be derived from) [124, 127] for (god|ua)-BoBW and BoBW where only semi-honest cor-

ruptions are tolerated in the dishonest majority. The recent work of [169] settled the exact

round complexity of the latter class, as a special case of a strong adversarial model that allows

both active (with threshold ta) and passive (with threshold tp, which subsumes the active cor-

ruptions) corruption for a range of thresholds for (ta, tp) starting from (dn/2e − 1, bn/2c) to

(0, n − 1). Lastly, the round complexity of BoBW protocols of [24] that achieve 1/p-security

with abort in dishonest majority (and god in honest majority), depends on the polynomial p(κ)

(where κ denotes the security parameter).

5.1.2 Our Results

Assuming a network with pair-wise private channels and a broadcast channel, we show that

5 and 3 rounds are necessary and sufficient for (fn|ua)-BoBW MPC under the assumption of

‘no setup’ and ‘public and private setup’ respectively. For the class of (god|ua)-BoBW MPC,

we show necessity and sufficiency of 3 rounds for the public setup case and 2 rounds for the

private setup case. In the no setup setting, we show the sufficiency of 5 rounds, while the known

lower bound is 4. All our upper bounds are based on polynomial-time assumptions and assume

black-box simulation. With distinct feasibility conditions, the classes differ in terms of the

round requirement. The bounds are in some cases different and on a positive note at most one
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more, compared to the maximum of the needs of the honest-majority and dishonest-majority

setting. While the details of our results appear in Section 1.4.2, we summarise and put them

along with the bounds known in the honest and dishonest majority setting in Table 5.1 for

quick reference.

No setup (Plain Model) Public Setup (CRS) Private Setup (CRS + PKI)

Honest Majority

t < n/2

fn / god

Round: 3

Lower Bound: [166, 102]

Upper Bound: [4, 16]

Round: 3

Lower Bound: [166, 102]

Upper Bound: [108, 4, 16]

Round: 2

Lower Bound: [112]

Upper Bound: [108]

Dishonest Majority

s < n

sa / ua

Round: 4

Lower Bound: [95]

Upper Bound: [113, 15, 60]

(sa only)

Round: 2

Lower Bound: [112]

Upper Bound: [94, 160]

[92, 93, 35]

Round: 2

Lower Bound: [112]

Upper Bound: [94, 160]

[92, 93, 35]

(fn|ua)-BoBW

t < n/2, s < n

fn & ua

Round: 5

Lower Bound: This work

Upper Bound: This work

Round: 3

Lower Bound: [102, 166]

Upper Bound: This work

Round: 3

Lower Bound: This work

Upper Bound: This work

(god|ua)-BoBW

t < n/2, t+ s < n

god & ua

Round: –

Lower Bound: 4 [95]

Upper Bound: 5 This work

Round: 3

Lower Bound: This work

Upper Bound: This work

Round: 2

Lower Bound: [112]

Upper Bound: This work

Table 5.1: Summary of results related to BoBW MPC

Extensions. We can boost the security of all our protocols to offer identifiability (i.e. public

identifiability of the parties who misbehaved) when abort happens– (fn|ua)-BoBW protocols

with identifiable fairness (idfair) and abort (idua) in honest and dishonest majority setting re-

spectively and (god|ua)-BoBW protocols with idua in dishonest-majority setting. Our lower

bound results hold as is when ua and fn are upgraded to their stronger variants with identi-

fiability. Furthermore, all our upper bounds relying on CRS have instantiations based on a

weaker setup, referred as common random string, owing to the availability of 2-round Oblivious

Transfer (OT) [176] and Non-Interactive Zero Knowledge (NIZK) [179] under the latter setup

assumption. Lastly, we also propose few optimizations to minimize the use of broadcast chan-

nels in our compilers upon which our upper bounds are based. Specifically, these optimizations

preserve the round complexity of our upper bounds at the cost of relaxing the security notion

in dishonest majority setting to sa (as opposed to ua).

5.1.3 Techniques

(fn|ua)-BoBW. The lower bounds are obtained via a reduction to 3-round OT in plain model

and 1-round OT in private setup setting, both of which are known to be impossible [95, 112]
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(albeit under the black-box simulation paradigm which is of concern in this work). The starting

point is a protocol π between 3 parties which provides fn when 1 party is corrupt and ua when

2 parties are corrupt, in 4 rounds when no setup is assumed and 2 rounds when private/public

setup is assumed. The heart of the proof lies in devising a function f such that the realization

of f via π, barring its last round, leads to an OT.

The upper bounds are settled with a proposed generic compiler that turns an r-round

dishonest-majority MPC protocol achieving ua to an (r + 1)-round BoBW MPC protocol

information-theoretically. The compiler churns out a 5-round and a 3-round BoBW protocol

in the plain model and in the presence of a CRS respectively, when plugged with appropriate

ua-secure dishonest-majority protocol in the respective setting. Since the constructions of the

known 4-round dishonest-majority MPC relying on polynomial-time assumptions [113, 15, 60]

provide only sa security, we transform them to achieve ua for our purpose which invokes non-

triviality for [113]. With CRS, the known constructions of [93, 35] achieve unanimity and

readily generate 3-round BoBW protocols.

Our compiler motivated by [130] uses the underlying r-round protocol to compute authen-

ticated secret sharing of the output y with a threshold t(< n/2) enabling the output recon-

struction to occur in the last round. Fairness is ensured given the unanimity of the underlying

protocol and the fact that the adversary (controlling t corrupt parties) has no information

about the output y from the t shares he owns. However, using pairwise MACs for authenti-

cation defies unanimity in case of arbitrary corruptions because a corrupt party can choose to

provide a verified share to a selected set of honest parties enabling their output reconstruction

while causing the rest to abort. This issue is tackled by enforcing public verifiability of the

shares via a form of authentication used in the Information Checking Protocol (ICP) primitive

of [173, 165] and unanimously identifiable commitments (UIC) of [128]. This technique makes

it impossible (except with negligible probability) for a corrupt party to keep two honest parties

on different pages about the correctness of the share it provides during output reconstruction

hence preserving unanimity.

(god|ua)-BoBW. The non-trivial lower bound for this class is for the CRS setting. The

other bounds imply from the dishonest-majority case. In the CRS setting, we prove a lower

bound of 3 rounds. We start with assuming a 2 round BoBW protocol π for a specifically

articulated 4-party function f . Next, we consider a sequence of executions of π, with different

adversarial strategies in the order of their increasingly malicious behaviour such that the views

of a certain party stays the same between the executions. This sequence finally leads us to a

strategy where the adversary is able to learn the input of an honest party breaching privacy,

hence coming to a contradiction. The crux of the lower bound argument lies in the design
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of the adversarial strategies that shuffle between the honest and dishonest majority setting

encapsulating the challenge in designing BoBW protocols. This is in contrast to existing lower

bounds in traditional models that deal with a fixed setting and single security notion at a time.

In the presence of a CRS, we build a 3-round protocol in two steps: a) we provide a generic

compiler that transforms a broadcast-only ua-secure 2-round semi-malicious protocol such as

[93, 35] to a 3-round broadcast-only BoBW protocol of this class against a semi-malicious

adversary (that follows the protocol honestly but can choose bad random coins for each round

which are available to the simulator) b) then, the round-preserving compiler of [10] (using

NIZKs) is applied on the above protocol to attain malicious security. The first compiler, in

spirit of [4], ensures god against t non-cooperating corrupt parties in the last round, via secret-

sharing the last-round message of the underlying protocol during the penultimate round of the

compiled protocol. This is achieved by means of a garbled circuit sent by each party outputting

its last-round message of the underlying protocol and the shares of the encoded labels with

a threshold of s so that s + 1 parties (in case of honest majority) can come together in the

final round to construct the last-round message of the corrupt parties. This garbled circuit of a

party Pi also takes into account the case when some other parties abort in the initial rounds of

the protocol by taking the list of aborting parties as input and hard-coding their default input

and randomness such that Pi’s last round message is computed considering default values for

parties who aborted. The compiler is made round-preserving with the additional provision of

pairwise-private channels or alternately, PKI. The latter (with PKI) just like its 3-round avatar

can be compiled to a malicious protocol via the compiler of [10].

In the plain model, we provide a 5-round construction which is substantially more involved

than our other upper bounds. To cope up with the demands of (god|ua)-BoBW security in the

plain model, we encountered several roadblocks that were addressed by adapting some existing

techniques combined with new tricks. The construction proceeds in two steps: a) we boost

the security of our broadcast-only 3-round semi-malicious BoBW protocol to a stronger notion

of delayed-semi-malicious security (where the adversary is required to justify his messages by

giving a valid witness only in the last but one round) and b) we plug this 3-round BoBW

protocol in the compiler of [35] with some additional modifications to obtain a 5-round BoBW

protocol secure against a malicious adversary. The compiler of [35] takes as input a (k − 1)-

round protocol secure with abort against a delayed-semi-malicious adversary and churns out a

k-round protocol secure with abort against a malicious adversary for any k ≥ 5. The major

challenges in our construction surface in simulation, where we cannot terminate in the honest-

majority case even if the adversary aborts on behalf of a corrupt party (unlike the compiler of

[35] that achieves abort security only). Furthermore, we observed that the natural simulation
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strategy to retain the BoBW guarantee suffered from a subtle flaw, similar to the one pointed

in the work of [115], which we resolve with the help of the idea suggested therein. To bound

the simulation time by expected polynomial-time, we further needed to introduce two ‘dummy’

rounds (rounds which do not involve messages of the underlying protocol being compiled) in

our compiler as opposed to one as in [35]. This does not inflate the round complexity as

our underlying delayed-semi-malicious protocol only consumes 3 rounds (instead of 4 as in

the case of [35]). As a step towards resolving the question left open in this work (namely

proving the impossibility or alternately constructing a 4-round (god|ua)-BoBW protocol under

polynomial-time assumption), we present a sketch of a 4-round (god|ua)-BoBW protocol based

on sub-exponentially secure trapdoor permutations and ZAPs. This construction builds upon

the work of [64]. The pictorial roadmap to obtain the upper bounds is given in the figure below.
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no setup
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Model. Before moving onto the technical section, we detail our model here. We consider

a set of n PPT parties P = {P1, . . . Pn} connected by pairwise-secure and authentic channels

and having access to a broadcast channel. A few protocols in our work that are referred to as

being broadcast-only do not assume private channels. Each party is modelled as a probabilistic

polynomial time (PPT) Turing machine. We assume that there exists a PPT adversary A, who

can corrupt a subset of these parties.

Roadmap. Our lower and upper bounds for (fn|ua)-BoBW appear in Section 5.2-5.3. Our

lower and upper bounds for (god|ua)-BoBW appear in Section 5.4 - 5.5. The primitives used

in our upper bounds and the security model appear in Chapter 2.
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5.2 Lower Bounds for (fn|ua)-BoBW

In this section, we show two lower bounds concerning (fn|ua)-BoBW protocols– one with no

setup and the other with private setup. In the plain model, we show that it is impossible

to design a 4-round (fn|ua)-BoBW protocol (with black-box simulation). In the CRS setting,

the 3-round lower bound for (fn|ua)-BoBW protocols follows directly from the impossibility

of 2-round protocol achieving fn [108, 102, 166]. However, they do not hold in the presence

of PKI. While the argument of [108] crucially relies on the adversary being able to eavesdrop

communication between two honest parties (which does not hold in the presence of PKI), the

lower bounds of [102, 166] also do not hold if PKI is assumed (as acknowledged / demonstrated

in [102, 168]). In the setting with CRS and PKI, we show impossibility of a 2-round protocol.

The proof of both our lower bounds relies on the following theorem, which we formally state

and prove below.

Theorem 5.1 An n-party r-round (fn|ua)-BoBW protocol implies a 2-party (r − 1)-round

maliciously-secure oblivious transfer (OT).

Proof: We prove the theorem for n = 3 parties with t = 1 and s = 2 which can be extended

for higher values of n in a natural manner. Let P = {P1, P2, P3} denote the 3 parties and the

adversary A may corrupt at most two parties. As per the hypothesis, we assume that there

exists a r-round (fn|ua)-BoBW protocol protocol πf that can compute the function f defined

as f((m0,m1), (c, R2), R3) = ((mc + R2 + R3),mc,mc) which simultaneously achieves fn when

t = 1 parties are corrupt and ua when s = 2 parties are corrupt. At a high-level, we transform

the r-round 3-party protocol πf among {P1, P2, P3} into a (r − 1)-round 2-party OT protocol

between a sender PS with inputs (m0,m1) and a receiver PR with input c. Before describing

the transformation, we present the following lemma:

Lemma 5.1 Protocol πf must be such that the combined view of {P2, P3} at the end of Round

(r − 1) suffices to compute their output.

Proof: Consider an adversary A who corrupts only a minority of the parties (t = 1). A

controls party P1 with the following strategy: P1 behaves honestly in the first (r − 1) rounds

while he simply remains silent in Round r (last round). Since P1 receives all the desired

communication throughout the protocol, it follows directly from correctness of πf that A must

be able to compute the output. Since πf is assumed to be fair for the case of t = 1, it must

hold that the honest parties P2 and P3 must be able to compute the output without any

communication from P1 in Round r. This implies that the combined view of {P2, P3} at the

end of Round (r − 1) must suffice to compute the output. 2

163



Our transformation from πf to a (r − 1)-round OT protocol πOT between a sender PS with

inputs (m0,m1) and a receiver PR with input c goes as follows. PS emulates the role of P1

during πf while PR emulates the role of both parties {P2, P3} during πf using random inputs

R2, R3 respectively. In more detail, let mr
i→j denote the communication from Pi to Pj in round

r of πf . Then for r ∈ [r − 1], the interaction in round r of protocol πOT is the following: PS

sends mr
1→2 and mr

1→3 to PR while PR sends mr
2→1 and mr

3→1 to PS. PR computes the output mc

using the combined view of {P2, P3} at the end of Round (r − 1). PS outputs nothing. Recall

that the output of the OT between (PS, PR) is (⊥,mc) respectively. We now argue that πOT

realizes the OT functionality.

Lemma 5.2 Protocol πOT realizes the OT functionality.

Proof: We first prove that πOT is correct. By Lemma 5.1, it follows that PR emulating the

role of both {P2, P3} of πf must be able to compute the correct output mc by the end of Round

(r − 1). We now consider the security properties. First, we consider a corrupt PR (emulating

the roles of {P2, P3} in πf ). Since by assumption, πf is a protocol that should preserve privacy

of P1’s input even in the presence of an adversary corrupting {P2, P3} (s = 2 corruptions), the

input m1−c of PS must remain private against a corrupt PR. Next, we note that privacy of πf

against a corrupt P1 (t = 1 corruption) guarantees that P1 does not learn anything beyond the

output (mc + R2 + R3) in the protocol πf which leaks nothing about c. It thus follows that a

corrupt PS in πOT emulating the role of P1 in πf will also not be able to learn anything about

PR’s input c. More formally, we can construct a simulator for the OT protocol πOT for the cases

of corrupt PR and corrupt PS by invoking the simulator of πf for the case of dishonest majority

(s = 2) and honest majority (t = 1) respectively. In each case, it follows from the security

of πf that the simulator of πf would return a view indistinguishable from the real-world view;

directly implying the security of the OT protocol πOT. 2

Thus, we can conclude that a (r − 1)-round 2-party OT protocol πOT can be derived from

r-round πf . This concludes the proof of Theorem 5.1. 2

Theorem 5.2 There exists a function f for which there is no 4-round (resp. 2 round) protocol

computing f in the plain model (resp. with CRS and PKI) that simultaneously realises– (1)

Ffair (Figure 2.3) when t < n/2 parties are corrupted (2) Fua (Figure 2.2) when s < n parties

are corrupted. In the former setting (plain model), we assume black-box simulation.

Proof: We start with the proof in the plain model, followed by the proof with CRS and PKI.

We assume for contradiction that there exists a 4-round (fn|ua)-BoBW protocol (with black-

box simulation) in the plain model. Then, it follows from Theorem 5.1 that there must exist a
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3-round 2-party maliciously-secure OT protocol with black-box simulation in the plain model.

We point that this OT derived as per the transformation of Theorem 5.1 is a bidirectional OT,

where each round consists of messages from both the OT sender and the receiver. Using the

round-preserving transformation from bidirectional OT to alternating-message OT (where each

round consists of a message from only one of the two parties) [60], we contradict the necessity of

4 rounds for alternating OT in the plain model with black-box simulation [95]. This completes

the proof for plain model.

Next, we assume for contradiction that there exists a 2-round (fn|ua)-BoBW MPC protocol

in the presence of CRS and PKI. Then, it follows from Theorem 5.1 that there exists 1-round

OT protocol in this model. We have arrived at a contradiction since non-interactive OT is

impossible to achieve in a model with input-independent setup that includes CRS and PKI

(notably 1-round OT constructions which use an input-dependent PKI setup such as [25] exist).

To be more specific, a 1-round OT protocol would be vulnerable to the following residual attack

by a corrupt receiver PR: PR can participate in the OT protocol with input c and get the output

mc at the end of the 1-round OT protocol (where (m0,m1) denote the inputs of sender PS). Now,

since the Round 1 messages of PS and PR are independent of each other, PR can additionally

plug in his input as being (1−c) to locally compute m1−c as well which is a violation of sender’s

security as per the ideal OT functionality. 2

5.3 Upper Bounds for (fn|ua)-BoBW

In this section, we construct two upper bounds for the (fn|ua)-BoBW class. Our upper bounds

take 5 and 3 rounds in the plain model and in the CRS setting respectively, tightly matching

the lower bounds presented in Section 5.2. We begin with a general compiler that transforms

any n-party r-round actively-secure MPC protocol achieving ua in dishonest majority into an

(r + 1)-round (fn|ua)-BoBW protocol.

5.3.1 The Compiler

Drawing motivation from the compiler of [130] from ua to fn in the honest majority setting,

our compiler uses the given r-round protocol achieving ua security to compute an “authenti-

cated” secret sharing with a threshold of t of the output y and reconstruct the output y during

the (r + 1)th round. The correct reconstruction is guaranteed thanks to unanimity offered by

the underlying protocol and the authentication mechanism that makes equivocation of a share

hard. Alternatively termed as error-correcting secret sharing (ECSS) [130], the authenticated

secret sharing was instantiated with pairwise information-theoretic or one-time MAC as a form

of authentication. This, when taken as is in our case, imbibes fairness in the honest majority
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setting as in the original transformation. The sharing threshold t ensures that the shares of

the honest set, consisting of at least t+ 1 parties, dictate the reconstruction of the output, no

matter whether the corrupted parties cooperate or not. The pairwise MAC, however, makes it

challenging to maintain unanimity in the dishonest majority case of the transformed protocol,

where a corrupt party may choose to verify its share to selected few enabling their output re-

construction. This seems to call for a MAC that cannot be manipulated part-wise to keep the

verifiers on different pages. A possible approach to achieve the property of public verifiability

is by means of digital signatures i.e each party obtains a signed output share which it broad-

casts during reconstruction and can be verified by remaining parties using a common public

verification key (that the parties obtain as part of the output of the r-round protocol achieving

ua). However, we opt for an alternate solution that avoids the use of digital signatures, en-

abling us to achieve the desirable property of the compiler (transforming any n-party r-round

actively-secure MPC protocol achieving ua in dishonest majority into an (r+ 1)-round (fn|ua)-

BoBW protocol) being information-theoretic (i.t). Achieving i.t security is a worthwhile goal,

as substantiated by its extensive study in numerous settings including those where achieving

this desirable security notion demands additional tools. For instance, there are well-known

results circumventing the impossibility of achieving i.t security in dishonest majority by relying

on additional assistance such as tamper-proof hardware tokens [110, 128, 80] and Physically

Uncloneable Functions (PUFs) [164, 45]. Having an i.t compiler opens up the possibility of

achieving i.t BoBW MPC by plugging in an i.t. secure dishonest majority protocol (say, that

uses hardware tokens / PUFs or some other assistance) in the compiler.

Our i.t compiler is realized via a clean trick inspired from a form of authentication used in

the Information Checking Protocol (ICP) primitive of [173, 165] and unanimously identifiable

commitments (UIC) of [128]. A value s is authenticated using a ‘joint’ MAC which is a t-degree

(uniform) polynomial a(x) over a field with constant term s. Each verifier Pj receives evaluation

of a(x) at a random secret point Kj as verification information– (Kj, a(Kj)). The secret random

points when picked from large enough field make it statistically hard for a corrupt authenticator

to lie about the MAC polynomial (and the underlying secret) that can cause disagreement across

the verifiers. We now define authentication with public verifiability and authenticated t-sharing

below. Subsequently, we present a protocol for reconstruction of an authenticated t-shared value

and capture the unanimity it offers in a lemma (Lemma 5.3). The protocol and the lemma are

used in our compiler and its security proof respectively.

Definition 5.1 (Authentication with Public Verifiability) A value s ∈ F = GF (2κ) is

said to be authenticated with public verifiability with an authenticator P and n verifiers P =
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{P1, . . . , Pn}, if the designated authenticator holds a polynomial a(x) of degree at most t over

F, picked uniformly at random, with the constraint that a(0) = s and each verifier Pi holds

vi = (Ki, a(Ki)) for a random secret value Ki ∈ F \ {0}. a(x) is denoted as MAC and vi as the

corresponding verification information of verifier Pi.

Definition 5.2 (Authenticated t-sharing) A value s ∈ F = GF (2κ) is said to be authen-

ticated t-shared (refer to Section 2.4.3 for t-sharing) amongst n parties {P1, . . . , Pn} if there

exists a polynomial p(x) of degree at most t over F, picked uniformly at random, with the con-

straint that p(0) = s, such that each share si = p(i) of s is authenticated with public verifiability

w.r.t. authenticator Pi and verifiers P and jth verifier holding common point Kj for all authenti-

cation instances. Each Pi holds ai(x) as the MAC of si and vij = (Ki, aj(Ki)) as the verification

information corresponding to MAC aj(x) held by Pj.

Input: Party Pi holds
(
ai(x), {vij = (Ki, aj(Ki))}j∈[n]

)
.

Output: Secret s or ⊥

Round 1: Pi broadcasts ai(x). If aj(x) broadcasted by Pj is a polynomial of degree at most t and

is consistent with vij , then Pi adds j in a set Vi, marked as verified, which is initialized to {i}.
If |Vi| ≥ t+ 1 and {aj(0)}j∈Vi lie on a t-degree polynomial, it reconstructs the secret s as the

constant term of the interpolated polynomial. Else it outputs ⊥.

Protocol Rec

Figure 5.1: Protocol Rec to reconstruct an authenticated t-shared value

Lemma 5.3 All the honest parties either output s or ⊥ in Rec (Figure 5.1), except with prob-

ability at most n2

|F|−1
.

Proof: To prove the lemma, we show that the respective V sets held by all honest parties are

identical and do not comprise of any j such that Pj broadcasts an incorrect MAC polynomial

a∗j(x) 6= aj(x), except with probability at most n2

|F|−1
. The latter condition would prove that the

reconstructed secret (if any) would be s while the former would show that all honest parties

compute the same output. With F = GF (2κ), the above probability is negligible in κ.

First, consider an honest Pi with verification information vij =
(
Ki, aj(Ki)

)
corresponding

to MAC aj(x) held by Pj. According to Rec, Pi would include j in Vi only if a∗j(x) broadcast

by Pj is consistent with vij. Since a potentially corrupt Pj has no information about the

random secret point Ki, the probability that Pj broadcasts a∗j(x) 6= aj(x) but a∗j(Ki) = aj(Ki)
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is the probability that Pj guessed the secret point Ki correctly which is 1
|F|−1

(Ki was picked

uniformly at random from F \ {0}). Extending this argument to all potentially corrupt Pj’s,

the probability that Vi includes at least one j such that a∗j(x) 6= aj(x) is at most |C|
|F|−1

(applying

union bound), where C is the set of parties controlled by the adversary A. Finally, applying the

union bound over the set of honest parties H, we conclude that the probability that at least

one honest party includes some j in its V set such that Pj broadcast a∗j(x) 6= aj(x) is at most
|H|·|C|
|F|−1

. Taking into account that |H|, |C| < n, this probability is bounded by n2

|F|−1
. Thus all

honest parties would have identical V sets, excluding js such that Pj broadcast the incorrect

MAC polynomial, except with probability n2

|F|−1
.

2

We present our protocol πbw.fair in Figure 5.3. The correctness and security of πbw.fair are

analyzed in Theorem 5.3 and Theorem 5.4, respectively, in a hybrid-execution model where

the parties have access to a functionality Fsh
ua that computes the authenticated t-sharing of the

output y = f(x1 . . . xn) with ua security. The description of Fsh
ua appears below in Figure 5.2.

Input: On message (sid, Input, xi,Ki) from a party Pi (i ∈ [n]), do the following: if (sid, Input, ∗)
message was received from Pi, then ignore. Otherwise record it internally. If (xi,Ki) is outside

of the domain for Pi (i ∈ [n]), consider xi = abort.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send (sid, Output,⊥) to all

the parties. Else, compute y = f(x1 . . . xn) and compute the authenticated t-sharing of secret

s = y (Definition 5.2). Let p(x) denote the t-degree polynomial with p(0) = y, ai(x) denote the

MAC of si = p(i) and vij =
(
Ki, aj(Ki)

)
represent the verification information corresponding to

MAC aj(x) held by Pj . Set zi =
(
ai(x), {vij = (Ki, aj(Ki))}j∈[n]

)
. Send (sid, Output, {zi}i∈C)

to the adversary, where C denotes the set of parties controlled by the adversary.

Output to honest parties: Receive either continue or abort from adversary. In case of continue,

send zi to each honest Pi, whereas in case of abort send ⊥ to all honest parties.

Ideal Functionality Fsh
ua

Figure 5.2: Ideal Functionality Fsh
ua

Inputs: Party Pi has xi for i ∈ [n]

Model: Fsh
ua- hybrid model (Figure 5.2)

Output: y = f(x1 . . . xn) or ⊥

Protocol πbw.fair
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Round 1 – r: Pi interacts with Fsh
ua with input (xi,Ki) to compute authenticated t-sharing of output

y = f(x1 . . . xn), where Ki denotes its secret random key from F \ {0}.

Round (r + 1): If Fsh
ua returns ⊥, Pi outputs ⊥. Else it participates in Rec with the output obtained

from Fsh
ua and outputs the output of Rec.

Figure 5.3: (fn|ua)-BoBW protocol

Theorem 5.3 Protocol πbw.fair is correct, except with negligible probability.

Proof: We argue that an honest party’s output y which is not ⊥ is correct, with very high

probability. In Fsh
ua-hybrid model, the output of Fsh

ua is indeed a correct authenticated t-sharing

of the output y = f(x1 . . . xn) where xi denotes the input committed by Pi to Fsh
ua. In the honest

majority setting (i.e. t < n/2), |Vi| of an honest Pi will contain all the honest parties. Therefore,

the reconstructed polynomial via the points {aj(0)}j∈Vi is indeed the correct polynomial and

computes the correct output y. In the dishonest majority setting (i.e. s < n), |Vi| of an honest

Pi may contain a corrupt party Pj broadcasting a wrong aj(x) with probability at most s
|F|−1

and as a consequence a wrong t-degree polynomial may get reconstructed. Therefore, except

with probability s
|F|−1

, Pi’s reconstructed output is correct. 2

Theorem 5.4 Protocol πbw.fair realises– (i) Ffair (Figure 2.3) when at most t < n/2 parties are

corrupt and (ii) Fua (Figure 2.2) when at most s < n parties are corrupt, in the Fsh
ua-hybrid

model. It takes (r + 1) rounds, assuming the realization of Fsh
ua requires r rounds.

We defer the proof of Theorem 5.4 to Section 5.6.2.

5.3.2 The Upper Bounds

Building our round-optimal (fn|ua)-BoBW protocols in the plain and CRS model involves con-

structing 2 and 4 round protocols that achieve ua security against dishonest majority in the

respective models. Such protocols when plugged in our compiler of Section 5.3.1 to realise

the functionality Fsh
ua would directly yield the round-optimal (fn|ua)-BoBW protocols. In the

CRS setting, the known 2-round protocols of [93, 35] achieve ua and thereby lead to a 3-round

(fn|ua)-BoBW protocol, matching the lower bound. Unfortunately, the existing 4-round MPC

protocols in the plain model relying on polynomial-time assumptions [113, 15, 60], in spite of

convenient use of broadcast, only satisfy the weaker notion of sa. In this work, we demon-

strate how the protocol of [113] and [15, 60] can be tweaked to achieve ua in Appendix 5.7.

The former reuses the technique of authentication with public verifiability introduced previ-

ously and involves a few other tinkering. With respect to the above-mentioned realizations of
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Fsh
ua, our (fn|ua)-BoBW MPC protocols rely on the assumption of 2-round OT in the common

random/reference string model and 4-round OT in the plain model.

Theorem 5.5 Assuming the existence of a 4 (resp., 2) round MPC protocol that realizes Fua

(Figure 2.2) for upto n−1 malicious corruptions in the plain (resp., CRS) model, there exists a

5 (resp., 3)-round MPC protocol in the plain (resp., CRS) model that simultaneously realises–

(1) Ffair (Figure 2.3) when t < n/2 parties are corrupted (2) Fua (Figure 2.2) when s < n

parties are corrupted.

A minor observation regarding the use of broadcast in our compiler is that we can replace it

with point-to-point communication at the expense of relaxing ua to sa security in the dishonest

majority setting.

Security with Identifiability. Our compiler preserves the property of identifiability. Since

the underlying dishonest-majority protocols [93, 35] can be augmented with NIZK in the CRS

model to achieve identifiable abort, the upper bound in the CRS model achieves identifiable

fairness and abort in the honest and dishonest majority setting respectively. With respect to

the plain model, we show how security of [15] can be boosted to achieve identifiable abort with

minor tweaks in Appendix 5.7.2. This variant, when compiled using our compiler of Section

5.3.1 would achieve identifiable fairness and abort in the honest and dishonest majority setting

respectively. We therefore get a version of Theorem 5.5 where Fua and Ffair are replaced with

Fidua (Figure 2.5) and Fidfair (Figure 2.6) respectively.

5.4 Lower Bounds for (god|ua)-BoBW

In this section, we prove that it is impossible to design a 2-round (god|ua)-BoBW protocol

with t + s < n in the CRS model. Note that the necessity of 3 rounds for (god|ua)-BoBW

protocol for most values of (n, s, t) follows from the 2-round impossibility of fair MPC for

honest majority in the CRS model [108, 166, 102]. Accounting for the fact that these existing

results do not rule out the possibility of 2-round (god|ua)-BoBW MPC for (t = 1, s > t, n ≥ 4),

we present a unified proof that works even for s > t, for all values of t (including t = 1). Our

proof approach deals with adversarial strategies that shuffle between the honest and dishonest

majority setting, highlighting the challenge of designing protocols that simultaneously provide

different guarantees for different settings. This is in contrast to the existing lower bounds of

[108, 166, 102] which deal only with honest majority setting and single security notion of fn.

Lastly, we demonstrate why our proof breaks down in the presence of PKI. Indeed, we construct

a 2-round (god|ua)-BoBW protocol assuming CRS and PKI in this work.
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Theorem 5.6 Let n, t, s be such that t+ s < n and t < n/2. There exist functions f for which

there is no two-round protocol in the CRS model computing f that simultaneously realizes– (1)

Fgod (Figure 2.4) when t < n/2 parties are corrupted (2) Fua (Figure 2.2) when s < n parties

are corrupted.

Proof: We prove the theorem for n = 4 parties with t = 1 and s = 2. The result then

can be extended for higher values of n in a natural manner. Let P = {P1, P2, P3, P4} denote

the set of 4 parties and A may corrupt at most two among them. We prove the theorem

by contradiction. We assume that there exists a 2-round (god|ua) BoBW protocol π in the

CRS model that can compute the function f(x1, x2, x3, x4) defined below for Pi’s input xi:

f(x1, x2, x3, x4) = 1 if x1 = x2 = 1; 0 otherwise. By assumption, π achieves god when t = 1

parties are corrupt and ua security when s = 2 parties are corrupt (satisfying feasibility criteria

t+ s < n).

At a high level, we discuss three adversarial strategies A1,A2 and A3 of A. While both

A1 and A3 deal with t = 1 corruption with the adversary corrupting P1, A2 involves s = 2

corruptions where the adversary corrupts {P3, P4}. We consider Ai strategy as being launched

in execution Σi (i ∈ [3]) of π. The executions are assumed to be run for the same input

tuple (x1, x2,⊥,⊥) and the same random inputs (r1, r2, r3, r4) of the parties. (Same random

inputs are considered for simplicity and without loss of generality. The same arguments hold

for distribution ensembles as well.) Our executions and adversarial strategies are sequenced in

the order of increasingly more non-cooperating malicious adversaries. Yet, keeping the views

of a certain party between two consecutive executions same, we are able to conclude the party

would output the correct value even in the face of stronger malicious behaviour. Finally, we

reach to the final execution Σ3 where we show that a party can deduce the output in the end of

Round 1 itself. Lastly, we show a strategy for the party to explicitly breach the input privacy

of one of the input-contributing parties.

We assume that the communication done in the second round of π is via broadcast alone.

This holds without loss of generality since the parties can perform point-to-point communication

by exchanging random pads in the first round and then use these random pads to unmask later

broadcasts. We use the following notation: Let p1
i→j denote the pairwise communication from

Pi to Pj in round 1 and bri denote the broadcast by Pi in round r, where r ∈ [2], {i, j} ∈ [4].

These values may be function of CRS as per the working of the protocol. V`
i denotes the view

of party Pi at the end of execution Σ` (` ∈ [3]) of π. Below we describe the strategies A1,A2

and A3.

A1: A corrupts P1 here. P1 behaves honestly towards P2 in Round 1, i.e sends the messages
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p1
1→2, b

1
1 as per the protocol. However P1 does not communicate privately to {P3, P4} in

Round 1. In Round 2, P1 behaves honestly as per the protocol.

A2: A corrupts {P3, P4} here. {P3, P4} behave honestly in Round 1 of the protocol. In Round

2, Pk (k ∈ {3, 4}) acts as per the protocol specification when no private message from P1

is received in Round 1. Specifically, suppose Pk did not receive p1
1→k in Round 1. Let b2

k

denote the message that should be sent by Pk as per the protocol in Round 2 in such a

scenario. Then as per A2, corrupt Pk sends b2
k in Round 2.

A3: Same as in A1 and in addition– during Round 2, P1 simply remains silent i.e waits to

receive the messages from other parties, but does not communicate at all.

Next we present the views of the parties in Σ1, Σ2 and Σ3 in Table 5.2. Here, b2
k (k ∈ {3, 4})

denotes the message that should be sent by Pk according to the protocol in Round 2 in case Pk

did not receive any private communication from P1 in Round 1.

Σ1 Σ2 Σ3

V1
1 V1

2 V1
3 V1

4 V2
1 V2

2 V2
3 V2

4 V3
1 V3

2 V3
3 V3

4

Input (x1, r1) (x2, r2) r3 r4 (x1, r1) (x2, r2) r3 r4 (x1, r1) (x2, r2) r3 r4

R1

p1
2→1, p1

3→1 p1
1→2, p1

3→2, –, p1
2→3, –, p1

2→4, p1
2→1, p1

3→1 p1
1→2, p1

3→2, p1
1→3, p1

2→3, p1
1→4, p1

2→4, p1
2→1, p1

3→1 p1
1→2, p1

3→2, –, p1
2→3, –, p1

2→4,

p1
4→1, p1

4→2, p1
4→3, p1

3→4, p1
4→1, p1

4→2, p1
4→3, p1

3→4, p1
4→1, p1

4→2, p1
4→3, p1

3→4,

b1
2, b1

3, b1
4 b1

1, b1
3, b1

4 b1
1, b1

2, b1
4 b1

1, b1
2, b1

3 b1
2, b1

3, b1
4 b1

1, b1
3, b1

4 b1
1, b1

2, b1
4 b1

1, b1
2, b1

3 b1
2, b1

3, b1
4 b1

1, b1
3, b1

4 b1
1, b1

2, b1
4 b1

1, b1
2, b1

3

R2 b2
2, b2

3, b2
4 b2

1, b2
3, b2

4 b2
1, b2

2, b2
4 b2

1, b2
2, b2

3 b2
2, b2

3, b2
4 b2

1, b2
3, b2

4 b2
1, b2

2, b2
4 b2

1, b2
2, b2

3 b2
2, b2

3, b2
4 –, b2

3, b2
4 –, b2

2, b2
4 –, b2

2 b2
3

Table 5.2: Views of P1, P2, P3, P4 in Σ1, Σ2, Σ3

We now prove a sequence of lemmas to complete our proof. Let y denote the output

computed as per the inputs (x1, x2) provided by the honest P1 and P2.

Lemma 5.4 The view of P2 is the same in Σ1 and Σ2 and it outputs y in both.

Proof: We observe that as per both strategies A1 and A2, P2 receives communication from

P1, P3, P4 as per honest execution in Round 1. In Round 2, according to A1, corrupt P1 did

not send private messages to P3 and P4 who therefore broadcast b2
3 and b2

4 respectively as per

protocol specification. On the other hand, according to A2, corrupt P3 and corrupt P4 send

the same messages respectively as per protocol specification for case when P3, P4 receive no

private message from P1 in Round 1. It is now easy to check (refer Table 5.2) that V1
2 = V2

2.

Now, since Σ1 involves t = 1 corruption, by assumption, π must be robust and V1
2 must lead to

output computation, say of output y′. Due to view equality, P2 in Σ2 must also output y′. In
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Σ2, P1 and P2 are honest and their inputs are x1 and x2 respectively. Due to correctness of π

during Σ2, it must then hold that y′ = y i.e the output computed based on V2
2 is according to

honest P1’s input x1 during Σ2. This completes the proof. 2

Lemma 5.5 The view of P1 is the same in Σ2 and Σ3 and it outputs y in both.

Proof: An honest P2 has the same view in both Σ1 and Σ2 and outputs y as per Lemma 5.4.

As π achieves ua in the presence of s = 2 corruptions, P1 learns y in Σ2. We now show that

P1’s view in Σ2 and Σ3 are the same and so it outputs y in Σ3. First, it is easy to see that

the Round 1 communication towards P1 is as per honest execution in both Σ2,Σ3. Next, recall

that as per A2, both corrupt {P3, P4} send messages in Round 2 according to the scenario when

they didn’t receive any private communication from P1 in Round 1. A similar message would

be sent by honest {P3, P4} in Σ3 who did not receive private message from corrupt P1 as per

A3. Finally, since corrupt P1 behaved honestly to P2 in Round 1 of Σ3 as per A3, the Round 2

communication from P2 is similar to that in execution Σ2. It is now easy to verify (refer Table

5.2) that V2
1 = V3

1 from which output y can be computed. 2

Lemma 5.6 P2 in Σ3 should learn the output y by the end of Round 1.

Proof: Firstly, it follows directly from Lemma 5.5 and the assumption that protocol π is

robust against t = 1 corruption that all parties including P2 must learn output y at the end of

Σ3. Next, we note that as per strategy A3, P1 only communicates to P2 in Round 1. We argue

that the second round communication from P3, P4 does not impact P2’s output computation

as follows: we observe that the output y depends only on (x1, x2). Clearly, Round 1 messages

of P3, P4 does not depend on x1. Next, since there is no private communication to P3, P4 from

P1 as per strategy A3, the only communication that can possibly hold information on x1 and

can impact the round 2 messages of P3, P4 is b1
1. However, since this is a broadcast message,

P2 also holds this by the end of Round 1 itself. Thus, P2 must be able to compute the output

y at the end of Round 1.

In more detail, P2 can choose randomness r3, r4 on behalf of P3, P4 to locally emulate their

following Round 1 messages {p1
3→2, p

1
4→2, p

1
3→4, p

1
4→3, b

1
3, b

1
4}. Next, P2 can now simulate P3’s

Round 2 message b2
3 which is a function of its view comprising of {p1

2→3, p
1
4→3, b

1
1, b

1
2, b

1
4} (all

of which are available to P2, where b1
1 was broadcast by P1 in Round 1). Similarly, P2 can

locally compute P4’s Round 2 message b2
4. We can thus conclude that P2’s view at the end of

Σ3 comprising of {p1
1→2, p

1
3→2, p

1
4→2, b

1
1, b

1
3, b

1
4, b

2
3, b

2
4} can be locally simulated by him at the end

of Round 1 itself from which the output y can be computed. 2

Lemma 5.7 A corrupt P2 violates the privacy property of π.
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Proof: The adversary corrupting P2 participates in the protocol honestly by fixing input

x2 = 0. Since P2 can get the output at the end of Round 1 (Lemma 5.6), it must be true that

P2 can evaluate f locally by plugging in any value of x2. Now a corrupt P2 can plug in x2 = 1

locally and learn x1 (via the output x1 ∧x2). In the ideal world, corrupt P2 must learn nothing

beyond the output 0 as it has participated in the protocol with input 0. But in the execution

of π (in which P2 participated honestly with input x2 = 0), P2 has learnt x1. This is a breach

of privacy as P2 learns x1 regardless of his input. 2

Hence, we have arrived at a contradiction, completing proof of Theorem 5.6. 2

We draw attention to the fact that Lemma 5.6 would not hold in the presence of any

additional setup such as PKI. With additional setup, P3, P4 may possibly hold some private

information (such as their secret key in case of PKI used to decode P1’s broadcast message in

Round 1) that is not available to P2. Due to this reason, we cannot claim that P2 can emulate

Round 2 messages of {P3, P4} locally at the end of Round 1. However, this holds in case of

CRS as the knowledge of CRS is available to all parties at the beginning of the protocol.

5.5 Upper Bounds for (god|ua)-BoBW

In this section, we present three (god|ua)-BoBW MPC protocols, assuming t + s < n which is

the feasibility condition for such protocols ([127]) consuming– a) 3-rounds with CRS b) 2-rounds

with an additional PKI setup c) 5-rounds in plain model. The first two are round-optimal in

light of the lower bound of Section 5.4 and [112] respectively. The third construction is nearly

round-optimal (falls just one short of the 4-round lower bound of [95]). Among our upper

bounds, the construction in the plain model is considerably more involved and uses several new

tricks in conjugation with existing techniques.

5.5.1 (god|ua)-BoBW MPC with Public and Private Setup

To arrive at the final destination, the roadmap followed is: (i) A 2-round MPC achieving ua

security is compiled to a 3-round (god|ua)-BoBW MPC protocol, both against a weaker semi-

malicious adversary. With the additional provision of PKI, this compiler can be turned to a

round-preserving one. (ii) The semi-malicious (god|ua)-BoBW MPC protocols are compiled to

malicious ones in CRS setting via the known round-preserving compiler of [10] (using NIZKs).

All the involved and resultant constructions are in broadcast-only setting. The protocol just with

CRS tightly upper bounds the 3-round lower bound presented in Section 5.4, which accounts

for both pair-wise and broadcast channels. The protocol with additional PKI setup works in

2 rounds, displaying the power of PKI and that our lower bound of 3-rounds in Theorem 5.6

breaks down in the presence of PKI. Yet, this construction is round optimal, in light of the
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known impossibility of 1-round MPC [112].

5.5.1.1 3-round (god|ua)-BoBW MPC in semi-malicious setting.

In this section, we present a generic compiler that transforms any 2-round MPC protocol πua.sm

achieving ua security into a 3-round broadcast-only (god|ua)-BoBW MPC protocol πbw.god.sm

assuming t+s < n. Our compiler borrows techniques from the compiler of [4] which is designed

for the honest majority setting and makes suitable modifications to obtain BoBW guarantees.

Recall that a semi-malicious adversary needs to follow the protocol specification, but has the

liberty to decide the input and random coins in each round. Additionally, the parties controlled

by the semi-malicious adversary may choose to abort at any step. For completeness, semi-

malicious security is defined in Section 5.6.1. The underlying and the resultant protocol use

broadcast as the only medium of communication.

To transform πua.sm to guarantee BoBW security, the compiler banks on the idea of giving

out the Round 2 message of πua.sm in a way that ensures god in case of honest majority. The

dishonest majority protocols usually do not provide this feature even against a single corruption,

let alone a minority. Mimicking the Round 1 of πua.sm as is, πbw.god.sm achieves this property

by essentially giving out a secret sharing of the Round 2 messages of πua.sm with a threshold

of s. When at most t parties are corrupt, the set of s + 1 honest parties pool their shares to

reconstruct Round 2 messages of πua.sm and compute the output robustly as in πua.sm. This

idea is enabled by encoding (i.e garbling) the next message functions of the second round of

πua.sm and secret-sharing their encoding information using a threshold of s in Round 2 and

reconstructing the appropriate input labels in the subsequent round. (Refer Section 2.4.1 for

details on Garbling Schemes.) The next-message circuit of a party Pi hard-codes Round 1

broadcasts of πua.sm, Pi’s input and randomness and the default input and randomness of all

the other parties. It takes n flags as input, the jth one indicating the alive/non-alive status

of Pj. Pj turning non-alive (aborting) translates to the jth flag becoming 0 in which case the

circuit makes sure Pj’s default input is taken for consideration by internally recomputing Pj’s

first round broadcast and subsequently using that to compute the Round 2 message of Pi. Since

the flag bits become public by the end of Round 2 (apparent as broadcast is the only mode of

communication), the parties help each other by reconstructing the correct label, enabling all to

compute the garbled next-message functions of all the parties and subsequently run the output

computation of πua.sm. The agreement of the flag bits further ensures output computation is

done on a unique set of inputs. The transfer of the shares in broadcast-only setting is enabled

via setting up a (public key, secret key) pair in the first round by every party. Broadcasting

the encrypted shares emulates sending the share privately. This technique of garbled circuits
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computing the augmented next-message function (taking the list of alive (non-aborting) parties

as input) followed by reconstruction of the appropriate input label was used in the work of [4]

for the honest majority setting. The primary difference in our compiler is with respect to the

threshold of the secret-sharing of the labels, to ensure BoBW guarantees.

The formal description of protocol πbw.god.sm appears in Figure 5.4. We analyze its correctness

and security below.

Inputs: Party Pi has input xi and randomness ri for i ∈ [n].

Common Inputs: 2- round semi-malicious protocol πua.sm in the broadcast-only model with B`
i

denoting the message broadcast by Pi in Round ` (` ∈ [2]). The messages of πua.sm can be

expressed as B1
i ← π1

ua.sm,i(xi, ri) and B2
i ← π2

ua.sm,i(xi, ri, T
1), where T 1 denotes the transcript

of Round 1, namely (B1
1, . . .B

1
n) and π1

ua.sm,i, π
2
ua.sm,i denote the next-message function for

Round 1 and Round 2 respectively of Pi in πua.sm. Finally, let transcript T 2 at the end of

Round 2 be defined as ({B1
i ,B

2
i }i∈[n]) and the output computation function of Pi is denoted

as y = πoua.sm,i(xi, ri, T
2).

Primitives: Adaptive Garbling Scheme (Gb,En,Ev,De) (Section 2.4.1.1) which is projective (as-

sume side-information θ(C) leaks topology of C), Public-key encryption Scheme (Gen,Enc,Dec)

Round 1: Each party Pi initializes flagj = 1, ∀j ∈ [n], computes (pki, ski) ← Gen(1λ) and B1
i ←

π1
ua.sm,i(xi, ri) and broadcasts (pki,B

1
i ). Let T 1 = {B1

1, . . .B
1
n}.

Round 2: Let Ci(flag1, . . . flagn) be a circuit that has (xi, ri, T
1) and default input and randomness

of all parties hardcoded and takes as input n bits {flagj}j∈[n]. Ci acts as follows:

– if flagj = 0, then recompute B1
j in T 1 as per π1

ua.sm,j based on default input randomness of

Pj , for j ∈ [n];

– compute B2
i ← π2

ua.sm,i(xi, ri, T
1) and output B2

i .

Pi does the following:

– Run (Ci, ei, di)← Gb(1λ, Ci) and broadcast (Ci, di).

– Let {labk,bi }k∈[n],b∈{0,1} denote the set of input labels as per ei. Compute s-sharing of labk,bi
for all k ∈ [n] and b ∈ {0, 1} and broadcast ck,bi,j = Enc(pkj , labk,bi,j ) where labk,bi,j denotes Pj ’s

share of labk,bi . For all j ∈ [n], b ∈ {0, 1}, k ∈ [n], compute labk,bj,i ← Dec(ski, c
k,b
j,i ).

– Set flagj = 0 if Pj (j ∈ [n]) aborts in Round 1 or Round 2. If flagj = 0, then recompute B1
j

in T 1 based on default input and randomness of Pj .

Protocol πbw.god.sm
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Round 3: For each Cj obtained in Round 2, Pi participates in the reconstruction of {lab
k,flagk
j }k∈[n]

by broadcasting share {lab
k,flagk
j,i }k∈[n].

Output Computation: Each Pi does the following:

– For each (Cj , dj) received in Round 2, reconstruct the input labels {lab
k,flagk
j }k∈[n] using

the shares broadcast in Round 3. Output ⊥ if any reconstruction fails. Else, compute

B2
j ← De(Ev(Cj , {lab

k,flagk
j }k∈[n]), dj).

– Corresponding to Pj where flagj = 0, compute B2
j ← π2

ua.sm,j(xj , rj , T
1) using default

(xj , rj).

– Finally, compute and output y = πoua.sm,i(xi, ri, T
2) with T 2 = ({B1

i ,B
2
i }i∈[n]).

Figure 5.4: 3-round semi-malicious (god|ua)-BoBW MPC protocol πbw.god.sm from 2-round semi-
malicious MPC πua.sm

Theorem 5.7 Protocol πbw.god.sm is correct, except with negligible probability.

Proof: We claim that if an honest party outputs y 6= ⊥, y must be the correct output on the

‘committed’ inputs of parties. Here, ‘committed’ refers to the actual inputs for honest parties,

inputs written on witness tape at the end of Round 2 for the semi-malicious alive parties and

default input for the non-alive parties (who abort in either Round 1 or 2). We first argue that if

the reconstruction of an input label is successful, it must correspond to the appropriate public

value of flag. This is evident in the honest majority case, as the (s+1) shares contributed by the

honest parties would ensure that the reconstruction of the s-shared input label is correct. In the

dishonest majority case, we argue that the share (if any) sent by semi-malicious Pj in Round

3 for reconstruction must indeed correspond to the original message (share) encrypted in the

ciphertext broadcast in Round 2 using pkj. This follows from the correctness of the public-key

encryption scheme as the semi-malicious Pj will not be able to justify an incorrect share as

being a valid decryption of the ciphertext, except with negligible probability. It is now easy

to check that the correctness of the adaptive garbling scheme ensures that the garbled circuit

evaluated on the appropriate public values of flag would yield the Round 2 message based on the

‘committed’ inputs; leading to each honest party computing T 2 accordingly. Finally, it follows

directly from the correctness of the underlying protocol πua.sm that the output computed using

T 2 by each honest party must be correct. 2

Theorem 5.8 Let (n, s, t) be such that s + t < n. Let πua.sm realises Fua for upto n− 1 semi-

malicious corruptions. Then protocol πbw.god.sm realises– (i) Fgod (Figure 2.4) when at most
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t < n/2 parties are corrupt and (ii) Fua (Figure 2.2) when at most s < n parties are corrupt,

semi-maliciously in both cases. It takes 3 rounds, assuming that πua.sm takes 2 rounds.

We defer the proof of Theorem 5.8 to Section 5.6.3.

5.5.1.2 2-round (god|ua)-BoBW MPC in semi-malicious setting

The compiler of the previous section can be made round preserving by assuming pair-wise

channels or alternately, PKI. The main difference lies in preponing the actions of Round 2 of

πbw.god.sm to Round 1, by exploiting the presence of private channels or PKI.

2-round semi-malicious (god|ua)-BoBW MPC using both broadcast and pairwise-pri-

vate channels. We observe that the compiler of Section 5.5.1.1 can be modified such that it

transforms the 2-round broadcast-only semi-malicious protocol πua.sm (achieving security with

ua) into a 2-round semi-malicious (god|ua)-BoBW MPC protocol φbw.god.sm using both point-

to-point and broadcast channel. The 2-round protocol φbw.god.sm is similar to the 3-round

broadcast-only protocol πbw.god.sm (Figure 5.4), except for the following differences: The actions

of Round 1 and Round 2 of πbw.god.sm are carried out in Round 1 of φbw.god.sm. In more detail,

Round 1 of φbw.god.sm proceeds as follows - In addition to sending the Round 1 message as per

πua.sm, the parties also prepare and send the adaptive garbled circuits meant to compute their

Round 2 message of πua.sm in Round 1 itself. Since the next-message function computing the

Round 2 message takes as input the transcript of Round 1, this garbled circuit (being sent in

Round 1) will need to take additionally as input the transcript of Round 1 apart from the list

of alive (non-aborting) parties (unlike πbw.god.sm where the garbled circuit was sent in Round

2 and thereby only needed to take the list of alive parties as input). Each party s-shares all

the input labels of its garbled circuit in Round 1. This step would involve using point-to-point

channels to communicate the shares (unlike πbw.god.sm where it was done via broadcast channels

in Round 2). Next, in Round 2 of φbw.god.sm, similar to Round 3 of πbw.god.sm, the reconstruction

of the appropriate input labels occur. Note that this can be done as all the values of input wires

of the garbled circuit, including the set of alive parties and the transcript of Round 1 are public

(πua.sm is a broadcast-only protocol). This completes the description of φbw.god.sm and it is easy

to check that its security can be proved similar to the security of πbw.god.sm. This construction

is based on [4]. Instantiating πua.sm with the 2-round broadcast-only semi-malicious protocol of

[93, 35], the compiler described above would yield a 2-round (god|ua)-BoBW protocol φbw.god.sm

in the semi-malicious setting using both pairwise-private and broadcast channels.

2-round semi-malicious (god|ua)-BoBW MPC using PKI. In the presence of PKI, the

protocol φbw.god.sm can be easily transformed to a broadcast-only protocol ψbw.god.sm. Elaborating
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on this, the private messages in φbw.god.sm via the pairwise channel can be emulated in ψbw.god.sm

by broadcasting the encryption of the private message with the public-key of the intended

recipient. This leads to a 2-round broadcast-only (god|ua)-BoBW MPC ψbw.god.sm in semi-

malicious setting assuming PKI. Both protocols φbw.god.sm and ψbw.god.sm are tight upper bounds,

in light of the known impossibility of 1-round MPC protocols for any meaningful security notion

([112]).

We state the formal theorems below whose proofs follow similar to proof of Theorem 5.8.

Theorem 5.9 Let (n, s, t) be such that s + t < n. Let πua.sm realises Fua for upto n − 1

semi-malicious corruption. Then there exists a protocol φbw.god.sm that uses both broadcast and

pairwise-private channel which realises– (i) Fgod (Figure 2.4) when at most t < n/2 parties are

corrupt and (ii) Fua (Figure 2.2) when at most s < n parties are corrupt, semi-maliciously in

both cases. It takes 2 rounds, assuming that πua.sm takes 2 rounds.

Theorem 5.10 Let (n, s, t) be such that s+ t < n. Let πua.sm realises Fua for upto n− 1 semi-

malicious corruption. Then there exists a protocol ψbw.god.sm, assuming PKI which realises– (i)

Fgod (Figure 2.4) when at most t < n/2 parties are corrupt and (ii) Fua (Figure 2.2) when at

most s < n parties are corrupt, semi-maliciously in both cases. It takes 2 rounds, given that

πua.sm takes 2 rounds.

5.5.1.3 The upper bounds with public and private setup

The 2-round semi-malicious broadcast-only protocol of [93, 35] can be plugged in as πua.sm in our

compilers from previous sections to directly yield a 3-round broadcast-only protocol πbw.god.sm,

2-round protocol φbw.god.sm that uses both broadcast and pairwise-private channels and 2-round

broadcast-only protocol ψbw.god.sm assuming PKI, all in the semi-malicious setting. Next, the

compiler of [10] that upgrades any broadcast-only semi-malicious protocol to maliciously-secure

by employing NIZKs, can be applied on πbw.god.sm and ψbw.god.sm to yield a 3-round (god|ua)-

BoBW protocol in the CRS model and a 2-round (god|ua)-BoBW protocol given both CRS

and PKI. At a high-level, to ensure that the malicious parties indeed follow the description of

the protocol, as per the compiler of [10], each party has to prove in zero-knowledge that the

message it has produced is consistent with the transcript of the protocol so far. In our compiled

protocols, if the zero-knowledge proof of a malicious party, say Pi, fails in a particular Round `;

then its message in Round ` is interpreted as ⊥. This scenario is analogous to semi-malicious

Pi aborting in the underlying semi-malicious protocol πbw.god.sm during Round `. The BoBW

guarantees of the maliciously-secure compiled protocol thereby follow directly from the BoBW

guarantees of πbw.god.sm (as πbw.god.sm achieves GOD even if upto t parties abort). However,
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while this works to compile πbw.god.sm and ψbw.god.sm, the compiler of [10] cannot be applied to

φbw.god.sm which uses private channels. This holds since if private channels are used, then a

party may need to prove different statements to different parties to prove its ‘honest behavior’

via zero-knowledge. The issue in this approach is that the honest parties at the end of each

round will not have consistent view of which parties have aborted / identified to be corrupt.

This is crucial as the next round message would depend on it. To bring them to the same page

will consume extra rounds which will compromise on the desirable round-preserving property

of the compiler of [10]. Thus, we obtain round-optimal protocols by applying the compiler on

our broadcast-only protocols i.e πbw.god.sm and ψbw.god.sm. The former yields a 3-round malicious

(god|ua)-BoBW protocol in the CRS model which is a tight upper bound as proven by our lower

bound (Theorem 5.6). The latter yields a 2-round (god|ua)-BoBW protocol in the CRS and

PKI model which is also round-optimal, as 1-round MPC protocols are known to be impossible

for any meaningful security notion ([112]). Notably, the latter demonstrates that our lower

bound of Theorem 5.6 can be circumvented in the presence of PKI.

We present the formal description of our 3-round malicious (god|ua)-BoBW protocol πbw.god

in Fzk-hybrid model in Figure 5.5 below, where Fzk denotes the ideal functionality realizing

zero-knowledge. In the CRS model, Fzk can be realized using NIZKs to obtain the 3-round

maliciously secure (god|ua)-BoBW MPC protocol. In the private setup model (CRS and PKI),

the 2-round malicious (god|ua)-BoBW protocol can be similarly obtained upon compiling the

2-round semi-malicious protocol φbw.god.sm.

Inputs: Party Pi has xi, ri as input and random input respectively for i ∈ [n].

Output: y = f(x1 . . . xn) or ⊥

Common Input: The 3-round broadcast-only semi-malicious protocol πbw.god.sm which is parsed

as {NextMsgk` (xk; rk;m1 . . .m`−1)}`∈[3],k∈[n] where NextMsgk` (xk; rk;m1 . . .m`−1) denote the

next message function of Pk in Round `, given the messages m1, . . . ,m`−1 broadcast so

far i.e in Rounds 1 to ` − 1. The output computation function of Pk is denoted as y =

Outputk(xk, rk,m1,m2,m3). Let Rk,` be the relation that gets as input x = (m1, ...,m`−1,m
k
` )

and a witness w = (xk, rk), and returns 1 if and only if NextMsgk` (xk; rk;m1 . . .m`−1) = mk
`

Model: Fzk-hybrid model

Protocol steps. For each round ` from ` = 1 to 3:

- Let m`−1 = m1
`−1 . . .m

n
`−1 be the concatenation of messages broadcast by the parties in

Protocol πbw.god
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Round (`− 1). (assume m0 = ∅).

- Each Pk does the following: Compute mk
` = NextMsgk` (xk; rk;m1 . . .m`−1). Broadcast mk

` .

- For all k′ ∈ [n], invoke the F
Rk′,`
zk ideal functionality corresponding to the relation Rk′,` on

common input (m1 . . .m`−1,m
k′
` ). In addition, for k = k′, Pk acts as prover and inserts

its private input w = (xk, rk). If F
Rk′,`
zk returns 0, set mk′

` = ⊥

Output. Let m3 = m1
3 . . .m

n
3 . Each Pk outputs Outputk(xk; rk;m1,m2,m3).

Figure 5.5: 3-round maliciously-secure (god|ua)-BoBW Protocol πbw.god

We state the formal theorem below (proof deferred to Section 5.6.4) Assumption wise, our

upper bound constructions rely on 2-round semi-malicious oblivious transfer and NIZK in the

common random/reference string model upon using the protocols of [93, 35] to realize πua.sm.

Theorem 5.11 Let (n, s, t) be such that s + t < n. Assuming the existence of a 3-round

(resp., 2-round with PKI) broadcast-only semi-malicious (god|ua)-BoBW MPC and NIZKs,

there exists a 3 (resp., 2)-round MPC protocol in the presence of CRS (resp., CRS and PKI)

that simultaneously achieves (i) Fgod (Figure 2.4) when at most t < n/2 parties are corrupt and

(ii) Fua (Figure 2.2) when at most s < n parties are corrupt, maliciously in both cases.

A minor observation is that we can replace the last round broadcast with point-to-point

communication in the expense of relaxing ua to sa security in the dishonest majority setting.

However, use of broadcast in the earlier rounds is crucial since it enables the honest parties to

be in agreement on whether a corrupt party has aborted or not which is crucial to ensure that

the output computation is done on a unique set of inputs.

Security with Identifiability. Lastly, since the compiler of [10] uses NIZKs to prove cor-

rectness of each round, it offers the property of identifiability. Thus our maliciously-secure

(god|ua)-BoBW protocols achieve the stronger notion of identifiable abort in case of dishonest

majority, with no extra assumption. Therefore, we obtain the above theorem where Fua is

replaced with Fidua (Figure 2.5).

5.5.2 Upper Bound for (god|ua)-BoBW MPC in Plain Model

In this section, we present a 5-round (god|ua)-BoBW protocol in the plain model. For our

construction, we resort to the compiler of [35] that transforms any generic (k−1)-round delayed-

semi-malicious MPC protocol to a k-round malicious MPC protocol for any k ≥ 5. Our 5-round

construction comes in two steps: a) first, we show that our 3-round semi-malicious protocol

πbw.god.sm (described in Section 5.5.1.1) is delayed-semi-maliciously secure (refer Section 5.6.5.1

181



for proof) and then b) we plug in this 3-round BoBW protocol in a modified compiler of [35] that

carries over the BoBW guarantees, while the original compiler works for security with abort.

Our final 5-round compiled protocol faces several technical difficulties in the proof, brought

forth mainly by the need to continue the simulation in case the protocol must result in god,

which needs deep and non-trivial redressals. The techniques we use to tackle the challenges

in simulation are also useful in constructing a 4-round (god|ua)-BoBW protocol based on sub-

exponentially secure trapdoor permutations and ZAPs. We give a sketch of this construction

in Section 5.8 (built upon the protocol of [64]) as a step towards resolving the open question of

proving the impossibility or alternately constructing a 4-round (god|ua)-BoBW protocol under

polynomial-time assumptions.

5.5.2.1 The compiler of [35]

Substituting k = 5, we recall the relevant details of the compiler of [35] that transforms a 4-

round delayed-semi-malicious protocol φdsm to a 5-round maliciously-secure protocol π achieving

security with abort. Each party commits to her input and randomness using a 2-round sta-

tistically binding commitment scheme Com in the first two rounds. The four rounds of the

delayed-semi-malicious protocol φdsm are run as it is in Round 1, 2, 4 and 5 respectively (Round

3 is skipped) with two additional sets of public-coin delayed-input witness indistinguishable

proofs (WI). The first set of proofs (WI1) which is completed by Round 4, is associated with the

first 3 rounds of φdsm. In addition to proving honest behaviour in these rounds, this set of proofs

enables the simulator of the malicious protocol to extract the inputs of the corrupt parties, in

order to appropriately emulate the adversary for the delayed-semi-malicious simulator in the

last but one round. The second set of proofs (WI2) which is completed by Round 5, is associated

with proving honest behaviour in all rounds of φdsm. To enable the simulator to pass the WI

proofs without the knowledge of the inputs of the honest parties, it is endowed with a cheat

route (facilitated by the cheating statement of the WI proof, while the honest statement involves

proving honest behaviour wrt inputs committed via Com) which requires the knowledge of the

trapdoor of the corrupt parties; which the simulator can obtain by rewinding the last 2 rounds

of a trapdoor-generation protocol (Trap) run in the first 3 rounds of the final construction. To

enable this cheat route of the simulator, the compiler has an additional component, namely

4-round non-malleable commitment NMCom run in Rounds 1 - 4.

We discuss the tools used in the compiler of [35] in Figure 5.6 and present further details of

the compiler in Figure 5.7 below.
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- A (k − 1)-round delayed-semi-malicious protocol φdsm for computing a function f .

- A 2-message statistically binding commitment scheme Com from one-way functions.

- A 3-round protocol Trap to set up a trapdoor between a sender (S) and a receiver (R) as the

following sequence of rounds:

R1: S samples a signing and verification key pair (sk, vk) of a signature scheme and sends vk

to R.

R2: R sends a random message m← {0, 1}λ to S.

R3: S computes a signature σ on m using sk and sends σ to R who accepts if (m,σ) is valid

w.r.t. vk.

A valid trapdoor td w.r.t. a verification key vk constitutes of (m,σ,m′, σ′) such that m′ 6= m

and σ and σ′ are valid signatures of messages m and m′ respectively corresponding to vk.

- A 4-round non-malleable commitment scheme NMCom.

- A 4-round public-coin delayed-input witness indistinguishable proof WI.

Tools used in [35] compiler

Figure 5.6: Tools used in [35] compiler

5-round Malicious Protocol π from 4-round delayed-semi-malicious protocol φdsm

Each party Pi, i ∈ [n] runs the following sub-components with every Pj , j ∈ [n] \ {i}:

- Delayed-semi-malicious protocol φdsm: The 4 messages of φdsm are sent in rounds (1, 2, 4, 5)

of π i.e. round 3 of π is skipped in which no messages of φdsm are sent.

- Commitment Com: Pi commits to his input and randomness (xi, ri) using the commitment

protocol Com to Pj . Let the commitment be denoted by ci→j . The two messages of Com are

run in the first two rounds of π.

- Trapdoor generation Trap: The 3-round trapdoor generation protocol Trap is run in rounds

1− 3 between Pj as the sender and Pi as the receiver. Let Trapj→i be the produced transcript

and vkj→i be the verification key that Pj sends to Pi.

- Non-Malleable Commitment NMCom: Pi commits to a random string s0
i→j to Pj using NMCom

in rounds 1− 4. Let NMComi→j denote the produced commitment.

Compiler of [35]
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- Pi sends another random string s1
i→j in the clear to Pj in round 4.

- First proof of correctness WI1: Pi initiates an instance of witness indistinguishable proofs,

say WI1i→j in rounds 1 − 4 to prove to Pj that he has generated the first 3 messages of φdsm

correctly using the input and randomness committed in ci→j . In detail, let WI1i→j denote the

proof generated by Pi to Pj to prove correctness of one of the following statements:

◦ Honest Statement: Pi has correctly generated the first 3 messages of φdsm using the input

and randomness committed in ci→j .

◦ Cheating Statement: XOR of the share s0
i→j committed to in NMComi→j and the share s1

i→j

is a valid trapdoor w.r.t. verification key vkj→i.

Each party Pi verifies all pairwise proofs {WI1i→j}i,j∈[N ] (proofs are publicly verifiable). If any

proof is not accepting, Pi aborts and outputs ⊥.

- Second proof of correctness WI2: Pi intiates an instance of witness indistinguishable proofs,

say WI2i→j in rounds 2− 5 to prove to Pj that he has generated all messages of φdsm correctly.

In detail, let WI2i→j denote the proof generated by Pi to Pj to prove correctness of one of the

following statements:

◦ Honest Statement: Pi has correctly generated all messages of φdsm using the input and

randomness committed in ci→j .

◦ Cheating Statement: XOR of the share s0
i→j committed to in NMComi→j and the share s1

i→j

is a valid trapdoor w.r.t. verification key vkj→i.

- Output Computation: Pi verifies all proofs i.e.{WI2i→j}i,j∈[N ]. If any proof is not accepting,

it aborts and outputs ⊥. Else, it computes the output according to the underlying delayed-

semi-malicious φdsm.

Figure 5.7: Compiler of [35] for k = 5

Next, we give an overview of the simulator S (details appear in [35]) for the 5-round compiled

protocol π that uses the simulator Sφ of the underlying 4-round protocol φdsm. To emulate the

ideal-world adversary corrupting parties in set C, S invokes the malicious adversary Aπ and

simulates a real execution of π for Aπ by acting on behalf of the honest parties in set H. Recall

that the delayed-semi-malicious security of φdsm guarantees that it is secure against an adversary

Aφ who can choose to behave arbitrarily in the protocol as long as it writes a valid witness

(which consists of an input randomness pair ({xi, ri}i∈C) on behalf of all corrupt parties) on

the witness tape of the simulator Sφ in the penultimate round such that the witness (x, r) can

justify all the messages sent by him. In order to avail the services of Sφ, S needs to transform
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the malicious adversary Aπ to a delayed-semi-malicious adversary Aφ i.e. it needs a mechanism

to write (x, r) on the witness tape of Sφ. This is enabled via extraction of witness i.e. {xi, ri}i∈C
from the WI1 proofs sent by Aπ as the prover via rewinding its last two rounds (Round 3, 4 of

π).

Apart from the above set of rewinds for extraction of corrupt parties’ inputs, another set of

rewinds is required for the following reason: Consider messages of honest parties simulated by

Sφ that are used by S to interact with Aπ during the execution of π. Here, S cannot convince Aπ

in the two sets of WI proofs that these messages are honestly generated. Hence, he opts for the

route of the cheating statement of the WI proofs which requires the knowledge of the trapdoor

of the corrupt parties. At a high-level, Trap (i.e the 3-round trapdoor generation protocol

described in Figure 5.6) between a sender S and receiver R allows R to obtain a message-

signature pair (m,σ), where σ is computed by S using his signing key sk (corresponding to

verification key vk which S sends to R in Round 1) on message m chosen by R (m is sent by R

to S in Round 2). The trapdoor of party Pi, consists of two valid message-signature pairs with

respect to the verification key of Pi. The simulator extracts the trapdoor of parties in C by

rewinding the adversary Aπ in Rounds 2 and 3 till he gets an additional valid message-signature

pair. The trapdoor has been established this way to ensure that only the simulator (and not

the adversary himself) is capable of passing the proofs via the cheating statement.

Finally, we point that the two sets of rewinds (Round 2-3 and Round 3-4 of π) can be

executed by S while maintaining that the interaction with Sφ is straight-line since Round 3 of

the compiled protocol is ‘dummy’ i.e does not involve messages of φdsm. This ‘dummy’ round is

crucial to avoid rewinding of messages in φdsm. Since there are no messages of φdsm being sent

in Round 3, S can simply replay the messages of φdsm (obtained via Sφ) to simulate Round 2

and Round 4 of π during the rewinds.

5.5.2.2 Our 5-round BoBW construction

Our final goal of a (god|ua)-BoBW protocol πbw.god.plain is obtained by applying the compiler

of [35] to our delayed-semi-malicious-secure (god|ua)-BoBW protocol πbw.god.sm (described in

Section 5.5.1.1) with slight modifications. Broadly speaking, to preserve the BoBW guarantees

from semi-malicious to malicious setting upon applying the compiler, the malicious behaviour of

corrupt Pi in the compiled protocol is translated to an analogous scenario when semi-malicious

Pi aborts (stops communicating) in the underlying protocol πbw.god.sm. Towards this, we make

the following modification: Recall from the construction of πbw.god.sm that each party Pi is

unanimously assigned a boolean indicator i.e. flagi by the remaining parties which is initialized

to 1 and is later set to 0 if Pi aborts (stops) in the first two rounds. Accounting for malicious
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behavior, we now require the value of flagi to be decided based on not just Pi’s decision to

abort in a particular round but also on whether he misbehaves in the publicly-verifiable Trap

protocol or WI proofs. Specifically, if Pi misbehaves in Trap or the first set of proofs WI1 with

Pi as prover fails, flagi is set to 0 (analogous to Pi aborting in Round 1 or 2 of πbw.god.sm).

Further, if the second set of proofs WI2 with Pi as prover fails, then the last round message of

Pi is discarded (analogous to Pi aborting in last round of πbw.god.sm).

Next, we point that in our compiled protocol, the 3 rounds of the underlying semi-malicious

protocol πbw.god.sm are run in Rounds 1, 4 and 5 respectively. As opposed to compiler of [35]

which needed a single ‘dummy’ round on top of the delayed-semi-malicious protocol, we face an

additional simulation technicality (elaborated in the next section) that demands two ‘dummy’

rounds. This could be enabled while maintaining the round complexity of 5, owing to our 3

(and not 4) round delayed semi-malicious protocol. Furthermore, as described earlier, in order

to simulate the WI proofs on behalf of an honest prover towards some corrupt verifier Pi, the

simulator requires the knowledge of the trapdoor of Pi which would be possible only if Pi is

alive (has not aborted) during the rounds in which trapdoor extraction occurs i.e. Round 2

and Round 3. While the simulator of [35] simply aborts incase any party aborts, the simulator

of our BoBW protocol cannot afford to do so as god must be achieved even if upto t < n/2

parties abort.

πbw.god.sm Com Trap NMCom WI1 WI2

Round 1 R1 R1 R1 R1 R1

Round 2 R2 R2 R2 R2 R1

Round 3 R3 R3 R3 R2

Round 4 R2 R4 R4 R3

Round 5 R3 R4

Table 5.3: πbw.god.plain

We handle this by adding a supplementary condition in our

construction, namely, a prover needs to prove the WI proofs only

to verifiers who have been alive until the round in considera-

tion. This completes the description of the modifications of our

compiler over [35]. The round-by-round interplay of the differ-

ent components is given in Table 5.3. We present the detailed

description of our 5-round (god|ua)-BoBW MPC protocol πbw.god.plain (incorporating the above

modifications) in the plain model in Figure 5.8.

5-round Malicious (god|ua)-BoBW MPC Protocol πbw.god.plain from 3-round

delayed-semi-malicious BoBW protocol φdsm

Primitives: Tools mentioned in Figure 5.6 with φdsm instantiated with πbw.god.sm (Figure 5.4).

Round 1. Each party Pi, i ∈ [n] does the following with Pj , j ∈ [n] \ {i}:

- Execute Round 1 of φdsm. Initialize flagk = 1 for all k ∈ [n] as per φdsm.

Protocol πbw.god.plain
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- Run Round 1 of Comi→j to commit to his input and randomness (xi, ri) to Pj . Let the

commitment be denoted by ci→j . Run Round 1 of Comj→i (where Pj acts as

committer) as receiver.

- Run Round 1 of Trapi→j as sender, with vki→j denoting the verification key.

- Run Round 1 of NMComi→j as committer and Round 1 of NMComj→i as receiver (with Pj

as committer).

- Run Round 1 of WI1i→j as prover and Round 1 of WI1j→i as verifier (with Pj as prover).

Round 2. Each party Pi, i ∈ [n] does the following with Pj , j ∈ [n] \ {i}:

- Run Round 2 of Comi→j and Comj→i.

- Run Round 2 of Trapj→i (as receiver).

- Run Round 2 of NMComi→j and NMComj→i.

- Run Round 2 of WI1i→j and WI1j→i. Also, run Round 1 of WI2i→j as prover and Round 1 of

WI2j→i as verifier (with Pj as prover).

- Set flagj = 0 if Pj aborts in Round 1 or Round 2.

Round 3. Each party Pi, i ∈ [n] does the following with Pj , j ∈ [n] \ {i}:

- Run Round 3 of Trapi→j (as sender).

- Run Round 3 of NMComi→j and NMComj→i.

- Run Round 3 of WI1i→j and WI1j→i. Also, run Round 2 of WI2i→j and WI2j→i.

- Set flagj = 0 if either Pj aborts in Round 3 or if there exists a k ∈ [n], k 6= j such that the

message-signature pair (m,σ) in Trapj→k is not valid w.r.t. vkj→k. Broadcast enables

everyone to agree on this.

Round 4. Each party Pi, i ∈ [n] does the following with Pj , j ∈ [n] \ {i}:

- Execute Round 2 of φdsm.

- Run Round 4 of NMComi→j in order to commit to a random string s0
i→j . Run Round 4 of

NMComj→i as receiver. Additionally, send another random string s1
i→j on clear to Pj .

- Run Round 4 of WI1j→i as verifier. If flagj = 1, run Round 4 of WI1i→j to prove to Pj the

correctness of the first 2 messages of φdsm. In detail, WI1i→j proves correctness of one of

the following statements: (1) Honest Statement: Pi has correctly generated the first 2

messages of φdsm using the input and randomness committed in ci→j . (2) Cheating
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Statement: XOR of the share s0
i→j committed to in NMComi→j and the share s1

i→j is a

valid trapdoor tdj→i w.r.t. verification key vkj→i.

- Run Round 3 of WI2i→j and WI2j→i.

- Set flagj = 0 if either Pj aborts in Round 4 or if there exists a k ∈ [n], k 6= j such that

WI1j→k leads to reject. Public verifiability of WI proofs enables this.

Round 5. Each party Pi, i ∈ [n] does the following Pj , j ∈ [n] \ {i}:

- Execute Round 3 of φdsm.

- Run Round 4 of WI2j→i as verifier. If flagj = 1, run Round 4 of WI2i→j to prove to Pj the

correctness of all messages of φdsm that he broadcasted. In detail, WI2i→j proves

correctness of one of the following statements: (1) Honest Statement: Pi has correctly

generated all messages of φdsm using the input and randomness committed in ci→j (2)

Cheating Statement: XOR of the share s0
i→j committed to in NMComi→j and the share

s1
i→j is a valid trapdoor tdj→i w.r.t. verification key vkj→i.

- Output Computation: If any proof WI2j→k is not accepting for any k ∈ [n], k 6= j,

discard the message from Pj . Compute the output as per φdsm.

Figure 5.8: 5-round Malicious (god|ua)-BoBW MPC Protocol πbw.god.plain from 3-round delayed-semi-
malicious BoBW protocol φdsm

5.5.2.3 Proof-sketch for 5-round (god|ua)-BoBW protocol.

The simulator for the compiler of [35] runs in different stages. Plugging it for our 5-round

(god|ua)-BoBW construction with appropriate modifications, we present a high-level overview of

the simulation. Let Sbw.god.plain and Sbw.god.sm denote the simulators corresponding to πbw.god.plain

and the underlying delayed semi-malicious protocol πbw.god.sm respectively. Stage 1 involves

running the first three rounds with the following changes compared to the real-execution of

the protocol: a) Commit to 0 in Com instances (run in Round 1, 2) involving honest party as

committer. b) Invoke the simulator for the semi-malicious protocol, Sbw.god.sm to generate the

first message of πbw.god.sm in Round 1 on behalf of honest parties. The rest of the actions in

Round 1 - 3 on behalf of honest parties are emulated by Sbw.god.plain as per protocol specifications.

Note that the simulator wrt compiler in [35] proceeds beyond the first stage only when the

adversary did not cause an abort on behalf of any corrupt party in Stage 1. Else, it aborts. This

works out because their protocol promises security with abort and hence, simply terminates if

a party aborts. However our protocol, in case of honest majority, promises god with the output

being computed on the actual input of the parties who have been alive till last but one round.
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To accommodate this, Sbw.god.plain cannot simply afford to terminate in case a corrupt party

aborts. It needs to continue the simulation with respect to corrupt parties who are alive, which

demands rewinding. It can thus be inferred that Sbw.god.plain must always proceed to rewinds

unless all the corrupt parties are exposed by adversary in Stage 1. The second and the fourth

stage, in particular, are concerned with rewinding of the adversary to enable Sbw.god.plain to

extract some information. In Stage 2, the adversary is reset to the end of Round 1 and Rounds

2, 3 are rewound in order to enable Sbw.god.plain to extract trapdoor of corrupt parties. In more

detail, consider Trapj→i executed between corrupt sender Pj and honest Pi wrt verification key

vkj→i. Now, Sbw.god.plain acting on behalf of Pi computes the trapdoor of Pj wrt vkj→i to be

two message-signature pairs constituted by one obtained in Stage 1 and the other as a result

of rewinding in Stage 2 (note that both signatures are wrt vkj→i sent in Round 1 of Trapj→i;

rewinds involve only Round 2, 3). To enable continuation of the simulation after Stage 2,

which requires the knowledge of the trapdoors of corrupt parties who are alive, the logical halt

condition for the rewinds is: stop when you have enough! This translates to- stop at the `th

rewind if a valid trapdoor has been obtained for the set of corrupt parties alive across the `th

rewind. Since the `th (last) rewind is expected to provide one valid (m,σ) pair (i.e message,

signature pair) out of two required for the trapdoor, all that is required is for the corrupt party

to have been alive across at least one previous rewind. Let the set of parties alive across ith

rewind be denoted by Ai+1 (A1 represents the set of parties that were alive in the execution

preceeding the rewinds i.e after Stage 1), then the condition formalizes to: halt at rewind ` if

A`+1 ⊆ A1 ∪ · · · ∪ A`.

While this condition seems appropriate, it leads to the following subtle issue. The malicious

adversary can exploit this stopping condition by coming up with a strategy to choose the set of

aborting and the alive parties (say, according to some unknown distribution D pre-determined

by the adversary) such that the final set of alive parties A in the transcript output by the

simulator (when the rewinds halt) will be biased towards the set of parties that were alive in the

earlier rewinds. (Ideally the distribution of the set of alive parties when simulator halts should

be identical to D). This would lead to the view output by the simulator being distinguishable

from the real view. A very similar subtle issue appears in zero-knowledge (ZK) protocol of

[115] - While we defer the details of this issue of [115] to Section 5.6.5.2, we give a glimpse

into how their scenario is analogous to ours below. Consider a basic 4-round ZK protocol with

the following skeleton: the verifier commits to a challenge in Round 1 which is subsequently

decommitted in Round 3. The prover responds to the challenge in Round 4. At a very high-

level, the protocol of [115] follows a cut-and-choose paradigm involving N instances of the above

basic protocol. Here, the verifier chooses a random subset S ⊂ [N ] of indices and decommits

189



to the challenges made in those indices in Round 3. Subsequently, the prover completes the

ZK protocol for instances with indices in S. The simulator for the zero-knowledge acting on

behalf of the honest prover involves rewinds to obtain ‘trapdoors’ corresponding to the indices

in S. However, note that the verifier can choose different S in different rewinds. Therefore,

the simulator is in a position to produce an accepting transcript and stop at the `th rewind

only when it has trapdoors corresponding to all indices in S chosen by the adversary during

the `th rewind. However, if the simulation is stopped at the execution where the above scenario

happens for the ‘first’ time, their protocol suffers an identical drawback as ours. In particular,

the malicious verifier can choose the set of indices S in a manner that the distribution of the

views output by the simulator is not indistinguishable from the real view. Drawing analogy

in a nutshell, the set of indices chosen by the malicious verifier is analogous to the set of alive

corrupt parties in our context (details in Section 5.6.5.2). We thereby adopt the solution of

[115] and modify our halting condition as: halt at rewind ` if A`+1 ⊆ A1 ∪ · · · ∪ A` and

A`+1 * A1 ∪ · · · ∪A`−1. [115] gives an elaborate analysis showing why this simulation strategy

results in the right distribution. With this change in simulation of Stage 2, the simulation

of Stage 3 can proceed identical to [35] which involves simulating the WI1 proofs via the fake

statement using the knowledge of trapdoor.

Proceeding to simulation of Stage 4, we recall that the simulator of [35] involves another

set of rewinds in Stage 4 which requires to rewind Round 3 and 4 to extract the witness i.e.

the inputs and randomness of the corrupt parties from WI1. Similar to Stage 2, two successful

transcripts are sufficient for extraction. Thus, the simulator is in a position to halt at `th rewind

if all the corrupt parties that are alive in Stage 4 have been alive across at least one previous

rewind. Next, following the same argument as Stage 2, it seems like the halting condition for

Stage 2 should work, as is, for Stage 4 too. With this conclusion, we stumbled upon another

hurdle elaborated in this specific scenario: Recall that the trapdoors extracted for corrupt

parties in Stage 2 are used here to simulate the WI1 proofs (as described in Stage 3). It is

thereby required that Sbw.god.plain already has the trapdoors for the corrupt parties that are alive

in Stage 4. Let T be the set of trapdoors accumulated at the end of Stage 2. Consider a party,

say Pi, which stopped participating in Round 3 of the last rewind ` of Stage 2 (Pi was alive till

Round 2 of `th rewind). Sbw.god.plain still proceeds to Stage 4 without being bothered about the

trapdoor of Pi (as the halting condition is satisfied). However in Stage 4, when the adversary is

reset to the end of Round 2 of `th rewind, Pi came back to life again in Round 3. The simulation

of WI1 proofs with Pi as a verifier will be stuck if T does not contain the trapdoor for Pi. Hence,

it is required to accommodate the knowledge of set T during Stage 4. Accordingly Sbw.god.plain

does the following in Stage 4: During each rewind, if a party (say Pi) whose trapdoor is not
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known becomes alive during Round 3, store the signature sent by Pi in Round 3 (as part of

Trap) and go back to Stage 2 rewinds (if Pi’s trapdoor is still unknown). Looking ahead, storing

the signature of Pi ensures that the missing trapdoor of Pi in T can cause Sbw.god.plain to revert

to Stage 2 rewinds atmost once (if the same scenario happens again i.e Pi becomes alive in

Round 3 during Stage 4 rewinds, then another (message, signature) pair wrt verification key of

Pi is obtained in this rewind by Sbw.god.plain; totalling upto 2 pairs which suffices to constitute

valid trapdoor of Pi which can now be added to T). Else, if T comprises of the trapdoor of

all the corrupt parties that are alive during the rewind of Stage 4, then adhere to the same

halting condition as Stage 2. This trick tackles the above described problematic scenario, while

ensuring that the simulation terminates in polynomial time and maintains indistinguishability

of views.

Before concluding the section, we highlight two important features regarding the simulation

of πbw.god.plain: Despite the simulator Sbw.god.plain reverting to Stage 2 rewinds in some cases (unlike

the simulation of [35]), the simulation terminates in polynomial-time since this can occur atmost

once per corrupt party (as argued above). Lastly, since there is a possibility of reverting back

to simulation of Round 2 after simulation of Round 4, we keep an additional ‘dummy’ Round 2

as well (on top of ‘dummy’ Round 3 as in [35]) in our construction. This allows us to maintain

the invariant that Sbw.god.sm is never rewound. To be more specific, as there are no messages of

underlying semi-malicious protocol being sent in Round 2, 3; even if Sbw.god.plain needs to return

to Stage 2 from Stage 4 (after Round 4 has been simulated by obtaining the relevant message

from Sbw.god.sm) and resume the simulation from Stage 2 onwards, the message of πbw.god.sm

sent in Round 4 can simply be replayed. We are able to accommodate two dummy rounds

while maintaining the round complexity of 5 owing to the privilege that our delayed-semi-

malicious protocol is just 3 rounds. This completes the simulation sketch. Assumption wise,

our construction relies on 2-round semi-malicious oblivious transfer (a building block of our

3-round delayed-semi-malicious BoBW MPC πbw.god.sm). We state the formal theorem below.

Theorem 5.12 Let (n, s, t) be such that s+ t < n. Let πbw.god.sm realises– (i) Fgod (Figure 2.4)

when at most t < n/2 parties are corrupt and (ii) Fua (Figure 2.2) when at most s < n parties

are corrupt, delayed-semi-maliciously in both cases. Then πbw.god.plain in the plain model realises–

(i) Fgod when at most t < n/2 parties are corrupt and (ii) Fua when at most s < n parties are

corrupt, maliciously in both cases. It takes 5 rounds, assuming that πbw.god.sm takes 3 rounds.

Proof: The proof which includes the complete description of the simulator, a discussion about

its indistinguishability to the real view and its running time is deferred to Section 5.6.5.3. 2
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Extension to Identifiability. We additionally point that the publicly-verifiable WI proofs

render identifiability to our construction. Thus our maliciously-secure (god|ua)-BoBW proto-

col achieves the stronger notion of identifiable abort in case of dishonest majority, with no

extra assumption. Therefore, we obtain the above theorem where Fua is replaced with Fidua

(Figure 2.5).

A minor observation is that we can replace the last round broadcast with point-to-point

communication in our (god|ua)-BoBW protocol πbw.god.plain at the expense of relaxing ua to sa

security in the dishonest-majority setting.

5.6 Security Proofs

Before presenting the security proofs, we introduce the notion of a semi-malicious adversary,

which has been regarded as an effective intermediate step to attain malicious security.

5.6.1 Semi-malicious and Delayed-semi-malicious Security

Semi-malicious security had been introduced in [10] and subsequently used by many works as a

stepping-stone for achieving malicious security. We use two variants of semi-malicious security–

the original definition of [10, 160] and a variant known as delayed-semi-malicious security [35].

A semi-malicious adversary is modelled as an interactive Turing machine which, in addition

to the standard tapes, has a special witness tape. In each round of the protocol, whenever the

adversary produces a new protocol message m on behalf of some party Pk, it must also write to

its special witness tape some pair (x, r) of input x and randomness r that explains its behavior.

More specifically, all of the protocol messages sent by the adversary on behalf of Pk up to that

point, including the new message m, must exactly match the honest protocol specification for

Pk when executed with input x and randomness r. Note that the witnesses given in different

rounds need not be consistent. Also, we assume that the attacker is rushing and hence may

choose the message m and the witness (x, r) in each round adaptively, after seeing the protocol

messages of the honest parties in that round (and all prior rounds). Lastly, the adversary may

also choose to abort the execution on behalf of Pk in any step of the interaction.

Definition 5.3 We say that a protocol π securely realizes F for semi-malicious adversaries if

it satisfies Definition 2.3 when we only quantify over all semi-malicious adversaries A.

We point that a party controlled by the semi-malicious adversary must invoke the ideal

functionality with either ⊥ or a valid input in the input phase.

A stronger variant of semi-malicious adversary, denoted as delayed semi-malicious, was intro-

duced in the work of [35]. Informally, a party Pk, under the influence of delayed-semi-malicious
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adversary, acts like one under a semi-malicious adversary, except that, it only “explains” all its

messages once, before the last round (unlike a semi-malicious party who explains each of its

messages after each round). This is formalized by letting Pk write to its special witness tape

before the last round some pair (x, r) of input x and randomness r which is required to be

consistent with all Pk’s messages.

Definition 5.4 We say that a protocol π securely realizes F for delayed-semi-malicious ad-

versaries if it satisfies Definition 2.3 when we only quantify over all delayed-semi-malicious

adversaries A.

The real world for delayed-semi-malicious security is defined identically as the real world for

semi-malicious security except that adversary A is only required to provide a witness in the

second last round i.e round L− 1 with respect to a protocol of L rounds. Correspondingly, the

ideal world is defined identically as the ideal world for semi-malicious security except that the

simulator interacting with the adversary A (as a black-box) receives the witness that A output

after round L− 1.

5.6.2 Proof of Security of πbw.fair (Theorem 5.4)

We give a brief intuition of the proof of Theorem 5.4 before presenting the formal proof. First,

consider the case of dishonest majority. If A aborts the computation of Fsh
ua, then all honest

parties output ⊥. Suppose A allows all honest parties to get authenticated t-shares of the out-

put y as output of Fsh
ua, then honest parties would either output y or ⊥ depending on whether

(t+ 1) valid output shares are received in Round (r+ 1) or not. Unanimity amongst the honest

parties follows directly from the argument of Lemma 5.3. Thus we can conclude that πbw.fair

achieves ua in case of dishonest majority. Moving on to the honest majority setting, A again

has two choices - whether to allow computation of Fsh
ua to succeed or not. In the former case,

since there are (t+1) honest parties, their output shares would suffice to reconstruct the output

irrespective of any misbehavior of A during Round (r + 1); leading to output computation by

all. In the latter case, since A has access to only upto t output shares, he learns nothing about

the output and all parties output ⊥. Thus, πbw.fair achieves fn incase of the honest majority

setting. This completes the intuition.

We prove the theorem by presenting two separate simulators for the honest and for the

dishonest majority case respectively.

Dishonest Majority. Let A be a malicious adversary controlling s parties in the hybrid-

model execution of πbw.fair. The simulator Sdm
bw.fair, running an ideal-world evaluation of the
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functionality Fua (refer Figure 2.2) computing f whose behaviour simulates the behaviour of A

is described in Figure 5.9.

– Receive {xi}i∈C sent to Fsh
ua in this hybrid execution model. If for any i ∈ C, xi is outside of the

domain of input, send ⊥ as output of Fsh
ua to A and send ⊥ as the input to Fua on behalf of

the corrupt parties. The simulation is completed in this case. Else invoke Fua on behalf of A

with {xi}i∈C to receive an output value y in return.

– Compute the authenticated t-sharing of value y (Definition 5.2) as done by Fsh
ua and send zi =(

ai(x), {vij = (Ki, aj(Ki))}j∈[n]

)
as output of Fsh

ua to Pi (i ∈ C)

– If Sdm
bw.fair receives abort on behalf of Fsh

ua from the adversary, it sends the ‘abort’ signal to Fua on

behalf of A. This concludes the simulation for this case.

– If Sdm
bw.fair receives continue on behalf of Fsh

ua from the adversary, it simulates Round (r + 1) as

follows:

- Broadcast ai(x) for each (i ∈ H) on behalf of honest Pi and receive message {a∗j (x)}j∈C
from the corrupt parties in Round (r + 1).

- Let C′ ⊂ C denote the set of indices for which a∗j (x) = aj(x). If |C′|+ |H| ≥ t+ 1, then send

‘continue’ to Fua. Else send ‘abort’ to Fua.

Simulator Sdm
bw.fair

Figure 5.9: Simulator Sdm
bw.fair for the case of dishonest majority

We argue that the view of A in the hybrid world and the ideal world is indistinguishable due

to the following reason: Observe that the only difference in the ideal world as compared to the

hybrid world is in the output computation of the honest parties - In the ideal world, all honest

parties output y if |C′|+ |H| ≥ t+ 1, where C′ ⊂ C is the set of indices such that a∗j(x) = aj(x),

else they all output ⊥. In contrast, in the hybrid world, each honest party Pi outputs the

output of Rec in which it participates with the output of Fsh
ua in Round (r + 1). It follows

from the argument in Lemma 5.3 that all honest parties would have identical V sets comprising

only of parties in H and C′, except with probability n2

|F|−1
. Thus, when |H| + |C′| ≥ t + 1, for

each honest Pi, |Vi| ≥ t + 1 leading Pi to output y as output of Rec in the hybrid world as

well. Similarly, all honest parties would output ⊥ in both the ideal and the hybrid world when

|H|+ |C′| < t+ 1. Thus the difference between the two worlds occurs with probability atmost
n2

|F|−1
≈ ε, which is negligible when F = GF (2κ), where ε ≥ n22−κ. This completes the proof for

the case of dishonest majority.
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Honest Majority. Let A be a malicious adversary controlling t parties in a hybrid-model

execution of πbw.fair. The simulator Shm
bw.fair, running an ideal-world evaluation of the fair func-

tionality Ffair (refer Figure 2.3) computing f , whose behaviour simulates the behaviour of A, is

described Figure 5.10.

– Receive {xi}i∈C sent to Fsh
ua by A in this hybrid-execution model. If for any i ∈ C, xi is outside of

the domain of input, send ⊥ as output of Fsh
ua to A and send ⊥ as the input to Ffair on behalf

of the corrupt parties. The simulation is completed in this case. Else it does the following.

Noticeably, in this case Shm
bw.fair cannot call Ffair yet with the inputs, as the adversary can still

abort the protocol by signaling Fsh
ua with abort in which case all parties will obtain ⊥ as the

output.

- Choose t random shares {si}i∈C ∈ F. For each i ∈ C, compute MAC-polynomial ai(x)

that authenticates si (Definition 5.1) with corresponding verification information as vji =

(Kj , ai(Kj)) of verifier Pj .

- For each i ∈ C, j /∈ C, set vij = (Ki,Tij) where Ki,Tij are sampled randomly from F.

- Send
(
ai(x), {vij}j∈[n]

)
as output of Fsh

ua to Pi (i ∈ C).

– If Shm
bw.fair receives abort on behalf of Fsh

ua from the adversary, it sends ⊥ as the adversary’s input

to Ffair. This completes the simulation for this case.

– If Shm
bw.fair receives continue on behalf of Fsh

ua from the adversary, it sends the inputs {xi}i∈C to

Ffair and receives output y in return. Recall that Shm
bw.fair had sent

(
ai(x), {vij}j∈[n]

)
as output

of Fsh
ua to Pi (i ∈ C) where vij = (Ki,Tij) for j /∈ C. Shm

bw.fair does the following to simulate

Round (r + 1):

- Interpolate a degree-t polynomial p(x) satisfying p(0) = y and p(i) = ai(0) for i ∈ C. Set

s′j = p(j) for j /∈ C.

- Corresponding to each j /∈ C, interpolate a degree-t polynomial aj(x) satisfying aj(0) = s′j

and aj(Ki) = Tij for i ∈ C.

- Broadcast aj(x) on behalf of each honest Pj (j /∈ C) in Round (r + 1). Output y on behalf

of all honest parties.

Simulator Shm
bw.fair

Figure 5.10: Simulator Shm
bw.fair for the case of honest majority

We now claim that the view of A in the hybrid world and the ideal world is indistinguishable

due to the following: The difference between the hybrid and the ideal execution is that when

195



A receives (ai(x), {vij}j∈[n]) for each i ∈ C as output from Fsh
ua, the values vij in the former are

computed as verification information of the authenticated t-shares of the output y (Definition

5.2) (i.e vij = (Ki, aj(Ki)) with aj(0) = p(j) as a t-share of y), while in the latter they are random

for j /∈ C. It is easy to verify that the indistinguishability follows since A has access to atmost

t points on the degree t polynomial aj(x) for j /∈ C. Finally, in the case when A allows honest

parties to obtain the output shares from Fsh
ua, it is easy to check that since |Vi| ≥ t+ 1 for each

honest Pi (as there are atleast (t+ 1) honest parties), each Pi would proceed to reconstruction.

Furthermore, the argument made in Lemma 5.3 shows that all honest parties would exclude js

from their V sets such that Pj broadcast the incorrect MAC polynomial corresponding to its

output share, except with negligible probability. Subsequently, the correct secret y would be

reconstructed. We can thus conclude that all honest parties obtain output y in both the ideal

and the hybrid execution, except with negligible probability. This completes the proof for the

honest majority setting. This completes the proof of Theorem 5.4.

5.6.3 Proof of Security of πbw.god.sm (Theorem 5.8)

We prove the theorem by demonstrating that the 3-round protocol πbw.god.sm (Figure 5.4) ob-

tained by compiling a 2-round semi-malicious protocol πua.sm satisfies the security guarantees of

(god|ua)-BoBW. We give the description of two simulators, namely Sdm
bw.god.sm and Shm

bw.god.sm that

simulates the view of the real-world adversary A in case of s semi-malicious corruptions and t

semi-malicious corruptions respectively. Both Sdm
bw.god.sm, S

hm
bw.god.sm internally use the simulator

of the semi-malicious protocol πua.sm, say Sua.sm. The simulator of the adaptive garbling scheme

Sad is also invoked (Refer Section 2.4.1.1 for details).

The simulator Sdm
bw.god.sm is described in Figure 5.11. We argue that idealFua,Sdm

bw.god.sm

c
≈

realπbw.god.sm,A when the semi-malicious adversary A corrupts s < n parties. The views are

shown to be indistinguishable via a series of intermediate hybrids.

Round 1. Sdm
bw.god.sm does the following-

- Interaction with Sua.sm to receive Round 1 of πua.sm: Execute the simulator Sua.sm(1κ) to

obtain {B1
i }i∈H.

- On behalf of each i ∈ H, setup (pki, ski)← Gen(1κ) and broadcast (pki,B
1
i ).

- Receive {pkj ,B
1
j} broadcast by Pj where j ∈ C along with its “witness” (x1

j , r
1
j ) from its

witness tape.

Round 2. Sdm
bw.god.sm does the following-

Simulator Sdm
bw.god.sm
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- For each i ∈ H: run (C̃i, d̃i) ← Sad(1λ, θ(Ci), 0), where θ is the side information known

about Ci i.e the topology of the circuit and broadcast (C̃i, d̃i) on behalf of Pi.

- On behalf of each Pi (i ∈ H): For each b ∈ {0, 1}, k ∈ [n], j ∈ C, sample labk,bi,j at random.

For j ∈ C broadcast ck,bi,j = Enc(pkj , labk,bi,j ). For j /∈ C, broadcast ck,bi,j as encryption of a

dummy message.

- For each j ∈ C: Receive Cj and {ck,bj,i }k∈[n],b∈{0,1},i∈[n] along with its “witness” (x2
j , r

2
j ) from

its witness tape. For i ∈ H, compute labk,bj,i = Dec(ski, c
k,b
j,i )

Round 3. Sdm
bw.god.sm does the following-

- Interaction with Sua.sm to send Round 1 of πua.sm: For j ∈ C, if Pj did not abort in Round

1 or Round 2 of πbw.god.sm, use the “witness” (x2
j , r

2
j ) of the corrupt Pj from its witness

tape and forward the witness and B1
j to Sua.sm as the Round 1 message from Pj . Set

(x∗j , r
∗
j ) = (x2

j , r
2
j ) and flagj = 1. Else, forward the default values (x′j , r

′
j) and B′1j

computed using the default values to Sua.sm as the Round 1 message from Pj . In this

case, set (x∗j , r
∗
j ) = (x′j , r

′
j) and flagj = 0.

- Invoking the ideal functionality Fua: Invoke Fua computing f with the set of values {x∗j}j∈C
on behalf of A and obtain the output y. This is provided to Sua.sm as the response from

its ideal functionality when invoked by Sua.sm.

- Interaction with Sua.sm to receive Round 2 of πua.sm: Invoke Sua.sm to obtain {B2
i }i∈H.

- Set flagi = 1 for all i ∈ H. For each i ∈ H: Run ({lab
k,flagk
i }k∈[n]) ← Sad(B2

i , 1). For

each k ∈ [n], interpolate a degree-s polynomial Mk
i (x) satisfying Mk

i (0) = lab
k,flagk
i and

Mk
i (j) = lab

k,flagk
i,j for j ∈ C (chosen in Round 2), where |C| ≤ s. For j ∈ H, set

lab
k,flagk
i,j = Mk

i (j).

- For each i ∈ [n]: For j ∈ H, broadcast lab
k,flagk
i,j . For j ∈ C, receive lab

k,flagk
i,j .

- Interaction with Sua.sm to send Round 2 of πua.sm: For j ∈ C such that flagj = 1, use the shares

broadcast in Round 3 to reconstruct the labels associated with Cj . If the reconstruction of

all labels is successful, proceed to evaluation of Cj and obtain b2j as per the protocol. Send

witness (x∗j , r
∗
j ) and b2j as Round 2 message to Sua.sm from Pj . Else, abort Pj . For j ∈ C such

that flagj = 0, compute default b2j as per the protocol and send the default witness (x′j , r
′
j)

and b2j as Round 2 message to Sua.sm from Pj .

Output to honest parties: Let C′ ⊂ C denote the set of parties controlled by A who do not abort

throughout πbw.god.sm. If |C′|+ |H| ≥ s+ 1, Sbw.god.sm invokes Fua computing f with continue

on behalf of A. Output y on behalf of the honest parties. Else Sbw.god.sm invokes Fua with

abort on behalf of A and output ⊥ on behalf of the honest parties.
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Figure 5.11: Description of Simulator Sdm
bw.god.sm

- hyb0: Same as realπbw.god.sm,A.

- hyb1: Same as hyb0, except that for i, j ∈ H, the ciphertext ck,bi,j (for all k ∈ [n], b ∈ {0, 1})
broadcast in Round 2 is an encryption of dummy message.

- hyb2: Same as hyb1, except that for i ∈ H, (Ci, {lab
k,flagk
i }k∈[n], di) is computed as

(Ci, di)← Sad(1λ, θ(Ci), 0) and ({lab
k,flagk
i }k∈[n])← Sad(B2

i , 1).

- hyb3: Same as hyb2 except that {B1
i ,B

2
i }i∈H is generated via the simulator Sua.sm of the

underlying semi-malicious protocol πua.sm.

- hyb4: Same as hyb3 except that honest parties output ⊥ if |C′| + |H| < s + 1, where

C′ ⊂ C is the set of parties controlled by A that do not abort throughout πbw.god.sm.

Since hyb4 := idealFua,Sdm
bw.god.sm

, we show that every two consecutive hybrids are computation-

ally indistinguishable which completes the proof for the case of s corruptions.

hyb0
c
≈ hyb1: The difference between the hybrids is that the ciphertext ck,bi,j (for k ∈ [n], b ∈

{0, 1}) broadcast in Round 2 using key pkj for i, j ∈ H, is the encryption of Pj’s share of the

encoded input labk,bi i.e labk,bi,j in hyb0 while it is the encryption of a dummy message in hyb1.

The messages in Round 3 by Pi (i ∈ H) remain the same. The indistinguishability follows via

reduction to the security of the public-key encryption scheme (A has no information about skj).

hyb1
c
≈ hyb2: The difference in the hybrids is the way (Ci, {lab

k,flagk
i }k∈[n], di) is computed

for i ∈ H. In hyb1, it is computed as (Ci, ei, di) ← Gb(1λ, Ci) and then as {lab
k,flagk
i ←

En(ei, flagk)}k∈[n]. On the other hand, in hyb2, it is computed as (Ci, di) ← Sad(1λ, θ(Ci), 0)

and ({lab
k,flagk
i }k∈[n]) ← Sad(B2

i , 1). The indistinguishability follows via reduction to the adap-

tive privacy of the garbling scheme.

hyb2
c
≈ hyb3: The difference between the hybrids is that the values {B1

i ,B
2
i } for i ∈ H are

generated using honest parties’ inputs in hyb2 but generated via the simulator Sua.sm in hyb3.

The indistinguishability follows directly from the semi-malicious security of the protocol πua.sm.

hyb3
c
≈ hyb4: The difference between the hybrids is that while the honest parties output ⊥

in hyb3 if any reconstruction fails, they do so in hyb4 if |C′| + |H| < s + 1, where C′ ⊂ C is
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the set of parties controlled by A that do not abort throughout πbw.god.sm. It is easy to check

that the difference occurs only when some party in C, say Pj, does not abort in Round 3,

but sends an incorrect share, say s′ leading to problems in the reconstruction. However, note

that the semi-malicious Pj needs to be consistent with the transcript of Round 2 comprising

of ciphertexts encrypting the correct share, say s, with his public key pkj. Thus, the share s′

sent by Pj in Round 3 must be a valid decryption of the ciphertext broadcast in Round 2. It

now follows from the correctness of the public-key encryption scheme that both s, s′ cannot be

valid decryptions of the same ciphertext.

This completes the proof of security for the case of s < n corruptions.

The simulator Shm
bw.god.sm for the case of t < n/2 corruptions is described in Figure 5.12. The

steps are almost same as that of Sdm
bw.god.sm, and only differs in terms of output computation of

the honest parties. We argue that idealFgod,S
hm
bw.god.sm

c
≈ realπbw.god.sm,A when the semi-malicious

adversary A corrupts t < n/2 parties. The views are shown to be indistinguishable via a series

of intermediate hybrids.

Round 1. Same as Round 1 of Sdm
bw.god.sm (Figure 5.11).

Round 2. Same as Round 2 of Sdm
bw.god.sm (Figure 5.11).

Round 3. Similar to Round 3 of Sdm
bw.god.sm (Figure 5.11) except the following:

- The ideal functionality Fgod is invoked on behalf of A instead of Fua.

- Additional step: For each Pj (j ∈ C), such that flagj = 1: For each k ∈ [n], use {lab
k,flagk
j,i }i∈H

to reconstruct lab
k,flagk
j (recall that |H| = s + 1). Evaluate Cj using {lab

k,flagk
j }k∈[n] to

obtain b2j .

- Interaction with Sua.sm to send Round 2 message of πua.sm: For j ∈ C such that flagj = 1, send

witness (x∗j , r
∗
j ) and b2j as Round 2 message to Sua.sm from Pj . For j ∈ C such that flagj = 0,

compute default b2j as per the protocol and send the default witness (x′j , r
′
j) and b2j as Round

2 message to Sua.sm from Pj .

Output of honest parties: Output y on behalf of all honest parties.

Simulator Shm
bw.god.sm

Figure 5.12: Description of Simulator Shm
bw.god.sm

- hyb0: Same as realπbw.god.sm,A.
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- hyb1,hyb2,hyb3: Same as hyb1,hyb2,hyb3 described previously corresponding to Sdm
bw.god.sm

- hyb4: Same as hyb3 except that honest parties do not output ⊥.

Since hyb4 := idealFgod,S
hm
bw.god.sm

, we show that every two consecutive hybrids are computation-

ally indistinguishable. The argument for hyb3
c
≈ hyb4 suffices to complete the proof for the

case of t corruptions as the indistinguishability of hyb0
c
≈ hyb3 has been described previously

in the context of Sdm
bw.god.sm.

hyb3
c
≈ hyb4: The difference between the hybrids is that in hyb3, honest parties output ⊥ if

any reconstruction fails, but in hyb4, honest parties do not output ⊥. The indistinguishability

follows as in hyb3, the (n− t) = (s+ 1) honest parties would broadcast their correct shares in

Round 3 which would suffice for the purpose of successful reconstruction of the s-shared value.

Also, as argued earlier, the shares broadcast by non-aborting semi-malicious parties in Round

3 must also be correct. This holds since the semi-malicious parties must remain consistent with

the Round 2 message that includes ciphertexts encrypting the correct shares (follows from the

correctness of the public-key encryption scheme).

This completes the proof of Theorem 5.8.

5.6.4 Proof of Security of πbw.god (Theorem 5.11)

We prove the theorem by claiming that the protocol πbw.god achieves god against t < n/2

malicious corruptions and security with ua against s < n malicious corruptions in the Fzk-

hybrid model. For contradiction, assume a malicious adversary Ahm
bw.god controlling a subset of

t < n/2 parties, say C, that breaches security of πbw.god. We build a semi-malicious adversary

Ahm
bw.god.sm corrupting the same set of parties C for the 3-round semi-malicious BoBW MPC

protocol πbw.god.sm as follows. Ahm
bw.god.sm internally uses Ahm

bw.god and interacts with the honest

parties in an execution of πbw.god.sm as follows:

- In each round ` (` ∈ [3]), Ahm
bw.god.sm forwards the messages received in the execution of

πbw.god.sm from the honest parties to Ahm
bw.god. Receive mi

` from each Pi(i ∈ C) sent by

Ahm
bw.god in the execution of πbw.god.

- Simulate the Fzk functionality for each Round ` (` ∈ [3]) as follows: When an honest party

should be the prover, just check that the adversary sends the correct statement and return

1 as the response of Fzk. In case where a corrupted party Pi(i ∈ C) is the prover, check

that indeed NextMsgi`(xi; ri;m1 . . .m`−1) = mi
`, where (xi, ri) is Pi’s witness received by

Fzk. Incase this holds, return 1 to Ahm
bw.god, update the witness tape of Ahm

bw.god.sm to include
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(xi, ri) and send mi
` on behalf of Pi to honest parties in the execution of πbw.god.sm. Incase

of failure, abort the party Pi.

- Ahm
bw.god.sm outputs whatever Ahm

bw.god outputs.

Similarly, using the simulator Shm
bw.god.sm for πbw.god.sm (refer Theorem 5.8), we can build a

simulator Shm
bw.god for πbw.god for the honest majority case. Since Ahm

bw.god.sm behaves the same

way as Ahm
bw.god, any attack by Ahm

bw.god controlling t < n/2 parties that breaks the security of

πbw.god is translated to an attack by Ahm
bw.god.sm controlling t < n/2 parties to break security

of πbw.god.sm. This leads to a contradiction as πbw.god.sm achieves god incase of t < n/2 semi-

malicious corruptions as proved in Theorem 5.8. Similarly, a malicious adversary Adm
bw.god for

πbw.god controlling a subset of s < n parties, can be used to build a semi-malicious adversary

Adm
bw.god.sm corrupting s < n parties that breaks security of πbw.god.sm which is a contradiction.

This completes the proof of our claim that πbw.god gives the necessary BoBW security guarantees

stated in Theorem 5.11 in the Fzk-hybrid model. In the CRS model, Fzk can be realized using

NIZKs; thereby completing the proof of Theorem 5.11.

5.6.5 Proof of Security of πbw.god.plain

Before presenting the proof, we first show that the 3-round protocol πbw.god.sm (Figure 5.4)

satisfies the stronger notion of delayed-semi-malicious security (Section 5.6.1) and recall the

relevant technicalities in [115] which are useful for our proof.

5.6.5.1 Proof of Delayed-semi-malicious Security

Recall that the delayed-semi-malicious adversary is similar to semi-malicious adversary, except

that it is required to provide a witness only in the second-last round. We argue that πbw.god.sm

achieves the desired BoBW security guarantees even against such an adversary due to the

following: First, we note that the simulators Sdm
bw.god.sm and Shm

bw.god.sm (Figure 5.11,Figure 5.12)

do not require the adversary’s witness at the end of Round 1 to simulate Round 2 and use only

the witness (x2
j , r

2
j ) output by a corrupt Pj at the end of Round 2 for simulation. Thus, the

simulation can proceed identical to Sdm
bw.god.sm and Shm

bw.god.sm in case of a delayed-semi-malicious

adversary who provides witness only during Round 2 (second-last round). Next, we observe

that arbitrary malicious behavior in Round 1 by a delayed-semi-malicious adversary does not

affect simulation of Round 2 as it involves communication of only adaptive garbled circuits

and ciphertexts corresponding to shares of labels of the garbled circuit (encrypted with the

appropriate public-key of the share’s recipient). It is easy to check from description of the

simulators (in Figure 5.11-Figure 5.12) that the simulation of adaptive garbled-circuits requires
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only the circuit topology which is independent of the adversary’s potentially malicious Round

1 message. Lastly, a malformed public-key sent by an adversary in Round 1 does not affect

the simulation as the shares of honest parties are encrypted with their respective well-formed

public keys. This misbehavior would only affect the ciphertexts comprising of adversary’s share

which are simulated identical to the real-world. We point that since the ciphertext is decrypted

only in Round 3 after the delayed-semi-malicious adversary provides a witness justifying the

well-formedness of its public key, there is no scope of breach in security even if adversary

misbehaves in Round 1. We can thus conclude that the simulators Sdm
bw.god.sm and Shm

bw.god.sm

maintain that the adversary’s view in the ideal and real-world is indistinguishable even in the

face of a delayed-semi-malicious adversary.

5.6.5.2 Recalling [115]

We begin with a quick overview of the 4-round Zero-knowledge argument of [115] that compiles

3-round sigma protocols of the following special form: The prover simply relies on commitments

to generate its first round message and decommits to some subset of the commitments depending

on the challenge provided by the verifier. Additionally, special soundness guarantee is needed

(for details refer to [115]). To amplify soundness of this 3-round zero-knowledge argument

system, the entire protocol can be repeated in parallel, where the verifier commits to all the

parallel challenges in a first round of the protocol while decommitting in the third round. To

avoid malleability attacks by corrupt prover (who can use the verifier’s commitment in first

round to change it to another commitment that can be open to a valid accepting response

depending on the decommitment provided by the verifier in the third round), an approach

used is to ask the prover to prove “knowledge” of the messages in its commitment before the

verifier decommits its challenge. This can be achieved via extractable commitment schemes

which is a commitment scheme with ‘proof of knowledge’ property. To design a 4-round ZK

argument system, [115] follow a cut-and-choose paradigm. Their protocol comprises of N

parallel instances of the basic 4-round protocol. In Round 3, the verifier chooses a random

S ⊂ [N ] of some size T and decommits to the challenges made in those indices while providing

a challenge for the extractable commitment for repetitions outside S. Then in Round 4, the

prover will complete the zero-knowledge protocol for the parallel executions with indexes in

S and respond to the proof-of-knowledge challenge for the extractable commitment for the

remaining indexes. This completes the skeleton of the protocol.

We now elaborate on the simulation technicality relevant to us. To prove zero-knowledge, a

simple strategy for the simulator is to obtain the challenge, i.e. “trapdoor” for the indexes in S,

rewind and setup the prover messages in such a way that will allow for it to cheat in all instances
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corresponding to indices in S. Now, the simulator can conclude with an accepting transcript if

the verifier opens the same set S. However, the verifier can choose to reveal different subsets

in different “rewindings”. However, in any rewinding, either the simulator has succeeded in

cheating in all the indexes of the subset revealed by the verifier or has learned a new trapdoor.

The natural simulation strategy is as above i.e the simulator tries to extract trapdoors and

outputs the “first” accepting transcript when it has managed to cheat in all indexes in the

revealed subset. This simple idea however has a subtle flaw. The issue is that one can come

up with a strategy for a malicious verifier where the distribution of the views output by the

simulator is not indistinguishable from the real view. Roughly speaking, the distribution of

the subset S in the transcript output by the simulator will be biased towards indexes revealed

earlier in the rewindings. The main technical contribution of [115] is to determine the “stopping”

condition for the simulator that will result in the right distribution. Let Si denote the subset

output by adversary in iteration i. The work of [115] proves that the following simulation

strategy achieves the goal of maintaining indistinguishability between the view output by the

simulator and the real-world view. In any iteration j, if Sj ⊆ S1 ∪ S2 . . . Sj−1, then halt if

Sj * S1 ∪ Sj−2; else proceed to the next iteration.

Next, we give a brief insight into the proof of indistinguishability between the real and

simulated view as in [115]. Let Szk define the simulator following the simulation strategy

outlined above. The following intermediate hybrids are defined:

H1: In this experiment, the view of the verifier when it interacts with the honest prover with

witness ω is considered.

H2: In this experiment, a simulator S1
zk is defined that proceeds with the rewinding strategy as

simulator Szk does, with the exception that the prover’s messages are generated according

to the honest prover’s strategy. The view output by S1
zk is considered here.

H3: The ideal-world view output by simulator Szk.

Indistinguishability among each pair of hybrids is proven in [115] to complete the indistin-

guishability argument.

In the context of simulation of our 5-Round (god|ua)-BoBW MPC construction πbw.god.plain,

we face a similar scenario as [115] during Stage 2 and Stage 4 rewinds. The set of indices S

is analogous to the set of corrupt parties that are alive. We therefore incorporate the halting

condition of [115] in our simulation strategy.
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5.6.5.3 Security Proof (Theorem 5.12)

Next, we discuss our simulator for the dishonest-majority setting, Sdm
bw.god.plain in Figure 5.13.

Note that Sdm
bw.god.sm ( Figure 5.11) is the underlying semi-malicious simulator which is invoked in

the dishonest majority case. The simulator for honest majority Shm
bw.god.plain is same as Sdm

bw.god.plain

except that s is replaced by t (in the number of iterations in Stage 2,4 of simulation) and the

underlying semi-malicious simulator invoked is Shm
bw.god.sm (Figure 5.12). The major differences

in our simulator as compared to the simulator of [35] are in Stage 2 and Stage 4 to tackle the

challenges that arise due to the required BoBW guarantees.

Let C ⊂ [n] and H = [n] \ C denote the set of indices of s corrupt parties and the indices of honest

parties respectively. The simulation proceeds in stages as follows:

Stage 1: This stage simulates Rounds 1, 2 and 3 of the main thread as follows:

- Invoke Sdm
bw.god.sm to simulate honest parties’ messages corresponding to Round 1 of πbw.god.sm (sent

in Round 1 of πbw.god.plain). Note that Round 1-3 of πbw.god.plain involves only first round of

πbw.god.sm, to simulate which Sdm
bw.god.sm doesn’t need any witness.

- Commitment ci→j is simulated as follows: If Pi is honest, commit to 0 in ci→j , and if Pj is honest,

emulate the receiver of Com honestly.

- Act as the honest receiver of Trap: Upon receiving verification key vkj→i, send a random challenge

message on behalf each honest Pi and receive the corrresponding signature from Pj . Act as

honest sender wrt Trapi→j

- Commit in the first three messages of NMComi→j to a random share s0
i→j .

- Act according to the protocol in the first three messages of WI1i→j (on behalf of honest Pi as

prover), WI1j→i (on behalf of honest Pi as verifier) and similarly, first two messages of WI2i→j ,

WI2j→i.

Stage 2: This stage involves rewinding Rounds 2 and 3 to extract trapdoors. Let Tc, c ∈ C be a

set that contains at most two tuples where each tuple is a set of message-signature pairs for each

honest party i.e. (mh→c, σc→h)h∈H valid with respect to vkc→h. Initialize Tc = ∅. Let T be the set

of corrupt parties {Pi} for which the trapdoor has been obtained i.e. |Ti| = 2.

Let the set of corrupt parties alive after Stage 1 of Sbw.god.plain be A1 and A0 = ∅. For each Pc ∈ A1,

add one tuple to Tc as follows: Tc = Tc ∪ {(mh→c, σc→h)h∈H} where mh→c is Round 2 message sent

by simulator and σc→h is Round 3 message received by simulator on behalf of each honest party

Simulator Sdm
bw.god.plain
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Ph, h ∈ H during Stage 1.

Let the set of corrupt parties alive across ith rewind (iteration) be Ai+1. For iterations ` = 1 to

s+ 1, the simulator proceeds as follows:

- For both Rounds 2 and 3, on behalf of each honest party in H, simulate all the components

Com,Trap,NMCom,WI1,WI2 exactly as in Stage 1.

- Let the set of corrupt parties alive upto Round 3 in this iteration be A′. For each alive party Pc

i.e. Pc ∈ A′, if |Tc| < 2, update Tc as follows: Tc = Tc ∪ {(mh→c, σc→h)h∈H} where mh→c is

Round 2 message sent by simulator and σc→h is Round 3 message received by simulator on

behalf of each honest party Ph, h ∈ H. If |Tc| = 2,T = T ∪ {Pc}.

Consider the exhaustive cases:

Case a. A′ * A1∪· · ·∪A`: This implies that a party became alive for the first time in this iteration

and the simulator does not have his trapdoor required to proceed to the next stage. The

simulator sets A`+1 = A′ and continues to the next iteration. Note that every iteration results

in adding a tuple to Tc for some c such that Pc /∈ T. Hence, at the end of s iterations |Tc| ≥ 1

for each c ∈ C must hold. Therefore, the number of iterations is bounded by (s + 1) since in

that iteration, the simulator will definitely be able to obtain trapdoor wrt all corrupt parties

that are alive (by combining the tuple in Tc with the tuple it obtains in the last iteration

before halting).

Case b. A′ ⊆ A1 ∪ · · · ∪ A` and A′ ⊆ A1 ∪ · · · ∪ A`−1: Ignore this case and rewind again i.e. go to

Step 1. Note that the simulator has enough trapdoors to proceed to the next stage but this

case is still ignored to handle the situation where the adversary can choose the set of alive

parties such that the views in the real and the simulated world become distinguishable.

Case c. A′ ⊆ A1 ∪ · · · ∪ A` and A′ * A1 ∪ · · · ∪ A`−1: This is the halting condition, when the set

of alive parties seen is covered by the set of alive parties seen in the previous ` iterations but

is not covered by the set of alive parties seen in the first ` − 1 iterations. The simulator sets

A`+1 = A′ and proceeds to the next stage.

Stage 3: This stage involves simulation of Round 4 of the main thread using trapdoors as follows:

- Invoke Sdm
bw.god.sm to simulate honest parties’ messages corresponding to Round 2 of πbw.god.sm (sent

in Round 4 of πbw.god.plain)

- Simulate Round 3 messages of WI2i→j and WI2j→i (where Pi is prover and verifier respectively)

honestly as per the protocol.
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- Simulate Round 4 of WI1j→i (on behalf of Pi as verifier) honestly.

- In instances WI1i→j where Pi is an honest prover, do the following: (a) Commit in the last message

of NMComi→j to the random share s0
i→j tossed in Stage 1. (b) Send the other share s1

i→j =

s0
i→j ⊕ tdj→i on clear, where tdj→i comprises of the two message-signature pairs wrt vkj→i

obtained from Tj wrt honest Pi (c) Prove in the last message of WI1i→j the fake statement that

NMComi→j commits to s0
i→j such that, tdj→i = s1

i→j ⊕ s0
i→j is a valid trapdoor w.r.t. vkj→i.

Stage 4: This stage involves rewinding Rounds 3 and 4 to extract input of corrupt parties from

WI1. Let sets Tc, c ∈ C and T be defined as in Stage 2. Let the set of corrupt parties alive after

Stage 3 of Sbw.god.plain be C1 and C0 = ∅. Let the set of corrupt parties alive upto Round 4 of the

ith rewind (iteration) be Ci+1. For iteration ` = 1 to s+ 1, the simulator proceeds as follows:

1. For Round 3, simulate components Trap,NMCom,WI1,WI2 on behalf of each honest party in H

as done in main thread.

2. Let the set of corrupt parties alive in Round 3 be denoted by B. Consider the cases:

Case a. B ⊆ T: This corresponds to the case when the trapdoors collected so far are sufficient

to continue with this iteration. The simulator proceeds to step 3.

Case b. B * T: This corresponds to the case when there exists at least one additional party (say

Pc) that became alive in this iteration for which the simulator does not have the trapdoor.

For each such Pc, update Tc as follows: Tc = Tc ∪{(mh→c, σc→h)h∈H} where mh→c is round

2 message sent by simulator and σc→h is round 3 message received by simulator on behalf

of each honest party Ph, h ∈ H. If |Tc| = 2,T = T ∪ {Pc}. Consider two sub-cases:

Sub-case b1. B ⊆ T: This corresponds to the case when for each Pc, Tc already contained

one message-signature pair and the other message-signature pair collected in this iter-

ation yields trapdoor of Pc i.e. T now includes Pc. Proceed to step 3.

Sub-case b2. B * T: This corresponds to the case when this was the first time Pc was alive

in Round 3 i.e. Tc was initially empty. Hence, the one message-signature pair obtained

in this iteration is not enough to compute the trapdoor and proceed. Re-run Stage 2

and Stage 3.

3. For Round 4, replay honest parties’ message of πbw.god.sm (obtained via Sdm
bw.god.sm in Stage 3) and

simulate the third message of WI2 as in the main thread. Note that we arrive at this step after

making sure that we possess the trapdoors for all the alive parties. Simulate the fourth round of

NMCom and WI1 using the trapdoors in T.

4. Let the set of corrupt parties alive be C′. Consider the exhaustive cases:
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Case a. C′ * C1 ∪ · · · ∪ C`: This implies that a party became alive for the first time and the

simulator can’t extract that party’s witness in this iteration. The simulator sets C`+1 = C′

and continues to the next iteration.

Case b. C′ ⊆ C1 ∪ · · · ∪ C` and C′ ⊆ C1 ∪ · · · ∪ C`−1: Ignore this case and rewind again i.e. go

to step 1. Note that the simulator had enough executions to extract the witness to proceed

to the next stage but this case is still ignored to handle the issue where the adversary can

choose the set of alive parties in a manner that views in the real and the simulated world

become distinguishable.

Case c. C′ ⊆ C1 ∪ · · · ∪ C` and C′ * C1 ∪ · · · ∪ C`−1: This is the halting condition, when the

set of alive parties seen is covered by the set of alive parties seen in the previous ` iterations

but is not covered by the set of alive parties seen in the first `− 1 iterations. The simulator

sets C`+1 = C′. For each corrupt Pj ∈ C`+1, let k < ` be the iteration in which Pj was alive

i.e. Pj ∈ Ck+1. Use iterations k and ` to extract the input, randomness (xj , rj) as done

in [35] i.e from the two accepting transcripts in iterations k, ` that share the same first two

messages of WI1j→i with Pj as prover and Pi as honest verifier. Proceed to next stage.

Stage 5: Using the corrupted parties’ inputs and random tapes {xj , rj} extracted (corresponding

to Pj ∈ C′ i.e corrupt parties who have been alive upto Round 4 in the final iteration of Stage 4),

simulate honest parties’ messages in Round 5 as follows:

- Feed Sdm
bw.god.sm the witness {xj , rj} for Pj ∈ C′ and default values (x′j , r

′
j) for Pj ∈ C \ C′. Use

Sdm
bw.god.sm to simulate the honest parties’ message in the last round.

- In instances WI2i→j where Pi is an honest prover, prove in the last message of WI2i→j the fake

statement that NMComi→j commits to s0
i→j such that, tdj→i = s1

i→j⊕s0
i→j is a valid trapdoor

w.r.t. vkj→i. Simulate WI2j→i with Pi as verifier honestly.

- For each Pj ∈ C′ such that all proofs WI2j→k are accepting for k ∈ [n], send Round 3 message of

πbw.god.sm on behalf of Pj to Sdm
bw.god.sm. If Sdm

bw.god.sm invokes its ideal functionality with abort

(resp., continue), Sbw.god.plain invokes its ideal functionality Fua with abort (resp., continue).

Figure 5.13: Description of simulator Sdm
bw.god.plain

We argue that idealFua,Sdm
bw.god.plain

c
≈ realπbw.god.plain,A when the malicious adversary A corrupts

s < n parties. We also need to prove that the simulator runs in expected polynomial time.

Consider the following series of intermediate hybrids, most of which are similar to the series

of hybrids in [35]. While most of the security arguments follow from [35] and [115], the crux

of our proof lies in Claim 5.8. This claim argues that inspite of our modification in Stage 4

simulation where we re-run Stage 2 onwards in some cases, the simulator continues to run in
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expected polynomial time as the number of re-runs occur only a fixed constant number of times

in the worst case.

- hyb0: Same as realπbw.god.plain,A.

- hyb1: Same as hyb0, except that after generating the first 3 messages, Round 2 and 3

are rewound for extraction of trapdoors according to the Stage 2 simulation strategy in

Figure 5.13 (with the difference that the components Com,NMCom,WI1,WI2 are done on

honest inputs).

- hyb2: Same as hyb1 except that in Round 4 of the main thread, for every honest party

Ph and every alive corrupt party Pc, share s1
h→c is set to s0

h→c ⊕ tdc→h where tdc→h is the

trapdoor w.r.t. vkc→h.

- hyb3: Same as hyb2 except that in WI1 and WI2 of the main thread, for every honest

party Ph as a prover and every alive corrupt party Pc as verifier, Ph proves the cheating

statement that NMComh→c commits to s0
h→c such that s0

h→c ⊕ s1
h→c = tdc→h which is a

valid trapdoor w.r.t. vkc→h.

- hyb4: Same as hyb3 except that after generating Round 4 message, Round 3 and 4 are

rewound for extraction of witness from WI1 according to the Stage 4 simulation strategy

in Figure 5.13 (with the difference that the Com and messages of the underlying delayed

semi-malicious protocol are done on honest inputs and randomness).

- hyb5: Same as hyb4 except that every honest party Ph commits to 0 in ch→i (i 6= h).

- hyb6: Same as hyb5 except that the messages of underlying delayed-semi-malicious pro-

tocol πbw.god.sm are simulated using Sdm
bw.god.sm.

Note that hyb6 := idealFua,Sdm
bw.god.plain

. To complete the proof for s corruptions, we prove two

things for each hybrid: a) it runs in expected polynomial time b) it is indistinguishable from

the previous hybrid in the sequence. Proving a) for the last hybrid implies that the simulator

also runs in expected polynomial time.

Claim 5.1 hyb0
c
≈ hyb1

Proof: First, we note that the components of the compiler are run in an identical manner

in both hyb0 and hyb1. To argue indistinguishability, we need to prove the following: the

distribution on the set of corrupt parties that are alive in the view output by the simulation
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strategy of Stage 2 when run with honest inputs, is identical to the same distribution in the

real-world execution of the protocol. The argument follows similar to Claim 3.2 of [115] (which

proves indistinguishability of H1 and H2 as defined in Section 5.6.5.2). 2

Claim 5.2 hyb1 runs in expected polynomial time.

Proof: To argue that hyb1 runs in polynomial time, we need to prove that the simulation

strategy of Stage 2 (run with honest inputs) is such that the expected running time of the

iterations / rewinds (that are executed till the halting condition is satisfied) is polynomial. The

proof follows from the argument of Claim 3.4 of [115] (which argues that the expected running

time of S1
zk as defined in Section 5.6.5.2 is polynomial).

2

Claim 5.3 hyb1
c
≈ hyb2

Proof: The argument follows directly from the proof of Claim 10.11 in [35] (via reduction to

hiding of NMCom). 2

Claim 5.4 hyb2 runs in expected polynomial time.

Proof: Same as proof of Claim 10.10 in [35]. 2

Claim 5.5 hyb2
c
≈ hyb3

Proof: The argument follows directly from the proof of Claim 10.14 in [35] (via reduction to

witness indistinguishability property of the WI proofs). 2

Claim 5.6 hyb3 runs in expected polynomial time.

Proof: Same as proof of Claim 10.13 in [35]. 2

Claim 5.7 hyb3
c
≈ hyb4

Proof: The difference between hyb3 and hyb4 is that hyb4 has an additional set of rewinds

according to the simulator’s strategy in Stage 4 (except that it is run with honest inputs). The

proof of this claim is similar to argument in Claim 5.1. The only difference is that the rewinds

in Stage 4 may involve reverting to Stage 2 rewinds in certain cases. However, this does not

interfere with the indistinguishability argument as it suffices to argue that the final view output

by the simulation strategy in Stage 4 (after possibly reverting and restarting from Stage 2 until

a point when Stage 4 is simulated without any callbacks to Stage 2) is indistinguishable to the

view in hyb3. 2
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Claim 5.8 hyb4 runs in expected polynomial time.

Proof: Firstly, we note that Stage 4 rewinds in hyb4 have additional possible calls to Stage

2 rewinds. Barring those calls, the Stage 4 rewinds are similar to Stage 2; hence they take

expected polynomial time as argued in Claim 5.2. Also, individually each additional Stage 2

call takes expected polynomial time as discussed in the run-time of hyb1. We can thus conclude

that if the number of possible Stage 2 calls is bounded by a constant (predefined parameter

of the protocol), then Claim 5.8 is automatically implied. We analyze the number of calls to

Stage 2 below.

Recall that Stage 2 rewinds can be called internally from an iteration of Stage 4 in the

following condition con: a party (say Pi) whose trapdoor is not known i.e. Pi /∈ T becomes

alive in Round 3 of that iteration. The simulator first adds the pair (mi, σi) obtained w.r.t. Pi

to Ti. He still could be at most one pair away from obtaining his trapdoor which is the case

when the Stage 2 rewinds are actually called. Observe that the Stage 2 rewinds are never called

again w.r.t Pi because the mere occurrence of condition con is sufficient to serve another (mi, σi)

pair to the simulator and 2 such pairs are enough to compose the trapdoor of Pi. Hence, the

upper bound on the number of additional Stage 2 calls per corrupt party is 1. Since there are

at most s corrupt parties, this bounds the number of additional calls to s; hence completing

the proof. 2

Claim 5.9 hyb4
c
≈ hyb5

Proof: The difference between hyb4 and hyb5 is that while Com with honest party as

committer is run with respect to honest party’s input (and randomness) in the former, the

latter involves commitment to 0 in the main thread and all the rewinds. The claim can be

proven similar to Claim 3.6 of [115] (that argues indistinguishability between H2 and H3 as

defined in Section 5.6.5.2) - Let there exist a polynomial p(n) such that for infinitely many n′s,

hyb4 and hyb5 can be distinguished with probability 1
p(n)

. Consider the truncated experiments

hyb4 and hyb5 which proceed exactly as hyb4 and hyb5 respectively with the exception that

the simulation is aborted if it runs more than np(n)t(n) steps where t(n) is the polynomial

that bounds the expected run-time of hyb4. By an averaging argument (similar to [115]), it is

possible to distinguish hyb4 and hyb5 with probability at least 1
2p(n)

.

Similar to [115], we consider a series of intermediate hybrids hyb0
4, . . . ,hyb

s
4 where in each

hybrid hyb`4, the strategy of hyb5 (i.e. commit to 0 in Com) is followed in first ` iterations of

the Stage 2 rewinds and the strategy of hyb4 (i.e. commit to honest input and randomness

in Com) is followed in the remaining iterations. Also if hyb`4 runs over np(n)t(n) steps, the
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simulator outputs ⊥. Note that hyb0
4 = hyb4 and hybs4 = hyb5. If hyb4 and hyb5 are

distinguishable by probability 1
2p(n)

, then there exists an index i such that hybi4 and hybi+1
4 are

distinguishable by probability 1
2np(n)

(taking upper bound on s to be n). Now, the distinguisher

used to distinguish between hybi4 and hybi+1
4 can be used to break the hiding property of Com

(argument similar to Claim 10.20 in [35]). 2

Claim 5.10 hyb5 runs in expected polynomial time.

Proof: The only difference between hyb4 and hyb5 is in the value committed in Com, which

does not change the run-time. Hence the proof follows from the claim discussing the run-time

of hyb4. 2

Claim 5.11 hyb5
c
≈ hyb6

Proof: The argument for the claim follows similar to the argument in Claim 5.9. We consider a

similar series of sub-hybrids and argue that indistinguishability of hyb5 and hyb6 boils down to

the indistinguishability between a consecutive pair of sub-hybrids. Now, the indistinguishability

of a consecutive pair of sub-hybrids follows from the security of the delayed semi-malicious

simulator Sdm
bw.god.sm (similar to Claim 10.23 in [35]). 2

Claim 5.12 hyb6 runs in expected polynomial time.

Proof: The only difference between hyb5 and hyb6 is in the way the messages of πbw.god.sm

are generated. Hence the proof follows from the claim discussing the run-time of hyb5 and the

knowledge that Sdm
bw.god.sm runs in expected polynomial time. 2

5.7 Appendix: MPC with ua security

In this section, we discuss in detail how to augment the security of the existing 4-round MPC

protocols of [113, 15, 60] from sa to ua.

5.7.1 Boosting security of [113] to ua

This section is organised as follows: After a brief informal overview of the protocol of [113], we

first highlight the manner in which the adversary could disrupt unanimity and our proposed

fixes to tackle the issues. Next, for the sake of completeness, we recall the original protocol of

[113]. Lastly, we present the modified protocol that incorporates the fixes and achieves ua.
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5.7.1.1 Issues in boosting security of [113] to ua

We begin with a high-level sketch of the protocol of [113]. The Boolean circuit, corresponding

to the function f to be computed, is first made resilient to additive attacks by applying the

AMD transformations of [97, 98] and then the BMR randomized encoding [19] is applied on the

transformed function. As per BMR encoding, each party Pi (i ∈ [n]) picks two keys kiw,0, k
i
w,1

and a bit λiw for every wire w, the latter as its contribution to a mask bit λw for w. The

garbled table of each 2-input gate g with inputs wires a, b and output c comprises of 4 rows (for

the 4 input combinations). The (α, β)th row of a NAND gate consists of n ciphertexts, where

the ith ciphertext encrypts the bth
α,β output key from Pi’s contribution on wire c, namely kic,bα,β

where bα,β = NAND(λa ⊕ α, λb ⊕ β) ⊕ λc = [(λa ⊕ α)(̇λb ⊕ β) ⊕ 1] ⊕ λc. This clever encoding

enables evaluating the circuit in masked form where the actual bits blinded with corresponding

mask (λ) bits alone get published. Starting with input bits blinded with their masks, these

garbled tables enable to compute blinded output bits. Specifically, the keys corresponding to

the masked bits for the input wires a, b of a gate are used to decrypt the relevant n keys for

the output wire, namely kic,δc , where δc denotes the masked bit on the output wire c. Each

Pi deduces the value of δc by comparing the key obtained from decryption of ith ciphertext

with its pair of keys (kic,0, k
i
c,1). For the output gates, the mask value λ is given out as output

translation table to recover the actual output.

Notably, the BMR encoding i.e. every ciphertext in the garbled tables represents a degree-

3 monomial over parties’ random inputs. To compute the monomials, [113] gives a 3-round

protocol πpoly (building upon the 3-bit multiplication protocol of [3]) against “defensible” ad-

versary (i.e adversary volunteers a defense or explanation of its actions so far, consisting of

some inputs and randomness at the end of Round 3). The protocol ends with every party

having an XOR-share of the encoding (every ciphertext of the garbled tables), XOR-share of

the output translation tables and the masked input bits. Now, to compile this defensible proto-

col to a malicious one, 2-round witness indistinguishable proofs (derived from ZAPs) are used

whose “witness” would act as the “defense”. Once all the actions upto Round 3 are verified

via ZAPs, all parties broadcast their respective shares in Round 4 to reconstruct the garbled

tables, which can now be locally evaluated and decoded (using BMR decoding first and AMD

decoding subsequently) to obtain the output. Note that there is no proof of correctness for

Round 4, meaning that the adversary A can modify the output translation tables, arbitrarily

making the honest parties output the wrong answer. This is tackled by taking additionally

as input a MAC key, say Ki, from each party Pi, and augmenting the output of the MPC to

include the authentication of the function output y under each of the parties’ keys. In more
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detail, {y, t1 . . . tn} denotes the output received by each party at the end of the protocol where

ti = MAC(Ki, y) for i ∈ [n]. Now, an honest party Pi would accept the output only if ti validates

y as per its private MAC key Ki. The privacy of Ki for an honest Pi, makes it hard for the

adversary to change y and match it with a valid ti.

Another technicality arises, as the ZAPs in [113] fall short of guarding against an adversary

that can lead to encryption of bit-strings in the garbled table that are not entirely the relevant

output wire keys, but rather mix of bits from both keys. This would help the adversary learn

some bits of the other key after decoding. This leakage is controlled via a slight variant of BMR

encoding where the garbled tables encrypt random values unrelated to the actual keys for the

wires and the keys are given out in a blinded format using blinders derived from the random

values operated with pairwise independent hash functions. Now, even if the adversary learns

some bit of the other random value, the left-over hash lemma ensures that the other blinder is

still random, guarding the privacy of the other key. This completes the high-level description

of the protocol.

There are two ways the adversary can disrupt unanimity of [113], that stem from the specifics

of BMR encoding and decoding. To present these issues comprehensively, we abstract out the

BMR encoding and decoding in Figure 5.14 and the backbone protocol of [113] in Figure 5.15,

stripping the ZAPs and other related details. We describe the issues and elaborate the solutions

below.

Issue I: Selective manipulation of the output and MAC. Though the MAC mechanism

on the output y keeps the sanity of y, the dedicated and independent MAC for every party

Pi makes it easy for an adversary to selectively tweak some MACs and create disagreement.

A corrupt Pj, by broadcasting a modified share of the output translation table λjw for an

output wire w during Round 4, can make sure that AMD-encoding of (y, t1, . . . , t
′
i, . . . , tn) is

reconstructed, where t′i is the only tampered MAC. Now an honest Pi output ⊥, while the rest

output y leading to a disagreeing honest population.

Unanimity in this case is enforced by making C output y that is authenticated using the

authentication with public verifiability introduced in Section 5.3.1. Specifically, the additional

private input to C on behalf of Pi is now the verification information vi, which is a pair of

uniformly-picked from F secret points (Ki, yi) (see Definition 5.1). The output of C is a(x)

where a(x) is the n-degree MAC polynomial with a(0) = y and a(Ki) = yi for i ∈ [n]. An A

trying to change the output to the AMD-encoding of a∗(x) 6= a(x) would be detected by each

honest Pi except with negligible probability since vi is unknown to him.

Lemma 5.8 When y is authenticated using the above form of authentication, all the parties
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either output y or ⊥, except with probability at most n
|F|−1

.

Proof: Assuming H is the set of honest parties, the adversary can make the honest parties

disagree by guessing one of the keys K of the honest parties so that it helps reconstruct a∗(x) 6=
a(x) that verifies to only the honest party holding the guessed K value. The probability of the

above event is |H|
|F|−1

< n
|F|−1

. With F = GF (2κ), the above probability is negligible in κ. 2

Issue II: Selective manipulation of the garbled tables. Recall from the protocol overview

of [113] that each row of a garbled table consists of n ciphertexts, the ith one decrypting to

a key on the output wire contributed by Pi. During decoding, this decrypted key enables Pi

to deduce the masked bit on the output wire. An A can break unanimity of the protocol of

[113] by tweaking the ith ciphertext alone in all the rows for a gate (say with output wire ‘c’)

for some i so that Pi’s decrypted key k
j

c from ith ciphertext does not match with either key

of the pair (kic,0, k
i
c,1). Now Pi cannot deduce the masked output bit δc, while all other honest

parties can. This does not disrupt unanimity for the case when c is not an output wire of the

circuit. Because the incorrect k
j

c received by all parties would be used to unmask each of the

n ciphertexts of the row corresponding to the gate h where c is an input wire. The decryption

would lead to arbitrary values of keys corresponding to all parties for the output wire of h.

Since these arbitrary values would not match to the key pairs for all the parties, all honest

parties would abort; preserving unanimity.

However, this would be a problem in the case of output gates i.e if c was an output wire of

the circuit. To handle this issue, every Pi is additionally made to broadcast its respective pair

of keys (kiw,0, k
i
w,1), as a part of output translation table along with their share of mask bits λiw,

just for the output wires in Round 4. While processing the output gate, an honest party Pi

would not only compare the key obtained upon decryption of the ith ciphertext with its pair

of keys, but checks all the keys corresponding to all the ciphertexts with the keys broadcast in

Round 4. Pi outputs non-⊥ only if all the keys are consistent with a common δc. We point

that there is no privacy breach since both keys of an honest party is accessible to A only for

the output wires. Finally, we also comment that a rushing A who now knows the pair of

output keys belonging to honest parties can manipulate the ciphertext in such a manner that

it decrypts to the flipped value i.e say ki
c,δc

instead of kic,δc for all i ∈ [n]. While this would lead

to honest parties deducing the wrong value of δc and thus potentially a wrong output, this kind

of manipulation of output is already taken care by authentication of the output with public

verifiability as detailed in the previous issue.

Lastly, we point that in order to preserve unanimity in scenarios where a corrupt party Pi

uses the correct witness in ZAPij but not in ZAPik; the honest parties check all pairwise ZAP
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proofs (facilitated by public-coin property of ZAPs) and abort if any of them fail.

5.7.1.2 Recalling the protocol of [113]

We next present BMR Encoding, Decoding and the back-bone protocol of [113] in Figure 5.14

and Figure 5.15 respectively.

BMR.Encode

Notations: A Boolean circuit C with W as the number of wires and G as the number of NAND

gates (w.l.o.g, assume C to consist of only NAND gates). Let PRF be a pseudo-random

function with 4κ-bit output size.

Input: Each party Pi chooses randomness Ri = {λiw, kiw,0, kiw,1,mi
w,0,m

i
w,1, h

i
w,0, h

i
w,1}w∈[W ] where

λiw is the bit contribution of Pi for the mask of wire w, (kiw,0, k
i
w,1) is the κ-bit PRF key-pair

contributed by Pi for wire w, (mi
w,0,m

i
w,1) is the 4κ-bit mask-pair contributed by Pi for the

key-pair (kiw,0, k
i
w,1) of wire w, and hiw,b is a hash function from a pairwise-independent family

from 4κ to κ bits.

Output: The mask bit for a wire w is computed as: λw = λ1
w⊕· · ·⊕λnw if w is not an input wire, else

λw = λjw where w is Pj ’s input wire. Following are the outputs for j ∈ [n], w ∈ [W ], g ∈ [G]

such that a, b and c are the input and output wires respectively for gate g:

- Garbled tables: (Cg,jα,β)α,β∈{0,1}, with the ciphertext Cg,jα,β hiding the maskmg,j
α,β corresponding

to the correct output key kjw,bα,β , instead of the key itself. mg,j
α,β and Cg,jα,β are computed

as:

bgα,β = NAND(λa ⊕ α, λb ⊕ β)⊕ λc = [(λa ⊕ α)(̇λb ⊕ β)⊕ 1]⊕ λc
Cg,jαβ =

(⊕
i∈[n] PRFika,α(g, j, α, β)

)
⊕
(⊕

i∈[n] PRFkib,β
(g, j, α, β)

)
⊕
(
mj
c,0 ⊕ b

g
α,β (̇mj

c,0 ⊕

mj
c,1)
)

(note that, this value is represented as degree-3 monomial)

- Masked keys: (hjw,b, τ
j
w,b = hjw,b(m

j
w,b)⊕ k

j
w,b)b∈{0,1}

- Keys and masks for input wires w: δw = λw ⊕ xw, k1
w,δw

. . . knw,δw

- Output translation table for output wires w: λw

BMR.Decode

Input: Garbled table C?,??,? , keys kjw,δw for every input wire w and output translation table λw.

BMR.Encode & BMR.Decode
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Computation: For gate g (obtained according to topological ordering) with input wires a, b and

output wire c, each Pi computes for j ∈ [n]: mj
c = Cg,jδa,δb ⊕

⊕
i∈[n]

(
PRFkia,δa

(g, j, δa, δb) ⊕
PRFkib,δb

(g, j, δa, δb)
)
. Let δc be the bit for which mi

c = mi
c,δc

. Set kjc,δc := τ jc,δc ⊕ h
j
c,δc

(mj
c).

Output: After obtaining δw for every output wire w, compute the output value as δw ⊕ λw

Figure 5.14: BMR Encoding and Decoding of [113]

Inputs: Party Pi has xi for i ∈ [n].

Output: y = f(x1, . . . , xn) or ⊥

Primitives: AMD code (Encode,Decode), Information-theoretic MAC MAC

Subprotocol: 3-round protocol π3bitmult securely computing any degree-3 polynomial against “de-

fensible” adversary (i.e adversary volunteers a defense (explanation) of its actions until the

end of Round 3)

Preprocessing in the start of Round 1: Each Pi does the following -

- Chooses a random MAC key Ki and sets x′i = Encode(xi,Ki).

- Choose randomness Ri for BMR encoding as per Figure 5.14 for a circuit C defined as follows. Let

C ′ be the circuit that takes input (xi,Ki) from every party Pi and returns y = f(x1, . . . , xn)

and MACs (t1 . . . tn) for y with respect to Ki to every Pi. Then C is the AMD-transformed

version of C ′ that takes AMD-encoding of the input of C ′ and returns AMD-encoding of the

output of C ′. Let Seti denote the set of 3-degree monomials to be computed as a part of the

BMR encoding. These monomials constitute the ciphertexts Cg,jα,β as per Figure 5.14.

Rounds 1-3:

- Run π3bitmult to obtain XOR shares of the monomials in Seti.

- Each Pi broadcasts δw = λw⊕xw where w is an input wire that belongs to Pi. Note that for input

wires, the party that owns the wire chooses the entire λw.

Round 4: Each party Pi broadcasts its part of the output of BMR.Encode in Round 4 as follows:

- Share of Garbled tables: Pi’s share of cg,jα,β for all gate g ∈ [G], rows (α, β) ∈ {0, 1}2 and j ∈ [n].

- Masked key values for all its key contributions: {hiw,b, τ iw,b}b∈{0,1},w∈[W ]

- Keys for all its input wires w: kjw,δw

Protocol πbackbone.sa
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- Share of output translation table for output wires w: λiw

Output Computation: Pi computes the output as follows: reconstruct the garbled table and out-

put translation table by XORing the shares obtained in Round 4 and run BMR Decoding Algorithm

(Figure 5.14) to obtain AMD-encoded output Y . Obtain the output (y, t1 . . . tn) after applying AMD

decoding Decode on Y . Output y if ti validates y as per key Ki, else ⊥.

Figure 5.15: The back-bone [113] protocol

5.7.1.3 Protocol achieving ua

We present the final protocol with unanimous abort in two steps. First, we modify the foun-

dation protocol πbackbone.sa to πbackbone.ua in Figure 5.16 to reflect the changes needed to tackle

the issues arising from BMR encoding and decoding. Next we attach the ZAPs and related

primitives as in [113].

Inputs: Party Pi has xi for i ∈ [n].

Output: y = f(x1, . . . , xn) or ⊥

Primitives: AMD code (Encode,Decode), Authentication with Public Verifiability

Subprotocol: Same as in πbackbone.sa.

Preprocessing: Each Pi does the following:

- Chooses two random secret points Ki, yi and sets x′i = Encode(xi,Ki, yi).

- Choose randomness Ri for BMR encoding as per Figure 5.14 for a circuit C defined as follows: let

C ′ be the circuit that takes input (xi,Ki, yi) from every party Pi and returns y = f(x1, . . . , xn)

and n-degree MAC polynomial a(x) with a(0) = y and a(Ki) = yi with respect to verification

information (Ki, yi) chosen by every Pi. Then C is the AMD-transformed version of C ′ that

takes AMD-encoding of the input of C ′ and returns AMD-encoding of the output of C ′.

Rounds 1-3: Same as πbackbone.sa.

Round 4: Same as πbackbone.sa. In addition, every Pi broadcasts (kiw,0, k
i
w,1) as a share of output

translation table for every output wire w.

Output Computation: Pi computes the output as follows: reconstruct the garbled table and out-

put translation table by XORing the shares obtained in Round 4 and run BMR Decoding Algorithm

Protocol πbackbone.ua
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(Figure 5.14) to obtain AMD-encoded output Y . Obtain the output (y∗, a∗(x)) after applying AMD

decoding Decode on Y . Each Pi(i ∈ [n]) outputs ⊥ if any of the following is true:

- If a∗(Ki) 6= yi.

- If there exist pairs a, b ∈ [n] such that δaw 6= δbw, where δaw (similarly b) be the bit for which the key

obtained after decrypting (and subsequently unmasking) the ath (similarly bth) ciphertext i.e.

kaw matches with kaw,δaw (similarly kbw matches with kb
w,δbw

). This check is done for every output

wire w.

Figure 5.16: The back-bone protocol for MPC with ua

The intuition for using the ZAPs in [113] is given below. We emphasize that we retain these

proofs in their original form and just recall from [113] for comprehensiveness. The foundation

of their actively secure protocol, namely πbackbone.sa, is secure against a “defensible” adversary

which uses a 3-bit multiplication protocol π3bitmult to compute BMR Encoded garbled tables.

To keep the attacks by malicious adversary in check, the following tools are used: (1) A 3-round

weak one-many non-malleable commitment scheme, nmcom = (nmcom[1], nmcom[2], nmcom[3])

([111]). This is used to commit to the parties’ inputs and randomness in πbackbone.sa. (2) A

2-round resettable reusable witness indistinguishable proof, ZAP = (ZAP[1],ZAP[2]) ([81]).

This is used to prove the “correct behaviour” by parties in πbackbone.sa so that the attacks by a

malicious adversary can be essentially narrowed down to what a defensible adversary can do.

In more detail, the first set of ZAPs, ZAP1
ij is run between each party pair (Pi and Pj) in the

first two rounds to prove the correctness of the parties’ actions in Round 1 of πbackbone.sa; and

the second set of ZAPs, ZAP2
ij is run to prove that nmcom (run in Rounds 1-3) commits to a

valid witness i.e. input and randomness conforming to the parties’ actions in Rounds 1-3 of

πbackbone.sa. Once both the ZAP proofs verify for a particular party (which translates to the

adversay having given a valid “defense” at the end of Round 3 of πbackbone.sa), it can send the

shares of the BMR encoding, the masked input keys and the output translation tables in Round

4 to enable BMR decoding and hence, computation of the output.

The modified protocol πua which provides security with ua uses πbackbone.ua as the foundation

protocol. The additional primitives of nmcom and ZAPs strapped to πbackbone.sa in [113] to

achieve security against malicious adversaries are appended to πbackbone.ua in the exact same

way with one extra abort condition: party Pj aborts in Round 3 if any pairwise ZAP ZAP1
jk or

ZAP2
jk (j, k ∈ [n]) fails. The formal description of the modified protocol appears in Figure 5.17.
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Inputs: Party Pi has xi for i ∈ [n].

Output: y = f(x1, . . . , xn) or ⊥

Primitives: 3-round non-malleable commitment scheme nmcom with round-wise messages (nmcom

[1], nmcom[2], nmcom[3]), 2-round resettable reusable witness indistinguishable proof ZAP with

round-wise messages (ZAP[1],ZAP[2]), AMD code (Encode,Decode).

Subprotocol: πbackbone.ua (Figure 5.16).

Preprocessing: Same as protocol πbackbone.ua.

Round 1: Each Pi (i ∈ [n]) does the following steps:

- Run Round 1 of πbackbone.ua.

- Engage in two instances of nmcom– nmcom0
ij and nmcom1

ij with every other party Pj , com-

mitting to arbitrarily chosen values w0,i, w1,i. Let nmcom0
ij [1], nmcom1

ij [1] denote the

corresponding messages.

- Engage in an instance of ZAP– ZAP1
ij with every other party Pj by sending ZAP1

ij [1].

Round 2: Each Pi (i ∈ [n]) does the following steps:

- Run Round 2 of πbackbone.ua.

- Send Round 2 messages of nmcom instances, namely nmcom0
ij [2], nmcom1

ij [2].

- Engage in an instance of ZAP– ZAP2
ij with every other party Pj by sending ZAP2

ij [1].

- Send Round 2 messages of ZAP1
ij , namely ZAP1

ij [2] to prove correctness of actions in Round

1 of π3bitmult.

Round 3: Each Pi (i ∈ [n]) does the following steps:

- Run Round 3 of πbackbone.ua.

- Send Round 3 messages of nmcom instances, namely nmcom0
ij [3], nmcom1

ij [3].

- Choose w̃0,i, w̃1,i such that w̃0,i + w0,i = w̃1,i + w1,i = witi where witi is the witness cor-

responding to the proof of correctness of Pi’s actions during π3bitmult with respect to

all monomials in Seti and one instance of nmcom (nmcom0
ij or nmcom1

ij for each j).

Broadcast w̃0,i, w̃1,i.

Protocol πua
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- Send Round 2 message of ZAP2
ij , namely ZAP2

ij [2] to prove that at least one of nmcom0
i,j or

nmcom1
i,j is a valid commitment to a valid witness. Namely, for some b ∈ {0, 1}, nmcomb

i,j

is a valid commitment to wb,i such that wb,i + w̃b,i is a valid witness proving correctness

of actions of Pi.

- Abort if any pairwise ZAP fails. Public verifiability of the ZAPs enables everyone to agree

on this.

Round 4: Each Pi (i ∈ [n]) does the following steps:

- Run Round 4 of πbackbone.ua.

Output Computation: Same as πbackbone.ua.

Figure 5.17: Modified Protocol of [113]

5.7.2 Boosting security of [15, 60] to ua

We begin a high-level overview of the compiler presented in the work of [15] which can be

used for “compiling” any 3-round semi-malicious MPC protocol (with first round being public-

coin) into a 4-round MPC protocol achieving sa against dishonest majority. The primary tools

used in the compiler are a non-interactive commitment NCom, three-message delayed-input

distributional weak zero-knowledge argument system WZK, three-message delayed-input ex-

tractable commitment scheme Ecom, three-message trapdoor generation protocol TDGen, three-

message delayed-input witness-indistinguishable argument system WI, a three round delayed-

input witness-indistinguishable argument with non-adaptive bounded rewinding security RWI

and three-message non-malleable commitment scheme NMComn.

The skeleton of the 4-round protocol πmal compiling the underlying 3-round semi-malicious

protocol, say πsm, is as follows: The rounds 1, 2 and 3 of πsm are run during Rounds 1, 3 and 4 of

πmal respectively. Each party Pi participates in the 3-round subprotocols Ecom, NMComn and

TDGen in Round 1 - 3 of πmal; where Ecom and NMComn are used to compute commitments on

(xi, ri) i.e the input and randomness used in the protocol and ⊥ respectively. In parallel, each

Pi computes a non-interactive commitment nci to value 1 using NCom and proves via WZK run

in Rounds 1 - 3 that nci is indeed a commitment to 1. Furthermore, RWI, run in Rounds 1 - 3

between every pair of parties, is used by each Pi (prover) to prove towards verifier Pj (j 6= i)

that Round 2 message of πsm (sent during Round 3 of πmal) was honestly computed based on

(xi, ri) committed in its instance of Ecom and the Round 1 transcript of πsm. The alternative

statements for RWI that are used for simulation purpose include commitment to valid trapdoor

using NMCom and nc being a commitment to 0. Lastly, the 3-round WI, run in Rounds 1, 2 and
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4 between every pair of parties, is used as means for each Pi (prover) to prove towards verifier

Pj (j 6= i) that Round 3 message of πsm (sent during Round 4 of πmal) was honestly computed

based on (xi, ri) committed in its instance of Ecom and the Round 2 transcript of πsm. The

alternative statement for WI used for simulation includes commitment to valid trapdoor using

NMCom. This completes the high-level overview of the compiler focusing on just the relevant

details.

The above described 4-round protocol πmal achieves only security with selective abort as

the RWI,WI and WZK proofs are executed pairwise and allow a corrupt party to selectively

misbehave to a subset of honest parties; thereby keeping them on different pages. To boost

its security to ua, we propose the following modifications: First, if an honest party acting as

a verifier in WZK or RWI detects that any of the proofs have failed at the end of Round 3,

she broadcasts abort in Round 4. If any of the parties broadcast abort, all honest parties

simply output ⊥. This tweak would ensure that even private misbehaviour by an adversary

upto Round 3 is made public to all by Round 4, enabling unanimity. Finally, in order to

maintain unanimity at the end of Round 4, we make all parties check each of the public-coin

pairwise witness-indistinguishable instances (WI) (instantiated with [142]) completing in Round

4 and abort if any of them failed (as opposed to only the pairwise WI instances where the party

acts as verifier). Thus, the above mentioned modifications incorporated in the protocol of [15]

produces a 4-round protocol achieving ua in dishonest majority.

Boosting security to identifiable abort. We observe that the security of the (modified)

protocol of [15] can be boosted to identifiable abort upon applying the following tweaks: First,

as described above, the actions of the parties are made publicly verifiable by making all parties

check each of the pairwise public-coin witness-indistinguishable proofs (as opposed to only the

ones where the party acts as verifier). Next, the private misbehavior in the 3-round weak

zero-knowledge (WZK) can be made public by allowing the verifier of the WZK to publish the

randomness used in the WZK in the last round (after the WZK instance has been completed).

Lastly, we point that the techniques of boosting security of [15] to ua, namely making

private misbehaviour upto Round 3 public by broadcasting abort in Round 4 and making all

the parties check each of the pairwise WI proofs (completing in Round 4) can be used to boost

the security of [60] to ua as well.
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5.8 Appendix: Towards obtaining a 4-round (god|ua)-BoBW

protocol

In this section, we present the sketch of a 4-round (god|ua)-BoBW protocol based on sub-

exponentially secure trapdoor permutations and ZAPs. We believe that these preliminary ideas

are promising to either prove the impossibility or build a construction of a 4-round (god|ua)-

BoBW protocol in the plain model under polynomial-time assumptions.

Firstly, we note that in order to compile our delayed-semi-maliciously secure (god|ua)-BoBW

to the malicious setting, the honest parties must unanimously agree on the identity of the parties

who have misbehaved till the penultimate round. To achieve the optimal round complexity of

4, this would demand a 3-round publicly verifiable proof that would prove correctness of the

actions upto the penultimate round. Thus, the absence of a 3-round zero-knowledge (ZK) proof

seems to constitute the primary bottleneck in building a 4-round maliciously-secure (god|ua)-

BoBW in the plain model. Since the existing compilers achieving security with abort within 4

rounds based on polynomial-time assumptions such as [15, 60] (which rely on weakened notion

of zero-knowledge, namely promise ZK) do not have the feature of public verifiability at the

end of Round 3, we build upon the compiler of [64] based on sub-exponentially secure trapdoor

permutations and ZAPs, which offers this property.

The structure of the compiler of [64] that compiles a 3-round delayed semi-malicious proto-

col, say πdsm to a 4-round malicious protocol, say πmal is as follows: Each party commits to her

input in Round 1 of πmal using a non-interactive commitment scheme. The 3 rounds of πdsm are

executed in Rounds 2- 4 of πmal. To prove correctness of first two rounds of πdsm, the parties

commit to their randomness and input (which represent a defence for πdsm) using a special non-

malleable commitment scheme (satisfying additional properties of honest-extractable, delayed-

input, reusable decommitment information and last-message psuedorandomness; refer [64] for

details), and prove via ZAP (in Rounds 2 - 3) that this commitment actually contains a valid

defence. Next, the parties engage in a 4-round delayed-input Non-Malleable Zero-Knowledge

(NMZK) argument to prove correctness of Round 3 of πdsm (wrt the defence committed in

the non-malleable commitment scheme and the non-interactive commitment). There are two

additional components to aid the simulator– First, a 3-round witness-indistinguishable proof

of knowledge (WIPoK) between every pair of parties where each party proves to the other the

knowledge of a secret information (specifically knowledge of a value y such that f(y) = Y0

or f(y) = Y1, given that f is a one-way permutation where (Y0, Y1) is chosen by the prover).

Second, another special non-malleable commitment of a random string. To be more specific,

simulator acting on behalf of honest Pi extracts the trapdoor (the preimage y of the OWP)
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from the WIPoK instance with corrupt Pj as the prover. Next, the simulator commits to this

trapdoor using the special non-malleable commitment scheme, which will be used as witness for

the ZAP (with Pi as prover and corrupt Pj as verifier). This completes the high-level description

of the protocol.

To construct the 4-round (god|ua)-BoBW in the plain model, we plug in our 3-round delayed

semi-malicious BoBW protocol in the above compiler. Similar to our modifications over the

compiler of [35], parties are made to set the boolean indicators flagi to 0 if malicious behavior of

Pi is detected in the first three rounds. It is easy to check that all parties agree on the flag values

as the components of the compiler upto Round 3 including the ZAP are publicly verifiable. With

the above change, the BoBW guarantees of the underlying delayed semi-malicious protocols are

translated to the malicious setting as well. To avoid rewinding of messages in the underlying

delayed semi-malicious protocol, we run the 3-rounds of our delayed semi-malicious protocol

in Round 1, 2 and 4 of the 4-round compiled maliciously secure protocol. This completes the

sketch of the 4-round (god|ua)-BoBW protocol in the plain model relying on the assumptions

of the compiler of [64], namely sub-exponentially secure trapdoor permutations and ZAPs.

Before concluding this section, we give the sketch of the simulation. As per the simulator

of [64], the simulator extracts the trapdoor by rewinding the adversary from the third to the

second round (referred to as look-ahead threads). This means that before the rewinds the

simulator needs to use a valid witness for the ZAP without knowing the trapdoor. For this

purpose, the simulator during the look-ahead rewinding threads uses a valid defence for πdsm

with a random input. After the extraction, the simulator rewinds up to the second round,

commits to the trapdoor, uses the simulator of the underlying πdsm protocol and completes

the ZAP proof using the knowledge of the trapdoor. We use the same simulation strategy for

our BoBW protocol as well except for the following change: Unlike the simulator of [64], the

simulator of our BoBW protocol cannot halt incase a corrupt party aborts (in order to achieve

god in honest majority setting). We thereby follow the simulation strategy as described for our

5-round protocol πbw.god.plain - The simulator proceeds to rewinds and extracts trapdoors and

inputs of corrupt parties who are alive (have not aborted upto Round 3). The halting condition

of the simulator and the security argument is similar to that of πbw.god.plain. This completes the

proof sketch.
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Chapter 6

On the Round Complexity of Fair and

Robust MPC against Dynamic and

Boundary Adversaries

In this chapter, we investigate the round complexity of fair and robust (achieving god) MPC

against two powerful and generalized adversaries, namely the dynamic and boundary adver-

saries. Our results in these corruption settings overcome the demarcation of the study of round

complexity of MPC based on the adversarial behaviour (either active or passive). Specifi-

cally, we extend the study of round complexity of fair and robust MPC beyond the traditional

settings of passive majority (where majority of the parties are passively corrupt) and active

minority (where minority of the parties are actively corrupt) to include mixed adversaries who

can simultaneously perform both active and passive corruptions.

6.1 Introduction

Two of the most sought-after properties of Multi-party Computation (MPC) protocols are fn

and god, the latter also referred to as robustness. Achieving both, however, brings in the

necessary requirement of malicious-minority. In a generalised adversarial setting where the

adversary is allowed to corrupt both actively and passively, the necessary bound for a n-party

fair or robust protocol turns out to be ta+tp < n, where ta, tp denote the threshold for active and

passive corruption with the latter subsuming the former. Subsuming the malicious-minority

as a boundary special case, this setting, denoted as dynamic corruption, opens up a range of

possible corruption scenarios for the adversary. While dynamic corruption includes the entire

range of thresholds for (ta, tp) starting from (dn
2
e−1, bn

2
c) to (0, n−1), the boundary corruption
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restricts the adversary only to the boundary cases of (dn
2
e − 1, bn

2
c) and (0, n − 1). Notably,

both corruption settings empower an adversary to control majority of the parties, yet ensuring

the count on active corruption never goes beyond dn
2
e − 1.

As detailed in Section 1.4.3 the protocols in dynamic and boundary setting offer strong

defence and are more tolerant and better-fit in practical scenarios where the attack can come

in many unforeseen ways. We target the round complexity of fair and robust MPC tolerating

dynamic and boundary adversaries. While a detailed description of our results appears in

Section 1.4.3, we present the related work and a brief summary of the results below.

Related Work. The relevant literature of round complexity of fair and robust MPC protocols

in the traditional adversarial settings involving only single type of adversary (either passive or

active) is outlined in Section 1.3. Moving on to the setting of generalized adversary, there are

primarily two adversarial models that are most relevant to us. The first model initiated by

[79] consider a mixed adversary (referred to as graceful degradation of corruptions) that can

simultaneously perform different types of corruptions. Feasibility results in this model appeared

in the works of [86, 87, 119, 22]. The dynamic-admissible adversary considered in our work is

consistent with this model since it involves simultaneous active and passive corruptions. The

second model proposed by [54] concerns protocols that are secure against an adversary that

can either choose to corrupt a subset of parties with particular corruption type (say, passively)

or alternately a different subset (typically smaller) of parties with a second corruption type

(say, actively), but only single type of corruption occurs at a time. Referred to as graceful

degradation of security [54, 152, 88, 89, 124, 134, 127], such protocols achieve different security

guarantees based on the set of corrupted parties; for instance robustness/information-theoretic

security against the smaller corruption set and abort/computational security against the larger

corruption set. We note that the boundary-admissible adversary when n is odd, involves either

purely active (since ta = tp holds when (ta, tp) = (dn/2e − 1, bn/2c)) corruptions or purely

passive corruptions (where (ta, tp) = (0, n − 1)); thereby fitting in the second model (Infact,

boundary-admissible adversary for odd n degenerates to the adversarial model studied in “best-

of-both-worlds” MPC [127]). However, in case of even n, the boundary-admissible adversary

with (ta, tp) = (dn/2e − 1, bn/2c) would involve simultaneous passive and active corruption

as tp = ta + 1 and fit in the prior model. Lastly, both graceful degradation of security and

corruptions were generalized in the works of [120, 122]. To the best of our knowledge, the

interesting and natural question of round complexity has not been studied in these stronger

adversarial models.
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6.1.1 Our Results

We settle the question of exact round complexity of fair and robust MPC tolerating dynamic and

boundary adversaries in the public and private setup models. As it turns out, dn
2
e + 1 rounds

are necessary and sufficient for fair as well as robust MPC tolerating dynamic corruption.

The non-constant barrier raised by dynamic corruption can be sailed through for a boundary

adversary. The round complexity of 3 and 4 is necessary and sufficient for fair and GOD

protocols respectively, with the latter having an exception of allowing 3 round protocols in the

presence of a single active corruption. While all our lower bounds assume pair-wise private and

broadcast channels and are resilient to the presence of both public (CRS) and private (PKI)

setup, our upper bounds are broadcast-only and assume only public setup. The traditional and

popular setting of malicious-minority, being restricted compared to both dynamic and boundary

setting, requires 3 and 2 rounds in the presence of public and private setup respectively for

both fair as well as GOD protocols. The need for CRS in our constructions stems from the

underlying 2-round protocol achieving unanimous or identifiable abort. We leave open the

question of constructing tight upper bounds or coming up with new lower bounds in the plain

model.

Adversary Security Rounds Lower bound Upper Bound

Passive-majority fn, god 2 [112] (private) [93, 35] (plain)

Malicious-minority
fn, god 3 [108, 166] (public) [4, 16] (plain)

fn, god 2 [112] (private) [108] (private)

Boundary
fn 3 Our Work [169] (private) Our Work [169] (public)

god 4 (3 when ta ≤ 1) Our Work [169] (private) Our Work [169] (public)

Dynamic fn, god dn
2
e+ 1 Our Work [169] (private) Our Work [169] (public)

6.1.2 Techniques

In this section, we give a glimpse into the techniques used in our lower bounds and matching

upper bound constructions.

Lower Bounds. We present 3 lower bounds, all of which hold assuming access to both CRS

and PKI– (a) dn/2e + 1 rounds are necessary to achieve fairness against dynamic adversary.

(b) 4 rounds are necessary to achieve robustness against a boundary adversary. (c) 3 rounds

are necessary to achieve fairness against a boundary adversary.

The first lower bound (a) effectively captures the power of dynamic corruption stemming

from the ambiguity caused by the total range of thresholds (ta, tp) starting from (dn/2e −
1, bn/2c) to (0, n− 1). The proof navigates through this sequence starting with maximal active

corruption and proceeds to scenarios of lesser active corruptions one at a time. An inductive

226



argument neatly captures how the value of tp growing alongside decreasing values of ta can be

exploited by adversarial strategies violating fairness, eventually dragging the round complexity

all the way upto dn/2e+ 1. The lower bounds (b) and (c) are shown by considering a specific

set of small number of parties and assume the existence of a 3 (2) round robust (fair) protocol

for contradiction respectively. Subsequently, inferences are drawn based on cleverly-designed

strategies exploiting the properties of GOD and fairness. These inferences and strategies are

interconnected in a manner that builds up to a strategy violating privacy, thereby leading to a

final contradiction.

Upper Bounds. We present 5 upper bounds, in the broadcast-only setting comprising of two

upper bounds each for fairness and GOD against dynamic and boundary adversary respectively

and lastly, an additional 3-round upper bound for GOD against the special case of single

malicious corruption by boundary adversary in order to demonstrate the circumvention of

lower bound (b). Tightness of this upper bound follows from lower bound (c) (that holds

for single malicious corruption) as GOD implies fairness. Our upper bounds can be viewed as

“compiled” protocols obtained upon plugging in any 2-round broadcast-only protocols [93, 35]

achieving unanimous abort against malicious majority. While the fair upper-bounds do not

require any additional property from the underlying 2-round protocol, our robust protocols

demand the property of identifiable abort and function-delayed property i.e the first round of

the protocol is independent of the function to be computed and the number of parties. Looking

ahead, this enables us to run many parallel instances of the round 1 in the beginning and run

the second round sequentially as and when failure happens to compute a new function (that

gets determined based on the identities of the corrupt parties). Assumption wise, all our upper

bound constructions rely on 2-round maliciously-secure oblivious transfer (OT) in common

random/reference string models. We now give a high-level overview of the specific challenges

we encounter in each of our upper bounds and the techniques we use to tackle them.

Dynamic adversary: The two upper bounds against dynamic adversary show sufficiency of

dn/2e + 1 rounds to achieve fairness and robustness against dynamic admissible adversary.

The upper bound for fairness is built upon the protocol of [122] that introduces a special-

kind of sharing, which we refer to as levelled-sharing where a value is divided into summands

(adding upto the value) and each summand is shared with varying degrees. The heart of the

protocol of [122] lies in its gradual reconstruction of the levelled-shared output (obtained by

running an MPC protocol with unanimous abort), starting with the summand corresponding

to the highest degree down to the lowest. The argument for fairness banks on the fact that

the more the adversary raises its disruptive power in an attempt to control reconstruction of

more number of summands, the more it looses its eavesdropping capability and consequently

227



learns fewer number of summands by itself and vice versa. This discourages an adversary from

misbehaving as using maximal disruptive power reduces its eavesdropping capability such that

he falls short of learning the next summand in sequence without the help of honest parties.

The innovation of our fair protocol lies in delicately fixing the parameters of levelled-sharing in

a manner that optimal round complexity can be attained whilst maintaining fairness.

Next, we point that since the fair protocol consumes the optimal round complexity of

dn/2e+ 1 even in the case of honest execution, the primary hurdle in our second upper bound

is to be able to carry out re-runs when an adversary disrupts computation to achieve robust-

ness without consuming extra rounds. Banking on the player-elimination technique, we use

identifiability to bar the corrupt parties disrupting computation from participating thereafter.

Having parallel execution of Round 1 of all the required re-reruns helps us get closer to the

optimal bound. While these approaches aid to a great extent, the final saviour comes in the

form of a delicate and crucial observation regarding how the thresholds of the levelled-sharing

can be manipulated carefully, accounting for the cheaters identified so far. This trick exploits

the pattern of reduced corruption scenarios obtained upon cheater identification and helps to

compensate for the rounds consumed in subprotocols that were eventually disrupted by the ad-

versary. The analysis of the round complexity of the protocol being subtle, we use an intricate

recursive argument to capture all scenarios and show that the optimal lower bound is never

exceeded. Lastly, we point that both upper bound constructions against dynamic adversary

assume equivocal non-interactive commitment (such as Pedersen commitment [175]). The GOD

upper bound additionally assumes the existence of Non-Interactive Zero-Knowledge (NIZK) in

the common random/reference string model.

Boundary adversary: The three upper bounds against boundary-admissible adversary re-

stricted to corruption scenarios either (ta, tp) = (dn/2e − 1, bn/2c) or (ta, tp) = (0, n− 1) show

that (a) 4 rounds are sufficient to achieve robustness against boundary-admissible adversary

(b) 3 rounds are sufficient to achieve robustness against special-case boundary-admissible ad-

versary when ta ≤ 1 i.e adversary corrupts with parameters either (ta, tp) = (1, bn/2c) or

(ta, tp) = (0, n− 1) (c) 3 rounds are sufficient to achieve fairness against boundary-admissible

adversary. At a high-level, all the three upper bounds begin with a 2-round protocol secure

against malicious majority that computes threshold sharing of the output. Intuitively, this

seems to serve as the only available option as protocols customized for malicious minority typ-

ically breach privacy when views of majority of the parties are combined (thereby will break

down against tp < n semi-honest corruptions). On the flip side, protocols customized for exclu-

sively passive majority may violate correctness/privacy in the presence of even single malicious

corruption. Subsequently, this natural route bifurcates into two scenarios based on whether
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the adversary allows the computation of the threshold sharing of output to succeed or not. In

case of success, all the three upper bounds proceed via the common route of reconstruction

which is guaranteed to be robust by the property of threshold sharing. The distinctness of

the 3 settings (accordingly the upper bounds) crops up in the alternate scenario i.e. when the

computation of threshold sharing of output aborts. While in upper bound (c), parties simply

terminate with ⊥ maintaining fairness enabled by privacy of the threshold sharing; the upper

bounds (a) and (b) demanding stronger guarantee of robustness cannot afford to do so. These

two upper bounds exploit the fact that the corruption scenario has now been identified to be

the boundary case having active corruptions, thereby protocols tolerating malicious minority

can now be executed. While the above outline is inspired by the work of [127], we point that

we need to tackle the exact corruption scenarios as that of the protocols of [127] only when n is

odd. On the other hand when n is even, the extreme case for active corruption accommodates

an additional passive corruption (tp = ta + 1). Apart from hitting the optimal round complex-

ity, tackling the distinct boundary cases for odd and even n in a unified way brings challenge

for our protocol. To overcome these challenges, in addition to techniques of identification and

elimination of corrupt parties who disrupt computation, we employ tricks such as parallelizing

without compromising on security to achieve the optimum round complexity. Assumption wise,

while both the robust constructions (a) and (b) rely on NIZKs, the former additionally assumes

Zaps (2-round, public-coin witness-indistinguishable protocols) and public-key encryption.

Lastly, we present the model and useful definitions below before proceeding to the technical

sections.

Model and Definitions. We consider a set of PPT parties P = {P1, . . . Pn}. Our upper

bounds assume the parties connected by a broadcast channel and a setup where parties have

access to common reference string (CRS). Our lower bounds hold even when the parties are

additionally connected by pairwise-secure and authentic channels and for a stronger setup,

namely assuming access to CRS as well as public-key infrastructure (PKI). We assume that

there exists a PPT adversary A, who can corrupt a subset of these parties.

We consider two kinds of adversarial settings in this work. In both settings, the A is

characterised by two thresholds (ta, tp), where he may corrupt upto tp parties passively, and

upto ta of these parties even actively. Note that tp is the total number of passive corruptions

that includes the active corruptions and additional parties that are exclusively passively corrupt.

We now define dynamic and boundary admissible adversaries.

Definition 6.1 (Dynamic-admissible Adversary) An adversary attacking an n-party MPC

protocol with threshold (ta, tp) is called dynamic-admissible as long as ta + tp < n and ta ≤ tp.
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For dynamic-admissible adversary, we denote the set of active and passively corrupt parties

by D and E respectively, where |D| = ta and |E| = tp .

Definition 6.2 (Boundary-admissible Adversary) An adversary attacking an n-party MPC

protocol with threshold (ta, tp) is called boundary-admissible as long as he corrupts either with

parameters (a) (ta, tp) = (dn
2
e − 1, bn/2c) or (b) (ta, tp) = (0, n− 1).

In our work, we also consider a special-case of boundary adversary with ta ≤ 1 where the

adversary corrupts either with parameters (ta, tp) = (1, bn/2c) or (ta, tp) = (0, n− 1).

Roadmap. Our lower and upper bounds for dynamic and boundary corruption appear in Sec-

tions 6.2-6.3 and in Sections 6.4-6.5 respectively. The security definition and the functionalities

appear in Chapter 2.

6.2 Lower Bounds for Dynamic Corruption

In this section, we show that dn
2
e+1 rounds are necessary to achieve MPC with fairness against a

dynamic-admissible A with threshold (ta, tp). This result shows impossibility of constant-round

fair and robust protocols in the setting of dynamic corruption.

Theorem 6.1 No dn
2
e-round n-party MPC protocol can achieve fairness tolerating a dynamic-

admissible adversary A with threshold (ta, tp) in a setting with pairwise-private and broadcast

channels, and a setup that includes CRS and PKI.

Proof: We prove the theorem by contradiction. Suppose there exists a dn
2
e-round n-party

MPC protocol π computing any function f(x1 . . . xn) (where xi denotes the input of party

Pi) that achieves fairness against a dynamic-admissible A with corruption threshold (ta, tp)

and in the presence of a setup with CRS and PKI. At a high-level, our proof argument

defines a sequence of hybrid executions of π, navigating through all the possible admissible

corruption scenarios assuming ta + tp = n − 1 and starting with the maximum admissible

value of ta = dn/2e − 1. Our first hybrid under the spell of a dynamic-admissible adversary,

corrupting dn/2e − 1 parties actively and stopping their communication in the last round, lets

us conclude that the joint view of the honest and passively-corrupted parties by the end of

penultimate round must hold the output in order for π to satisfy fairness. If not, while ceasing

communication in the last round does not prevent A from getting all the messages in the last

round and thereby the output, the honest parties do fail to compute the output due to the non-

cooperation of ta parties, violating fairness. The views of the passively corrupt parties need to

be taken into account as they follow protocol steps correctly and assist in output computation.
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Leveraging the fact that drop of ta leads to rise of tp, we then propose a new hybrid where

ta is demoted by 1 and consequently tp grows big enough to subsume the list of honest and

passive-corruption from the previous hybrid. As the view of the adversary in this hybrid holds

the output by the end of penultimate round itself, its actively-corrupt parties need not speak

in the penultimate round. Now fairness in the face of current strategy of the actively-corrupted

parties needs the joint view of the honest and passively-corrupted parties by the end of dn/2e−2

round to hold the output. This continues with the set of honest and passively-corrupted parties

growing by size one between every two hybrids. Propagating this pattern to the earlier rounds

eventually lets us conclude that an adversary with threshold (ta, tp) = (0, n − 1) (no active

corruption case) can obtain the output at the end of Round 1 itself. This leads us to a final

strategy that violates privacy of π via residual attack. This completes the proof sketch. We

now prove the sequence of lemmas to complete the proof.

Lemma 6.1 In an execution of π where all parties behave honestly upto (and including) Round

(dn
2
e − i) for i ∈ [dn

2
e − 1], there exists a set of parties Si with size (bn

2
c + i) whose combined

view at the end of Round dn
2
e− i suffices to compute the output, with overwhelming probability.

Proof: We prove the lemma by induction. Let P = {P1, P2, ..., Pn} denote the set of parties

and D(E) denote the set of actively (passively) corrupt parties where D ⊆ E. Here |D| = ta

and |E| = tp.

Base Case (i = 1): We consider an execution of the protocol π with a dynamic-admissible

adversary A corrupting parties with threshold (ta, tp) = (dn
2
e − 1, bn/2c) and an adversarial

strategy A1 as follows. The set of actively corrupt parties D behave honestly upto (and in-

cluding) Round dn
2
e − 1 and simply remain silent in the last round i.e the dn

2
eth round. Since

A receives all the desired communication throughout the protocol, it follows directly from the

correctness of π that A must be able to compute the output with overwhelming probability.

Since π is assumed to be fair, the honest parties must also be able to compute the output

even without the dn
2
eth round communication from parties in D. We can now conclude that

the combined view of parties in P \ D at the end of Round dn
2
e − 1 must suffice to compute

the output. Thus, the set S1 = P \ D of parties with size n − ta = n − (dn
2
e − 1) = bn

2
c + 1

hold a combined view at the end of Round dn
2
e − 1 that suffices to compute the output with

overwhelming probability. This completes the base case.

Induction Hypothesis (i = `). Suppose the statement is true for i = ` i.e. if all parties

behave honestly upto (and including) Round (dn
2
e − `), then there exists a set of parties, say

S`, with |S`| = (bn
2
c + `) whose combined view at the end of (dn

2
e − `)th round, suffices to

compute the output, with overwhelming probability.
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Induction Step (i = ` + 1). We consider an execution of the protocol π with a dynamic-

admissible adversary A corrupting parties with threshold (ta, tp) = (dn
2
e − ` − 1, bn

2
c + `) and

E = S` as defined in the induction hypothesis and an adversarial strategy A`+1 as follows. The

set of actively corrupt parties D behave honestly upto (and including) Round (dn
2
e − ` − 1)

and simply remain silent from Round (dn
2
e − `) onwards. Since A receives all the desired

communication upto (and including) Round (dn
2
e − `) of π (as per an honest execution) on

behalf of parties in E, it follows directly from the induction hypothesis that the combined view

of the parties in E where |E| = bn
2
c+ ` must suffice to compute the output, with overwhelming

probability. Since π is assumed to be fair, the honest parties must also be able to compute the

output even though the parties in D stop communicating from Round (dn
2
e − `) onwards. We

can now conclude that the combined view of parties in P \D at the end of Round (dn
2
e− `− 1)

must suffice to compute the output. Thus, the set S`+1 = P \D of parties with size n − ta =

n− (dn
2
e − `− 1) = bn

2
c+ `+ 1 hold a combined view at the end of Round (dn

2
e − `− 1) that

suffices to compute the output with overwhelming probability. This completes the induction

hypothesis and the proof of Lemma 6.1. 2

Lemma 6.2 There exists an adversary A that is able to compute the output at the end of

Round 1 of π with overwhelming probability.

Proof: When i = dn
2
e − 1, Lemma 6.1 implies that if all parties behave honestly in Round 1,

then there exists a set Sd
n
2
e−1 of (bn

2
c+dn

2
e−1) = (bn

2
c+dn

2
e−1) = n−1 parties whose combined

view suffices to compute the output at the end of Round 1, with overwhelming probability.

Consequently, a dynamic-admissible adversary A corrupting the parties with threshold (ta, tp) =

(0, n− 1) and (D = ∅,E = Sd
n
2
e−1) must be able to compute the output at the end of Round 1

itself. 2

Lemma 6.3 Protocol π does not achieve privacy.

Proof: It follows directly from Lemma 6.2 that there exists an adversary A with threshold

(ta, tp) = (0, n− 1) corrupting a set of (n− 1) parties passively, say E = {P1, . . . Pn−1}, that is

able to compute the output at the end of Round 1 itself, with overwhelming probability. Thus,

A can obtain multiple evaluations of the function f by locally plugging in different values for

{x1, . . . , xn−1} while honest Pn’s input xn remains fixed. This residual function attack violates

privacy of Pn. As a concrete example, let f be a common output function computing x1 ∧ xn,

where xi (i ∈ {1, n}) denotes a single bit. During the execution of π, A behaves honestly with

input x1 = 0 on behalf of P1. However, the passively-corrupt P1 can locally plug-in x1 = 1

and learn xn (via the output x1 ∧ xn). This is a clear breach of privacy, as in the ideal world,
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A participating honestly with input x1 = 0 on behalf of P1 would learn nothing about xn; in

contrast to the execution of π where A learns xn regardless of his input. This completes the

proof. 2

We have thus arrived at a contradiction to our assumption that π securely computes f and

achieves fairness. This completes the proof of Theorem 6.1.

2

For better understanding, we illustrate the adversarial strategies and implications derived

with respect to the specific case of n = 7 and 4-round (dn/2e = 4) protocol π in the Table

below. The last column (S, r) indicates the implication that the combined view of parties in S

(= P \D) at the end of Round number r suffices to compute the output.

(ta, tp) D E Strategy of A S, r

(3, 3) {P1, P2, P3} {P1, P2, P3} Stop D after R3 S1 = {P4, P5, P6, P7}, R3

(2, 4) {P6, P7} {P4, P5, P6, P7} (i.e S1) Stop D after R2 S2 = {P1, P2, P3, P4, P5}, R2

(1, 5) {P1} {P1, P2, P3, P4, P5} (i.e S2) Stop D after R1 S3 = {P2, P3, P4, P5, P6, P7}, R1

(0, 6) ∅ {P2, P3, P4, P5, P6, P7} (i.e S3) Residual attack wrt E −−−−

6.3 Upper bounds for Dynamic Corruption

In this section, we describe two n-party upper bounds tolerating a dynamic-admissible adversary

A with threshold (ta, tp). The first upper bound achieves fairness and is a stepping stone to

the construction of the second upper bound that achieves guaranteed output delivery. Both

the upper bounds comprise of dn/2e + 1 rounds in the presence of CRS, tightly matching our

lower bound result of Section 6.2. We start with an important building block needed for both

the fair and GOD protocols.

6.3.1 Levelled-sharing of a secret

Our protocols in the dynamic corruption setting involve a special kind of sharing referred as

levelled sharing, which is inspired by and a generalized variant of the sharing defined in [122].

The sharing is parameterized with two thresholds, α and β with α ≥ β, that dictate the number

of levels as α − β + 1. To share a secret in (α, β)-levelled-shared fashion, α − β + 1 additive

shares (levels) of the secret, indexed from α to β are created and each additive share is then

Shamir-shared [180] using polynomial of degree that is same as its assigned index. Further

each Shamir-sharing is authenticated using a non-interactive commitment scheme, to ensure

detectably correct reconstruction. For technical reasons in the simulation-based security proof,

we need an instantiation of commitment scheme that allows equivocation of commitment to any
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message with the help of trapdoor and provides statistical hiding and computational binding.

Denoting such a commitment scheme by eNICOM (Equivocal Non-Interactive Commitment),

we present both the formal definition and an instantiation based on Pedersen’s commitment

scheme [175] in Section 2.4.2.1. While the sharing will involve the entire population P in our

fair protocol, it may be restricted to many different subsets of P, each time after curtailing

identified actively corrupt parties. The definition therefore is formalized with respect to a set

Q ⊆ P.

Definition 6.3 ((α, β)-levelled sharing) A value v is said to be (α, β)-levelled-shared with

α ≥ β amongst a set of parties Q ⊆ P if every honest or passively corrupt party Pi in Q holds

Li as produced by fα,βLSh(v) given in Figure 6.1.

1. Choose uniformly random summands sα, sα−1, . . . sβ with
∑α

i=β sj = v

2. For j ∈ [α, β], do the following:

- Choose a random polynomial gj(x) of degree j with gj(0) = sj .

- Sample the public parameter for eNICOM (Section 2.4.2.1) as (epp, t) ← eGen(1κ). For each

share sjk = gj(k), run (cjk, ojk)← eCom(epp, sjk; rjk) (Pk ∈ Q) where rjk denotes randomness.

3. Set Li =
(
{sji, oji}j∈[α,β], {cjk}j∈[α,β],Pk∈Q

)
for Pi ∈ Q.

Function fα,βLSh

Figure 6.1: Function fα,βLSh for computing (α, β)-levelled sharing

In our protocols the function fα,βLSh will be realized via an MPC protocol, whereas, given

the (α, β)-levelled-sharing, we will use a levelled-reconstruction protocol LRecα,β() that enforce

reconstruction of the summands one at a time starting with sα. This levelled reconstruction

ensures a remarkable property tolerating any dynamic-admissible adversary– if the adversary

can disrupt reconstruction of si, then it cannot learn si−1 using its eavesdropping power. This

property is instrumental in achieving fairness against the strong dynamic-admissible adversary.

The protocol is presented in Figure 6.2. Its properties and round complexity are stated below.

Note that starting with the feasibility condition ta + tp < n = |P|, expelling a set of actively

corrupt parties, say B, makes the following impact on ta, tp and P: ta = ta − |B|, tp = tp − |B|
and P = P \B. Consequently, the updated ta, tp and P continue to satisfy ta + tp < |P|. Below,

we will therefore use the fact that ta + tp < |Q|, where Q denotes the relevant set of parties (i.e

the set of parties remaining after possibly expelling a set of identified actively corrupt parties).
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Inputs: Each Pi (Pi ∈ Q) has input Li =
(
{sji, oji}j∈[α,β], {cjk}j∈[α,β],Pk∈Q

)
.

Output: Secret v or ⊥ with set B constituting indices of the identified actively corrupt parties.

- For j = α down to β, Pi does the following round-by-round:

- Broadcasts (sji, oji) and receive (sjk, ojk) from all Pk ∈ Q where k 6= i.

- Initialize Zj = i and populate Zj in order to compute sj as follows:

- For each k 6= i, if commitment cjk opens to sjk via opening ojk, then add k to Zj .

- If |Zj | ≥ j+1, interpolate a j-degree polynomial gj(x) satisfying gj(k) = sjk for k ∈ Zj

and compute sj = gj(0). Else output ⊥, set B = Q \ Zj and terminate.

- Output v = sα + . . . sβ.

Protocol LRecα,β

Figure 6.2: Protocol LRecα,β

Lemma 6.4 LRecα,β satisfies the following properties–

i. Correctness. Each honest Pi participating in LRecα,β with input Li as generated by fα,βLSh(v),

outputs either v or ⊥ except with negligible probability.

ii. Fault-Identification. If an adversary disrupts the reconstruction of sj, then |B| ≥ |Q|− j.

iii. Fairness. If an adversary disrupts the reconstruction of sj, then it does not learn sj−1.

iv. Round Complexity. It terminates within α− β + 1 rounds.

Proof:

i. Consider an honest Pi participating with input Li =
(
{sji, oji}j∈[α,β], {cjk}j∈[α,β],Pk∈Q

)
. We

observe Pi outputs v′ 6= {v,⊥} only if at least one of the summands, say sj(j ∈ [α, β]) is

incorrectly set. This can happen only if Pi adds at least one index k to Zj such that Pk

sends an incorrect share s′jk 6= sjk. This occurs when (s′jk, o
′
jk) received from Pk is such

that cjk opens to s′jk via o′jk but s′jk 6= sjk. It now follows directly from the binding of

eNICOM that this violation occurs with negligible probability. This completes the proof.

ii. Firstly, it follows from the property of Shamir-secret sharing and binding property of eNI-

COM that reconstruction of sj would fail only if |Zj| ≤ j. Next, note that as per the

steps in Figure 6.2, each honest Pi would output B = Q \ Zj if reconstruction of sj fails.

We can thus conclude that |B| = |Q| − |Zj| ≥ |Q| − j.
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iii. To prove fairness, we first prove that if an adversary can disrupt the reconstruction of sj,

then it cannot learn sj−1 using its eavesdropping power. Since as per the protocol, the

honest parties do not participate in the reconstruction of sj−1 when they fail to reconstruct

sj, the security of sj−1 follows from the information-theoretic security of Shamir-sharing

and the statistical security (hiding) of eNICOM.

An adversary can disrupt reconstruction of sj only if |Zj| ≤ j. It is easy to check that Zj

would constitute the non-actively corrupt parties (honest and purely passive parties) i.e

Q\ ⊆ Zj. Thus, |Q \ | = |Q|− ta ≤ |Zj| ≤ j. Lastly, to maintain ta + tp < |Q|, it must hold

that tp ≤ |Q| − ta − 1 ≤ j − 1. Thus, the adversary corrupting tp ≤ j − 1 parties cannot

learn sj−1 using its eavesdropping power.

iv. The proof of the round complexity is straightforward. LRecα,β involves reconstruction of

summands sα down to sβ, each of which consumes one round; totalling upto α− β + 1.

2

6.3.2 Upper bound for Fair MPC

The key insight for this protocol comes from [122] that builds on an MPC protocol with abort

security to compute the function output in (n−1, 1)-levelled-sharing form, followed by levelled-

reconstruction to tackle dynamic corruption. Fairness is brought to the system by relying on

the fairness of the levelled-reconstruction. In particular, the adversary is disabled to reconstruct

(i − 1)th summand, as a punitive action, when it disrupts reconstruction of the ith summand

for the honest parties. In the marginal case, if the adversary disrupts the MPC protocol for

computing the levelled-sharing and does not let the honest parties get their output, we disable

it to reconstruct the (n− 1)th summand itself.

In a (α, β)-levelled-reconstruction, the parameters α and β dictate the round complexity.

The closer they are the better round complexity we obtain. The α and β in [122] are n−2 apart,

shooting the round complexity of reconstruction to n− 1. We depart from the construction of

[122] in two ways to build a (dn
2
e+ 1)-round fair protocol. Firstly and prominently, we bring α

and β much closer, cutting down bn
2
c summands from the levelled-secret sharing and bringing

down the number of levels to just n − 1 − bn
2
c from n − 1 of [122]. Second, we plug in the

round-optimal (2-round) MPC protocol of [93, 35] achieving unanimous abort against malicious

majority in the CRS model for computing the levelled-sharing of the output, making overall a

(dn
2
e+ 1)-round fair protocol. We discuss the first departure in detail below.

Our innovation lies in fixing the best values of α and β without flouting fairness. The value

of α and β, in essence determines the indispensable summands that we cannot do without.
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Every possible non-zero threshold for active corruption maps to a crucial summand that the

adversary using its corresponding admissible passive threshold cannot learn by itself, whilst

the pool of non-disruptive set of parties, i.e. the set of honest and passive parties, can. This

unique summand, being the ‘soft spot’ for the adversary, forces him to cooperate until the

reconstruction of the immediate previous summand. As soon as the adversary does so, the

honest parties turn self-reliant to compute the output, upholding fairness. We care only about

the non-zero possibilities for the threshold of active corruption, as an all-passive adversary

holds no power at its disposal to disrupt, leading to robust output reconstruction by all. For

the minimum non-zero value of 1 active corruption, the unique summand is sn−2 that the

adversary cannot learn using its admissible eavesdropping capacity of n− 2, yet the set of non-

disruptive parties, which is of size n − 1, can. On the other extreme, for the maximum value

of dn
2
e − 1, the unique summand is sbn

2
c that the adversary cannot learn using its admissible

eavesdropping capacity of bn
2
c, yet the set of non-disruptive parties, which is of size bn

2
c + 1,

can. This sets the values of α and β as n−2 and bn
2
c respectively, making the number of crucial

summands only dn
2
e− 1. The distance between these two parameters also captures the number

of possible corruption scenarios with non-zero active corruption.

In the table below, we display for each admissible adversarial corruption (this set subsumes

the crucial summands that we retain), whether the adversary and the set of non-disruptive

parties respectively by themselves, can learn the summand, using its maximum eavesdropping

capability and putting together their shares respectively. The pattern clearly displays the fol-

lowing feature: irrespective of the corruption scenario that the adversary follows, its maximum

power to disrupt and eavesdrop remains one summand apart i.e. if it can disrupt ith summand

with its maximum disruptive capability (and fall short of its power for failing the (i − 1)th

one), then its maximum eavesdropping capability does not allow it to learn (i− 1)th summand

by itself. Our fair protocol πdyn
fn tolerating dynamic corruption appears in Figure 6.3. Assump-

tion wise, πdyn
fn relies on 2-round maliciously-secure OT in the common random/reference string

model (when πUAbort is instantiated with protocols of [93, 35]) and eNICOM (used in LRecα,β()

and instantiated using Pedersen commitment scheme).

Table 6.1: Levelled-reconstruction where (a = Y/N, b = Y/N) under si indicates if A and non-
active parties respectively can reconstruct si or not (Y = Yes, N = No)
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(ta = |D|, tp = |E|) |P \D| sn−2 sn−3 sn−4 sn−i−1 sbn/2c+1 sbn/2c

(0, n− 1) n (Y, Y) (Y, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)

(1, n− 2) n− 1 (N, Y) (Y, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)

(2, n− 3) n− 2 (N, N) (N, Y) (Y, Y) . . . . . . . . . (Y, Y) (Y, Y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i, n− i− 1) n− i (N, N) (N, N) (N, N) . . . (N, Y) . . . (Y, Y) (Y, Y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(dn/2e − 1, bn/2c) bn/2c+ 1 (N, N) (N, N) (N, N) . . . . . . . . . (N, N) (N, Y)

Inputs: Party Pj has xj for j ∈ [n]

Building blocks: (a) Protocol πUAbort achieving security with unanimous abort (realizing function-

ality Fua (Figure 2.2)) against malicious majority; (b) Protocol LRecα,β for reconstructing a

(α, β)-levelled-shared value (Figure 6.2); (c) Function f
n−2,bn

2
c

LSh (Figure 6.1).

Output: y = f(x1 . . . xn) or ⊥

Round 1 – 2: Every Pj runs protocol πUAbort to compute the function f
n−2,bn

2
c

LSh � f with input xj

to obtain Lj as the output. If Lj = ⊥, it outputs ⊥ and halts.

Round 3 – (dn/2e+ 1): Each Pj participates in LRecn−2,bn
2
c with input Lj and outputs the out-

come of LRecn−2,bn
2
c.

Protocol πdyn
fn

Figure 6.3: Fair MPC against dynamic-admissible adversary

We state the formal theorem below.

Theorem 6.2 Assuming the presence of a 2-round MPC protocol πUAbort realizing Fua (Fig-

ure 2.2) against malicious-majority, protocol πdyn
fn with n parties satisfies –

– Correctness: computes the correct output.

– Security: realizes Ffair (Figure 2.3) against a dynamic-admissible A with threshold (ta, tp).

– Round complexity: runs in dn/2e+ 1 rounds.

Proof: Correctness of πdyn
fn follows directly from correctness of πUAbort and LRecn−2,bn

2
c (Lemma

6.4). The security proof appears in Section 6.6.1.2. Round complexity of πdyn
fn includes 2 rounds

of πUAbort and the round complexity of LRecn−2,bn
2
c which is

(
n − 2 − bn

2
c + 1

)
= dn/2e − 1

(Lemma 6.4); totalling upto dn/2e+ 1 rounds. 2
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6.3.3 Upper Bound for GOD MPC

At a broad level, robustness is achieved by rerunning our fair protocol as soon as failure occurs

which can surface either in the underlying MPC or during reconstruction of any of the summands

of the output. Taking inspiration from the player-elimination framework [118, 116], we maintain

a history of deviating/disruptive behaviour across the runs and bar the identified parties from

further participating. Such a paradigm calls for sequential runs and brings great challenge when

round complexity is the concern. We hit the optimal round complexity banking on several ideas

and interesting observations. First, we turn the underlying MPC protocol for computing (α, β)-

levelled-sharing of the output to achieve identifiability so that any disruptive behaviour can be

brought to notice. Slapping NIZK on the 2-round broadcast-only construction of [93] readily

equips it with identifiability, without inflating the round complexity. Second, we leverage the

function-delayed property of a modified variant of the protocol of [93] (proposed by [4]) where

the first round messages are made independent of the function to be computed and the number

of parties. This enables us to run many parallel instances (specifically dn/2e) of the round 1 in

the beginning and run the second round sequentially as and when failure happens to compute

a new function each time as follows– (a) it hard-cores default input for the parties detected

to be disruptive so far and (b) the output now is levelled-shared with new thresholds α and β

each of which are smaller than the previous run by a function of the number of fresh catch, say

δ. The latter brings the most crucial impact on the round complexity. Recall that the distance

between α and β that impacts the round complexity, is directly coupled with the number of

possible corruption scenarios with non-zero active corruption. Starting with the initial value

of dn
2
e − 1, each catch by δ reduces the number of possible corruption scenarios (with non-zero

active corruption) and the distance between α and β by δ.

In the protocol, we maintain a number of dynamic variables which are updated during the

run– (a) L: the set of parties not identified to be actively corrupt and thus referred as alive;

this set is initialized to P; (b) C: the set of parties identified as actively corrupt; this set

initialized to ∅; (c) n: the parameter that dictates the number of corruption scenarios as dn
2
e

and the possible corruption cases as {(0, n− 1), . . . , (dn/2e − 1, bn/2c)}; this is initialized to n

that dictates the initial number of corruption cases as dn
2
e and the possible corruption cases as

{(0, n − 1), . . . , (dn/2e − 1, bn/2c)}. After every failure and a fresh catch of a set B of active

corruptions, the sets L, C and n are updated as L = L \B, C = C ∪B and n = n− 2|B|. The

reduction of n by 2|B| denotes counting the reduction for active as well as passive corruptions.

For every value of n, the formula for the total number of corruption scenarios, the values for

(α, β) (that speaks about the indispensable summands as discussed in the fair protocol) and
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the number of corruption scenarios with non-zero active corruption (which denotes the distance

between (α, β)) remain the same– namely dn
2
e, (n−2, bn/2c) and dn

2
e−1. In the marginal case,

n becomes either 1 or 2, the former when n is odd and all active corruptions are exposed

making (ta, tp) = (0, 0) and the latter when n is even and (ta, tp) = (0, 1). With no active

corruption in L, the Round 2 of the MPC can be run to compute the output itself (instead of

its levelled-sharing) robustly in both the marginal cases.

As the protocol follows an inductive behaviour based on n, to enable better understanding,

we present below a snapshot of how the corruption scenarios shrinks after every catch of δ

active corruption. The first column indicates a set of possible corruption scenarios, with (ta, tp)

varying from (0, n − 1) to (dn/2e − 1, bn/2c). If δ cheaters are identified, the first δ rows can

simply be discarded as it is established that ta ≥ δ. The number of feasible corruptions is thus

slashed by δ. Next, these δ identified cheaters are eliminated, which reduces each (ta, tp) of the

rows that sustained (ta = δ onwards) by δ as shown by column 2. Finally, the column 3 displays

column 2 with n updated as n − 2δ. The formal description of the protocol πdyn
GOD appears in

Figure 6.4. Assumption wise, πdyn
GOD relies on 2-round maliciously-secure OT in the common

random/reference string model, NIZK (when πidua is instantiated with function-delayed variant

of the protocol of [93] satisfying identifiability) and eNICOM (used in LRecα,β() and instantiated

using Pedersen commitment scheme).

(ta, tp) (ta, tp) (ta, tp)

after δ cheater identification after updating n = n− 2δ

(0, n− 1) – –

(1, n− 2) – –

. . . . . . . . .

(δ, n− δ − 1) (0, n− 2δ − 1) (0, n− 1)

(δ + 1, n− δ − 2) (1, n− 2δ − 2) (1, n− 2)

. . . . . . . . .

(dn/2e − 1, bn/2c) (dn/2e − 1− δ, bn/2c − δ) (dn/2e − 1, bn/2c)

Inputs: Party Pi has xi for i ∈ [n]

Building blocks: (a) Protocol πidua achieving unanimous abort with identifiability (i.e. realizing

functionality Fidua, refer Figure 2.5) against malicious majority and having function-delayed

property; (b) Protocol LRecα,β for reconstructing a (α, β)-levelled-shared value (Figure 6.2);

(c) Function fα,βLSh (Figure 6.1).

Output: y = f(x1 . . . xn)

Protocol πdyn
GOD
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Step 1: Pi runs dn/2e parallel instances of Round 1 of πidua, each using input xi and independent

randomness. Note that this round is independent of the function to be computed and number

of parties. Initialize k = 1.

Step 2: Initialize, L = P, C = ∅, n = n. Let fC denote the function that is same as f except that

the inputs of parties in C are hardcoded with default inputs. Pi executes the following steps:

2.1 If n = 1, 2, then run Round 2 of πidua (considering kth instance of Round 1) among parties

in L using input xi to compute fC and output the output of πidua and terminate. (This

corresponds to the case of no active corruptions.)

2.2 Run Round 2 of πidua (considering kth instance of Round 1) among parties in L using

input xi to compute f
n−2,b n

2
c

LSh � fC and obtain Li. If Li = ⊥ and B is set of parties

identified to be corrupt, update C = C ∪ B, L = L \ B, n = n − 2|B|, k = k + 1 and

repeat this step using updated value of n. Otherwise, participate in LRecn−2,b n
2
c with

input Li. If (⊥,B) is the output, then update L,C, n, k as above and repeat this step

using updated value of n. Otherwise, output the output of LRecn−2,b n
2
c and terminate.

Figure 6.4: Robust MPC against dynamic-admissible adversary

We now analyze the round-complexity and security of πdyn
GOD below.

Lemma 6.5 πdyn
GOD terminates in dn/2e+ 1 rounds.

Proof: Consider an execution of πdyn
GOD (initialized with n = n). The outline of the proof is

as follows: We give an inductive argument to prove the following - ‘If Step 2 is executed with

parameter n, then Step 2 terminates within dn
2
e rounds’. Assuming this claim holds, it follows

directly that during the execution with n = n, Step 2 would terminate within dn
2
e rounds;

thereby implying that the round complexity of πdyn
GOD is atmost dn

2
e + 1 (adding the round for

Step 1). We now prove the above claim by strong induction on n ≥ 1.

Base Case (n = 1, 2): It follows directly from description in Figure 6.4 that Step 2 terminates

in dn/2e = 1 round when n = 1, 2.

Induction Hypothesis (n ≤ `): Assume Step 2 terminates in dn/2e rounds for n ≤ `.

Induction step (n = `+ 1): Consider an execution of Step 2 with parameter n = `+ 1. We

analyze the following 3 exhaustive scenarios - (1) Suppose neither πidua nor LRecn−2,b n
2
c fails. (2)

Suppose πidua aborts. (3) Suppose πidua does not abort but LRecn−2,b n
2
c fails. We show that in

each of them, Step 2 terminates within dn/2e = d `+1
2
e rounds; thereby completing the induction

step.
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- Suppose neither πidua nor LRecn−2,b n
2
c fails. Then Step 2 involves following number of rounds–

1 (for Round 2 of πidua) + number of rounds in LRecn−2,b n
2
c i.e (n− 2− bn

2
c+ 1) = dn

2
e =

d(`+ 1)/2e in total.

- Suppose πidua aborts. Then B must comprise of at least one active party, implying that δ ≥ 1,

where δ = |B| and subsequently n is updated to n = (n − 2δ) ≤ (` + 1 − 2) = (` − 1).

Note that Step 2 now involves following number of rounds– 1 (for Round 2 of πidua)

+ number of rounds in which Step 2 terminates when re-run with updated parameter

n i.e dn/2e by induction hypothesis. Thus, the total number of rounds in Step 2 is

(1 + dn/2e) ≤ (1 + d `−1
2
e) = d `+1

2
e.

- Suppose πidua does not abort but reconstruction LRecn−2,b n
2
c fails. Say adversary disrupts

reconstruction of summand sn−r in Round r of Step 2 (Round r − 1 of LRecn−2,bn/2c),

where r ∈ [2, dn/2e]. It follows from fault identification property of Lemma 6.4 that

|B| ≥ |L| − (n − r) ≥ r (since |L| ≥ n always holds). Consequently, δ = |B| ≥ r and

updated parameter n = n − 2δ ≤ ` + 1 − 2r. We now analyze the round complexity.

Note that Step 2 involves following number of rounds– r (Reconstruction failed in Round

r ≥ 2 of Step 2 run with n = `+ 1) + number of rounds in which Step 2 terminates when

re-run with updated parameter n i.e dn/2e by induction hypothesis. Thus total number

of rounds in Step 2 is (r + dn/2e) ≤ (r + d `+1−2r
2
e) = d `+1

2
e.

We point that induction hypothesis for n = n − 2δ with δ ≥ 1 can be applied as n ≥ 1 holds

always in πdyn
GOD due to the following: the maximal value of δ is dn/2e − 1 i.e the maximum

possible number of actively corrupt parties. This completes the proof. 2

Theorem 6.3 Assuming the presence of a 2-round protocol πidua realizing functionality Fidua

(Figure 2.5) against malicious majority and having function-delayed property; protocol πdyn
GOD

with n parties satisfies–

– Correctness: computes the correct output.

– Security: realizes Fgod (Figure 2.4) against a dynamic-admissible A with threshold (ta, tp).

– Round complexity: runs in dn/2e+ 1 rounds.

Proof: Correctness of πdyn
GOD follows directly from correctness of πidua and correctness of

LRecn−2,b n
2
c (Lemma 6.4). The formal security proof appears in Section 6.6.2. Round com-

plexity follows from Lemma 6.5. 2
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6.4 Lower Bounds for Boundary Corruption

In this section, we present two lower bounds for MPC protocol tolerating boundary-admissible

adversaries and in the presence of CRS and PKI setup. Recall that such an adversary is

restricted to corruption scenarios either (ta, tp) = (dn/2e − 1, bn/2c) or (ta, tp) = (0, n − 1).

We show that three and four rounds are necessary to achieve fairness and GOD respectively

against a boundary-admissible adversary. It is to be noted that GOD is the de facto notion

achieved in the pure passive corruption setting of (ta, tp) = (0, n− 1).

6.4.1 Impossibility of 3-round Robust MPC

In this section, we show that it is impossible to design a 3-round robust MPC protocol against

boundary-admissible adversary with threshold (ta, tp) assuming both CRS and PKI. Notably,

this lower bound is indeed surprising as the individual security guarantees translate to GOD

against malicious-minority [108] and passive-majority [93, 35] for odd n (as ta = tp wrt (ta, tp) =

(dn/2e − 1, bn/2c)), both of which are known to be attainable in just 2 rounds in the presence

of CRS and PKI. Furthermore, it turns out interestingly that this lower bound does not hold

against a boundary-admissble adversary with ta ≤ 1 (i.e boundary adversary corrupting with

either (ta, tp) = (1, bn/2c) or (ta, tp) = (0, n−1)), and can be circumvented for this special case.

In fact, we demonstrate a 3-round robust protocol in Section 6.5.3, against this special-case

boundary-admissible adversary.

Theorem 6.4 Assume parties have access to pairwise-private and broadcast channels, and a

setup that includes CRS and PKI. Then, there exist functions f for which there is no 3-round

protocol computing f that achieves guaranteed output delivery against boundary-admissible ad-

versary.

Proof: We prove the theorem for n = 5 parties. Let P = {P1, . . . P5} denote the set of parties,

where the adversary A may corrupt either with parametes (ta, tp) = (2, 2) or (ta, tp) = (0, 4).

Here, the corruption scenarios translate to upto 2 active corruptions or upto 4 pure passive

corruptions. We prove the theorem by contradiction. Suppose there exists a 3-round protocol π

computing a common output function f that achieves GOD against such a boundary-admissible

adversary.

At a high level, we discuss three adversarial strategies A1,A2 and A3, where Ai is launched

in an execution Σi of protocol π. While A1,A2 involve the case of active corruption of {P1} and

{P1, P2} respectively, A3 deals with the strategy of pure passive corruption of {P1, P3, P4, P5}.
The executions are assumed to be run for the same input tuple (x1, x2, x3, x4, x5) and the same
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random inputs (r1, r2, r3, r4, r5) of the parties. Let x̃i denote the default input of Pi. (Same

random inputs are considered for simplicity and without loss of generality. The same arguments

hold for distribution ensembles as well.) First, when A1 is launched in Σ1 we conclude that

the output ỹ at the end of the execution should be based on default input of P1 and actual

inputs of the remaining parties i.e ỹ = f(x̃1, x2, x3, x4, x5). Next, strategy Σ2 involving actively

corrupt {P1, P2} is designed such that corrupt P2 obtains the same view in Σ2 as an honest P2

in Σ1 and therefore computes the output ỹ at the end of Σ2. (Here, view of Pi includes xi, ri,

the messages received during π and the knowledge related to CRS and PKI setup.) Lastly,

a carefully designed strategy A3 by semi-honest parties {P1, P3, P4, P5} allows A to obtain

ỹ = f(x̃1, x2, x3, x4, x5), in addition to the correct output i.e y = f(x1, x2, x3, x4, x5) at the end

of execution Σ3. This is a contradiction as it violates the security of π and can explicitly breach

the privacy of honest P2. This completes the proof overview.

We assume that the communication done in Round 2 and Round 3 of π is via broadcast

alone. This holds without loss of generality since the parties can engage in point-to-point

communication by exchanging random pads in the first round and then use these random pads

to unmask later broadcasts. We use the following notation: Let p1
i→j denote the pairwise

communication from Pi to Pj in round 1 and bri denotes the broadcast by Pi in round r, where

r ∈ [3], {i, j} ∈ [5]. These values may be function of CRS and the PKI setup as per the protocol

specifications. Let V`
i denotes the view of party Pi at the end of execution Σ` (` ∈ [3]) of π.

Below we describe the strategies A1,A2 and A3.

A1: A corrupts {P1} actively here. P1 behaves honestly in Round 1 and simply remains silent

in Round 2 and Round 3.

A2: A corrupts {P1, P2} actively here. The active misbehavior of P1 is same as in A1 i.e P1

behaves honestly in Round 1 and stops communicating thereafter. On the other hand,

P2 participates honestly upto Round 2 and remains silent in Round 3.

A3: A corrupts {P1, P3, P4, P5} passively here. The semi-honest parties behave as per protocol

specification throughout the execution Σ3 to obtain the correct output. The passive

strategy of {P1, P3, P4, P5} is to ignore the Round 3 message from honest P2 and locally

compute the output based on the scenario of execution Σ2 i.e imagining that P1 stopped

after Round 1 and P2 stopped after Round 2.

We present a table depicting the views of the parties in executions Σ1 and Σ2 in Table 6.2.

Here b3
i for i ∈ {2, 3, 4, 5} denotes the message broadcast by honest Pi (as per its next-message

function) in Round 3 in case P1 behaves honestly in Round 1 but is silent in Round 2. The

244



views of parties in Σ3 which is as per honest execution (since it involves only purely passive

corruptions) appears in Table 6.3.

Table 6.2: Views of P1, P2, P3, P4, P5 in Σ1 and Σ2

Σ1 Σ2

V1
1 V1

2 V1
3 V1

4 V1
5 V2

1 V2
2 V2

3 V2
4 V2

5

Input (x1, r1) (x2, r2) (x3, r3) (x4, r4) (x5, r5) (x1, r1) (x2, r2) (x3, r3) (x4, r4) (x5, r5)

R1

p1
2→1, p1

1→2, p1
1→3, p1

1→4, p1
1→5, p1

2→1, p1
1→2, p1

1→3, p1
1→4, p1

1→5,

p1
3→1, p1

3→2, p1
2→3, p1

2→4, p1
2→5, p1

3→1, p1
3→2, p1

2→3, p1
2→4, p1

2→5,

p1
4→1, p1

4→2, p1
4→3, p1

3→4, p1
3→5, p1

4→1, p1
4→2, p1

4→3, p1
3→4, p1

3→5,

p1
5→1, p1

5→2, p1
5→3, , p1

5→4 , p1
4→5 p1

5→1, p1
5→2, p1

5→3, p1
5→4, p1

4→5,

b1
2, b1

3, b1
1, b1

3, b1
1, b1

2, b1
1, b1

2, b1
1, b1

2, b1
2, b1

3, b1
1, b1

3, b1
1, b1

2, b1
1, b1

2, b1
1, b1

2,

b1
4, b1

5 b1
4, b1

5 b1
4, b1

5 b1
3, b1

5 b1
3, b1

4 b1
4, b1

5 b1
4, b1

5 b1
4, b1

5 b1
3, b1

5 b1
3, b1

4

R2
b2

2, b2
3, –, b2

3, –, b2
2, –, b2

2, –, b2
2, b2

2, b2
3, –, b2

3, –, b2
2, –, b2

2, –, b2
2,

b2
4, b2

5 b2
4, b2

5 b2
4, b2

5 b2
3, b2

5 b2
3, b2

4 b2
4, b2

5 b2
4, b2

5 b2
4, b2

5 b2
3, b2

5 b2
3, b2

4

R3
b3

2, b3
3, –, b3

3, –, b3
2, –, b3

2, –, b3
2, –, b3

3, –, b3
3, –, –, –, –, –, –,

b3
4, b3

5 b3
4, b3

5 b3
4, b3

5 b3
3, b3

5 b3
3, b3

4 b3
4, b3

5 b3
4, b3

5 b3
4, b3

5 b3
3, b3

5 b3
3, b3

4

Table 6.3: Views of P1, P2, P3, P4, P5 in Σ3

Σ3

V1
1 V1

2 V1
3 V1

4 V1
5

Input (x1, r1) (x2, r2) (x3, r3) (x4, r4) (x5, r5)

R1

p1
2→1, p1

3→1 p1
1→2, p1

3→2, p1
1→3, p1

2→3, p1
1→4, p1

2→4, p1
1→5, p1

2→5,

p1
4→1, p1

5→1 p1
4→2, p1

5→2 p1
4→3, p1

5→3 p1
3→4, p1

5→4 p1
3→5, p1

4→5

b1
2, b1

3, b1
4, b1

5 b1
1, b1

3, b1
4, b1

5 b1
1, b1

2, b1
4, b1

5 b1
1, b1

2, b1
3, b1

5 b1
1, b1

2, b1
3, b1

4

R2 b2
2, b2

3, b2
4, b2

5 b2
1, b2

3, b2
4, b2

5 b2
1, b2

2, b2
4, b2

5 b2
1, b2

2, b2
3, b2

5 b2
1, b2

2, b2
3, b2

4

R3 b3
2, b3

3, b3
4, b3

5 b3
1, b3

3, b3
4, b3

5 b2
1, b3

2, b3
4, b3

5 b3
1, b3

2, b3
3, b3

5 b3
1, b3

2, b3
3, b3

4

We now present a sequence of lemmas to complete the proof.

Lemma 6.6 At the end of Σ1, parties compute output ỹ = f(x̃1, x2, x3, x4, x5), where x̃1 denotes

the default input of P1.

Proof: Firstly, since Σ1 involves active behavior only by P1, it follows directly from correctness

and robustness of π that the output computed at the end of Σ1, say y′ should be based on actual
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inputs xi for i ∈ {2, 3, 4, 5}. Now, there are two possibilities with respect to input of P1 i.e y′

is based on either x1 (i.e the input used by P1 in Round 1 of Σ1) or x̃1 (default input). In case

of the latter, the lemma holds directly. We now assume the former for contradiction.

Suppose the output y′ is based on x1 rather than x̃1. Since P1 stops communicating after

Round 1, we can conclude that the combined views of {P2, P3, P4, P5} must suffice to compute

the output y′ = f(x1, . . . , x5) at the end of Round 1 itself. If this holds, we argue that π cannot

be secure as follows: Suppose π is such that when all parties participate honestly in Round

1, the combined view of {P2, P3, P4, P5} suffices to compute the output at the end of Round

1 itself. Then, in an execution of π, an adversary corrupting {P2, P3, P4, P5} purely passively

(correponding to (ta, tp) = (0, 4)) can learn the output on various inputs of its choice, keeping

x1 fixed. This residual attack breaches privacy of honest P1 (A concrete example of such an f

appears at the end of this section). We have thus arrived at a contradiction. This completes the

proof that y′ must be based on x̃1, rather than x1 and consequently y′ = ỹ = f(x̃1, x2, x3, x4, x5)

must be the output computed at the end of Σ1. 2

Lemma 6.7 At the end of Σ2, parties compute output ỹ = f(x̃1, x2, x3, x4, x5), where x̃1 denotes

the default input of P1.

Proof: Recall that A2 is similar to A1 involving active P1, except that P2 is active as well

with the strategy of behaving honestly upto Round 2 and remaining silent in Round 3. Since

the executions Σ1 and Σ2 proceed identically upto Round 2, it is easy to check that the view

of corrupt P2 in Σ2 is same as honest P2 in Σ1 (refer to Table 6.2). It now follows directly

from Lemma 6.6 that P2 computes the output ỹ = f(x̃1, x2, x3, x4, x5). By correctness and

robustness of π computing the common output function f , it must hold that all parties output

ỹ at the end of Σ2. 2

Lemma 6.8 The combined view of parties {P3, P4, P5} at the end of Round 2 of Σ2 suffices to

compute the output of Σ2 i.e ỹ.

Proof: We note that as per A2, both {P1, P2} do not communicate in Round 3; implying that

the combined view of honest parties {P3, P4, P5} at the end of Round 2 of Σ2 must suffice to

compute the output of Σ2 i.e ỹ (Lemma 6.7). 2

Lemma 6.9 An adversary executing strategy A3 obtains the value ỹ = f(x̃1, x2, x3, x4, x5), in

addition to the correct output y = f(x1, x2, x3, x4, x5) at the end of Σ3.

Proof: Firstly, Σ3 must lead to computation of correct output i.e y = f(x1, x2, x3, x4, x5) by

all parties since A3 involves only semi-honest corruptions. Next, it is easy to check from Tables

246



6.2 and 6.3 that the combined view of adversary corrupting {P1, P3, P4, P5} passively at the

end of Round 2 of Σ3 subsumes the combined view of honest parties {P3, P4, P5} at the end

of Round 2 of Σ2. It now follows directly from Lemma 6.8 that the adversary can obtain the

output ỹ as well.

In more detail, A launching A3 in Σ3 can compute the output as per the scenario of Σ2 as

follows- Let b3
i for i ∈ {2, 3, 4, 5} denotes the message broadcast by honest Pi (as per its next-

message function) in Round 3 in case P1 behaves honestly in Round 1 but is silent in Round 2.

Locally compute {b3
3, b

3
4, b

3
5} (b3

i is a function of Pi’s (i ∈ {3, 4, 5}) view at the end of Round 2)

by imagining that P1 did not send Round 2 message and compute ỹ by ignoring the message

sent by honest P2 in Round 3. Thus, by following strategy A3, A obtains multiple evaluations

of f i.e both y and ỹ which violates the security of π. (We give a concrete example of such an

f below that breaches privacy of honest P2.) This completes the proof of the lemma. 2

Thus, we have arrived at a contradiction to our assumption that π is secure. While the above

proof was shown specifically for n = 5, it can be extended to any n > 5 in the following natural

manner: The strategies A1,A2 remain the same (feasible as atleast two active corruptions are

allowed when n > 5) and let us conclude that the combined view of {P3, P4 . . . Pn} at the end

of Round 2 suffices to compute ỹ = f(x̃1, x2 . . . xn). Accordingly, strategy A3 involving passive

corruption of {P1, P3, P4 . . . Pn} would lead to the adversary obtaining multiple evaluations of

the function leading to the final contradiction. This completes the proof of Theorem 6.4. 2

Next, we give a concrete example of f to demonstrate how the strategy of residual attack

used to prove the lower bound in Theorem 6.4.

Concrete Example of f : Let f(x1, x2, x3, x4, x5) with x1 = (α, β), x2 = (b,m0,m1) (where

α, β, b are single bit values) and x3 = x4 = x5 = ⊥ be defined as below for Pi’s input xi:

f(x1, x2, x3, x4, x5) =

mα if b = 0

mα⊕β otherwise

Using this function f , we describe explicitly how multiple evaluations of f breaches privacy of

P1 and P2 in the argument of Lemma 6.6 and Lemma 6.8 respectively. Consider the adversary

corrupting {P2, P3, P4, P5} passively ((ta, tp) = (0, 4)) that can learn the output on various

inputs of its choice, keeping x1 fixed (in Lemma 6.6). By locally plugging in inputs b = 0 and

b = 1 on behalf of passive P2, it is easy to check that the adversary can learn both α and β.

This violates privacy of honest P1 as its input β is never revealed as per the ideal functionality.

Next, consider the adversary of Lemma 6.8 corrupting {P1, P3, P4, P5} who obtains both y =

f(x1, x2, x3, x4, x5) and ỹ = f(x̃1, x2, x3, x4, x5). We claim this breaches privacy of honest P2
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as follows: As per the ideal functionality, the adversary would learn exactly only one among

m0,m1. Next, suppose the default value of x̃1 = (0, 0). Then by participating in Σ3 with input

x1 = (1, 0), the adversary would obtain both y = m1 and ỹ = m0 (irrespective of b) which

compromises the security of honest P2’s input.

Before concluding this section, we give quick intuition of why the above lower bound argu-

ment does not hold when malicious corruption ta ≤ 1. Note that the strategy A3 carried out

by the adversary corrupting {P1, P3, P4, P5} purely passively was feasible only since the output

on default input of P1 could be computed without any dependency on honest P2’s message in

Round 3. Had it been the case that honest P2’s Round 3 message was crucial for output com-

putation, then the semi-honest parties {P1, P3, P4, P5} would have obtained only the output on

the combination of actual inputs and would be unable to breach security. Tracing back, recall

that the partnership of malicious {P1, P2} together in A2 was crucial in implying this non-

dependency on Round 3 message of P2 (which led us to the conclusion of view of {P3, P4, P5}
being sufficient to compute output on P1’s default input). It is thereby evident that without

such a partnership of two malicious parties, it would not be possible to arrive at such a contra-

diction. This intuition is further substantiated by our 3-round upper bound achieving GOD in

case of single active corruption (Section 6.5.3).

6.4.2 Impossibility of 2-round Fair MPC

We begin with the observation that the existing 3-round lower bounds of [102, 108, 166] for fair

malicious-minority MPC do not carry over in our setting. The lower bound of both [102, 108]

break down when the parties have access to a PKI (as acknowledged/demonstrated in their

work). The result of [166], assuming access to pairwise-private and broadcast channels, also

breaks down when parties have access to a PKI. The proof, originally given without the mention

of CRS, seems to withstand a CRS. The proof approach of [166] is via contradiction i.e derives

a series of implications assuming that 2-round fair MPC protocol π exists and eventually builds

up to a contradiction. A crucial lemma in their proof (Lemma 24 in their full version [168])

states that π must be such that a single party, say P1, is able to compute the output at

the end of Round 1. The argument for this claim relies on the fact that (a) the adversary’s

communication stops after Round 1 and (b) the Round 2 messages of honest parties do not

hold any potential useful information to aid P1’s output computation. Roughly speaking, (b)

follows since the honest party’s messages are fully determined by the information available to

P1 at the end of Round 1 itself and can therefore be locally computed by P1. This information

includes the broadcast communication by the adversary in Round 1. While the above argument

regarding (b) holds in the plain model and even in the presence of public setup such as CRS,
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it does not hold in the presence of private setup like PKI. In this case, an honest party may

hold some private information unknown to P1 at the end of Round 1, such as the decryption

of the adversary’s Round 1 broadcast using its exclusive secret key; which may aid in output

computation by P1. Consequently, this claim of [166] and their proof are not resilient to the

presence of PKI. We now present our lower bound formally.

Theorem 6.5 There exist functions f for which there is no 2-round n-party MPC protocol that

achieves fairness against boundary-admissible adversary, in a setting with pairwise-private and

broadcast channels, and a setup that includes CRS and PKI.

Proof: We prove the theorem for n = 3 parties, where boundary-admissible adversary A

chooses corruption parameters either (ta, tp) = (1, 1) or (ta, tp) = (0, 2). Here, the corruption

scenarios translate to either upto 1 active corruption or upto 2 purely passive corruptions. Let

{P1, P2, P3} denote the set of parties with Pi having input xi. Suppose by contradiction, π is

an MPC protocol computing f that achieves fairness against A. To be more specific, π is fair if

(ta, tp) = (1, 1) and achieves GOD otherwise (as GOD is the de-facto security guarantee incase

of no active corruptions i.e (ta, tp) = (0, 2)). On a high-level, we first exploit fairness of π to

conclude that the combined view of a set of 2 parties suffices for output computation at the

end of Round 1. (Here, view of Pi includes xi, its randomness ri, the messages received during

π and the knowledge related to CRS and PKI setup.) Next, considering a strategy where the

adversary A corrupts this set of 2 parties purely passively leads us to conclude that A can

compute the output at the end of Round 1 itself; leading upto a final contradiction. We now

present the sequence of claims to complete the formal proof.

Lemma 6.10 Protocol π must be such that the combined view of {P2, P3} at the end of Round

1 suffices for output computation.

Proof: The proof of the lemma is straightforward. Assume A corrupting P1 actively (with

(ta, tp) = (1, 1)) with the following strategy: P1 behaves honestly in Round 1 and simply remains

silent in Round 2. It is easy to check that P1 would obtain the output due to correctness of

π, as he receives the entire protocol communication as per honest execution. Since π is fair,

the honest parties {P2, P3} must also obtain the output at the end of π; even without P1’s

communication in Round 2. Thus, we conclude that the combined view of {P2, P3} at the end

of Round 1 suffices for output computation. 2

Lemma 6.11 There exists an adversarial strategy such that the adversary obtains the output

at the end of Round 1.
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Proof: The proof follows directly from Lemma 6.10– A corrupting {P2, P3} purely passively

((ta, tp) = (0, 2)) would obtain the output at the end of Round 1. 2

Lemma 6.12 Protocol π does not achieve privacy.

Proof: It is implied from Lemma 6.11 that A corrupting {P2, P3} purely passively can obtain

multiple evaluations of the function f by locally plugging in different values for {x2, x3} while

honest P1’s input x1 remains fixed. This ‘residual function attack’ violates privacy of P1. We

refer to the argument in Lemma 6.3 for a concrete example. 2

We have arrived at a contradiction, concluding the proof of Theorem 6.5. It is easy to check

that this argument can be extended for higher values of n. 2

6.5 Upper bounds for Boundary Corruption

In this section, we describe three upper bounds with respect to the boundary-admissible adver-

sary A with threshold (ta, tp). We first present a robust upper bound in 4 rounds for the general

case. Next, we present a 3-round robust protocol for the special case of single active corrup-

tion, which circumvents our lower bound of Section 6.4.1. Finally, we present our fair 3-round

upper bound that can be arrived at by simplifying the robust general-case construction. Note

that even the fair construction is robust in the corruption scenario of no active corruptions i.e

(ta, tp) = (0, n− 1). The security guarantees differ only in case of corruption scenario involving

malicious corruptions. All the above three constructions are round-optimal, following our lower

bound results of Section 6.4.1 and 6.4.2. We start with a building block commonly used across

all our constructs.

6.5.1 Authenticated Secret Sharing

We introduce the primitive of Authenticated Secret Sharing [130, 127] used in our upper bounds

against the boundary-admissible A.

Definition 6.4 (α-authenticated sharing) A value v is said to be α-authenticated-shared

amongst a set of parties P if every honest or passively corrupt party Pi in P holds Si as produced

by fαASh(v) given in Figure 6.5.

1. α shamir-sharing of secret v: Choose random a1, a2 . . . aα ∈ F, where F denotes a finite field.

Build the α-degree polynomial A(x) = a0 + a1x + a2x
2 + a3x

3 + · · · + aα−1x
α−1 + aαx

α, where

a0 = v. Let shi = A(i) for i ∈ [n].

Function fαASh(v)
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2. Authentication of shares: For all i, j ∈ [n], choose random one-time message-authentication codes

(MAC) [105] keys kij ∈ {0, 1}κ and compute tagij = Mackij (shi).

3. Output Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
for i ∈ [n].

Figure 6.5: Function for Authenticated secret-sharing

In our upper bounds, the function fαASh is realized via MPC protocols. The reconstruction

will be done via protocol ARecα (Figure 6.6) amongst the parties. We prove the relevant

properties below:

Inputs: Pi participates with Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
Output: Secret v′

Each Pi does the following:

1. Broadcast
(
shi, {tagij}j∈[n]

)
and receive

(
sh′j , tag′ji

)
from j 6= i.

2. Each Pi outputs v′ as follows:

- Initialize V to {i}. For j 6= i, if Mackji(sh′j) = tag′ji, set shj = sh′j and add j to V; else set

shj = ⊥.

• If |V| ≥ α + 1, interpolate a α degree polynomial A′(x) satisfying A′(γ) = shγ for γ ∈ V.

Output ⊥ if the above fails, else output v′ = A′(0).

Protocol ARecα

Figure 6.6: Protocol for Reconstruction of an authenticated-secret

Lemma 6.13 The pair (fαASh,ARecα) satisfies the following:

i. Privacy. For all v ∈ F, the output (S1, . . . , Sn)← fαASh(v) satisfies the following– ∀{i1, . . . iα′} ⊂
[n] with α′ ≤ α, the distribution of {Si1 , . . . , Siα′} is statistically independent of v.

ii. Correctness. For all v ∈ F, the value v′ output by all honest parties at the end of ARecα(S ′1, . . . S
′
n)

satisfies the following– For all (S1, . . . , Sn)← fαASh(v) and (S ′1, . . . , S
′
n) such that S ′i = Si

corresponding to atleast α+ 1 parties Pi, it holds that Pr[v′ 6= v] ≤ negl(κ) for a compu-

tational security parameter κ.

iii. Round complexity. ARecα terminates in one round.

Proof:
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i. Privacy: It is easy to check from the description of fαASh that privacy follows directly from

the fact that v is Shamir-shared with degree α.

ii. Correctness: Firstly, we note that since atleast α + 1 parties Pi participate with S ′i = Si

in ARecα(S ′1, . . . S
′
n), the V set of each honest party comprises of atleast (α + 1) correct

shares shi. These shares suffice to uniquely reconstruct the α-shared secret v. We can

thus conclude that an honest Pi would output ⊥ only if the interpolation of the α-degree

polynomial fails, which in turn occurs if there is an incorrect share, say sh′j, such that j

is added to V. This would imply that a corrupt Pj broadcasts sh′j 6= shj and tag′ji but

satisfied the condition Mackji(sh′j) = tag′ji, with respect to the MAC-key kji (present in

Si) available to honest Pi (not to Pj). However, security of MAC ensure that the above

cannot happen except with negligible probability. This completes the proof of correctness.

iii. Round complexity. The proof is self-evident.

2

6.5.2 Upper bound for Robust MPC: The general case

In a setting where either at most n−1 passive corruption or at most (dn
2
e−1) active corruption

takes place, [127] presents a protocol relying on two types of MPC protocol. An actively-

secure protocol against malicious majority is used to compute an authenticated-sharing of the

output with threshold (dn
2
e − 1). When this protocol succeeds, the output is computed via

reconstruction of the authenticated-sharing. On the other hand, a failure is tackled via running

a robust honest-majority (majority of the parties are honest) actively-secure protocol, relying

on the conclusion that the protocol is facing a malicious-minority. When n is odd, we need

to tackle the exact corruption scenarios as that of the protocols of [127]. On the other hand

when n is even, the extreme case for active corruption accommodates an additional passive

corruption. Apart from hitting optimal round complexity, tackling the distinct boundary cases

for odd and even n in a unified way brings challenge for our protocol.

We make the following effective changes to the approach of [127]. First, we invoke a 2-

round actively-secure protocol πidua with identifiable abort against malicious majority (can be

instantiated with protocols of [93, 35] augmented with NIZKs) to compute bn
2
c-authenticated-

sharing of the output. When we expel the identified corrupt parties in case of failure (which

may occur in corruption scenario (ta, tp) = (dn/2e−1, bn/2c)), the remaining population always

displays honest-majority, no matter whether n is odd or even (For instance, elimination of 1

corrupt party results in t′ ≤ (tp−1) = bn/2c−1 total corruptions among n′ = (n−1) remaining

parties which satisfies n′ ≥ 2t′+ 1.). The robust honest-majority protocol πGOD is then invoked
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to compute the function f where the inputs of the identified parties are hard-coded to default

values. The change in the degree of authenticated sharing ensures that an adversary choosing

to corrupt in the boundary case of dn
2
e − 1 active corruption and zero (when n is odd) or

one (when n is even) purely passive corruption, cannot learn the output by itself collating the

information it gathers during πidua. Without the change, the adversary could ensure that πidua

leads to a failure for the honest parties and yet could learn outputs from both πidua and πGOD

with different set of adversarial-inputs. Lastly, the function and input independence property

of Round 1 of the 3-round honest-majority protocol of [108, 4] allows us to superimpose this

round with the run of πidua. Both these instantations of πGOD are also equipped to tackle the

probable change in population for the remaining two rounds (when identified corrupt parties

are expelled) and the change in the function to be computed (with hard-coded default inputs

for the identified corrupt parties). Our protocol appears in Figure 6.7. Assumption wise,

πbou
GOD relies on 2-round maliciously-secure OT in the common random/reference string model,

NIZK (when πidua is instantiated with function-delayed variant of the protocol of [93] satisfying

identifiability) and Zaps and public-key encryption (when πGOD is instantiated with the protocol

of [4]).

Inputs: Party Pi has xi for i ∈ [n]

Building Blocks: (a) 2-round protocol πidua achieving identifiable abort against malicious majority

(realizing functionality Fidua, refer Figure 2.5); (b) 3-round honest-majority actively-secure

robust protocol πGOD (realizing functionality Fgod, refer Figure 2.4) with additional property

of Round 1 being function and input independent; (c) Protocol ARecbn/2c for reconstructing

an bn/2c-authenticated-shared secret (Figure 6.6); (d) Function f
bn/2c
ASh (Figure 6.5).

Output: y = f(x1 . . . xn)

Round 1–2: The parties run πidua computing the function f
bn/2c
ASh � f with input xi to obtain

output (Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
,B), where B denotes the set of identified cheaters.

Additionally, the parties run (input-independent and function-independent) Round 1 of πGOD.

Round 3–4: If Si = ⊥, the parties in P \B run Round 2 and 3 of πGOD computing fB (f with the

inputs of parties in B are hardcoded to default values) and output y as the outcome of πGOD.

Else, participate in ARecbn/2c with input Si and output the outcome of ARecbn/2c.

Protocol πbou
GOD

Figure 6.7: Robust MPC against boundary-admissible adversary

We state the formal theorem below.
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Theorem 6.6 Assuming the presence of a 2-round protocol πidua realizing Fidua (Figure 2.5)

against malicious majority and a 3-round protocol πGOD realizing Fgod in the presence of honest

majority (with special property of Round 1 being function and input-independent), the 4-round

MPC protocol πbou
GOD (Figure 6.7) satisfies:

– Correctness: computes the correct output.

– Security: realizes Fgod (Figure 2.4) against boundary-admissible A

Proof: Correctness of πbou
GOD follows directly from that of πidua, πGOD and ARecbn/2c (Lemma

6.13). We prove its security in Section 6.6.3.2. 2

We conclude this section with a simplification to πbou
GOD that can be adopted if additional

access to PKI is assumed. In such a case, parallelizing Round 1 of πGOD with Round 1 of πidua

can be avoided and the 2-round honest-majority protocol of [108] achieving GOD assuming

CRS and PKI setup can be used to instantiate πGOD (which would be run in Rounds 3-4 of

πbou
GOD). Both our 4-round constructions with CRS (Figure 6.7) and its simplified variant with

CRS and PKI are tight upper bounds, in light of the impossibility of Section 6.4.1 that holds

in the presence of CRS and PKI.

6.5.3 Upper bound for Robust MPC: The single corruption case

Building upon the ideas of Section 6.5.2 and Section 6.3.3, a 3-round robust MPC πbou,1
GOD against

the special-case boundary-admissible adversary can be constructed as follows. Similar to πbou
GOD,

Round 1 and 2 involve running protocol πidua realizing bn/2c-authenticated secret-sharing of

the function output. When πidua does not result in abort, πbou,1
GOD proceeds to reconstruction of

output; identical to πbou
GOD and thereby terminating in 3 rounds. However, when πidua results in

output ⊥, we exploit the advantage of atmost one malicious corruption by noting that once the

single actively-corrupt party is expelled, the parties involved thereafter comprise only of the

honest and purely passive parties. We adopt the idea of Section 6.3.3 and re-run Round 2 of

πidua among the remaining parties to compute the function output directly, with input of the

expelled party substituted with default input. This step demands the function-delayed property

of πidua i.e Round 1 is independent of the function to be computed and the number of parties.

In order to accommodate this re-run, two instances of Round 1 of πidua are run in Round 1 of

πbou,1
GOD . It is easy to see that robustness is ensured as πidua is robust in the absence of actively-

corrupt parties. Lastly, we point that similar to Section 6.3.3, we use the modified variant of the

2-round protocol of [93] to instantiate πidua that is function-delayed and achieves identifiability.

The formal description of πbou,1
GOD appears in Figure 6.8. This upper bound is tight, following the

impossibility of 2-round fair MPC (that holds for single malicious corruption) proven in Section
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6.4.2 as GOD implies fairness. Assumption wise, πbou,1
GOD relies on 2-round maliciously-secure

OT in the common random/reference string model and NIZK (when πidua is instantiated with

function-delayed variant of the protocol of [93] satisfying identifiability).

Inputs: Party Pi has xi for i ∈ [n]

Building Blocks: (a) 2-round protocol πidua achieving identifiable abort against malicious major-

ity (realizing functionality Fidua, refer Figure 2.5) and having function-delayed property; (b)

Protocol ARecbn/2c for reconstructing an bn/2c-authenticated-shared secret (Figure 6.6); (c)

Function f
bn/2c
ASh (Figure 6.5).

Output: y = f(x1 . . . xn)

Round 1: Pi does the following: Run 2 instances of Round 1 of πidua, each using input xi and

independent randomness. Note that this round is independent of the function to be computed

and the number of parties.

Round 2: Pi does the following: Run Round 2 of πidua (based on first instance of Round 1 of

πidua) among P computing the function f
bn/2c
ASh � f using input xi to obtain output (Si =(

shi, {kji}j∈[n], {tagij}j∈[n]

)
,B), where B denotes the set of identified cheaters.

Round 3: If Si = ⊥, the parties in P \B run Round 2 of πidua (based on second instance of Round

1 of πidua) computing fB (where the inputs of the party in B is hardcoded to default value)

and output y as the outcome of this (second) instance of πidua. Else, participate in ARecbn/2c

with input Si and output the outcome of ARecbn/2c.

Protocol πbou,1
GOD

Figure 6.8: Robust MPC against special-case boundary-admissible adversary

We state the formal theorem below.

Theorem 6.7 Assuming the presence of a 2-round protocol πidua realizing functionality Fidua

(Figure 2.5) against malicious majority and having function-delayed property, the 3-round MPC

protocol πbou,1
GOD (Figure 6.8) satisfies:

– Correctness: computes the correct output.

– Security: realizes Fgod (Figure 2.4) against special-case boundary-admissible A with corrup-

tion parameters either (ta, tp) = (1, bn/2c) or (ta, tp) = (0, n− 1).

Proof: Correctness of πbou,1
GOD follows directly from correctness of πidua, and correctness of

ARecbn/2c (Lemma 6.13). We prove its security in Section 6.6.3.3. 2
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6.5.4 Upper bound for Fair MPC

The 4-round robust protocol πbou
GOD (Section 6.5.2) can be simplified as follows to yield a 3-round

fair MPC protocol πbou
fn . Similar to πbou

GOD, Round 1 and 2 involve execution of πua (instantiated by

[93, 35] in the CRS model) achieving unanimous abort against malicious-majority (identifiability

is not needed) in order to compute bn/2c-authenticated sharing of the output. If πua does not

result in abort, the honest parties proceed to reconstruction of output in Round 3. Else, the

honest parties simply output ⊥. It is easy to check that fairness is preserved due to privacy

of bn/2c-authenticated secret-sharing (Lemma 6.13). Protocol πbou
fn appears in Figure 6.9 and

is round-optimal, in view of the lower bound of Section 6.4.2. Assumption wise, πbou
fn relies

on 2-round maliciously-secure OT in the common random/reference string model (when πua is

instantiated with the protocols of [93, 35]).

Inputs: Party Pi has xi for i ∈ [n]

Building Blocks: (a) 2-round protocol πua achieving security with unanimous abort against mali-

cious majority (realizing functionality Fua, refer Figure 2.2); (b) Protocol ARecbn/2c for recon-

structing an bn/2c-authenticated-shared secret (Figure 6.6); (c) Function f
bn/2c
ASh (Figure 6.5).

Output: y = f(x1 . . . xn) or ⊥.

Round 1–2: The parties run πua computing the function f
bn/2c
ASh � f with input xi to obtain output

(Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
).

Round 3: If Si = ⊥, the parties output ⊥. Else, participate in ARecbn/2c with input Si and output

the outcome of ARecbn/2c.

Protocol πbou
fn

Figure 6.9: Fair MPC against boundary-admissible adversary

We state the formal theorem below.

Theorem 6.8 Assuming the presence of a 2-round protocol πua realizing functionality Fua (Fig-

ure 2.2) against malicious majority, the 3-round MPC protocol πbou
fn (Figure 6.9) satisfies:

– Correctness: computes the correct output.

– Security: realizes against (ta, tp) boundary-admissible A (1) Ffair (Figure 2.3) when (ta, tp) =

(dn/2e − 1, bn/2c) (2) Fgod (Figure 2.4) when (ta, tp) = (0, n− 1).

Proof: Correctness of πbou
fn follows directly from correctness of πua and the correctness of

ARecbn/2c (Lemma 6.13). We prove its security in Section 6.6.3.4. 2
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6.6 Security Proofs

6.6.1 Proofs for Upper Bounds for Dynamic Corruption

6.6.1.1 Ideal Functionality F
(n−2,bn

2
c)

ua

We formally define the ideal functionality computing the (n− 2, bn
2
c)-levelled sharing (Defini-

tion 6.3) of the output y = f(x1, . . . xn) securely with unanimous abort in Figure 6.10. This

ideal functionality is identical to Fua, with the only difference being that the relevant function

computed is f
n−2,bn

2
c

LSh � f . Refer Figure 6.1 for the description of f
n−2,bn

2
c

LSh .

Input: Receive message
(
(D,E), Input, {xi}i∈E

)
from A. Next, do the following: if (∗, Input, ∗)

message was received from Pi, then ignore. Otherwise record it internally. If xi is outside of

the domain for Pi (Pi ∈), consider xi = abort.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send (sid, Output,⊥) to all

the parties. Else, compute y = f(x1 . . . xn) and compute (L1, . . . Ln) = f
n−2,bn

2
c

LSh (y). Send

(sid, Output, {Li}i∈E) to A.

Output to honest parties: Receive either continue or abort from A. In case of continue, send

Li to each honest Pi, whereas in case of abort send ⊥ to all honest parties.

Functionality F
(n−2,bn

2
c)

ua

Figure 6.10: Ideal Functionality F
(n−2,bn

2
c)

ua

6.6.1.2 Security Proof of πdyn
fn (Theorem 6.2)

We analyze the protocol πdyn
fn in a F

(n−2,bn
2
c)

ua -hybrid model where the parties have access to a

trusted party F
(n−2,bn

2
c)

ua (Figure 6.10). Let A be a dynamic adversary with threshold (ta, tp)

that controls tp parties passively and upto ta among them actively in the F
(n−2,bn

2
c)

ua -hybrid

model execution of πdyn
fn . We describe a simulator Sdyn

fn , running an ideal-world evaluation of the

functionality Ffair (refer Figure 2.3) computing f whose behaviour simulates the behaviour of

A in Figure 6.11.

Recall that D(E) denotes the set of actively (passively) corrupt parties where D ⊆ E. Here |D| = ta

and |E| = tp. Let H and C denote the set of indices of honest parties (in P \ E) and parties in E

respectively. S
dyn
fn does the following:

Simulator S
dyn
fn
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– Interaction with F
(n−2,bn

2
c)

ua : Receive ((D,E), Input, {xj}j∈C) sent by A to F
(n−2,bn

2
c)

ua . Compute

ta = |D|, tp = |E|. If for any Pj ∈ D, xj is outside of domain of input, send ⊥ as output of

F
(n−2,bn

2
c)

ua to A and send ⊥ as input to Ffair on behalf of A. Else continue.

– Output of F
(n−2,bn

2
c)

ua to A: We have two cases.

- If ta = 0, invoke Ffair on behalf of A with {xj}j∈C to receive an output value y in return.

Compute (L1, . . . Ln) = f
n−2,bn

2
c

LSh (y) (Figure 6.1) and return {Lj}j∈C to A as output from

F
(n−2,bn

2
c)

ua .

- Else, do the following: Let α′ = n − 2 and β′ = bn/2c. For j ∈ C, return Lj =(
{sij , oij}i∈[α′,β′], {cil}i∈[α′,β′],l∈[n]

)
where sij are randomly chosen, (cij , oij)← eCom(sij ;

rij) computed as per protocol specifications and {cil}i∈[α′,β′],l∈H are computed as com-

mitments on dummy values, say involving {s′il, o′il}i∈[α′,β′],l∈H.

– Completing Simulation of Round 1 - 2: If A invokes F
(n−2,bn

2
c)

ua with abort, invoke Ffair with

input ⊥ on behalf of A and output ⊥ on behalf of honest parties.

Note: Recall that in Round r (r ∈ [3, dn/2e+1]), summand sn−r+1 is attempted to be reconstructed

(in Round r − 2 of LRecn−2,bn
2
c).

– Round 3 to Round (n− tp) : S
dyn
fn does the following in Round r′, where r′ = [3, n− tp]

- Let i = n − r′ + 1. Send {s′il, o′il}l∈H on behalf of honest parties and receive {s′ij , o′ij}j∈C
from A.

- Initialize Vi = P\. Add Pj ∈ to Vi if Pj sends (s′ij , o
′
ij) = (sij , oij) (consistent with Lj

returned as output of F
(n−2,bn

2
c)

ua to Pj). If |Vi| < i+ 1, then abort and invoke Ffair with

input ⊥ on behalf of A; thereby completing simulation. Else, continue to r′ = r′ + 1.

– Round (n− tp + 1) : This round involves reconstruction of summand stp . S
dyn
fn does the follow-

ing:

- Invoke Ffair on behalf of A with {xj}j∈C to receive output y.

- Note that reconstruction of summands stp+1, . . . , sn−2 has been completed and the sum-

mands si, where i ∈ [bn/2c, . . . , tp − 1] is already fully determined by {sij}j∈C returned

as output of F
(n−2,bn

2
c)

ua to A. Compute stp = y −
∑tp−1

i=bn/2c si −
∑n−2

i=tp+1 si.

- Let µ = tp. Interpolate a µ-degree polynomial gµ(x) satisfying gµ(0) = sµ and gµ(j) = sµj

for j ∈ C. Let sµl = gµ(l) for l ∈ H. Compute oµl ← Equiv(cµl, (s
′
µl, o

′
µl), sµl, t) (Section

2.4.2.1). Broadcast (sµl, oµl) on behalf of Pl, l ∈ H.
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– Round (n− tp + 2) to Round (dn/2e+ 1) : In Round r′ (r′ ∈ [n−tp+2, dn/2e+1]), broadcast

(s′il, o
′
il) on behalf of Pl, l ∈ H; where i = n− r′ + 1.

Figure 6.11: Simulator S
dyn
fn

At a high-level, the simulation is divided into 4 parts: Rounds 1-2, Rounds 3 to n−tp, Round

n− tp + 1 and finally Rounds n− tp + 1 to Round dn/2e + 1. In order to complete the proof,

we argue how each of them maintain that the view of A is the ideal world is indistinguishable

from its view in F
(n−2,bn

2
c)

ua -hybrid model execution of πdyn
fn (hybrid-world):

Rounds 1 - 2. It is straightforward to check that the view of A in the real and hybrid-world

are indistinguishable. Note that incase of no active corruptions, Ffair is invoked on behalf

of A to get the output directly which is consistent with the hybrid-world, where the

output of f can be deduced by A corrupting tp = n − 1 parties from the output of

F
(n−2,bn

2
c)

ua . Furthermore, if A invokes F
(n−2,bn

2
c)

ua with abort, it must hold that ta ≥ 1

implying tp < n − 1. In this case Ffair is invoked with ⊥, which is consistent with the

hybrid-world where A has no information about sn−2 and consequently the output. This

follows directly from the property of Shamir-Sharing and hiding property of eNICOM.

Rounds 3 to Round n− tp. Note that these rounds involve only reconstruction of sum-

mands sn−2 . . . stp+1. Indistinguishability follows from the fact that in both ideal and

hybrid-world, A corrupting upto tp number of parties has no information regarding the

summand stp and consequently the output y. This can be inferred from the property

of Shamir-sharing of stp with threshold tp and the hiding property of eNICOM. Next,

we observe that the only difference in the ideal and the hybrid-model is the following:

In the hybrid-model, the share of a party Pj, say sij (i = [n − 2, tp + 1]) is discarded

during LRecn−2,bn/2c() if the corresponding commitment cij (output from F
(n−2,bn

2
c)

ua ) does

not open successfully using the given opening o′ij obtained from Pj. However, in the ideal

world, the share of Pj (Pj ∈) is discarded if Pj does not send (sij, oij), same as output from

F
(n−2,bn

2
c)

ua . It follows from the binding property of the equivocal commitment eNICOM

that Pj will not be able to send (s′ij, o
′
ij) 6= (sij, oij) such that eOpen(epp, cij, o

′
ij) = s′ij,

except with negligible probability. Thus, indistinguishability holds.

Round n− tp + 1. This constitutes the crux of the simulation. We observe that if recon-

structions of summands upto stp+1 were successful, in the hybrid-world, A can deduce the

output in Round n − tp + 1 involving reconstruction of stp (Summands sbn/2c, . . . , stp−1

are already fully determined by output of A received from F
(n−2,bn

2
c)

ua ). To maintain in-

distiguishability, S
dyn
fn invokes Ffair to obtain output y and sets stp accordingly so that
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∑n−2
i=bn/2c si = y. The only difference between the ideal and hybrid-world is the following:

In the hybrid world, for i = tp, the commitments {cil}l∈H correspond to {sil, oil} com-

puted as per output y. However in the ideal world, {cil}l∈H were commitments on dummy

values that were later equivocated to appropriate values of shares of honest parties as per

the computed stp (set such that the summands add upto y). Indistinguishability follows

from the properties of equivocal commitment schemes (Section 2.4.2.1).

Round n− tp + 2 to Round (dn/2e+ 1). It is easy to check that the view of A is identical

in the ideal and hybrid-world.

This completes the proof of Theorem 6.2.

6.6.2 Security Proof of πdyn
GOD (Theorem 6.3)

Let A be a dynamic-admissible adversary with threshold (ta, tp) that controls tp parties passively

and upto ta among them actively during an execution of πdyn
GOD. We prove Theorem 6.3 by

describing a simulator S
dyn
GOD, running an ideal-world evaluation of the functionality Fgod (refer

Figure 2.4) computing f whose behaviour simulates the behaviour of A in Figure 6.12. S
dyn
GOD

invokes the simulator of the subprotocol πidua, say Sπidua
(running an ideal-world evaluation of

functionality Fidua, refer Figure 2.5).

Let D(E) denote the set of actively (passively) corrupt parties where D ⊆ E. Here |D| = ta and

|E| = tp. Let H and C denote the set of indices of honest parties (in P \ E) and parties in E

respectively. The following steps are carried out by S
dyn
GOD:

– Step 1: For k = 1 to dn/2e, let m1,k
i ← Sπidua

(rki ) (i ∈ H) correspond to the Round 1 message of Pi

for the kth instance obtained by invoking Sπidua
with fresh independent randomness rki . Note

that this message is independent of the function to be computed by πidua and the number of

parties. Send {m1,k
i }k∈[dn/2e] on behalf of Pi to A. Receive {m1,k

j }k∈[dn/2e] sent by Pj (Pj ∈ E).

– Step 2: Initialize k = 1, L = P, C = ∅, n = n. Let fC denote the function same as f except with

default inputs hardcoded for parties in C. Send m1,k
j for each Pj ∈ L∩E to Sπidua

. When Sπidua

returns the extracted input {xkj }Pj∈L∩E to invoke its ideal functionality Fidua on behalf of A,

if xj = ⊥ for Pj ∈ L ∩D, return (⊥,B = Pj) as output of Fidua.

Step 2.1: If n = 1, 2, invoke Fgod with {xkj }Pj∈L∩E on behalf of corrupt parties that are alive and

default inputs on behalf of identified actively corrupt parties in C. Receive an output value y

in return, which is forwarded to Sπidua
as response from Fidua. Let m2,k

i ← Sπidua
(Tk1, y, f

C,L; rki )

(i ∈ H) correspond to the Round 2 message of Pi obtained by invoking Sπidua
with Pi’s ran-

Simulator S
dyn
GOD
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domness rki , transcript of Round 1 (kth instance) i.e Tk1 = {m1,k
j }j∈C, output y, fC as the

function to be computed and L as the parties involved in computation. Send m2,k
i on behalf

of Pi to A. Receive m2,k
j as Round 2 message of πidua sent by Pj (Pj ∈ E) and send it to Sπidua

on behalf of Pj . This completes the simulation.

Step 2.2: Else, we have two cases (similar to S
dyn
fn ). Let α′ = n− 2 and β′ = bn/2c.

- If ta = 0, invoke Fgod with {xkj }Pj∈L∩E on behalf of corrupt parties that are alive and default

inputs on behalf of identified actively corrupt parties in C. Receive an output value y in

return. Compute (L1, . . . Lq) = fα
′,β′

LSh (y) (Figure 6.1) among parties in L (where q = |L|)
and return y′ = {Lj} i.e the set of Ljs for all Pj ∈ L ∩ E as output of Fidua to Sπidua

.

- Else, for Pj ∈ E, set Lj =
(
{sij , oij}i∈[α′,β′], {cil}i∈[α′,β′],Pl∈L

)
where sij (i ∈ [α′, β′]) are

randomly chosen and (cij , oij) ← eCom(sij ; rij) computed as per protocol specifica-

tions. {cil}i∈[α′,β′],l∈H are computed as commitments on dummy values, say involving

{s′il, o′il}i∈[α′,β′],l∈H. Return y′ = {Lj} i.e the set of Ljs for all Pj ∈ L ∩ E as response to

Sπidua
from Fidua.

- Let m2,k
i ← Sπidua

(Tk1, y
′, fα

′,β′

LSh � fC,L; rki ) (i ∈ H) correspond to the Round 2 message

of Pi obtained by invoking Sπidua
with Pi’s randomness rki , transcript of Round 1 i.e

Tk1 = {m1,k
j }j∈C, output y′, function fα

′,β′

LSh � f
C i.e (α′, β′) levelled-Sharing of output of

fC as the function to be computed and L as the parties involved in computation. Send

m2,k
i on behalf of Pi to A. Receive m2,k

j as Round 2 message of πidua sent by Pj (Pj ∈ E)

and send it to Sπidua
on behalf of Pj .

There are 2 cases based on whether A aborts the computation of πidua.

- If Sπidua
invokes Fidua with (abort,B) with B ⊆ D or (⊥,B) had been returned as output of

Fidua to A, update C = C∪B, L = L \B, D = D \B, n = n− 2|B|, k = k+ 1, ta = ta− |B|
and repeat this simulation of step 2 using updated value of n, k and the updated sets.

- Else, if Sπidua
invokes Fidua with continue, run the following steps to simulate LRecn−2,b n

2
c

(similar to analogous steps in S
dyn
fn ). Recall that in Round r of LRecn−2,b n

2
c (r ∈ [1, dn/2e−1]),

summand sn−r−1 is attempted to be reconstructed. S
dyn
GOD does the following in Round r of

LRecn−2,b n
2
c:

1. If r ≤ n − tp − 2: Let i = n − r − 1. Send {s′il, o′il}l∈H on behalf of honest parties and

receive (s′ij , o
′
ij) from each Pj ∈ L∩E. Initialize Vi = L\D. Add Pj ∈ Vi if Pj ∈ D sends

(s′ij , o
′
ij) = (sij , oij) (consistent with Lj returned as output of Fidua to Pj). If |Vi| < i+1,

then let B = L \ Vi. Update C = C ∪B, L = L \B, D = D \B, n = n− 2|B|, k = k + 1,

ta = ta − |B|, tp = tp − |B| and repeat the simulation of step 2 using these updated

values.
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2. If r = n − tp − 1 : This round involves reconstruction of summand stp . S
dyn
GOD does the

following:

◦ Invoke Fgod with {xkj }Pj∈L∩E on behalf of corrupt parties that are alive and default

inputs on behalf of identified actively corrupt parties in C. Receive output value y in

return.

◦ Note that reconstruction of summands stp+1 . . . sn−2 has been completed and the sum-

mands si, where i ∈ [bn/2c, . . . tp − 1] is already fully determined by values returned

as output of Fidua. Compute stp = y −
∑tp−1

i=bn/2c si −
∑n−2

i=tp+1 si.

◦ Let µ = tp. Interpolate a µ-degree polynomial gµ(x) satisfying gµ(0) = sµ and gµ(j) =

sµj for Pj ∈ E∩L. Let sµl = gµ(l) for l ∈ H. Compute oµl ← Equiv(cµl, (s
′
µl, o

′
µl), sµl, t).

Send (sµl, oµl) on behalf of Pl, l ∈ H.

3. If r ∈ [(n− tp), dn/2e − 1] : Send (s′il, o
′
il) on behalf of Pl, l ∈ H, where i = n− r − 1.

Figure 6.12: Simulator S
dyn
GOD

The argument to show that the view of A in the ideal world is indistinguishable from its

view in the real-world i.e during an execution of πdyn
GOD is an extension of the security argument

for πdyn
fn . Firstly, it is easy to check that the simulation proceeds identical to that of πdyn

fn incase

neither πidua nor any invocation of LRecα
′,β′

() fails with the only difference that the messages

of the honest parties in Round 1, 2 are simulated by invoking Sπidua
(as opposed to F

(n−2,bn
2
c)

ua -

hybrid model analysis in πdyn
fn ) and involve multiple Round 1 instances of πidua whose simulation

is indistinguishable to the real world. It thus follows directly from security of πidua that the

view of A in the ideal world is indistinguishable from its view in the real-world in such cases.

Next, we note that during execution of πidua, the output from its ideal functionality Fidua

can be appropriately simulated based on whether there are any active parties or not, similar

to S
dyn
fn (Figure 6.11). If πidua aborts by exposing (atleast one) cheater adding to set C, then

the simulation of Round 2 of πidua is re-run wrt set of parties L = L \ C and updated n

and the modified function f
n−2,b n

2
c

LSh � fC computing levelled-sharing of output of fC. When

πidua succeeds, the simulation of the steps of LRecn−2,b n
2
c() is identical to S

dyn
fn with the following

difference: If LRecn−2,b n
2
c() returns ⊥, the identified set of actively corrupt parties are eliminated

from the computation and the simulation of Step 2 is re-run wrt the remaining parties and

the modified function to be computed. To give better insight to the security of protocol,

we emphasize that S
dyn
GOD invokes Fgod only once: Either when computation involves no active

parties (ta = 0 or n = 1, 2) or when the gradual reconstruction of levelled-shared output

proceeds without failure until summand stp+1. The latter case is consistent with the real-world

where A corrupting tp parties would obtain complete information about the output if he does
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not disrupt reconstruction upto summand stp+1. Thus, it is evident that A gets only unique

output as S
dyn
GOD invokes Fgod only once while maintaining throughout the execution that view

of A in the ideal world is indistinguishable from its view in the real-world. This completes the

sketch of the simulation.

It is now easy to check that the formal security proof of πdyn
GOD can be derived in a straight-

forward manner from the security proof of πdyn
fn (Section 6.6.1.2). We can thus conclude that

it follows directly from the security proof arguments of πdyn
fn and the security of πidua that the

simulator S
dyn
GOD outputs a view indistinguishable to the view of A in πdyn

GOD.

6.6.3 Proofs of Upper Bounds for Boundary Corruption

6.6.3.1 Ideal Functionality FASh
ua

We formally define the ideal functionality FASh
ua computing the authenticated sharing of the

output y = f(x1, . . . xn) securely with abort in Figure 6.13. This ideal functionality is identical

to Fua, with the only difference being that the relevant function computed is f
bn/2c
ASh � f . Refer

Figure 6.5 for the description of f
bn/2c
ASh .

Input: On message (sid, Input, xi) from a party Pi (i ∈ [n]), do the following: if (sid, Input, ∗) message

was received from Pi, then ignore. Otherwise record it internally. If xi is outside of the domain

for Pi (i ∈ [n]), consider xi = abort.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send (sid, Output,⊥) to all the

parties. Else, compute y = f(x1 . . . xn) and (S1, . . . Sn) = f
bn/2c
ASh (y). Send (sid, Output, {Si}i∈C)

to the adversary, where C denotes the set of parties controlled by the adversary.

Output to honest parties: Receive either continue or abort from adversary. In case of continue,

send Si to each honest Pi, whereas in case of abort send ⊥ to all honest parties.

Functionality FASh
ua

Figure 6.13: Ideal Functionality FASh
ua

Similar to the above, functionality FASh
idua can be defined identical to Fidua, with the only

difference being that the relevant function computed is f
bn/2c
ASh � f .

6.6.3.2 Proof of Security of πbou
GOD (Theorem 6.6)

We prove Theorem 6.6 by presenting two separate simulators Ssh
GOD and Smal

GOD for the case of

pure passive corruption (ta, tp) = (0, n − 1) and (ta, tp) = (dn/2e − 1, bn/2c) involving active

corruptions respectively. The protocol πbou
GOD is analyzed in a FASh

idua- hybrid model where the
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parties have access to a trusted party computing FASh
idua (as defined in the previous section).

Additionally, the simulator of the subprotocol πGOD, say SπGOD
is also invoked.

Simulator Ssh
GOD wrt (ta, tp) = (0, n − 1): Let A be a boundary-admissible adversary with

parameters (ta, tp) = (0, n−1) in the FASh
idua-hybrid model execution of πbou

GOD (hybrid-world). The

simulator Ssh
GOD, running an ideal-world evaluation of the functionality Fgod (refer Figure 2.4)

computing f whose behaviour simulates the behaviour of A is described in Figure 6.14. It

is straightforward to see that the view of A in the ideal world is indistinguishable from the

view of A in the FASh
idua-hybrid model execution of πbou

GOD. The only difference is that in the ideal

world, Round 1 of πbou
GOD is obtained via SπGOD

, whose simulation is independent of the parties’

inputs. We can thus conclude that Ssh
GOD outputs a view indistinguishable to the view of A in

the hybrid-world.

Let C ⊂ [n] and H be the set of indices of corrupt and honest parties respectively. The following

steps are carried out by Ssh
GOD:

– Simulation of Round 1 of πGOD: Let m1
i ← SπGOD

(ri) (i ∈ H) correspond to the Round 1 message

of Pi obtained by invoking SπGOD
with Pi’s randomness ri. Recall that this step is independent

of parties’ inputs. Send m1
i on behalf of Pi to A. Receive m1

j as Round 1 message of πGOD

sent by Pj (j ∈ C).

– Invoking Fgod: Receive {xi}i∈C corresponding to the parties controlled by passive adversary A.

Invoke Fgod on behalf of A with {xi}i∈C to receive an output value y in return.

– Output of FASh
idua to A: Compute the authenticated secret-sharing of value y with threshold bn/2c

(Figure 6.5) as (S1 . . . Sn) = f
bn/2c
ASh (y) and send Sj =

(
shj , {kij}i∈[n], {tagji}i∈[n]

)
as output of

FASh
idua to Pj (j ∈ C).

– Round 3: For each i ∈ H, send (shi, tagij) (j 6= i) on behalf of Pi.

Simulator Ssh
GOD

Figure 6.14: Simulator Ssh
GOD

Let C ⊂ [n] and H = [n] \ C be the set of indices of the parties controlled by adversary and the

honest parties respectively. The following steps are carried out by Smal
GOD:

– Simulation of Round 1 of πGOD: Let m1
i ← SπGOD

(ri) (i ∈ H) correspond to the Round 1 message

of Pi obtained by invoking SπGOD
with Pi’s randomness ri. Recall that this step is independent

Simulator Smal
GOD
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of parties’ inputs. Send m1
i on behalf of Pi to A. Receive m1

j as Round 1 message of πGOD

sent by Pj (j ∈ C).

– Interaction of A with FASh
idua: Receive {xi}i∈C sent by A to FASh

idua. If for any i ∈ C, xi is outside

of domain of input, return B = Pi (identified cheater) as output of FASh
idua to A and skip to

simulation step of Handling Abort. Else run the following steps.

– Output of FASh
idua to A: Choose random shj for j ∈ C and compute its authentication (Step

2, 3 of f
bn/2c
ASh in Figure 6.5). The resulting values Sj = {shj , {kij}i∈[n], {tagji}i∈[n]} are

given to A as the outputs of the corrupted parties from functionality FASh
idua. Note that

functionality Fgod computing f has not been invoked yet.

– If A invokes FASh
idua with (abort,B), proceed to simulation step of Handling Abort.

– Round 3 in case of no abort: Else, if A invokes FASh
idua with continue, then invoke Fgod with

{xj}j∈C on behalf of A to obtain output y. The following steps are used to simulate

Round 3:

1. Interpolate a bn/2c-degree polynomial A(x) with A(j) = shj for j ∈ C and A(0) = y.

2. Set shi = A(i) for i ∈ H. Using kij (consistent with output of FASh
idua), compute

tagij = Mackij (shi). Send (shi, tagij) (j 6= i) on behalf of Pi in Round 3.

– Handling Abort. Smal
GOD does the following:

– Round 3: Let m2
i ← SπGOD

(T1, f
B; ri) (i ∈ H) correspond to Round 2 message of Pi obtained

by invoking SπGOD
with randomness ri, function to be computed fB and transcript of

Round 1 i.e T1 = {m1
j}j∈C. Send m2

i on behalf of Pi to A. Receive m2
j as Round 2

message of πGOD sent by Pj (j ∈ C). When SπGOD
returns the extracted input {x′j}j∈C

of the corrupt party to invoke its ideal functionality Fgod, Smal
GOD invokes Fgod with input

{x′j}j∈C\B on behalf of corrupt Pj (not identified among set of cheaters) and default input

on behalf of parties in B. Then, forward the obtained output y′ as response to SπGOD
.

– Round 4: Let m3
i ← SπGOD

(T2, y
′; ri) (i ∈ H) correspond to Round 3 message of Pi obtained

by invoking SπGOD
with randomness ri and transcript upto Round 2 i.e T2 = {m1

j ,m
2
j}j∈C

and output y′ of its ideal functionality. Send m3
i on behalf of Pi to A in Round 4,

completing the simulation.

Figure 6.15: Simulator Smal
GOD

Simulator Smal
GOD wrt (ta, tp) = (dn/2e−1, bn/2c): Let A be a boundary-admissible malicious

adversary with corruption parameters (ta, tp) = (dn/2e − 1, bn/2c) in the FASh
idua-hybrid model

execution of πbou
GOD. The simulator Smal

GOD, running an ideal-world evaluation of the functionality
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Fgod (refer Figure 2.4) computing f whose behaviour simulates the behaviour of A is described in

Figure 6.15. There are 2 different scenarios based on whether A aborts the computation of FASh
idua.

Incase abort doesn’t occur, it follows directly from the properties of privacy of authenticated

sharing (Lemma 6.13) that the view in the ideal world is indistinguishable to the view of A

in the hybrid-world (FASh
idua-hybrid model execution of πbou

GOD). The additional step of Round 1

of πGOD being executed in Round 1 of πbou
GOD is simulated identical to Ssh

GOD. In case of abort,

it follows from privacy of authenticated sharing f
bn/2c
ASh that output of FASh

idua can be simulated

without invoking Fgod. This indicates that A who can potentially participate with a different

set of inputs in πGOD (compared to πidua) will have no information about the output based on

its inputs in πidua. Lastly, in this abort case, we note that the only difference between the ideal

and hybrid-execution is that the messages of πGOD are obtained via the simulator SπGOD
in the

former. Indistinguishability thus follows from the security of subprotocol πGOD.

6.6.3.3 Proof of Security of πbou,1
GOD (Theorem 6.7)

We prove Theorem 6.7 by presenting two separate simulators S
sh,1
GOD and S

mal,1
GOD for the case of

(ta, tp) = (0, n − 1) and (ta, tp) = (1, bn/2c) respectively. S
sh,1
GOD and S

mal,1
GOD invoke the simulator

of the subprotocol πidua, say Sπidua
(running an ideal-world evaluation of functionality Fidua, refer

Figure 2.5).

Simulator S
sh,1
GOD wrt (ta, tp) = (0, n− 1): Let A be a boundary-admissible passive adversary

with parameters (ta, tp) = (0, n− 1) in the execution of πbou,1
GOD . The simulator Ssh,1

GOD, running an

ideal-world evaluation of the functionality Fgod (refer Figure 2.4) computing f whose behaviour

simulates the behaviour of A is described in Figure 6.16. Since πbou,1
GOD proceeds in the same

manner as πbou
GOD in this case of pure passive corruptions, the simulator S

sh,1
GOD executes similar

steps as simulator Ssh
GOD (Figure 6.14). The only difference is that instead of analysis in the

FASh
idua-hybrid model, the simulator Sπidua

is invoked to simulate messages of honest parties in

Round 1 and Round 2. Note that the simulation of Round 1 of πGOD in Ssh
GOD is skipped here

and instead an additional instance of Round 1 of πidua is simulated. It thus follows from security

of πidua and the arguments wrt Ssh
GOD that the view of A in the ideal world is indistinguishable

to the view of A in the execution of πbou,1
GOD .

Let C,H be the set of indices of corrupt and honest parties respectively. The following steps are

carried out by S
sh,1
GOD:

– Invoking Fgod: Receive {xi}i∈C corresponding to the parties controlled by semi-honest adversary

A. Invoke Fgod on behalf of A with {xi}i∈C to receive an output value y in return.

Simulator S
sh,1
GOD
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– Interaction with Sπidua
: Compute the authenticated secret-sharing of value y with threshold bn/2c

as (S1 . . . Sn) = f
bn/2c
ASh (y) (Figure 6.5).

Round 1: For k = 1, 2, let m1,k
i ← Sπidua

(rki ) (i ∈ H) correspond to the Round 1 message of Pi

obtained by invoking Sπidua
with Pi’s randomness rki . Send {m1,k

i }k∈[2] on behalf of Pi to A in

Round 1. Receive {m1,k
j }k∈[2] sent by Pj (j ∈ C).

When Sπidua
invokes its ideal functionality Fidua computing f

bn/2c
ASh �f with input xi, send output

Sj =
(
shj , {kij}i∈[n], {tagji}i∈[n]

)
corresponding to Pj (j ∈ C) as response from Fidua.

Round 2: Let m2,1
i ← Sπidua

(T1, y
′, f
bn/2c
ASh � f,P; r1

i ) (i ∈ H) correspond to Round 2 message of

Pi obtained by invoking Sπidua
with randomness r1

i and transcript of Round 1 (first instance

k = 1) i.e T1 = {m1,1
j }j∈C, y′ = {Sj}j∈C i.e output of Fidua, f

bn/2c
ASh � f as the function to be

computed and P as the set of parties involved in computation. Send m2,1
i on behalf of Pi to

A. Receive m2,1
j sent by Pj (j ∈ C).

– Round 3: For each i ∈ H, send (shi, tagij) (j 6= i) on behalf of Pi.

Figure 6.16: Simulator S
sh,1
GOD

Let C ⊂ [n] and H = [n] \ C be the set of indices of the corrupt parties and the honest parties

respectively. The following steps are carried out by S
mal,1
GOD :

– Round 1: For k = 1, 2, let m1,k
i ← Sπidua

(rki ) (i ∈ H) correspond to the Round 1 message of Pi

obtained by invoking Sπidua
with randomness rki . Send {m1,k

i }k∈2 on behalf of Pi to A. Receive

{m1,k
j }k∈[2] sent by Pj (j ∈ C).

– Round 2: Send m1,1
j to Sπidua

on behalf of Pj . When Sπidua
returns the extracted input {xj}j∈C of

the corrupt party to invoke its ideal functionality Fidua computing f
bn/2c
ASh � f , Smal,1

GOD does the

following:

- If there exists a j ∈ C such that xj = ⊥, send y′ = (⊥, Pj) to A as output response of Fidua.

- Else choose random shj for j ∈ C and compute its authentication (Step 2, 3 of f
bn/2c
ASh () of

Figure 6.5). The resulting values Sj = {shj , {kij}i∈[n], {tagji}i∈[n]} for each j ∈ C are

given to A as the output from functionality Fidua.

Let m2,1
i ← Sπidua

(T1, y
′, f
bn/2c
ASh � f,P; r1

i ) (i ∈ H) correspond to the Round 2 message of Pi

obtained by invoking Sπidua
with Pi’s randomness r1

i , transcript of Round 1 (first instance

k = 1) i.e T1 = {m1,1
j }j∈C, output y′ = {Sj}j∈C of Fidua, f

bn/2c
ASh � f as the function to be

Simulator S
mal,1
GOD
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computed and P as the set of parties involved in computation. Send m2,1
i on behalf of Pi to

A. Receive m2,1
j sent by Pj (j ∈ C) and send it to Sπidua

on behalf of Pj .

– Round 3: We now have 2 cases -

- If Sπidua
invokes Fidua with (abort,B), do the following: Send m1,2

j to Sπidua
on behalf of A

(Pj ∈ E) corresponding to second instance of πidua. Suppose {xj}j∈C is the extracted

input returned by Sπidua
, then invoke Fgod with {xj}j∈C and substituting default input

of party in B; on behalf of A to obtain output y. Let m2,2
i ← Sπidua

(T1, y, f
B,P \ B; r2

i )

(i ∈ H) correspond to the Round 2 message of πidua obtained by invoking Sπidua
with Pi’s

randomness r2
i , transcript of Round 1 (second instance k = 2) i.e T1 = {m1,2

j }j∈C, output

y, fB as function to be computed (same as f except with default inputs hardcoded for

the parties in B) and P \B as the set of parties involved in computation. Send m2,2
i on

behalf of Pi to A. Receive m2,2
j sent by Pj (j ∈ C) and send it to Sπidua

on behalf of Pj .

- If Sπidua
invokes Fidua with continue, run the same steps as Round 3 simulation incase of no

abort of Smal
GOD ( Figure 6.15).

Figure 6.17: Simulator S
mal,1
GOD

Simulator S
mal,1
GOD wrt (ta, tp) = (1, bn/2c): Let A be a malicious adversary controlling atmost

1 party actively and upto bn/2c parties passively in an execution of πbou,1
GOD . The simulator

S
mal,1
GOD , running an ideal-world evaluation of the functionality Fgod (refer Figure 2.4) computing

f whose behaviour simulates the behaviour of A is described in Figure 6.17. There are 2

different scenarios based on whether A aborts the computation in first instance of πidua. Incase

abort doesn’t occur, simulation proceeds similar to Smal
GOD (Figure 6.15) except that instead of

analysis in FASh
idua- hybrid model, the simulator Sπidua

is invoked for simulation in Round 1 and

Round 2. Another difference is that an additional instance of Round 1 of πidua is simulated.

Thus, in case of no abort, it follows from the security argument wrt Smal
GOD and the security of

πidua that the view of A in the ideal world is indistinguishable to the view of A in the execution

of πbou,1
GOD .

Consider case of abort which returns the identity of cheater, say singleton set B, (πidua

realizes Fidua). Another execution of πidua is used to compute the function fB (same as f except

that it hardcodes default input of the actively corrupt party identified). Accordingly, Round 3

of πbou,1
GOD is simulated by invoking Sπidua

to obtain Round 2 of πidua wrt function fB among parties

in P \ B (wrt second instance of Round 1 of πidua run in Round 1 of πbou,1
GOD ). Note that the

output of first instance of πidua was simulated perfectly by S
mal,1
GOD without invoking Fgod (relying

on privacy of f
bn/2c
ASh (), similar to argument in Smal

GOD), implying that A had no information about
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the output of f at the end of Round 2. It is now easy to check that the only difference that

remains between the ideal and the real execution is that the messages of honest parties are

obtained via Sπidua
in the ideal world. We can thus conclude that the view of A in the ideal

world is indistinguishable to the view of A in the execution of πbou,1
GOD based on the security of

πidua and the security arguments presented wrt Smal
GOD. This completes the proof.

6.6.3.4 Proof of Security of πbou
fn (Theorem 6.8)

We prove Theorem 6.8 by presenting two separate simulators Ssh
fn and Smal

fn for the case of

corruption scenarios (ta, tp) = (0, n − 1) and (ta, tp) = (dn/2e − 1, bn/2c) respectively. The

protocol πbou
fn is analyzed in a FASh

ua -hybrid model where the parties have access to a trusted

party computing FASh
ua (Figure 6.13).

Simulator Ssh
fn wrt (ta, tp) = (0, n− 1): Let A be the boundary-admissible passive adversary

controlling upto (n − 1) parties in the FASh
ua -hybrid model execution of πbou

fn . The simulator

Ssh
fn , running an ideal-world evaluation of the functionality Fgod (refer Figure 2.4) computing f

whose behaviour simulates the behaviour of A is described in Figure 6.18. It directly follows

from the security arguments presented wrt Ssh
GOD (Figure 6.14), that the view of A in the ideal

world is identical to the view of A in the FASh
ua -hybrid model execution of πbou

fn .

Let C ⊂ [n], H denote the set of indices of corrupt and honest parties respectively. The following

steps are carried out by Ssh
fn :

– Invoking Fgod: Receive {xj}j∈C corresponding to the parties controlled by passive adversary A.

Invoke Fgod on behalf of A with {xj}j∈C to receive an output value y in return.

– Output of FASh
ua to A: Compute the authenticated secret-sharing of value y with threshold t =

bn/2c (Figure 6.5) as (S1 . . . Sn) = f
bn/2c
ASh (y) and send Sj =

(
shj , {kij}i∈[n], {tagji}i∈[n]

)
as

output of FASh
ua to Pj (j ∈ C).

– Round 3: Broadcast (shi, tagij) on behalf of Pi for each i ∈ H, j 6= i.

Simulator Ssh
fn

Figure 6.18: Simulator Ssh
fn

Simulator Smal
fn wrt (ta, tp) = (dn/2e − 1, bn/2c): Let A be a malicious adversary with

corruption parameters (ta, tp) = (dn/2e−1, bn/2c) parties in the FASh
ua -hybrid model execution of

πbou
fn . The simulator Smal

fn , running an ideal-world evaluation of the functionality Ffair (Figure 2.3)

computing f whose behaviour simulates the behaviour of A is described in Figure 6.19. There

are 2 different scenarios based on whether A aborts the computation of FASh
ua . Incase of abort,
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it follows from privacy of sharing function f
bn/2c
ASh that the view of A in the ideal world is

indistinguishable to the FASh
ua -hybrid model execution of πbou

fn . In case of no abort, the simulation

proceeds similar to Smal
GOD (Figure 6.15, no abort case). We can thus conclude based on the

security arguments of Smal
GOD and the properties of authenticated secret-sharing that the view

of A in the ideal world is indistinguishable to the FASh
ua - hybrid model execution of πbou

fn . This

completes the proof.

Let C ⊂ [n] and H = [n] \ C be the set of indices corrupt and honest parties respectively. The

following steps are carried out by Smal
fn :

– Interaction of A with FASh
ua : Receive {xj}j∈C sent by malicious A to FASh

ua in this FASh
ua -hybrid

execution model. If for any j ∈ C, xj is outside of domain of input, send ⊥ as output of FASh
ua

to A and send ⊥ as input to Ffair on behalf of A. Else run the following steps.

– Output of FASh
ua to A: Choose random shj for j ∈ C and compute its authentication (Step 2, 3 of

f
bn/2c
ASh in Figure 6.5). The resulting values Sj = {shj , {kij}i∈[n], {tagji}j∈[n]} are given to A

as the outputs of the corrupted parties from functionality FASh
ua . Note that functionality Ffair

computing f has not been invoked yet.

– Invoking Ffair: We have 2 cases based on whether A invokes FASh
ua with abort or continue.

- abort: Send ⊥ as input to Ffair on behalf of A; thereby completing the simulation.

- continue: Invoke Ffair with {xj}j∈C on behalf of A to obtain y.

– Round 3: The following steps are used to simulate Round 3 -

- Interpolate a bn/2c-degree polynomial A(x) with A(j) = shj for j ∈ C and A(0) = y.

- Set shi = A(i) for i ∈ H. Using kij (consistent with the output of FASh
ua sent to A), compute

tagij = Mackij (shi).

- Send (shi, tagij) (i ∈ H) on behalf of Pi (j 6= i).

Simulator Smal
fn

Figure 6.19: Simulator Smal
fn
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Part III

Secure Computation in Hybrid

Networks
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Chapter 7

On the Power of Hybrid Networks in

Multi-Party Computation

In this final chapter, we depart from the computational and synchronous setting of the previous

chapters of the thesis and explore the information-theoretic setting where the adversary is

computationally unbounded and explore asynchrony in the network as well. Specifically, we

investigate perfectly-secure VSS and MPC protocols in hybrid networks that combine the best

features of protocols in the synchronous and asynchronous networks.

7.1 Introduction

In the literature, VSS and MPC have been explored in two prominent network settings: syn-

chronous and asynchronous networks. Recall that in the synchronous setting (also known as

bounded-synchronous [83, 175, 100, 13]), it is assumed that the delay of messages in the chan-

nels of the network is bounded by a known constant. This allows protocols to proceed in rounds,

with the strong delivery guarantee that every message sent in any given round is delivered to

all the recipients in the same round. In contrast, in the asynchronous setting, the channels in

the network may have arbitrary delays and may deliver messages in any arbitrary order, with

the only restriction that every sent message must eventually be delivered. In order to model

the worst case, the adversary is allowed to control the scheduling of messages in the network.

The synchronous network is well-behaved and convenient, but unrealistic and inapplicable

in many practical environments. Whereas, the asynchronous network can aptly model real-life

networks like Internet, is difficult to deal with and less convenient. When the channel delays

are short, the protocols in asynchronous networks may be faster than synchronous protocols

which have to allow each round to be long enough, such that all messages can get through, even
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in the very worst case. As a result, softwares based on practical implementation of synchronous

protocols must choose actual waiting time correctly with respect to the network used. This

makes the software dependant on the underlying network which is clearly undesirable, as it

creates an extra source of errors, insecurity, or both [75]. Therefore, many practical frameworks

follow an asynchronous communication model. For instance, VIFF (Virtual Ideal Functionality

Framework) [75] is basically asynchronous and operates on the principle that parties proceed

whenever possible and allows automatic parallel scheduling of the operations, i.e. the program-

mer does not have to specify any explicit timing of operations. Sharemind [39], a framework for

fast privacy-preserving computations is also based on asynchronous communication model that

allows to omit the central synchronisation service and thus reduce network delays that have

significant impact on the overall efficiency. Finally, implementations with network layer based

on UDP networking must account for a malicious network scheduler that can drop messages or

change their order, which is appropriately modelled by the asynchronous network [38]. These

clearly substantiate that asynchronous network is more realistic and in many cases results in

faster protocols than synchronous network.

On the downside, asynchronous protocols suffer from low fault-tolerance, high communica-

tion complexity and relatively weaker guarantees compared to their synchronous counterparts.

The asynchronous VSS suffers from dealer-dependent termination where termination of the

sharing phase is guaranteed only when the dealer is honest. Whereas, synchronous VSS guar-

antees termination independent of the status of the dealer. Similarly, asynchronous MPC suffers

from input deprivation that refers to a property where inputs of upto t honest parties may be

excluded from computation. Whereas, synchronous MPC offers input provision which refers to

inclusion of the inputs of all the honest parties for computation, apart from giving the other

properties of asynchronous MPC. All the above issues are supposedly caused by the following

inherent and trademark difficulty in the asynchronous model. In an asynchronous network, an

honest party whose message is delayed in the network cannot be told apart from a corrupted

party who did not send a message at all. So an honest party in an asynchronous protocol,

unlike in a synchronous protocol, cannot wait for the messages from all the parties, as it would

potentially risk him to wait infinitely. To avoid the risk, an honest party’s computation in an

asynchronous protocol should be carried on with the receipt of (n − t) parties at any given

step. Unfortunately, this may risk ignoring the values of up to t potentially honest parties at

any given step. In what follows, we highlight the well-known gaps in the feasibility results of

the synchronous and asynchronous VSS and MPC that corroborate with the above inherent

difficulty faced in asynchronous protocols.
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7.1.1 Related Work

It is known that the feasibility of asynchronous protocols holds under stricter conditions than

that of synchronous protocols. Perfect (error-free) asynchronous MPC (and VSS) requires

t < n/4 [31], whereas perfect synchronous MPC (and VSS) is feasible with t < n/3 [30, 79].

Statistical and computational asynchronous MPC (and VSS) protocols require t < n/3 [51, 32,

48], whereas their synchronous counterparts are feasible with t < n/2 [83, 177, 175]. Though

our work mainly concerns the theoretical feasibility gap between the two classes, the following

results on communication efficiency further substantiate that the state-of-the-art protocols in

asynchronous world lag far behind. The best known perfect MPC protocol in the synchronous

and asynchronous network achieves communication complexity O(|C|n|F|) [21] and O(|C|n2|F|)
[174] bits respectively. Here |C| denotes the number of multiplication gates in the arithmetic

circuit C representing the function to be computed and F denotes the underlying field. The gap

is noticeably wider in the statistical case. For a statistical security parameter µ, it is O(|C|nµ)

bits [33] versus O(|C|n5µ) bits [173]. The situation is slightly promising in the cryptographic

setting. For a security parameter denoted as κ, the best protocols in both the worlds achieve

O(|C|nκ) bits of communication complexity [117, 61]. However, while the synchronous protocol

of [117] relies on homomorphic encryption, the protocol of [61] uses somewhat homomorphic

encryption (SHE). A summary of the above results are given below.

Security Network Resilience Communication

Complexity

Perfect
Synchronous t < n/3 [30] O(|C|n|F|) [21]

Asynchronous t < n/4 [31] O(|C|n2|F|) [174]

Statistical
Synchronous t < n/2 [177] O(|C|nµ) [33]

Asynchronous t < n/3 [32] O(|C|n5µ) [173]

Bridging the Gaps While no effort has been made thus far to close the gaps in fault-tolerance

of VSS protocols in any setting, MPC literature has seen a few attempts. The first attempt

to bridge the feasibility gap between synchronous and asynchronous MPC was made by [23].

Their cryptographic MPC protocol provides input provision and works with t < n/2 which is the

same bound necessary and sufficient for synchronous cryptographic MPC. This is achieved at

the expense of one initial synchronous round that allows access to broadcast oracle in the hybrid

network setting. A network that is asynchronous in nature and yet supports a few synchronous

rounds at the onset of a protocol execution is denoted as hybrid network. In an alternative

approach, [75] introduces a synchronisation point (the network is asynchronous before and after
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the point) and presents a perfect asynchronous MPC protocol with t < n/3. MPC protocol

in the synchronisation point model inherently do not guarantee termination and outputs to

all honest parties. In yet another approach, [14] uses non-equivocation technique to achieve

asynchronous MPC with t < n/2 that matches the bound needed for cryptographic synchronous

MPC. Non-equivocation is a message authentication mechanism to restrict a corrupted sender

from making conflicting statements to different (honest) parties and requires cryptography for

realization. [63, 62] shows how to bridge communication-efficiency gap for perfect MPC with

the help of a single synchronous round. There have also been attempts to improve feasibility

bounds of broadcast [12, 84, 153] which is a special case of MPC and a fundamental problem

in distributed computing, by assuming slightly more powerful communication models. [85, 68]

achieve improved fault resilience of unconditional broadcast by assuming existence of partial

broadcast channel among subset of parties.

7.1.2 Our Results

Taking cognizance of the fact that asynchronous network is more realistic and may result in

faster protocols on one hand and on the other, synchrony of a network has positive impact

on several aspects of distributed protocols, we set our focus on the power of hybrid networks

that combines best of both the worlds. In hybrid networks, we wish to investigate feasibility

of protocols giving guarantees attainable in synchronous as well as asynchronous networks.

Denoting synchronous/asynchronous VSS (SVSS/AVSS) and synchronous/asynchronous MPC

(SMPC/AMPC) to refer to the properties of the protocols that can be achieved in the respec-

tive networks, we present our findings below. The notations should not be confused with the

underlying network. All our results are based in the hybrid network model. For asynchronous

protocols, we wish to bridge the fault-tolerance gap between synchronous and asynchronous pro-

tocols with minimum synchrony assumption needed, leveraging the initial synchronous rounds.

For synchronous protocols, we explore if the known lower bounds on round complexity can be

circumvented, leveraging the asynchronous phase available in the hybrid network. While the

details of our results appear in Section 1.4.4, we summarize them below.

For the asynchronous protocols in hybrid networks, we hope to leverage the initial syn-

chronous rounds to bridge the gap in the fault-tolerance with the synchronous protocols under

minimal synchrony assumption. We ask the following fundamental question of both theoretical

and practical importance: What is the minimum number of initial synchronous rounds nec-

essary and sufficient in a hybrid network to construct asynchronous perfectly-secure VSS and

MPC protocols with the fault-tolerance of synchronous protocols? On the positive note, we show

that the answer is one for VSS which is clearly optimal. Notably no broadcast oracle is invoked
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in the synchronous round of our proposed VSS protocol. On the negative side, we prove that

one synchronous round is not enough for MPC, putting MPC on a higher pedestal than VSS

in terms of difficulty.

For synchronous protocols in hybrid networks, we hope to save on the synchronous rounds

leveraging conveniently the available asynchronous phase. We settle the question for VSS in the

negative showing that three rounds that are known to be necessary (and sufficient) for VSS in

synchronous networks, are also required in hybrid networks. VSS being a special case of MPC,

the lower bound holds true for MPC. We match the lower bound with a 3-round protocol.

Notably, synchronous MPC with cryptographic security is known to be achievable in hybrid

networks with one synchronous round.

We summarize the feasibility results of SVSS/AVSS and SMPC/AMPC in hybrid networks

in terms of initial synchronous rounds needed in the table below. Finding a tight upper bound

for AMPC with two rounds remains an interesting open question.

Table 7.1: Feasibility for SVSS/AVSS and SMPC/AMPC with t < n/3 in Hybrid networks
Security Asynchronous Synchronous

VSS
Necessary One [Trivial] Three (Our Work) [167]

Sufficiency One (Our Work) [167] Three [101]

MPC
Necessary Two (Our Work) [167] Three (Our Work) [167]

Sufficiency Three (Our Work) [167] Three (Our Work) [167]

Lastly, our results reinforce several general beliefs in the context of hybrid networks: (a)

AMPC is harder to achieve than AVSS, (b) SVSS is harder to achieve than AVSS with the

same resilience, (c) perfectly-secure SMPC is harder to achieve than cryptographic SMPC.

Roadmap. In Section 7.2, we describe the network and adversarial model, introduce some

notation, recall the relevant definitions and discuss the primitives needed for our protocols.

In Section 7.3, we present a novel primitive termed as asynchronous weak polynomial sharing

(AWPS) protocol which will serve as a building block for our proposed AVSS protocol. In

Section 7.4, we present our AVSS protocol. The impossibility results on AMPC and SVSS

appear in Section 7.5 and 7.6 respectively. Section 7.7 presents our SMPC over hybrid network

with three synchronous rounds.

7.2 Preliminaries

7.2.1 Model

We consider a set of n ≥ 3t + 1 PPT parties P = {P1, . . . , Pn}, connected by pairwise secure

and authentic channels. We assume that there exists a static computationally unbounded
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adversary A, who can actively corrupt at most t out of the n parties and make them behave

in any arbitrary manner during the execution of a protocol. We further allow the adversary to

be rushing, i.e. in every round (or step) it can wait to hear the messages of the honest parties

before sending his own messages.

We consider a hybrid network that is asynchronous in nature and yet supports a few initial

synchronous rounds. During the onset of a protocol execution, the network behaves like a syn-

chronous network with a global clock, and the protocol proceed in rounds with strong delivery

guarantee that messages sent by any party in any given round are delivered to all recipients in

the same round. The channels have fixed delays. After the synchronous rounds, the underlying

network turns to a complete asynchronous network that deliver messages in an arbitrary order

and impose arbitrary delays on them. Specifically, the communication channels between the

parties have arbitrary, yet finite delay (i.e. the messages are guaranteed to reach their desti-

nations eventually). Moreover the order in which the messages reach their destinations may

be different from the order in which they were sent. To model the worst case scenario, A is

given the power to schedule the delivery of every message in the network. However, A can only

schedule the messages communicated between the honest parties, without having any access to

the “content” of these messages. More details on asynchronous model can be found in [49].

Notation. he computation in our protocols is performed over a finite field F such that |F| > n.

Every field element can be represented by log |F| bits. A set of values Set = {(i, si)} of size at

least t+1 is said to be t-consistent if there exists a polynomial over F, say f(x), of degree at most

t, such that f(i) = si. We define an algorithm constantTerm that takes a set Set = {(i, si)}
with at least t + 1 values and returns f(0) if Set is t-consistent and f(x) is the polynomial

passing through the points, ⊥ otherwise. When there are exactly t + 1 points, constantTerm

always returns f(0).

7.2.2 Definitions

Synchronous/asynchronous VSS (SVSS/AVSS) and synchronous/asynchronous MPC (SMPC

/ AMPC) refer to the properties of the primitives attainable in synchronous and asynchronous

networks respectively as defined formally below. This should not be confused with the under-

lying network. All our results are based in the hybrid network model.

We next recall the definition of AVSS from [31, 49].

Definition 7.1 (Asynchronous Verifiable Secret Sharing (AVSS) [31, 49]) A pair of pro-

tocols (Sh,Rec) for n parties P, where a dealer D ∈ P holds a private input s ∈ F for Sh is an

AVSS scheme tolerating A if the following requirements hold for every possible A and for all
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possible inputs of D:

– Termination:

1. If D is honest and all the honest parties participate in the protocol Sh, then each

honest party eventually terminates the protocol Sh.

2. If some honest party terminates Sh, then irrespective of the behavior of D, each

honest party eventually terminates Sh.

3. If all the honest parties invoke Rec, then each honest party eventually terminates

Rec.

– Correctness: If some honest party terminates Sh, then there exists a fixed value s̄ ∈ F, such

that the following requirements hold. We refer to the above as ‘D has committed/shared s

during Sh’.:

1. If D is honest then s̄ = s and each honest party upon completing the protocol Rec,

outputs s.

2. Even if D is corrupted, each honest party upon completing Rec outputs s, irrespec-

tive of the behavior of the corrupted parties. This property is also known as strong

commitment.

– Privacy: If D is honest then the adversary’s view during Sh reveals no information about s

in the information-theoretic sense; i.e. the adversary’s view is identically distributed for

all possible s.

The termination guarantee of AVSS is dealer-dependent. The sharing phase protocol needs

to terminate when the dealer is honest. In contrast, the sharing phase of SVSS protocols must

terminate irrespective of any adversarial behavior. We now formally define synchronous VSS

(SVSS).

Definition 7.2 (Synchronous Verifiable Secret Sharing (SVSS) [59]) A pair of proto-

cols (Sh,Rec) for n parties P, where a dealer D ∈ P holds a private input s ∈ F for Sh is a

SVSS scheme tolerating A if the following requirements hold for every possible A and for all

possible inputs of D:

– Termination: If the honest parties participate in Sh and Rec, the respective protocols must

terminate.
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– Correctness: There exists a fixed value s̄ ∈ F, such that the following requirements hold.

1. If D is honest then s̄ = s and each honest party upon completing the protocol Rec,

outputs s.

2. Even if D is corrupted, each honest party upon completing Rec outputs s, irrespec-

tive of the behavior of the corrupted parties. This property is also known as strong

commitment.

We refer to the above as ‘D has committed/shared s during Sh’:

– Privacy: If D is honest then the adversary’s view during Sh reveals no information on s.

More formally, the adversary’s view is identically distributed for all possible values of s.

Next, we recall the definition of t-sharing and 2d-sharing.

Definition 7.3 (t-sharing and 2d-sharing) A value s ∈ F is said to be t-shared among P if

there exists a polynomial over F, say f(x), of degree at most t, such that f(0) = s and every

(honest) party Pi holds a share si of s, where si = f(i). A value s ∈ F is said to be 2d-shared

among P if:

– s is t-shared among P with shares (s1, . . . , sn) and

– each share si is also t-shared among P.

We use [s] and 〈s〉 to denote that s is t-shared and 2d-shared respectively.

We now proceed to present the definition of AMPC and SMPC.

Definition 7.4 (Asynchronous Multi-Party Computation (AMPC) [32]) Let F : Fn →
Fn be a publicly known function and let party Pi have a private input xi ∈ F. Any AMPC con-

sists of three stages. In the first stage, each party Pi commits its input. Even if Pi is faulty, if it

completed this step, then it is committed to some value (not necessarily xi). Let x′i be the value

committed by Pi. If Pi is honest then x′i = xi. Then the parties agree on a common subset C

of at least n − t committed inputs. In the last stage the parties compute F (y1, . . . , yn), where

yi = x′i if Pi ∈ C, otherwise yi = 0.

An asynchronous protocol π among the n parties for computing the function F is called an

AMPC protocol if it satisfies the following conditions for every possible A and inputs of the

honest parties:
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– Termination: If all the honest parties participate in the protocol, then every honest party

eventually terminates π.

– Correctness: Every honest party outputs F (y1, . . . , yn) after completing π, irrespective of

the behavior of the corrupted parties.

– Privacy: The adversary obtains no additional information (in the information-theoretic

sense) about the inputs of the honest parties during π, other than what is inferred from

the input and the output of the corrupted parties.

While AMPC suffers from input deprivation that refers to a property where inputs of upto t

honest parties may be excluded from computation, SMPC provides input provision and includes

inputs of all the honest parties for computation. Moreover, the termination is implicit for

perfectly-secure SMPC and is not defined separately.

Definition 7.5 (Synchronous Multi-Party Computation (SMPC)) Let F : Fn → Fn be

a publicly known function and let party Pi have a private input xi ∈ F. A protocol π among the

n parties securely computes y = F (x1, . . . , xn), if it satisfies the following for every possible A,

on all possible inputs:

– Correctness: All honest parties obtain y at the end of π.

– Privacy: A obtains no additional information (in the information-theoretic sense) about the

inputs of the honest parties during π, other than what is inferred from the input and the

output of the corrupted parties.

7.2.3 Primitives

7.2.3.1 Asynchronous Broadcast

In our protocols, we use the asynchronous broadcast primitive, which was introduced and

elegantly implemented by Bracha [43]; the primitive allows a special party S ∈ P, called sender,

to send a message identically to all the parties. More formally:

Definition 7.6 (Asynchronous Broadcast [51]) Let Π be an asynchronous protocol for the

n parties initiated by a special party S ∈ P, having input m (the message to be broadcast). We

say that Π is an asynchronous broadcast protocol if the following hold, for every possible A:

– Termination:
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1. If S is honest and all the honest parties participate in the protocol, then each honest

party eventually terminates the protocol.

2. Irrespective of the behavior of S, if any honest party terminates the protocol then

each honest party eventually terminates the protocol.

– Correctness: If the honest parties terminate the protocol then they do so with a common

output m?. Furthermore, if the sender is honest then m? = m.

Bracha presented a protocol called a-cast, for realizing the asynchronous broadcast primitive;

the protocol can tolerate upto t < n/3 corruptions. For the sake of completeness, we recall the

Bracha’s a-cast protocol from [49] and present it in Figure 7.1.

– Input of S: A message m.

1. Code for the sender S: — only S executes this code:

(a) Send the message (MSG,m) to all the parties.

2. Code for the party Pi: — every party in P (including S) executes this code:

(a) Upon receiving a message (MSG,m) from S, send the message (ECHO,m) to all the parties.

(b) Upon receiving n − t messages (ECHO,m?) that agree on the value of m?, send the message

(READY,m?) to all the parties.

(c) Upon receiving t + 1 messages (READY,m?) that agree on the value of m?, send the message

(READY,m?) to all the parties.

(d) Upon receiving n − t messages (READY,m?) that agree on the value of m?, send the message

(OK,m?) to all the parties, output m? and terminate the protocol.

Protocol a-cast()

Figure 7.1: Bracha’s asynchronous broadcast protocol tolerating t < n/3 corruptions [49]

Theorem 7.1 ([49]) Protocol a-cast is an asynchronous broadcast protocol.

7.2.3.2 Online Error Correction (oec) [49, 20]

Online error correction protocol oec can be viewed as the method of applying Reed-Solomon

(RS) error-correction [154] in the asynchronous setting. Given a value which is t-shared among

a set of parties P, the goal is to publicly reconstruct the value robustly (actually oec allows
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the parties to reconstruct the entire polynomial using which the value is t-shared). In the

synchronous setting, this can be achieved by asking every party in P to send its share. Then

the parties apply RS error-correction to reconstruct the value. Given the condition t < (|P|−2t),

the reconstruction will be robust. In the asynchronous setting, achieving the same goal requires

a small trick.

The intuition behind oec is that the parties wait till they receive the shares of 2t + 1

parties, all of which lie on a unique polynomial of degree t. This step requires applying RS

error-correction repeatedly. We denote an RS error-correcting procedure as RS-dec(t, r,W )

that takes as input a vector W of shares (some of them possibly incorrect) of a t-shared value

(that we would like to reconstruct) and tries to output a polynomial of degree t, by correcting

at most r errors in W . Coding theory [154] says that RS-dec can correct r errors in W and

correctly interpolate the original polynomial provided that |W | ≥ t+ 2r+ 1. There are several

efficient implementations of RS-dec (for example, the Berlekamp-Welch algorithm [154]). Once

the parties receive the shares from 2t + 1 parties that lie on a unique polynomial of degree

t (returned by RS-dec), then that unique polynomial is the actual polynomial, say Q(x), of

degree t that defines t-sharing of Q(0). This is because at least t + 1 values out of the 2t + 1

values are from the honest parties, which uniquely define the original polynomial Q(x). Note

that the corrupted parties in P may send wrong values. But there are at least n − t ≥ 2t + 1

honest parties in the set P whose shares will be eventually received by all parties in P and so

every honest party in P will eventually terminate the process. The above procedure is nothing

but applying RS error-correction algorithm in an “online” fashion.

The steps for the oec are now presented in Figure 7.2. The current description is inspired

from [49]. The properties of oec are stated in the following theorem.

Setting: A value is t-shared among a set of parties P, where Q(x) is the underlying sharing polyno-

mial of degree at most t, where t < (n − 2t); each party Pi ∈ P holds the share vi = Q(i) of Q(0).

The parties are supposed to publicly reconstruct the polynomial Q(x).

Code for the party Pi — Every party in P executes the following code:

1. Send share vi to all Pj ∈ P.

2. For r = 0, . . . , t, do the following in iteration r:

(a) Let W denote the set of parties in P from whom Pi has received the shares and Ir denote the

values received from the parties in W, when W contains exactly 2t+ 1 + r parties.

Protocol oec()
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(b) Wait until |W| ≥ 2t+ 1 + r. Execute RS-dec(t, r, Ir) to get a polynomial Qr(x) of degree t. If

no polynomial is output, then skip the next step and proceed to the next iteration.

(c) If for at least 2t+ 1 values vj ∈ Ir it holds that Qr(j) = vj , then output Qr(x) and terminate.

Otherwise, proceed to the next iteration.

Figure 7.2: Protocol for online error-correction [49]

Theorem 7.2 ([49, 20]) Let a value be t-shared among a set of parties P where t < (|P|− 2t)

and let Q(x) be the underlying sharing polynomial. Then protocol oec achieves the following

properties for every possible A:

– Termination: Every honest party in P eventually terminates the protocol.

– Correctness: Each honest party in P upon terminating outputs Q(x).

7.2.4 Beaver’s Circuit Randomization Technique

Beaver’s circuit randomization method [18] is a well known method for securely computing [x·y],

from [x] and [y], using a precomputed t-shared random and private multiplication-triple, say

([a], [b], [c]), at the expense of two public reconstructions of t-shared values. For this, the parties

first (locally) compute [e] and [d], where [e] = [x] − [a] = [x − a] and [d] = [y] − [b] = [y − b],
followed by the public reconstruction of e = (x − a) and d = (y − b). Since the relation

xy = ((x − a) + a)((y − b) + b) = de + eb + da + c holds, the parties can locally compute

[xy] = de + e[b] + d[a] + [c], once d and e are publicly known. The above computation leaks

no additional information about x and y if a and b are random and unknown to the adversary.

We present protocol Beaver in Figure 7.3.

– Input of the parties in P: A t-shared multiplication triple ([a], [b], [c]) and t-shared pair ([x], [y]).

– Primitives Used: Protocol oec

– The Protocol: The protocol runs asynchronously.

1. Compute [e] and [d] as [e] = [x]− [a] = [x− a] and [d] = [y]− [b] = [y − b].

2. The parties publicly reconstruct d and e using two instances of oec.

3. The parties locally compute [xy] = de+ e[b] + d[a] + [c].

Protocol Beaver()
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Figure 7.3: Beaver’s Circuit Randomization for Multiplication

The properties of the protocol Beaver are stated in Theorem 7.3.

Theorem 7.3 ([18]) Given a t-shared multiplication triple ([a], [b], [c]) and t-shared pair ([x], [y])

unknown to the adversary A, Protocol Beaver achieves the following for every possible A:

– Termination: All honest parties eventually terminate the protocol.

– Correctness: The honest parties correctly output [xy] at the end of the protocol.

– Privacy: The view of A is distributed independently of the x and y values.

7.2.5 Properties of Bivariate Polynomials

We state some well known standard properties of symmetric bivariate polynomials below from

[9] which are used to prove security of our AVSS protocol.

Lemma 7.1 ([9]) Let K ⊆ [n] be a set of indices such that |K| ≥ t + 1. Let {fk(x)}k∈K
be a set of polynomials of degree atmost t. If for every i, j ∈ K, it holds that fi(j) = fj(i),

then there exists a unique symmetric bivariate polynomial F (x, y) of degree atmost t such that

fi(x) = F (x, i) = F (i, x) for every i ∈ K.

Lemma 7.2 ([9]) Suppose I ⊂ {1, . . . , n} with |I| ≤ t, and q1(x), q2(x) are two degree t

polynomials over F such that q1(i) = q2(i) for every i ∈ I. Then the following distributions are

indistinguishable; i.e,

{(i, F 1(x, i))}i∈I} ≡ {(i, F 2(x, i))}i∈I

where F 1(x, y) and F 2(x, y) are symmetric degree t bivariate polynomials chosen at random

under the constraints that F 1(x, 0) = q1(x) and F 2(x, 0) = q2(x), respectively.

7.3 Asynchronous Weak Polynomial Sharing

We introduce a new primitive termed as Asynchronous Weak Polynomial Sharing (AWPS).

Informally the goal of the primitive is to allow a special party dealer D ∈ P to share a random

polynomial, say f(x) over F of degree at most t among n parties in P so that every honest

party Pi obtains ith point on the polynomial f(i). When the dealer is corrupted, we wish

to settle for a weaker requirement where corrupt D may choose a subset of honest parties to

own shares of a unique and fixed polynomial of its choice. However, the subset must be big
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enough, namely of size at least t+ 1, for D to be qualified in the AWPS. The most interesting

and important property of AWPS is that every honest party including those who are outcasted

will know whether it holds the share of the unique polynomial of corrupt D’s choice and will

terminate either with the correct share or with ⊥.

An AWPS can be viewed as a primitive that allows to do ‘weak’ t-sharing (cf. Definition 7.3)

of the constant term of the input polynomial. Specifically, when D is honest, AWPS outputs

t-sharing of f(0). When D is corrupt, it is guaranteed that at least a set of t+ 1 honest parties

receive shares of f̄(0) where f̄(x) denotes the unique polynomial of degree at most t of D’s

choice. The remaining honest parties output ⊥. We prefer AWPS as a primitive that shares

a polynomial instead of a secret. The former representation fits better when the primitive is

invoked in the AVSS protocol presented in the next section.

In the literature Asynchronous Weak Secret Sharing (AWSS) has been the key primitive

that AVSS relied on. AWSS, much like AVSS, is a two-protocol (Sh,Rec) primitive and allows

reconstruction of D’s committed secret via Rec protocol in a ‘weak sense’ (reconstructs either

the committed secret or ⊥). Our AWPS primitive is weaker than AWSS in the sense that it only

involves the sharing phase and may not even allow weak reconstruction of the committed secret.

Yet, it helps build an AVSS protocol that achieves 2d-sharing of a secret (cf. Definition 7.3),

a lucrative feature that is very useful for building MPC. The formal definition of AWPS is

presented below.

Definition 7.7 Asynchronous Weak Polynomial Sharing (AWPS): A protocol wsh for

n parties P, where a dealer D ∈ P holds a private polynomial f(x) of degree at most t picked

uniformly at random over F is a AWPS protocol tolerating A if the following requirements hold

for every possible A and for all possible inputs of D:

– Termination:

1. If D is honest and all the honest parties participate in the protocol wsh, then each

honest party eventually terminates the protocol wsh.

2. If some honest party terminates wsh, then each honest party eventually terminates

wsh.

– Correctness: If some honest party terminates wsh, then there exists a fixed polynomial f̄(x)

over F, such that the following requirements hold. We refer this as ‘D has partially-shared

f̄(x)’.

1. If D is honest, then f̄(x) = f(x) and each honest party outputs f(i).
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2. If D is corrupt, then every honest party Pi upon completing wsh outputs either f̄(i)

or ⊥. Moreover, there exist a set of at least t + 1 honest parties H such that each

honest party Pi ∈ H upon completing wsh outputs f̄(i).

– Privacy: If D is honest then A’s view is identically distributed for all possible f(0).

7.3.1 An AWPS Protocol in Hybrid network with One Synchronous

Round

We present an AWPS protocol wsh with n parties P where n ≥ 3t + 1. The dealer initiates

the protocol by picking a symmetric bivariate polynomial F (x, y) of degree t in both variables

uniformly at random over F such that F (x, 0) and F (0, y) are the same as the input polynomial

f(x) (with change of variable for F (0, y)). Following some of the existing VSS protocols based

on bivariate polynomials [139], the synchronous round of the protocol goes as follows: D sends

fi(x) = F (x, i) to party Pi and in parallel the parties exchange random pads to be used for

pairwise consistency checking of their common shares in the asynchronous phase. When a

bivariate polynomial is distributed as above, a pair of parties (Pi, Pj) will hold the common

share F (i, j) via their respective polynomials fi(x) and fj(x). Namely, fi(j) = fj(i) = F (i, j).

In addition to the above information exchange, a party also registers the pads it sends to other

parties with the dealer. Looking ahead, the dealer will use these pads in the asynchronous

phase to detect potential conflicting pairs of parties.

In the asynchronous phase, every Pi sends its list of pads received during the synchronous

round to the dealer. Using the sent list of pads from the synchronous round and the received

list of pads as reported by Pi, the dealer records in a list ci the set of parties who are conflicting

with Pi and communicates the list to Pi. Pi publicly discloses its share in clear that is common

with a party in conflict. For the rest, it makes the padded shares publicly available. D concludes

a party to be correct if he finds that the padded values and the shares in clear are consistent

with his chosen polynomial F (x, y) and his recorded pad lists. D waits until he finds a set of

at least 2t + 1 correct parties. D publicly announces the set denoted as W. For an honest D,

we show that any pair of parties in W will be pairwise consistent. To prevent a corrupt D from

cheating, every honest party checks the sanity of W by enforcing that no pair in W publicly

conflicts over their values that are either in padded or in clear form. So even a corrupted D

cannot cheat and make the honest parties accept a set of (honest) parties who are not pairwise

consistent. Once W is agreed upon, there is a unique bivariate polynomial, say F̄ (x, y) that is

committed by the dealer and is defined by the fi(x) polynomials of the honest parties in W.

The unique bivariate in turn defines a unique univariate polynomial f̄(x) = F̄ (x, 0) = F̄ (0, y).
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The honest parties in W outputs the constant term of their fi(x) polynomials received from

the dealer as the share of f̄(x). The remaining parties who lie outside W compute their share

by interpolating a degree t polynomial over its common shares with the parties in W. If it

has conflict with a party in W, then the common share is publicly available. Otherwise, it

computes the common share by subtracting the padded value made public by the party in W

from the pad it sent in the synchronous round. For an honest D, the interpolation will result

in a degree t polynomial fi(x) consistent with the dealer’s original pick F (x, y). Otherwise, the

interpolation may fail and Pi outputs ⊥. wsh is described in Figure 7.4.

For public announcement in asynchronous phase, we use the well-known asynchronous

broadcast primitive known as a-cast, which was introduced and elegantly implemented by

Bracha [43]. a-cast allows a sender in P to send a message identically to all the parties with

a termination guarantee when the sender is honest. If the sender is corrupt and one honest

party terminates then eventually every honest party will terminate the protocol with the same

output. The complete details of a-cast is given in Section 7.2.3.1. We say that ‘Pi a-casts x’ to

denote that Pi acts as a sender to broadcast x in an instance of a-cast.

– Input of D: A random polynomial f(x) of degree at most t over F.

– Primitives Used: Protocol a-cast (cf. Section 7.2.3.1)

– The Protocol: It assumes a synchronous phase with one round followed by an asynchronous

phase.

Synchronous Phase:

1. D chooses a random symmetric bivariate polynomial F (x, y) of degree at most t in both variables

such that F (x, 0) = f(x). D sends the polynomial fi(x) = F (x, i) to party Pi.

2. Each party Pi ∈ P picks a random pad mij for every Pj and sends mij to Pj and D. D denotes

the set of pads sent by Pi to other parties as {ms
ij}Pj∈P.

Asynchronous Phase:

1. Each Pi sends its received list of pads {mji}Pj∈P to D.

2. D denotes Pi’s list as {mr
ji}Pj∈P. It computes and sends to Pi a set ci of all Pj ∈ P for which

mr
ji 6= ms

ji.

3. Each Pi computes two lists Ai and Bi and a-casts (Ai,Bi, ci).

Protocol wsh()

287



– Ai = {aij = fi(j) +mij}Pj∈P

– Bi = {bij}Pj∈P where bij = fi(j) if Pj ∈ ci and bij = fi(j) +mji otherwise.

4. On receiving (Ai,Bi, ci), D marks a party Pi as correct, includes it in a set W and a-casts Agreei

if:

– aij −ms
ij = F (i, j)

– bij = F (i, j) for ∀Pj ∈ ci and bij −mr
ji = F (i, j) otherwise

– ci is the same list that D communicated to Pi over point-to-point channel

D waits until |W| ≥ 2t+ 1 and then a-casts W.

5. On receiving W, Pi accepts W if W is valid where a valid W satisfies the following:

– For each Pj ∈W, Agreej and (Aj ,Bj , cj) is received from the a-cast of D and Pj respectively

– Every pair (Pj , Pk) ∈W is pairwise consistent where pairwise consistency is defined as follows:

i. if (Pj ∈ ck ∧ Pk ∈ cj) then bjk = bkj ,

ii. if (Pj ∈ ck ∧ Pk 6∈ cj) then akj = bjk,

iii. if (Pj 6∈ ck ∧ Pk ∈ cj) then ajk = bkj ,

iv. else ajk = bkj and akj = bjk.

– |W| ≥ 2t+ 1

6. On accepting W, Pi outputs si and terminates wsh where si is computed as follows:

– If Pi ∈W, then si = fi(0).

– Else si = constantTerm({(j, sij)}Pj∈W) where sij = bji if Pi ∈ cj and sij = bji −mij otherwise.

Figure 7.4: A Weak Polynomial Sharing Protocol

Claim 7.1 An honest D eventually consider every honest party Pi ∈ P as correct and a-cast

Agreei.

Proof: As both Pi and D are honest, all the following conditions will be true: (i) aij −ms
ij =

F (i, j) (ii) bij = F (i, j) for ∀Pj ∈ ci and bij − mr
ji = F (i, j) otherwise (iii) ci is the same list

that D communicated to Pi over point-to-point channel. Hence the claim follows. 2

Claim 7.2 For an honest D, any pair of correct parties (Pj, Pk) is pairwise consistent.

Proof: We consider the checks for the four possible cases of pairwise consistency checking

based on whether Pj belongs to Pk’s conflict list ck and vice versa.
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– Pj ∈ ck ∧ Pk ∈ cj: An honest D verifies that bjk = F (k, j) and bkj = F (j, k). So bjk = bkj

will hold.

– Pj ∈ ck ∧ Pk 6∈ cj: An honest D verifies that akj = F (j, k) + ms
kj, bjk = F (j, k) + mr

kj and

mr
kj = ms

kj. The last equality follows from Pk 6∈ cj. So akj = bjk will hold.

– Pj 6∈ ck ∧ Pk ∈ cj: An honest D verifies that ajk = F (j, k) + ms
jk, bkj = F (j, k) + mr

jk and

mr
jk = ms

jk. The last equality follows from Pj 6∈ ck. So ajk = bkj will hold.

– Pj 6∈ ck ∧ Pk 6∈ cj: An honest D verifies that ajk = F (j, k) + ms
jk, bjk = F (j, k) + mr

kj,

akj = F (j, k) + ms
kj, bkj = F (j, k) + mr

jk, m
r
jk = ms

jk and mr
kj = ms

kj . So ajk = bkj and

akj = bjk.

The proof holds good irrespective of whether Pj and Pk are honest or corrupt. 2

Claim 7.3 If an honest Pi finds a set W valid, then every other honest party will find it valid

eventually.

Proof: We note that the W set is a-casted by D. By the correctness property of a-cast, if

honest Pi receives a set W, all the other honest parties will receive the same set eventually.

Since the validity checking of W is done on the information received from a-cast of various

parties, every honest party will find the conditions true following the correctness property of

a-cast. 2

Lemma 7.3 Protocol wsh satisfies the termination property stated in Definition 7.7.

Proof: We first show that if D is honest and all the honest parties participate in protocol

wsh, then each honest party eventually terminates the protocol. To prove the statement, we

show that an honest D can always find a set W that will be accepted by one honest party.

Subsequently, by Claim 7.3, every other honest party will accept W. After accepting W, the

parties terminate protocol wsh after a local computation step. Now our claim that an honest

D will always find a valid W where every pair will be pairwise consistent follows from the

following argument. First, D will eventually consider every honest Pi as correct and a-cast

Agreei (by Claim 7.1) and there are at least 2t + 1 honest parties. Second, any pair (Pi, Pj)

who are considered to be correct by an honest D, no matter if they are honest or corrupt, they

are pairwise consistent (by Claim 7.2).

Next, we show that if some honest party Pi terminates wsh, then each honest party eventually

terminates wsh. If Pi terminates wsh, then it must have accepted a set W and subsequently
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computed the output via local computation. By Claim 7.3, every other honest party will agree

on the same W and will terminate the protocol after doing the local computation. 2

Next, we prove the correctness property of wsh via a set of claims.

Claim 7.4 If some honest party accepts a set W, then the following hold:

(a) Each pair of honest parties (Pi, Pj) in W holds f̄i(x) and f̄j(x) respectively such that f̄i(j) =

f̄j(i).

(b) There exists a unique symmetric bivariate polynomial of degree at most t, say F̄ (x, y)

such that an honest Pi in W holds f̄i(x) that is same as F̄ (x, i). In case D is honest,

F̄ (x, y) = F (x, y).

(c) There exists a unique polynomial of degree at most t, say f̄(x) such that an honest Pi in

W holds f̄(i). In case D is honest, f̄(x) = f(x).

Proof: We prove the first part of the claim by contradiction. Assume a pair of honest parties

(Pi, Pj) ∈W such that f̄i(j) 6= f̄j(i). We show that no honest party will accept W since (Pi, Pj)

will not be pairwise consistent. Thus, we arrive at a contradiction.

– Pi ∈ cj ∧ Pj ∈ ci: Here bij = f̄i(j) and bji = f̄j(i). So bij 6= bji.

– Pi ∈ cj ∧ Pj 6∈ ci: Here aji = f̄j(i) +mji and bij = f̄i(j) +mji. So aji 6= bij.

– Pi 6∈ cj ∧ Pj ∈ ci: Here aij = f̄i(j) +mij and bji = f̄j(i) +mij. So aij 6= bji.

– Pi 6∈ cj ∧ Pj 6∈ ci: Here both aij 6= bji and aji 6= bij.

For the second part, we note that the number of honest parties in W is at least t+ 1 (since

|W| ≥ 2t + 1). By the property of bivariate polynomials (Lemma 7.1) of degree at most t

in both variables, there exist a unique bivariate polynomial say F̄ (x, y) such that for every

honest Pi ∈ W it holds that f̄i(x) = F̄ (x, y). For an honest D, every honest Pi ∈ W holds

the polynomial fi(x) = F (x, i) as given by the honest D in the synchronous round. Thus, the

bivariate polynomial determined by the honest parties in W is F (x, y).

For the last part, we define the unique polynomial f̄(x) as F̄ (x, 0) where F̄ (x, y) is as defined

in the proof of part (b). By part (b), every honest Pi in W holds f̄i(x) = F̄ (x, y). To complete

the proof, we claim that f̄i(0) is same as f̄(i). The equality f̄(i) = f̄i(0) holds following the

given equalities: (i)F̄ (x, 0) = f̄(x) and F̄ (i, 0) = f̄(i) (the evaluation of the previous equation at

0), (ii) f̄i(x) = F̄ (x, i) (by the definition of f̄i(x) polynomial) and f̄i(0) = F̄ (0, i) (the evaluation

of the previous equation at 0) and (iii) finally F̄ (i, 0) = F̄ (0, i) (by the symmetricity of F̄ (x, y)).
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It is easy to note that in case D is honest, f̄(x) = f(x), since F̄ (x, y) = F (x, y) as proved in

part (b). 2

Lemma 7.4 Protocol wsh satisfies the correctness property stated in Definition 7.7.

Proof: For an honest dealer D, we show that every honest party Pi outputs f(i) upon

termination where f(x) is the input of D in the protocol. Part (c) of Claim 7.4 shows that

every honest Pi ∈W outputs f(i). To conclude the honest D case, we show that the above is true

for every honest Pi 6∈W. Recall that Pi computes a set of values {sij}Pj∈W such that sij = bji if

Pi ∈ cj and sij = bji−mij otherwise and finally computes f(i) as constantTerm({(j, sij)}Pj∈W).

When the dealer is honest, bji = fj(i) = fi(j) if Pi ∈ cj and bji−mij = fj(i) = fi(j) otherwise.

Therefore, we have {(j, sij)}Pj∈W = {(j, fj(i))}Pj∈W = {(j, fi(j))}Pj∈W. The set of points is

t-consistent and passes through fi(x). It follows now that si as returned by constantTerm is

same as fi(0). Finally fi(0) is same as f(i) as proved in part (c) of Claim 7.4.

For a corrupted D, we show that there exists a unique polynomial f̄(x) so that every honest

Pi outputs f̄(i) or ⊥ and there exists a set of at least t + 1 honest parties who outputs shares

of f̄(x). By Claim 7.4, there exist unique polynomials of degree at most t, F̄ (x, y) and f̄(x)

such that F̄ (x, 0) = f̄(x) and an honest Pi in W holds f̄i(x) and f̄(i). We show that f̄(x) is the

unique polynomial so that every honest party will output either f̄(i) or ⊥. Part (c) of Claim 7.4

shows that every honest Pi ∈ W outputs f̄(i). Here we show that Pi 6∈ W will either output

either f̄(i) or ⊥. Recall that Pi computes a set of values {sij}Pj∈W such that sij = bji if Pi ∈ cj

and sij = bji−mij otherwise. We show that constantTerm({j, sij}Pj∈W) either returns f̄i(0) or ⊥
where f̄i(x) = F̄ (x, i). In other words, the points in {j, sij}Pj∈W are either t-consistent and pass

through f̄i(x) = F̄ (x, i) or are not t-consistent. To prove the claim, we show that at least t+ 1

sij’s are same as f̄i(j). Specifically, we prove that {j, sij}Pj∈H = {j, f̄j(i)}Pj∈H = {j, f̄i(j)}Pj∈H
where H denotes the set of honest parties in W. For an honest Pj, sij = f̄j(i) no matter

whether Pi ∈ cj or not. Because, if Pi ∈ cj then sij = f̄j(i). Otherwise, it must be true

that bji = f̄j(i) + mij and so sij = f̄j(i). The set of points are t-consistent and pass through

f̄i(x) = F̄ (x, i). Lastly |H| is at least t+ 1 and every party in H outputs f̄(i). This concludes

our correctness proof. 2

Lemma 7.5 Protocol wsh satisfies the privacy property stated in Definition 7.7.

Proof: Let C denote the set of parties under control of A with |C| ≤ t. We first show that if

D is honest, then the information the adversary has about the dealer’s input at the end of wsh

consists of the polynomials {fi(x)}Pi∈C. We then argue that this information is independent of

f(0).
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In the synchronous phase, A gets access to the polynomials {fi(x)}Pi∈C. As for the values

broadcast in the asynchronous phase, consider a pair of honest parties, say (Pi, Pj). Since

Pi,Pj are honest, it must be true that mr
ji = ms

ji and mr
ij = ms

ij. Consequently, Pj /∈ ci and

Pi /∈ cj. We now argue that the broadcast of Pi with respect to Pj i.e aij = fi(j) + mij and

bij = fi(j) + mji will not leak anything about the value of fi(j) = F (i, j) to A. This follows

from the fact that mij,mji are chosen randomly and unknown to A since Pi, Pj,D are all honest.

Similar argument holds for the broadcast of Pj in the asynchronous phase as well. Now suppose

atleast one among (Pi, Pj) is corrupt, say Pj. Then it is possible that Pi ∈ cj or Pj ∈ ci and

the point F (i, j) may be broadcast in the asynchronous phase. However, this reveals no new

information since F (i, j) = fi(j) = fj(i) is already known to A controlling Pj.

We have seen above that the adversary’s view consists nothing beyond the polynomials

{fi(x)}Pi∈C. We now argue this view is identically distributed for all possible f(0). Consider

any two degree-t polynomials q1(x) and q2(x) such that q1(i) = q2(i) = fi(0) for every i ∈ C.

Then, according to Lemma 7.2

{
(i, F 1(x, i))}i∈C} ≡ {{(i, F 2(x, i))

}
i∈C

where F 1(x, y) and F 2(x, y) are symmetric degree t bivariate polynomials chosen at random

under the constraints that F 1(x, 0) = q1(x) and F 2(x, 0) = q2(x), respectively. In more detail,

the distribution over the shares {fi(x)}i∈C received by the corrupted parties when F (x, y)

is chosen based on q1(x) (i.e when F (x, y) = F 1(x, y)) is identical to the distribution when

F (x, y) is chosen based on q2(x) (i.e when F (x, y) = F 2(x, y)). In other words, no information

is revealed about whether the private polynomial of D equals q1(x) or q2(x). Hence, we can

conclude that {fi(x)}Pi∈C is independent of D’s private polynomial f(x), and consequently f(0).

2

Theorem 7.4 Protocol wsh is a AWPS protocol.

Proof: The theorem follows from Lemmas 7.3,7.4 and 7.5. 2

7.4 Asynchronous VSS

In this section, we describe an AVSS protocol with n parties P where n ≥ 3t + 1. In the

Sh protocol, the dealer 2d-shares (cf. Definition 7.3) its secret s via a symmetric bivariate

polynomial F (x, y) with its constant term as the secret. The secret s will be shared via F (0, y)

(which is same as F (x, 0)), while the ith share of s, denoted as si and is same as F (0, i) (and

also F (i, 0)) will be shared via F (x, i). For the reconstruction, the parties participate in an
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instance of online error correction protocol denoted as oec with the shares of s. Namely Pi

participates in oec with si to reconstruct s. oec can be viewed as the method of applying

Reed-Solomon (RS) error-correction [154] in the asynchronous setting that allows each party

to robustly reconstruct not only the t-shared value but also the underlying polynomial used for

sharing. The complete details of oec is given in Section 7.2.3.2. We now take a detailed look

at the Sh protocol.

At a high level, Sh performs two layers of communication. The first layer of communication

helps to determine a set of parties called R in which the information held by the set of honest

parties uniquely determine a symmetric bivariate polynomial of degree t and hence determine a

unique secret committed by the dealer. This layer resembles the wsh protocol structure where D

picks a symmetric bivariate polynomial F (x, y) of degree t so that its constant term equals the

secret s. Then in the synchronous round, D hands out fi(x) = F (x, i) to party Pi and each pair

of parties exchange random pads to check pairwise consistency of their common shares later

in the asynchronous phase. The parties also record their sent and received set of pads with D.

During the asynchronous phase, based on recorded pads D finds and publishes a set of at least

2t + 1 correct parties, called R who are pairwise consistent. The first layer of communication

seems to be not enough to achieve AVSS since the honest parties outside R may not hold

a polynomial that is consistent with the unique committed bivariate polynomial in case of a

corrupt dealer. This is exactly what happened in wsh and so at most t honest parties may end

up with no share or ⊥. The second layer of communication repairs the above drawback and

aids every honest party outside R to recover a correct and consistent polynomial fi(x) and thus

also a share of the committed secret. The second layer includes n instances of wsh led by the

individual parties. Every honest party Pi partially-shares a random polynomial pi(x) via wshi,

the ith instance of wsh and uses pi(x) to publicly commit its polynomial fi(x) in blinded form.

Namely, Pi makes fi(x) + pi(x) public. Later if honest Pi is declared to be part of R, a party

Pj 6∈ R can recover fi(j) as and when it computes pi(j) as the output in wshi. Note that when

Pi is honest, then an honest Pj will recover pi(j) by the correctness of wsh. If a corrupted Pi

is part of R, we ensure that it must have made public commitment of correct fi(x) polynomial

in the blinded form. This is enforced as follows. First, we ask each party Pj to conditionally

participate in Pi’s instance wshi based on whether the blinded polynomial made public by Pi

is consistent with respect to its received point on pi(x) and common share fi(j). Second, Pi

is part of R only when its instance of wshi leads to a valid W (cf.Figure 7.4 for the definition

of a valid W) that has at least 2t + 1 parties in common with R. Recall that a valid W in

wsh ensures the honest parties in W defines a unique polynomial pi(x). Unfortunately, for a

corrupted Pi ∈ R, an honest Pj outside W may output ⊥ instead of pi(j) at the end of wshi.
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This is not a problem since R contains at least t+ 1 honest parties and Pj can recover at least

t+ 1 points on fj(x) which are clearly enough to recover fj(x). The AVSS protocol appears in

Figure 7.5. We proceed to prove the properties.

Protocol Sh()

– Input of D: A secret s ∈ F

– Primitives Used: Protocol wsh, a-cast (cf. Section 7.2.3.1)

– The Protocol: It assumes a synchronous phase with one round followed by an asynchronous

phase.

Synchronous Phase:

1. D chooses a random symmetric bivariate polynomial F (x, y) of degree at most t such that F (0, 0) =

s and sends the polynomial fi(x) = F (x, i) to each party Pi ∈ P.

2. Each Pi ∈ P picks a random pad mij for every Pj and sends mij to Pj and D. D denotes the set

of pads sent by Pi to other parties as {ms
ij}Pj∈P.

3. Each Pi picks a random polynomial pi(x) and executes the synchronous phase of wsh() as a dealer

with input pi(x). We refer to this instance as wshi. Pi participates in synchronous phase of wshj

for ∀Pj .

Asynchronous Phase:

1. Each Pi sends its received list of pads {mji}Pj∈P to D. D denotes Pi’s list as {mr
ji}Pj∈P. It

computes and sends to Pi a set ci of all Pj ∈ P for which mr
ji 6= ms

ji.

2. Each Pi computes two lists (Ai,Bi) as follows and a polynomial di(x) = pi(x) + fi(x). It then

a-casts (Ai,Bi, ci, bi(x)).

– Ai =
{
aij = fi(j) +mij

}
Pj∈P

– Bi =
{
bij
}
Pj∈P

where bij = fi(j) if Pj ∈ ci and bij = fi(j) +mji otherwise.

3. Each Pi participates in wshi as the dealer. It participates in wshj if (a) dj(x) received from the

a-cast of Pj is a polynomial of degree at most t and (b) dj(i) = pj(i) + fi(j).

4. D finds and A-casts sets R ⊆ P and Wi ⊆ P, ∀Pi ∈ R with the following properties:

– Every Pi ∈ R is correct

AVSS Protocol
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– ∀Pi ∈ R, Wi is a valid W in wshi

– |R| ≥ 2t+ 1 and |R ∩Wi| ≥ 2t+ 1

5. On receiving (R, {Wi}Pi∈R), Pi accepts the sets if the following conditions hold:

– ∀Pj ∈ R, (Aj ,Bj , cj) is received from the a-cast of Pj .

– Every (Pj , Pk) ∈ R is pairwise consistent.

– ∀Pj ∈ R, Wj is a valid W in wshj .

– |R| ≥ 2t+ 1 and |R ∩Wi| ≥ 2t+ 1

6. On accepting the sets, Pi outputs si and terminates Sh where si is computed as follows:

– If Pi ∈ R, then it sets si = fi(0).

– Otherwise, it computes its output pij in wshj for every Pj ∈ R, finds the set {sij = dj(i) −
pij}Pj∈R ∧ pij 6=⊥ and outputs si = constantTerm({(j, sij)}Pj∈R ∧ pij 6=⊥).

Protocol Rec()

– Input of each Pi ∈ P: si i.e Pi’s output of Sh

– Primitives Used: Protocol oec (cf. Section 7.2.3.2)

– The Protocol: It assumes an asynchronous network.

The parties run an instance of oec and terminate with s = f(0) where f(x) is the output of

oec.

Figure 7.5: AVSS Protocol

Claim 7.5 If D is honest, then he eventually finds sets (R, {Wi}Pi∈R) which some honest party

accepts.

Proof: We first show that D can compute sets (R, {Wi}Pi∈R) satisfying the following three

conditions in polynomial time: (i) Every Pi is correct, (ii) ∀Pi ∈ R, Wi is a valid W in wshi, (iii)

|R| ≥ 2t+ 1 and |R ∩Wi| ≥ 2t+ 1. In the second part of the proof, we will show that the sets

satisfying the above conditions will be accepted by some honest party. D follows the following

steps to find the sets (R, {Wi}Pi∈R):

– Initialisation: Initialise a dynamic set T to ∅. For every party Pi initialise a dynamic set

Wi to ∅.
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– Update of W Sets: Include every Pj in Wi for which Agreej is received from the a-cast of

Pi in wshi. If Wi is not valid, then reset Wi to ∅.

– Update of T: Include a party Pi in T if the following are true: (i) Pi is correct and (ii)

|Wi| ≥ 2t+ 1.

– Finding Candidate Solution: If there exists a subset R of T such that |R ∩Wi| ≥ 2t+ 1

is true for every Pi ∈ R, then return (R, {Wi}Pi∈R) and stop. Else wait and verify if the

above condition is true after every update of T or Wis.

It is easy to note that if at some point of time T contains all the honest parties and for every

honest party Pi, Wi contains all the honest parties, then D can find a candidate solution

(R, {Wi}Pi∈R). The following observations prove that eventually the above event will happen.

First, every honest Pi will be considered as correct by an honest D following Claim 7.1. Second,

every honest Pi will a-cast Agreej for every honest Pj eventually in wshi. Consider an honest

Pj participating in wshi of an honest Pi. Pj will find di(x) of degree at most t. In addition,

the relation di(j) = pi(j) + fj(i) will hold true. So Pj will continue to participate in wshi. So

Pi will a-cast Agreej for Pj following Claim 7.1. Third, for an honest Pi, the set of parties for

which Pi a-casts Agree at any point of time will always constitute a valid Wi.

Now moving on to the second part of the proof, the sets (R, {Wi}Pi∈R) computed as above

and a-casted by D will be accepted by an honest Pi. The conditions checked by Pi and D on the

sets are different with respect to the following: Pi checks if every pair (Pj, Pk) ∈ R is pairwise

consistent; while D checks if the parties in R are correct. The proof follows from Claim 7.2 that

shows that for an honest D, the check for correctness guarantees pairwise consistency. 2

Claim 7.6 If one honest party accepts the sets (R, {Wi}Pi∈R), then every other honest party

accepts them.

Proof: It is easy to note that the checks done by the parties are based on a-casted information.

By the correctness of a-cast, all the honest parties will receive the same information and conclude

the same. 2

Lemma 7.6 The pair of protocols (Sh,Rec) satisfies the termination property stated in Defini-

tion 7.1.

Proof: Claim 7.5 and Claim 7.6 together imply that if D is honest and all the honest parties

participate in Sh, then each honest party eventually terminates the protocol. Because once the

parties accept the sets (R, {Wi}Pi∈R), they terminate after local computation. Next, Claim 7.6
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implies that if some honest party terminates Sh, then each honest party eventually terminates

Sh. Lastly, if all the honest parties participate in Rec, it follows from the termination property

of oec (cf. Theorem 7.2) that each honest party eventually terminates Rec. 2

Claim 7.7 If some honest party accepts sets (R, {Wi}Pi∈R), then the following holds:

(a) Each pair of honest parties (Pi, Pj) in R holds f̄i(x) and f̄j(x) respectively such that f̄i(j) =

f̄j(i).

(b) There exists a unique symmetric bivariate polynomial of degree at most t, say F̄ (x, y)

such that an honest Pi in R holds f̄i(x) that is same as F̄ (x, i). In case D is honest,

F̄ (x, y) = F (x, y).

(c) A corrupt Pi ∈ R must have a-casted di(x) = F̄ (x, i)+pi(x) where pi(x) denotes the unique

polynomial Pi has partially-shared in wshi. In case D is honest, F̄ (x, i) = F (x, i).

(d) An honest Pi /∈ R eventually holds f̄i(x) that is same as F̄ (x, i). In case D is honest,

F̄ (x, i) = F (x, i).

Proof: The statements in (a) and (b) can be proved in the same way Claim 7.4 has been

proved with respect to W of wsh. We now prove part (c). By Lemma 7.4, every honest party

Pj in Wi holds pi(j). Now consider the honest parties in R ∩Wi. Each such honest party Pj

holds f̄j(x) that is same as F̄ (x, j) (by part (b)) and ensures that Pi’s a-casted polynomial

di(x) evaluates to f̄j(i) + pi(j) and is of degree t. Since R ∩Wi contains at least t + 1 honest

parties and f̄j(i) = f̄i(j), di(x) evaluates to the set of at least t+1 points
{
f̄i(j)+pi(j)

}
Pj∈R∩Wi

corresponding to the honest parties in R ∩Wi. So we can conclude that di(x) is identical to

F̄ (x, i) + pi(x). It is easy to note that for an honest D, F̄ (x, i) = F (x, i).

We now prove the last part. Consider an honest Pi /∈ R. For every honest Pj ∈ R, Pi outputs

pij that is same as pj(i) where pj(x) is partially-shared by honest Pj in wshj (by the correctness

property of wsh). Therefore, for every honest Pj, Pi will recover f̄j(i) (and so f̄i(j)) as di(j)−pij.
For every corrupted Pj ∈ R, Pi outputs either f̄i(j) or⊥ based on whether pij is pj(i) or⊥, where

pj(x) is partially-shared by corrupted Pj in wshj. The correctness of f̄i(j) is guaranteed by part

(c). Since R contains at least t+1 honest parties, the set of points
{
sij = dj(i)−pij

}
Pj∈R ∧ pij 6=⊥

is big enough and contains correct points on f̄i(x). Therefore, Pi can recover f̄i(x) as well as

the constant term si of f̄i(x) by running si = constantTerm
(
{(j, sij)}Pj∈R ∧ pij 6=⊥

)
. It is easy to

note that for an honest D, F̄ (x, i) = F (x, i). 2

Lemma 7.7 The pair of protocols (Sh,Rec) satisfies the correctness property stated in Defini-

tion 7.1
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Proof: From part (b) and (d) of Claim 7.7, there exists a symmetric bivariate polynomial of

degree at most t, say F̄ (x, y) such that each honest Pi holds f̄i(x) that is same as F̄ (x, i). We

prove that s̄ = F̄ (0, 0) is the unique secret shared by D which will be reconstructed after running

Rec protocol. Each party honest party holds f̄i(x) and finally outputs s̄i = f̄i(0) in Sh as the

share of s̄. Clearly, the s̄i values define t-sharing of s̄ via degree t polynomial f̄0(x) = F̄ (x, 0)

(which is same as F̄ (0, y) by the symmetry of the bivariate polynomial). Now by the correctness

of oec (cf. Theorem 7.2), the parties will output s̄ at the end of Rec. Finally, if D is honest

F̄ (x, y) is same as F (x, y), the original pick of the honest D and so s = s̄. 2

Lemma 7.8 The pair of protocols (Sh,Rec) satisfies the privacy property stated in Definition

7.1

Proof: Let C denote the set of parties under control of A where |C| ≤ t. A gets access

to {fi(x)}Pi∈C in the synchronous phase. In addition to this, A also knows the polynomial

di(x) = fi(x) + pi(x) broadcast by an honest Pi in the asynchronous phase. Let us now check if

di(x) leaks any information. Recall that Pi acts as dealer in wshi. Since Pi is honest, it follows

from privacy of wshi (Lemma 7.5) that pi(x) remains unknown to A. Therefore, A does not learn

anything from the broadcast di(x) since fi(x) is ‘blinded’ by the polynomial pi(x) unknown to

A. Also, by the same argument as in Lemma 7.5, broadcast of values by honest parties in the

asynchronous phase will reveal no new information about the secret s. We can now conclude

that A knows nothing beyond {fi(x)}Pi∈C. We now argue that this information is independent

of s. Consider any two degree-t polynomials q1(x) and q2(x) such that q1(i) = q2(i) = fi(0) for

every i ∈ C. Then, according to Lemma 7.2

{
(i, F 1(x, i))

}
i∈C ≡

{
(i, F 2(x, i))

}
i∈C

where F 1(x, y) and F 2(x, y) are symmetric degree t bivariate polynomials chosen at random

under the constraints that F 1(x, 0) = q1(x) and F 2(x, 0) = q2(x), respectively. In more detail,

the distribution over the shares {fi(x)}i∈C received by the corrupted parties when F (x, y) is

chosen based on q1(x) (i.e when F (x, y) = F 1(x, y)) is identical to the distribution when F (x, y)

is chosen based on q2(x) (i.e when F (x, y) = F 2(x, y)). An important point to be noted is

that both q1(x) and q2(x) are consistent with the information {fi(x)}i∈C possessed by A since

q1(i) = q2(i) = fi(0) for every i ∈ C. Consequently, no information is revealed about whether the

secret equals s1 = q1(0) or s2 = q2(0). Hence, we can conclude that {fi(x)}Pi∈C is independent

of D’s input s, which completes the proof. 2

Theorem 7.5 The pair of protocols (Sh,Rec) is an AVSS protocol.
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Proof: The theorem follows from Lemma 7.6,7.7 and 7.8. 2

Theorem 7.6 The value s̄ committed by D during Sh is 2d-shared. If D is honest, then s̄ = s.

Proof: It is easy to see that s̄ = F̄ (0, 0) is t-shared via F̄ (0, y) and each Pi ∈ P holds

s̄i = f̄i(0) = F̄ (0, i) (Lemma 7.7). Now each s̄i is t-shared via f̄i(x) which is same as F̄ (0, y).

Because, each honest Pi holds f̄j(x) and therefore f̄i(j) (which is same as f̄j(i)). If D is honest,

then s̄ = s where s is D’s input to Sh. 2

7.5 Impossibility of AMPC with One Synchronous Round

In this section, we prove impossibility of a perfectly-secure AMPC (Definition 7.4) with n ≤ 4t

parties over a network that provides a single synchronous round with broadcast oracle access

prior to turning to asynchronous mode. The proof takes inspiration from the proof of impossi-

bility of perfectly-secure AMPC with n ≤ 4t [49].

Theorem 7.7 For every n ≥ 4, there exist functions f such that no perfectly-secure AMPC

protocol can compute f with n ≤ 4t parties over a hybrid network that supports a single syn-

chronous round with broadcast oracle access.

Proof: Consider the setting (n = 4, t = 1). The proof can easily be generalized to all n ≤ 4t.

Let P = {P1, P2, P3, P4} denote the set of parties. We prove the theorem by contradiction.

We assume that there exists a perfectly-secure AMPC protocol π which computes the function

f(x1, x2, x3, x4) defined below for Pi’s input xi over a hybrid network that provides a single

synchronous round with access to broadcast oracle:

f(x1, x2, x3, x4) =

1 if x2 = x3 = 1

0 otherwise

Protocol π consists of two sub-protocols or phases: synchronous phase is denoted as πs and

asynchronous phase is denoted as πa. We write π = (πs, πa). We assume that the communica-

tion done in the asynchronous phase in π are done via broadcast. This holds without loss of

generality since the parties can perform point-to-point communication by exchanging random

pads in the first round and then using these random pads to unmask later broadcasts [101].

We will consider an execution of π where A corrupts P1 and follows a scheduling strategy

and a strategy for P1 in πa as described below. In each step of πa, A delivers the messages

of parties P1, P2 and P3 in ‘round robin’ fashion. The messages of P4 are delivered only when

there are no undelivered messages of the other parties. A communicates on behalf of P1 in a
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malicious way (details below) such that P2 and P3 do not identify P1 as corrupt. So in each step

P2 and P3 wait for messages from only (n− t) = 4− 1 = 3 parties and proceed to the next step

before any message from P4 is delivered. This strategy of A ensures that P2 and P3 terminate

π without any consideration of the communication from P4 during πa. The crux of the proof

is to show that P2 and P3 will output 0 when π is run with input (∗, 1, 1, ∗) in the presence

of the above scheduling strategy of A and a strategy for P1 discussed below, where ∗ denotes

any input value on behalf of P1 and P4. Since π is assumed to be a perfectly-secure AMPC, an

error in correctness is not allowed. Therefore, we will conclude that π is not a perfectly-secure

AMPC for f arriving at a contradiction.

pπsi→j denote the transcript of the point-to-point communication done in the first synchronous

round from Pi to Pj and pπsi↔j denote {pπsi→j, p
πs
j→i}. bπsi and bπai denote the broadcast communi-

cation done by Pi in πs and πa respectively. We denote the view of party Pi at the end of π as

Vi that constitutes of Pi’s initial input xi and random input rπi and the private and broadcast

communication that it has received in π. The information sent out by Pi can be polynomially

computed from the initial input and received information. Thereby, they are not considered as

a part of the view. So the view of a party Pi can be defined as follows:

Vi(π) =
{
xi, r

π
i , {pπsj→i}j 6=i, {b

πs
j }j 6=i, {b

πa
j }j 6=i

}
Let Tπ

i→j denote the transcript of the communication from Pi to Pj in π and Tπ
i↔j =

{Tπ
i→j,T

π
j→i}. We can write Tπ

i→j = {pπsi→j, b
πs
i , b

πa
i } and Tπ

i↔j = {pπsi↔j, b
πs
i , b

πs
j , b

πa
i , b

πa
j }. De-

noting π(x2, x3) as an execution of π with the input of P2 and P3 as x2 and x3 respectively and

r
π(x2,x3)
i for i ∈ [4] to denote the random inputs in execution π(x2, x3), we prove the following

useful claim:

Claim 7.8 There exist {rπ(0,0)
i }i∈[4], {rπ(0,1)

i }i∈[4], {rπ(1,0)
i }i∈[4] and {rπ(1,1)

i }i∈[4] such that T
π(0,0)
2↔3 =

T
π(0,1)
2↔3 = T

π(1,0)
2↔3 = T

π(1,1)
2↔3 .

Proof: First, T
π(0,0)
2↔3 = T

π(0,1)
2↔3 holds. If it is not true, then the transcript Tπ

2↔3 carries

information about P3’s input and so a corrupt P2 can learn P3’s input. This will breach privacy

since P2 should learn nothing beyond the output 0. Second, T
π(0,0)
2↔3 = T

π(1,0)
2↔3 holds. Otherwise,

following similar argument as above, a corrupt P3 can learn P2’s input. Finally, we argue that

T
π(0,1)
2↔3 = T

π(1,1)
2↔3 as follows. We claim that T

π(0,1)
2↔3 must be independent of x3. Otherwise, corrupt

P2 can learn x3, breaching P3’s privacy as P2 should not learn anything beyond output 0. Next,

since T
π(0,1)
2↔3 is independent of x3, it must be consistent with x3 = 0. Therefore, it must be

such that it does not leak the input of P2 to preserve P2’s privacy in case x3 = 0. Thus, we
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can conclude that T
π(0,1)
2↔3 is independent of P2’s input as well and T

π(0,1)
2↔3 = T

π(1,1)
2↔3 holds. These

equalities together prove the claim. 2

We now consider two executions π(0, 1) and π(1, 0) and claim the following:

Claim 7.9 There exist {rπ(0,1)
i }i∈[4] and {rπ(1,0)

i }i∈[4] such that:

(a) T
π(0,1)
2↔3 = T

π(1,0)
2↔3 ,

(b) {Tπ(0,1)
1→2 ,T

π(0,1)
1→3 ,T

π(0,1)
1→4 } = {Tπ(1,0)

1→2 ,T
π(1,0)
1→3 ,T

π(1,0)
1→4 } and

(c) p
πs(0,1)
4→i = p

πs(1,0)
4→i and b

πs(0,1)
4 = b

πs(1,0)
4 for i ∈ [3].

Proof: Part (a) follows from Claim 7.8. We now prove (b). If it is not true, then a corrupt

P1 can learn beyond the output 0, namely whether it is (0, 1) or (1, 0) that led to output which

it is not supposed to learn. The third claim follows easily as the communication of P4 in the

synchronous round is only dependent on its own random input and therefore the equalities hold

when r
π(0,1)
4 = r

π(1,0)
4 . 2

Skipping the annotation of (0, 1) and (1, 0) for the communications that are equal across

π(0, 1) and π(1, 0), we present the views honest P1, P2, P3 and P4 in these two executions in

Table 7.2. We ignore the view and communication by P4 beyond the synchronous round, as

it never gets chance to participate in the execution, except the synchronous round as per the

adversarial scheduling strategy mentioned above.

Table 7.2: Views of P1, P2, P3, P4 in π(0, 1) and π(1, 0)

Views in π(0, 1) Views in π(1, 0)
V1(π(0, 1)) V2(π(0, 1)) V3(π(0, 1)) V4(π(0, 1)) V1(π(1, 0)) V2(π(1, 0)) V3(π(1, 0)) V4(π(1, 0))

Initial Input r
π(0,1)
1 (0, r

π(0,1)
2 ) (1, r

π(0,1)
3 ) r

π(0,1)
4 r

π(1,0)
1 (1, r

π(1,0)
2 ) (0, r

π(1,0)
3 ) r

π(1,0)
4

πs

p
πs(0,1)
2→1 , pπs1→2, pπs1→3, pπs1→4, p

πs(1,0)
2→1 , pπs1→2, pπs1→3, pπs1→4,

p
πs(0,1)
3→1 , pπs3→2, pπs2→3, p

πs(0,1)
2→4 , p

πs(1,0)
3→1 , pπs3→2, pπs2→3, p

πs(1,0)
2→4 ,

pπs4→1 pπs4→2 pπs4→3 p
πs(0,1)
3→4 pπs4→1 pπs4→2 pπs4→3 p

πs(1,0)
3→4

bπs2 , b
πs
3 , b

πs
4 bπs1 , b

πs
3 , b

πs
4 bπs1 , b

πs
2 , b

πs
4 bπs1 , b

πs
2 , b

πs
3 bπs2 , b

πs
3 , b

πs
4 bπs1 , b

πs
3 , b

πs
4 bπs1 , b

πs
2 , b

πs
4 bπs1 , b

πs
2 , b

πs
3

πa bπa2 , b
πa
3 bπa1 , b

πa
3 bπa1 , b

πa
2 − bπa2 , b

πa
3 bπa1 , b

πa
3 bπa1 , b

πa
2 −

Now we consider execution π(1, 1) and make the following claim:

Claim 7.10 There exists {rπ(0,1)
i }i∈[4], {rπ(1,0)

i }i∈[4] and {rπ(1,1)
i }i∈[4] such that:

(a) T
π(0,1)
2↔3 = T

π(1,0)
2↔3 = T

π(1,1)
2↔3 and

(b) p
πs(0,1)
4→i = p

πs(1,0)
4→i = p

πs(1,1)
4→i and b

πs(0,1)
4 = b

πs(1,0)
4 = b

πs(1,1)
4 for i ∈ [3].
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Proof: Part (a) follows from Claim 7.8. The second claim follows easily as the communica-

tion of P4 in the synchronous round is only dependent on its random input and therefore the

equalities hold when r
π(0,1)
4 = r

π(1,0)
4 = r

π(1,1)
4 . 2

We now describe the strategy of A corrupting P1 in π(1, 1) with random inputs {rπ(1,1)
i }i∈[4]\{1}.

Its private communication to P2 is as in π(1, 0) and to P3 is as in π(0, 1). The broadcasts mes-

sages both in synchronous and asynchronous phases are the same as the common broadcast of

π(0, 1) and π(1, 0). Clearly, the view of P2 in π(1, 1), V2(π(1, 1)), with the above strategy of A

is same as V2(π(1, 0)). By correctness of π, P2 outputs 0. On the other hand, the view of P3 in

π(1, 1), V3(π(1, 1)), with the above strategy of A is same as V2(π(0, 1)). By correctness of π, P3

outputs 0. This violates the correctness of π as both P2 and P3 have input 1. Since the above

breach is shown for certain set of random inputs which may be chosen with non-zero probability,

the breach holds with non-zero probability too. This is a contradiction to our assumption that

π securely computes f .

2

7.6 Impossibility of SVSS and SMPC with Two Syn-

chronous Rounds

We have seen in Section 7.4 that perfectly-secure AVSS with t < n/3 is feasible in hybrid

networks with single synchronous round. This leads to the natural question regarding the

feasibility of perfectly-secure SVSS in hybrid networks with t < n/3. It is known that three

synchronous rounds are necessary and sufficient for SVSS with t < n/3 [101]. Consequently,

it is trivial to achieve SVSS with t < n/3 in a hybrid network with three synchronous rounds.

Interestingly, it turns out that three rounds are not just sufficient, but also necessary. We prove

this through the following theorem:

Theorem 7.8 There is no perfectly-secure SVSS protocol with n ≤ 4t over a network that

provides two synchronous rounds with broadcast oracle access prior to turning to asynchronous

mode.

Proof: Consider the setting (n = 4, t = 1). The proof can easily be generalized to all

n ≤ 4t. Let P = {P1, P2, P3, P4} denote the set of parties. Without loss of generality, we

assume D = P1. We prove the theorem by contradiction. We assume there is a perfect SVSS

protocol π = (Sh,Rec) in the above network setting and with (n = 4, t = 1). We assume

that the communication done in the second synchronous round and asynchronous phase in π

are done via broadcast. This holds without loss of generality since the parties can perform
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point-to-point communication by exchanging random pads in the first round and then using

these random pads to unmask later broadcasts [101].

Protocol Sh consist of two sub-protocols or phases: a synchronous phase and an asyn-

chronous phase. The latter is denoted as Sha. The synchronous phase has two rounds. We

denote the sub-protocols for the rounds as Sh1, Sh2. The Rec protocol is run asynchronously. So

we write π = (Sh1, Sh2, Sha,Rec). pSh1
i→j denote the transcript of the point-to-point communica-

tion done in the first synchronous round from Pi to Pj. bSh1
i , bSh2

i and bSha
i denote the broadcast

communication done by Pi in Sh1, Sh2 and Sha respectively. We denote the view of party Pi

at the end of Sh as Vi that constitutes of Pi’s initial input rSh
i which includes its random coin

if any (and the secret if Pi is the dealer) and the private and broadcast communication that

it has received in Sh. The information sent out by Pi can be polynomially computed from the

initial input and received information. Thereby, they are not considered as a part of the view.

So the view of a party Pi can be defined as follows:

Vi(Sh) =
{
rSh
i , {p

Sh1
j→i}j 6=i, {b

Sh1
j }j 6=i, {b

Sh2
j }j 6=i, {b

Sha
j }j 6=i

}
In the Rec protocol, the parties simply broadcast their view from Sh protocol. Denoting π(x) =

(Sh1(x), Sh2(x), Sha(x),Rec(x)) as an execution of π with the secret of the dealer P1 as x,

we now consider a couple of executions Sh(x) and Sh(y) with x 6= y. To differentiate the

communications and views across various executions, we will parametrize the communications

and views with execution names.

In Sh(x), P1, P2, P3 and P4 participate with initial inputs r
Sh(x)
1 (defining secret x), r

Sh(x)
2 , r

Sh(x)
3

and r
Sh(x)
4 respectively. In Sh(y), P1, P2, P3 and P4 participate with initial inputs r

Sh(y)
1 (defining

secret y), r
Sh(y)
2 , r

Sh(y)
3 and r

Sh(y)
4 respectively. Assuming that r

Sh(x)
3 = r

Sh(y)
3 (which can hap-

pen with non-negligible probability), we now claim that there exists r
Sh(y)
1 , r

Sh(y)
2 , r

Sh(y)
4 so that

V3(Sh(x)) = V3(Sh(y)). If it is not true then a corrupt P3 can conclude that the secrets of

the dealer in Sh(x) and Sh(y) are distinct which violates the perfect secrecy of π. Specifically,

the equalities that follow from the equality V3(Sh(x)) = V3(Sh(y)) are as follows. When the

equalities hold for two communications in Sh(x) and Sh(y), we will skip the annotation of x

and y and use a common notation. So

r
Sh(x)
3 = r

Sh(y)
3 = rSh

3

p
Sh1(x)
j→3 = p

Sh1(y)
j→3 = pSh1

j→3 for j 6= 3

p
Sh1(x)
3→j = p

Sh1(y)
3→j = pSh1

3→j for j 6= 3

b
Shr(x)
j = b

Shr(y)
j = bShr

j for all j and r ∈ {1, 2, a}

(7.1)

303



For clarity, we present the views honest P1, P2, P3 and P4 in Sh(x) and Sh(y) in Table 7.3.

Table 7.3: Views of P1, P2, P3, P4 in executions Sh(x) and Sh(y)

Views in Sh(x) Views in Sh(y)
V1(Sh(x)) V2(Sh(x)) V3(Sh) V4(Sh(x)) V1(Sh(y)) V2(Sh(y)) V3(Sh) V4(Sh(y))

Initial Input r
Sh(x)
1 r

Sh(x)
2 rSh

3 r
Sh(x)
4 r

Sh(y)
1 r

Sh(y)
2 rSh

3 r
Sh(y)
4

Sh1

p
Sh1(x)
2→1 , p

Sh1(x)
1→2 , pSh1

1→3, p
Sh1(x)
1→4 , p

Sh1(y)
2→1 , p

Sh1(y)
1→2 , pSh1

1→3, p
Sh1(y)
1→4 ,

pSh1
3→1, pSh1

3→2, pSh1
2→3, p

Sh1(x)
2→4 , pSh1

3→1, pSh1
3→2, pSh1

2→3, p
Sh1(y)
2→4 ,

p
Sh1(x)
4→1 p

Sh1(x)
4→2 pSh1

4→3 pSh1
3→4 p

Sh1(y)
4→1 p

Sh1(y)
4→2 pSh1

4→3 pSh1
3→4

bSh1
2 , bSh1

3 , bSh1
4 bSh1

1 , bSh1
3 , bSh1

4 bSh1
1 , bSh1

2 , bSh1
4 bSh1

1 , bSh1
2 , bSh1

3 bSh1
2 , bSh1

3 , bSh1
4 bSh1

1 , bSh1
3 , bSh1

4 bSh1
1 , bSh1

2 , bSh1
4 bSh1

1 , bSh1
2 , bSh1

3

Sh2 bSh2
2 , bSh2

3 , bSh2
4 bSh2

1 , bSh2
3 , bSh2

4 bSh2
1 , bSh2

2 , bSh2
4 bSh2

1 , bSh2
2 , bSh2

3 bSh2
2 , bSh2

3 , bSh2
4 bSh2

1 , bSh2
3 , bSh2

4 bSh2
1 , bSh2

2 , bSh2
4 bSh2

1 , bSh2
2 , bSh2

3

Sha bSha
2 , bSha

3 , bSha
4 bSha

1 , bSha
3 , bSha

4 bSha
1 , bSha

2 , bSha
4 bSha

1 , bSha
2 , bSha

3 bSha
2 , bSha

3 , bSha
4 bSha

1 , bSha
3 , bSha

4 bSha
1 , bSha

2 , bSha
4 bSha

1 , bSha
2 , bSha

3

Now we consider three different corrupt executions that result in the same view of the

parties at the end of Sh. In all the executions, A schedules the messages of the parties so that

{P2, P3, P4} be the set of parties who see each others message during Sha and Rec.

– Execution E1: E1 is similar to Sh(x) where the parties P1, P3, P4 are honest and start with

their respective initial input of execution Sh(x). The adversary A corrupts P2 with the

following corruption strategy - P2’s private communication towards P1 and P3 is exactly

like in Sh(x). Its private communication to P4 is the same as in Sh(y). After the private

communication is done, P2 behaves exactly like an honest P2 in execution E3.

– Execution E2: E2 is similar to Sh(y) where the parties P1, P2, P3 are honest and start with

their respective initial input of execution Sh(y). The adversary A corrupts P4 with the

following corruption strategy - P4’s private communication towards P1 and P3 is exactly

like in Sh(y). Its private communication to P2 is the same as in Sh(x). After the private

communication is done, P4 behaves exactly like an honest P4 in execution E3.

– Execution E3: In E3 the parties P2, P3, P4 are honest. P2 and P4 start with their respective

initial input of execution Sh(y) and Sh(x) respectively. P3 starts with its initial input

that is common to executions Sh(x) and Sh(y). The adversary A corrupts P1. P1 acts

exactly as in Sh(y) towards P2 and P3. However its behaviour towards P4 is as in Sh(x).

Through a sequence of claims, we next prove the statement that: The view of honest P2 in

E2 and E3 will be the same. The view of honest P3 in E1,E2 and E3 will be the same. The view

of honest P4 in E1,E3 will be the same.

Claim 7.11 The broadcast of every honest Pi in Sh1 will be the same in E1,E2 and E3.
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Proof: In E1,E2 and E3, every honest Pi’s broadcast in the first synchronous round is the same

as bSh1
i . The first round broadcasts depend on initial inputs. By Equation 7.1 the synchronous

round broadcast of Pi for i ∈ {1, 2, 3, 4} are the same irrespective of whether its initial input is

r
Sh(x)
i or r

Sh(y)
i . 2

Claim 7.12 P1’s broadcasts in Sh2 will be the same in E1,E2 and E3

Proof: A careful look implies that P1’s view until the first round of E1 is exactly same as in

Sh(x) (refer to V1(Sh(x)) in Table 7.3). Similarly, P1’s view until the first round of E2 is exactly

same as in Sh(y) (refer to V1(Sh(y)) in Table 7.3). It now follows from Equation 7.1 that the

second round broadcasts done by P1 will be same as bSh2
1 in E1 and E2. In E3, a corrupt P1 can

broadcast bSh2
1 . 2

Claim 7.13 The broadcast of an honest P3 will be the same in E1,E2 and E3 in both (Sh1, Sh2).

Proof: It follows directly from Claim 7.11 that an honest P3’s broadcast in Sh1 remains

the same during E1,E2 and E3. Also, since the view of honest P3 until the first round in all

executions remains the same as in Sh(x) or Sh(y), the second round broadcasts done by P3

must also be the same (refer to Equation 7.1). 2

Lemma 7.9 The view of honest P2 in E2 and E3 will be the same. The view of honest P3 in

E1,E2 and E3 will be the same. The view of honest P4 in E1,E3 will be the same.

Proof: The common view of honest P2 in E2/E3, the common view of honest P3 in E1/E2/E3

and the common view of honest P4 in E1/E3 are presented in Table 7.4. Given Claim 7.11-7.13,

it is easy to verify our claim. We denote the broadcasts in E1/E2/E3 that may be different from

the broadcasts of Sh(x) or Sh(y) because of view difference using a barred notation.

Table 7.4: View of honest P2, P3 and P4 in (E2/E3), (E1/E2/E3) and (E1/E3) respectively.

V2(Sh) V3(Sh) V4(Sh)

Initial Input r
Sh(y)
2 rSh

3 r
Sh(x)
4

Sh1
p

Sh1(y)
1→2 , pSh1

3→2, p
Sh1(x)
4→2 pSh1

1→3, p
Sh1
2→3, p

Sh1
4→3 p

Sh1(x)
1→4 , p

Sh1(y)
2→4 , pSh1

3→4

bSh1
1 , bSh1

3 , bSh1
4 bSh1

1 , bSh1
2 , bSh1

4 bSh1
1 , bSh1

2 , bSh1
4

Sh2 bSh2
1 , bSh2

3 , b̄Sh2
4 bSh2

1 , b̄Sh2
2 , b̄Sh2

4 bSh2
1 , b̄Sh2

2 , bSh2
3

Sha b̄Sha
3 , b̄Sha

4 b̄Sha
2 , b̄Sha

4 b̄Sha
2 , b̄Sha

3

2
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Since π is assumed to be a SVSS, the honest parties (P2, P3, P4) in E3 must terminate after

Sh without the corrupt dealer’s participation in Sha. Otherwise, a corrupt dealer may not

participate in Sha at all leading to an endless waiting. Now as the views of the honest parties,

namely of (P3, P4) in E1 and of (P2, P3) in E2 are identical in all the three executions, they will

terminate E1 and E2 after Sh without D’s participation.

Now we discuss the adversary’s strategy in Rec of E1,E2 and E3. In E3, A corrupting P1

simply does not participate in Rec so that only {P2, P3, P4} see the views of each other from

Sh. In E1 and E2, A corrupting P2 and P4 respectively presents the view of an honest P2

and P4 as shown in Table 7.4. A further delays the communication of honest P1 so that only

{P2, P3, P4} see views of each other from Sh. The above adversarial strategies in the three

executions ensures that {P2, P3, P4} end up with the same view in Rec across all the three

executions. Now following the same argument as presented above for the termination of Sh,

E1,E2 and E3 must also terminate without P1’s participation in Rec protocol.

Since D is honest in E1 and E2, the parties should reconstruct x and y respectively in the

Rec protocol of the executions. This follows from the correctness property of π. Now recall

that the views of the parties in Rec protocol of all the three executions are the same. So in

E3 where D is corrupt, the parties may either reconstruct x or y. This clearly violates the

commitment property of π that demands there must exist a unique committed secret at the

end of Sh which will be reconstructed in Rec irrespective of the behaviour of A. Therefore

we arrive at a contradiction that π is not a perfect SVSS protocol. Since the above breach

is shown for certain set of initial inputs which may be chosen with non-zero probability, the

breach holds with non-zero probability too. This is enough for our proof as we are concerned

about impossibility of perfect SVSS. This completes the proof.

2

Since SVSS is a special case of SMPC protocol, the above theorem directly implies the

impossibility of perfectly-secure SMPC protocol with n ≤ 4t over a hybrid network with two

synchronous rounds. Thus, we get the following theorem.

Theorem 7.9 There is no perfectly-secure SMPC protocol with n ≤ 4t over a network that

provides two synchronous rounds with broadcast oracle access prior to turning to asynchronous

mode.

In the following section, we show that three synchronous rounds are not just necessary, but

also sufficient to design an SMPC protocol with t < n/3 over hybrid network.
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7.7 SMPC with Three Synchronous Rounds

In this section, we describe an SMPC protocol with three synchronous rounds in hybrid network

and n ≥ 3t+1, tweaking the framework of [62] and plugging in the existing 3-round VSS protocol

offering t-sharing of the underlying secret [139] into the framework.

Let F : Fn → F be the publicly known function over field F where each party Pi has the

input xi ∈ F for the function and all the n parties receive the function output F (x1, . . . , xn).

The function F is represented by an arithmetic circuit C over F, consisting of input gates, linear

gates, multiplication gates, random gates and output gates of bounded fan-in. Without loss

of generality, we assume that the multiplication gates have fan-in two and the random gates

have fan-in zero. Let cI , cL, cM , cR and cO denote the number of input, linear, multiplication,

random and output gates respectively in the circuit representing F . We assume cI = n and

cO = 1 for simplicity. We follow the standard technique of circuit evaluation where the parties

“securely” evaluate each gate in the circuit in a shared/distributed fashion. The parties interact

to maintain the following invariant for each gate in the circuit: given t-shared inputs of the

gate, say [a] and [b], the gate output is computed and made available among the parties in a

t-shared fashion at the end of the gate evaluation. Finally the shared circuit output is publicly

reconstructed. Since each intermediate value remains secret shared, privacy follows. Due to

the linearity of the sharing schemes, addition/linear gates can be locally evaluated by the

parties. However, computing a multiplication (non-linear) gate following the invariant requires

interaction among the parties.

A typical SMPC in information-theoretic setting consists of three phases: (a) The input

phase, where the parties t-share the inputs for computation of function. (b) The preprocessing

phase, where the parties jointly create t-sharing of a Beaver triple per multiplication gate [18]

i.e. t-sharing of a private random multiplication triple. (c) The computation phase, where

the shared circuit evaluation is performed using the t-shared Beaver triplets to evaluate the

multiplication gates while the additional gates need only local computation. Noting that the

reconstruction of t-shared secrets via oec (Section 7.2.3.2) works in the asynchronous phase

with n ≥ 3t+1, our goal is to pack the most of the protocol in the first three rounds so that the

asynchronous computation involves only reconstruction of secrets and local computation. The

input phase can be completed in the synchronous phase via invoking an VSS instance for every

party’s input. The computation phase, given the preprocessed t-shared Beaver triples, involves

only reconstructions of t-shared values (two for evaluating a multiplication gate and one for

evaluating an output gate) and local computation, making it feasible to run asynchronously.

The primary challenge, therefore, lies in generating the t-shared Beaver triples with the help
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of initial three rounds with n ≥ 3t+ 1 in the preprocessing phase. Both the preprocessing and

the input phase are run in parallel to take advantage of the synchronous rounds. While the

input phase terminates in the synchronous phase itself, the preprocessing phase spills over to

the asynchronous phase where only reconstructions and local computation are performed. We

now describe the three phases below.

7.7.1 Input Phase

The protocol Input is given in Figure 7.6.

– Input of each Pi ∈ P: Input xi ∈ F for computation of circuit C.

– Primitives Used: Protocol Sh corresponding to a VSS protocol (Sh,Rec) of [139].

– The Protocol: It uses the synchronous phase with three rounds of the hybrid network. Each

Pi invokes an instance of Sh as a dealer with secret as input xi and participates in other Sh

instances.

Protocol Input()

Figure 7.6: Protocol for the input phase of MPC.

Lemma 7.10 For every possible A and for every possible scheduler, protocol Input achieves:

– Termination: All the honest parties terminate the protocol.

– Correctness: Each honest party will output its shares corresponding to t-sharing of the

inputs of the parties in C.

– Privacy: The information obtained by A in the protocol is distributed independently of the

inputs of the honest parties in the set C.

Proof: The termination property is easy to verify. Correctness follows from the correctness

of Sh. Privacy of Sh ensures that the information obtained by A during instances of Sh is

independent of the private value xi for all honest Pi. 2

7.7.2 Preprocessing Phase

In this phase, the parties create raw material for evaluating the multiplication and random

gates. Namely, the goal is to create (cM+cR) t-shared random private multiplication triples. We

discuss our idea for a single t-shared random private multiplication (Beaver) triple generation.

We tweak the techniques of [62] used for building the preprocessing phase of an efficient MPC
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with n ≥ 4t + 1 over hybrid network with one synchronous round. The framework proposes a

share-and-extract paradigm that has two clear steps: each party is asked to verifiably t-share

random multiplication triples and then t-shared random multiplication triples unknown to the

adversary are extracted from the pool of triples generated by all the parties. It is the verifiability

of a multiplication triple i.e. whether c = ab for a shared (a, b, c) that we simplify leveraging

the three synchronous rounds and is different from [62]. We mention the difference in the

relevant section. Both the tasks of verifiable sharing of multiplication triple by a party and

the subsequent extraction rely on a protocol termed as triple-transformation protocol. In the

following, we discuss the triple transformation protocol and the extraction protocol first and

then conclude with the (verifiable) sharing of multiplication triples and preprocessing phase

protocol.

7.7.2.1 Triple Transformation protocol

The protocol tripleTrans takes t-sharing of a set of n independent triples as input and trans-

forms them into t-sharing of a set of n correlated triples. Namely, all the first components of the

transformed triples lie on a t-degree polynomial. The same holds for the second components.

The third components lie on a 2t degree polynomial. Furthermore, the degree 2t polynomial

will be the product of the degree t polynomials if and only if all the input triples are multipli-

cation triples. The protocol steps are outlined in Figure 7.7 and its properties are presented in

Lemma 7.11.

– Input: Sharing of set of n independent triples
{

([x(i)], [y(i)], [z(i)])
}
i∈[n]

– Primitives Used: Protocol Beaver (Section 7.2.4)

– Output: Sharing of set of n correlated triples
{

([x(i)], [y(i)], [z(i)])
}
i∈[n]

– The Protocol: It runs asynchronously.

1. For each i ∈ [t+ 1], the parties locally set [x(i)] = [x(i)], [y(i)] = [y(i)] and [z(i)] = [z(i)].

2. Let the points {(αi, x(i))}i∈[t+1] and the points {(αi, y(i))}i∈[t+1] define the polynomial X(·) and Y(·)
respectively of degree at most t. The parties locally compute [x(i)] = [X(αi)] and [y(i)] = [Y(αi)],

for eacha i ∈ [t+ 2, n].

3. For i ∈ [t + 2, n], the parties invoke Beaver() on ([x(i)], [y(i)]) and ([x(i)], [y(i)], [z(i)]) to compute

[z(i)].

Protocol tripleTrans()
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4. Let the points {(αi, z(i))}i∈[n] define the polynomial Z(·) of degree at most 2t. The parties output

{([x(i)], [y(i)], [z(i)])}i∈[n] and terminate.

aComputing a new point on a polynomial of degree t is a linear function of t + 1 given unique points on
the same polynomial.

Figure 7.7: Protocol for transforming a set of independent shared triples to a set of correlated shared
triples.

The protocol clearly implies the following one-to-one correspondence between the input and

the output triples, in an error-free fashion: (a) The ith output triple is a multiplication triple

if and only if the ith input triple is a multiplication triple and (b) The ith output triple will

be known to A if and only if the ith input triple is known to A. The first property guarantees

that the relation Z(·) = X(·)Y(·) is true if and only if all the n input triples are multiplication

triples. On the other hand, the second property guarantees that if A knows t′ input triples,

then it implies t + 1 − t′ “degree of freedom” in the polynomials X(·),Y(·) and Z(·), provided

t′ ≤ t; if t′ > t, then A will know all the output triples. So we have the following lemma.

Lemma 7.11 ([62]) Let {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[n] be a set of n t-shared triples. Then for every

possible A, protocol tripleTrans achieves:

– Termination: All the honest parties eventually terminate the protocol

– Correctness: There exist polynomials X(·),Y(·) and Z(·) of degree t, t and 2t respectively,

such that X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds for i ∈ [n] and Z(·) = X(·)Y(·)
holds if and only if all the input triples are multiplication triples.

– Privacy: If A knows t′ < t input triples then A learns t′ values on X(·),Y(·) and Z(·).

The protocol slightly differs from that of [62] in terms of the degrees used. Namely, their

polynomials X(),Y(),Z() are of degree 3t
2

,3t
2

and 3t respectively to facilitate generating one

multiplication triple at the expense of linear (in n) communication cost, leveraging presence of

n ≥ 4t+ 1 parties. Looking ahead, our verifiable triple sharing with n ≥ 3t+ 1 does not work

for the above degrees and the degrees we use is the only possibility that works.

7.7.2.2 Triple Extraction protocol

This protocol ‘extracts’ sharing of one multiplication triple from sharing of a set of n correlated

multiplication triples where n ≥ 3t+ 1. If A knows at most t of the correlated triples, then the

extracted triple is random and unknown to A subject to the fact that it is a multiplication triple.

The protocol is outlined in Figure 7.8 and its properties stated and proved in Lemma 7.12.
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– Input: Correlated shared multiplication triples
{

([x(i)], [y(i)], [z(i)])
}
i∈[n]

with polynomials X(·),Y(·)
and Z(·) of degree t, t and 2t respectively, such that X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i)

for i ∈ [n] and Z(·) = X(·)Y(·).

– Output: A shared multiplication triple ([a], [b], [c])

– The Protocol: It runs asynchronously. The parties locally compute [a] = [X(β)], [b] = [Y(β)]

and [c] = [Z(β)] and terminate, where β is a publicly known point distinct from α1, . . . , αn.

Protocol tripleExt()

Figure 7.8: Protocol for extracting sharing of a multiplication triple from sharing of a set of n
multiplication triples, where n ≥ 3t+ 1.

Lemma 7.12 ([62]) Given a set of correlated shared multiplication triples
{

([x(i)], [y(i)], [z(i)])
}
i∈[n]

with polynomials X(·),Y(·) and Z(·) of degree t, t and 2t respectively, such that X(αi) =

x(i),Y(αi) = y(i) and Z(αi) = z(i) for i ∈ [n] and Z(·) = X(·)Y(·), for every possible A pro-

tocol tripleExt achieves:

– Correctness: The output triple ([a], [b], [c]) is a multiplication triple.

– Privacy: If A knows at most t input triples, then the view of A is distributed independently

of the output multiplication triple ([a], [b], [c]).

7.7.2.3 Verifiable Multiplication Triple Sharing Protocol

To keep the presentation simple, we show how a specific party, say D shares a single multipli-

cation triple verifiably. D first t-shares n independent multiplication triples using 3n instances

of Sh (one for each component of the triple) of [139]. The triple transformation protocol is

invoked to transform his set of n t-shared independent triples to a set of n t-shared correlated

triples with the underlying polynomials as X(·),Y(·),Z(·) of degree t, t and 2t respectively. Now

the input triples are verified for their product relation via a pubic verification of the relation

Z(·) = X(·)Y(·), in an error-free manner, where each party Pi supervises the public verification

of Z(αi) = X(αi)Y(αi). An honest supervisor will make sure the relation holds without any

error. Now since there are at least 2t+ 1 honest supervisors and Z(·) is a polynomial of degree

at most 2t, we can conclude that Z(·) = X(·)Y(·). The verification led by party Pi is conducted

as follows:

Pi t-shares a dummy random multiplication triple ([fi], [gi], [hi]) using 3 instances of Sh in the

synchronous phase to help compute [X(αi)Y(αi] via Beaver’s technique. Then the difference of

Z(αi) and X(αi)Y(αi) is reconstructed via oec. When the difference is zero, it can be concluded
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that Z(αi) = X(αi)Y(αi). Else, the triple (X(αi),Y(αi),Z(αi)) is reconstructed using oec without

compromising privacy since the corrupt party that is either D or Pi already knows the triple. If

it is found to be a non-multiplication triple, D can be identified as corrupt and default t-shared

multiplication triple is considered corresponding to D.

When Z(·) = X(·)Y(·) is verified, the t-sharing of (X(β),Y(β),Z(β)) for a public value β is

taken as the multiplication triple dealt by D. We note that the above public verification of

Z(·) = X(·)Y(·) will not work when the degree of the polynomials are 3t
2
, 3t

2
, 3t respectively (as

in [62]). With these degrees, Z(αi) = X(αi)Y(αi) needs to be verified by at least 3t + 1 honest

parties, whereas we have just 2t + 1 honest parties in the population. On the other hand,

the polynomials X(·),Y(·) should be of degree at least t, otherwise an adversary corrupting

t parties would get access to t points of each of these polynomials (via Beaver’s technique)

learning X(·),Y(·) entirely. Thus, the only feasible choice for the degree of the polynomials are

t, t, 2t respectively.

We differ from [62] in the following aspect. Using three synchronous rounds, we get t-shared

dummy triples. Whereas, the dummy triples [62] are not in t-shared form due to the availability

of a single synchronous round. Consequently, our protocol only needs to deal with malicious

behavior of sharing a non-multiplication dummy triple, while [62] needs to handle additionally

the case when the dummy triple is not t-shared. Working with n ≥ 4t + 1, [62] leverages the

larger honest population to handle this issue. We now present the protocol in Figure 7.9 and

prove its properties in Lemma 7.13.

Lemma 7.13 Protocol tripleSh() achieves the following for every possible A:

– Termination: All honest parties terminate the protocol corresponding to every D.

– Correctness: The output triple ([p], [q], [r]) is a multiplication triple.

– Privacy: If D is honest, then the view of A is distributed independently of the output mul-

tiplication triple ([p], [q], [r]).

Proof: Termination: The termination property is easy to verify and follows directly from

the termination property of synchronous phase, tripleTrans, Beaver and oec.

Correctness: We first consider the case of an honest D, where the t-shared triples {([x(k)], [y(k)],

[z(k)])}k∈[n] will be multiplication triples. By the property of tripleTrans (Lemma 7.11), Z(·) =

X(·)Y(·) holds and {([x(k)], [y(k)], [z(k)])}k∈[n] will be multiplication triples. It now follows from

the property of Beaver that [z̄(k) = x(k)y(k)] computed by honest parties using dummy multiplica-

tion triple ([fk], [gk], [hk]) shared by honest Pk must correspond to z(k) and lead to reconstruction
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of γ(k) = 0 (correctness of oec). However, dummy triples given by a corrupt party Pk may lead

to γ(k) 6= 0 being reconstructed. However, the verification would be still be successful since

the triple {([x(k)], [y(k)], [z(k)])} would be reconstructed and found to be a multiplication triple

(correctness of oec). Finally, the correctness of tripleExt (Lemma 7.12) ensures that the output

triple ([p], [q], [r]) is a multiplication triple.

In case of corrupt D, the output may be either a default t-shared multiplication triple or

the triple computed as per the protocol. In the former case, correctness holds trivially. We

now consider the latter case. Note that it suffices to prove that corresponding to each honest

Pk, {([x(k)], [y(k)], [z(k)])} is a multiplication triple, which will confirm that Z(·) = X(·)Y(·) holds

(since Z(·) is a 2t degree polynomial uniquely determined by 2t+ 1 points). This would imply

that the triples shared by D are multiplication triples by property of tripleTrans (Lemma 7.11);

the proof would now follow from previous argument. We observe that the dummy triple shared

by honest Pk must be a multiplication triple. Therefore, it follows from the correctness of

Beaver that all honest parties compute [z̄(k) = x(k)y(k)]. Clearly, if {([x(k)], [y(k)], [z(k)])} shared

by corrupt D is not a multiplication triple, γ(k) = z̄(k) − z(k) 6= 0 would be reconstructed.

However, in this case the triple {([x(k)], [y(k)], [z(k)])} would be reconstructed and found to be

non-multiplication triple and default t-shared multiplication triple would be output which con-

tradicts our assumption. So correctness holds for corrupt D.

Privacy: Since D is honest, all shared triples {([x(k)], [y(k)], [z(k)])}k∈[n] will be random and

unknown to A. It thereby follows from properties of tripleTrans (Lemma 7.11) that all shared

triples {([x(k)], [y(k)], [z(k)])}k∈[n] will be random and A will not learn any point on X(·),Y(·),Z(·).
Now there can be at most t corrupted Pis and corresponding to them, A will learn the mul-

tiplication triple {([x(i)], [y(i)], [z(i)])} during its verification, as A will know the corresponding

dummy triple ([fi], [gi], [hi]) used for its verification. However, corresponding to the honest

Pis, the random dummy multiplication triples ([fi], [gi], [hi]) will be t-shared and will be not

known to A. This further implies that while computing [z̄(i) = x(i)y(i)] using ([fi], [gi], [hi]), no

additional information about the multiplication triple{([x(i)], [y(i)], [z(i)])} will be leaked to A.

Finally, the sharings [z̄(i)] and [z(i)] will be independent, except that z̄(i) = z(i) and so A will

already know that γ(i) = 0 and thus no new information is added to its view after the public

reconstruction of [γ(i)]. So overall, A will learn t values on X(·),Y(·),Z(·).
2

– Output: A verifiably t-shared multiplication triple corresponding to specific party D.

– The Protocol: The protocol runs over both the synchronous and asynchronous phase.

Protocol tripleSh()
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Synchronous Phase:

1. D invokes 3n instances of Sh for a SVSS of [139] to t-share {([x(k)], [y(k)], [z(k)])}k∈[n].

2. Every party Pi (i ∈ [n]) invokes 3 instances of Sh for a SVSS of [139] to t-share a random

multiplication triple ([fi], [gi], [hi]).

3. All parties invoke tripleTrans() on {([x(k)], [y(k)], [z(k)])}k∈[n] to compute
{

([x(k)], [y(k)], [z(k)])
}
k∈[n]

.

Asynchronous Phase: Every Pi does the following

1. Invoke Beaver() on {([x(k)], [y(k)])} and {([fk], [gk], [hk])} to compute [z̄(k)] for k = [n].

2. For k = [n], compute locally [γ(k)] as [γ(k)] = [z̄(k)]−[z(k)] and reconstruct using oec. If γ(k) 6= 0 for

some k, reconstruct {([x(k)], [y(k)], [z(k)])} using 3 instances of oec, one for each component of triple.

If reconstructed triple is a non-multiplication triple, output a default t-shared multiplication triple.

Otherwise invoke tripleExt() on
{

([x(k)], [y(k)], [z(k)])
}
k∈[n]

and output the t-shared multiplication

triple ([p], [q], [r]). which is the output of tripleExt.

Figure 7.9: Protocol for Verifiable Multiplication Triple Sharing.

7.7.2.4 The preprocessing phase protocol

For each Beaver triple (random secret multiplication triple) to be used for a multiplication gate,

each of the n parties acts as D in an instance of tripleSh to generate a single verified t-shared

multiplication triple. These n t-shared multiplication triples among which at most t may be

known to the adversary are again transformed via the triple transformation protocol tripleTrans

and a single t-shared Beaver triple is extracted via tripleExt protocol. The protocol is presented

in Figure 7.10 and we prove its properties in Lemma 7.14.

– Primitives Used: Protocol tripleSh, tripleTrans and tripleExt.

– The Protocol: It uses both the synchronous and asynchronous phase. The following is repeated

in parallel for cM +cR times. Each Pi invokes an instance of tripleSh as a dealer to verifiably t-

share a multiplication triple, say ([p(i)], [q(i)], [r(i)]) and participates in the instances of others.

The parties execute tripleTrans(
{

([p(i)], [q(i)], [r(i)])
}
i∈[n]

) and output
{

([a(i)], [b(i)], [c(i)])
}
i∈[n]

.

Finally, tripleExt is executed on {([a(i)], [b(i)], [c(i)])}i∈[n] to extract and output a single Beaver

triple.

Protocol preProc()

Figure 7.10: Protocol for the input phase of MPC.
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Lemma 7.14 For every possible A, the protocol preProc() achieves:

– Termination: All honest parties terminate the protocol.

– Correctness: cM + cR multiplication triples will be t-shared.

– Privacy: The view of A will be independent of the output multiplication triples.

Proof: Termination and privacy follows directly from the properties of the subprotocols

tripleSh, tripleTrans and tripleExt. For correctness, consider computation of a single prepro-

cessed triple. By property of tripleSh (Lemma 7.13), ([p(i)], [q(i)], [r(i)]) is guaranteed to be

a multiplication triple for each i ∈ [n] which implies that
{

([a(i)], [b(i)], [c(i)])
}
i∈[n]

is a set of

multiplication triples (property of tripleTrans). Finally, correctness of tripleExt executed on

{([a(i)], [b(i)], [c(i)])}i∈[n] ensures that t-sharing of a multiplication triple is obtained.

2

7.7.3 Computation Phase

We now present our computation phase protocol computation in Figure 7.11 that securely

evaluates the given circuit C on a gate by gate basis as discussed earlier. We use Beaver’s

circuit randomization technique to evaluate the multiplication and random gates with the help

of preprocessed cM + cR random t-shared multiplication-triples.

– Input of the parties in P:
{

([a(i)], [b(i)], [c(i)])
}
i∈[cM+cR]

with the knowledge that ([a(i)], [b(i)],

[c(i)]) is associated with the ith multiplication gate in the circuit C for i ∈ [cM ] and ([a(cM+i)],

[b(cM+i)], [c(cM+i)]) is associated with the ith random gate in the circuit C for i ∈ [cR].

– Common Inputs: A field F and the circuit C.

– The Protocol: The protocol runs asynchronously. For all the gates in the circuit C the (honest)

parties in P do the following (depending upon the type of gate):

1. Addition/Linear Gate. The parties locally apply the linear function on their respective shares

of the inputs of the gate.

2. Random Gate. If this is the ith random gate in the circuit then the parties locally output their

shares corresponding to the sharing [a(cM+i)].

3. Multiplication Gate. For the ith multiplication gate with inputs [x(i)] and [y(i)] the parties

invoke protocol Beaver() with ([a(i)], [b(i)], [c(i)]) and output [x(i)y(i)].

Protocol computation()

315



4. Output Gate. Let [s] be the t-sharing associated with the output gate. The parties execute an

instance of oec to reconstruct s and terminate.

Figure 7.11: The computation phase protocol

The properties of the protocol computation() are stated below.

Lemma 7.15 Given t-sharings
{

([a(i)], [b(i)], [c(i)])}i∈[cM+cR] of cM + cR random multiplication-

triples and t-sharings of the inputs of the parties (for the computation), protocol computation

achieves the following for every possible A:

– Termination. All honest parties eventually terminate the protocol.

– Correctness.: All the gates are evaluated correctly.

– Privacy. For every gate in the circuit, the evaluation of the gate reveals no additional

information about the inputs and the output of the gate to A.

Proof: The correctness and termination property follows from the correctness and ter-

mination property of oec. The privacy follows from privacy of protocol Beaver() and the fact

that the evaluation of random and linear gates require no communication among the parties.

2

7.7.4 SMPC Protocol

The steps of the MPC protocol are outlined in Figure 7.12.

– Input of Pi ∈ P: xi .

– Common Inputs: A field F and circuit C

– Protocol: It assumes a synchronous phase with three rounds followed by an asynchronous phase.

The parties invoke Input and preProc together. After terminating both the protocols, they

invoke computation() and output the output of computation().

Protocol mpc

Figure 7.12: An Asynchronous MPC protocol.

Theorem 7.10 mpc is an SMPC protocol over a hybrid network with three synchronous rounds.

Proof: The termination, correctness and privacy follows from termination, correctness and

privacy of Input (Lemma 7.10), preProc (Lemma 7.14) and computation (Lemma 7.15) protocols.

2
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7.8 Conclusion and Open Problems

In this chapter, we have examined the feasibility of VSS and MPC protocols in hybrid networks

achieving properties obtainable in fully synchronous and asynchronous networks. For asyn-

chronous protocols, we attempted to bridge the gap in the fault-tolerance with synchronous

protocols by utilizing initial synchronous rounds present in hybrid networks. We proved that

to achieve fault tolerance of synchronous protocols, while one synchronous round is both nec-

essary and sufficient for perfectly-secure AVSS, the same does not hold for AMPC. The latter

result implies that atleast two initial synchronous rounds are necessary for AMPC; finding

corresponding tight upper bound remains an interesting open question.

Next, for synchronous protocols we explored whether number of synchronous rounds could

be reduced leveraging the asynchronous phase available in hybrid networks. Interestingly, the

answer turns out to be negative. We showed that three synchronous rounds known to be suffi-

cient for SVSS is also necessary. This result implies a lower bound of three rounds for SMPC

in hybrid network, corresponding to which we present a matching upper bound using existing

techniques. We conclude that three synchronous rounds are sufficient to design perfectly-secure

SMPC (and thus AMPC) in hybrid network.
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Chapter 8

Conclusion

In this chapter, we summarize the contributions of this thesis and list some open problems for

future work.

8.1 Summary of Results and Open Problems

8.1.1 MPC with Small Population

8.1.1.1 On the Exact Round Complexity of 3PC.

We settled the question of the exact round complexity of 3PC protocols with one active cor-

ruption in the plain model achieving a range of security notions, namely sa, ua, fn and god in a

setting with pair-wise private channels and without or with a broadcast channel. In the minimal

setting of pairwise-private channels, 3PC with sa is known to be feasible in just two rounds,

while god is infeasible to achieve irrespective of the number of rounds. Settling the quest for

exact round complexity of 3PC in this setting, we show that three rounds are necessary and

sufficient for ua and fn. Extending our study to the setting with an additional broadcast chan-

nel, we show that while ua is achievable in just two rounds, three rounds are necessary and

sufficient for fn and god.

Interesting Inferences: Our results gives the following insights regarding round complexity of

MPC protocols. First, it implies the tightness of several known constructions. Our lower bound

for fairness assuming broadcast implies that for 2-round fair (or guaranteed output delivery)

protocols with one corruption, the number of parties needs to be at least four, making the 4PC

protocol of [129] an optimal one. Next, the lower bound result of unanimous abort without

broadcast immediately implies tightness of the 3PC protocol of [129] achieving selective abort
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in two rounds, in terms of security achieved. Lastly, our results highlight that the availability

of broadcast only impacts the round complexity of ua and god, leaving the round complexity

of sa and fn unperturbed in the 3PC setting.

Open Problems: While our lower bound results extend for any number of parties in honest

majority setting., our upper bounds do not extend for t > 1. We leave the question of designing

round-optimal protocols for the general case with various security notions under the assumption

of injective one-way functions.

8.1.1.2 Fast Secure Computation for 3PC and 4PC over the Internet.

Assuming the minimal model of pairwise-private channels, we present two protocols that involve

computation and communication of a single GC– (a) a 4-round 3PC with fn, (b) a 5-round 4PC

with god. Empirically, our protocols are on par with the best known 3PC protocol of [159]

that only achieves sa, in terms of the computation time, LAN runtime, WAN runtime and

communication cost. In fact, our 4PC outperforms the 3PC of [159] significantly in terms of

per-party computation and communication cost. With an extra GC, we improve the round

complexity of our 4PC to four rounds. The only 4PC in our setting, given by [129], involves 12

GCs. Assuming an additional broadcast channel (inevitable due to known impossibility), we

present a 5-round 3PC with god that involves computation and communication of a single GC.

Interesting Inferences & Open Problems: Our constructions highlight that achieving strong

notions of fn and god is possible with nominal overhead over abort security incase of 3PC /

4PC with single corruption. This gives promise of more efficient fn and god protocols in practice.

We leave the question of designing practically-efficient protocols for the general honest majority

setting as open.

8.1.2 On the Exact Round Complexity of Best-of-Both-Worlds Multi-

party Computation

We nearly settle the exact round complexity of two classes of BoBW protocols differing on

the security achieved in the honest-majority setting, namely god and fn respectively, under the

assumption of no setup (plain model), public setup (CRS) and private setup (CRS + PKI or

simply PKI). The former class necessarily requires the number of parties to be strictly more than

the sum of the bounds of corruptions in the honest-majority and dishonest-majority setting,

for a feasible solution to exist. Demoting the goal to the second-best attainable security in the

honest-majority setting, the latter class needs no such restriction.
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Assuming a network with pair-wise private channels and a broadcast channel, we show that

5 and 3 rounds are necessary and sufficient for the class of BoBW MPC with fn under the

assumption of ‘no setup’ and ‘public and private setup’ respectively. For the class of BoBW

MPC with god, we show necessity and sufficiency of 3 rounds for the public setup case and 2

rounds for the private setup case. In the no setup setting, we show the sufficiency of 5 rounds,

while the known lower bound is 4. Our results remain unaffected when security with abort and

fairness are upgraded to their identifiable counterparts.

Interesting Inferences & Open Problems: Our results demonstrate that the optimal round com-

plexity of BoBW protocols are on a positive note at most one more, compared to the maximum

of the needs of the honest-majority and dishonest-majority setting. This substantiates that

the desirable features of BoBW protocols over traditional protocols can be attained without

compromising on the number of rounds. If the same holds true regarding computation and

communication efficiency as well, then BoBW protocols would indeed be the best-suited choice

for real-life scenarios. We leave this question about exploring the other complexity measures of

BoBW protocols as open and note that the work of [99] makes progress in this direction.

8.1.3 On the Round Complexity of Fair and Robust MPC against

Dynamic and Boundary Adversaries

We settled the exact round complexity of fair and robust (achieving god) MPC tolerating dy-

namic and boundary adversaries. As it turns out, dn/2e+ 1 rounds are necessary and sufficient

for fair as well as robust MPC tolerating dynamic corruption. The non-constant barrier raised

by dynamic corruption can be sailed through for a boundary adversary. The round complexity

of 3 and 4 is necessary and sufficient for fn and god protocols respectively, with the latter having

an exception of allowing 3 round protocols in the presence of a single active corruption. While

all our lower bounds assume pair-wise private and broadcast channels and are resilient to the

presence of both public (CRS) and private (PKI) setup, our upper bounds are broadcast-only

and assume only public setup. The traditional and popular setting of malicious-minority, being

restricted compared to both dynamic and boundary setting, requires 3 and 2 rounds in the

presence of public and private setup respectively for both fair as well as robust protocols.

Interesting Inferences and Open Problems: The results provide us further insights regarding how

disparity in adversarial setting affects round complexity. Note that the round complexity of fair

protocols in the CRS model against an adversary corrupting minority of parties maliciously,
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remains unaffected in the setting of boundary adversary; which is a stronger variant of the

former. On the other hand, this switch of adversarial setting causes the lower bound of robust

protocols in the model assuming both CRS and PKI to jump from 2 to 4. Lastly, the gravity

of dynamic corruption on round complexity is evident in the leap from constant-rounds of 3,

4 in the boundary corruption case to dn/2e + 1. An interesting open question is to construct

tight upper bounds or come up with new lower bounds in the plain model.

8.1.4 On the Power of Hybrid Networks in Multi-Party Computa-

tion

We address the following fundamental question: What is the minimum number of initial syn-

chronous rounds necessary and sufficient in a hybrid network to construct perfectly-secure AVSS

and AMPC protocols with the same fault-tolerance of synchronous protocols? On the positive

side, we show that one synchronous round is sufficient for AVSS which is clearly optimal. On

the negative side, we show the same is not true for AMPC. Notably no broadcast oracle is

invoked in the synchronous round of our AVSS protocol. The latter result on AMPC implies at

least two initial synchronous rounds are necessary for MPC. With three synchronous rounds, we

design a perfectly-secure SMPC (and thus AMPC) protocol in this work. We further investigate

if the asynchronous phase of the hybrid network can be leveraged to save on the synchronous

rounds required for SVSS and SMPC. It is known that three synchronous rounds are necessary

and sufficient for SVSS with t < n/3 [101]. This makes the feasibility of SVSS with t < n/3 in

a hybrid network with three synchronous rounds trivial. The same question seems intriguing

when one or two synchronous rounds are assumed. We answer this question in the negative.

Interesting Inferences: Our results reinforce several general beliefs in the context of hybrid net-

works: (a) AMPC is harder to achieve than AVSS , (b) SVSS is harder to achieve than AVSS

with the same resilience, (c) perfectly-secure SMPC is harder to achieve than cryptographic

SMPC (follows from our work and the result of [23]).

Open Problems: The question of designing an AMPC protocol in a hybrid network with two

synchronous rounds with or without broadcast oracle access is left as an interesting open ques-

tion.
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