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Abstract

Secure multi-party computation (MPC) allows a group of n mutually distrustful parties to
jointly perform a computation on their private inputs in a secure way, so that no adversary
A actively corrupting a subset of the parties can learn more information than their outputs
(privacy), nor can they affect the outputs of the computation other than by choosing their own
inputs (correctness). The round complexity of MPC protocols is a fundamental question in the
area of secure computation and its study constitutes a phenomenal body of work in the MPC
literature. The research goal of this thesis is to advance the state of the art by expanding this
study of round complexity to various realistic adversarial settings and network models. The
questions addressed in the thesis are of both theoretical and practical importance.

The first part of the thesis studies round-optimal (more generally, round-efficient) MPC
protocols for small population, namely involving 3 (3PC) and 4 (4PC) parties tolerating single

active corruption (honest majority). We address two broad categories of questions -

- We settle the exact round complexity of 3PC in honest-majority setting, for a range
of security notions such as selective abort (sa), unanimous abort (ua), fairness (fn) and
guaranteed output delivery (god). sa, the weakest in the lot, allows the corrupt parties
to selectively deprive some of the honest parties of the output. In the mildly stronger
version of ua, either all or none of the honest parties receive the output. fn implies that
the corrupted parties receive their output only if all honest parties receive output and
lastly, the strongest notion of god implies that the corrupted parties cannot prevent honest
parties from receiving their output. We focus on two network settings— pairwise-private

channels without and with a broadcast channel.

- On the more practical side, we present efficient, constant-round 3PC and 4PC proto-
cols in the honest-majority setting that achieve strong security notions of fn and god.
Being constant-round and striking a good balance between the complexity measures of
communication, computation and round complexity, our constructions are suitable for

high-latency networks such as the Internet.
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Abstract

The second part of the thesis extends the study of round complexity beyond the traditional

settings and towards more realistic adversarial settings. Our contributions are:

- The two traditional streams of MPC protocols consist of- (a) protocols achieving god or
fn in the honest-majority setting and (b) protocols achieving (ua, sa) in the dishonest-
majority setting. The favorable presence of honest majority amongst the participants
is necessary to achieve the stronger notions of god or fn[65]. Unfortunately, a protocol
in one setting completely breaks down in the other setting. We overcome this demar-
cation of study of round complexity of MPC based on resilience (i.e honest majority or
dishonest majority) and explore round complexity for an interesting class of protocols
called the Best-of-both-Worlds (BoBW) MPC which simultaneously achieve fn / god in
honest majority and ua in dishonest majority. We nearly settle the question of exact
round complexity of BoBW protocols under the assumption of no setup (plain model),
public setup (common random / reference string a.k.a CRS) and private setup (public-key

infrastructure a.k.a PKI).

- In a generalised adversarial setting where the adversary is allowed to corrupt both pas-
sively (corrupt parties follow the protocol specifications but the adversary learns the
internal state) and actively (corrupt parties deviate arbitrarily from the protocol), the
necessary bound for a m-party fair or robust (achieving god) protocol turns out to be
to +1t, < n, where t,,t, denote the threshold for active and passive corruption with
the latter subsuming the former. Subsuming the traditional settings as boundary special
cases, we study the dynamic corruption setting which opens up a range of possible corrup-
tion scenarios for the adversary. While dynamic corruption includes the entire range of
thresholds for (t,,1,) starting from ([ 5] —1, [n/2]) to (0,n— 1), the boundary corruption
restricts the adversary only to the boundary cases of ([§] —1,|n/2]) and (0,n —1). We
overcome the demarcation of study of round complexity of MPC based on single type of
corruption (i.e passive or active) and settle the exact round complexity of fair and robust

MPC against dynamic and boundary adversaries under the assumption of public setup

(CRS).

While the above two parts include results in the computational (assumes polynomially-
bounded adversaries) and fully synchronous setting (assumes network channels with bounded-
delay), the final part of the thesis involves information-theoretic setting (tolerates computa-
tionally unbounded adversaries) and introduces asynchrony in the network as well. We address
the following fundamental questions wrt MPC and VSS (Verifiable Secret Sharing, which is
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Abstract

a fundamental building block for many distributed cryptographic tasks including MPC). Our

main contribution is as follows:

- Perfectly-secure (information-theoretic with no error) VSS and MPC protocols in asyn-
chronous network (allows arbitrary network delays) tolerate only at most one-fourth of
corruption, while their counterparts in synchronous network sustain against at most one-
third corruption. Moreover property-wise, synchronous protocols provide much stronger
guarantees than the asynchronous counterparts. Taking note of the fact that asynchronous
network is more realistic on one hand and on the other, synchrony of a network has pos-
itive impact on several aspects of distributed protocols including properties and fault-
tolerance, we explore the power of hybrid networks that combines best of both the worlds
by supporting a few synchronous rounds at the onset of a protocol execution, before
turning to asynchronous mode. In hybrid networks, we investigate various feasibility
questions pertaining to protocols giving guarantees attainable in synchronous as well as
asynchronous networks. Specifically, we wish to add and find the minimum synchrony
assumption needed. For asynchronous protocols, we wish to bridge the fault-tolerance
gap between synchronous and asynchronous protocols with minimum synchrony assump-
tion needed, leveraging the initial synchronous rounds. For synchronous protocols, we
explore if the known lower bounds on round complexity can be circumvented, leveraging

the asynchronous phase available in the hybrid network.
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Chapter 1
Introduction

Secure Multi-party Computation (MPC)[182, 107, 55, 30, 56], arguably regarded as the “holy
grail” of cryptography, allows a group of n mutually distrustful parties to jointly perform a
computation on their private inputs in a secure way, so that no adversary A actively corrupting
a subset of the parties can learn more information than their outputs (privacy), nor can they
affect the outputs of the computation other than by choosing their own inputs (correctness).
In the presence of a trusted third party (TTP), the above problem is trivial since all parties
could privately send their inputs to the TTP, which would compute the desired function and
subsequently return the output to the parties. Intuitively, an MPC protocol replaces the TTP
and guarantees the same level of security that the TTP provides.

The field of MPC originated with the seminal work of [182] which introduced the classical
“Yao’s millionaire problem” (the question of how two millionaires can determine who is richer
while keeping their actual wealth private). Since then, MPC has evolved into an active area of
research with a rich body of work comprising of both theoretical and practical achievements.
Its study is motivated not only by the fact that it gives us a general framework to study
cryptography (as most cryptographic tasks can be casted as secure computation problems)
but also since it enables various privacy-preserving applications such as secure auctions [41],
secure machine learning [158, 155, 157, 53|, secure benchmarking [77], statistical data analysis
[40], email-filtering [144], financial data analysis [40] and privacy-preserving data mining [149].
In more detail, a motivating example of a real-life scenario that demands privacy-preserving
computation is the following - Consider an airline company that has a private database of its
list of passengers and the government which owns a database with sensitive information of
blacklisted passengers. It is of mutual interest to both these entities to find the intersection of
their individual databases without compromising on privacy, which is enabled by MPC. MPC

has been studied extensively in various settings that explore different kinds of adversaries, setup
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and network models.

1.1 Dimensions of MPC

The various facets of real-life computing environments are captured by the fundamental dimen-
sions of MPC which includes the underlying communication network, type of adversary and
the setup to name a few. We outline the most prominent dimensions below. Looking ahead,
throughout this thesis, we use various combinations of the below mentioned models of network,

adversary and setup.

1.1.1 Network Model

The standard network model in MPC is the complete network which assumes that every pair
of distinct parties is directly connected by point-to-point secure and authentic channels. Some-
times, the presence of a broadcast channel is additionally assumed; where a broadcast channel
allows any party to send a message identically to all other parties in the network. An important

network dimension is synchrony based on which there are three categories:

- Synchronous: In the synchronous setting, it is assumed that all parties have access to a
common global clock and the delay of messages in the channels of the network is bounded
by a known constant. This allows protocols to proceed in rounds, with the strong delivery
guarantee that every message sent in any given round is delivered to all the recipients in

the same round.

- Asynchronous: In contrast to the above, in the asynchronous setting, there is no global
clock. It is assumed that the channels in the network may have arbitrary delays and may
deliver messages in any arbitrary order, with the only restriction that every sent message
must eventually be delivered. In order to model the worst case, the adversary is allowed

to control the scheduling of messages in the network.

- Hybrid: A network that is asynchronous in nature and yet supports a few synchronous
rounds at the onset of a protocol execution is denoted as hybrid network [23, 167]. While
we consider this notion, an alternative notion of hybrid networks appears in [75] where
a synchronization point is considered (the network is asynchronous before and after the

point).

1.1.2 Adversarial Model

Throughout this thesis, we consider a static and threshold adversary; where the former assumes

that the adversary decides on the set of parties it would corrupt before the protocol begins
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(as opposed to the adaptive model where the adversary is allowed to choose which parties
to corrupt during the protocol execution) and the latter assumes that the number of corrupt
parties is bounded by a threshold ¢ (as opposed to a non-threshold where an adversary structure
comprising a set of subset of the parties is defined, among which the adversary can corrupt one
of the subsets). Following is the discussion on the most relevant dimensions related to the

adversarial model.
1.1.2.1 Computational Power

Based on the computational power of the adversary, the two main categories are the information-
theoretic and cryptographic settings. While the former assumes that the adversary may have
unbounded computing power, the latter assumes a PPT adversary i.e bounded by probabilistic
polynomial time. The information-theoretic setting further has two categories of protocols - (a)
perfectly-secure (tolerate no error) and (b) statistically-secure (tolerate negligible error proba-
bility, where a negligible function is considered to be one that grows slower than any inverse

polynomial; details in Chapter 2).
1.1.2.2 Type of Misbehaviour / Corruption
Based on the allowed misbehaviour, an adversary can be categorized into the following types:

- Passive / Semi-honest: The corrupt parties in this adversarial model are honest-but-
curious i.e they follow the protocol specifications but the adversary learns the internal
state of the corrupt parties which it may use to learn more information (i.e more than

what is allowed as per the security guarantees of the protocol).

- Active / Malicious: In this setting, the adversary exercises total control over the corrupt

parties who may deviate from the protocol steps in any arbitrary manner.

- Mixed: This is a generalized adversarial model where the adversary may simultaneously
perform both types of corruption i.e he may corrupt a subset of parties actively, and

additionally corrupt few others passively.

1.1.3 Setup

Based on the type of setup assumed, there are three well-studied models in the MPC literature
- (a) plain model which does not assume any kind of trusted setup, (b) public setup, also
referred to as the CRS model which assumes that a trusted common random / reference string
(CRS) is available to the parties and (c) private setup, also referred to as the PKI model
which assumes that parties have access to a public-key infrastructure (sometimes in addition
to access to a CRS).



1.2 Attributes of MPC

While the setting of an MPC protocol is defined by the above discussed dimensions of adver-
sarial, network and the setup models; the analysis and comparison of protocols in the same

setting is done by means of the following attributes:

- Resilience: This is a measure of the number of corrupt parties that can be tolerated
i.e the defined threshold t. Among the protocols in the same setting and providing the
same security guarantees, the one having higher resilience is considered preferable. The
most common categorization based on resilience is the honest majority (t < n/2) and the

dishonest magority (t < n) settings.

- Quality / Degree of Robustness: Based on the degree of robustness, the categorization
is as follows (starting from the strongest i.e the most desirable to the weakest i.e the least

preferred)

- Guaranteed output delivery (god): The adversary cannot prevent honest parties from
receiving their output. This is the most desirable security notion. We refer to such

protocols as being robust.

- Fairness (fn): The adversary obtains the output if and only if the honest parties do.

In other words, either all or none of the parties receive output.

— Unanimous Abort (ua): Either all or none of the honest parties obtain the output.
Here, the protocols may be unfair i.e the adversary may get the output while the
honest parties don’t but there is an agreement amongst the honest parties with

respect to the output.

— Selective Abort (sa): This is the weakest security notion where the adversary may

selectively deprive a subset of the honest parties of the output.

Other notions include identifiable abort (idua) and identifiable fairness (idfair) where pro-
tocols achieving ua and fn respectively satisfy the following useful identifiability property:
if the parties do not receive the function output, then every party learns the identity of

atleast one corrupted party.

- Complexity Measures: The complexity of an MPC protocol is measured in terms of

the following fundamental parameters:



- Round Complexity: For MPC protocols in the synchronous network, the round com-
plexity is a measure of the number of rounds i.e the number of sequential interactions

in the protocol execution.

- Communication Complexity: This is measured as the total number of bits commu-

nicated by the honest parties in the protocol.

- Computation Complexity: This captures the computational resources utilized by the
parties during the protocol executions. More concretely, this can be measured in

terms of the number and type of mathematical operations, running time etc.

The lesser the number of rounds / bits / computation involved in a protocol, the more
round / communication / computation - efficient it is considered as being. Looking ahead,

the focus of this thesis is the round complexity of MPC in various settings.

Before moving on to the contributions of the thesis related to round complexity of MPC

under various settings, we outline the relevant literature below.

1.3 Related Work on Round Complexity of MPC

The phenomenal body of work done on round complexity catering to various adversarial settings
and network models emphasises its theoretical importance and practical relevance. For instance,
the exact round complexity of MPC independently in honest and dishonest majority has been
examined and the recent literature is awash with a bunch of upper bounds that eluded for
quite a long time [93, 35, 113, 15]. We review the round complexity of the honest-majority
and dishonest-majority MPC in the computational setting below as it is most relevant to the
contributions in this thesis. To begin with, 2 rounds are known to be necessary to realize any
MPC protocol, regardless of the setting, no matter whether a setup is assumed or not as long as
the setup (when assumed) is independent of the inputs of the involved parties. This is because
in a 1-round protocol, a corrupt party could repeatedly evaluate the “residual function” with
the inputs of the honest parties fixed on many different inputs of its own (referred as “residual
function” attack) [112].

Dishonest Majority. When no setup is assumed (plain model), 5 rounds are known to be
necessary in non-simultaneous message model for actively-secure 2PC [136]. This bound can be
improved to 4 even for the general case of dishonest majority in simultaneous message model
[95]. Tight upper bounds appear in [44, 3, 64, 113, 15, 60], with the latter three presenting
constructions under polynomial-time assumptions. In the presence of a public setup (Common

Reference String a.k.a. CRS setting), the lower bound comes down to 2 rounds [112]. A series of
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work present matching upper bounds under various assumptions [94, 160, 92|, culminating with
the works of [93, 35] that attain the goal under the minimal assumption of 2-round oblivious
transfer (OT).

Honest Majority. In the honest majority setting which is shown to be necessary [65] and
sufficient [30, 56, 66] for the feasibility of protocols with fn (fairness) and god (guaranteed output
delivery), the study on round complexity has seen the following interesting results. In the plain
model, 3 rounds are shown to be necessary for fn (hence for god) protocols, in the presence
of pairwise-private and broadcast channels for ¢ > 2 active corruptions [102] and for any t as
long as n/3 <t < n/2 [166]. Circumventing this 3-round lower bound for fn, [129, 126] show
2-round protocols for n > 4 against a single active corruption achieving god even without a
broadcast channel. The matching upper bounds in the plain model appear in [4] for the general
case under public-key assumption, [16] based on threshold multi-key FHE (fully-homomorphic
encryption) and in [166] for the special case of 3PC under the minimal assumption of (injective)
one-way functions (OWF). In the CRS model, 3 rounds remains to be the lower bound for fn in
a setting where broadcast is the only medium of communication (broadcast-only setting) [108]
and additionally with point-to-point channels [166, 102, 168]. Given PKI, the bound can be
improved to 2 [108].

1.4 The Contribution of this Thesis

The research goal of this thesis is to advance the state of the art by expanding the scope
of the existing study of round complexity (outlined above in Section 1.3) to various realistic
adversarial settings and network models. The questions addressed in the thesis are of both
theoretical and practical importance. We establish new lower bounds on round complexity of
MPC in different settings and present matching upper bound constructions. Most of our upper
bound constructions are based on garbled circuits (referred to as GC, elaborated in Chapter
2), which is a celebrated and standard technique to construct MPC protocols and constitutes

the basis of numerous constructions in the MPC literature. Following are our contributions:

1.4.1 MPC for small population

We study round-optimal (more generally, round-efficient) MPC protocols for small population,
namely involving 3 (3PC) and 4 (4PC) parties tolerating single active corruption (honest ma-
jority). MPC with small number of parties maintaining an honest majority make a fascinating
area of research due to myriad reasons as highlighted below. First, they present useful use-cases
in practice, as it seems that the most likely scenarios for secure MPC in practice would involve a

small number of parties. In fact, the first large scale implementation of secure MPC, namely the
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Danish sugar beet auction [41] was designed for the three-party setting. Several other applica-
tions solved via 3PC / 4PC include statistical data analysis [40], email-filtering [144], financial
data analysis [40], distributed credential encryption service [159] and secure machine learning
[158, 155, 157, 53, 171, 47]. The practical efficiency of these protocols has thus got considerable
emphasis and some of them have evolved to technologies [96, 39, 143, 144, 57, 91, 7]. Second, in
practical deployments of secure computation between multiple servers that may involve long-
term sensitive information, three or more servers are preferred as opposed to two. This enables
recovery from faults in case one of the servers malfunctions. Third and importantly, practical
applications usually demand strong security goals such as fn and god which are feasible only in
honest majority setting [65].

Driven by the above motivation, we address two broad categories of questions - (1) First,
we settle the exact round complexity of 3PC in honest-majority setting, for a range of security
notions such as selective abort (sa), unanimous abort (ua), fairness (fn) and guaranteed output
delivery (god). We focus on two network settings— pairwise-private channels without and with
a broadcast channel. (2) On the more practical side, we present efficient, constant-round 3PC
and 4PC protocols in the honest-majority setting that achieve strong security notions of fn and
god. Being constant-round and striking a good balance between the complexity measures of
communication, computation and round complexity, our constructions are suitable for high-

latency networks such as the Internet. We elaborate on the results below.
1.4.1.1 On the Exact Round Complexity of 3PC

We set our focus on the exact round complexity of 3PC protocols with one active corruption in
the plain model achieving a range of security notions, namely sa, ua, fn and god in a setting with
pair-wise private channels and without or with a broadcast channel. In the minimal setting of
pair-wise private channels, it is known that 3PC with sa is feasible in just two rounds [129],
while god is infeasible to achieve irrespective of the number of rounds [67]. No bound on round
complexity is known for ua or fn. In the setting with a broadcast channel, the result of [159]
implies 3-round 3PC with ua. Neither the round optimality of the [159] construction, nor any
bound on round complexity is known for protocols with fn and god.

We settle all the above questions via two lower bound results and three upper bounds. Both
our lower-bounds extend for general n and ¢ with strict honest majority i.e. n/3 <t < n/2
and hold even in the CRS model [168]. They imply tightness of several known constructions of
[129] and complement the lower bound of [102] which holds for only ¢ > 1. Our upper bounds
are from injective (one-to-one) one-way functions (referred to as OWF, one-way function is a

function that is easy to compute on every input, but hard to invert given the image of a random



input; elaborated in Chapter 2). The fundamental concept of garbled circuits (GC) contributes
as their key basis, following several prior works in this domain [58, 129, 159]. The techniques
in our upper bounds do not seem to extend for t > 1, leaving open designing round-optimal

protocols for the general case with various security notions (with minimal assumptions).

Without Broadcast Channel. We show that three rounds are necessary to achieve 3PC
with ua and fn, in the absence of a broadcast channel. The sufficiency is proved via a 3-round
fair protocol (which also achieves ua security). Our lower bound result immediately implies
tightness of the 3PC protocol of [129] achieving sa in two rounds, in terms of security achieved.
This completely settles the questions on exact round complexity of 3PC in the minimal setting

of pair-wise private channels.

With Broadcast Channel. With access to a broadcast channel, we show that it takes just
two rounds to get 3PC with ua, implying non-optimality of the 3-round construction of [159].
On the other hand, we show that three rounds are necessary to construct a 3PC protocol with fn
and god. The sufficiency for fn already follows from our 3-round fair protocol without broadcast.
The sufficiency for god is shown via yet another construction in the presence of broadcast. The
lower bound result restricted for t = 1 complements the lower bound of [102] making three
rounds necessary for MPC with fn in the honest majority setting for all the values of ¢. The
lower bound further implies that for two-round fair (or robust i.e achieving god) protocols with
one corruption, the number of parties needs to be at least four, making the 4PC protocol of
[129] an optimal one. Notably, our result does not contradict with the two-round protocol of
[108] that assumes PKI (where the infrastructure contains the public keys of a ‘special’ FHE),
CRS and also broadcast channel.

The above results on exact round complexity of 3PC appeared in [166] (for full version,
refer [168]). The table below captures the complete picture of the round complexity of 3PC.
Notably, broadcast facility only impacts the round complexity of ua and god, leaving the round

complexity of sa and fn unperturbed.

Security Without References With References
Broadcast Necessity/Sufficiency Broadcast | Necessity/Sufficiency
Selective Abort (sa) 2 [112] / [129] 2 [112] / [129]
Unanimous Abort (ua) 3 Our Work [166] / Our Work [166] 2 [112] / Our Work [166]
Fairness (fn) 3 Our Work [166] / Our Work [166] 3 Our Work [166] / Our Work [166]
Guaranteed output delivery (god) || Impossible | [67] 3 Our Work [166] / Our Work [166]

1.4.1.2 Fast Secure Computation for 3PC and 4PC over the Internet

We present efficient constant-round constructions of 3PC and 4PC achieving strong security

notions of fn and god that tolerate one active corruption. Our constructions, all based on



symmetric-key primitives are built from garbled circuits (GC). We outline our results below.
For empirical purpose, the circuits of AES-128, SHA-256 and MD5 are used as benchmarks.

3PC with fairness. In the minimal network setting of pairwise-private channels, our 3PC
protocol with fn consumes four rounds and involves transmission and evaluation of a sin-
gle GC. Our protocol shows a minimal overhead of 0.06-0.16 ms, 0.03-0.8 ms, 0.21-0.5 s and
5.63-10.74 KB over the 3PC of [159] (that achieves security with selective abort), in terms of the
average computation time, LAN runtime, WAN runtime and communication, where average is
taken over the number of parties and the range is taken over the choice of benchmark circuits.
The nominal overhead to trade fairness over abort security makes our construction a better
choice for practical purposes. This protocol has a natural extension to more than 3 parties

(still for one corruption) with neither inflating the round complexity nor the number of GCs.

3PC with guaranteed output delivery. With an additional broadcast channel, we present
a 5-round 3PC protocols with god at the cost of communication of a single GC. A broadcast
channel is inevitable in this regime owing to the results of [67]. We ensure that the broadcast
communication is nominal and most importantly, independent of the circuit size. Our imple-
mentation, using a physical UDP broadcast channel available on LAN, shows that the average
computation time, LAN runtime and communication overhead are 0.16-0.3 ms, 1.52-3 ms and
0.19-0.46 KB respectively over that of [159]. For the worst case run when the execution is
stretched to 5 rounds, there is negligible change in the computation and LAN runtime, but
communication overhead is witnessed to increase to a value between 0.21-0.57 KB. We do not
implement the protocol in WAN as it would require an implementation of a robust broadcast
protocol. When the adversary remains semi-honest, this protocol too terminates in 3 rounds

and the extra communication and computation needed in the last two rounds is almost nothing.

4PC with guaranteed output delivery. In the 4-party setting, we present an efficient
protocol that achieves god in five rounds, assuming just pairwise-private channels. Our pro-
tocol involves communication of a single GC compared to the 2-round protocol of [129] that
incurs a cost of 12 GCs. Our protocol has asymmetric roles for each party involved and as a
result, interestingly, our protocol gives better performance compared to the 3PC of [159]. The
protocol terminates in three rounds when no malicious behaviour takes place and has minimal
communication (and negligible computation) done in last two rounds. We take reading for
both 3-round run and 5-round run of the protocol. For the former, our protocol shows a gain
of 0.19-2.61 ms, 0.17-2.45 ms and 18.63-500.56 KB respectively compared to the 3PC of [159] in
terms of average computation time, LAN runtime and communication. The overhead for WAN

runtime is minimal and amounts to 0.02-0.31 s. When the protocol is stretched to 5 rounds,



the gains reported above remain unaffected (or witness negligible decrease). In terms of av-
erage WAN runtime, the overhead increases to 0.51 — 0.83 s, reflecting the increase in round
complexity. At the expense of one extra GC, we also present a 4-round 4PC primarily as a
theoretical contribution, which also terminates in three rounds when no malicious behaviour

takes place.

Theoretical and Empirical Comparison. The above discussed protocols appear in [46].
We present a comparison of our protocols with the relevant state-of-the-art protocols in terms

of number of GCs, rounds and security below.

Ref. ‘ # Parties ‘ # GCs ‘ Rounds ‘ Security ‘ Broadcast
[159] 3 1 3 sa X

Our Work [46] | 3 1 4 fn X

Our Work [46] | 3 1 5 god v [67]
[129] 4 12 2 god X

Our Work [46] | 4 2 4 god X

Our Work [46] | 4 5 god X

Below, we summarize the overhead or gain (indicated by g) of our protocols compared
to the 3PC of [159] in terms of average computation time, LAN runtime, WAN runtime and
communication cost, where the average is taken over the number of parties and the range is
taken over the choice of circuits. We show in bracket the increase in the overhead or decrease in
the gain for the worst case 5-round run of our 3PC and 4PC with guaranteed output delivery.
With respect to our 4-round 4PC with guaranteed output delivery, in the worst case run, we
save one round at the expense of one garbled circuit over our 5-round 4PC which amounts to
a value in the range 72 KB — 1530 KB for the benchmark circuits.

Ref. Computation | LAN WAN Communication
(ms) (ms) (s) (KB)
fair 3PC 0.06 — 0.16 0.03 - 0.8 0.21 - 0.5 5.63 — 10.74
4PC with god | 0.19 — 2.61 (g) | 0.17 — 2.45 (g) | 0.02 (+.49) — 0.31 (+.52) | 18.63 (—.01) — 500.56 (—.1) (g)
3PC with god | 0.16 — 0.3 1.52 -3 - 0.19 (+.02) — 0.46 (+.11)

1.4.2 On the Exact Round Complexity of Best-of-both-Worlds Multi-
party Computation

The two traditional streams of multiparty computation (MPC) protocols consist of— (a) proto-

cols achieving guaranteed output delivery (god) or fairness (fn) in the honest-majority setting
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(30, 56, 177, 19, 18, 72, 4] and (b) protocols achieving unanimous or selective abort (ua, sa) in
the dishonest-majority setting [107, 73, 94, 44, 3, 113, 15]. The favorable presence of honest
majority amongst the participants is necessary to achieve the stronger notions of god or fn[65].
With complementary challenges and techniques, each stream independently stands tall with
spectacular body of work. Yet, the most worrisome shortcoming of these generic protocols is
that: a protocol in one setting completely breaks down in the other setting i.e. the security
promises are very rigid and specific to the setting. For example, a protocol for honest majority
might no longer even be “private” or “correct” if half (or more) of the parties are corrupted. A
protocol that guarantees security with ua for arbitrary corruptions cannot pull off the stronger
security of god or fn even if only a “single” party is corrupt. In many real-life scenarios, it is
highly unlikely for anyone to guess upfront how many parties the adversary is likely to cor-
rupt. In such a scenario, the best a practitioner can do, is to employ the ‘best’ protocol from
her favorite class and hope that the adversary will be within assumed corruption limit of the
employed protocol. If the guess fails, the employed protocol, depending on whether it is an
honest or dishonest majority protocol, will suffer from the above mentioned issues. The quest
for attaining the best feasible security guarantee in the respective settings of honest and dis-
honest majority in a single protocol sets the beginning of a brand new class of MPC protocols,
termed as ‘Best of Both Worlds (BoBW)’ [124, 134, 127]. In critical applications such as vot-
ing [138, 161], secure auctions [74], secure aggregation [42], federated learning and prediction
[157, 158, 53] and many more, where privacy of the inputs of an honest party needs protection
at any cost and yet a robust completion is called for (as much as theoretically feasible), BoBW
protocols are arguably the best fit.

Denoting the threshold of corruption in honest and dishonest majority case by ¢ and s
respectively, an ideal BoBW MPC should promise the best possible security in each corruption
scenario for any population of size n, as long as ¢t < n/2 and s < n. Unfortunately, existing
feasibility results indicate that non-reactive or standard functionalities are impossible to realise
as long as t + s > n in expected polynomial time (in the security parameter) [134, 127]. A
number of meaningful relaxations were proposed in the literature to get around the impossibility
of BoBW security when ¢ 4+ s > n [134, 127]. The most relevant to our work is the relaxation
proposed in [152] where the best possible security of god is compromised to the second-best
notion of fn in the honest-majority setting.

We consider two types of BoBW MPC protocols and study their exact round complexity:
(a) MPC achieving the best security of god and ua in the honest and dishonest majority setting
respectively assuming s 4+t < n, referred as (god|ua)-BoBW; (b) MPC achieving second-best

security notion of fn in the honest majority and the best possible security of ua in the dishonest
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majority for any n, referred as (fn|ua)-BoBW. The adversary is considered malicious, rushing
and polynomially-bounded in either world. The latter notion (introduced in [152]) is an elegant
and meaningful relaxation that brings back the true essence of BoBW protocols with no con-
straint on n, apart from the natural bounds of ¢t < n/2 and s < n. Furthermore, fn is almost as
good as god for many practical applications where the adversary is rational enough and does
not wish to fail the honest parties at the expense of losing its own output.

We nearly settle the exact round complexity for two classes of BoBW protocols, (god|ua)-
BoBW and (fn|ua)-BoBW, under the assumption of no setup (plain model), public setup (CRS)
and private setup (CRS + PKI or simply PKI). The adversary is assumed to be rushing, active
and static. The parties are connected via pair-wise private channels and an additional broadcast
channel. All our upper bounds are based on polynomial-time assumptions and assume black-box

simulation. We summarise our results below.

(fnlua)-BoBW. We settle the exact round complexity of this class of BoBW protocols by
establishing the necessity and sufficiency of: (a) 5 rounds in the plain model and (b) 3 rounds
in both the public (CRS) and private (CRS+PKI) setup setting. In the CRS model, the
necessity of 3 rounds for honest-majority MPC achieving fn (and hence for (fn|ua)-BoBW) has
been demonstrated in [108, 102, 166] (as discussed in Section 1.3), the former in a setting where
broadcast is the only mode of communication (broadcast-only) and the latter two additionally
with pairwise-private channels. However, these results do not hold in the presence of PKI. Our
lower bound argument, on the other hand, is resilient to the presence of both CRS and PKI,

and further holds in the presence of broadcast and pairwise-private channels.

(god|ua)-BoBW. In this regime, we demonstrate that 4, 3 and 2 are the respective lower
bounds in the no-setup, public setup and private setup setting. The first lower bound follows
from the fact that BoBW MPC in this class trivially subsumes the dishonest majority MPC
when ¢t = 0 and the lower bound for dishonest-majority MPC is 4 [95]. The last lower bound
follows from the standard 2-round bound for MPC [112]. Regarding the lower bound of 3 for
the public setup (CRS) setting, we point that it follows directly from the 2-round impossibility
of MPC with fn for honest majority in the CRS model [108, 166, 102] for most values of (t, s, n)
satisfying s +t < n. However, these existing results do not rule out the possibility of 2-round
(god|ua)-BoBW MPC for (t = 1,s > t,n > 4). (In fact the protocols of [126, 129] circumvent
the 3-round lower bound for fn when ¢ = 1,n > 4 ). We address this gap by giving a unified
proof that works even for s > ¢, for all values of ¢ (including ¢ = 1). This is non-trivial and it
demonstrably breaks down in the presence of PKI. The bounds are totally different from the

ones for previous class, owing to the different feasibility condition of s+t < n. While our upper
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bound falls merely one short of matching the first lower bound in case of no-setup, the upper

bounds of the other two settings are tight. We leave the question of designing or alternately

proving the impossibility of 4-round (god|ua)-BoBW MPC protocol as open.

The above results are currently under submission. We summarize our results along with the

bounds known in the honest and dishonest majority setting below.

No setup (Plain Model) ‘ Public Setup (CRS)

Private Setup (CRS + PKI)

Honest Majority Round: 3 Round: 3 Round: 2
t<n/2 Lower Bound: [166, 102] Lower Bound: [166, 102] Lower Bound: [112]
fn / god Upper Bound: [4, 16] Upper Bound: [108, 4, 16] | Upper Bound: [108]

. L. Round: 4 Round: 2 Round: 2
Dishonest Majority _
cen Lower Bound: [95] Lower Bound: [112] Lower Bound: [112]

Upper Bound: [113, 15, 60] | Upper Bound: [94, 160] Upper Bound: [94, 160]

sa /ua (sa only) [92, 93, 35] [92, 93, 35]
(fn|ua)-BoBW Round: 5 Round: 3 Round: 3
t<n/2,s<n Lower Bound: Our Work Lower Bound: [102, 166] Lower Bound: Our Work
fn & ua Upper Bound: Our Work Upper Bound: Our Work | Upper Bound: Our Work
(god|ua)-BoBW Round: — Round: 3 Round: 2
t<n/2,t+s<n Lower Bound: 4 [95] Lower Bound: Our Work | Lower Bound: [112]
god & ua Upper Bound: 5 Our Work | Upper Bound: Our Work | Upper Bound: Our Work

1.4.3 On the Round Complexity of Fair and Robust MPC against
Dynamic and Boundary Adversaries

Two of the most sought-after properties of MPC protocols are fn and god. Both these properties
are trivially attainable in the presence of any number of passive (semi-honest) corruption where
the corrupt parties follow the protocol specifications but the adversary learns the internal state
of the corrupt parties. However, in the face of stringent active (malicious) corruption where
the parties controlled by the adversary deviate arbitrarily from the protocol; fn and god can be
achieved only if the adversary corrupts atmost minority of the parties (referred to as malicious
minority) [65]. Opening up the possibility of corrupting parties in both passive and active
style, the generalized feasibility condition for a m-party fair or robust protocol turns out to
be t, +t, < n, where t,,t, denote the threshold for active and passive corruption, with the
latter subsuming the former [122]. We emphasize that ¢, is a measure of the total number of
passive corruptions that includes the actively corrupt parties; therefore the feasibility condition
to +t, < nimplies t, < [n/2] — 1. In its most intense and diverse avatar, referred as dynamic-

admissible, the adversary can take control of the parties in one of the ways drawn from the entire
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range of admissible possibilities of (t4,1,) starting from ([§]—1, [n/2]) to (0,n—1). In a milder
setting, referred as boundary-admissible, the adversary is restricted only to the boundary cases,
namely ([n/2] —1,|n/2]) and (0,n — 1). Subsuming the traditional malicious-minority and
passive-majority (majority of the parties controlled by passive adversary) setting for achieving
fn and god as special cases, both dynamic as well as boundary setting give the adversary more
freedom and consequently more strength to the protocols. Notably, both empower an adversary
to control majority of the parties, yet ensuring the count on active corruption never goes beyond
a1

The study of protocols in dynamic and boundary setting is well motivated and driven by
theoretical and practical reasons. Theoretically, the study of generalized adversarial corruptions
gives deeper insight into how passive and active strategies combine to influence complexity pa-
rameters of MPC such as efficiency, security notion achieved and round complexity. Practically,
the protocols in dynamic and boundary setting offer strong defence and are more tolerant and
better-fit in practical scenarios where the attack can come in many unforeseen ways. Indeed,
deploying such protocols in practice is far more safe than traditional malicious-minority and
passive-majority protocols that completely break down in the face of boundary adversaries, let
alone dynamic adversaries. For instance, consider MPC in server-aided setting where instead
of assuming only actively corrupt clients and honest servers, the collusion of client-server is
permitted where some of the servers can be passively monitored. This model is quite realistic
as it does not contradict the reputation of the system (since the passive servers follow protocol
specifications and can thereby never be exposed / caught). The option of allowing corruption
in both passive and active styles is quite relevant in such scenarios.

Driven by the above credible reasons, we extend the study of exact round complexity of
fair and robust (achieving god) protocols beyond the traditional malicious-minority setting
[102, 108, 166] and settle the same for the regime of dynamic and boundary corruption. This
is achieved via 3 lower bounds that hold assuming both CRS and PKI setup and 5 upper
bounds that assumes CRS alone. In terms of network setting, while our lower bounds hold
assuming both pairwise-private and broadcast channels, all our upper bounds use broadcast
channel alone. All our upper bounds are generic compilers that transform a 2-round protocol
achieving ua (either all honest parties obtain output or none of them do) or identifiable abort
(corrupt parties are identified in case honest parties do not obtain the output) against malicious
majority to a protocol achieving the stronger guarantees of fn / god against stronger adversaries
(namely, dynamic and boundary adversaries). The need for CRS in our constructions stems
from the underlying 2-round protocol achieving ua or identifiable abort. We leave open the

question of constructing tight upper bounds or coming up with new lower bounds in the plain

14



model. We elaborate on the results below.

Dynamic Adversary. We recall that in this challenging setting, the adversary has the free-
dom to choose from the entire range of thresholds for (t,,t,) starting from ([n/2] —1, [n/2]) to
(0,n — 1). Our first lower bound establishes that [n/2] 4+ 1 rounds are necessary to achieve fn
against dynamic adversary. Since god is a stronger security notion, the same lower bound holds
for god as well. This result not only rules out the possibility of constant-round fair protocols
but also gives the exact lower bound. We give two matching upper bounds, one for fn and
the other for god, where the former is subsumed by and acts as a stepping stone to the latter.

These results completely settle the round complexity of this setting in the CRS model.

Boundary Adversary. The leap in round complexity ebb in the milder boundary adversarial
setting where adversary is restricted to the boundary cases of ([n/2] —1, [n/2]) and (0,n—1).
Our two lower bounds of this setting show that 4 and 3 rounds are necessary to achieve god
and fn respectively against the boundary adversary. Our first 4-round lower bound is partic-
ularly interesting, primarily due to two reasons. (1) As mentioned earlier, when n is odd, the
boundary cases reduce to pure active (t, = t, when (t,,t,) = ([n/2] — 1, |n/2])) and pure
passive ((t4,t,) = (0,n—1)) corruptions. We note that security against malicious-minority and
passive-majority are known to be attainable independently in just 2 rounds assuming access
to CRS and PKI [108, 93, 35]. Hence, our 4-round lower bound encapsulates the difficulty
in designing protocols tolerant against an adversary who can choose among his two boundary
corruption types arbitrarily. (2) This lower bound can be circumvented in case of single mali-
cious corruption i.e against a special-case boundary adversary restricted to corruption scenarios
(ta,tp) = (1,[n/2]) and (t4,t,) = (0,n —1). (We refer to such an adversary as special-case
boundary adversary with ¢, < 1). This observation augments the rich evidence in literature
(172, 13, 129] which show the impact of single corruption on feasibility results. With respect to
our second lower bound for fn against boundary adversary, we first note that the 3-round lower
bound for fn in the presence of CRS is trivial given the feasibility results of [102, 108, 166].
However, they break down assuming access to PKI. Thus, the contribution of our second
lower bound is to show that the 3-round lower bound holds for boundary adversary even in
the presence of PKI. We complement these two lower bounds by three tight upper bounds.
The upper bounds achieving god include a 4-round protocol for the general case and a 3-round
protocol for the special-case of one malicious corruption that demonstrates the circumvention
of our first lower bound. Lastly, our third upper bound is a 3-round construction achieving fn,
demonstrating the tightness of our second lower bound.

The results above appeared in [169]. We summarize them in the table below with comparison
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to the round complexity in the traditional settings of achieving fn and god. Since PKI (private)
setup subsumes CRS (public) setup which further subsumes plain model (no setup), the lower
and upper bounds are specified with their maximum tolerance and minimum need respectively
amongst these setup assumptions. The results provide us further insights regarding how dis-
parity in adversarial setting affects round complexity. Note that the round complexity of fair
protocols in the CRS model against an adversary corrupting minority of parties maliciously,
remains unaffected in the setting of boundary adversary; which is a stronger variant of the
former. On the other hand, this switch of adversarial setting causes the lower bound of robust
protocols in the model assuming both CRS and PKI to jump from 2 to 4. Lastly, the gravity
of dynamic corruption on round complexity is evident in the leap from constant-rounds of 3,4

in the boundary corruption case to [n/2] + 1.

Adversary ‘ Security ‘ Rounds ‘ Lower bound ‘ Upper Bound
Passive-majority fn, god |2 [112] (private) [93, 35] (plain)
. o fn, god |3 [108, 166] (public) [4, 16] (plain)
Malicious-minority ; .
fn, god | 2 [112] (private) [108] (private)
Bound fn 3 Our Work [169] (private) | Our Work [169] (public)
ounda
B god 4 (3 when t, < 1) | Our Work [169] (private) | Our Work [169] (public)
Dynamic fn, god | [3]+1 Our Work [169] (private) | Our Work [169] (public)

1.4.4 On the Power

tion

of Hybrid Networks in Multi-Party Computa-

Verifiable Secret Sharing (VSS) [59, 30, 107, 69, 101] is a fundamental building block for many
distributed cryptographic tasks including MPC and Byzantine Agreement [135, 1]. VSS is a two
phase protocol (Sharing and Reconstruction) carried out among n parties with a designated
party called dealer in the presence of an adversary A who can corrupt up to any ¢ parties
including the dealer. The goal of the VSS protocol is to let the dealer share a secret, s, among
the n parties during the sharing phase in a way that would later allow for a unique reconstruction
of this secret in the reconstruction phase (correctness), while preserving the secrecy of s until
the reconstruction phase (privacy). Perfectly-secure (information-theoretically secure with no
error) verifiable secret sharing (VSS) and multi-party computation (MPC) protocols among n

parties secure against a coalition of ¢ actively corrupt parties are known to exist if and only if
— t < n/3, when the underlying network is synchronous, and

— t < n/4, when the underlying network is asynchronous, respectively.
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The above feasibility results indicate that synchrony of a network has positive impact on the
fault-tolerance of distributed protocols. More generally, asynchronous protocols are known to
suffer from low fault-tolerance, high communication complexity and relatively weaker guaran-
tees compared to their synchronous counterparts. The asynchronous VSS suffers from dealer-
dependent termination where termination of the sharing phase is guaranteed only when the
dealer is honest. Similarly, asynchronous MPC suffers from input deprivation that refers to a
property where inputs of ¢ honest parties may be excluded from computation. All the above
are supposedly caused by the following inherent and trademark difficulty in the asynchronous
model.

In an asynchronous network, an honest party whose message is delayed in the network cannot
be told apart from a corrupted party who did not send a message at all. So an honest party
in an asynchronous protocol, unlike in a synchronous protocol, cannot wait for the messages
from all the parties, as it would potentially risk him to wait infinitely. To avoid the risk, an
honest party’s computation in an asynchronous protocol should be carried on with the receipt
of (n — t) parties at any given step. Unfortunately, this may risk ignoring the values of up to
t potentially honest parties at any given step. There exist well-known gaps in the feasibility
results of the synchronous and asynchronous VSS and MPC that corroborate with the above
inherent difficulty faced in asynchronous protocols.

We set our focus on perfectly-secure protocols and seek to close the theoretical feasibility gap
of synchronous and asynchronous VSS and MPC protocols. To this effect, we explore the hybrid
networks that is asynchronous in nature and yet supports a few synchronous rounds at the onset
of a protocol execution. We wish to add and find the minimum synchrony assumption needed.
More specifically, we address the following : For asynchronous protocols, we wish to bridge the
fault-tolerance gap between synchronous and asynchronous protocols with minimum synchrony
assumption needed, leveraging the initial synchronous rounds. For synchronous protocols, we
explore if the known lower bounds on round complexity can be circumvented, leveraging the
asynchronous phase available in the hybrid network. Denoting synchronous/asynchronous VSS
(SVSS/AVSS) and synchronous/asynchronous MPC (SMPC/AMPC) to refer to the properties

of the protocols that can be achieved in the respective networks, we present our findings below.

Results for AVSS and AMPC. Concerning AVSS and AMPC, we ask the following fun-
damental question: What is the minimum number of initial synchronous rounds necessary and
sufficient in a hybrid network to construct perfectly-secure AVSS and AMPC protocols with the
same fault-tolerance of synchronous protocols? On the positive side, we show that one syn-

chronous round is sufficient for AVSS which is clearly optimal. On the negative side, we show
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the same is not true for AMPC. Our results are summarised in the following theorems:

Theorem 1.1 (Informal) There exists a perfectly-secure AVSS with t < n/3 over hybrid net-

works with one synchronous round.

Theorem 1.2 (Informal) Perfectly-secure AMPC with n < 4t is impossible over a hybrid

network that supports a single synchronous round.

Notably no broadcast oracle is invoked in the synchronous round of our AVSS protocol. The
latter result on AMPC implies at least two initial synchronous rounds are necessary for MPC.
With three synchronous rounds, we design a perfectly-secure SMPC (and thus AMPC) ! pro-
tocol. The question of designing an AMPC protocol in a hybrid network with two synchronous
rounds with or without broadcast oracle access is left as an interesting open question. In this
regard, we believe that our proposed AVSS protocol that achieves strong properties useful for
building MPC can be an important building block. Our AVSS construction is efficient and

therefore can be of independent interest too.

Results for SVSS and SMPC. We further investigate if the asynchronous phase of the
hybrid network can be leveraged to save on the synchronous rounds required for SVSS and
SMPC. It is known that three synchronous rounds are necessary and sufficient for SVSS with
t <n/3 [101]. This makes the feasibility of SVSS with ¢ < n/3 in a hybrid network with three
synchronous rounds trivial. The same question seems intriguing when one or two synchronous

rounds are assumed. We answer this question in the negative and prove the following theorem.

Theorem 1.3 (Informal) Perfectly-secure SVSS with n < 4t is impossible over a hybrid net-

work that supports two synchronous rounds.

In contrast, a hybrid network with one synchronous round is sufficient for AVSS with ¢ < n/3.
Since VSS is a special case of MPC, the above theorem implies the necessity of three syn-
chronous rounds for SMPC in the same setting. We deduce the sufficiency of three synchronous
rounds for SMPC over hybrid networks by combining known techniques from [63, 62, 139] and
have the following theorem. In contrast, we note that one synchronous round is sufficient for

cryptographic SMPC over hybrid networks [23].

Theorem 1.4 (Informal) A hybrid network that supports three synchronous rounds is sufficient
to achieve perfectly-secure SMPC with t < n/3.

LSMPC realizes all properties of AMPC and provides input provision additionally
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While a lower bound of three rounds is known for information-theoretic MPC over synchronous
networks [102], the known popular protocols relying on ‘gate-by-gate’ evaluation strategy
([55, 30] and their derivatives) are shown to necessarily require a round complexity that grows
linearly with the multiplicative depth of the circuit [78]. As protocols tend to run faster over
asynchronous network, our SMPC over hybrid network may offer lower latency than any syn-

chronous MPC running for rounds proportional to the circuit depth.

The above results appear in [167]. We summarize the feasibility results of SVSS/AVSS and
SMPC/AMPC in hybrid networks in terms of initial synchronous rounds needed in the table
below. Finding a tight upper bound for AMPC with two rounds remains an interesting open

question.

Feasibility for SVSS/AVSS and SMPC/AMPC with ¢t < n/3 in Hybrid networks

Security ‘ ‘ Asynchronous ‘ Synchronous

Necessary | One [Trivial] Three (Our Work) [167]
Sufficiency | One (Our Work) [167] Three [101]

Necessary | Two (Our Work) [167] Three (Our Work) [167]
Sufficiency | Three (Our Work) [167] | Three (Our Work) [167]

VSS

MPC

1.5 Organization of the Thesis

We divide the thesis in three parts.

Part 1 comprises of two chapters (Chapters 3 - 4) that include our results related to MPC
for small population that considers 3-party and 4-party setting with single active corruption
(honest majority). Chapter 3 presents our results on the exact round complexity of secure
three-party computation (discussed in Section 1.4.1.1). Chapter 4 presents our communication
and computation efficient constant-round constructions of 3PC and 4PC achieving fn and god;
suitable for high-latency networks like the Internet (discussed in Section 1.4.1.2).

Part II comprises of two chapters (Chapters 5 - 6) that extend the study of round complexity
beyond the traditional settings. In Chapter 5, we overcome the demarcation of study of round
complexity of MPC based on resilience (i.e honest majority or dishonest majority) and explore
this question for an interesting class of protocols called the Best-of-both-Worlds MPC. This class
of protocols simultaneously achieve fn / god in honest majority and ua in dishonest majority
(discussed in Section 1.4.2). In Chapter 6, we overcome the demarcation of study of round
complexity of MPC based on single type of corruption (i.e passive or active) and investigate
the round complexity of fair and robust MPC against two powerful mixed adversaries called

the dynamic and boundary adversary (discussed in Section 1.4.3).
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While the above two parts include results in the computational and fully synchronous set-
ting, the final part of the thesis involves information-theoretic setting and introduces asynchrony
in the network as well. Part III comprises of one chapter (Chapter 7) that explores the power
of hybrid networks to bridge the feasibility gap between perfectly-secure synchronous and asyn-
chronous VSS and MPC protocols (discussed in Section 1.4.4).

The preliminaries and conclusion of the thesis appear in Chapter 2 and 8 respectively.
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Chapter 2
Preliminaries

In this chapter, we present the relevant background including the notation, definitions, security

model and an overview of some of the common primitives used in our constructions.

2.1 Notation

We denote the cryptographic security parameter by . A negligible function in & is denoted by
negl(k) (Definition 2.1 below). We write PPT for probabilistic polynomial-time. Composition
of two functions, f and ¢ (say, h(z) = g(f(x))) is denoted as g ¢ f. We use [n] to denote the
set {1,...n} and [a,b] to denote the set {a,a + 1...b} when a < b or the set {a,a —1,...b}
when a > b. We denote by a <—r A the random sampling of a from a distribution A. For
any © €p {0,1}™, ' denotes the bit of z at index ¢ for i € [m]. We use ||;cfyz; to denote
concatenation of strings x;. Let S be an infinite set and X = {X }scs5,Y = {Yi}ses be
distribution ensembles. We say X and Y are computationally indistinguishable, if for any PPT
distinguisher and all sufficiently large s € S, we have | Pr[(X;) = 1] — Pr[(Y;) = 1]| < 1/p(|s])
for every polynomial p(-).

We use P, €, H to denote the set of all parties, set of corrupt parties and set of honest parties
respectively. Lastly, as mentioned earlier, the security notions of guaranteed output delivery,
fairness, unanimous abort and selective abort, identifiable abort and identifiable fairness are

denoted as god, fn, ua, sa, idua and idfair respectively.

2.2 Definitions

Definition 2.1 (Negligible functions) A function negl is negligible iff Ve € N Ing € N such
that ¥n > ng,negl(n) < n=°.

Definition 2.2 (One-Way functions) A function f : {0,1}" — {0, 1} is one-way iff 3 poly-
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nomial time M such that Ve M(x) = f(x), and ¥ non-uniform PPT adversary A, the following
holds: Prcyqony M/ (@), 17) € f-1(f(2))] = negl(n).

2.3 Security Model

We prove the security of our protocols in the standard real/ideal world paradigm. Essentially,
the security of a protocol is analyzed by comparing what an adversary can do in the real
execution of the protocol to what it can do in an ideal execution, that is considered secure
by definition (in the presence of an incorruptible trusted party). In an ideal execution, each
party sends its input to the trusted party over a perfectly secure channel, the trusted party
computes the function based on these inputs and sends to each party its respective output.
Informally, a protocol is secure if whatever an adversary can do in the real protocol (where
no trusted party exists) can be done in the above described ideal computation. We refer to
[50, 104, 146, 66] for further details regarding the security model. The security definition and
the required functionalities are given below.

The “ideal” world execution involves n parties {P;, P,... P,}, an ideal adversary 8 who
may corrupt a subset of the parties, and a functionality . The “real” world execution involves
the PPT parties {P, P,... P,} and a real world adversary A who may corrupt one of the
parties. We let IDEALgg(1%, z) denote the output pair of the honest parties and the ideal-world
adversary 8 from the ideal execution with respect to the security parameter 1% and auxiliary
input z. Similarly, let REAL4(1%, 2) denote the output pair of the honest parties and the
adversary A from the real execution with respect to the security parameter 1* and auxiliary

input z.

Definition 2.3 Forn € N, let F be a functionality and let 11 be a n-party protocol. We say
that 11 securely realizes F if for every PPT real world adversary A, there exists a PPT ideal
world adversary 8, corrupting the same parties, such that the following two distributions are

computationally indistinguishable:
C
IDEALg g =~ REALyf 4-

Statistical and perfect security are defined w.r.t an unbounded adversary A analogously

where the distributions are statistically close and identical respectively.

Target Functionalities. Taking motivation from [66, 108], we define ideal functionalities F,,,
Ftair, Tgod in Figure 2.1, Figure 2.2, Figure 2.3, Figure 2.4 for secure MPC of a function f with

selective abort (sa), unanimous abort (ua), fairness (fn) and guaranteed output delivery (god)
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respectively. Additionally, we also define the ideal functionalities Fiq,, and Figpir in Figure 2.5,

Figure 2.6 for identifiable abort (idua) and identifiable fairness (idfair) respectively.

Input: On message (sid, Input, x;) from a party P; (i € [n]), do the following: if (sid, Input, *) message
was received from P;, then ignore. Otherwise record it internally. If z; is outside of the domain

for P; (i € [n]), consider z; = abort.

Output to adversary: If there exists i € [n] such that z; = abort, send (sid, Output, L) to all the
parties. Else, send (sid, Output, y) to the adversary, where y = f(x1...xzy).

Output to selected honest parties: Receive (select,{/}) from adversary, where {I} denotes a
subset of the honest parties. If an honest party belongs to I, send (sid, Output, y), else send
(sid, Output, L).

Figure 2.1: Ideal Functionality for sa (selective abort)

Input: On message (sid, Input, x;) from a party P; (i € [n]), do the following: if (sid, Input, *) message
was received from P;, then ignore. Otherwise record it internally. If x; is outside of the domain

for P; (i € [n]), consider z; = abort.

Output to adversary: If there exists i € [n] such that z; = abort, send (sid, Output, L) to all the
parties. Else, send (sid, Output, y) to the adversary, where y = f(x1...zp).

Output to honest parties: Receive either continue or abort from adversary. In case of continue,

send y to honest parties, whereas in case of abort send them 1.

Figure 2.2: Ideal Functionality for ua (unanimous abort)

Input: On message (sid, Input, x;) from a party P; (i € [n]), do the following: if (sid, Input, *) message
was received from P;, then ignore. Otherwise record it internally. If x; is outside of the domain

for P; (i € [n]), consider x; = abort.

Output: If there exists ¢ € [n] such that x; = abort, send (sid, Output, L) to all the parties. Else,
send (sid, Output, y) to party P; for every i € [n], where y = f(z1,...,Zn).

Figure 2.3: Ideal Functionality for fn (fairness)

Input: On message (sid, Input, z;) from a party P; (i € [n]), do the following: if (sid, Input, ) message
was received from P;, then ignore. Otherwise record it internally. If z; is outside of the domain

for P;, set x; to be some predetermined default value.

Output: Compute y = f(z1,...,2,) and send (sid, Output, y) to party P; for every i € [n].

Figure 2.4: Ideal Functionality for god (guaranteed output delivery)
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Input: On message (sid, Input, z;) from a party P; (i € [n]), do the following: if (sid, Input, ) message
was received from P;, then ignore. Otherwise record it internally. If x; is outside of the domain

for P; (i € [n]), consider z; = (abort, ).

Output to adversary: If there exists a set J C € with |J| > 1 such that z; = (abort, ) for ¢ € J,
send (sid, Output, (L, 7)) to all the parties. Else, send (sid, Output,y) to the adversary, where

y=f(z1,...2,).

Output to honest parties: Receive either continue or (abort,J) from adversary where J C €
and |J| > 1. In case of continue, send (sid, Output,y) to honest parties, whereas in case of
abort send (sid, Output, (L,J)) to all honest parties.

Figure 2.5: Ideal Functionality for idua (identifiable abort)

Input: On message (sid, Input, x;) from a party P; (i € [n]), do the following: if (sid, Input, *) message
was received from P;, then ignore. Otherwise record it internally. If z; is outside of the domain

for P; (i € [n]), consider z; = (abort, ).

Output: If there exists a set J C € with |[J| > 1 such that x; = (abort,i) for i € J, send
(sid, Output, (L, J)) to all the parties. Else, send (sid, Output, y) to all, where y = f(z1,...2,).

Figure 2.6: Ideal Functionality for idfair (identifiable fairness)

2.4 Primitives

2.4.1 Garbling Schemes
The term ‘garbled circuit’ (GC) was coined by Beaver [19], but it had largely only been a

technique used in secure protocols until they were formalized as a primitive by Bellare et al. [27].
‘Garbling Schemes’ as they were termed, were assigned well-defined notions of security, namely
correctness, privacy, obliviousness, and authenticity. A garbling scheme G is characterised by a
tuple of PPT algorithms G = (Gb, En, Ev, De) described below.

e Gb(1% () is invoked on a circuit C' in order to produce a ‘garbled circuit’ C, ‘input

encoding information’ e, and ‘output decoding information’ d.

e En(x,e) encodes a clear input = with encoding information e in order to produce a gar-
bled/encoded input X.

e Ev(C,X) evaluates C on X to produce a garbled/encoded output Y.
e De(Y,d) translates Y into a clear output y as per decoding information d.
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We give an informal intuition of the notion captured by each of the security properties,
namely correctness, privacy, obliviousness, and authenticity. Correctness enforces that a cor-
rectly garbled circuit, when evaluated, outputs the correct output of the underlying circuit.
Privacy aims to protect the privacy of encoded inputs. Authenticity enforces that the evaluator
can only learn the output label that corresponds to the value of the function. Obliviousness
captures the notion that when the decoding information is withheld, the garbled circuit evalua-
tion leaks no information about any underlying clear values; be they of the input, intermediate,

or output wires of the circuit. The formal definitions appear below.

Definition 2.4 (Correctness) A garbling scheme G is correct if for all input lengths n <
poly(k), circuits C' : {0,1}" — {0,1}™ and inputs x € {0,1}", the following probability is
negligible in k: Pr <De(Ev(C, En(e,x)),d) # C(z) : (C,e,d) < Gb(1", C’)) .

Definition 2.5 (Static Privacy) A garbling scheme G is private if for all input lengths n <
poly(k), circuits C : {0,1}" — {0,1}™, there exists a PPT simulator 8y such that for all inputs
x € 40,1}, for all probabilistic polynomial-time adversaries A, the following two distributions

are computationally indistinguishable:
e (Cyx): run (C,e,d) < Gb(1%,C), and output (C,En(z,e),d).

e IDEALg, (C,C(x)): output (C', X,d") <= 8y (1%, C, C(x))

Definition 2.6 (Authenticity) A garbling scheme G is authentic if for all input lengths n <
poly(k), circuits C' : {0,1}" — {0,1}™, inputs x € {0,1}", and all PPT adversaries A, the
following probability is negligible in k:

. Y #Ev(C,X) X =En(z,e), (C,e,d) ¢ Gb(1%,C)
ADe(Y,d) # L Y « A(C,X) '

Definition 2.7 (Obliviousness) A garbling scheme G achieves obliviousness if for all input
lengths n < poly(k), circuits C' : {0,1}" — {0,1}™, there exists a PPT simulator Sqpy, such
that for all inputs x € {0,1}", for all probabilistic polynomial-time adversaries A, the following

two distributions are computationally indistinguishable:
o (C,x): run (C,e,d) < Gb(1",C), and output (C,En(z,e)).

e IDEALg, (C): output (C',X) <= Sopy (17, C)
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We are interested in a class of garbling schemes referred to as projective in [27]. When
garbling a circuit C': {0,1}" — {0,1}™, a projective garbling scheme produces encoding infor-
mation of the form e = (K, K}),cp;
can be interpreted as X = En(xz,e) = (K{")

and the encoded input X corresponding to x = (xi)ie[n]

i€l One of our constructions in Chapter 3 uses a
privacy-free garbling scheme [133; 90] which demands only the properties of correctness and
authenticity. Lastly, some of the constructions in Chapter 3- 4, uses an additional decoding
mechanism denoted as soft decoding algorithm sDe [159] that can decode garbled outputs with-
out the decoding information d. The soft-decoding algorithm must comply with correctness:
sDe(Ev(C,En(e,z)),d) = C(x) for all (C,e,d). While both sDe and De can decode garbled
outputs, the authenticity needs to hold only with respect to De. In practice, soft decoding in
typical garbling schemes can be achieved by simply appending the truth value to each output

wire label.
2.4.1.1 Adaptive Garbling

In one of our constructions in Chapter 5, we use garbling schemes with stronger privacy no-
tion, referred to as adaptive [27]. Informally, such garbling schemes remain private against an

adversary A who obtains the garbled circuit C and then selects the input x.

Definition 2.8 (Adaptive Privacy) A garbling scheme G satisfies adaptive privacy if for all
input lengths n < poly(k), circuits C : {0,1}" — {0,1}™, there exists a PPT simulator 8,94 such
that for all inputs x € {0,1}", for all probabilistic polynomial-time adversaries A, the following

15 negligible in K:

| Pr(Expis,, (1%,0) = 1] — PrlExpis,, (1%, 1) = 1]|
where the experiment Expffgad is defined as follows:

e The adversary A specifies the circuit C, corresponding to which it obtains (C,d) created

as follows:

o Ifb=0: (C,e,d) + Gb(1*,C). Return (C,d)

o Ifb=1: Return (C,d) < 8,4(1*,0(C),0). A call with 0’ indicates 8,4 to return (C,d)
and 0(C') refers to the side-information about C. Side-information function 6(C)
deterministically maps the circuit C to a string 0(C') which captures the information
that the garbled circuit is allowed to reveal about C' such as its size, topology (the
circuit structure without the gate information), the original circuit itself or something

else.
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Figure 2.7: Transformation of statically-secure garbling scheme (Gb', En’, EV', De’) to adaptively-
secure garbling scheme (Gb, En, Ev, De)

Gb(1%,C) En(e, z)
- (Cl,el,d/> — Gb,(ln, C) _ (6/, C«pad,dpad) — e
- Let CP « {0,1}I1; @pad « {0, 1} L X En(e,x)
ad ad
-CeCol™dedod - Return X = (X', P4, gpad)

e+ (e/, 0P grad)

return (C, e, d)

Ev(C, X) De(Y, d)
- (X, CPad grad) X - (Y, dPd) Y
- C« CopCPd Y + EV(C,X) - d —d®drd
- Return Y = (Y, dP*) - Return De'(Y', d')

e Next, A provides an input x of his choice, corresponding to it obtains the encoded input

X created as follows: Return L if x is invalid. Else,

o Ifb=0: Return X <— En(e, ).

o Ifb=1: Lety < C(z). Return X < 8,4(y,1). A call with ‘1’ indicates S,q to return
X.

We now recall the transformation of [26] which transforms a garbling scheme (Gb', En’, EV', De’)
satisfying static privacy (such as Yao’s garbled circuits [182]) to an adaptively-secure garbling
scheme (Gb, En, Ev, De). The side-information §(C') is assumed to be the topology of the circuit
C. The transformation uses one-time pads to mask C and d produced by the statically-secure
scheme, and then appends the pads to X. This will ensure that the adversary learns nothing
about C and d until it fully specifies function C' and x.

The transformation of garbling scheme G; = (Gb', En’, Ev', De’) with static privacy (Defini-
tion 2.5) to garbling scheme Gy = (Gb, En, Ev, De) with adaptive privacy (refer Definition 2.8)
is described in Figure 2.7. The idea is to use one-time pads to mask the garbled circuit C' and

decoding information d’' obtained by running Gb’ of G; and append the pads to the encoding
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information and the encoded input. This ensures that the adversary learns nothing about the
garbled circuit C" and decoding information d’ until the input is specified. The simulator 8,4 of
the garbling scheme G, when invoked with (1%, 6(C'),0) simply returns random (C,d). In the
second phase, given y, 8,4 runs the simulator of §; (say, 8) to obtain (C', X', d") < 8(1%,6(C), y)
and returns X = (X', C® C',d & d’). We point that while this transformation does not need G,
to be projective, if G is projective, so is Go. Thus, a projective adaptive garbled circuit can be
obtained by applying this transformation on Yao’s projective garbling scheme satisfying static

privacy. For details, we refer to [26].

2.4.2 Non-Interactive Commitment Schemes (NICOM)

A non-interactive commitment scheme (NICOM) consists of two algorithms (Com, Open) defined
as follows. Given a security parameter k, a common parameter pp, message x and random
coins r, PPT algorithm Com outputs commitment ¢ and corresponding opening information o.
Given &, pp, a commitment and corresponding opening information (c, 0), PPT algorithm Open
outputs the message x. The algorithms should satisfy correctness, binding (i.e. it must be hard
for an adversary to come up with two different openings of any ¢ and any pp) and hiding (a
commitment must not leak information about the underlying message) properties. We need this
kind of strong binding as the same party who generates the pp and commitment is required to
open later. Two such instantiations of NICOM based on symmetric key primitives (specifically,

injective one-way functions) and the formal definitions of the properties are given below.
Properties.
— Correctness: For all pp, x € M and r € R, if (¢,0) < Com(z;r) then Open(c,o0) = z.

— Binding: For all PPT adversaries A and all pp, it is with negligible probability that A(pp)
outputs (¢, 0,0’) such that Open(c,0) # Open(c,0’) and L ¢ {Open(c,0), Open(c,0’)}

— Hiding: For all PPT adversaries A, the following difference is negligible (over uniform

choice of pp and the random coins of A) for all z, 2" € M:

Pr Alc) =1| — Pr Alc)=1

‘(c,o)(—Com(m)[ ( ) ] (c,o)(—Com(m’)[ ( ) H

Instantiations. Here we present two instantiations of NICOM. In the random oracle model,
commitment is (¢,0) = (H(z||r),z||r) = Com(x;r). The pp can in fact be empty. In the
standard model, we can use the following bit-commitment scheme from any injective one-way
function. Let f :{0,1}" — {0,1}" be a one-way permutation and h : {0,1}" — {0,1} a hard

core predicate for f(-). Then the commitment scheme for a single bit x is:
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- Com(z;r): set ¢ = (f(r),x @ h(r)); where r € {0,1}"; set o = (r, z).
- Open(c,0 = (r,x)): return x if ¢ = (f(r), 2 & h(r)); otherwise return L.

For commitment of multi-bit string, the Goldreich-Goldwasser-Micali [106] construction
from a one-way permutation f can be used. Recall the GGM construction: given one-way
permutation f : {0, 1}* — {0, 1}* with hard-core predicate h : {0,1}* — {0, 1}, first construct a
length-doubling pseudorandom generator G : {0, 1}* — {0, 1}* via: G(s) = f*(s) h(f*71(s))...
h(s). Let Go(s) denote the first k bits of G(s), and let G;(s) denote the last k bits of G(s). For
a binary string s, the commitment ¢ can be defined as ¢ = F(s,0°) = Go(...(Go(Go(s)))...)
with o = (s). It is shown in [106] that the function family F = {F*} with F* = {F(s)}scf0,1}~ is
pseudorandom. Now, note that F(s,0°) = f*(s). Since f is a permutation, this means that the
function g(z) = F(x,0%) is a permutation, and hence the commitment scheme has the binding

property. Hiding follows from the property of PRF F [137].
2.4.2.1 Equivocal Non-interactive Commitment Schemes (eNICOM)

In some of our constructions, we also need a NICOM scheme that admits equivocation property.
An equivocal non-interactive commitment (eNICOM) is a NICOM that allows equivocation of a
certain commitment to any given message with the help of a trapdoor. An eNICOM comprises

of the following algorithms, apart from the ones needed in NICOM:

— eGen(17) returns a public parameter and a corresponding trapdoor (epp, t), where epp is used

by both eCom and eOpen. The trapdoor t is used for equivocation.

— Equiv(c, o, z,t) is invoked on a certain commitment ¢ and its corresponding opening o/, given

message = and the trapdoor ¢ and returns o such that x <— eOpen(epp, c,0).

An eNICOM satisfies correctness, hiding and binding properties much like the NICOM does.
The hiding property of eNICOM is slightly changed compared to that of NICOM taking the
equivocation property into account. This new definition implies the usual hiding definition.

The formal definitions and instantiations of an eNICOM appear below.

Properties.

— Correctness: For all (epp,t) < eGen(1%), z € M and r € R, if (¢,0) + eCom(z;7) then

eOpen(c,0) = x.

— Binding: For all (epp,t) < eGen(1%) and for all PPT adversaries A, it is with negligible
probability that A(epp) outputs (c,o0,0’) such that eOpen(c,0) # eOpen(c,0’) and L ¢
{eOpen(c, 0),eO0pen(c,0’)}
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— Hiding: For all (epp,t) + eGen(1%) and for all PPT adversaries A, and all z,2" € M, the

following difference is negligible:

| Pr  [A(c,0) =1] — Pr [A(c,0) = 1]|

(c,0)«—eCom(x) (c,0)—eCom(z’),0+—Equiv(c,x,t)

Instantiations. We first present the equivocal bit commitment scheme of [71], which is based
on Naor’s commitment scheme [162] for single bit message. This scheme avoids the use of

public-key primitives. Let G : {0,1}" — {0, 1}*" be a pseudorandom generator.

- eGen(1%): set (epp,t) = (o, (ro,r1)), where o = G(rg) ® G(r;)

- eCom(z;7): set ¢ = G(r) if x =0, else ¢ = G(r) @ o3 set 0 = (1, )

eOpen(c,0 = (r,x)): return z if ¢ = G(r) & x - 0 (where () denotes multiplication by

constant); otherwise return L.
- Equiv(c = G(ry), L, x,t): return o = (r,z) where r = r¢ if =0, else r = ry.

Next, we present the instantiation based on Pedersen commitment scheme [175]. Let p, ¢
denote large primes such that ¢ divides (p — 1), G, is the unique subgroup of Z,, of order q and

g is a generator of G,.
- eGen(1%): set (epp,t) = ((g,h),a) where a € Zy; h = g*
- eCom(z;r): set ¢ = g*h"; set o = (r, x).
- eOpen(c,0 = (r,x)): return z if ¢ = g*h"; otherwise return L.
- Equiv((c = eCom(a’; ")), (2, "), x,t): return o = (r,x) where r =1’ + ””/T_‘T

While in Naor-based instantiation, a specific commitment ¢ = G(ry) can be decommitted to

either 0 or 1, the Pedersen commitment scheme allows equivocation of any commitment.

2.4.3 Threshold Secret Sharing

Informally, a d (denoting threshold) out of n threshold secret sharing scheme distributes a secret
among n participants, in such a way that any group of d + 1 or more participants can together
reconstruct the secret but no group of fewer than d + 1 players can. Shamir secret sharing is

an instance of a threshold secret-sharing [180]. We present the formal definition below.
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Definition 2.9 A d-out-of-n threshold secret sharing scheme, defined for a finite set of secrets
K and a set of P participants, comprises of two protocols— Sharing and Reconstruction (Sh, Re),

with the following requirements:

- Correctness. The secret can be reconstructed by any set of (d 4+ 1) parties via Re. That is,
Vs € K and VS = {iy,...ig11} € {1,...n} of size (d+ 1), Pr[Re(s;, ...s;,,,) = s] = 1.

- Privacy. Any set of d parties cannot learn anything about the secret from their shares. That
is: Vsl s? € K, VS = {iy,...iq} € {1,...n} of size d, and for every possible vector of

shares {s;}jes, Pri{{Sh(s')}s = {s;}i,es] = Prl{{Sh(s*)}s = {s;}i,es], where {Sh(s")}s
denotes the set of shares assigned to the set S as per Sh when s' is the secret fori € {1,2}.

2.4.4 Symmetric-Key Encryption with Special Correctness

Definition 2.10 A CPA-secure symmetric-key encryption scheme m = (Gen, Enc, Dec) satisfies
special correctness if there is some negligible function € such that for any message m we have:
Pr[Decy, (Encg, (m)) # L : ki, ko < Gen(17)] < €(k)

Instantiation. Here we present an instantiation borrowed from [132, 148]. Let ¥ = {fi} be
a family of pseudorandom functions where f;, = {0,1}* — {0,1}*"* for k € {0,1}" and s is a

parameter denoting message length.

- Enci(m) = (r, fe(r) ® m0") where m € {0,1}*,r < {0,1}* and m0" denotes the concate-

nation of m with a string of Os of length x.

- Decy(c) which parses ¢ = (r, z), computes w = z @ fi(r) and if the last s bits of w are

0’s, it outputs the first s bits of w, else it outputs L
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Part 1

MPC for Small Population
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Chapter 3

On the Exact Round Complexity of

Secure Three-Party Computation

In this chapter, we settle the exact round complexity of three-party computation (3PC) in
honest-majority setting, for a range of security notions such as selective abort (sa), unanimous
abort (ua), fairness (fn) and guaranteed output delivery (god). We focus on two network

settings— pairwise-private channels without and with a broadcast channel.

3.1 Introduction

The setting of 3 parties with single active corruption (honest-majority) is interesting for numer-
ous reasons such as its relevance to practice, feasibility of attaining strong notions of fn and god
as outlined in Section 1.4.1. The world of MPC for small population in honest majority setting
witnesses a few more interesting phenomena. Firstly, there are evidences galore that having to
handle a single corrupt party can be leveraged conveniently and taken advantage of to circum-
vent known lower bounds and impossibility results. A lower bound of three rounds has been
proven in [102] for fair MPC with ¢t > 2 and arbitrary number of parties, even in the presence of
broadcast channels. [129] circumvents the lower bound by presenting a two-round 4PC protocol
tolerating a single corrupt party that provides god without even requiring a broadcast channel.
Verifiable secret sharing (VSS) which serves as an important tool in constructing MPC proto-
cols are known to be impossible with ¢ > 2 with one round in the sharing phase irrespective of
the computational power of the adversary [101, 172, 13]. Interestingly enough, a perfect VSS
with (n = 5,t = 1) [101], statistical VSS with (n = 4,¢t = 1) [172, 129] and cryptographic
VSS with (n = 4,¢t = 1) [13] are shown to be achievable with one round in the sharing phase.

Further, assumption-wise, MPC with 3, 4 and 5 parties can be built from just One-way func-
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tions (OWF') or injective one-way functions/permutations [129, 159, 52], shunning public-key
primitives such as Oblivious Transfer (OT) entirely, which is the primary building block in
the 2-party setting. Last but not the least, the known constructions for small population in
the honest majority setting perform arguably better than the constructions with two parties
while offering the same level of security. For instance, 3PC with honest majority [129, 159]
allows to circumvent certain inherent challenges in malicious 2PC such as enforcing correctness
of garbling which incurs additional communication. The exact round complexity is yet another
measure that sets apart the protocols with three parties over the ones with two parties. For
instance, 3PC protocol is achievable just in two rounds with the minimal network setting of
pairwise-private channels [129]. The 2PC (and MPC with dishonest majority) protocols achiev-
ing the same level of security (with abort) necessarily require 4 rounds [136] and have to resort
to a common reference string (CRS) to shoot for the best possible round complexity of 2 [112].

With the impressive list of motivations that are interesting from both the theoretical and
practical viewpoint, we explore the exact round complexity of 3PC in the honest majority
setting tolerating a malicious adversary. We summarize the related work in Table 3.1 (details
in Section 1.3). Here NIZK [36, 82, 37] and Zaps [81] refer to the tools of non-interactive zero

knowledge and 2-round witness indistinguishable proofs respectively.

Table 3.1: Relevant work in honest majority setting

Ref. Setting Round | Network Setting / Assumption Security | Comments

[11] t<n/2 >5 private channel, Broadcast / CRS, FHE, NIZK | fn upper bound
[108] | t<mn/2 3 broadcast-only / CRS, FHE god upper bound
[108] | t <n/2 2 broadcast-only / CRS, PKI, FHE god upper bound
[16] t<mn/2 3 broadcast-only / Zaps, FHE god upper bound
[4] t<mn/2 3 broadcast-only / Zaps, public-key encryption god upper bound
[126] | n=5,t=1 | 2 private channel / OWF god upper bound
[129] | n=3,t=1 | 2 private channel / OWF sa upper bound
[129] | n=4,t=1 | 2 private channel / (injective) OWF god upper bound
[159] | n=3,t=1 | 3 private channel, Broadcast / PRG ua upper bound
[108] | t<m/2 3 broadcast-only / CRS fn lower bound
[102] | myt>1 3 private channel, Broadcast fn lower bound

Our Results. While details of our results appear in Section 1.4.1.1, we briefly discuss them
below (for easy reference, summary appears below in Table 3.2). In the minimal setting of
pairwise-private channels, 3PC with sa is known to be feasible in just two rounds, while god is
infeasible to achieve irrespective of the number of rounds. Settling the quest for exact round
complexity of 3PC in this setting, we show that three rounds are necessary and sufficient for
ua and fn. Extending our study to the setting with an additional broadcast channel, we show

that while ua is achievable in just two rounds, three rounds are necessary and sufficient for fn
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and god. Our lower bound results extend for any number of parties in honest majority setting
and imply tightness of several known constructions.

The fundamental concept of garbled circuits underlies all our upper bounds. Concretely,
our constructions involve transmitting and evaluating only constant number of garbled circuits.

Assumption-wise, our constructions rely on injective (one-to-one) one-way functions.

Table 3.2: Our results on exact round complexity of 3PC in honest majority

Security Without References With References
Broadcast Necessity/Sufficiency Broadcast | Necessity/Sufficiency
Selective Abort (sa) 2 [112] / [129] 2 [112] / [129]
Unanimous Abort (ua) 3 Our Work [166] / Our Work [166] 2 [112] / Our Work [166]
Fairness (fn) 3 Our Work [166] / Our Work [166] 3 Our Work [166] / Our Work [166]
Guaranteed output delivery (god) Impossible | [67] 3 Our Work [166] / Our Work [166]

3.1.1 Technical Overview

Lower Bounds. We present two lower bounds— (a) three rounds are necessary for achieving
fn in the presence of pair-wise channels and a broadcast channel; (b) three rounds are necessary
for achieving ua in the presence of just pair-wise channels. The lower bounds are shown by
taking a special 3-party function and by devising a sequence hybrid executions under different
adversarial strategies, allowing to conclude any 3PC protocol computing the considered function

cannot be simultaneously private and achieve fn or ua.

Upper Bounds. We present three upper bounds— (a) 3-round protocol with fn; (b) 2-round
protocol with ua and (c) 3-round protocol with god. The former in the presence of just pairwise
channels, the latter two with an additional broadcast channel. The known generic transforma-
tions such as, ua to identifiable fairness (idfair) [130] or idfair to god [66], does not help in any of
our constructions. For instance, any 3-round fair protocol without broadcast cannot take the
former route as it is not round-preserving and ua in two rounds necessarily requires broadcast
as shown in this work. A 3-round protocol with god cannot be constructed combining both the
transformations due to inflation in round complexity.

Building on the protocol of [159], the basic building block of our protocols needs two of the
parties to enact the role of the garbler and the remaining party to carry out the responsibility
of circuit evaluation. Constrained with just two or three rounds, our protocols are built from
the parallel composition of three sub-protocols, each one with different party enacting the role
of the evaluator (much like [129]). Each sub-protocol consumes two rounds. Based on the
security needed, the sub-protocols deliver distinct flavours of security with ‘identifiable abort’.
For the fn and ua protocols, the identifiability is in the form of conflict that is local (privately
known) and public/global (known to all) respectively, while for the protocol with god, it is local
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identification of the corrupt. Achieving such identifiability in just two rounds (sometime without
broadcast) is challenging in themselves. Pulling up the security guarantee of these subprotocols
via entwining three executions to obtain the final goals of fn, ua and god constitute yet another
novelty of this work.

Maintaining the input consistency across the three executions pose another challenge that
are tackled via mix of novel techniques (that consume no additional cost in terms of communi-
cation) and existing tricks such as ‘proof-of-cheating’ or ‘cheat-recovery’ mechanism [145, 58].
The issue of input consistency does not appear in the construction of [159] at all, as it does
not deal with parallel composition. On the other hand, the generic input consistency technique
adopted in [129] can only (at the best) detect a conflict locally and cannot be extended to
support the stronger form of identifiability that we need.

Below, we present the common issues faced and approach taken in all our protocols before
turning towards the challenges and way-outs specific to our constructions. Two of the major
efficiency bottlenecks of 2PC from garbled circuits, namely the need of multiple garbled cir-
cuits due to cut-and-choose approach and Oblivious Transfer (OT) for enabling the evaluator
to receive its input in encoded form are bypassed in the 3PC scenario through two simple tricks
[129, 159]. First, the garblers use common randomness to construct the same garbled circuit
individually. A simple comparison of the GCs received from the two garblers allows to conclude
the correctness of the GC. Since at most one party can be corrupt, if the received GCs match,
then its correctness can be concluded. Second, the evaluator shares its input additively among
the garblers at the onset of the protocol, reducing the problem to a secure computation of a
function on the garblers’ inputs alone. Specifically, assuming P; as the evaluator, the com-
putation now takes inputs from P, and P, as (x1,z31) and (x3,x32) respectively to compute
C(1, 9, 31, T32) = f(21, T2, x31 B 32). Since the garblers possess all the inputs needed for the
computation, OT is no longer needed to transfer the evaluator’s input in encoded form to Ps.

Next, to force the garblers to input encoding and decoding information (the keys) that are
consistent with the GCs, the following technique is adopted. Notice that the issue of input
consistency where a corrupt party may use different inputs as an evaluator and as a garbler
in different instances of the sub-protocols is distinct and remains to be tackled separately. To-
gether with the GC, each garbler also generates the commitment to the encoding and decoding
information using the common shared randomness and communicates to the evaluator. Again
a simple check on whether the set of commitments are same for both the garblers allows to
conclude their correctness. Now it is infeasible for the garblers to decommit the encoded input
corresponding to their own input and the evaluator’s share to something that are inconsistent

to the GC without being caught. Following a common trick to hide the inputs of the garblers,
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the commitments on the encoding information corresponding to every bit of the garblers’ input
are sent in permuted order that is privy to the garblers. The commitment on the decoding
information is relevant only for the fair protocol where the decoding information is withheld
to force a corrupt evaluator to be fair. Namely, in the third round of the final protocol, the
evaluator is given access to the decoding information only when it helps the honest parties to
compute the output. This step needs us to rely on the obliviousness of our garbling scheme,
apart from privacy. The commitment on the decoding information and its verification by cross-
checking across the garblers are needed to prevent a corrupt party to lie later. Now we turn to

the challenges specific to the constructions.

Achieving fn in & rounds. The sub-protocol for our fair construction only achieves a weak
form of identifiability, a local conflict to be specific, in the absence of broadcast. Namely,
the evaluator either computes the encoded output (‘happy’ state) or it just gets to know that
the garblers are in conflict (‘confused’ state) in the worst case. The latter happens when
it receives conflicting copies of GCs or commitments to the encoding/decoding information.
In the composed protocol, a corrupt party can easily breach fairness by keeping one honest
evaluator happy and the other confused in the end of round 2 and selectively enable the happy
party to compute the output by releasing the decoding information in the third round (which
was withheld until Round 2). Noting that the absence of a broadcast channel ensues conflict
and confusion, we handle this using a neat trick of ‘certification mechanism’ that tries to enforce
honest behaviour from a sender who is supposed to send a common information to its fellow
participants.

A party is rewarded with a ‘certificate’ for enacting an honest sender and emulating a broad-
cast by sending the same information to the other two parties, for the common information
such as GCs and commitments. This protocol internally mimics a ‘Conditional Disclosure of
Secrets’ (CDS) protocol [103] for equality predicate, with an additional property of ‘authentic-
ity’, a departure from the traditional CDS. An authenticated CDS allows the receiver to detect
correct receipt of the secret/certificate (similar to authenticated encryption where the receiver
knows if the received message is the desired one). As demonstrated below, the certificate allows
to identify the culprit behind the confusion on one hand, and to securely transmit the decoding
information from a confused honest party to the happy honest party in the third round, on
the other. The certificate, being a proof of correct behaviour, when comes from an honest
party, say P;, the other honest party who sees conflict in the information distributed by PF;
communicated over point-to-point channel, can readily identify the corrupt party responsible

for creating the conflict in Round 3. This aids the latter party to compute the output using the
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encoded output of the former honest party. The certificate further enables the latter party to
release the decoding information in Round 3 in encrypted form so that the other honest party
holding a certificate can decrypt it. The release of encryption is done only for the parties whose
distributed information are seen in conflict, so that a corrupt party either receives its certificate
or the encryption but not both. Consequently, it is forced to assist at least one honest party in
getting the certificate and be happy to compute the output, as only a happy party releases the
decoding information on clear. In a nutshell, the certification mechanism ensures that when
one honest party is happy, then no matter how the corrupt party behaves in the third round,
both the honest parties will compute the output in the third round. When no honest party is
happy, then none can get the output. Lastly, the corrupt party must keep one honest party
happy, for it to get the output.

Yet again, we use garbled circuits to implement the above where a party willing to receive
a certificate acts as an evaluator for a garbled circuit implementing ‘equality’ check of the
inputs. The other two parties act as the garblers with their inputs as the common informa-
tion dealt by the evaluator. With no concern of input privacy, the circuit can be garbled in
a privacy-free way [133, 90]. The certificate that is the key for output 1 is accessible to the
evaluator only when it emulates a broadcast by dealing identical copies of the common infor-

mation to both the other parties. Notably, [123] suggests application of garbling to realise CDS.

Achieving ua in 2 rounds. Moving on to our construction with ua, the foremost challenge comes
from the fact that it must be resilient to any corrupt Round 2 private communication. Because
there is no time to report this misbehaviour to the other honest party who may have got the
output and have been treated with honest behaviour all along. Notably, in our sub-protocols,
the private communication from both garblers in second round inevitably carries the encoded
share of the evaluator’s input (as the share themselves arrives at the garblers’ end in Round
1). This is a soft spot for a corrupt garbler to selectively misbehave and cause selective abort.
While the problem of transferring encoded input shares of the evaluator without relying on sec-
ond round private communication seems unresolvable on the surface, our take on the problem
uses a clever ‘two-part release mechanism’. The first set of encoding information for random
inputs picked by the garblers themselves is released in the first round privately and any misbe-
haviour is brought to notice in the second round. The second set of encoding information for
the offsets of the random values and the actual shares of the evaluator’s input is released in the
second round via broadcast without hampering security, while allowing public detection. Thus
the sub-protocol achieves global /public conflict and helps the final construction to exit with L

unanimously when any of the sub-protocol detects a conflict.
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Achieving god in 3 rounds. For achieving this stronger notion, the sub-protocol here needs a
stronger kind of identifiability, identifying the corrupt locally to be specific, to facilitate all par-
ties to get output within an additional round no matter what. To this effect, our sub-protocol
is enhanced so that the evaluator either successfully computes the output or identifies the cor-
rupt party. We emphasise that the goals of the sub-protocols for ua and god, namely global
conflict vs. local identification, are orthogonal and do not imply each other. The additional
challenge faced in composing the executions to achieve god lies in determining the appropriate
‘committed’ input of the corrupt party based on which round and execution of sub-protocol it

chooses to strike.

Tackling input consistency. We take a uniform approach for all our protocols. We note that a
party takes three different roles across the three composed execution: an evaluator, a garbler
who initiate the GC generation by picking the randomness, a co-garbler who verifies the sanity
of the GC. In each instance, it gets a chance to give inputs. We take care of input consistency
in two parts. First, we tie the inputs that a party can feed as an evaluator and as a garbler who
initiates a GC construction via a mechanism that needs no additional communication at all.
This is done by setting the permutation strings (used to permute the commitments of encoding
information of the garblers) to the shares of these parties’ input in a certain way. The same trick
fails to work in two rounds for the case when a party acts as a garbler and a co-garbler in two
different executions. We tackle this by superimposing two mirrored copies of the sub-protocol
where the garblers exchange their roles. Namely, in the final sub-protocol, each garbler initiates
an independent copy of garbled circuit and passes on the randomness used to the fellow garbler
for verification. The previous trick is used to tie the inputs that a party feeds as an evaluator
and as a garbler for the GC initiated by it (inter-execution consistency). The input consistency
of a garbler for the two garbled circuits (one initiated by him and the other by the co-garbler) is
taken care using ‘proof-of-cheating’ mechanism [145] where the evaluator can unlock the clear
input of both the other parties using conflicting output wire keys (intra-execution consistency).
While this works for our protocols with ua and god, the fair protocol faces additional challenges.
First, based on whether a party releases a clear or encoded input, a corrupt garbler feeding two
different inputs can conclude whether f leads to the same output for both his inputs, breaching
privacy. This is tackled by creating the ciphertexts using conflicting input keys. Second, inspite
of the above change, a corrupt garbler can launch ‘selective failure attack’ [156, 140] and breach
privacy of his honest co-garbler. We tackle this using ‘XOR-tree approach’ [147] where every

input bit is broken into s shares and security is guaranteed except with probability 2=~ per
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input bit. We do not go for the refined version of this technique, known as probe-resistant

matrix, [147, 181] for simplicity.

On the assumption needed. While the garbled circuits can be built just from OWF, the ne-
cessity of injective OWF comes from the use of commitments that need binding property for
any (including adversarially-picked) public parameter. Our protocols, having 2-3 rounds, seem
unable to spare rounds for generating and communicating the public parameters by a party

who is different from the one opening the commitments.

On concrete efficiency. Though the focus is on the round complexity, the concrete efficiency of
our protocols is comparable to Yao [182] and require transmission and evaluation of few GCs
(upto 9) (in some cases we only need privacy-free GCs which permit more efficient constructions
than their private counterparts [133, 90]). The broadcast communication of the optimized
variants of our protocols is independent of the GC size via applying hash function. We would
like to draw attention towards the new tricks such as the ones used for input consistency,
getting certificate of good behaviour via garbled circuits, which may be of both theoretical and
practical interest. We believe the detailed take on our protocols will help to lift them or their

derivatives to practice in future.

3.1.2 Roadmap

The adversarial and network model for this work appears below. Our lower bound results
appear in Section 3.2. We present our 3-round protocol with fn, 2-round protocol with ua and
3-round protocol with god in Section 3.3, 3.4 and 3.5 respectively. The respective security
proofs appear in Sections 3.7.1, 3.7.2 and 3.7.3 and the common optimizations in Section 3.6.
Lastly, we define authenticated CDS in Appendix 3.8 and show its realisation from one of the

sub-protocol used in our 3-round fair protocol.

3.1.3 Model

We consider a set of n = 3 parties P = { Py, P», P3}, connected by pair-wise secure and authentic
channels. Each party is modelled as a probabilistic polynomial time Turing (PPT) machine.
We assume that there exists a PPT adversary A, who can actively corrupt at most ¢ = 1 out
of the n = 3 parties and make them behave in any arbitrary manner during the execution
of a protocol. We assume the adversary to be static, who decides the set of t parties to be
corrupted at the onset of a protocol execution. For our 2-round protocol achieving ua and

3-round protocol achieving god, a broadcast channel is assumed to exist.
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3.2 Lower Bounds

In this section, we present two lower bounds— (a) three rounds are necessary for achieving fn
in the presence of pair-wise private channels and a broadcast channel; (b) three rounds are
necessary for achieving ua in the presence of just pair-wise private channels (and no broadcast).
The second result holds even if broadcast was allowed in the first round. Our results extend
for any n and ¢ with 3t > n > 2t via standard player-partitioning technique [153]. Our results
imply the following. First, sa is the best amongst the four notions (considered in this work) that
we can achieve in two rounds without broadcast (from (b)). Second, ua as well as fn require 3
rounds in the absence of broadcast (from (b)). Third, broadcast does not help to improve the
round complexity of fn (from (a)). Lastly, god requires 3 rounds with broadcast (from (a)).
Both our lower bounds hold even in the presence of public setup (CRS model) but break down
in the presence of private setup (PKI model).

3.2.1 The Impossibility of 2-round Fair 3PC

In this section, we show that it is impossible to construct a 2-round 3PC with fn for general
functions. [108] presents a lower bound of three rounds assuming non-private point-to-point
channels and a broadcast channel (their proof crucially relies on the assumption of non-private
channels). [102] presents a three-round lower bound for fair MPC with ¢ > 2 (arbitrary number
of parties) in the same network setting as ours. Similar to the lower bounds of [108] and [102]
(for the function of conjunction of two input bits), our lower bound result does not exploit the
rushing nature of the adversary and hence holds for non-rushing adversary as well. Finally,
we observe that the impossibility of 2-round 3PC for the information-theoretic setting follows
from the impossibility of 2-round 3-party statistical VSS of [172] (since VSS is a special case of
MPC). We now prove the impossibility formally.

Theorem 3.1 There exist functions f such that no two-round 3PC protocol with fn can compute
f, even in the honest majority setting and assuming access to pairwise-private and broadcast

channel.

Proof: Let P = {Py, P>, P3} denote the set of 3 parties and the adversary A may corrupt any
one of them. We prove the theorem by contradiction. We assume that there exists a two-round

3PC protocol 7w with fn that can compute f(x1, 2, x3) defined below for P;’s input x;:

1 if To9 = X3 = 1
f(‘rth;x?)) -
0 otherwise
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At a high level, we discuss two adversarial strategies A; and A, of A. We consider party P;
launching A; in execution ¥; (i € [2]) of m. Both the executions are assumed to be run for the
same input tuple (1, x2, r3) and the same random inputs (r, 75, 73) of the three parties. (Same
random inputs are considered for simplicity and without loss of generality. The same arguments
hold for distribution ensembles as well.) When strategy A; is launched in execution ¥, we
would claim that by correctness of 7, A corrupting P; should learn the output y = f(x1, z2, x3).
Here, we note that the value of f(z1,x2,23) depends only on the inputs of honest Py, P; (i.e
input values xs, z3) and is thus well-defined. We refer to f(xy, 22, x3) as the value determined
by this particular combination of inputs (x2, z3) henceforth. Now, since A corrupting P, learnt
the output, due to property of fn, P, should learn the output too in ;. Next strategy A, is
designed so that P in Y5 can obtain the same view as in >; and therefore it gets the output too.
Due to fairness, we can claim that P; receives the output in 5. A careful observation then lets
us claim that P; can, in fact, learn the output at the end of Round 1 itself in 7. Lastly, using
the above observation, we show a strategy for P; that explicitly allows P to breach privacy.

We use the following notation: Let pj_,; denote the pairwise communication from P; to P;
in round r and b} denote the broadcast by P; in round r, where r € [2], {7, j} € [3]. V; denotes

the view of party P; at the end of execution of w. Below we describe the strategies A; and A,.

Ai: P behaves honestly during Round 1 of the protocol. In Round 2, P, waits to receive the

messages from other parties, but does not communicate at all.

As: Py behaves honestly towards Ps in Round 1, i.e sends the messages p} .5, bl according to
the protocol specification. However P, does not communicate to P; in Round 1. In Round

2, P, waits to receive messages from Pj, but does not communicate to the other parties.

Next we present the views of the parties in the two executions Y; and Y, in Table 3.3.
The communications that could potentially be different from the communications in an honest
execution (where all parties behave honestly) with the considered inputs and random inputs
of the parties are appended with % (e.g. p?_;(%)). We now prove a sequence of lemmas to

complete our proof.

Table 3.3: Views of P, Py, P; in ¥; and X,
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21 22

Vi \% Vs A Vo Vs
Initial Input | (z1,7r1) (22,72) (x3,73) (x1,71) | (@o,79) (x3,73)
R d 1 p%alv pllﬁal p%*}Q? pg}a?? p}a.‘%v péa& ) p(}ieh p}*}Q? péa% p}a.‘%v péa&

oun 1 1 1 1 1 1 1 1 1 1 1 1

by, by by, by b1, by by, by | by, by b1, by

p%alv p?ﬁalv ) pgﬁ»Z: ™ p%ﬁ\isv ) pgal? p%a2(*)r pga% ™ p%ﬁ\3(*)v
Round 2

b3, b3 b3 b3 b3 b?(x), b b (x)

Lemma 3.1 A corrupt Py launching Ay in Xy should learn the output y = f(z1, 2, T3).

Proof: The proof follows easily. Since P, behaved honestly during Round 1, it received all the
desired communication from honest P, and P3 in Round 2 (refer to Table 3.3 for the view of P,
in 37 in the end of Round 2). So it follows from the correctness property that his view at the
end of the protocol i.e V; should enable P; to learn the correct function output f(xy,zs,x3).
O

Lemma 3.2 A corrupt Py launching Ay in Yo should learn the output y.

Proof: We prove the lemma with the following two claims. First, the view of P in X,
subsumes the view of honest P, in ;. Second, P, learns the output in »; due to the fact that
the corrupt P; learns it and = is fair. We now prove our first claim. In >, we observe that P,
has received communication from both P, and Pj in the first round, and only from Pj3 in the
second round. So Vo = {x9, 79, pl .5, b1, pi o, bl p3_o, b2} (refer to Table 3.3). We now analyze
Py’s view in Xy, Both P; and Pj are honest and must have sent {pj_,,, b1, p3_,5, b3} according
to the protocol specifications in Round 1. Since P; received the expected messages from P, in
Round 1, P3 must have sent {p3_,,, b5} in Round 2. Note that we can rule out the possibility of
P3’s messages in this round having been influenced by P; possibly reporting P’s misbehavior
towards P;. This holds since P; would send the messages in the beginning of Round 2. We
do not make any assumption regarding P;’s communication to P, in Round 2 since P; has
not received the expected message from P, in Round 1. Thus, overall, P,’s view V, comprises
of {za,79,pl 9, bl,p3 .o, bl p2 .5, b2} (refer to Table 3.3). Note that there may also be some
additional messages from P; to P, in Round 2 which can be ignored by P,. These are marked
with ‘(%) in Table 3.3. A careful look shows that the view of P, in ¥y subsumes the view of

honest P, in ¥;. This concludes our proof. O

Lemma 3.3 P; in X9 should learn the output y by the end of Round 1.
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Proof: According to the previous lemma, P, should learn the function output in 5. Due
to property of fn, it must hold that an honest P; learns the output as well (same as obtained
by P i.e y with respect to x5). First, we note that as per strategy As, P» only communicates
to P3 in Round 1. Second, we argue that the second round communication from P; does not
impact P3’s output computation as follows.

We observe that the function output depends only on (x9,z3). Clearly, Round 1 messages
{pi_3, bi} of P does not depend on z5. Next, since there is no private communication to P
from P, as per strategy A,, the only information that can possibly hold information on x5 and
can impact the round 2 messages of P; is b}. However, since this is a broadcast message, Ps
holds this by the end of Round 1 itself. a

Lemma 3.4 A corrupt Ps violates the privacy property of .

Proof: The adversary corrupting P; participates in the protocol honestly by fixing input
x3 = 0. Since P3 can get the output from P’s and P;’s round 1 communication (Lemma 3.3), it
must be true that P can evaluate the function f locally by plugging in any value of z3. (Note
that P, and P;’s communication in round 1 are independent of the communication of P; in the
same round.) Now a corrupt P3 can plug in x3 = 1 locally and learn x5 (via the output xzs Ax3).
In the ideal world, corrupt P3 must learn nothing beyond the output 0 as it has participated in
the protocol with input 0. But in the execution of 7 (in which Ps participated honestly with
input z3 = 0), P3 has learnt z5. This is a clear breach of privacy as Ps learns x5 regardless of
his input. O

Hence, we have arrived at a contradiction, completing the proof of Theorem 3.1. O

Before concluding the section, we point that the above lower bound holds even in the
presence of public setup (such as the CRS model). However, it breaks down given access to
private setup such as public-key infrastructure i.e PKI (as demonstrated by [170]). Essentially,
the argument breaks down because Lemma 3.3 does not hold in the presence of private setup
for the following reason: If a setup such as PKI is established, P, may hold some private
information unknown to P at the end of Round 1, such as the decryption of P’s Round 1
broadcast using its exclusive secret key. This may aid in output computation by Ps; thereby it
cannot be claimed that P3 obtains the output at the end of Round 1 itself.

3.2.2 The Impossibility of 2-round 3PC with Unanimous Abort

In this section, we show that 2-round 3PC with ua is impossible to achieve in the minimal

setting of pairwise-private channels.
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Theorem 3.2 There exist functions f such that no two-round 3PC protocol achieving ua can

compute f assuming access to pairwise-private channels, even in the honest majority setting.

Proof: We prove the theorem by contradiction. We assume that there exists a two-round
3PC protocol 7w achieving ua that can compute the same function f(z1,xs,23) considered in
the proof of Theorem 3.1.

At a high level, we discuss three adversarial strategies A4, Az, A3 of A. We consider party P,
launches A; in execution ¥, and P, launches As, A3 in executions Y5, Y3 of 7 respectively. For
the sake of simplicity, the executions are assumed to be run for the same input tuple (xy, zo, x3)
and the same random inputs (r, re, r3) (without loss of generality) of the three parties. We use
the notation V? to denote the view of party P; at the end of execution ; of 7. The skeleton
of the proof goes as follows: We first claim that strategy A; leads to honest P, computing
the output y = f(x1, 29, x3). Here, we note that the value of f(z1,xs,z3) depends only on the
inputs of honest Py, P (i.e input values x5, x3) and is thus well-defined. We refer to f(xy, 22, x3)
as the value determined by this particular combination of inputs (x4, x3) henceforth. Since the
protocol achieves ua, honest P3’s view V3 at the end of ¥; must lead to output computation
of y by P3;. Next, strategy Ay executed by P, during > results in P3 having the same view
as in ¥ i.e Vi = V2. Thus, honest P3 computes the output and to preserve the property of
ua, honest P, with view V2 must also compute the output. Finally, we present a strategy As
by P, during Y3 that results in P, having the same view as in 3, i.e VI = V3. It follows that
honest P, computes the output and therefore honest Ps with view V3 must be able to compute
the output too. This results in a contradiction as we conclude that if P3’s view V3 enables
output computation, P3; must be able to compute the output at the end of Round 1 itself which
violates privacy as proved in Lemma 3.4.

Let p;_,; denote the pairwise communication from P; to P; in round r, where r € [2], {i, j} €
[3]. Below we describe the strategies Aj, Ay and Aj.

Ai: P behaves honestly during Round 1 of the protocol. In Round 2, P, behaves honestly
towards P». P;’s communication to P53 in Round 2 is according to the protocol specification
for the scenario when P; didn’t receive the expected message (or nothing) from P, in
Round 1. In more detail, suppose E is the message that should be sent by P, to Ps
according to the protocol incase P, didn’t receive anything from P, in Round 1. Then as

per Ay, corrupt P sends p?_,; to P3 in Round 2.

As: P, does not communicate at all to P; but behaves honestly to P; throughout .
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Asz: In Round 1, P, does not communicate to P; but behaves honestly to P;. In Round 2, P,

does not communicate at all.

Next we present the views of the parties in ¥y, 35 and X3 in Table 3.4. Here, a is the
message that should be sent by P; to P; according to the protocol incase P; didn’t receive
anything from P, in Round 1. Besides this, the communications that could potentially be dif-
ferent from the communications in an honest execution with the considered inputs and random
inputs of the parties are appended with * (e.g. p?_,,(x)). We now prove a sequence of lemmas

to complete our proof.

Table 3.4: Views of Py, Py, Py in ¢, Yo, Y3

El EZ Ei
v, \ Vs \ Vs Vi Vs Vs Vi Vs Vs
Initial Input | (@1,71) (x9,72) (ws,73) (x1,71) | (22,72) (ws,73) (z1,m1) | (z2,72) (w3,73)
| | 1 1 1 | o 1 | 1 | o 1 | 1 |
P2—15 P31 | Pis2s P3—2s | Pisss Pasy | 5 Pasis | Pisey Pasas Pi-3> P2—3: | 7 P3—1s | Pis2s P3os P13, P23,
Round 1
Round 2 p;—»lv pg—»lv pf—>27 p§—>27 p%—»:ﬁv P§_>3«, ) p§_>17 p§—>2(*)7 p§—>27 P%_>37 pg—p:ﬂv o P§_>1¢ P?—m(*): p§—>21 p%—»:iv o

Lemma 3.5 P; computes the output y = f(x1,x2,23) at the end of ;.

Proof: The proof follows easily. During 1, as per strategy A;, corrupt P, behaved honestly
to P, throughout 7. Therefore P, would compute the output y = f(x1, x2, z3). Due to property

of ua, honest P; must learn the output as well. O
Lemma 3.6 P; computes the output y = f(x1,x2,23) at the end of .

Proof: We observe that the view of P3 during Y, 35 is same. As per both strategies A, and
As, P3 receives communication from P;, P, as per honest execution in Round 1. In Round 2,
according to Aq, corrupt P; sends E as per protocol specification for case when P; receives
nothing from P, in Round 1. A similar message would be sent by honest P; to P3 who did not
receive anything from P, in Round 1 (as per As) during Y. It is now easy to check (refer Table
3.4) that Vi = V2. Finally, since V3 leads to output computation of y as per Lemma 3.5, P;’s

view at the end of 3, i.e V2 must result in Py computing the output y. O

Lemma 3.7 P; learns the output at the end of Xs.
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Proof: Firstly, it follows from lemma 3.6 and property of ua that honest P, must compute
the output at the end of 5. Next, it is easy to check that V = V? (refer Table 3.4). We can
thus conclude that honest P, computes the output at the end of 3. Therefore, honest P; must
also be able to compute the output at the end of 33 (by assumption that 7 achieves ua). O

Finally, we now prove that P; learns the output at the end of Round 1 (similar to Lemma
3.3).

Lemma 3.8 P; in X3 should learn the output y by the end of Round 1.

Proof: According to lemma 3.7, P; should learn the function output in 3. First, we note
that as per strategy Az, corrupt P, only communicates to P3 in Round 1. Second, we argue
that the second round communication from P; does not impact P3’s output computation as
follows.

We observe that the function output depends only on (xg,z3). Clearly, the first round
messages {p]_,3} of P; does not depend on x,. Next, since there is no communication to P
from P, as per strategy Az, round 2 messages of P, hold no information about xs. a

If P is able to compute output at the end of Round 1, we know that protocol 7 violates
privacy (proved in Lemma 3.4). We have thus arrived at a contradiction, concluding the proof
of Theorem 3.2. a

We observe that even if broadcast was allowed in the first round, all the above arguments

would still hold. We state this as a corollary below.

Corollary 3.1 There exist functions f such that no two-round 3PC protocol achieving ua can
compute f assuming access to pairwise-private and broadcast channels in Round 1 and only

pairwise-private channels in Round 2; even in the honest majority setting.

Proof: = We observe that the following minor tweaks to the proof of Theorem 3.2 imply
Corollary 3.1: We redefine ﬁ to be the message that should be sent by P to P5; in Round
2 according to the protocol incase P; didn’t receive anything privately (over pairwise-private
channel) from P, in Round 1 (if Round 1 includes broadcast communication from P, then
we assume P has received P»’s broadcast communication). A; remains the same with ﬂ

defined as above. We emphasize that there is no broadcast channel available in Round 2 and

p?_ 5 is communicated via pairwise-private channel between P; and P3. Strategies Ay and As
are tweaked to include honest behavior of P in broadcast communication of Round 1. It is now
easy to check that the arguments of Lemma 3.5 - 3.7 hold. We can now conclude that P; learns

the output at the end of X3 where the only communication from P, throughout the protocol
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includes broadcast communication in Round 1 and private communication to P in Round 1.
Finally, similar to Lemma 3.8 we can argue that P learns the output at the end of Round 1
itself which violates privacy.

We clarify that while the above argument holds for the plain model and public setup (such
as CRS model), it does not hold in the presence of private setup such as PKI. The argument
breaks down for the same reason as demonstrated by [170] in the context of our lower bound
of Section 3.2.1 (elaborated at the end of Section 3.2.1). O

Alternative functions. While it suffices to show impossibility with respect to a particular
function to rule out the possibility of having generic protocols, we cite yet another function that
can lead to the same conclusion. Consider a function f’ that outputs the message m which is
the decryption of ciphertext ¢ (P»’s input) where the decryption key k constitutes P;’s input.
All our arguments still hold except Lemma 3.4: Instead of the argument of how privacy could
be breached by corrupt P3 who gets access to output at the end of Round 1, in the context
of this function f’, a corrupt P3 (who gets access to the output at the end of Round 1 itself)
would be able to get decryptions of the ciphertext ¢ corresponding to multiple keys & of his

choice which violates correctness.

3.3 3-round 3PC with Fairness

This section presents a tight upper bound for 3PC achieving fn in the setting with just pair-wise
private channels. Our result from Section 3.2.2 rules out the possibility of achieving fn in 2
rounds in the same setting. Our result from Section 3.2.1 further shows tightness of 3 rounds
even in the presence of a broadcast channel.

Building on the intuition given in the introduction, we proceed towards more detailed dis-
cussion of our protocol. Our fair protocol is built from parallel composition of three copies
of each of the following two sub-protocols: (a) Fair; where P; acts as the evaluator and the
other two as garblers for computing the desired function f. This sub-protocol ensures that
honest P; either computes its encoded output or identifies just a conflict in the worst case. The
decoding information is committed to P;, yet not opened. It is released in Round 3 of the final
composed protocol under subtle conditions as elaborated below. (b) Cert; where P; acts as
the evaluator and the other two as garblers for computing an equality checking circuit on the
common information distributed by FP; in the first round of the final protocol. Notably, though
the inputs come solely from the garblers, they are originated from the evaluator and so the
circuit can be garbled in a privacy-free fashion. This sub-protocol ensures either honest P; gets

its certificate, the key for output 1 (meaning the equality check passes through), or identifies a
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conflict in the worst case. The second round of Cert; is essentially an ‘authenticated” CDS for
equality predicate tolerating one active corruption as discussed in Appendix 3.8. Three global
variables are maintained by each party P; to keep tab on the conflicts and the corrupt. Namely,
C; to keep the identity of the corrupt, flag; and flag, (for distinct i, 7,k € [3]) as indicators of
detection of conflict with respect to information distributed by P; and P respectively. The
sub-protocols Fair; and Cert; assure that if neither the two flags nor C; is set, then P, must be
able to evaluate the GC successfully and get its certificate respectively.

Once {Fair;, Cert; };cj3) complete by the end of round 2 of the final protocol Fair, any honest
party will be in one of the three states: (a) no corruption and no conflict detected ( (C; =
0)A(flag; = 0)A(flag, = 0)); (b) corruption detected (C; # 0); (c) conflict detected (flag; = 1)V
(flag;, = 1). An honest party, guaranteed to have computed its encoded output and certificate
only in the first state, releases these as well as the decoding information for both the other
parties unconditionally in the third round. In the other two states, an honest party conditionally
releases only the decoding information. This step is extremely crucial for maintaining fairness.
Specifically, a party that belongs to the second state, releases the decoding information only to
the party identified to be honest. A party that belongs to the third state, releases the decoding
information in encrypted form only to the party whose distributed information are not agreed
upon, so that the encryption can be unlocked only via a valid certificate. A corrupt party will
either have its certificate or the encrypted decoding information, but not both. The former
when it distributes its common information correctly and the latter when it does not. The
only way a corrupt party can get its decoding information is by keeping one honest party in
the first state, in which case both the honest parties will be able to compute the output as
follows. The honest party in state one, say P;, either gets it decoding information on clear
or in encrypted form. The former when the other honest party, F; is in the first or second
state and the latter when P; is in the third state. F; retrieves the decoding information no
matter what, as it also holds the certificate to open the encryption. An honest party P; in
the second state, on identifying P; as honest, takes the encoded output of P; and uses its own
decoding information to compute the output. The case for an honest party P; in the third state
is the most interesting. Since honest P; belongs to the first state, a corrupt party must have
distributed its common information correctly as otherwise P; will find a conflict and would be in
third state. Therefore, P; in the third state must have found F;’s information on disagreement
due the corrupt party’s misbehaviour. Now, P;’s certificate that proves his correct behaviour,
allows P; to identify the corrupt, enter into the second state and compute the output by taking
the encoded output of honest P;. In the following, we describe execution Fair; assuming input

consistency, followed by Cert;. Entwining the six executions, tackling the input consistency and
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the final presentation of protocol Fair appear in the end.

3.3.1 Protocol Fair;

At a high level, Fair; works as follows. In the first round, the evaluator shares its input additively
between the two garblers making the garblers the sole input contributors to the computation.
In parallel, each garbler initiates construction of a GC and commitments on the encoding and
decoding information. While the GC and the commitments are given to the evaluator P;, the
co-garbler, acting as a verifier, additionally receives the source of the used randomness for GC
and openings of commitments. Upon verification, the co-garbler either approves or rejects the
GC and commitments. In the former case, it also releases its own encoded input and encoded
input for the share of P; via opening the commitments to encoding information in second round.
In the latter case, P; sets the flag corresponding to the generator of the GC to true. Failure
to open a verified commitment readily exposes the corrupt to the evaluator. If all goes well,
P; evaluates both circuits and obtains encoded outputs. The correctness of the evaluated GC
follows from the fact that it is either constructed or scrutinised by a honest garbler. The
decoding information remains hidden (yet committed) with P; and the obliviousness of GC
ensures that P; cannot compute the output until it receives the correct opening.

To avoid issues of adaptivity, the GCs are not sent on clear in the first round to P; who may
choose its input based on the GCs. Rather, a garbler sends a commitment to its GC to P; and
it is opened only by the co-garbler after successful scrutiny. The correctness of evaluated GC
still carries over as a corrupt garbler cannot open to a different circuit than the one committed
by an honest garbler by virtue of the binding property of the commitment scheme. We use
an eNICOM for committing the GCs and decoding information as equivocation is needed to
tackle a technicality in the security proof. The simulator of our final protocol needs to send the
commitments on GC, encoding and decoding information without having access to the input of
an evaluator P; (and thus also the output), while acting on behalf of the honest garblers in Fair;.
The eNICOM cannot be used for the encoding information, as they are opened by the ones who
generate the commitments and eNICOM does not provide binding in such a case. Instead, the
GCs and the decoding information are equivocated based on the input of the evaluator and the
output.

Protocol Fair; appears in Figure 3.1 where P; returns encoded outputs Y; = (Y7, Y*) (ini-
tially set to L) for the circuits created by P;, Py, the commitments to the respective decoding
information C°°, Cfe and the flags flag;,flag, (initially set to false) to be used in the final
protocol. The garblers output their respective corrupt set, flag for the fellow garbler and open-

ing for the decoding information corresponding to its co-garbler’s GC and not its own. This
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is to ensure that it cannot break the binding of eNICOM which may not necessarily hold for
adversarially-picked public parameter.

—[ Protocol Fairi}

Inputs: Party P, has z, for o € [3].
Common Inputs: The circuit C(x1, xe, 3, 4) that computes f(z1,z2,z3 D 4).

Output: A garbler P, (I € {j,k}) outputs corrupt set €1, flag; iy and Odc. P, outputs (€,
Y; = (Yg, Yf), C’;-jec, Cgec, flag;, flagy,) where Y; denote a pair of encoded outputs or L.

Primitives: A garbling scheme § = (Gb, En, Ev, De) that is correct, private and oblivious, a NICOM
(Com, Open), an eNICOM (eGen, eCom, eOpen, Equiv) and a PRG G.
Round 1:

— P; randomly secret shares his input x; as x; = x;; ® x;, and sends z;; to P; and z;; to Pj.
— P for I € {j,k} samples s; €g {0,1}", epp; and pp, for G, eNICOM and NICOM resp. and:

o compute garbled circuit (Cj,e;,d;) < Gb(1%,C) using randomness from G(s;). Assume
{K?ou Klla}ae[é]a {K?(£+a)7 Kll([+a)}oz€[€]a {K?(%Jra), Kll(2£+a)}a€[zg] denote the encoding infor-
mation for the input of P;, P, and the secret shares of P; respectively.

o compute commitments for GC and decoding information. (c;,0;) < eCom(epp;, C;) and
dec

(c?ec,ol ) < eCom(epp;, d;).

o sample permutation strings py;, pir €r {0, 1}¢ for the inputs of P; and P;,. Compute com-

. . . . Db
mitments to encoding information as: for b € {0,1}, (¢t ,of ) < Com(pp,, efolj ), (c?(Ha),
P}, Bb

05’(€+a)) — Com(ppl,el(Ha)) when a € [/, (cf’(2£+a),o§’(2£+a)) — Com(ppl,eg’(%ﬂl)) when
a € (2.

o send D; = (epp;, pp;, c1, {cb, }aean pefo,1}5 cc) to both the other parties and send {s, pi;, Pik,
01, {00, Yae[a,pe {01}, 055} only to co-garbler Py j-

— Pj sets Cj = P, if Dy, and {sk,pkj,pkk,ok,{oia,}QE[M],IJE{OJ},O?C} are inconsistent. Else, set
O?ec — Ozec‘

Py, performs similar steps for the values received from P;.

Round 2:

— P; sends D; to P, and Dy, to Pj. Pj sets flag, = 1 if Dy, received from P; and P, does not match.
Similar step is executed by P.
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— P; computes the mdlcator btrlngs mj; = pjj D xj, mkj = pk] ® x; for its inputs. If Py ¢ Cj, then

:E
send (OK D, (ok,{o]m ’Ok(%—s—a Faeles M) ({oja ,0, (2€+a }ae[g],mﬂ)) to P;. Else, send n0OK
to P;. Py performs similar steps.

— (Local Computation) P; sets Y) = | and flag; = 1 when (a) Pj sent nOK or (b) D; sent by P;
% ¥l J J
and P, do not match. Otherwise, P; sets C’;-jec = c?ec € D, and does:
o open C; < eOpen(epp;, cj,oj) with o; received from Pk. Set €; = P, if C; = L.

o open X§ = Open(ppJ7 a0 a“) = Open(pp;,c (2”0[), (22+a)>7 for a € [/], for the
opening received from P; and the comm1tments taken from D;. Include P; in C; if any of

the opened input labels above is opened to L

ms m$; a o
o open X{ = Open(pp,, cj(éia),oj(ﬁa)) and X = Open(ppj,ch§€+a),o§E§£+a)) for a € [¢], for
the opening received from Pj, and the commitments taken from D;. Include P in C; if any

of the opened input labels above is opened to L.
o If € = ), set X = X;|Xg|Xij[ Xk, run Y7 < Ev(C;,X). Else set Y/ =

Similar steps for C; will be executed to compute Yf , populate €; and update flag;,.

Figure 3.1: Protocol Fair;

Lemma 3.9 During Fair;, Pz ¢ C, holds for honest P,, Ps.

Proof: An honest P, would include Ps in €, only if one of the following hold: (a) Both
are garblers and Ps sends commitments to garbled circuit, encoding and decoding information
inconsistent with the randomness and openings shared privately with P, (b) P, is an evaluator
and Pg is a garbler and either (i) Ps’s opening of a committed garbled circuit fails or (i) Ps’s
opening of a committed encoded input fails. It is straightforward to verify that the cases will

never occur for honest (P,, Ps). O
Lemma 3.10 If honest P; has C; = () and flag; = flag, = 0, then Y; = (Yg,Yf) # 1.

Proof: According to Fair;, P; fails to compute Y; when it identifies the corrupt or finds a
mismatch in the common information D; or Dy, or receives a nOK signal from one of its garblers.
The first condition implies €; # (). The second condition implies, P; would have set either flag;
or flag;, to true. For the third condition, if P; sends nOK then P; would set flag, = 1. Lastly, if
P, sends nOK, then P; sets flag; = 1. Clearly when €; = 0 A flag; = 0 A flag), = 0, P; evaluates
both C;, Cj, and obtains Y; = (Y7, Y¥) # L. O
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3.3.2 Protocol Cert;

When a party P; in Fair; is left in a confused state and has no clue about the corrupt, it is
in dilemma on whether or whose encoded output should be used to compute output and who
should it release the decoding information (that it holds as a garbler) to in the final protocol.
Protocol Cert;, in a nutshell, is introduced to help a confused party to identify the corrupt and
take the honest party’s encoded output for output computation, on one hand, and to selectively
deliver the decoding information only to the other honest party, on the other. Protocol Cert;
implements evaluation of an equality checking function that takes inputs from the two garblers
and outputs 1 when the test passes and outputs the inputs themselves otherwise. In the final
protocol, the inputs are the common information (GCs and commitments) distributed by F;
across all executions of Fair;. The certificate is the output key corresponding to output 1. Since
input privacy is not a concern here, the circuit is enough to be garbled in privacy-free way and
authenticity of garbling will ensure a corrupt P; does not get the certificate. Cert; follows the
footstep of Fair; with the following simplifications: (a) Input consistency need not be taken
care across the executions implying that it is enough one garbler alone initiates a GC and the
other garbler simply extends its support for verification. To divide the load fairly, we assign
garbler P; where i = (j + 1) mod 3 to act as the generator of GC in Cert;. (b) The decoding
information need not be committed or withheld. We use soft decoding that allows immediate
decoding.

Similar to Fair;, at the end of the protocol, either P; gets its certificate (either the key for 1
or the inputs themselves), or sets its flags (when GC and commitment do not match) or sets
its corrupt set (when opening of encoded inputs fail). P, outputs its certificate, the flag for the
GC generator and corrupt set, to be used in the final protocol. The garblers output the key
for 1, flag for its fellow garbler and the corrupt set. Notice that, when Cert; is composed in the
bigger protocol, P; will be in a position to identify the corrupt when the equality fails and the
certificate is the inputs fed by the garblers. The protocol appears in Figure 3.2.

—[ Protocol Certl}

Common Inputs: The circuit C(v;,7x) that outputs 1 if (y; = %) and (0, v;, %) otherwise. For

distinct 7, 7,k € [3], P; is assumed to be the evaluator and (Pj, P;) as the garblers. We
assume i = (j + 1) mod 3,k = (j +2) mod 3.

Primitives: A correct, authentic, privacy-free garbling scheme § = (Gb, En, Ev, De) that has the
property of soft decoding, a PRG G, a NICOM (Com, Open)

Output: A garbler P, for [ € {j, k} outputs corrupt set C; and pad,. P; outputs
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(cert;, C;, flag, flagy,). Garbler Py additionally outputs flag;.
Round 1: P; does the following:

— Choose a seed s; € {0,1}" for G and construct a garbled circuit (C;, e;,d;) < Gb(1%,C).
Generate commitment on garbled circuit C; as (c;,0;) < Com(C;) and on the encoding
information e; as (¢;, 0;) <— Com(e;) using randomness from G(s;). Let W; = {c;,¢;}. Send
(si, W;) to P, and W; to P;.

— (Local Computation by Py) Py adds P; to €y if (s;, W;) are inconsistent and is not as per what
an honest P; should do. P; and P} output pad; equals to the key for output 1 of C;.

Round 2:

P; sends 'W; to P,. Py sets ﬂagj = 1 if W; received from P; and P; is not identical.

— Pj opens its encoded input X (corresponding to 7;) to P; by sending the opening of the

corresponding commitment in c;.

— If P; € €, P, sends nOK to F;. Else P, sends W;, opening for garbled circuit o; and its encoded
input X, (for ) to P;.

(Local Computation by P;) If P; does not receive identical W; from P; and P} or receives n0OK
from Py, P; sets cert; = L and flag; = 1. Else, P; uses the opening information sent by
P;, Py, to retrieve X;,Xy,. P; adds P, (I € {j, k}) to C; and sets cert; = L if any of the
openings sent by P, result in L. Else, P; runs Y < Ev(C;, X;, X,). If sDe(Y) = 1, then set

cert; =Y, else set cert; = (fy§~, 7},) where these two are decoded from Y.

Figure 3.2: Protocol Cert;

Lemma 3.11 During Cert;, Ps ¢ C, holds for honest P,, Ps.

Proof: An honest P, would include Ps in €, only if one of the following holds: (a) Ps sends
inconsistent (sz, Wg) to P,. (b) Ps’s opening of committed encoded input or garbled circuit

fails. It is straightforward to verify that the cases will never occur for honest (Ps, P,). a
Lemma 3.12 If an honest P; has C; = () and flag; = flag,, = 0, then, cert; # L.

Proof: The proof follows easily from the steps of the protocol. O

3.3.3 Protocol Fair

Building on the intuition laid out before, we only discuss input consistency that is taken care

in two steps: Inter-input consistency (across executions) and intra-input consistency (within an
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execution). In the former, P;’s input as an evaluator in Fair; is tied with its input committed
as garblers for its own garbled circuits in Fair; and Fair;. In the latter, the consistency of F;’s
input for both garbled circuits in Fair; (and similarly in Fairy) is tackled. We discuss them one
by one.

We tackle the former in a simple yet clever way without incurring any additional overhead.
We explain the technique for enforcing P;’s input consistency on input z; as an evaluator
during Fair; and as a garbler during Fair,, Fairz with respect to his GC C;. Since the protocol is
symmetric in terms of the roles of the parties, similar tricks are adopted for P, and Ps. Let in the
first round of Fairy, P; shares its input x; by handing x5 and x13 to P and Ps respectively. Now
corresponding to C; during Fairy, P; and P; who act as the garblers use x13 as the permutation
vector py; that defines the order of the commitments of the bits of z;. Now input consistency
of P;’s input is guaranteed if mq; transferred by P, in Fairy is same as x5, P;’s share for P,
in Fair;. For an honest P;, the above will be true since my; = p11 D x1 = £13 D 1 = T19. If
the check fails, then P, identifies P; as corrupt. This simple check forces P; to use the same
input in both Fair; and Fairy (corresponding to C;). A similar trick is used to ensure input
consistency of the input of P, across Fair; and Fairg (corresponding to C;) where P, and Py
who act as the garblers use x15 as the permutation vector p;; for the commitments of the bits
of 1. The evaluator Pj in Fairg checks if my; transferred by P; in Fairs is same as x;3 that P
receives from P; in Fair;. While the above technique enforces the consistency with respect to
P,’s GC, unfortunately, the same technique cannot be used to enforce P;’s input consistency
with respect to Cy in Fairg (or Fairg) since py; cannot be set to x15 which is available to P, only
at the end of first round. While, P, needs to prepare and broadcast the commitments to the
encoding information in jumbled order as per permutation string po; in the first round itself.
We handle it differently as below.

The consistency of P;’s input for both garbled circuits in Fair; (and similarly in Fairy) is
tackled via ‘cheat-recovery mechanism’ [145]. We explain with respect to P;’s input in Fairs.
P, prepares a ciphertext (cheat recovery box) with the input keys of P, corresponding to the
mismatched input bit in the two garbled circuits, C; and Cy in Fairs. This ciphertext encrypts
the the input shares of garblers that P; misses, namely, x15 and xo;. This would allow P; to
compute the function on clear inputs directly. To ensure that the recovered missing shares are
as distributed in Fair; and Fairg, the shares are not simply distributed but are committed via
NICOM by the input owners and the openings are encrypted by the holders. Since there is no
way for an evaluator to detect any mismatch in the inputs to and outputs from the two GCs
as they are in encoded form, we use encryption scheme with special correctness (Definition

2.10) to enable the evaluator to identify the relevant decryptions. Crucially, we depart from
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the usual way of creating the cheat recovery boxes using conflicting encoded outputs. Based
on whether the clear or encoded output comes out of honest P; in round 3, corrupt garbler P;
feeding two different inputs to C; and C; can conclude whether its two different inputs lead
to the same output or not, breaching privacy. Note that the decoding information cannot be
given via this cheat recovery box that uses conflicting encoded outputs as key, as that would
result in circularity.

Despite using the above fix, the mechanism as discussed above is susceptible to ‘selective
failure attack’, an attack well-known in the 2-party domain. While in the latter domain, the
attack is launched to breach the privacy of the evaluator’s input based on whether it aborts or
not. Here, a corrupt garbler can prepare the ciphertexts in an incorrect way and can breach
privacy of its honest co-garbler based on whether clear or encoded output comes out of the
evaluator. We elaborate the attack in Fairg considering a corrupt P; and single bit inputs. P,
is supposed to prepare two ciphertexts corresponding to P’s input bit using the following key
combinations— (a) key for 0 in C; and 1 in Cy and (b) vice-versa. Corrupt P, may replace one
of the ciphertexts using key based on encoded input 0 of P, in both the GCs. In case P, indeed
has input 0 (that he would use consistently across the 2 GCs during Fairs), then P; would be
able to decrypt the ciphertext and would send clear output in Round 3. P; can readily conclude
that P»’s input is 0. This attack is taken care via the usual technique of breaking each input
bit to s number of xor-shares, referred as ‘XOR-tree approach’ [147] (probe-resistance matrix
[147, 181] can also be used; we avoid it for simplicity). The security is achieved except with
probability 21,

Given that input consistency is enforced, at the end of round 2, apart from the three states—
(a) no corruption and no conflict detected (b) corrupt identified (c) conflict detected, a party
can be in yet another state. Namely, no corruption and no conflict detected and the party is
able to open a ciphertext and compute f on clear. A corrupt party cannot be in this state
since the honest parties would use consistent inputs and therefore the corrupt would not get
access to conflicting encoded inputs that constitute the key of the ciphertexts. If any honest
party is in this state, our protocol results in all parties outputting this output. In Round 3, this
party can send the computed output along with the opening of the shares he recovered via the
ciphertexts as ‘proof’ to convince the honest party of the validity of the output. The protocol
Fair appears in Figure 3.3 and the schematic diagram is given in Section 3.7.1.1.

We now prove the correctness of Fair.
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—i Protocol Fair

Inputs: Party P; has x; for i € [3].
Output: y = f(z1,x2,23) or L where the inputs and the function output belong to {0, 1}*.

Subprotocols: Fair; for i € [3] (Figure 3.1), Cert; for i € [3] (Figure 3.2), SKE (Enc, Dec) with
‘special correctness’ (Definition 2.10).
Round 1: For i € [3] and for distinct indices 7,k € [3] \ {i}

— Each P; computes an encoding of length ¢s corresponding to its input ;. For each bit b of xz;, the
encoding by, ... b, is such that b = ©J_,b,. Reusing the notation, we refer to this encoding as

P;’s input z; and its length by /.
— Round 1 of Cert; is run.

— Round 1 of Fair; are run with the following amendments: (1) The circuit in Fair; is changed as
follows: each input wire is replaced by a gate whose input consists of s new input wires and
whose output is the exclusive-or of these wires. (2) P; and P, work with the permutation

strings p;; and pgi respectively as x;; and xy;.

P; samples pp;, generates (c;j,045) <= Com(pp;, ij), (Cik, 0i) < Com(pp;, z;;) and sends {pp;, cij,
cik} to Pj, Py. Additionally, P; sends 0;;, 0 to Pj, P respectively.

— (Local Computation by P;) P; adds P, in C; if Open(cy;, 013) # ay3. Pj adds Py in C; if: (a) prx
not taken as xj; or (b) the check in Fair; or Cert; fails. P, adds P; in € if: (a) p;; not taken

as x;j, or (b) the check in Fair; or Cert; fails.
Round 2: For i € [3] and for distinct indices j, k € [3] \ {i}:

— If P; ¢ C;, P; sends (pp;, Cij, Cik) to Py. If Py & C, Py, sends (pp;, Cij, Cix) to Pj. They set flag; = 1

in case of mismatch or no communication.

— If P; ¢ C;, P; participates in Cert; as a garbler with input ~; as {@{,@f,wk, PP;; Cij, Cik } Where
@g,@f, Wy, and (pp;, ¢ij, Cik) Was received from P; during Round 1 of Fairj, Fairy, Certy, (as-
suming k = (i + 1) mod 3) and Fair respectively. Similar step is taken by Pj.

- If cert; = ('7;77;)3 P’L sets ez = Pl if ’71/ 7& {‘ng Di'f?Wka ppivcijacik’} for [ € {]7 k}

— If P ¢ Cj, P participates in Round 2 of Fair;, When P, ¢ C;, P; additionally sends the
ciphertexts ctfa for p € {0,1} and « € [{] created as follows. Let {x?(€+a),xl1(€+a)}, denote the

encoding information of co-garbler Py’s input wire « corresponding to C; (I € {j,k}). Then
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ct}y = Enc s (0jk, 015) for sk = X0, @& Xh, ) and skl = X}, @ XY, . P takes

similar steps.

— (Local Computation by P;) Include P in C; if my # xy; for | € {j,k}. If C; = 0, flag; = 0, flag;, = 0,

then use key X;r(bjk ) @ le(%ia) (v € [f]) to decrypt the ciphertexts ct?a or ctjl-a obtained

I+
from P;. If the decryption succeeds, retrieve oyj,0;;. Execute x; < Open(c;,0r;) and

xji, < Open(cjk, 04). If the opening succeeds, then evaluate f on (x;,xj ® x]k, Ti ® xkj) to
obtain y. Similarly, steps are taken with respect to P;’s input, using the key X “ ® X, k] to
decrypt the ciphertexts ct,m or ctk ., obtained from FP.

A party P, is said to be in st,, for a € [4] if the following conditions are satisfied. Let (Y;, C’Jdec, Cdecy,
O;-jec and Ogec denote the output of F; in Fair;, Fair; and Fairy, respectively. Let cert;, pad;, and
pad, denotes the output of F; in Cert;, Cert; and Cert;, respectively.

(i) stq(output is already computed): If y and proofs (ojx, 0x;) are computed in Round 2.

(ii) st2 (no corruption and no conflict detected): If ((€; = 0) A (flag; = 0) A (flagy, = 0)) (which
implies Y; # L and cert; # 1)

(iii) st3 (corruption detected): If (€; # 0)
(iv) styq (conflict detected, but no corruption detected): If (flag; = 1) V (flag;, = 1)
Round 3: Each P, for i € [3] does the following based one of the four states that it belongs to.

— If in sty, then send y to P;, P;. Send oj;, to P; and oy; to Py as proofs.

If in stg, then send (Y;, cert;, O%€) to P, for | € {j,k}.

If in st3, then send Ofec to P, for I € {j,k} only if P, & C;.

— If in sty, then send z; = Encpadl(Oldec) to P, only if flag; = 1. If flag; = 1 and cert; received from
P; is same as pad;, then set C; = Pj. Similar steps are taken to check and identify if P; is

corrupt. Update state from sty to stg if corrupt is identified.

If in stq, then output .

If in {sto, st3,st4} and if any other party is identified to be in sty, namely if y is received from
P; or Py, with og; or oj; respectively such that Open(pp;, cji,01) # L for [ € {j, k}, then output

the received y.

— If in stg, then compute y as follows: Retrieve Ofec from either z; (with cert; as the key) received

from P; or from direct communication of P;. If d <— eOpen(epp;,, C¢, 0¢¢) is not L, then use
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d to compute y < De(Yf-“7 d). Similar steps are executed with respect to Py’s communication

if y is not computed yet.

— If in st3, then output y < De(Y{,d) where Y; is received from (honest) P, ¢ €; and decoding

information d is known as garbler during Fair;. Otherwise output y = L.

— If in sty, output y = L.

Figure 3.3: A Three-Round Fair 3PC protocol

Lemma 3.13 During Fair, P; ¢ C; holds for honest P;, P;.

Proof: An honest P; will not include P; in its corrupt set in the sub-protocols {Fair,, Cert, }acjs)
following Lemma 3.9, Lemma 3.11. Now we prove the statement individually investigating the
three rounds of Fair.

In Round 1 of Fair, P, includes P; as corrupt only if (a) P;, P; are garblers and P; sets
pjj # vy or (b) P sends pp;, ¢ji, 05, 25 to F; such that Open(pp;,cji, 05i) # 4. None of them
will be true for an honest P;. In Round 2 of Fair, P; includes P; as corrupt only if (a) P; is a
garbler and P; is an evaluator and mj; # xj; or (b) P; obtains cert; = (7}, ;) and detects P;’s
input 7; in Cert; to be different from the information sent by him. The former will not be true
for an honest P;. The latter also cannot hold for honest P; by correctness of the privacy-free
garbling used. In the last round of Fair, P; will identify P; as corrupt, if it has flag, = 1 and yet
receives certy which is same as pad,, from P;. A corrupt P receives pad, only by handing out
correct and consistent common information to P; and P; until the end of Round 1. Namely, the
following must be true for Py to obtain pad, (except for the case when it breaks the authenticity
of the GC): (i) v; and ~; for Cert; must be same and (ii) P, must not be in the corrupt set of

any honest party at the end of Round 1. In this case, flag,, cannot be 1. O

Lemma 3.14 No corrupt party can be in st1 by the end of Round 1, except with negligible
probability.

Proof: For a corrupt Py, its honest garblers F; and P; creates the ciphertexts cts using keys
with opposite meaning for their respective inputs from their garbled circuits. Since honest
P; and P; use the same input for both the circuits, P, will not have a key to open any of the
ciphertexts. The openings (0;;,0j;) are therefore protected due to the security of the encryption

scheme. Subsequently, P, cannot compute y. O

29



Definition 3.1 A party P, is said to be ‘committed’ to a unique input x;, if P; holds (c;j, Cik, 0ij, Tij)
and Py, holds (c;j, Cik, Oik, Ti;) such that: (a) x; = x;; & xy, and (b) c;; opens to x;; via 0, and

likewise, c;, opens to ;. via 0.

We next prove that a corrupt party must have committed its input if some honest party
is in sty or sty. To prove correctness, the next few lemmas then show that an honest party
computes its output based on its own output or encoded output if it is in st; or sty or relies on
the output or encoded output of the other honest party. In all cases, the output will correspond

to the committed input of the corrupt party.

Lemma 3.15 If an honest party is in {sty,stqe}, then corrupt party must have committed a

unIque 1nput.

Proof: An honest P; is in {sty,sto} only when C; = 0, flag; = 0,flag, = 0 hold at the end
of Round 2. Assume Pj is corrupt. Pj has not committed to a unique z; implies either it
has distributed different copies of commitments (cy;, cx;) to the honest parties or distributed
incorrect opening information to some honest party. In the former case, flag;, will be set by P;.
In the latter case, at least one honest party will identify P, to be corrupt by the end of Round
1. If it is P;, then C; # (). Otherwise, P; populates its corrupt set with Py, leading to P; setting
flag, = 1 in Round 2. a

Lemma 3.16 If an honest party is in sty, then its output y corresponds to the unique input

committed by the corrupt party.

Proof: An honest P, is in st; only when C; = (), flag; = 0, flag,, = 0 hold at the end of Round
2 and it computes y via decryption of the ciphertexts ct sent by either P; or P,. Assume P
is corrupt. By Lemma 3.15, P has committed to its input. The condition flag; = 0 implies
that Py exchanges the commitments on the shares of P;’s input, namely {c;;, c;x}, honestly.
Now if P; opens honest P;’s ciphertext, then it unlocks the opening information for the missing
shares, namely (o;,0;;) corresponding to common and agreed commitments (cy;, ¢jx). Using
these it opens the missing shares xj; <— Open(cy;,0x;) and z;;, < Open(c;x,0;) and finally
computes output on (x;, ; ® Tk, Ty B Tx;). Next, we consider the case when P, computes y by
decrypting a ct sent by corrupt P;. In this case, no matter how the ciphertext is created, the
binding property of NICOM implies that P}, will not be able to open c;i, cx; to anything other
than x i, xy; except with negligible probability. Thus, the output computed is still as above
and the claim holds. O

60



Lemma 3.17 If an honest party is in stq, then its encoded output Y corresponds to the unique

imput committed by the corrupt party.

Proof: An honest P, is in sty only when G; = 0, flag; = 0, flag;, = 0 hold at the end of Round
2. The conditions also imply that P; has computed Y; successfully (due to Lemma 3.10) and
Py, has committed to its input (due to Lemma 3.15). Now we show that Y; correspond to the
unique input committed by the corrupt P,. We first note that P, must have used the same
input for both the circuits C; and Cj in Fair;. Otherwise one of the ciphertexts prepared by
honest P; must have been opened and y would be computed, implying F; belongs to st; and
not in st, as assumed. We are now left to show that the input of P, for its circuit C, in Fair;
is the same as the one committed.

In Fair, honest P; would use permutation string pyr = @x; for permuting the commitments
in Dy, corresponding to xi. Therefore, one can conclude that the commitments in Dy are
constructed correctly and ordered as per xy;. Now the only way Py can decommit ) is by
giving myr = prr @ x). But in this case honest P; would add Py to C; as the check my, = xy;
would fail (mgx = prr ® ), # Prr ® ) and will be in stz and not in sty as assumed.

([

Lemma 3.18 If an honest party is in sto, then its output y corresponds to the unique input

commuitted by the corrupt party.

Proof: Note that an honest party P; in st, either uses y of another party in st; or com-
putes output from its encoded output Y;. The proof for the former case goes as follows. By
Lemma 3.14, a corrupt P can never be in st;. The correctness of y computed by an honest P;
follows directly from Lemma 3.16. For the latter case, Lemma 3.17 implies that Y; corresponds
to the unique input committed by the corrupt party. All that needs to be ensured is that P; gets
the correct decoding information. The condition flag; = flag;, = 0 implies that the commitment
to the decoding information is computed and distributed correctly for both C; and C;. Now
the binding property of eNICOM ensures that the decoding information received from either P,
(for Cy) or Py (for C;) must be correct implying correctness of y (by correctness of the garbling

scheme). O

Lemma 3.19 If an honest party is in stz or sty, then its output y corresponds to the unique

imput committed by the corrupt party.

Proof: An honest party P; in st3 either uses y of another party in st; or computes output

from encoded output Y; of P; who it identifies as honest. For the latter case note that an honest
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P; will never be identified as corrupt by P, due to Lemma 3.13. The claim now follows from
Lemma 3.14, Lemma 3.16 and the fact that corrupt P, cannot forge the ‘proof’ o;; (binding
of NICOM) for the former case and from Lemma 3.17 and the fact that it possesses correct
decoding information as a garbler for Y; for the latter case. An honest party P; in st4 only uses

y of another party in st;. The lemma follows in this case via the same argument as before. O
Theorem 3.3 Protocol Fair is correct.

Proof: In order to prove the theorem, we show that if an honest party, say P; outputs y that is
not L, then it corresponds to x1, z2, x5 where z; is the input committed by P; (Definition 3.1).
We note that an honest P; belong to one among {sti, sto, st3,sty} at the time of output
computation. The proof now follows from Lemmas 3.15,3.16,3.18,3.19. a

The property of fn implies: (a) if a corrupt party gets the output then so does the honest
parties; (b) if an honest party gets the output then so does the other parties. We give the
intuition for both below starting with (a). The formal proof appears in Section 3.7.1.2.

A corrupt Py cannot be in st; (due to Lemma 3.14). The only way it can retrieve the output
is by having an honest party in st; or sts. An honest party in sts only releases the decoding
information and it never release it to a corrupt party (Lemma 3.13 implies it identifies the
honest party correctly). An honest party in sty releases the encrypted decoding information
2 under key pad; to Py conditionally when flag, = 1. The condition flag; = 1 implies that P
must have distributed the common information incorrectly and so 7; and 7; are not same. This
further implies certy is not same as pad, and so P does not have access to the key to open z
and cannot recover the decoding information. So the corrupt P getting the output implies that
at least one honest party is in {sty, sto}. Lemma 3.15 implies that in this case, P, must have
committed to a unique input. By Lemma 3.16 and Lemma 3.18, the y and encoded output Y
computed by any honest party in st; and in sty respectively will correspond P.’s committed
input. Further, if P, computes encoded output Yy, it also correspond to P,’s committed input.
So no matter how the corrupt party compute the output, it will be with respect to unique
(1,9, 23). We need to show that both honest parties receive the same output. This easily
follows when at least one honest party is in st;. We now prove the lemma based on the following
cases. (a) Both P, P; are in sto: They receive the decoding information from each other on
the clear and use their respective computed encoded output to compute the output y. (b) P
is in sty and P; in st3: P; uses the decoding information sent exclusively to him by P; and
decode the output as in the previous case. P; uses the encoded output of F;, Y; and its decoding
information (held as a garbler) to compute the output. (c¢) P is in sty and P; in sty: P; must

be in sty because of flag, = 1. If flag,, = 1, P, will have the same status for this flag and would

62



belong to sts. Now since flag, = 1, P; sends encryption of the decoding information z; to F;
who can use cert; to decrypt z; and compute the output as in the previous two cases. F;, on
noting that flag, = 1, yet P, obtained cert; = pad,, will identify P, to be corrupt, upgrade to
sts and compute the output as in the previous case.

Next, we argue for part (b). For an honest party to compute the output y, at least one
honest party must be in {stq, sto}. If both belong to {sts, st4}, then neither P has committed
any input (due to Lemma 3.15) nor anyone gets the output. The latter follows by the argument
below. An honest party in sts only outputs based on the encoded output of the other honest
party. But since the other honest party is in {sts, st4}, it will output L. An honest party in
sty outputs L, except for the case it finds one in st; which is not true for both P; and P
(Lemma 3.14). The corrupt P, does not get the output too following the fact that it cannot
be in st; (Lemma 3.14) and it does not receive decoding information from an honest party.
An honest party P, in st3 sends the decoding information only to the identified honest party.
An honest party P; in sty may send the encrypted decoding information z; under key pad,
to P, when flag, = 1. But the condition flag, = 1 implies that P, must have distributed the
common information incorrectly and so 7; and «y; are not same. This further implies certy, is
not same as pad, and so P} does not have access to the key to open z; and cannot recover
the opening information. Now we are left to show that when at least one honest party is in
{sty, sty}, then everyone gets the output. This already follows from the argument given for

the other direction.

3.4 2-round 3PC with Unanimous Abort

This section presents a tight upper bound for 3PC achieving ua in the setting with pair-wise
private channels and a broadcast channel. The impossibility of one-round protocol in the same
setting follows from “residual function” attack [112]. Our result from Section 3.2.2 rules out the
possibility of achieving unanimous abort in the absence of a broadcast channel in two rounds.
This protocol can be used to yield a round-optimal fair protocol with broadcast (lower bound in
Section 3.2.1) by application of the transformation of [130] that compiles a protocol with ua to
fn via evaluating the circuits that compute shares (using error-correcting secret sharing) of the
function output using the protocol with ua and then uses an additional round for reconstruction
of the output.

In an attempt to build a protocol with ua, we note that any protocol with ua must be robust
to any potential misbehaviour launched via the private communication in the second round.
Simply because, there is no way to report the abort to the other honest party who may have

seen honest behaviour from the corrupt party all along and has got the output, leading to sa.
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Our construction achieves unanimity by leveraging the availability of the broadcast channel
to abort when a corrupt behaviour is identified either in the first round or in the broadcast
communication in the second round, and behaving robustly otherwise. In summary, if the
corrupt party does not strike in the first round and in the broadcast communication of the
second round, then our construction achieves robustness.

Turning to the garbled circuit based constructions such as the two-round protocol of [129]
achieving sa or the composition of three copies of the sub-protocol Fair; of Fair, we note that the
second round private communication that involves encoding information for inputs is crucial
for computing the output and cannot transit via broadcast because of input privacy breach. A
bit elaborately, the transfer of the encoding information for the inputs of the garblers can be
completed in the first round itself and any inconsistency can be handled via unanimous abort
in the second round. However, a similar treatment for the encoding information of the shares
of the evaluator seems impossible as they are transferred to garblers only in the first round.
We get past this seemingly impossible task via a clever ‘two-part release mechanism’ for the
encoding information of the shares of the evaluator. Details follow.

Similar to protocol Fair, we build our protocol UAbort upon three parallel executions of a
sub-protocol UAbort; (i € [3]), each comprising of two rounds and with each party P; enacting
the role of the evaluator once. With Fair; as the starting point, each sub-protocol UAbort;
allows the parties to reach agreement on whether the run was successful and the evaluator got
the output or not. A flag flag, is used as an indicator. The protocol UAbort then decides on
unanimous abort if at least one of the flags from the three executions UAbort; for i € [3] is set
to true. Otherwise, the parties must have got the output. Input consistency checks ensure that
the outputs are identical. Intra-execution input consistency is taken care by cheat-recovery
mechanism (similar and simplified version of what protocol Fair uses), while inter-execution
input consistency is taken care by the same trick that we use in our fair protocol. Now looking
inside UAbort;, the challenge goes back to finding a mechanism for the honest evaluator to
get the output when a corrupt party behaves honestly in the first round and in the broadcast
communication of the second round. In other words, its private communication in the second
round should not impact robustness. This is where the ‘two-part release mechanism’ for the
encoding information of the shares of the evaluator kicks in. It is realized by tweaking the
function to be evaluated as f(x;,zy, (2; ® ;) ® (2, © ry)) in the instance UAbort; where P,
enacts the role of the evaluator. Here r;, r; denote random pads chosen by the garblers P;, Py,
respectively in the first round. The encoding information for these are released to P; privately
in the first round itself. Any inconsistent behaviour in the first round is detected, the flag is

set and the the protocol exits with L unanimously. Next, z; and z; are the offsets of these
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random pads with the actual shares of P;’s input and are available only at the end of first
round. The encoding information for these offsets and these offsets themselves are transferred
via broadcast in the second round for public verification. As long as the pads are privately
communicated, the offsets do not affect privacy of the shares of P;’s input. Lastly, note that
the encoding information for a garbler’s input for its own generated circuit can be transferred
in the first round itself. This ensures that a corrupt garbler misbehaves either in the first round
or in the broadcast communication in the second round or lets the evaluator get the output
via its own GC. We describe execution UAbort;, assuming input consistency. Entwining the
three executions, tackling the input consistency and the final presentation of protocol UAbort

are done next. Lastly, we present the security proof.

3.4.1 Protocol UAbort;

With the goal to achieve agreement among the honest parties regarding whether the evaluator
got the output or not, UAbort; starts with Fair; and makes the following changes. First, the
broadcast channel is used to reach agreement on the commitments to GCs and the encoding
information. Second, a garbling scheme with soft decoding property is used to allow immediate
output decoding. Third, a garbler opens its encoded input for its own GC in the first round
itself. In addition, we implement the two-part release mechanism for P;’s shares where apart
from the garblers, P; too broadcasts the offsets in the second round. A flag flag; is used to
keep track if a complaint is raised for the first round communication by broadcast in the second
round or the offsets broadcasted in parallel by both P; and respective garblers do not match
or the opening of the encoded input for the offsets fails. When flag, remains to be false for the
honest parties, an honest P, must be able to evaluate and output from the GC prepared by
the corrupt garbler. Because, the commitments to that GC and encoding information has been
scrutinized by the honest co-garbler, the encoded input of the corrupt party has been verified
by the evaluator, the release of the encoded inputs for the shares of the evaluator has been
verified publicly and the offsets themselves matched. Lastly, since the flag when set to be true
by any honest party in the end of first round can be propagated to all in the second round and
is only set based on the broadcasts in the second round, all honest parties exit UAbort; with an
agreement on flag,. We now present our protocol in Figure 3.4 assuming input consistency and

prove its properties needed later.

Protocol UAborti}

Inputs: Party P, has z, for a € [3].

Common Inputs: The circuit C((x;, 75, 2;), (Tk, Tk, 2k), L) that computes f(x;, zx, (z;®7;) S (2D
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1)) such that z; @ r; = x5, 21, ® 1, = x4, and x;; @ @, = x; and where the inputs belong to
{0,1}*. For distinct i, j, k € [3], P; acts as the evaluator and (P}, Py) as the garblers.

Output: All parties output boolean flag;, initially set to 0. P; outputs (y;, yx)-

Primitives: A correct, private and authentic garbling scheme § = (Gb, En, Ev, De) with soft decod-
ing, an eNICOM (eGen, eCom, eOpen, Equiv), a PRG G and a NICOM (Com, Open)
Round 1:

— P; randomly secret shares his input x; as x; = x;; ® x;, and sends z;; to P; and z;; to Pj.
— P, for | € {j,k} samples s; €g {0,1}", epp; and pp, for G, eNICOM and NICOM resp. and:

o compute garbled circuit (Cl,el,dl) + Gb(1%,C) using randomness from G(sl) Assume
{Kie Kiataeiar {Kiiesay Kigeray taeit {Kiaeray Kirray taczds (Kt a) Kiaesa) Faelg cor-
respond to the encoding information for the input of P;, Py (i.e. xj,x), the random inputs
chosen by P;, Py (i.e. rj,r)) and the offsets between the random pads and the secret shares

of P; (i.e. zj,z) respectively.
o compute commitment for the GC as (c;,0;) < eCom(epp;, C;)

o sample permutation strings p;;, pir €r {0, 1}¢ for the inputs of P; and P, and compute
a®b
: h,)  Com(pp.ey’ ) .
A
(C?(Z+a)’0?(€+a)) = Com(PPlvez(ua)) when a € [(], (Cl(22+a)’o?(2£+a)) = Com(PPbez(%m))v

(C?(4Z+a)7o?(4f+a)) — Com(ppl,el(4e+a)) when « € [2/].

commitments of encoding information as: For b € {0,1}, (¢} ,o

o broadcast D; = (epph pplvch{C?a}oée[ﬁf],bé{o,l}) and send {Slapljvplkvola {O?a}aE[GZ],bE{O,l}}
privately to the co-garbler Py; p1\;.

— Pj computes indicator string mj; = pj; @ x;, picks its share of pad r; €g {0,1}* and sends

<{0Tojj, 7?]('%% }ae[g],mjj,rj) to F;. Similarly, Pr computes myg, picks r; and sends to P;
mé*
<{0 Zia’ k(3£+a }ae[e}ymkk,Tk)-

— (Local Computation by garblers) P; sets flag; = 1 if Dy, and {s, prj, Pkk, Ok» {Oza}ae[w},be{o,l}}
received from P, are not consistent. P, performs similar steps with respect to the values

received from P;.

— (Local Computation by evaluator) P; sets flag; = 1 if (a ) the opemngs of the input labels sent by

fail to open some commitment in D; i.e Open(pp;, ]a” , 07; ) = L or Open(pp;,c ](%Jra), (%Jra)
= 1 for some a € [¢{] OR (b) the openings for the input labels sent by P} fail to open some

commitment in Dy,.

Round 2:
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— Pj broadcasts abort if flag; = 1. Else, it computes its indicator string my; = py; © x; for P;’s
. . ma a a .
circuit and the offset z; = x;; © r;, sends <OK, Ok, {ok;J,ozj(%Jra), Oz](4£+a)}a€[g], mkj) privately

to P; and broadcasts W; = (zj, {OJZ.ZMJFOC)}QE[Q). Py, performs similar steps.

— P; broadcasts abort if flag; = 1. Else, it broadcasts z; = x;; © r; and z; = x;, © 13,

Every party sets flag; = 1 if (a) abort was received or sent via broadcast in Round 2 OR (b)
either z; broadcast by (P, P;) or z; broadcast by (P, P;) do not match OR (c¢) D;, W; is not

consistent i.e Open(pp;, CZE K

j _ . . . .
: 4é+a),oj(4z+a)) = L or similarly Dy, Wy, is not consistent.

(Local Computation by P;) Output y; =y = L if flag; = 1. Else, with respect to C;:

o open C; < eOpen(epp;, ¢j,0;) where the opening is received from P.

(e « o«
My My "

i

o open X;‘ = Open(ppj,cja 190 )s R]Q‘ = Open(PPj,Cj](%Jra)an(gHa))a and Q]O/ = Open(PPja
CJZJ( " +a),ojzf " +O{)), for the openings received from P;.
mOL

ik M3 re ro
J(;Jra),oj(éJra)), R = Open(pp,, lef3£+a)7oj’€3e+a)) and Qff = Open(pp,,

)) for o € [¢], for openings are received from P.

o open Xj! = Open(pp;,c
2y 2y
Ci(5e+a) Oj(50+a

o If any of the above openings fail, set y; = L. Else set X = X;|Xg|R;|R;|Q;|Qx, run Y; +
Ev(C;,X) and y; «+ sDe(Y;).

Similar steps as above with respect to Cj is executed to compute Y and y.

Figure 3.4: Protocol UAbort;

Lemma 3.20 At the end of protocol UAbort;, all honest parties output the same flag,;.

Proof: We have two cases based on whether atleast one honest party set flag, = 1 at the
end of Round 1. If this is true, then the honest party would broadcast abort in Round 2 and
all honest parties would output flag, = 1. Otherwise, an honest party sets flag; based on the
following conditions (a) abort was broadcast in Round 2 or (b) either z; broadcast by (P, I)
or zj broadcast by (P, P;) do not match or (c¢) (D;, W;) or (Dg, W) is inconsistent. All these
checks are with respect to broadcast messages. Therefore, we can conclude that every honest

party will output identical flag,. O
Lemma 3.21 Assuming input consistency, if flag; = 0, then yr # L where Py is corrupt.

Proof: First, Lemma 3.20 implies that both F;, P; output identical flag; = 0. Now flag; = 0

implies that: (a) C, and the commitments to the encoding information are computed correctly;
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(b) the opening of encoding information X, Ry, for Cy, is correct in Round 1 with high probability
due to binding property of eNICOM and NICOM; (c) the opening of the remaining encoding
information Qj is correct with high probability due to binding property of NICOM. P; being
honest would open the encoding relevant to his input for Cj, namely, X;,R;,Q,. So P; has got
complete encoded input X for C, and will evaluate Cj to obtain y,. Thus, if flag; = 0, then yy,
will not be L. O

3.4.2 Protocol UAbort

Our two-round 3PC protocol UAbort achieving ua composes UAbort; for i € [3] in parallel. As-
suming input consistency, entwining the three executions requires tapping all the flags returned
by the three executions and outputting the result computed as an evaluator when none of them
are set to true and L, otherwise. This works since when a flag for an execution UAbort; is false,
then the evaluator P; is guaranteed to get the output. The challenge that remains to handle
is input consistency within and across executions which ensures the outputs computed are the
same irrespective of the execution and GC. The inter-execution input consistency, i.e the con-
sistency of the input committed by P; in UAbort; and the inputs given to the GCs constructed
by P; as garbler in the remaining two executions are enforced using the same trick that we use
in Fair via setting the permutation strings as the shares of the parties’ input.

Dealing with the input consistency within an execution UAbort; to make sure the garblers
provide the same input for both the GCs without inflating the round complexity constitutes
yet another challenge. Noting that this misbehaviour has no way to show up in the common
flag as this is targeted via the private communication in the second round, the evaluator must
find a way to robustly compute the output when conflicted outputs are computed from the
two garbled circuits. This output must be based on the input of the corrupt garbler that it
has committed as an evaluator and received output based on. We use the trick of “proof-of-
cheating” mechanism [145] to enable an (honest) evaluator with conflicting outputs to retrieve
the inputs committed by both garblers in their respective instances. To be specific, the output
keys corresponding to the mismatched output bit in the two garbled circuits, say C; and Cs in
UAbort,, enables the evaluator P, to unlock the missing shares, namely, x3; and x5 of the two
garblers from UAborts and UAbort; respectively. To ensure that the recovered missing shares
are as distributed in UAbort; and UAborts, the shares are committed via NICOM by the input
owners and the openings are encrypted by the holders (as in Fair). The binding of NICOM,
prevents a corrupt P; to lie on (13, 231). This allows the honest party to compute the same
output that P; gets from UAbort;. Lastly, the flag in execution UAbort; also takes into account

consistent dealing of the commitments by its evaluator P;. Our protocol appears in Figure
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Figure 3.5, the proof of correctness and the proof of security below. We use Definition 3.1 for

input commitment.

—[ Protocol UAbort()]

Inputs: Party P; has z; for i € [3].

Output: y = f(r1,z2,23) or L.

Sub-protocols: UAbort; for i € [3] (Figure 3.4), a NICOM (Com, Open), CPA-secure SKE Enc.
Round 1: For i € [3] and for distinct indices j,k € [3] \ {i}

— Round 1 of UAbort; are run parallel. In UAbort;, P; and P, work with the permutation strings

pj; and pyy respectively as x;, and xy;.

— P samples pp;, generates (c;;,04;) <= Com(pp;, xi;), (Cik, 0ir) = Com(pp;, z1), broadcasts {pp;, ¢ij,
cir} and sends 0;5, 0 to P}, Py respectively.

— (Local Computation) P; sets flag, = 1 if Open(cy;, 01) # i or my # xy; for [ € {j, k}. Pj sets
flag; = 1 if: (a) pix not taken as xy; or (b) the check in UAbort; fails. (c) Open(c;;,045) #
xij. Py sets flag; = 1 if: (a) pj; not taken as xj;, or (b) the check in UAbort; fails. (c)
Open(c;k, 0ik) # Tik-

Round 2:

— Round 2 of UAbort; for i € [3] are run parallel. In UAbort;, the garbler P; (similar steps will be
taken by Py) does the following additionally if flag; # 1. Let {Y?,Y}}, denote the encoding
information for output wire corresponding to C; (I € {j, k}). It sends two ciphertexts (ct?, ctjl-)

where ct? = EncY?@y}g (0jk,0k;) and ct}- = EncY;@Yg (0jk, Ok;)-
— For i € [3], party P; computes output as follows:

o If flag, = 1 for some « € [3], then output y = L .

o Otherwise, output y as y; when y; = y or yr, = L, as y, when y; = L where (y;,yx) are
output from UAbort;.

o Otherwise, let the encoded outputs corresponding to C;, Cj in UAbort; are Y;, Y. It uses
key Y;jj @® Y* to decrypt the ciphertext ct?;j obtained from P; to retrieve (0ji,0%;). It
executes xp; < Open(cgj,0x;) and xj; < Open(cjr,05i). If xp; or xj, = L, then they
are recomputed as above using thj obtained from P,. Then P; evaluates f on inputs

(@i, xj5 @ Xk, T D Tr;) to obtain y.

Figure 3.5: A Two-Round 3PC protocol achieving unanimous abort
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Lemma 3.22 [f a corrupt party Py has not committed its input or does not use the committed

input in its GCs in {UAbort;, UAbort;}, then each honest party outputs y = L.

Proof: P, has not committed to a unique input implies it has not dealt correct opening to one
or both the honest parties. In either case, abort is raised in the second round, leading to an
output that is L. Now assume P}, uses input ) # z; during UAbort; for its own GC. P should
use xp; as the permutation string pg, in execution UAbort; for permuting the commitments
corresponding to xj. If it does not, then honest P; sets flag; = 1 in Round 1 and broadcasts
abort in Round 2. Otherwise, the commitments are constructed correctly and ordered as per
xyj. Now the only way P can decommit ), is by giving myx, = prx @ x},. But in this case honest
P, would set flag; = 1 in Round 1 and broadcast abort in Round 2 as the check my, = xy;

would fail (mgr = prr ® ), # prr B ). Thus, every honest party outputs y = L. a
Theorem 3.4 Protocol UAbort s correct.

Proof: In order to prove the theorem, we show that if an honest party, say P; outputs y that
is not L, then it corresponds to (z1,22,3) where z; is the input committed by P;. Assume
that Py is corrupt. Recall that P; outputs y; and y, in UAbort; on evaluating the GCs of the

garblers P; and Py respectively. We have the following cases.

— y =y,. Follows from Lemma 3.21, 3.22.

— y # Y. In this case, y # y; either as y is set to y; when y; = y; or y, = L. Following
Lemma 3.21, y; cannot be L. So it must be that P; retrieves the output via opening
the ciphertexts. If the output is computed just from the ciphertext of honest P;, then y
is computed as f(z;, z;; @ Tjk, Tri D Tk;) using openings oy;, 0j; given by P;. Since an
honest P; correctly reveals the opening og; of the share of P’s input given to P; and
0ji corresponding to his input share, f(z;,zj; ® x;1, Ty ® xy;) corresponds to the correct
value. If the output is computed from the ciphertext of corrupt Py, then y computed
must be still as above as a corrupt P, cannot open the shares i, x; in an incorrect way
(following binding property of NICOM).

O
The intuition for achieving ua follows from the correctness and Lemma 3.20 that implies the

honest parties will be on the same page for all flags. The formal proof appears in Section 3.7.2.
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3.5 3-round 3PC with Guaranteed Output Delivery

In this section, we present a three-round 3PC protocol achieving god, given access to pairwise-
private channels and a broadcast channel. The protocol is round-optimal following 3-round
lower bound for fair 3PC proven in Section 3.2.1. The necessity of the broadcast channel for
achieving god with strict honest majority follows from [67].

Our tryst starts with the known generic transformations that are relevant such as the trans-
formations from the ua to idfair (identifiable fairness) protocol [130] or idfair to god [66]. How-
ever, these transformations being non-round-preserving do not turn out to be useful. Turning
a 2-round protocol offering ua (or even sa) with identifiability (when the honest parties learn
about the identity of the corrupt when deprived of the output) to a 3-round protocol with god
in a black-box way show some promise. The third round can be leveraged by the honest parties
to exchange their inputs and compute output on the clear. We face two obstacles with this
approach. First, there is neither any known 2-round construction for sa / ua with identifiability
nor do we see how to transform our ua abort protocol to one with identifiability in two rounds.
Second, when none of the parties (including the corrupt) receive output from the sa/ua protocol
and the honest parties compute it on the clear in the third round by exchanging their inputs
and taking a default value for the input of the corrupt party, it is not clear how the corrupt
party can obtain the same output (note that the ideal functionality demands delivering the
output to the adversary).

We get around the above issues by taking a non-blackbox approach and tweaking UAbort;
and Fair; to get yet another sub-protocol GOD; that achieves a form of local identifiability.
Namely, the evaluator P; in GOD; either successfully computes the output or identifies the
corrupt party. As usual, our final protocol GOD is built upon three parallel executions of GOD;
(i € [3]), each comprising of two rounds and with each party P; enacting the role of the evaluator
once. Looking ahead, the local identifiability helps in achieving god as follows. In a case when
both honest parties identify the corrupt party and the corrupt party received the output by
the end of Round 2, the honest parties can exchange their inputs and reconstruct the corrupt
party’s input using the shares received during one of the executions of GOD; and compute the
function on clear inputs in the third round. Otherwise, the honest party who identifies the
corrupt can simply accept the output computed and forwarded by the other honest party. The
issue of the corrupt party getting the same output as that of the honest parties when it fails
to obtain any in its instance of GOD; is taken care as follows. First, the only reason a corrupt
party in our protocol does not receive its output in its instance of GOD; is due to denial of

committing its input. In this case it is detected early and the honest parties exchange inputs in
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the second round itself so that at least one honest party computes the output using a default
input of the corrupt party by the end of Round 2 and hands it over to others in Round 3.

In the following, we describe one execution GOD;. Entwining the three executions, tackling
the input consistency and the final presentation of protocol GOD are done next. The security

proof appears in Section 3.7.3.

3.5.1 Protocol GOD;

Recall that the goal of GOD; for i € [3] comprising of two rounds, is either successful compu-
tation of output or successful identification of the corrupt party by the evaluator P;. Starting
with the ideas of UAbort;, we note that UAbort; only ensures detection of the corrupt party by
some honest party that is not necessarily the evaluator in case of a failed output computation.
Specifically, a garbler would identify his co-garbler to be corrupt when the broadcast commu-
nication of co-garbler is not consistent with the privately shared randomness. In such a case,
the evaluator neither gets the output nor has any clue on the identity of the corrupt, which is
not in accordance with the goal of GOD,. In the absence of broadcast, Fair; gives even weaker
guarantee where the best any party gets to know is a conflict. The above is handled by having
the garblers send their inputs on clear to the evaluator on finding inconsistent behaviour of
the fellow garbler in the first round. If both the garblers are in conflict with each other, the
evaluator gets their inputs and computes the function on clear. Otherwise, the evaluator can
either evaluate at least one of the GCs or identify the corrupt. Lastly, as we do not require
unanimity of any form at the end of two rounds, we simplify GOD; by removing the two-part
release mechanism and the flag altogether. Like UAbort;, we do not take care of the possibility
of a corrupt garbler handing out inconsistent input for the two GCs in GOD;. This is taken care
in the main protocol GOD via the input consistency. P; outputs (y = (y;,yx), Yi = (YZ, YR, €),
the outputs computed from two GCs, the encoded outputs and its corrupt set, all initially set
to L and to be used in the main construction. If both (y;,yx) are L, then the corrupt set
will be non-empty. The garblers output their corrupt set. We now prove a few lemmas. The

protocol GOD; appears in Figure 3.6.
—[ Protocol GODZ-]
Inputs: Party P, has x, for a € [3].

Common Inputs: Same as Fair; (Figure 3.1).

Output: A garbler P, for [ € {j, k} outputs C;. P; outputs (v = (yj,yx),Yi = (Yf,Yf), C;) where y
is the output (initially set to L) and C; denotes the corrupt set maintained by F;.
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Primitives: A garbling scheme § = (Gb, En, Ev, De) that is correct, private and authentic, an eNI-
COM (eGen, eCom, eOpen, Equiv) and a PRG G.

Round 1: Same as Round 1 of Fair; (Figure 3.1) except that the garblers do not commit to the

decoding information and D; computed by garbler P, (I € {j,k}) is communicated via broadcast.

Round 2:

— P; computes mdlcator strlng mj; = pj; D xj,mk] = ppj ® ;. If P, ¢ Cj, then send to
P (DK (ok,{oka , k(%Jra)}ae[e Mij)s ({O]a 7.0 ](%Jm }ae mm)>' Otherwise, it sends to P;
(nDK xj, ({Oja , (2Z+a)}aew],mjj)). Py, performs similar steps.

— (Local Computation) If nOK is received from both Pj, Py, then compute y; = yr = f(x1, 22, z3)
using x;, ;. Otherwise, one of the parties has sent 0K. Assume, for simplicity that P has

sent OK. Then, compute Yf as in Fair;. If Yg # L, then y; « sDe(Y{). If P; sent OK, then

similar steps as above for C; will be executed and y; will be set.

Figure 3.6: Protocol GOD;

Lemma 3.23 P; ¢ C, holds for honest P,, Ps.

Proof: An honest P, would include Ps in G, only if one of the following holds: (a) Both
P,, P3 are garblers and Ps broadcasts Dy inconsistent with values privately shared with P,
(b) P, is an evaluator and Pp is a garbler and Pg’s opening of a committed encoded input or

garbled circuit approved by him fails. It is easy to verify that the cases will never occur for
honest (P,, Pg). O

Lemma 3.24 Assuming input consistency, at the end of protocol GOD;, an honest evaluator

P; either computes the output or identifies the corrupt party.

Proof: Assume that Py is the corrupt garbler. We have two cases.

— Py, sends n0K: If P; sends nOK too, P; receives x; from P, for | € {j,k} (else P is identified
to be corrupt) and computes f on inputs z;,z;,x,. If P; sends OK, then the garbled
circuit Cy, is correctly constructed and the corresponding encoding information is correctly
committed. The only way a corrupt garbler Py can stop P, from evaluating C; (and avoid
being caught by F;) is by sending encoded inputs corresponding to (xy, ;) that are
inconsistent with C, via breaching the binding property of NICOM which happens only
with negligible probability.
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— P, sends OK: In this case, the binding property of eNICOM ensures that with high proba-
bility the correct C; is opened (otherwise Py is caught). The arguments now follow as the
previous case where the probability that P; does not get the output and does not detect
Py reduces to the probability of breaching binding of NICOM.

3.5.2 Protocol GOD

Our three-round 3PC protocol achieving god composes GOD; for i € [3], with each party acting
as the evaluator in parallel. At a high level, the protocol assures that every party either outputs
y that is not L or identifies the corrupt by end of second round. In the third round, a party
simply sends his output if it is non-_L, else it sends its input and share of the corrupt party’s
input to the honest party alone. A party outputs its own output computed in second round
if it is not L. Otherwise, it outputs the non-L output received from the non-faulty party
or computes the output using the input and share sent by the non-faulty party. The input
consistency is handled exactly as in UAbort. Additionally every party maintains a corrupt set
and populates it when it identifies the corrupt. The overall composition maintains god as below
based on when a corrupt party chooses to expose itself.

The cases when a corrupt P; is detected by the end of first round itself, the honest party
who makes the identification, halts the execution where it plays the evaluator with the corrupt
set as the output and also halts GOD; to stop letting P; get output in GOD;. Since the detection
may be owing to non-commitment of any input by P; in GOD;, the unique input of P; has to
be set to the one that it commits in the running execution or as a default value when either
there is no running execution or P; does not commit to anything in the running execution.
Specifically, if both the honest parties identify P; to be corrupt by the end of first round, both
would have exchanged their input as per the code of GOD protocols and a default common
value is taken as the input of P, to compute the function output by the end of second round
itself and the output is handed over to P; in third round. Handing the output to corrupt P,
is necessary to technically realise the functionality correctly where the corrupt party also gets
the output. If just one of the parties detects the corrupt party P, say P, it stops its execution
as the evaluator in GOD; and as garbler in GOD; to prevent P; getting any output in GOD;.
Now P; has two options: either it passes on its input on clear to Py or it lets P, to evaluate
the garbled circuit of P; by giving its encoded input. In either case, this input of F; is taken as
his committed input and the output computed by Py is the one to be outputted by all. (Note
that P;’s own GC will not be approved by its co-garbler who has identified it as corrupt by the
end of first round.) P can simply pass on the output to P, and P; in the third round and P;
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simply takes the output of P, who it knows to be honest. Our protocol appears in Figure 3.7.

The proof of correctness appear below and the full proof in Section 3.7.3.

—[ Protocol GO D}

Inputs: Party P; has z; for i € [3].
Output: y = f(z1, 22, 23).

Sub-protocols Used: GOD;, i € [3] (Figure 3.6), a NICOM (Com, Open), CPA-secure SKE Enc.
Round 1: For i € [3] and for distinct indices 7,k € [3] \ {i}

— Round 1 of GOD; are run parallel. In GOD;, P; and P}, work with the permutation strings p;;

and pyy respectively as z;, and xy;.

— P samples pp;, generates (c;;,04;) <= Com(pp;, xi;), (Cik, 0i) <= Com(pp;, z1), broadcasts {pp;, ¢ij,
cir} and sends 0;5, 0 to P}, Py, respectively.

— (Local Computation) P; adds Py in C; if Open(cy;,0) # x;. Pj adds Py in € if: (a) pgx not
taken as x; or (b) the check in GOD; fails. P, adds P; in C, if: (a) pj; not taken as xjj, or
(b) the check in GOD; fails.

Round 2: For ¢ € [3] and for distinct indices j, k € [3] \ {i}

— If P; € C;, then P; participates in GOD;. If P, ¢ C;, it additionally sends the following ciphertexts
{ctg,ctjl} created as below. Let {Y?,Y}}, denote the encoding information for output wire

corresponding to C; (I € {j,k}). Then ctg = EncY?eBY}c (0jk, 0k;) and ct} = E”CY;@Yg (0jk, Okj)-

— P, includes P, in ©; if my # xy; for | € {4, k}.

— (Local Computation by P;) If €; = (), then compute y = (y;,yx) as in GOD;. If y; = yi (# L)
or one of them is non-_1, set y to one of them in the former and to the not-_L in the latter.
If y; # yi, use key ng &) sz to decrypt the ciphertexts ct?j obtained from P; to retrieve
(0jk,0k5). Execute xp; < Open(ckj,0r;) and z; < Open(cji,05k). If xp; or z;, = L,
then they are recomputed as above using ctzj obtained from P,. Then evaluate f on inputs
(@i, i BT, Tpi B i) to obtain y. If C; # 0, y = L and P; receives x; from P; ¢ C;, compute

y as the value of f on z;, x; and a default value for the remaining party’s input.

Round 3: Each P, for i € [3] either has y # L or C; # 0. It does the following

— Ify # 1, send y to P}, P,. Send (x;, ;) to P, when Pj € C; or (x;,xy;) to P; when P, € C;.
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— Ify # L, output y. Else if P, € C; sends y, output y. Else if P; & C; sends (xj, x1;), then compute
y as the output of f on (x;,x;,xk; ® xp;). Similar steps are executed when P, ¢ C; and it

sends (zx, k) i.e y is derived from (x;, zg, T © xj;).

Figure 3.7: A Three-Round 3PC protocol achieving god

Lemma 3.25 Ps ¢ C, holds for honest P,, P3 in protocol GOD;, where i € [3].

Proof: This lemma follows from Lemma 3.23 and the fact that the following will not be true
for honest (P,, Ps): (a) Ps sends 0, T4 to P, such that Open(cga, 08a) # T4 (b) Both P, Ps
are garblers and pgg # T,. (¢) P is the garbler, P, is an evaluator and mgs # 23, 4

Lemma 3.26 Fvery party P; uses its ‘committed’ input x; (Definition 3.1) in its GCs in
{GOD,, GODy}. Otherwise, it is identified by at least one of the honest parties.

Proof: P, has not committed to its input implies it has not dealt correct opening to one or
both the honest parties. In either case, at least one of the honest parties identify him. Now
assume P, has committed to input x; but uses input 2z # x; during GOD; for the garbled
circuit constructed by F;. P; should use z;; as the permutation string p;; in execution GOD; for
permuting the commitments corresponding to x;. If P; does otherwise, then it is identified by
honest P,. Otherwise, the commitments are constructed correctly and ordered as per x;;. Now
the only way P, can decommit x is by giving m;; = p;; @ ;. But P; identifies P; as corrupt as
Mii = Pii © T 7 Pii D T;. .

We now prove correctness of the protocol accounting exhaustively all the scenarios: the

corrupt party

— belongs to the corrupt set of both the honest parties,

— belongs to the corrupt set of exactly one of the honest parties and
— does not belong to the corrupt set of the honest parties

by the end of the first round. For simplicity, we assume that P is the corrupt party and P;, P,

are the honest parties.

Lemma 3.27 Assuming that the corrupt party belongs to the corrupt set of both the honest
parties by the end of the first round, protocol GOD is correct.
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Proof: In this case, P, and P; does not communicate at all in the second round of GODj
preventing P}, to compute an output. In GOD; and GOD;, P; and P;, respectively send their
inputs on clear to each other along with nOK signal. Both compute y on the inputs z;, z; that
are exchanged and a default common value for x; by the end of round 2. In the third round,
Py receives y from the honest parties and the honest parties output y. In this case the unique

input of the corrupt party taken for computation is the default commonly-agreed value. a

Lemma 3.28 Assuming that the corrupt party belongs to the corrupt set of exactly one of the
honest parties by the end of the first round, protocol GOD is correct.

Proof: For simplicity P, € C; at the end of first round. (The proof follows in a similar way
when Py, € C;.) This implies P;, as an evaluator, ignores communication from both the garblers
in its execution GOD; and will conclude the second round with y = 1 and €; = P.. P; does
not participate in GOD,, as a garbler making sure P, cannot compute an output by the end of
second round. In GOD;, P; sends x; on clear to P; with nOK signal which implies evaluation of
the GC created by Pj is ruled out. Now based on whether P, commits to any input or not,
P; computes the output in the following way. If nOK signal is sent along with its input a,
then P; computes y = y; = y; using its own input z; and the inputs sent by P; and Py. If B
sends 0K with its encoded input which verifies correctly with respect to the committed encoded
information, P; obtains y = y; upon GC (C;) evaluation. In the case when P} does not commit
to any input either on clear or in encoded form (namely, the encoded input does not verify
against the committed encoded input), P; must have identified P to be corrupt and computes
y using its own input x;, the input sent by P; and using a default value for z;. The third round
is finally used by P, and P} to obtain the output of P, and correctness follows. The unique
input of Py is taken as the one that it sends either on clear or in encoded form to P; in the

former case and a default value in the latter. O

Lemma 3.29 Assuming that the corrupt party does not belong to the corrupt set of both the
honest parties by the end of the first round, protocol GOD is correct.

Proof: In this case, Py must have ‘committed’ (Definition 3.1) to his input (else would be
identified by atleast one of the honest parties at end of Round 1) and obtained output y based
on its committed input during GODy. Further, P, is not detected yet by the end of first round,
implies that it has played the role of the garblers in GOD; and GOD; honestly in the first
round. In this case, we prove that no matter how Py behaves in the second round, the honest

parties will obtain y based on their inputs and P,’s committed input. We present the argument
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for honest P;. Similar argument holds for P;. Based on the observation that F; must have
attempted to evaluate C;, since P; must have sent OK signal in GOD;, we consider the following

cases:

— P; is unsuccessful in evaluating the circuit C; of garbler P, in GOD;. This implies P, has
given inconsistent encoded input for its circuit to P;. So P; concludes the second round
with y = 1 and C; = P;.

— P, is successful in evaluating the circuit Cj of garbler P, in GOD;. By Lemma 3.26, P, must
have given encoded input corresponding to its committed input xj for C,. This implies the
output obtained via C, (i.e yx) is the desired y in this case. Now we have two cases based
on whether P}, approves the garbled circuit constructed by P; or not. In each case we show
that, P; outputs the desired y by the end of second round itself. If P, disapproves, then
y; = L and P; outputs the value y = y;, obtained via the GC C; as per the specification
of GOD;. Otherwise, P; evaluates both circuits, namely C; and Cj. If the outputs are
the same, then the guarantee provided by Lemma 3.26 implies P; outputs the desired y.
Else if P; has got conflicting outputs (y; # yx), then it gets access to the key ng ® Y
and uses it to decrypt at least one of the ciphertexts {ct?j,ctzj} generated by P; and
Py. If the decryption of only the honest party P;’s ciphertext succeeds, then P; obtains
(0jk, Ok ), retrieves his missing shares x i, Tx; and computes y using z;, ; = x;; ® x;; and
Ty = T O x5 where P; and P receives xy; and xy; respectively from Py, in GODy. Even
if corrupt P.’s ciphertext is decrypted successfully, the y computed is still as above due
the fact that P, cannot open a different value for zj;, z1; due to the binding property of
NICOM. P, retains this output in the third round.

In the former case, if both P; and P; outputs L in the end of second round, then the third
round is used by P; and P; to exchange their inputs and the shares of x; that they possess.
By the end of third round P; (and P; as well) outputs the desired y. If P; was successful in
computing y in GOD;, then P; sends the output directly in third round which P; takes as the

output. In the latter case, P; retains his output in the third round. O
Theorem 3.5 Protocol GOD is correct.

Proof: The proof follows from Lemma 3.27,3.28,3.29 as we have considered all the cases
exhaustively based on whether the corrupt party P, is identified by none, exactly one or both

the honest parties by the end of first round. O
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3.6 Optimizations

In this section, we propose some optimizations to our protocols Fair, UAbort and GOD that
will reduce their communication. To reduce total communication, the transmission of garbled
circuits should be kept minimal since they constitute the dominant part of communication.
We note that the protocols already ensure that each distinct GC is communicated only once
to the evaluator, namely when a garbler sends the opening of the co-garbler’s circuit. Next, a
proposed optimization to reduce communication is that H of the GC could be committed rather
than the GC itself, where H denotes a collision-resistant hash function. Infact since broadcast
communication is considered more expensive than private communication, corresponding to
broadcast of a message, say m, let H(m) be the message broadcast by the sender while m
is sent privately over pairwise channels. The same trick can be applied on the redundant
common messages sent over pairwise channels as well i.e if both Py, P, are supposed to send
m to P, then have P; send m and P, send H(m). P; can locally compute the hash of the
message which would suffice to verify if P, and P, agree on a common m. The above techniques
reduce total communication and makes the broadcast communication complexity of the protocol
independent of the circuit size. Lastly, an optimization with respect to protocol Fair is that the
inputs to the subprotocol Cert; can be modified to hash of the relevant inputs instead, reducing

considerably the size of the equality-checking circuit in Cert;.

3.7 Security Proofs

3.7.1 Round Optimal 3PC with fairness

3.7.1.1 Schematic Diagram
We present the schematic diagram of the 3-round Fair protocol in Figures 3.8 - 3.9.
3.7.1.2 Formal Proof of Security for Protocol Fair

In this section, we present the proof of security of Fair relative to the ideal functionality for
fn (Figure 2.3). For better clarity, we assume without loss of generality that P; is corrupt
(denoted as Pj) and describe the simulator Sg,,. Since the roles of the parties are symmetric
in Fair, similar proof would hold in case of corrupt P, P53 as well. The simulator plays the role
of the honest parties P, P3 and simulates each step of the protocol Fair. Recall that during
the first two rounds of Fair, the two round protocols Fair; (i € [3]) and Cert; (i € [3]) run
in parallel. We divide the description of S, as follows: We describe Sg,i, during Fairq, Cert;

where corrupt Py is the evaluator and during Fairy, Certy when corrupt P acts as a garbler.
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Input Output

C1,Y2,Y3, Cdec, Cdec { fl
L’ 1, 11, T1,V9 L3 d’ ago, Tlags
L2 Fair Cy, flags, O]
B — 1 dec <
r3 Cs, flagy, OF
L NN ,
x1 €y, flagy, OFec
T’ Fair C, Y3, Y5, CT%, , flagy, flags
L NN ,
T el7ﬂag27ogec R
T3 Cs, Y3, Yz, C7%, C5%, flag,, flag,
— > >
s - certy, Cy, flag,, flags R
Y2 = {D7, Dy, Wa, ppy, c12,C13} Cert; Ca, pad, ;
Y3 = {'Df7®?7w2) ppl)C127C13} e37 padl >
7= {®%,D§,W3, PP, C21,C23} Gy, pad, R
— Certy certo, Cy, flagy, flags ;
Y3 =13, Dy, W3, ppg, C21, C23 C3, pad, S
71 = {D3, D3, W1, pps, 31, 32} 1, pads .
Y2 = 3, <3, ¥V1, PP3, €31, C32 Cert3 62, pad3 ;
— certs, Cs, flagy, flag, 4

Py’s view at end of R2 = {C1,Y2,Y$, CSec, O flag,, flagy, OS¢, 095, pad,, pad; }

Additionally, P; may receive as part of Fairy from P if P3 ¢ Gy (Similar message from P3 also):

Cty = Ency,s (023, 032) for sko = Xg(e+a) @ Xil’»(f—l—a) ; sko = X5(€+a) & Xg(€+a)(a e [4)-

States of P;:

—stq: if decrypted ctga or ctga successfully for some « to retrieve 093, 032

—sta: If (€1 = 0) A (flagy = 0) A (flagg = 0)) (which implies Y2,Y$ # | and cert; # ()
—st3: If @ # ()

—sty: If (flagy = 1) V (flagg = 1)

Figure 3.8: Schematic Diagram of Fair protocol (Round 1 and 2)

The steps corresponding to Fairg, and Certs would follow symmetrically from that described
corresponding to Fairg, Certy. Finally, we describe the steps corresponding to the third round.
The simulator Sg,;, appears in Figure 3.10 with R1/R2/R3 indicating simulation for round 1,
2 and 3 respectively and f/c/F denoting the steps corresponding to subprotocol Fair;, Cert;, Fair

respectively.
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Figure 3.9: Schematic Diagram of Protocol Fair (Round 3 wrt P;)

sto:

0%
sti: \(hcel‘tla 2

(€1 = P3)

Output Computation:

— sty: Output y

— {sty, st3, sty}: Output y if y received from P, or P; with valid o535 or 015 respectively
— sty: Retrieve Q%€ either directly or using z; (with cert; as the key) from P;.

If d < eOpen(epp;, CSe<, O*°) is not L, compute y < De(Y3,d). (Similar steps wrt P)
— st3: (Let C; = P3) If received Y, from P, output y < De(Y3,d). Else output L

— sty: (Let flagy = 1) If certy = pad, received from P, update C; = P, and go to stj.
Else output L.

When simulating Fairy, the simulator does not have access to the inputs of the honest parties.
Further, it does not know if and what P, commits as its input in Round 1, when simulating
and sending the commitments for GC and encoding information in parallel in Round 1. Nor
does it know if all the parties will get the output (relative to corrupt P;’s committed input from
Round 1) or not, when it opens the encoded input and GC in Round 2. The decision comes
from P;’s behaviour in Round 2. A privacy simulator 8,, cannot be invoked for emulating
Round 2 message, as Fg,;, cannot be invoked yet and so y is not available. Instead oblivious
simulator Sep, is invoked that works without y. Later if and when JF,;, is invoked and y is
known, 8, is invoked which simply returns the decoding information that makes the fake GC

returned by Sgpy output y.

Simulator SFai,} 1

Srair during Fairy, Certy, Fair
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R1

R1

R1

R1

R2

R2

R2

R2

R2

R2

R2

P22 = Z23 @
P33 = T32 13
mag = X21
ma33 = 31
f: Sample eppy, epps for eCom, having trapdoor ta,t3. Choose maa = w21 (sent during Faira),
ms3 = x31 (sent during Fairs), maes, msy at random. On behalf of P; (i € {2,3}) compute
(Ci,ei,d;) « Gb(1%,C) using uniform randomness. Send D; = (epp;, pp;, Ci, {c?a}ae[4g]7be{071},
cde) to Py where ¢;, {c;.*2, Ci(gia),C?(2Z+a),C}(22+a),cg(3e+a), Cil(geJra)}ae[ﬂ] be computed as per

the protocol. Let ¢

dec

dec and remaining {c?,} commit to dummy values. (For Naor-based eNI-

COM, set ¢;, cgec to the specific commitment supporting equivocation)

c: As per the protocol, compute and send W; to P on behalf of P;.
f: Receive x192, 13 from P|" on behalf of P», P respectively.

F: Receive (ppy, c12, €13, 012) on behalf of P and (ppy, c12, ¢13,013) on behalf of P3 from Pj. Set
C; = {P1}, i € {2,3} if Open(pp;, c14,01i) # 21,

[e% [e%
Ty Ty

f: If P, & Cg, C3, run C, < 8oy (17, C, X; = {B?;Q, e;?gia), ei(22€+a), ei(33£+a)}oa6[@)' Using trapdoor
ti, compute o; = Equiv(c;, C},¢;). Send OK message on behalf of P, P3 as per protocol using

computed o9, 03.

f: Else if P; ¢ C;, then act on behalf of P; as per the protocol (For Naor-based eNICOM

equivocate ¢; to C; using t;.)

F: Set flag; = 1 on behalf of both P», P5 if either P; € Cy or P; € C3 or {pp;, 12,13} received
on behalf of P, P3 are not identical.

F: Send ciphertext ct on dummy message on behalf of P; if P; ¢ C; (i € {2,3}).
F: If P, ¢ C;, v = {D1, D3, Wa, ppy, c12, 13} received from Py on behalf of P; (i € {2,3}).

c: If P ¢ Cq, send o1, W; (same as computed on behalf of P; in Round 1) and (opening of)
encoding of v to P; on behalf of P, as per the protocol.

c: If P| ¢ C3, send (opening of) encoding of v3 to P; on behalf of Ps.

Srair during Fairy, Certo, Fair
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R1

R1

R1

R1

R1

R1

R1

R1

R2

R2

R2

R2

R2

R2

P11 = T13 @
P33 = T31 x23
mi11 = 212
m33 = 32

f: Choose x2; at random and send to P|" on behalf of P.
F: Let p33 = x31 (sent during Fairs).

F: Sample pp, to compute (ca1,021) = Com(pps, z21). Send {ppy, ca1, c23,021} to P where ca3

is dummy commitment.

f: Compute and send D3 and the information associated with D3 to P} on behalf of P3 according

to the protocol.

f: Receive D; and associated information privately from P;" on behalf of P3. Do all the verifi-

cations as an honest P3 would perform for P, and update Cs.
F: Add P; to Cs if p11 # x13 (received in Fairy).
c: Receive Wy from P; on behalf of P.

c: Receive (s2, Ws) from P;f on behalf of P3. Do all the verifications and update C3 as per the

protocol.
f: Send D3 (as computed on behalf of P3) to P;* on behalf of P;.

f: Set flag; = 1 and YJ = L on behalf of P, if P; € C3 (equivalent to receiving n0K from P3) or
Py ¢ C3 but P; sends something other than Dy (known to P as simulator runs on behalf of
Ps)

f: Set flagy = 1 and Y3 = | on behalf of P, if P; sends nOK or sends 0K with something other

than D3 (known to P, as simulator runs on behalf of P3).

f: If flag; = flags = 0 wrt P», set Co = P if any of the decommitments (corresponding to Cs or
encoded inputs corresponding to Cq, Cs) sent by P;* opens to something other than what was

originally committed (known on behalf of Ps).
F: Set G = Py if myy # 219

F: Send {ppy, ca1,c23} (as sent on behalf of P5) to P on behalf of Ps. Set flagy = 1 wrt Py if

nothing / other than {ppy, ca1,co3} received from Py
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R2

R2

R3

R3

R3

R3

R3

R3

R3

c: Set certy = | and flag; = 1 on behalf of P; if either P, € C3 (equivalent to receiving n0OK
from P3) or C3 = () but P} sends Wy different from one received on behalf of P3 in Round 1.

F: Else, set Co = P; if P sends opening of encoded input (known on behalf of P;) that opens
to anything other than the encoding of value v, = {D3, D3, W3, (ppy, ca1, c23)} sent on behalf

of P, during Fairy, Fairg, Certs and Fair respectively.

Skair during Round 3:

Suppose Cy = 0, flag; = flagg = 0 wrt Py: If P; sends encoded inputs corresponding to mis-
matched input bit across C;, Cs during Fairy (known on behalf of Ps), mark P, as being in
st1. Invoke Fpyi, with (sid, Input, 1) to obtain y where x; = x12 @ x13. Send (y, 013) to Py on
behalf of P,. Similar steps are executed on behalf of P if C3 = (), flag; = flag, = 0.

For every input bit of Ps, choose s bits uniformly at random, say by, ...bs. Using key based on
B

la

P3’s consistent input b, (« € [s]) used in Cy, Cs during Fairg, try to decrypt ciphertext ct
for (8 € {0,1}) received from P; in Round 2. If the decryption is successful and the openings
retrieved are same as (013,031), mark P» as being in st; and do the following: invoke Feyy
with (sid, Input,z1) to obtain y where x1 = 12 @ x13. Send (y,013) to Py on behalf of Ps.

Similar steps are executed by the simulator on behalf of P

If P, or P3 is in stg, let ©1 = x192 ® x13. Invoke Fpyjr with (sid, Input, z1) to obtain y.

mg
3(l+a)

,6936(1224 o)’ eg(lge +a)}a€[g]). Equivocate the commitment on decoding information in Fair; (c§e¢)

to get ogec = Equiv(cgec7 d}s, t3). Send (Yq, certo, ogec) to P on behalf of P,. Here cert; is set

as encoding of 1 on output wire of Co during Certs and Yy is the encoding corresponding to

If P, in st2, to retrieve decoding information 03%¢: Run (Cs, d3) < Spn (1%, C,y, X = {e;no?z, e

output y of Cy,C3 during Fairy; both of which are known as simulator acts on behalf of Ps.
Similar steps as above if P3 is in sts.

Invoke Fpir with (sid, Input, abort) if neither P, nor Pj belong to {sti, sta}.

Send dummy ciphertext z; to P;f on behalf of P;, i € {2,3} if P; in sty with flag; = 1.

We now argue that IDEALg,

Figure 3.10: Description of Sg,i

C .
Sg.r ~ REALFair4, when A corrupts P;. The views are shown

to be indistinguishable via a series of intermediate hybrids.

— HYBy: Same as REALfajr 4.

— HYB;: Same as HYBy, except that P, P3 in Fair; use uniform randomness rather than
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pseudo-randomness for the garbled circuit construction.

— HYBy: Same as HYBjp, except that some of the commitments of encoded inputs which
will not be sent to P, during Fair; are replaced with commitments on dummy values.
Specifically, these are corresponding to indices not equal to mag, mag, T12, x13 for Cy and

not equal to mss, mas3, 19, 13 for Cs.
— HYB3 : Same as HYBs, except the following:

- HYB31: When the execution results in P; evaluating GCs during Fair; but results
in abort, Cy is created as C, < Sqpy (17, C, Xy = {egff?, e;njf’m) e;c(122£+a), e§?§’£+a)}aem).
The commitment ¢, is later equivocated to C, using oy computed via 0y <— Equiv(cs,
C,, ty). The commitment to the decoding information is created for a dummy value.
Since the encoding information are committed in round 1 using committing commit-
ments that cannot be equivocated, we invoke 8., using an X that corresponds to the
correct shares of Py and it returns a fake GC (consistent with the labels in X) such
that indistinguishability holds. We note that most of the known garbling schemes
based on Yao and optimizations [182, 183, 141] have simulators that comply with

the above.

- HYB32: When the execution results in P; evaluating GCs during Fair1 and output vy,
the GC is created as (C}, ds) < 8p (17, CLy, Xo = {en:, e%ia) 62(2“_&) 62(3£+a)}ae[g]).
The commitment ¢, is later equivocated to C, using oz computed via oy <— Equiv(cs,

5,t2). The commitment c§* to the decoding information is created for a dummy
value and later equivocated to dy using o4, computed via o4, < Equiv(c3e, do, t5).

The set of ciphertexts ct and z; (if) generated use ds .
— HYBy4 : Same as HYBs, except the following:

- HYBy41: When the execution results in P; evaluating GCs during Fair; but results
in abort, C; is created as Cj <= Sopy (17, C, X3 = {6;2?2, ij-oe) 63(%_‘_&) 63(3£+a)}ae[5)
The commitment c3 is later equivocated to C} using o3 computed via o <— Equiv(cs,

4, t3). The commitment to the decoding information is created for a dummy value.

- HYB4o: When the execution results in P; evaluating GCs during Fair1 and output vy,
the GC is created as (Cj, d3) < Sy (17, C,y, X3 = {€3a 763(g+a) 63(2“&) 33(1§g+a)}ae[é])-
The commitment c3 is later equivocated to C} using o3 computed via o3 <— Equiv(cs,

C4,t3). The commitment c§* to the decoding information is created for a dummy

85



value and later equivocated to ds using og, computed via o4, < Equiv(cie, ds, t3).

The set of ciphertexts ct and z; (if) generated uses ds.

HYBj5: Same as HYBy, except that during Fairy, Cy is set to Py if P, receives oz that opens

to a value other than the originally committed Cs.

HYBg: Same as HYBj, except that during Fairg, C3 is set to P; if P3 receives o, that opens

to a value other than the originally committed Cs.

HYB7: Same as HYBg, except that during Fairy, Cy is set to Py if P, accepts any encoded

input not consistent with C;, C3

HYBg: Same as HYB7, except that during Fairg, C3 is set to P; if P; accepts any encoded

input not consistent with C;, Cy

HYBg: Same as HYBg, except that when the execution does not result in P, getting access
to the opening of commitment co3 (corresponding to z,3) sent by P, during Fairy, the

commitment is replaced with commitment of dummy value.

HYBjp: Same as HYBg, except that when the execution does not result in P; getting
access to the opening of commitment csy (corresponding to x3y) sent by Ps during Fairs,

the commitment is replaced with commitment of dummy value.

HYBi1: Same as HYBjq, except that when the execution Fair; does not result in P; getting
encoded inputs corresponding to mismatched input bit across the two garbled circuits

corresponding to any garbler, the set of ct is replaced by encryption of a dummy message.

HYBjo: Same as HYBjp, except that during Certy, P» (with flag, = 0) adds P to Cs if
(opening of ) encoded input sent by P; corresponding to C, is anything other than the
opening of the originally committed encoded information corresponding to value v =
{DL, D3, W3, (ppy, Ca1, C23)} sent by P, in Round 1.

HYBj3: Same as HYBj, except that during Certs, P; (with flag, = 0) adds P, to Cy if
(opening of) encoded input sent by P; corresponding to Cjz is anything other than the
opening of the originally committed encoded information corresponding to value v =
{Di, D3 Wy, (pps, c31,C32) } sent by P3 in Round 1.

HYBy14: Same as HYBi3, except that during Cert;, when P;’s evaluation of C; does not

result in output 1, z; (if) sent to P is replaced with encryption of dummy message.
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— HYBj5: Same as HYBy4, except that Y3,Y3 is computed via De(Y3,d;) = y, De(Y3, d3) =
y, (where d;,d3 correspond to decoding information of Cy, C3 during Fairy) rather than
Y1 = Ev(Cy, X), Y3 = Ev(C3, X).

— HYBjg: Same as HYBy5, except that Y1, Y2 is computed via De(Y3,d;) =y, De(Y2,ds) =y
(where dy, dy correspond to decoding information of Cy, Cy during Fairz) rather than Y} =
Ev(Cy,X), Y2 = Ev(Cy, X).

— HYBj7: Same as HYBig, except that during Certy, if Py gets access to Yy < (Ca, X) such
that sDe(Yy) = 1, certy = Yo is computed via De(Yq,dy) = 1 (where dy corresponds to
decoding information of Cy during Certy) rather than Yo = Ev(Cy, X)

— HYBjg: Same as HYBj7, except that during Certs, if P3 gets access to Y3 < (Cs, X) such
that sDe(Y3) = 1, certs = Y3 is computed via De(Y3,ds3) = 1 (where d3 corresponds to
decoding information of C3 during Certs) rather than Y3 = Ev(Cj, X)

— HYBjg: Same as HYByg, except that P, sends (y,013) to Py if decryption of ct sent by
P, during Fair, is successful (and includes openings of x3,x3; corresponding to original

commitments) using P3’s encoding corresponding to random input.

— HYBgo: Same as HYBjg, except that P; sends (y,012) to P; if decryption of ct sent by
Py during Fairs is successful (and includes openings of 13, x9; corresponding to original

commitments) using P5’s encoding corresponding to random input.

Since HYBy := IDEALg,, s, We show that every two consecutive hybrids are computation-

ally indistinguishable which concludes the proof.

HYBy ~ HYB;: The difference between the hybrids is that P, P3 in Fair; use uniform random-
ness in HYB; rather than pseudorandomness as in HYBy. The indistinguishability follows via
reduction to the security of the PRG G.

HYB; ~ HYBy: The difference between the hybrids is some of the commitments of encoded in-
puts which will not be sent to P, during Fair; are replaced with commitments on dummy values.
The indistinguishability between the hybrids follows from the hiding property of NICOM.

HYBy A HYB31: The difference between the hybrids is in the way (Cy, X) is generated when the
execution results in abort. In HYBs, (Cs,e,d) < Gb(1%,C) is run, which gives (Cq, En(z,e)).

[e] (%
ma3 1

In HYBj3, it is generated as C, < Sop (17, C, Xy = {6;;22,62(€+a),eg(léé_i_a),6;(§£+a)}ae[g]). The
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commitment to the garbled circuit is later equivocated to C), using o, computed via 0y <
Equiv(cy, C), t9). Additionally, the commitment to the decoding information is created for a
dummy value in HYB3 1. The indistinguishability follows via reduction to the obliviousness of
the garbling scheme and the usual hiding property of commitment schemes which is implied by

the hiding property of eCom.

HYB> ~ HYB3o: The difference between the hybrids is in the way (Cy, X, d) is generated. In
HYBs, (Cy,e,d) < Gb(1%,C) is run, which gives (Cy, En(z,e),d). In HYB3a, it is generated
as (Ch,d3) < Spn(17,C,y, Xg = {e;'fz,e;ﬁia),e;”(?;m),e§?§g+a)}aem). The commitment to the
garbled circuit is later equivocated to C, using oy computed via oy < Equiv(cy, C,,t5). Addi-
tionally, the commitment to the decoding information is created for a dummy value and later
equivocated to di using 03 computed via 03¢ < Equiv(c§®c, di ¢,). The indistinguishability

follows via reduction to the privacy of the garbling scheme and the hiding property of eCom.
HYB3 ~ HYB,: Similar argument as above with respect to Cs.

HYB, ~ HYBj5: The difference between the hybrids is that in HYBy, P sets C; = P if the o3 sent
by P; in Fairy output L while in HYBj5, P, sets C; = P if o3 sent by P; in Fairy opens to any
value other than Csz. Since the commitment scheme eCom is binding, in HYBy4, P; could have
decommitted successfully to a different garbled circuit than what was originally committed,

only with negligible probability. Therefore, the hybrids are indistinguishable.
HYBs ~ HYBg: Similar argument as above with respect to P; in Fairs.

HYBg ~ HYB7: The difference between the hybrids is that in HYBg, P; sets Gy = P if the
encoded inputs sent by P; in Fairsy is inconsistent with Dy, D3, while in HYB; C, is set to Py if
P, accepts any encoded input not consistent with C;, C3. It follows from the biding property
of NICOM that in HYBg, P; could have sent an encoded input not consistent with C;, C3 but
consistent with Dy, D3, only with negligible probability. Therefore, the hybrids are indistin-
guishable.

C . . . . .
HYB; &~ HYBg: Similar argument as above with respect to P; in Fairs.

HYBg ~ HYBg: The difference between the hybrids is that when the execution does not result

in P, getting access to the opening of commitment co3 (corresponding to xae3) sent by Ps, Co3
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corresponds to the actual input share x53 in HYBg while it corresponds to dummy value in HYBy.
The indistinguishability follows from the hiding property of NICOM.

C . . . .
HYBg &~ HYBjo: Similar argument as above with respect to commitment cs, sent by Pj.

HYBjg ~ HYB1;: The difference between the hybrids is that when the execution Fair; does not
result in P, getting encoded inputs corresponding to mismatched input bits of any garbler on
two garbled circuits, in HYBj, the set of ct is the encryption of a opening of input shares while
in HYB;1, it is replaced with encryption of dummy message. Assuming the encryption key is
unknown to P; (holds except with negligible probability due to privacy of garbling scheme),

indistinguishability follows from the security of the encryption scheme with special correctness.

HYB1; ~ HYB1y: The difference between the hybrids is that while in HYB;;, during Certy, P,
adds P; to Gy if opening of encoded input sent by P; results in L or Cy evaluates to 0 revealing
Py’s input being not equal to v = {D}, D3, W3, ppy, ca1, Co3}; while in HYBy, Py is added to €,
if he sends anything other than opening of the originally committed encoded information of Cy
corresponding to value v = {D1, D3, W3, pp,, Ca1, co3}. The indistinguishability follows from the
binding of NICOM and the correctness of the privacy-free garbling scheme (used during Cert).

C . . . .
HYB12 =~ HYB3: Similar argument as above with respect to P3; during Certs.

HYBi3 ~ HYB14: The difference between the hybrids is that in HYB2, 27 is set as encryption of
the decoding information of Fair; while in HYB;3, 21 is replaced with encryption of a dummy
message when P;’s evaluation of C; during Cert; does not lead to output 1. Assuming the
encryption key is unknown to P; (holds except with negligible probability due to authenticity
of privacy-free garbling scheme used in Cert;), indistinguishability follows from the security of

the encryption scheme.

HYBy4 ~ HYBi5: The difference between the hybrids is that in HYB,4, P computes Yo = (Yi,Y3)
via Ev(Cy, X), Y3 = Ev(Cs, X), while in HYBy5, Y3,Y3 is computed such that De(Yi d;) = v,
De(Y3,d3) =y (where dy, d3 is the decoding information corresponding to Cy, C3 during Fairy).
Due to the correctness of the garbling scheme, the equivalence of Y3, Y3 computed via Ev(Cy, X),
Ev(Cs, X) or such that De(Y3,d;) =y, De(Y3,d3) = y holds.

HYBj5 ~ HYBjg: Similar argument as above with respect to Y3 computed by P; during Fairs.
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HYBg ~ HYBi7: The difference between the hybrids is that in HYBg, if P» obtains Yy <«
Ev(Cy, X) such that sDe(Y) = 1, then P, sets certy = Y, while in HYBy35, in this case certy
is set to Yo computed such that De(Ys,ds) = 1 (where dy is the decoding information corre-
sponding to Cy during Certy). Due to the correctness of the privacy-free garbling scheme, the

equivalence of Yy computed via Ev(Cy, X) or such that De(Ys, ds) = y holds.
HYBj7; ~ HYBig: Similar argument as above with respect to certs computed by P; during Certs.

HYBig ~ HYBjg9: The difference between the hybrids is that in HYB;g, P, sends (y,013) to P
if decryption of ct sent by P; during Fairy is successful using keys based on Pj’s encoding of
actual input, whereas in HYB19, P, sends (y,013) to P; if decryption of ct sent by P; during
Fairs is successful using keys based on P3’s encoding of random input. The indistinguishability
between the hybrids follows from the following claim: Consider single bit input for simplicity.
For any two different inputs x and z’ of P3, the difference between the probability that P, sends

s+1

(y,013) to P, when Py’s input is  and when P3’s input is 2’ is at most 27", The argument

can be divided into three cases (similar to [147]). (1) Suppose for some « € [s], P, replaces

0

0,,cti, : one based on consistent input 0 of P; and other based on consistent

both ciphertexts ct
input 1 of Py (say, skg = X0, 0) @ X, o) and sky, = X, o) ® X}, ). In this case, P would
be able to decrypt the ciphertext successfully regardless of P3’s input with probability 1 and
would send (y,013) to P». (2) Suppose P; replaces exactly one of the two ciphertexts with
consistent input corresponding to 1 < j < s. Since the values assigned (in encoding) by P;
to any proper subset of the s bits are independent of P;’s actual input, P, would be able to
decrypt the ciphertext successfully with probability 1 — 277 regardless of the actual value of its
original input. (3) Suppose P; replaces one ciphertext based on consistent input for each of
the a € [s] (say all based on consistent value ‘1’). Then if x had encoding with any one such
value (‘1’ in the example), the ciphertext would be decrypted successfully with probability 1,
whereas decryption would be successful with probability 1 —275*1 if 2/ had the other value (in
the example, P, will be unable to decrypt if ' = 0 and the encoding of 2’ = 0 was chosen as

z!, =0 for all a € [s] (where 2/ = @f_,x,) which occurs with probability 2751).

C . . . . . -
HYB1g &~ HYBog: Similar argument as above with respect to ct received by P; during Fairs.
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3.7.2 Proof of Security for Protocol UAbort

In this section, we present the proof of security of UAbort relative to the ideal functionality for
ua (Figure 2.2). For clarity, we assume without loss of generality that P; is corrupt (denoted as
Py) and describe the simulator Syaport. Since the roles of the parties are symmetric in UAbort,
similar proof would hold in case of corrupt P, P53 as well. The simulator plays the role of the
honest parties P,, P3 and simulates each step of the protocol UAbort. We divide the description
of Suabort as follows: We describe Syaport during UAbort; where corrupt P; is the evaluator and
during UAbort, when corrupt Py acts as a garbler. The steps corresponding to UAborts, would
follow symmetrically from that described corresponding to UAbort,. The simulator Syaport ap-
pears in Figure 3.11 with R1/R2 indicating simulation for round 1 and 2 respectively and a/A
denoting the steps corresponding to subprotocol UAbort;, UAbort respectively. When simulating
UAbort;, the commitments for GC and encoding information need to be simulated and sent in
Round 1 itself, while the privacy simulator 8, can only be invoked on noting the adversary’s
behaviour in Round 1 that decides what input it commits and whether it obtains output or
L. Using equivocality of the commitment of GC, we can equivocate the GC as returned by
the simulator. But since commitments on the encoding information are committing and the
simulator didn’t have access to X during simulation of Round 1, the encoded input X returned
by 8pn cannot be explained. So we use a slightly modified version of 8, which takes an en-
coded input (correspond to what will be opened to corrupt Py) as parameter and returns just
the fake GC compatible with it. Yao’s privacy simulator can be made to work as above for
any encoded input and the indistinguishability will hold with respect to the fake GC and given

encoded input.

/—[ Simulator ‘SUAbortJ N

Suabort during UAborty, UAbort

P22 = T23 @
P33 = T32 r13
mo2 = T21
m33 = 31

R1 a: Receive (z12,713) privately from P;* on the behalf of P, Ps.

R1 A: Receive (pp;,ci2,c13) via broadcast and 019,013 privately from P on behalf of Py, Ps. Set
flag; = 1 on behalf of P; if Open(cy;,01;) # x1; for i € {2,3}.
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R1

R1

R2

R2

R2

R2

R2

R2

R1

a: Sample epp,, epp; for eCom, having trapdoor t9, t3. Choose mas = w21 (sent during UAborts),
ms3 = x31 (sent during UAborts), mes, msa,ra, 73 at random. On behalf of P; (i € {2,3})
compute (C;,e;,d;) « Gb(1%, C) using uniform randomness. Broadcast D; = (pp;,epp;, Ci,

o £ 3 0 1 0 1
{Cza}aE[Gﬂl be{o,1}) where c;, {CzOl ) (Zia)’ci(22£+a)’ci(33f+a)’Ci(4€+a)’Ci(4€+a)’Ci(5€+a)’ci(5€+a)}04€[£
be computed as per the protocol. (If Naor-based eNICOM is used, ¢; should be set to the spe-

cific commitment that suppports equivocation as per epp;.) Let the remaining {c } commit

to dummy values.

a: Send ({oQa , ; (20+0) Yaelg, m22,72) to Pf on behalf of P». Send ({0 €+a)’ 3(3€+a }oée ,M33,

r3) privately to P; on behalf of Ps.
a: If flag; = 1 for either P» or P3, invoke F,, with (sid, Input, abort) on behalf of P;.
a: Broadcast abort on behalf of P; (i € {2,3}) if flag; = 1 on behalf of P;.

a: If flag, = 0 wrt P; for exactly one ¢ € {2,3}, then act on behalf of P, as per the protocol
opening the garbled circuit (equivocate ¢; to C; in case of Naor-based eNICOM ) and encoded
input as per mos or mss accordingly chosen as above. Broadcast W; using z; = r; ® x1; as per

the protocol.
a: If flag; = 0 for both P; and Ps, invoke J,, with (sid, Input, 21) on behalf of P} to obtain output

y, where x1 = xlz@xlg. Let 2z = ro®x 12 and 23 = r3®x13. For (i € {2,3}), run (C}, X;, d;) «

L rg rg 28 zg .
Sprv (17, C y, {em , z(eia),ei(22£+a),eiéua)ei(i”a),ei&“a)}ae[g]). Using trapdoor t;, compute
o; = Equiv(c;, C}, ¢;). Send OK message privately to P on behalf of P5, P3 as per the protocol

using computed o2, 03. Broadcast Wy, W3 on behalf of P, P3 as per protocol.
A: If flag; # 1 wrt P;, send set of ct on behalf of P; (i € {2,3}) using a dummy message.

a: Set flag; = 1 on behalf of both P, Ps if either (a) abort was sent or received via broadcast
in Round 2 (b) P; broadcasts zo # w12 & 1o Or 23 # T13 T3

Suabort during UAborts, UAbort

P11 = %13 @
P33 = T31 x23
mi11 = 212
@ m33 = 32

A:Set p33 = 31 (sent during UAborts)
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R1 a: Compute and broadcast D3 (using p33) on behalf of P3 according to the protocol. Send

{3, P31, 133,03, {0, Yaclor bef0.1} } tO P
R1 a: Choose 21 at random and send to P on behalf of P,.

R1 A: Sample ppy to compute (c21,021) < Com(pps, z21). Broadcast {pps,ca1,c23} where cog is

commitment of dummy value and send o021 to P on behalf of P,.

R1 a: Receive {s1,pi1,p13,01, {Olfa}ae[Ge},be{O,l}} from Pj on behalf of Ps. Do all the verifications

as an honest P3 would perform for P; and update flagy, with respect to (wrt) Ps.
R1 A: Set flag, = 1 on behalf of Ps if p1; # 213 (213 received in UAbort;)
R1 a: Set flagy = 1 on behalf of P if P sends encoded inputs inconsistent with Dy

R1 A: Set flagy = 1 on behalf of P, if Open(cia,012) # x12 or m11 # x12 (x12 received during
UAbort; ).

R2 a: On behalf of Ps: If flag, = 0 wrt Ps3, choose random 23 and broadcast W3 as per the protocol.

Else broadcast abort.

R2 a: On behalf of P5: If flagy, = 0 wrt P>, broadcast 21, z3 where z; is computed as per the protocol
as 21 = x21 @ r1, where 91 sent to PJ" in Round 1 and r; received from Pj. z3 is either same

as chosen above (if flagy, = 0 wrt P3) or random (if flagy, = 1 wrt P3). Else broadcast abort.

R2 a: Set flagy = 0 on behalf of both P», P if (a) abort was sent or received via broadcast in
Round 2 (b) P; broadcasts anything other than (21, oi? r known on behalf of Ps3)

z
(4£+a)) (01(4£+a)
where z1 = x91 ® r1 (11, x21 known to P)

Suabort after UAborty, UAborts, UAborts

If flag; = 1 (on behalf of both Py, P3) for any i € [3], invoke F,, with abort on behalf of P}. Else

invoke J, with continue on behalf of P;.

| J

Figure 3.11: Simulator Syaport

C .
We now argue that IDEALg,, s,x.0 =~ REALyAbort, 4, When A corrupts P;. The views are shown

to be indistinguishable via a series of intermediate hybrids.

— HYBg: Same as REALyAbort,A-

— HYB;: Same as HYBg, except that P, P3 in UAbort; use uniform randomness rather than

pseudo-randomness for the garbled circuit construction.
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— HYBy: Same as HYB;p, except that some of the commitments of encoded inputs which
will not be sent to P, during UAbort; are replaced with commitment on dummy values.
Specifically, these are corresponding to indices not equal to Mmoo, mag, 79, 13, 29, 23 for Cy

and not equal to mso, ms33, 1o, 73, 29, 23 for Cs.

— HYBj3 : Same as HYB,, except that when the execution results in P, evaluating GCs during

UAbort;, the GC Cy is created as (C, d) < Spn (1%, O, y, Xg = {eg.22, e;jia), e;%%ra), 62?3“06),

e;%:w o) e;iz +a)}ae[g]>. The commitment cy is later equivocated to Cf, using o, computed

{e3

via 0y < Equiv(cg, C, t5). The set of ciphertexts ct generated uses ds in their keys.

— HYB4 : Same as HYBg3, except that when the execution results in P; evaluating GCs during

UAbort;, the GC Cy is created as (C4, d3) < Spn (1%, C, y, X3 = {e3.2, egzia), 6;%2”0[)7 eg?3€+a),

egi(’(’lw +a)}a€[€]>‘ The commitment cj is later equivocated to Cj using o3 computed

?45—!—04)’
via 03 < Equiv(cg, C},t3). The set of ciphertexts ct generated uses dz in their keys.

Z
€3

— HYBj;: Same as HYBy, except that during UAborts,, flag, is set to 1 if W; broadcast by Py

has anything other than (opening of) encoded input corresponding to z; in C;.

— HYBg: Same as HYBj, except that during UAborts, flag, is set to 1 if W; broadcast by P

has anything other than (opening of) encoded input corresponding to z; in C;.

— HYB7: Same as HYBg, except that when the execution does not result in P, getting access
to the opening of commitment cy3 (corresponding to xs3) broadcast by P, during UAbort,,

the commitment is replaced with commitment of dummy value.

— HYBg: Same as HYBr7, except that when the execution does not result in P, getting access
to the opening of commitment c3s (corresponding to x32) broadcast by Ps during UAbortg,

the commitment is replaced with commitment of dummy value.

— HYBg: Same as HYBg, except that when the execution UAbort; does not result in P;
getting conflicting output on two garbled circuits, the set of ct is replaced by encryption

of a dummy message.

Since HYBg := IDEALy,, we show that every two consecutive hybrids are computation-

SUAbort ?

ally indistinguishable which concludes the proof.

HYBy ~ HYB;: The difference between the hybrids is that P, P3 in UAbort; use uniform ran-

domness in HYB; rather than pseudorandomness as in HYBy. The indistinguishability follows
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via reduction to the security of the PRG G.

HYB; ~ HYBy: The difference between the hybrids is some of the commitments of encoded
inputs which will not be sent to P, during UAbort; are replaced with commitment on dummy

messages. The indistinguishability follows from the hiding property of NICOM.

HYBy ~ HYB3: The difference between the hybrids is in the way (Cy, X, ds) is generated.
In HYBy, (Cs,e9,ds) < Gb(1%,C) is run, which gives (Co, En(z,e),d2). In HYB3, it is gen-
erated as ( ,27d2) — SPFV<1R7Cay>X2 = {egr;m?egzziawe;%2£+a)76;:23f+a)’e;i4€+a)’e;?5€+a)}a€m)'
The commitment to the garbled circuit is later equivocated to C, using oy computed via

@

0y < Equiv(cy, €, t5). The indistinguishability follows via reduction to the privacy of the
garbling scheme and the hiding property of eCom.

(& . . o
HYB3 /=~ HYBy4: Similar argument as above with respect to Cs.

HYBy4 ~ HYB;5: The difference between the hybrids is that in HYBy4, flag, is set to 1 if W,
broadcast by P, during UAbort, has (opening of) encoded input that is inconsistent with com-
mitment corresponding to z; in Dy, while in HYBs, flag, is set to 1 if Wy broadcast by P, has
(opening of) encoded input anything other than encoding of z; corresponding to C;. It follows
from the binding property of NICOM that P; could have sent an encoded input not consistent
with C; but consistent with Dy, only with negligible probability. Therefore, the hybrids are

indistinguishable.
HYBs; ~ HYBg: Similar argument as above with respect to Wy broadcast by P, during UAborts.

HYBg ~ HYB7: The difference between the hybrids is that when the execution does not result
in P; getting access to the opening of commitment cy3 (corresponding to x93) broadcast by Py
during UAborts, co3 corresponds to the actual input share x93 in HYBg while it corresponds to
dummy value in HYBg. The indistinguishability follows from the hiding property of NICOM

Com.

HYB; ~ HYBg: Similar argument as above with respect to commitment c3y broadcast by Pj
during UAborts.

HYBg ~ HYBg: The difference between the hybrids is that when the execution UAbort; does
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not result in P, getting conflicting output on two garbled circuits, in HYBg, the set of ct is the
encryption of opening of shares of input while in HYBy, it is replaced with encryption of dummy
message. Assuming the encryption key is unknown to P; (holds except with negligible proba-
bility due to authenticity), indistinguishability follows from the CPA security of the encryption

scheme.

3.7.3 Proof of Security for Protocol GOD

In this section, we present the proof of security of GOD relative to the ideal functionality for
god (Figure 2.4). For better clarity, we assume without loss of generality that P; is corrupt
(denoted as P;) and describe the simulator Sgop. Since the roles of the parties are symmetric
in GOD, similar proof would hold in case of corrupt P, P3 as well. The simulator plays the role
of the honest parties P, P3 and simulates each step of the protocol GOD.

Similar to Syaport, We divide the description of Sgop as follows: We describe Sgop during
GOD; where corrupt Py is the evaluator and during GOD, when corrupt P} acts as a garbler.
The steps corresponding to GOD3, would follow symmetrically from that described correspond-
ing to GOD,. We then describe the steps of the simulator Sgop corresponding to the third
round. In the protocol GOD, the behavior of corrupt P; in Round 1, 2 determines his com-
mitted input. Hence, the privacy simulator can only be invoked earliest after the simulation of
the first round. Similar to Syaport, Since the commitments on encoding information is sent in
the first round itself, we use a modified version of the privacy simulator of the garbling scheme
which additionally takes an encoded input as parameter (see Section 3.7.2). The simulator
Scop appears in Figure 3.12 with R1/R2/R3 indicating simulation for round 1, 2 and 3 and
and g/G denoting the steps corresponding to subprotocol GOD;, GOD respectively.

/—[ Simulator SGOD} <

SgoD during GODl,GOD

D22 = T23 @
P33 = T32 Z13
mag = 221
@ ma33 = T31

R1 g: Receive z12, 213 from P| on behalf of P, Ps.

R1 G: Receive (ppy,c12,c13) via broadcast and (o012, 013) privately from P} on behalf of P, P3. Set
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R1

R2

R2

R2

R1

R1

R1

R1

R1

R1

C; = {P1} if Open(cy,015) # x1; for i € {2,3}

g: Sample epp,, epps for eCom, having trapdoor ta,t3. Choose mgs = w91 (sent during GOD3),
mass = w31 (sent during GOD3), mas, mas at random. On behalf of P; (i € {2,3}) do the follow-
ing: compute (C;, e;,d;) Gb(l“ C) using uniform randomness. Broadcast D = (epp;, PP;; Cis
{CZCY}QG[ZM] be{0, 1}) where c;, {sz ’Cz(4+a)7 z(2€+o¢)’ z(2€+o¢)’ z(3€+a)7 i 3Z+a }ae[f] be computed
as as per the protocol. Let the remaining {c? } commit to dummy values. (For Naor-based
eNICOM, ¢; set to the specific commitment that suppports equivocation)

g: If Pi ¢ @y, C3, invoke Fgoq with (sid, Input,z1) on behalf of P} to obtain output y, where

x1 = z12®x13. For (1 € {2,3}), run (C}, d;) < 8pn (17, CLy, X; = {e?;”, e?&iia) f(122€+a) f(?ﬁa)

}aeje)- Using trapdoor t;, compute o; = Equiv(c;, C}, ;). Send OK msg on behalf of Py, P; as

per the protocol using computed o2, 03.

g: Else if P, ¢ C; for i € {2,3}, act on behalf of P, as per the protocol opening the garbled
circuit (equivocate ¢; to C; in case of Naor-based eNICOM) and encoded input as per mags

and ms2

g: If P ¢ C; (i € {2,3}), send set of ct on behalf of P; using a dummy message.

Scop during GOD,, GOD

P11 = T13 @
P33 = T31 x23
mi1 = Z12
m33 = 32

G: Set ps3 = x31 (sent during GOD3) on behalf of Ps.

g: Compute and broadcast D3 (using ps3) on behalf of P3 and send private information to P;

as per protocol

G: Compute (c21,021) < Com(ppy, z21) with randomly chosen x9;. Broadcast {ppsy,ca1,cos}

where co3 is commitment of dummy value
g: Send {x21,0921} to P; on behalf of Ps.
g: Do all the verifications wrt D; as an honest P35 would perform for P; and update Cs.

G: Add P to Cq if mqyy # x10.
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R2 g: Add P, to Gy if any of the openings sent by P; (for C3 or encoded inputs) is anything other
than originally committed (known on behalf of P3).

R2 g: If P, ¢ Cy and P, € C3: Extract P;’s input x; if committed: (a) either on clear with n0OK
(b) or in encoded form as x; = m3; @ p31. Invoke Fyoq with (sid, Input, z1) on behalf of P to
obtain output y. Else, (P’s input not committed) invoke Fgoq with (sid, Input, z1) on behalf
of P| to obtain output y for default ;.

Scop during R3

If P, € Cy,C3 at the end of round 1, invoke Fyoq with (sid, Input, 1) on behalf of P} to obtain y for
a default z1. Send y to P on behalf of both P, and P3 if P € C, €3 in the end of round one. Send
y to Pj on behalf of only P, (P3) if P; € C3 (C2) in the end of round one.

Figure 3.12: Description of Sgop

c .
We now argue that IDEALg, , s.o, &~ REALGoD,4, When A corrupts Py. The views are shown

to be indistinguishable via a series of intermediate hybrids.

HYB(: Same as REALGOD -

— HYB;p: Same as HYBy, except that P, P3 in GOD; use uniform randomness rather than

pseudo-randomness for the garbled circuit construction.

— HYBg: Same as HYBjp, except that some of the commitments that will not be opened by
P, during GOD; are replaced with commitment on dummy values. Specifically, these
are corresponding to indices not equal to mas, mos, 12, x13 for Co and not equal to

M32, M33, T12, T13 for Cs.

— HYBj : Same as HYB,, except that when the execution results in P evaluating GCs during
GOD;, the GC Cy is created as (Cj, da) <— 8pn (17, CLy, Xy = {e;:‘fz, e;njfm) 62(2”&) eg(lgnga)}
acjq). The commitment c, is later equivocated to C) using o, computed via oy <

Equiv(cy, C, t5). The set of ciphertexts ct generated uses ds in their keys.

— HYBy4 : Same as HYB3, except that when the execution results in P, evaluating GCs during
GODy, the GC Cy is created as (Cj, d3) < Spn (17, CLy, X5 = {ega ,e”éjia), 6§2§e+a)7 eg(lgua)}
ae[g]). The commitment c3 is later equivocated to Cj using os computed via o3 <

Equiv(cs, C4, t3). The set of ciphertexts ct generated uses ds in their keys.

— HYBj5: Same as HYBy, except that during GOD,, C, is set to P if P receives oz that opens

to a value other than the originally committed Cj.
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— HYBg: Same as HYBj5, except that during GODs3, Cs is set to P if P receives o, that opens

to a value other than the originally committed C,.

— HYB7: Same as HYBg, except that during GODs, G5 is set to P, if P, accepts any encoded

input not consistent with C;, C3

— HYBg: Same as HYBy, except that during GODg, C3 is set to P; if P3 accepts any encoded

input not consistent with C;, Cy

— HYBg: Same as HYBg, except that when the execution does not result in P, getting access
to the opening of commitment cy3 (corresponding to xo3) broadcast by P, during GOD,

the commitment is replaced with commitment of dummy value.

— HYBjpg: Same as HYBy, except that when the execution does not result in P, getting access
to the opening of commitment cgy (corresponding to x3) broadcast by Ps during GODsg,

the commitment is replaced with commitment of dummy value.

— HYBj1: Same as HYBjpg, except that when the execution GOD; does not result in P;
getting conflicting output on two garbled circuits, the set of ct is replaced by encryption

of a dummy message.

Since HYB1; := IDEALg, we show that every two consecutive hybrids are computation-

0dsSGOD ?

ally indistinguishable which concludes the proof.

HYB ~ HYB;: The difference between the hybrids is that P, P3 in GOD; use uniform random-
ness in HYB; rather than pseudorandomness as in HYBy. The indistinguishability follows via
reduction to the security of the PRG G.

HYB; ~ HYBy: The difference between the hybrids is some of the commitments that will not
be opened by P; during GOD; are replaced with commitments on dummy values. The indis-

tinguishability follows from the hiding property of the commitment scheme.

HYBy ~ HYB3: The difference between the hybrids is in the way (Cy, X,dy) is generated. In
HYBs, (Co,ey,dy) < Gb(1%,C') is run, which gives (Cy, En(z,€),ds). In HYB3, it is generated
as (Ch,da) < Spn(17,C,y, Xy = {6727?122,ezzzj—a)’6326(12264—04)’e;égf-i-a)}ae[@)' The commitment to the
garbled circuit is later equivocated to C) using o, computed via oy <— Equiv(cy, C),t3). The

indistinguishability follows via reduction to the privacy of the garbling scheme and the hiding
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property of eCom.
HYB3 ~ HYBy4: Similar argument as above with respect to Cs.

HYBy ~ HYB;5: The difference between the hybrids is that in HYBy, P; sets Gy = P if the
o3 sent by P, in GODy output L while in HYBs5, P, sets Cy = P; if o3 sent by P; in GOD,
opens to any value other than Cs. Since the commitment scheme eCom is binding and epp
was chosen uniformly at random by Pj, in HYB4, P; could have decommitted successfully to a
different garbled circuit than what was originally committed, only with negligible probability.
Therefore, the hybrids are indistinguishable.

HYBj5 ~ HYBg: Similar argument as above with respect to P3 in GODj.

HYBg ~ HYB7: The difference between the hybrids is that in HYBg, P, sets o = P if opening of
commitment on the encoded inputs sent by P; in GODs results in | while in HYB7, G5 is set to P,
if P, accepts the opening of any commitment to a value other than what was originally commit-
ted. The indistinguishability between the hybrids follows from the binding property of NICOM.

HYB7 ~ HYBg: Similar argument as above with respect to P; in GOD3.

HYBg ~ HYBg: The difference between the hybrids is that when the execution does not result
in P getting access to the opening of commitment co3 (corresponding to x93) broadcast by Py
during GODs, co3 corresponds to the actual input share x,3 in HYBg while it corresponds to

dummy value in HYBg. The indistinguishability follows from the hiding property of Com.

HYByg ~ HYBpo: Similar argument as above with respect to commitment c3o broadcast by Ps
during GOD3.

HYBjg ~ HYB11: The difference between the hybrids is that when the execution GOD; does not
result in P; getting conflicting output on two garbled circuits, in HYByg, the set of ct is the
encryption of an input and a share of input while in HYB;1, it is replaced with encryption of
dummy message. Assuming the encryption key is unknown to P; (holds except with negligi-
ble probability due to authenticity), indistinguishability follows from the CPA security of the

encryption scheme.
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3.8 Appendix: Authenticated Conditional Disclosure of

Secret

The subprotocol Cert; (Figure 3.2) used in our protocol Fair is reminiscent of the notion of
‘conditional disclosure of secrets (CDS)” which was first introduced in [103]. Informally, the
problem of conditional disclosure of secrets involves two parties Alice and Bob, who hold inputs
x and y respectively and wish to release a common secret s to Carol (who knows both x and y) if
only if the input (z, y) satisfies some predefined predicate f. The model allows Alice and Bob to
have access to shared random string (hidden from Carol) and the only communication allowed
is a single unidirectional message sent from each player (Alice and Bob) to Carol. Traditionally,
CDS involves two properties, namely correctness (if f(x,y) is true, then Carol is always able
to reconstruct s from her input and the messages she receives) and privacy (if f(x,y) is false,

Carol obtains no information about the secret s). Formally,

Definition 3.2 (Conditional Disclosure of Secret) [5] Let f: X xY — {0,1} be a predi-
cate. Let F1 : X X 8 X R — T and F5 : Y x 8§ x R — Ty be deterministic encoding algorithms,
where 8 is the secret domain. Then, the pair (Fy, Fy) is a CDS scheme for f if the function
F(z,y,s,7) = (Fi(x,s,7), F5(y,s,7)) that corresponds to the joint computation of Fy and Fs on

a common s and 7, satisfies the following:

e O-correctness: There exists a deterministic algorithm Dec, called a decoder, such that for

every 1-input (z,y) of f and any secret s € 8, the following holds: Pr,.x[Dec(x,y, F(z,y, s,
) # s <6

e c-privacy: There exists a simulator 8 such that for every O-input (x,y) of f and any
secret s € 8, it holds that |Pr[D(8(z,y) = 1)] — Pr[D(F(z,y,s,7)) = 1]| < € for every
distinguisher D. (8, D assumed to be poly-time or computationally unbounded depending

on computational / information-theoretic setting).

Interestingly, we find that the functionality realized by subprotocol Cert; subsumes the
above properties under computational variant adapted to tolerate active corruption of single
party and gives some stronger guarantees. We thus formally define a variant of CDS known
as ‘Authenticated Conditional Disclosure of Secret’ below and show realization of the same by

Cert;.

Definition 3.3 (Authenticated Conditional Disclosure of Secret) Let A, B denote two

parties holding inputs x € X and y € Y respectively and having access to common secret s € §
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and C denote an external party. We assume a PPT adversary A who can actively corrupt at
most 1 party among A, B and C. An authenticated CDS protocol is secure against A if the
following properties hold:

e J-correctness holds for honest A, B, and C where § = negl(k).
e c-privacy holds against A corrupt C, where ¢ = negl(k).

o Authenticity: For 1-input (x,y) of f and any secret s, Dec may result in L when either
A or B s corrupt, in which case C' either identifies a corrupt party or a pair of parties

in conflict that includes the corrupt party.

Our Cert; gives an authenticated CDS as follows. The garblers P;, P, take the role of A
and B and the evaluator takes the role of C'. The common randomness 7 is the seed for the
PRG used for generating the entire randomness for GC generation etc. The secret s is the key
corresponding to 1 in the circuit. The predicate is the circuit that we garble in Cert;. While
for the purpose of our 3-round fair protocol, the predicate is equality checking, in theory, we
can garble any predicate. F} and Fh are the codes of P; and Py respectively. Dec is the code
that P; executes. The correctness and privacy follow from the correctness and authenticity of
the garbling scheme. The authenticity follows from the fact that P; either receives the correct

secret or detects a conflict or corrupt.
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Chapter 4

Fast Secure Computation for 3PC and
4PC over the Internet

In this chapter, we present efficient, constant-round 3-party (3PC) and 4-party (4PC) proto-
cols in the honest-majority setting that achieve strong security notions of fn and god. Being
constant-round, our constructions are suitable for Internet-like high-latency networks and are
built from garbled circuits (GC).

4.1 Introduction

While the earlier works in MPC literature traditionally been focused on theoretical aspects,
lately, with increasing demand for efficient constructions suitable in real-time applications,
there has been a growing interest to improve the concrete efficiency of protocols. The domain
of MPC can be broadly classified into honest majority [30, 177, 19, 18, 72, 33, 20, 21] and
dishonest majority [107, 73, 34, 76, 11, 94, 151] settings. The special case of two-party (2PC) in
dishonest majority setting has enjoyed overwhelming focus over the years in terms of improving
its efficiency [147, 150, 145, 2, 163]. In contrast, the special cases of honest majority setting
have not been in the limelight until recently when practically efficient MPC constructions of
[52, 159, 7, 91] leveraged presence of small number of parties. Having honest majority is not
only advantageous since it enables strong desirable security notions of fn and god but also since
it allows us to obtain constructions relying on weaker cryptographic assumptions and light-
weight cryptographic tools. For example, the protocols of [129, 159] are built using symmetric-
key primitives whereas 2PC protocols require Oblivious Transfer (OT) [182, 147, 125]. In this
work, we consider the honest-majority setting for small number of parties (n = 3 and n = 4)

tolerating at most one malicious corruption (¢ = 1). While most works outlined in Section 1.3
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considered round-optimal protocols, we outline the relevant literature related to constant-round

efficient MPC with small number of parties beyond the two-party case below.

4.1.1 Related Work.

The regime of MPC over small population has seen growth both in the domain of low-latency
and high-throughput protocols. Relying on garbled circuits, the unique selling point of the
former is constant rounds and these serve better in high-latency networks such as the Internet.
Whereas, the added edge of the latter category is low communication overhead (band-width)
and simple computations. Building on secret sharing, this category however takes number of
rounds proportional to the depth of the circuit representing the function to be computed. These
primarily cater to low-latency networks.

In the domain of constant-round protocols which is the focus of this work, [159] presents a 3-
round efficient 3-party (3PC) protocol tolerating at most one malicious corruption and involving
transmission and evaluation of a single garbled circuit. Concurrently, in the 3-party setting,
[129] achieves a 2-round protocol whose cost is essentially that of 3 garbled circuits. However,
both these protocols achieve a weaker notion of security i.e sa. In the presence of a broadcast
channel, the 3PC of [159] can additionally achieve ua, albeit for specific class of functions that
give same output to all. The work of [129] presents a 2-round 4-party (4PC) protocol tolerating
single corruption that achieves god in the absence of broadcast channel. Since the focus of [129]
is on minimizing the number of rounds of interaction, the protocol comprises of several parallel
instances of private simultaneous message (PSMs) which when instantiated with garbled circuit
(GC) would sum upto communication of 12 GCs. The recent work of [166] explores the exact
round complexity of 3PC protocols under various security notions including fn and god. While
the protocols are round-optimal, they involve a minimum of 3 GCs. The work of [52] explores
the case of 5-party with two malicious corruptions and relies on distributed garbling approach
of [29] (which is more expensive than Yao’s garbling). Recent paper of [28], improving on the
distributed garbling techniques of [29], proposes an honest majority protocol with n > 3t and
shows practical implementation for 31 parties. The results mentioned above are designed in the
honest majority. [58] studies 3PC in dishonest majority setting. In summary, the most relevant
work that is close to our work efficiency-wise is that of [159] which we compare with.

There have been a flurry of works in the high-throughput domain recently [7, 91, 6, 8]. In 3-
party setting, [7] and [91, 109] presents semi-honest and maliciously secure protocols respectively
that are extremely fast on standard hardware. [8] significantly improves over the protocol of
[91], achieving the computation rate of 1.15 billion AND gates/second. In the 4 party setting,

the work of [109] provides a construction that is secure against one malicious corruption based
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on the dual execution approach. They incur communication of 1.5 bits per party per gate for
boolean circuits and thus offer a performance that is 4.5 times better than that of [8]. [109]

also includes protocol variants for achieving fn and god.

4.1.2 Our Results.

While our contributions appear in detail in Section 1.4.1.2, we give a quick summary below
(illustrated in Tables 4.1, 4.2 as well).

Assuming the minimal model of pairwise-private channels, we present two protocols that
involve computation and communication of a single GC— (a) a 4-round 3PC with fn, (b) a 5-
round 4PC with god. Empirically, our protocols are on par with the best known 3PC protocol
of [159] that only achieves sa, in terms of the computation time, LAN runtime, WAN runtime
and communication cost. In fact, our 4PC outperforms the 3PC of [159] significantly in terms
of per-party computation and communication cost. With an extra GC, we improve the round
complexity of our 4PC to four rounds. The only 4PC in our setting, given by [129], involves
12 GCs. Assuming an additional broadcast channel, we present a 5-round 3PC with god that
involves computation and communication of a single GC. A broadcast channel is inevitable in
this setting for achieving god, owing to the impossibility result of [67]. The overall broadcast
communication of our protocol is nominal and most importantly, is independent of the circuit

size. This protocol too induces a nominal overhead compared to the protocol of [159].

Table 4.1: Theoretical and Empirical Comparison

Ref. # Parties | # GCs | Rounds | Security | Broadcast
[159] 3 1 3 sa X

Our Work [46] | 3 1 4 fn X

Our Work [46] | 3 1 5 god v [67]
[129] 4 12 2 god X

Our Work [46] | 4 2 4 god X

Our Work [46] | 4 5 god X

Table 4.2: Experimental Results

Ref. Computation LAN WAN Communication
(ms) (ns) (s) (kB)
3PC with fn 0.06 — 0.16 0.03 - 0.8 0.21 - 0.5 5.63 — 10.74
4PC with god | 0.19 —2.61 (g) | 0.17 —2.45 (g) | 0.02 (+.49) — 0.31 (+.52) | 18.63 (—.01) — 500.56 (—.1) (g)
3PC with god | 0.16 — 0.3 1.52 -3 - 0.19 (+.02) — 0.46 (+.11)

Table 4.2 shows the overhead or gain (indicated by g) of our protocols compared to the 3PC
of [159] in terms of average computation time, LAN runtime, WAN runtime and communication

cost, where the average is taken over the number of parties and the range is taken over the
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choice of circuits. The increase in the overhead or decrease in the gain for the worst case 5-
round run of our 3PC and 4PC with god is shown in the bracket. With respect to our 4-round
4PC with god, in the worst case run, we save one round at the expense of one garbled circuit
over our H-round 4PC which amounts to a value in the range 72 KB — 1530 KB for the benchmark
circuits.

Roadmap: The preliminaries appear in Section 4.2. Our efficient 3PC protocols achieving fn
and god are presented in Section 4.3 and 4.6 respectively. The 4PC protocol with rounds 5 and
4 appear in Section 4.4 and 4.5 respectively. The experimental results are presented in Section

4.7. The security proofs of the four protocols appear in Sections 4.8.1 - 4.8.4.

4.2 Preliminaries

4.2.1 Model and Notations

We consider a set P of at most four PPT parties, denoted by Py, Ps, P;, Py,. We assume that any
two parties are connected by pair-wise secure and authentic channels. We assume the existence
of a broadcast channel only for the 3PC protocol achieving god. Our model assumes a PPT
adversary A, who can statically and maliciously corrupt at most one party out of the 3 or 4
parties. For any subset X of P, ind(X) refers to the indexes of the parties. For example, when
X ={P, P}, then ind(X) = {1, 2}.

4.2.2 Primitives

In addition to the primitives defined in Chapter 2, we use the following:

Replicated Secret Sharing (RSS) [70, 131] We use a 3-party replicated secret sharing
scheme private against one corruption (1-private). Informally, for a secret s to be shared over
a boolean field Fy, we randomly choose 71, 2 and compute 73 such that s = r; @ ry &1y (where
r3 = s@®r; B ry). We refer to 11,79, 73 as the three shares of s. Each of the 3 participating
parties say Pj, P, P3 are given access to two among the three shares i.e (r9,73), (r1,73) and
(r1,72) respectively. Reconstruction of s is possible by combining the shares held by any two
among the three parties. However, given only the shares of a single party, the distribution of
shares appears random and hence s remains private. We say that two parties say P, P3; hold
consistent shares if 75, = ro where (7, 73) are the shares held by P, and (r1,73) are the shares
held by Py [129].

Pre-Image Resistance Hash [178] Consider a hash function family H: X x M — Y. The
hash function H is said to be pre-image resistant if for all probabilistic polynomial-time ad-
versaries A, given y = Hy(x) where k €r K;z € {0,1}™, Pr[a’ < A(k,y) : Hi(2") = y] is
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negligible in k, where m = poly(k).

Collision-Resistant Hash [178] Consider a hash function family H: K x M — Y. The hash
function H’ is said to be collision resistant if for all probabilistic polynomial-time adversaries
A, given H) where k €r K;z €g {0,1}", Pr[(z,2") + A(k) : (z # 2') A Hj(x) = H(2')] is

negligible in k, where m = poly(k).

4.3 3PC with fn

In this section, we present an efficient fair 3PC protocol that consumes 4 rounds in a network
constituting of only pairwise-private channels. The starting point of our protocol is that of
[159]. In the protocol of [159], Py, P, act as garblers while P acts as an evaluator. The garblers
use common randomness to construct the same GC individually. Since at most one party can be
corrupt, a comparison of GCs received from the garblers allows the evaluator P3 to conclude its
correctness. Besides, P; additively shares his input among the at the beginning of the protocol.
This eliminates the need of oblivious transfer (OT) to transfer the evaluator’s encoded input,
as the garblers can directly send the encoded inputs corresponding to their own input as well as
the share of P3’s input held by them. To force the garblers to input encoded inputs (the keys)
that are consistent with the GCs, the following technique is adopted. Together with the GC,
each garbler also generates the commitment to the encoding information using the common
shared randomness and communicates to the evaluator. Again a simple check on whether the
set of commitments are same for both the garblers allows to conclude their correctness. Now it
is infeasible for the garblers to decommit the encoded input corresponding to their own input
and the evaluator’s share to something that are inconsistent to the GC without being caught.
Following a common trick to hide the inputs of the garblers, the commitments on the encoding
information corresponding to every bit of the garblers’ input are sent in permuted order that is
private to the garblers. Now if evaluation of the GC by Pj is successful, P; computes the output
using soft decoding on the encoded output Y. P5 then sends Y to the garblers, enabling them
to decode the output. For a function where all parties receive same output, depending upon
whether Y is broadcast or sent over pairwise channel, the protocol achieves ua or sa respectively.
Specifically, in the latter case when Y is sent over point-to-point channel, a corrupt P; may
choose to send Y to only one of the garblers, thereby achieving sa.

In the protocol of [159], the only scenario in which fn is violated is when a malicious Pj
computes the output via soft decoding but chooses not to send (or sends wrong) encoded output
Y to the garblers. At a high-level, we overcome this limitation by using oblivious garbling instead

and withholding the decoding information d from P; until he forwards Y. Obliviousness ensures
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that P3 gets no information regarding output as long as d is unknown to him. A corrupt P is
forced to send Y to the garblers if he wants to learn the output, in which case at least one the
garblers P, P also learn the output. Authenticity ensures that P3; cannot forge an encoded
output Y’ # Y such that its decoding is valid. Even if P3; chooses to abort, fn is achieved as
no party learns the output. However, this new step gives rise to the following issues: (a) A
corrupt garbler may send incorrect decoding information to an honest P; who forwarded Y; (b)
A corrupt P; may send the correct encoded output Y (obtained by GC evaluation) to only one
of the garblers. To tackle (a), the garblers are made to commit to the decoding information
which P; can verify by means of cross-checking across garblers. The binding property of the
commitment scheme prevents the corrupt garbler from lying about the decoding information
later. The second issue is trivial to resolve with a broadcast channel. Without a broadcast
channel, each garbler is made to forward the encoded output received from the evaluator to
its co-garbler with a “proof” that he indeed received the encoded output from P;. Without a
proof, a corrupt garbler may “pretend” to have received the encoded output from honest Ps,
whereas in reality P; was unable to evaluate the GC.

We facilitate this “proof” using a preimage-resistant cryptographic hash H function (alter-
nately, one-way function can be used). In Round 1, each garbler P; chooses a random value
r; (which will serve as the proof) and sends its digest h; = H(r;) to the other two parties,
while it sends r; only to P3. In Round 2, each garbler P; forwards the digest received from its
co-garbler (in Round 1) to Ps. For each digest h;, Ps verifies its validity (whether h; = H(r;))
and consistency (whether both garblers are in agreement with respect to h;) and aborts in case
the checks fail. If no abort has occurred, an honest P; who is able to obtain Y upon successful
GC evaluation additionally sends the preimage of a garbler’s digest with the fellow garbler.
This preimage helps a garbler to convince its fellow garbler about the fact that Y (which is also
valid) was received from P;. When an honest P; was unable to evaluate GC, the property of
pre-image resistance of the hash ensures that the corrupt garbler P; will not have access to any
rh such that H(r}) = hs except with negligible probability. Therefore, he will not be able to fool
his honest co-garbler P, to accept. On the flip side, consider a corrupt P; who sends Y to P;
alone. If P; sends any proof, say r to P; that verifies (may not be the same ry received from
Py; note that given ry, it may be possible for corrupt Ps to compute 74 such that H(ry) = hy
since we do not assume H is second-preimage resistant), then P; would check H(7}) = hs holds,
accept the output, forward the proof and the output to P. Importantly, pre-image resistance
suffices for an honest P, who hasn’t received Y from Pj, to conclude that Pj3 is corrupt upon
receiving any r, (may not be equal to ry picked by him) from P; such that H(r}) = hy. Thus,

P; can simply accept output from P;.

108



The protocol f3PC appears in Figure 4.1. We use an eNICOM (Section 2.4.2.1) to commit to
the decoding information. This is due to a technicality that arises in the security proof explained
in Section 4.8.1. Our proofs and proposed optimizations for f3PC which are incorporated in
our implementation are explained subsequently. Lastly, the protocol f3PC cannot be naively
extended to obtain god even in the presence of a broadcast channel (which is necessary due
to [67]). When the evaluator fails to obtain the encoded output, there should be a way to
compute the output which either seems to need more parties to enact the role of the evaluator
and consequently involvement of more than one GCs or seems to require more than four rounds.

We take the latter way-out and design a 5-round protocol in Section 4.6.

—[ Protocol f3PC}

Inputs: Party P, has z, for o € [3].

Common Inputs: The circuit C(z1, z2, x3, x4) that computes f(x1, x2, 3B x4) where x1, x2, 3, T4
as well as function output belong to {0, 1}* for £ € poly(k). Ps is assumed to be the evaluator
and (Pp, P») as the garblers.

Output: y = C(x1,z2,x3,24) = f(21, 22,23 B x4) Or L.

Primitives: § = (Gb, En, Ev, De) that is correct, private, oblivious and authentic, a NICOM (Com,
Open), an eNICOM (eGen,eCom, eOpen, Equiv), a PRG G and a preimage-resistant Hash H.
Round 1:

— Py chooses random seed s € {0,1}" for G and sends s to P.

— P; does the following (Similar steps will be executed by P»): Sample ¢; corresponding to its
share epp; for eNICOM. Compute h; = H(r1), where r1 is chosen uniformly at random. Send
{eppy, h1} to Py and {hi, 71} to Ps.

— P53 samples pp for the NICOM and sends (z31,pp) to Py, (x32,pp) to Ps.
Round 2:

— P;(i € [2]) does the following:
o Compute epp using epp; and the share epp; received from P; (j € [2] \ 7). Forward h;
received from P; to Ps.

o Compute GC (C,e,d) + Gb(1%,C) using randomness from G(s). Assume {KY, K& Yaei

{KY. ., K%+a}ae[g], {KSpi 0 K3ttatacp2q correspond to the encoding information for the in-

put of Py, P> and shares of P3 respectively.
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o Choose permutation strings p1, p2 €r {0, 1}5 for the garblers’ input wires and generate com-
mitments to e and d using randomness from G(s). For b € {0,1}, (c%, o) + Com(pp, eﬁf@”)
(Dyas0b,0) Com(pp,eﬁia ) for a € [(] and (c},,,05,,,) < Com(pp,eb, ) for o € [20].

Let (c,0) < eCom(epp,d). Set B = {epp, C, {cg}ae[u]’be{o,l},c}.

)

— Py computes m; = x1 € p1 and sends to Ps: B, the openings of the commitments corresponding
to (x1,x31) i.e {ogﬁ,oﬁia}aem and my. Similarly, P, computes ms = x5 ® p2 and sends to
Ps: B, the openings of the commitments corresponding to (x2,xs2) i.e {OZ_S;, oggj_ otaclq and

ms.
— P53 does the following computation locally.

o Abort if B or (hy, ha) received from P, P, is not identical or H(r;) # h; for some i € [2].

o Abort if (Xi, Xa,X31,X32) contains L where for o € [(] : X§ = Open(pp, cZ}%,o;”?), Xg =
ms m§ g g sy .
Open(pp, ¢y 0pa ), X531 = Open(pp, ¢y’ 1 0974 o), X32 = Open(pp, €572, 0373 ) -

o Else set X = X1|X2|X31|X32 and run Y « Ev(C, X) for C € B.

Round 3: If Y # 1, P5 sends (Y,r2) to P; and (Y,r1) to P.

Round 4: P; (i € [2]) does the following: Let (j € [2]\i). Execute y <— De(Y,d), compute z = H(r’)
if (Y,r}) received from Ps. If y # L and z = h; (received from P; in Round 1), send o to P and
(y,75) to Pj. Else set y = L.

The parties do the following.

— P53 runs d < eOpen(epp,c,0) where P; received o from P; (i € [2]). For d # 1, P outputs
y < De(Y,d).

— P; (i € [2]) does the following if y = L: If received (y',r;) from Py ; such that H(r;) = h;, set
y=y"

Figure 4.1: Protocol f3PC

4.3.1 Correctness and Security

Theorem 4.1 The protocol f3PC is correct.

Proof: The inputs committed by Pj3 is defined by the shares it distributes to the garblers
in the first round. The inputs committed by the garblers are defined based on their openings
of commitments. The encoded output obtained upon evaluation is based on the committed

inputs. The correctness of the output follows from the correctness of the garbling scheme. O
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While the formal proof is deferred to Section 4.8.1, we give intuition for fn and state the
theorem below. We need to argue that a corrupt party gets the output of the computation
if and only if the honest parties receive the output. For the forward direction assume that a
corrupt party gets the output. Say the evaluator P5 is corrupt. Due to oblivious garbling, P
would obtain the output only if given access to decoding information. This would occur only
if he had sent a valid (Y, 7;) to at least one of the garblers say P, (P; is the co-garbler) i.e.,
De(Y,d) #L and H(r;) = h;. P, would communicate (Y, r;) to P; as well which would be
verified and subsequently accepted by P;. Thus all parties would learn the output. The case
of corrupt garbler, say P, obtaining the output is straightforward - it would occur only in the
case when the honest Pj is able to evaluate the garbled circuit successfully. In this case, it is
easy to see that the honest garbler P, and evaluator P3; would be able to obtain the output
using encoded output and decoding information received from the other respectively.

For the opposite direction, suppose an honest P3 gets the output. Both garblers must have
obtained the output via the encoded output sent by P;. Finally an honest garbler, say P,
who gets the output by decoding Y received from P3, would forward the decoding information
enabling P; to get the output as well. Next, an honest P, would accept the output only if he
has a valid proof r} corresponding to his co-garbler P, i.e H(r}) = hy. This proof would be

verified and output accepted by P,. This completes the intuition.

Theorem 4.2 If one way functions exists, then protocol f3PC securely realizes the functionality

Ftair (Figure 2.3) against a malicious adversary that corrupts at most one party.

4.3.2 Optimizations and generalization

We propose the following optimizations to improve communication efficiency. Firstly, P, and
Ps treat the common message B sent privately to P; in Round 2 as a string B, divided into
equal halves B = B!||B2. P, sends B! and H'(B?) while P, sends H'(B') and B? to P3, where
H' refers to a collision-resistant hash function (definition in Section 4.2) This would suffice for
Pj to verify if Py, P, agree on a common B. This optimization technique not only reduces the
communication, but also improves the latency (transmission time) when both P;, P, run at the
same time [159]. The second optimization is to use equivocal commitment on the hash of the
decoding information (collision-resistant hash), rather than simply committing on the decoding
information.

Our protocol design has a natural extension to more than 3 parties (still for one corrup-
tion) without inflating the round complexity and number of GCs. The generalized protocol

comprises of (n — 1) garblers who use common randomness for garbling and a single evaluator
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who additively shares her input amongst the garblers. For n > 3, the correctness of GC can be

concluded based on majority rule on the GCs received from the garblers.

4.4 4PC with god

In this section, we propose an efficient 5-round 4PC secure against one active corruption,
assuming pairwise channels. Our protocol involves communication and computation of just one
GC, in contrast to the protocol of [129] that requires 12 GCs. We take the route of employing
two garblers and one evaluator as in our fair 3PC protocol. The fourth party simply shares
its input amongst the rest. When the evaluator is honest, our protocol ensures that either an
honest party identifies the corrupt party or a conflict (assured to include the corrupt party), or
the honest evaluator is successful in GC evaluation by the end of Round 2. In the former case,
the honest party would identify at least one honest party, to whom she sends her possessed
input shares in Round 3. We use replicated secret sharing (RSS) that allows reconstruction
of the output based on views of any two (honest) parties. In the latter scenario, the encoded
output obtained upon GC evaluation is instantly used for output computation by all the parties
in Round 3. Thus, in either scenario, at least one of the honest parties will be able to compute
the output latest by Round 3 and everyone will receive it by Round 4. On the other hand, a
corrupt evaluator can drag the honest parties up to Round 4 to reveal its identity. This is the
only case that makes our protocol run for 5 rounds where the last round is used by the honest
parties to exchange their possessed shares to compute the output on clear.

With the above high level idea, we describe a sub-protocol that enforces input consistency
as per RSS and then we present our 5-round protocol g4PC. Each party P; (i € [4]) maintains
a pair of global sets— a corrupt set €; and a conflict set F; which respectively hold identities of

the party detected to be corrupt and pairs of parties detected to be in conflict.

4.4.1 Protocol for Input Consistency

Our protocol InputCommit, that runs for two rounds, enforces input consistency of party F;’s
secret x; as per RSS. Recall that as per RSS for three shareholders, P; makes three shares of
its secret x; as v; = ©p,ep,x;; Where P; = [4] \ 7 denotes the shareholders (i.e. all but F;).
The share x;; goes to all but P, and P;, namely to the set of parties in P;; = P\ {P;, P;}.
Now to ensure that a corrupt FP; remains committed to its secret or a corrupt shareholder P;
later cannot open a share of P; differently, we use commitments on the shares. Namely, in
the first round, commitments on input shares are distributed by P; to all while the openings
are sent only to the relevant shareholders. In the second round, the shareholders exchange

the commitments received in the first round, while the openings are exchanged only with the
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relevant shareholders. A simple majority rule suffices to conclude on the commitment c;; of
the ‘committed’ share x;;. When no honest majority is found, it can be concluded that P is
corrupt and his input is taken as a default value by all parties. When the commitment and the
opening distributed by F; is found to be inconsistent, then P; is identified as corrupt. When
the commitment as distributed by P; and forwarded by P; contradict, then P; and P; are put
in conflict set.

A share z;; is said to be ‘committed’ if each honest P, € P; holds c;; and each honest
Ps € P;; holds o;; such that c;; opens to x;; via 0;;. A secret z; is said to be ‘committed’ if
each of its three shares are committed. An honest party always ‘commits’ to its secret. When
a corrupt party does not commit to a secret, it is either identified as corrupt or found to be in
conflict by at least one honest party. For the commitments, we use a strong NICOM according
to which binding holds even for adversarially chosen public parameter of the NICOM (Section
2.4.2). Looking ahead the strong NICOM ensures that P; itself cannot change its committed
secret later and also cannot keep two different parties on different pages in terms of the opening

information o;;. Protocol InputCommit; appears in Figure 4.2.

—[ Protocol InputCommiti()}

Inputs: Party P; has x; and others have no input.

Notation: P; and P;; denote the set P\ P; and respectively P\ {P;, P;}. ind(S) denotes the set of

indices belonging to the parties in a set S.

Output: Fach Pk < ‘Pz outputs ({Cij}jeind(?i% {oij7xij}jeind(?,-k)7 Gk, ka) {cij,oij} denote the com-
mitment and opening of the share x;;. € and Jj, denote the corrupt and conflict set respec-

tively.

Primitives: A NICOM (sCom,sOpen) with strong binding property (Section 2.4.2), a 3-party 1-
private RSS (Section 4.2).

Round 1:
— P; shares his input as x; = @j¢ind(p;)Tij-

— P; samples pp; and generates commitments on shares x;; for j € ind(P;) as (c;;,045) <= sCom(pp;, 4;

— For every x;;, P; sends (pp;,cij) to P; and o;; to Pj;.
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Round 2: With respect to every share x;;, every Py in P;; sets Cp = {F;} if sOpen(pp;, c;j,0i5) =
L. Otherwise, Py, forwards (pp;,c;;) to P; and o;; to P;;. Now P, does the following local

computation.

— Set C, = {P} if P, forwards an invalid opening i.e sOpen(pp;, ¢;;,0;;) = L holds for (pp;, c;j,0i;)
sent by P,.

— Set F, = {P;, P} if (pp;, cij) received from P; and forwarded by P; do not match.

— Set C; = {F;}, if there is no majority among the versions of (pp;,c;;) forwarded by the parties
in P;. If P, € Pyj, set zj; to a default value (and commitments are assumed appropriately).
Otherwise, set (pp;,c;;) as the majority value, o;; as the corresponding opening, and z;; =

sOpen(pp;, Cij) Oij)'

Figure 4.2: Protocol InputCommit;()

Lemma 4.1 If P, is honest, its chosen input x; is committed in InputCommit;.

Proof: Since the corrupt party forms a minority in P;, irrespective of its behaviour in Round

2, every z;; and therefore x; remains committed. O

Lemma 4.2 When corrupt P; misbehaves, it belongs to either C; or F; of some honest P; by

the end of InputCommit;.

Proof: For the jth (j € ind(P;)) share of P;, it can misbehave in the following ways: (a)
P; sends different versions of (pp;,c;;) to the parties in P;; (b) P; sends invalid opening o;; (or
does not send any opening) to some party in P;;. In the former case, all the honest parties will
populate their corrupt set if there is no majority in P;’s commitments else they populate their
conflict set with a pair, consisting of P;. In the latter case, the honest recipient of the invalid

opening will include P; in its corrupt set. So the lemma holds. O

Lemma 4.3 FEither corrupt P; ‘commits’ to an input or all honest parties agree on a default

value by the end of InputCommit,.

Proof:  For the jth (j € ind(P;)) share of P;, there are two cases based on whether P,
sends the same common message (pp;,c;;) to at least two among the parties in P; with valid
corresponding opening o;; sent to every party in P;;. If not, the exchange of messages among
the honest parties in Round 2 will not constitute a majority and all the honest parties would

detect P; to be corrupt and a default value will be taken as z;;. Else, ¢;; would be accepted as
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the commitment for the jth share. The exchange of opening o,; among the parties in P;; ensure
that they have access to the corresponding unique committed share x;;. The uniqueness of the

share is ensured by the binding property of commitment scheme. a

4.4.2 Our protocol

Without loss of generality, P;, P, take the role of garblers and P enacts the role of evaluator in
our protocol g4PC. In parallel to running the input commitment sub-protocol for every party
P;, protocol g4PC, in similar spirit to our previous protocols, proceeds by having the garblers P;
and P, share and utilize common randomness to compute individually the same garbled circuit
and permuted commitments of the encoding information corresponding to the three shares of
the inputs of all the parties. The permutation strings are used for all the shares for the sake of
uniformity. Then the strings corresponding to the shares possessed by an evaluator are simply
disclosed to her, emulating the case in the three-party protocols where no permutation string is
needed for the shares of an evaluator to protect them from a bad garbler. As per RSS, a party
P, would ideally hold the shares {z;}ic(4) jeind(?:,) that include its three shares {xq;} ep, and
the two designated shares {z;;};cp,, of every other party P, by the end of Round 1. Note that
the latter shares may not be the committed ones and final committed values may differ by the
end of Round 2 (say, if the majority turns out to be different or if a default value is assumed).

In the second round, while the garblers send the GCs, committed encoding information in
permuted order, the relevant permutation strings on clear, the opening of the shares held by
it, an evaluator checks the sanity of the received information, often leveraging the fact that at
least one of the garblers is honest and would have computed the information correctly. The
round-saving trick of composing the input commitment with the release of the encoded inputs
for the shares in parallel leads to release of encoded inputs for non-committed shares, which in
turn results in evaluation of the circuit on non-committed inputs. Evaluating the circuit only
when no corrupt and no conflict is detected by the end of Round 2 would solve the problem for
an honest evaluator, as this ensures encoded input for committed shares alone has been dealt.
The trick to prevent a corrupt evaluator from getting output on non-committed inputs is to
withhold (yet commit in Round 1) the decoding information for an oblivious garbling scheme
and release the (hash of) decoding information only upon a confirmation that an encoded
output is computed using committed inputs. The simple check that a corrupt evaluator has
no conflict with any of the garblers ensures that the garblers must be in possession of the
committed shares of the corrupt evaluator by the end of first round itself and so the released
encoded inputs correspond to the committed shares (and the encoded output corresponds to

committed inputs).
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The repetitive disbursal of shares in RSS brings along another issue. Both the garblers
possess the share x34. An evaluator receives encoded input for these shares from both the
garblers, as per the protocol. A corrupt evaluator P; can exploit this step to obtain encoded
inputs for two different versions of the share 3, (by dealing to the garblers) and subsequently
evaluates the circuit on multiple inputs. While having the decoding information hidden would
not leak the clear outputs, the corrupt evaluator, on holding the the encoded outputs, can
conclude if its two different chosen inputs lead to the same output or not. While the issue is
very subtle, the fix is quite easy where only one pre-determined garbler is given responsibility
of releasing the encoded input for the common share x34. In order to avoid repeated disclosing
of encoded outputs of the common shares between the garblers, this approach is taken for all
the common shares, namely {x13, 214, To3, Tog, T34, T43}. To balance load, we ask P; to open
encoded inputs for {z13, 214, 234} and P, to take care of the rest.

In Round 3, if any party identifies the corrupt or any conflict, it sends the openings for
all the shares that it possesses from the input commitment protocol to a party who remains
outside the corrupt and conflict sets and thus guaranteed to be honest. This special party is
denoted as TTP who takes care of reconstructing all the inputs and computing the output on
clear and lastly handing it over to all the parties in the next round. Even a corrupt evaluator
cannot make an honest TTP to compute an output on anything other than committed inputs.
The strong binding property of the commitments does not allow a corrupt evaluator to change
its own committed shares. To disambiguate about the identity of TTP, a party when disclosing
its opening to its selected TTP notifies the identity of the designated TTP to all. When a TTP
takes responsibility, all the parties safely accept the output relayed by the TTP in the next
round, for a TTP is never corrupt. An honest party will never elect a corrupt party as a TTP
and a corrupt evaluator does not have a corrupt companion to enact a TTP. Therefore, if an
honest party elects a TTP in Round 3, all terminate the protocol with output by Round 4.
On the other hand when no conflict and no corrupt is detected, an honest evaluator computes
the encoded output and forwards the same to the garblers in Round 3. Similarly, an honest
garbler opens the (hash of) decoding information to P; and P;. We use preimage-resistant hash
to enable P3 and P, to compute the output while preserving the authenticity of the garbling
scheme. For an honest evaluator, then all parties compute the output by the end of Round
3 itself via the encoded output and decoding information. A corrupt evaluator, however, can
keep the honest parties on different pages in terms of the identity of TTP, while not disclosing
its possessed shares to anyone. In this case, the honest parties realize that the evaluator Ps is
corrupt earliest at the end of Round 4. They can then exchange their shares in Round 5 to

compute the output on clear like a TTP does. The protocol appears in Figure 4.3.
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—[ Protocol g4PC()]

)
Inputs: Party P, has x, for a € [4].

Common Inputs: The circuit C(x1, 2, 3, r4) that computes f(z12Dx13DT14, T21 DT23 P24, 31D
x32 @ T34, 41 B Ta2 D w43) each input, their shares and output are from {0, 1}4. P53 is the

evaluator and (Py, P,) are the garblers.
Output: y = C(x1, x2, 23, 74)

Primitives: § = (Gb, En, Ev, De) that is correct, private, oblivious and authentic, a NICOM (Com,
Open), a PRG G, a preimage-resistant Hash H and sub-protocol InputCommit, (Figure 4.2)
for every P, € P.

Round 1: Round 1 of InputCommit, () for every P, € P is run. In parallel,

— P; chooses random seed s €r {0,1}" for G and sends s to P.
— P3 samples pps for NICOM and sends to P, P.

Round 2: Round 2 of InputCommit, () is run. In parallel,

— P,(g € [2]) locally computes the following:

o Compute garbled circuit (C,e,d) « Gb(1%,C) using randomness from G(s). Assume

{K2 Ké}ae[%]v {Kgua’ K§€+a}a€[3€]v {K8£+a’ Kéz+a}a€[3f]v {K8€+a’ KSI)Z—&-Q}OZE[?)E] correspond
to the encoding information for the input shares of Py, P,, P3, Py respectively (w.l.o0.g).

o Let p;; €g {0,1}* be permutation string for input wires derived from randomness G(s)
corresponding to P;’s shares i.e {Zi;}jeina(p,) for i € [4] and p; < ||jeind(2,)Pij-

o Generate commitments to e and d using randomness from G(s). For b € {0,1} and

Db a2 Dh
a € [36], compute (c4,0%) < Com(pps,€a’ ), (Bryns0%1a) < Com(pps, ey ), (CBryas

e
QDb aph
Og“_a) — Com(pp3,e§2+a), (cge+a,og£+a) — Com(ppg,egz%Jra). Let (c,0) < Com(pps, H(d)).
Set B = {C,{ch}aen2gpefo,1} ¢ {Pij bicp) jeind(@is) } Where {pij}icia) jeind(pss) refer to the

permutation strings of wires corresponding to the shares known to Ps.

— Py(g € [2]) sends B to P3 and c to Py. If €, = ), P, sends the openings of the commitments in B
corresponding to {x;; }i€[4]7j€ind(fpig) i.e the input shares that it holds at end of Round 1 and
My = {mij}z‘e[4},jeind(ﬂ>ig) where mag = pag ® o The common shares, however, are opened
by one garbler. The openings corresponding to commitment of {x13, 14, 34} are sent only by

Py. The openings corresponding to commitment of {xo3, 24, 243} are sent only by Ps.

— Pj5 locally does
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o Add {Py, P,} to F3 if B received from Pj, P, is not identical.

o If @3 = F3 = () (indicating no conflict with the garblers so far), then (a) add P, to C3 (g € [2])
when the indices {mi; = pij © Tij }ic(a) jeind(Pss), cOMputed using its version of x;; and p;j,
received from P, mismatches with {m;;}ic(4) jeind(?,5) Teceived from Py; (b) add (Py, P») to

F3 when My, My received from them is not consistent w.r.t. {mis, mi4, ma3, Moy, M34, M43}

o If @3 = F3 = 0, then add P, to C3 when any of the openings sent by P, (g € [2]) results to
L. Otherwise, it sets X = |[;c(4,jeind(?,)Xij, Where X;; contains encoded input for x;; and
computes Y «+ Ev(C, X) with C € B.

— Py locally adds {Py, P>} to Fy if ¢ received from them do not match.
Round 3:

—IfCo #0DV Ty # 0, Py (o € [4]) sends Vo = {045 }ici4] jeind(P) t0 Ps where Pg ¢ €, UJF, and
(TTP, 8) to all.

- Ife¢,=%,=0, P, (g €[2]) sends o to Ps, Py.
— IfC3=F35=0, P3ysends Y to P, P> and Pj.

— If Py (a € [4]) receives Vg from Pg in Round 3, it uses Vg to open its missing shares {ia }ic[4)\ {a} -
If one of the opening leads to L, set €, = Pg. Else compute y = f(Djcind(p,)71> Cind(P2) 727>
Dind(P3) L35> Dind(P4) Tdj)-

— If P, (g € [2]) receives Y from P3 such that P; ¢ €4 and (Ps, P1), (P3, P2) ¢ J4, then compute
y < De(Y,d). If P, receives Y as above and o from one of the Pys, it computes y after recovering

H(d) < Open(pp,c,0). If P1/P5/ Py receives invalid Y, they populate their respective corrupt
set € with Ps. If Ps receives o, then it computes H(d) and subsequently y.

Round 4:
— If P, computed y, it sends (y, TTP) when elected as TTP and y otherwise to all and terminates.

— If (TTP, ) is received in Round 3 and (y, TTP) is received from Pg, a party P, outputs y and
terminates. If only the former condition is true, then P, identifies the sender of the message
(TTP, 3) as corrupt.

— If €, # 0 and y is received from a party not in C,, P, outputs y and terminate.

Round 5: If P, (a € [4]) has not terminated yet, it sends its view V,, to every party in P\ C,. On

receiving Vg from some Pg ¢ C,, it computes y as a TTP does and terminates.

Figure 4.3: Protocol g4PC()
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4.4.3 Correctness and Security

We prove the correctness via a sequence of lemmas.
Lemma 4.4 For honest P, P;, P; ¢ C; holds.

Proof:  An honest P; would add P, to €, if one of the following are true: (a) During
InputCommit; if either there is no majority among the version of (pp;,c;;) received from the
set of parties P; or P; receives an invalid opening corresponding to commitment on input share
from P;; (b) garbler P; sends labels inconsistent with the message that it sent to evaluator P;
in Round 1; (c) garbler P;’s opening of committed encoded input of GC sent to evaluator P;
fails; (d) evaluator P; sends an invalid Y to Pj; (e) P, assigns P; to be the TTP and sends V;
comprising of invalid openings of committed shares; (f) P; received (TTP, ) from P; but no
output is received from Ps in Round 4. Since none of the above can occur for honest P; and
P;, the lemma holds. a

Lemma 4.5 A pair of honest parties cannot belong to F; of an honest P;.

Proof: An honest P, would add (P, P;) to JF; if one of the following holds: (a) During
execution of InputCommit;, the versions of P;’s commitment on its input shares received by P
from P; and P, were inconsistent (analogous condition w.r.t. InputCommit,); (b) when (P}, Py)
are garblers, P, = P, and o received from P}, Py is not identical; (c) (P}, Py) are garblers, P; = P;
and: (c.1) B received from P;, Py is not identical (c.2) when &F; = () at the end of of all the
four executions of InputCommit but the indices received by P; from the garblers corresponding
to the common shares held by them do not match i.e when M;, M, received from them is not
consistent. It is easy to verify that cases (a), (b) and (c.1) cannot occur for honest P;, Pj.
Regarding case (c.2), the argument follows from the fact that P;, P, must be in agreement
with respect to corrupt party’s (say P;) input shares at the end of Round 1 itself. If not, then
the version forwarded by at most one among (P}, Py,) (say P;) during InputCommit; can match
with the one P; received by P, leading to P; populating F; with {P,, P,}. This contradicts
the assumption in case (c.2) regarding F; = ) at the end of of all executions of InputCommit;

completing the proof. O

Lemma 4.6 The encoded output Y computed by an honest P corresponds to the committed

inputs of all parties.
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Proof: An honest P; evaluates the GC and computes Y when both F3 and C3 are empty. This
implies that the corrupt party ‘commits’ to its input in Round 1 of its InputCommit instance
(by Lemma 4.2). We can thus conclude that the honest garbler would possess committed input
shares of all parties at the end of Round 1 itself and open the encoded inputs accordingly. A
potentially corrupt garbler is forced to send the encoded inputs corresponding to committed
inputs. Because— (a) if corrupt garbler tries to open different encoded inputs for the shares
known to Ps, then he is added to Cs; (b) if it tries to open different encoded inputs for the
shares not known to Pj3, then P; would add the pair of garblers to F5. Thus, in either case, P3

does not evaluate as at least one among F3, C3 is non-empty. O

Lemma 4.7 If the encoded output Y of a corrupt evaluator P is used for output computation

by an honest garbler, then it must correspond to committed inputs of all parties.

Proof: An honest garbler, say P, releases the opening information o for H(d) and uses the
encoded output Y (such that De(Y,d) # L) received from evaluator P; to compute output
if P; ¢ C, and (P35, P,),(Ps, ) ¢ JF,. Lemma 4.2 implies that P; did not misbehave in
InputCommit, at all and has committed a unique input in Round 1. This implies that P;
receives encoded inputs for committed shares and authenticity ensures that Y corresponds
to the committed inputs of all the parties. Note that authenticity of the garbling scheme is
preserved since Pj receives only the preimage-resistant hash of the decoding information in the
form H(Yy)||H(Y1) corresponding to each output wire (enabling P; to compute the output).
Here, Yy, Y; refer to the labels for values 0 and 1 respectively corresponding to an output wire.
O

Lemma 4.8 Protocol gdPC is correct.

Proof: We argue that the output y computed corresponds to the unique inputs committed
by each P; (i € [4]) during InputCommit,. It follows from Lemmas 4.3, 4.1 respectively that
a corrupt party is forced to commit to a unique input and the honest parties’ inputs are
established as the committed inputs with public commitments by the end of parallel executions
of InputCommit. According to the protocol, an honest party P, computes output in one of the
following ways: (a) via decoding the encoded output Y; (b) via the V4 received from Ps on
being elected as TTP; (c) on receiving y from an honest party; (d) on receiving (y, TTP) from
Pz and (TTP, ) from some other party. In case (a), irrespective of whether P is honest or
corrupt, correctness follows from Lemma 4.6-4.7. The strong binding property of commitment

scheme implies the output computed in case (b) is correct irrespective of whether Pg is honest
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or corrupt. The correctness for case (c) follows from case (a) and the fact that the message
was received from an honest party. The last case is argued as follows. The chosen TTP, Pg, is
honest, irrespective of whether the message (TTP, ) is received from a corrupt or an honest
party. While the former follows from the fact that a corrupt party does not have a corrupt
companion to elect, the latter follows from Lemma 4.4-4.5. Now the correctness follows in case
(d) from case (b). 0
While the full proof of security appears in Section 4.8.2, we provide intuition for guaranteed
output delivery and state the theorem below. If the corrupt party misbehaves in one of the
InputCommit instances or while communicating the GC and openings on commitment of input
labels (as a garbler in round 2), then an honest party invokes TTP on identifying the corrupt
or detecting a conflict in Round 3. All the parties get output in Round 4. Otherwise, if P; is
honest and gives out Y, then all the honest parties compute output by the end of Round 3 itself
using hash of the decoding information sent by one of the garblers and Y. A corrupt P3 can
neither receive decoding information for his non-committed input nor convince honest parties
about the corresponding Y. If Y corresponds to its committed input but it sends it only to
some honest party or none, the remaining honest parties will receive output from the honest

party who receives Y or through Vgs sent by other honest parties in Round 5.

Theorem 4.3 Assuming one-way permutations, protocol gdPC securely realizes the function-

ality Fgoq (Figure 2.4) against a malicious adversary that corrupts at most one party.

4.4.4 Optimizations

The communication efficiency of our g4PC can be boosted similar to as described for f3PC in
Section 4.3.2.

4.5 4PC with god in four rounds

In this section, we propose an efficient 4-round 4-party protocol secure against one active
corruption, assuming pairwise channels. Deviating from the approach of [129, 159] and our
proposals for 3PC and 4PC, we explore the setting of multiple evaluators, namely two evaluators
and two garblers. With a guarantee of an honest evaluator, this protocol achieves guaranteed
output delivery at the expense of communication and computation of two copies of the same
GC.

The protocol ensures that the honest evaluator is either successful in GC evaluation or some
honest party identifies a corrupt party or a pair of parties in conflict (assured to include the

corrupt party) by the end of Round 2. In the former case, the encoded output obtained upon
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GC evaluation is used for output computation in Round 3 itself. In the latter case, the honest
party, having identified at least one honest party, sends his possessed input shares in Round 3.
The use of replicated secret sharing (RSS) allows reconstruction of the output based on views
of two honest parties by the end of Round 3. All parties obtain output by the end of Round 4.

The single evaluator and three garblers approach seems to require a minimum of 5 rounds
(when the evaluator is corrupt) while requiring the same amount of communication. With the
above high level idea, we proceed to present our protocol. We reuse the protocol for input
consistency (Figure 4.2). Similar to our gdPC protocol, each party P; (i € [4]) maintains a pair
of global sets— a corrupt set C; and a conflict set F; which respectively hold identities of the

party detected to be corrupt and pairs of parties detected to be in conflict.

4.5.1 Our protocol

Without loss of generality, P, P, take the role of garblers and P3, P, enact the role of evaluators
in our protocol g4PC4. We reuse most of the tricks from our 5-round protocol and leverage
the presence of an honest evaluator. Specifically, the corrupt evaluator, unlike in our 5-round
protocol, cannot drag all the honest parties all the way to Round 4 for its detection. If everything
goes as per the protocol and so no honest party elects a TTP in the end of Round 2, the honest
evaluator must be able to compute the encoded output Y by the end of Round 2 and help all
to get the output in Round 3. Otherwise, all the parties get output via a TTP by Round 4.
The presence of an additional evaluator needs communicating one extra copy of the GC. We

present the protocol gdPC4 in Figure 4.4

—[ Protocol g4PC4()J

Inputs: Party P, has z, for a € [4].

Common Inputs: The circuit C(x1, z2, 3, x4) that computes f(x12Dx13Dx14, T21 DT3B T4, 31D
X392 D T34, 41 D T4 D x43) each input, their shares and output are from {0, 1}5 . P53, P, are the

evaluators and (Pp, P,) are the garblers.
OUtput: Yy = C(xly X2, 3, IZ?4)

Primitives: § = (Gb, En, Ev, De) that is correct, private, oblivious and authentic, a NICOM (Com,
Open) a PRG G, a 3-party l-private RSS, pre-image resistant Hash H and sub-protocol
InputCommit,, (Figure 4.2) for every P, € P.

Round 1: Round 1 of InputCommit, for every P, € P is run. In parallel,

— Py chooses random seed s € {0,1}" for G and sends s to Ps.
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— P, (v € {3,4}) samples pp, for NICOM and sends to P, Ps.
Round 2: Round 2 of InputCommit, is run. In parallel,

— Py(g € [2]) locally computes Bj exactly the way B is computed in Protocol g4PC. It also computes

B4 with respect to pp, in a similar way.

— Py(g € [2]) sends Bz to P3. If €, = (0, P, sends the openings of the commitments in B3 cor-
responding to {xij}ie[4}7jeind(g)ig) i.e the input shares that it holds at end of Round 1 and
My = {mz‘j}z’e[4],jeind(ﬂ>ig) where mqg = pag ® Tag. Analogous steps are executed with respect
to Py. The common shares, however, are opened by one garbler. The openings correspond-
ing to commitment of {x13,x14,234} are sent only by P;. The openings corresponding to

commitment of {xo3, o4, x43} are sent only by P.
— P, (v e {3,4})) local computation step is same as that of P3 in g4PC (with respect to C, and F,).

Round 3:

— I Cy #DVTFo #0, Po (o € [4]) sends Vo = {04;}iciu),jeind(p,n) 10 Ps where P ¢ Co U Fy and
(TTP,B) to all.

- IfCy=3,=0, P, (g €[2]) sends o to Ps, Py.

- Ife,=9,=0, P, (ve{3,4}) sends Y to all.

If P, (a € [4]) receives Vg from Pg in Round 3, it uses Vg to open its missing shares {Zia }ic[a)\ {a}-
If one of the opening leads to L, set €, = Pg. Else compute y = f(Djcind(p,)T15> Dind(P2)T27>
Dind(P5) L3> Dind(P4)Tdj)-

— If Py (g € [2]) receives a valid Y from P, such that P, ¢ C, and (P,, P1), (P, ) ¢ Fy, then

compute y < De(Y,d). If P, receives o from one of the Pys, it computes y after recovering

H(d) < Open(pp, c,0).
Round 4:

— If P, computed y via being elected as TTP, it sends (y, TTP) to all and terminates.

— If (TTP, ) is received in Round 3 and (y, TTP) is received from Pg, a party P, outputs y and

terminates.

Figure 4.4: Protocol g4PC4()
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4.5.2 Correctness and Security

The proof for correctness appear below.
Lemma 4.9 For honest P, P;, P; ¢ C; holds.

Proof: The proof follows directly from the Lemma 4.4. O
Lemma 4.10 Consider honest P;. A pair of honest parties cannot belong to F;.

Proof: An honest P, would add (P, P;) to F; if one of the following holds: (a) During
execution of InputCommit;, the versions of P;’s commitment on its input shares received by P
from P; and P were inconsistent. (Analogous condition wrt InputCommit,) (b) When (P, Py)
are garblers, P; is evaluator and: (b.1) B, received from P;, P is not identical (b.2) When
F; = 0 at the end of all executions of InputCommit,,(m € [4]) but the indices received by P,
from the garblers corresponding to the common shares held by them do not match i.e when
M;, My, received from them is not consistent. It is easy to verify that cases (a) and (b.1) cannot
occur for honest P;, P,. For case (b.2), the argument follows from the fact that P;, P, must
be in agreement with respect to corrupt party’s (say P,) input shares at the end of Round
1 itself. If not, then the version forwarded by atmost one among (F;, P;) (say F;) during
InputCommit; could match the one P; received by P, leading to P; populating F; with {P,, P;}.
This contradicts the assumption in case (b.2) regarding F; = () at the end of of all executions

of InputCommit; completing the proof. a

Lemma 4.11 The encoded output Y computed by an honest evaluator corresponds to the com-

mitted inputs of all parties.

Proof: Consider an honest evaluator P;. If ¢« = 3, the proof follows exactly as described in
Lemma 4.6. Else if ¢ = 4, the proof of Lemma 4.6 still holds, except in that Ps, F3, C3 are
replaced with Py, 3y, C4. O

Lemma 4.12 If the encoded output sent by a potentially corrupt evaluator is used for output

computation by an honest garbler, it must correspond to committed inputs of all parties.

Proof: Similar to our g4PC protocol, an honest garbler, say P, uses the encoded output Y
(such that De(Y,d) # L) received from evaluator P, to compute output only if P, ¢ €, and
(P,, P1),(P,, P») ¢ F, at the end of round 2. Correspondingly, if ¢, = F, = (), P, would

also send o to both the evaluators in round 3. This ensures that Y corresponds to committed
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inputs as follows: Although P, may be corrupt, however, Lemma 4.2 implies that P, did not
misbehave in InputCommit, at all and has committed a unique input in Round 1. As a result,
P, receives encoded inputs for committed shares and authenticity ensures that Y corresponds
to the committed inputs of all the parties. Note that authenticity of the garbling scheme is

preserved since P, receives only the preimage-resistant hash of the decoding information. O
Theorem 4.4 Protocol gdPC4 is correct.

Proof: We argue that the output y computed corresponds to the unique inputs committed
by each P; (i € [4]) during InputCommit,. It follows from Lemmas 4.1, 4.3 that a corrupt party
is forced to commit to its input and the honest parties’ inputs are established as the committed
inputs with public commitments by the end of parallel executions of InputCommit. According
to the protocol, output computation is done by one of the following cases: (a) by decoding the
encoded output Y sent by an evaluator (b) by V,, received from P, on being elected as a TTP.
(c) by receiving (y, TTP) from a party Ps when (TTP, 8) was received in round 3. Case (a)
follows directly from Lemma 4.12 and 4.11. In case (b), since the TTP is honest, the strong
binding property of commitments established by Round 2 ensures the correctness of output
computed by the TTP, irrespective of whether P, is honest or not. For case (c¢), the chosen
TTP, P, is honest, irrespective of whether the message (TTP, 3) is received from a corrupt or
an honest party. While the former follows from the fact that a corrupt party does not have a
corrupt companion to elect, the latter follows from Lemma 4.10 and 4.9. Now the correctness
follows in case (c) from case (b). O
While the sketch of proof of security appears in Section 4.8.3 (the full proof and intuition
for achieving guaranteed output delivery is similar to our 5-round 4PC), we state the theorem

below.

Theorem 4.5 Assuming one-way permutations, our protocol gdPC4 securely realizes the func-

tionality Fgoa (Figure 2.4) against a malicious adversary that can corrupt at most one party.

4.5.3 Optimizations

The communication efficiency of our gdPC4 can be boosted similar to as described for f3PC in
Section 4.3.2. Additionally, computation of commitment on encoding information by a garbler
wrt pp (for NICOM) sent by each of the two evaluators can be avoided as follows: P; alone
chooses pp used for commitment on encoding information and sends pp to all. The message
from garblers can include pp, allowing P, to check if the garblers and Pj are in agreement with

respect to pp or populate the conflict set accordingly based on mismatch.
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4.6 3PC with god

In this section, we describe our efficient 3PC protocol, g3PC with god. This protocol nec-
essarily requires a broadcast channel [67]. In accordance with our goal of computation and
communication efficiency, the broadcast communication complexity of our (optimized) protocol
is independent of circuit size. In terms of communication over private channels, g3PC involves
a single GC and is therefore comparable to [159].

Starting with the protocol of [159], the main idea of our protocol is centered around the
following neat trick. In a situation where it is publicly known that a pair of parties is in conflict,
it must be the case that one among the two specific parties is corrupt. It follows that the third
party is honest and therefore entitled to act as the trusted-third party (TTP). Suppose such
a TTP is established during the protocol, the other parties send their inputs on clear to this
TTP who computes the function on direct inputs and forwards the output to all. Banking on
this intuition, we now proceed to give a high-level description of our protocol.

In the first round, similar to f3PC, P5 shares his input while the garblers agree upon common
randomness. In round 2, garblers broadcast the common message computed using shared
randomness, namely the GC and commitment on encoding information. Additionally, the
garblers privately send the opening of relevant commitments, namely corresponding to their
own input and the input share of P; held by them. If the broadcast messages are identical and
openings are valid then P; can begin evaluating the GC. However, if the broadcast messages
mismatch, it can be publicly inferred that P;, P, are in conflict and therefore Pj is eligible to
enact the role of TTP. We extend this idea to the case when broadcast messages are identical
but P5 locally identifies one of the garblers to be corrupt. In this scenario, say P; identified P
to be corrupt. Then, P; makes this conflict public in Round 3 via broadcast. Consequently P;
is entitled to act as the TTP. The protocol ensures that if Pj fails to evaluate the GC, a TTP
is established at most by Round 3. If the TTP is established, the parties send their inputs on
clear to the TTP in Round 4 who computes and subsequently sends the output to all in the
final round of the protocol.

An issue that surfaces in the above approach is that a corrupt P; who has successfully
evaluated the GC with respect to his input z3 shared in the round 1, might pretend to be in
conflict with one of the garblers, say P,. Now P; would be established as the TTP. P; can
now send x4 # 3 to Py and get the output corresponding to z% as well. This violates security
since P3 gets outputs corresponding to his two chosen inputs. To handle this, we adopt the
following strategy: The evaluator P5 broadcasts the commitment on his shares in Round 1 and

sends the openings of shares to the respective garbler. A garbler who receives invalid opening is
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allowed to publicly raise a conflict with P5 in Round 2, establishing his co-garbler as the TTP.
If valid openings are issued, P3 is committed to each of his shares and therefore his input. The
binding property of commitment ensures that the TTP computes output with respect to Ps’s
shares distributed in Round 1. Tying up the loose ends, if P; is identified to be corrupt by both
garblers, then P; is chosen to be the TTP by default.

In a nutshell, P3 acts as TTP only when common message broadcast by garblers are not
identical. Contrarily, a garbler, say Py, is TTP when either P; locally identified P, to be corrupt
at the end of Round 2 (due to invalid opening of commitment on encoded inputs) or P, found
P5 to be corrupt at the end of Round 1 (inconsistent opening of commitment of P3’s input share
sent to P»). Also, P; is chosen as TTP by default when both garblers identify P; to be corrupt.
The formal description of the protocol appears in Figure 4.5 and its proofs appear below. Our

proposed optimizations which are incorporated in our implementation are given below.

—[ Protocol g3PC}

Inputs: Party P, has z, for a € [3].

Common Inputs: Same as f3PC.
Output: y = C(x1,z2,x3,24) = f(21, 22,23 D x4)

Primitives: A garbling scheme § = (Gb, En, Ev, De) that is correct, private and authentic with the
property of soft decoding, a NICOM (Com, Open) and a PRG G.
Round 1:

— P chooses random seed s € {0,1}" for G and sends s to Ps.

— Py picks 231,230 € {0,1} with 23 = 231 @ x33. P3 samples pp for NICOM and gener-
ates (c31,031) < Com(pp, x31), (c32,032) < Com(pp, x32), broadcasts {pp, c31,c32} and sends

(231,031), (32,032) to Pp, P» respectively.

Round 2:
— P;(i € [2]) broadcasts (Conflict, P3) if Open(cs;, 03i) # x3;. Else, it does the following:

o Compute GC (C,e,d) <+ Gb(1*,C) using randomness from G(s). Assume {KY, KL }oci
{K2+a, K}Jroé}aem, {K8£+a’ K%@ra}ae[ﬂ] correspond to the encoding information for the in-
put of P;, P» and the shares of Ps respectively (w.l.o.g).

o Compute permutation strings p1,p2 €r {0, 1}5 for the garblers’ input wires and generate

: : o@b
commitments to e using randomness from G(s). For b € {0,1}, (c2,0%) «+- Com(pp,eh' "),
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ey
(02+a,02+a) — Com(pp,efia ) for a € [¢] and (cg€+a,og”a) — Com(pp,egua) for a € [27].

Set B; = {C, {Cg}ae[u],be{o,l}}- Broadcast B;.

o P; computes m1; = x1®p; and sends to P3: the openings of the commitments corresponding
to (x1,x31) i.e {OZL?, o;;‘;jra}ae[g] and mq. Similarly, P, computes mo = x5 P ps and sends to
Ps: the openings of the commitments corresponding to (x2,x32) i.e {ogfa, o§§j_a}a€m and

ma.

— Every party sets TTP as follows. If exactly one P;(i € [2]) broadcasts (Conflict, P3) in Round
2, set TTP = Ppg\;. If both raise conflict, set TTP = P. If By % By, set TTP = Ps.

Round 3: If TTP = (), P3 does the following:

o Assign X{ = Open(pp, cgﬁ,o;n?) and X§, = Open(pp,c;;?ia,oggjra) for a € [f]. Broadcast
(Conflict, Py) if Open results in L

o Assign X§ = Open(pp, cﬁa,ofa) and X§, = Open(pp,cggia,oggia) for « € [¢]. Broadcast
(Conflict, P») if Open results in L

o Else, set X = X;|X2|X31|X32, run Y < Ev(C, X) and y < sDe(Y). Broadcast Y.

If P3 broadcasts (Conflict, ), then set TTP = P ,;. If TTP = () and P53 broadcasts Y, P; (i € [2])
does the following: Execute y <— De(Y,d). If y = L, set TTP = P;.

Round 4: If TTP # 0: P; (i € [2]) sends z; and og; (if valid) to TTP. Ps sends 031,032 to TTP.

Round 5: TTP computes z3; = Open(cs;, 03;) using openings sent by Py, P, (if available), else uses
the openings sent by Ps. If valid opening is not received, a default value is used for shares of x3.
Compute y = f(z1,z2, 231 ® z32) and send y to others.

Every party computes output as follows. If y = L and received 3/ from TTP, set y = ¢/.

Figure 4.5: Protocol g3PC

4.6.1 Correctness and security

Below we give the proof of correctness.
Lemma 4.13 A pair of honest parties can never be in conflict.

Proof: It is easy to note that a pair of honest garblers will never be in conflict since the
message B broadcast by them in Round 2 must be identical. Next, a garbler, say P; and

evaluator P3 would be in conflict only if one of the following hold: (a) The commitment and
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opening of the input share sent by P3 to P; is inconsistent (b) P;’s opening of committed
encoded input of garbled circuit sent to Pj fails. It is easy to check that the above cannot occur
for honest P, Ps. O

Lemma 4.14 An honest evaluator either evaluates the GC successfully at the end of round 2
or a TTP is established latest by Round 3.

Proof: Consider an honest P;. If a garbler raises a conflict with P; in Round 2, then his
co-garbler is established as the TTP. Else, if P; receives broadcast and pairwise messages as per
the protocol in round 2, then P; evaluates the circuit. On the other hand, if P; discovers that
the broadcast messages sent by the garblers do not match, then P; is unanimously established
as the TTP. Finally, in case P; locally identifies one of the garblers to be corrupt due to
inconsistent /invalid pairwise message received in round 2, he raises a conflict, establishing the
other garbler as the TTP. Thus the lemma holds. O

Theorem 4.6 The protocol g3PC is correct i.e output obtained by the parties corresponds to a

valid computation performed on unique set of inputs.

Proof: We analyze the cases based on whether TTP is established during the protocol or
not. If not, since none of the garblers raised a conflict with P; in Round 2, each of them must
have a valid opening corresponding to P3’s public commitment of its input shares. In such
a case, these shares constitute P3’s committed input. With respect to garblers, input labels
sent by them in round 2 corresponding to their own input establish their committed inputs.
It now follows from correctness of garbling and authenticity (potentially corrupt Ps could not
have forged Y) that the output obtained by all corresponds to the evaluation of garbled circuit
on above mentioned committed inputs. We now consider the case when TTP is established.
Here, the inputs sent by garblers on clear to the TTP constitute their committed inputs. The
committed input of P; depends on whether the TTP is established during or after Round 2. In
the former where none of the garblers raised conflict in Round 2, it is clear from the protocol
description that P;’s committed input is based on its shares distributed in Round 1 (enforced
by binding of commitment on input shares). Else, the committed input of P is considered as
the one sent on clear to the TTP. Finally, the correctness of output computation based on
committed inputs follows from the fact that the TTP must be honest (Lemma 4.13 shows that
the pair of parties in conflict must involve the corrupt). O

While the full proof of security appear in Section 4.8.4, the intuition on why the protocol

achieves god and the theorem statement follow. Based on whether the evaluator is honest or
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corrupt, god is argued below. By Lemma 4.14, an honest evaluator either identifies a TTP
or evaluates the GC successfully at the end of round 2. If evaluation is performed, then an
honest evaluator would obtain output by soft decoding and enable the garblers to get output by
sending the encoded output. If TTP is identified by an honest evaluator all parties accept the
output sent by the TTP. Next, consider a corrupt evaluator. In case a corrupt evaluator does
not communicate the encoded output to the garblers or sends an invalid Y, then the garblers
would unanimously identify the evaluator to be corrupt. Then, P, would be chosen as a TTP
and eventually each party receives the output through the computation performed by TTP.
Even in the case when a corrupt evaluator falsely raises a conflict, the TTP chosen by him must

be honest and each party would obtain the output from the TTP.

Theorem 4.7 Assuming one-way functions, protocol g3PC securely realizes the functionality

Feod (Figure 2.4) against a malicious adversary that corrupts at most one party.

4.6.2 Optimizations

We propose several optimizations for g3PC to reduce its communication. Firstly, since broadcast
communication is considered more expensive than private communication, a broadcast of a
message, say m is replaced with broadcast of H'(m), where H’ denotes a collision-resistant hash
while the message m is sent privately over point-to-point channel to the receiver. Besides, the
trick described for f3PC (Section 4.3.2) can be applied where the common message of garblers
B is divided into equal halves B = B!||B?; each garbler sends one part on clear and the
other in compressed form. Second, we elaborate on the optimization applied to broadcast of
Y in round 3 by P3: P3 broadcasts H'(Y) where Y denotes the encoded output comprising of
concatenation of the output label of each output wire obtained by GC evaluation. Additionally,
Pj3 sends Y privately to each of the garblers enabling them to compute the hash of the message
received privately and check against the broadcast message to conclude its consistency. Thus,
the optimization applied on broadcast of B and Y makes broadcast independent of circuit size.
Finally, we point that the description of protocol in Figure 4.5 includes certain redundancies
such as a party established as TTP sending message to itself and the protocol proceeding till
the last round even in cases where termination can occur earlier. This was done only to keep
the protocol description simple and facilitate better understanding. In the implementation, the
redundant messages are avoided. Further, when TTP is established in round 2 itself, round 3
can be skipped and the last two rounds executed, enabling the protocol to terminate within 4

rounds.
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Table 4.3: Computation time (CT), Runtime for LAN (LAN), WAN (WAN) and Communication (CC) for
the 3PC of [159].

CT( ms) LAN( ms) WAN( s)

Circuit
‘ rreut Py /Py | P3 P1/Py | P3 Pi1/Py | P3(s)

CC( KB) ‘
Pi/Py | P3

AES
SHA-256
MD5

0.96
11.36
4.5

0.72
9.4
3.0

1.19
13.3
4.9

0.86
10.7
3.9

0.62
1.05
0.83

1.04
1.65
1.24

153.2
3073.6
1036.4

2.1
4.5
2.5

4.7 Experimental results

In this section, we provide empirical results for our protocols. We use the circuits of AES-128,
SHA-256 and MD5 as benchmarks. We start with the description of the setup environment,

both software and hardware.

Hardware Details. We have experimented both in LAN and WAN setting. The specifica-
tions of our systems used for LAN include 32GB RAM; an Intel Core i7-7700-4690 octa-core
CPU with 3.6 GHz processing speed. The hardware supports AES-NI instructions. For WAN
setting, we use Microsoft Azure Cloud Services with machines located in West USA, East Asia
and India. Our 3PC protocols have exactly one party at each location while for 4PC results,
two of the four parties are located in East Asia and one party each in West USA and India.
We used machines with 1.75GB RAM and single core processor. The bandwidth is limited
to 100Mbps for the WAN network between the machines in West USA and East Asia and
it is limited to 8Mbps from the machine in India. Before running our experiments, we mea-
sured sample round trip delay between India-West USA, India-East Asia and East Asia-West
USA for communication of one byte of data. These values average to 0.42s, 0.14 s and 0.18 s

respectively.

Software Details. For efficient implementation, the garbling technique used throughout is
that of Half Gates [183]. The code is built on libgarble library whose starting point is the
JustGarble library, both licensed under GNU GPL License. The libgarble library operates with
AES-NI support from hardware. The operating system used for LAN and WAN results are
Ubuntu 17.10 (64-bit) and Ubuntu 16.04 (64-bit) respectively. Our code follows the standards
of C4++11. We make use of openSSL 1.0.2g library for commitments. We use SHA-256 to
implement a commitment scheme. We have benchmarked our results with 3 circuits AES, SHA-
256, MD5. The circuit description is obtained as a simple text file (.txt) for implementation
purposes. Communication is done with the help of sockets. We instantiate multiple threads
to facilitate communication between the garblers and evaluator. The garblers also share a
connection between each other to share the randomness. All our results indicate the average

values over a set of 20 runs of the experiments.
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Table 4.4: Computation time (CT), Runtime for LAN (LAN), WAN (WAN) and Communication (CC) for
f3PC protocol.

‘ Circuit CT( ms) ‘ LAN ( ms) WAN ( s) CC( KB) ‘
P /Py | P3 Py/Py | P3 Py /Py | P3 P/Py | P3
AES 1.04 0.74 1.17 1.0 0.83 1.27 161.55 2.27
SHA-256 11.55 9.5 13.6 12.5 1.65 1.97 3089.7 4.5
MD5 4.61 3.05 4.96 4.32 1.39 1.54 1044.93 2.52

Table 4.5: Computation time (CT), Runtime for LAN (LAN), WAN (WAN) and Communication (CC) for
g4PC protocol.

CT( ms) LAN( ms) WAN( s) CC( KB)

Ci it
‘ freut Pi/Py | P3 | Py ‘ Py/Py | P3 | P4 ‘ Pi/Py | P3 | Py ‘ Py/Py | P3| Py ‘

AES
SHA-256
MD5

0.95
11.3
4.42

0.8
9.72
3.03

0.04
0.09
0.07

1.21
13.67
5.05

0.96
12.06
4.1

0.27
0.54
0.43

0.78
1.86
1.24

1.08
2.0
1.66

0.47
0.54
0.52

163.3
3091.9
1046.8

8.1
14.1

2.1
2.1
8.13 2.1

Table 4.6: Computation time (CT), Runtime for LAN (LAN) and Communication (CC) both over private
(pp) and broadcast (bc) channels for g3PC protocol.

Circuit CT( ms) LAN( ms) pp CC( KB) be CC( KB)
Py /Py | P3 P /Py | P3 Py /Py | P3 P /Py | P3
AES 1.12 0.9 2.62 2.58 153.36 2.23 0.032 0.06
SHA-256 11.63 9.76 16.25 13.8 3074.16 4.62 0.032 0.06
MD5 4.73 3.22 7.18 5.88 1036.66 2.51 0.032 0.06

Comparison. We compare our results with the related ones for the high-latency networks
(such as the Internet) in the honest majority setting. The most relevant is that of [159] and
we elaborate on the comparison with it below. With regard to the 4-party protocol of [129], it
is expected to lag in performance compared to g4PC since its computation and communication
is significantly higher. As per our calculations, the overhead of transmitting 12 GCs instead
of 1 is more than the efficiency gain of having 2 rounds instead of 5, even with bandwidth of
100Mbps for our benchmark circuits of SHA-256 and MDb5. In case of limited bandwidth of
around 8Mbps, our protocol would perform better than that of [129] for all our benchmark
circuits including AES. The difference in performance will be even more significant for larger
circuits or when multiple MPC executions are run in parallel. Another work close to our
setting is that of [52] that explores 5PC in the honest majority setting. Similar to [159], it
only provides sa. It uses distributed garbling and requires 8 rounds. Our 3 party and 4 party
protocols perform better than the protocol of [52], in spite of achieving better security notions
of fn and god. The total communication for any of our protocol constitutes only 1 - 3.5 % of
the total communication of their implementation in the malicious setting and 3 - 6 % of the
total communication of their implementation in the semi-honest setting.

For comparing with [159], four parameters are considered— computation time (CT), commu-
nication cost (CC) and runtime both in LAN (LAN) and WAN (WAN). The LAN and WAN
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Table 4.7: The average computation time (aCT), runtime in LAN (aLAN), WAN (aWAN) and communi-
cation (aCC) per party for [159] and our protocols. The figures in bracket indicate the increase for the worst
case 5-round runs of g4PC and g3PC.

aCT( ms) aLAN( ms) aWAN( s) aCC( KB)
Circuit | [159] | f3PC | g4PC | g3PC | [159] | f3PC | g4PC | g3PC | [159] | f3PC | g4PC [159] | f3PC | g4PC | g3PC
AES 088 094 [069 |1.04 |1.08 |1.11 091 |260 |0.76 |0.97 |0.78 (+.49) | 102.83 | 108.46 | 84.2 (+.01) | 103.02 (+.02)
SHA-256 | 10.70 | 10.87 | 81 | 11.01 | 12.43 | 13.23 | 9.98 | 1543 | 1.25 | L.75 | 1.56 (+.52) | 2050.56 | 2061.3 | 1550 (+.1) | 2051.02 (+.08)
MD5 40 | 4.09 | 298 |4.22 | 456 |4.74 |3.65 |6.74 096 |1.44 |1.16 (+.49) | 691.76 | 697.46 | 525.97 (+.03) | 691.98 (+.09)

runtime are computed by adding the computation time and the corresponding network time.
Noting that the roles of the parties in the protocols are asymmetric, we show the computation
time, LAN and WAN runtime and communication cost separately for the parties with distinct
roles. The trend of WAN runtime across the tables indicates the influence of round complexity
and the location of servers. For a fair comparison with our protocols, we instantiate the pro-
tocol of [159] in our environment and the results appear in Table 4.3. The results for our 3PC
with fn, 4PC (5 rounds) and 3PC with god appear in Tables 4.4, 4.5 and 4.6 respectively. With
respect to our 4-round 4PC with god, in the worst case run, we save a round at the expense of
one garbled circuit over our 5-round 4PC which amounts to 72 KB — 1530 KB for the benchmark
circuits. For the 3PC with god, we provide implementation result only for LAN setting where
the broadcast channel is emulated using an UDP physical broadcast. We calculate separately
the cost of communication over private channels and broadcast channel and demonstrate that
the latter communication is independent of the circuit size. Our protocols providing god run
in 3 rounds when the adversary does not strike. The round complexity stretches to 5 in the
worst case for our 5-round protocols. Tables 4.5-4.6 show performance for the 3-round runs.
With minimal communication and computation in the last two rounds, the overhead shows up
mainly in the WAN runtime by a factor of half a second and communication by less than 1 KB.

For a unified comparison with [159], we compute the average of the above parameters per
party for all the protocols and the results appear in Table 4.7. In terms of average computation
time, LAN runtime and communication cost our 4PC turns out to be the winner inspite of
providing the strongest notion of security. The improvement per party comes from the fact
that the costs of this protocol are almost similar to that of 3PC protocols inspite of having one
extra party in the system. It closely trails [159] in terms of WAN runtime due to the additional
communication involved in the InputCommit routine and the delayed opening of the committed
decoding information both of which are not present in the protocol of [159]. Our 3PC with fn is
almost on par with [159] and yet achieves a stronger security notion. The extra overhead over
[159] occurs primarily as a consequence of commitments to the decoding information and the

postponed opening of decoding information by the garblers in order to achieve fn. However,
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Figure 4.6: Performance Comparison (avg/party) of various Protocols for fn and god. (5) denotes worst case
execution of the protocol in consideration.

(a) LAN Runtime ( ms) (b) WAN Runtime ( s) (c) Data( MB)
1 1 1 1 1 1 1 1 1
15 HIR[159] 2_II [159] o I [159]
ln3pc I 3PC I 3pPC
logapc 0o gapc 0o garc
log3pc lngapc(s) L5 fllngapc(s)
10 15l 0o g3PC
1 Ulng3pc(s)
5 —
1k 0.5F
0 J o firt
T T T T T T
1 3 5 1 3 5 1 3 5)
Type of Circuit Type of Circuit Type of Circuit

The x-axes indicate the type of the circuit used for evaluation 1-AES, 3-MD5, 5-SHA-256. The y-axis indicates
Runtime in ms, s for graphs (a), (b) respectively and communication data in MB for (c).

in [159], the use of soft-decoding avoided the need for additional communication to deliver the
decoding information. The variation in the communication overhead over the circuits reflects
the fact that the output size and thus the size of information (openings of the commitments)
related to decoding information are different over the circuits. For example, the SHA-256 has
256 bit output, whereas the output size of AES is half of it. Therefore, the communication over-
head for SHA-256 for our protocol is almost double that of AES, namely 10.74 KB vs. 5.63 KB.
The WAN runtime overhead reflects the increased round requirement of our fair protocol. The
communication overhead of our 3PC with god is almost nominal over [159] as both protocols
use of soft-decoding. In Table 4.7, we show in bracket the increase for the 5-round runs of our
4PC (5-round) and 3PC protocols providing god. The performance of our protocols compared
to that of [159] is plotted in Figure. 4.6.
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4.8 Security Proofs

4.8.1 Security Proof of f3PC Protocol

In this section, we provide a complete proof for the Theorem 4.2 that states the security of

f3PC relative to its ideal functionality.

We first explain the technicality behind using an equivocal commitment scheme (eNICOM)
to commit to the decoding information. In our protocol, the adversary can decide whether
to let the computation succeed or fail till round 3. This forces the simulator to make the
same decision on adversary’s behalf at the end of round 3. As a result, the simulator can
get access to the output, only after simulation of round three is completed, at the earliest.
Therefore, the simulator needs to send the GC, encoding information and the commitment
on decoding information without access to the output, while acting on behalf of the honest
parties. This is achieved by invoking oblivious simulator of GC which neither takes the output,
nor returns the decoding information. Consequently, the simulator commits to a dummy value
in round 2. Later if and when J4,;, is invoked and y is known, 8, is invoked with the same
randomness which simply returns the decoding information that makes the fake GC returned by
Sopv output y. Correspondingly, the simulator equivocates to the correct decoding information
that it obtains from the privacy simulator in round 4. Equivocality is enabled via a trapdoor
which in our protocol remains distributed between the garblers. The public parameter for
eNICOM is generated jointly by the garblers (Section 2.4.2.1).

We now describe the simulator S¢pc for the case when Py, Pj is corrupt. The case of P, being
corrupt is symmetric to that of P;. Since the protocol may result either in output computation
or abort based on the corrupt party’s behaviour until Round 3, the privacy simulator 8y, (Ref.
[27]) that demands the output can only be invoked only at the end of Round 3. Therefore, the
oblivious simulator of the garbling scheme 84, (Ref. [27]) that does not need output is invoked
first as a part of GC generation. We assume a garbling scheme such that 8o, and 8y, when
invoked on same randomness return the same (C,X) (Most known garbling schemes based on
Yao comply with this [182, 183, 141]). Later, if the adversary behaves such that the protocol
results in output computation, the evaluator’s input is extracted, used to obtain output y via
Fhair and Sy is invoked to retrieve decoding information. Since this can be done earliest after
Round 3, we use an equivocal commitment to explain the commitment on decoding information
sent in Round 2. The description of simulator 8% corresponding to P (evaluator) corrupt
and 8fpc corresponding to Py (garbler) corrupt is available in Figure 4.7 with R1/R2/R3/R4
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indicating simulation for round 1, 2, 3 and 4 respectively.

/—[ Simulator ngpc}

R1

R1

R2

R2

R4

R4

R1

R1

R2

8%pc (P§ is corrupt)

Receive (pp!,r31) and (pp?, z32) privately from Pj on the behalf of P, P, respectively. If the

input share is not received / invalid, consider a default value.
Send (hi1,71) and (hg,r2) to P53 according to the protocol on behalf of Py, P, respectively.

Use uniform randomness r on behalf of P;, P> and run (C, X) < Sopy (1%, C), where Sopy is the
oblivious simulator of the garbling scheme.

O(

Choose mj, my at random. Let {ca ,c”a,c;:gjra, CMJFO[}@E be commitments to the entries of
X, corresponding to pp'. If pp' # pp?, the above is computed with respect to pp? as well.
Commit to dummy values corresponding to other input wire labels. Using eCom (sample
epp with trapdoor t1,t2), create ¢ as a commitment to a dummy value (Incase of Naor-based
NICOM, set ¢ to the specific commitment supporting equivocation). Set B; (i € [2]) to include
C, the set of commitments computed with respect to pp’ and ¢. Send B; on behalf of P;. Send

({oa! ,02£+a}ae[g mi), ({ogfa,ogﬁa}aew,mg) on behalf of P;, P, to Pj.

Suppose on behalf of some P; (i € 2], € [2] \ 7) received (Y = Ev(C, X),7}) from P§ in Round
3 such that H(r}) = h;. Then invoke Fpi with (Input,z3) on behalf of Pj (where 3 is
computed as x3 = x3; & w32) to obtain output y. Run (C,X,d") < 8pn (17, C,y) where 8y,
refers to the privacy simulator of the garbling scheme. Send o to P3 on behalf of P; where

o= Equiv(c, d/, t1, tg).

Else invoke JFg,j with (Input, abort) on behalf of Pj.

8&pc (Pf is corrupt)

Send a random share x3; and pp on behalf of P;. Choose ro uniformly at random to compute

ha = H(r2). Send (eppy, h2) to P; on behalf of P» according to the protocol.

Receive (s, hi,epp;) on behalf of P, and (hi,71) on behalf of P;. Compute B on behalf of Py

as per protocol.

Invoke Fgir with (sid, Input, abort) on behalf of P} and set y = L if (a) h; received on behalf of
P, P3 does not match or H(ry) # hy or (b) B received from P; on behalf of P; does not match

the B computed on behalf of P» or (c) any of the decommitments corresponding to encoded
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inputs sent by P;" to P3 opens to something other than what was originally committed (known
on behalf of P).

R2 Else, extract P’s input as z; = mj @ p1, where py, my is known on behalf of P, P5 respectively.

Invoke Feir with (sid, Input, 1) to get output y.

R3 Compute Y such that De(Y,d) = y (d known on behalf of P»). Send (Y,r2) to P; on behalf of
Ps.

R4 If y # L, send (y,71) to P; on behalf of P.

Figure 4.7: Description of Sgpc

. . C
Security against corrupt P;. We now argue that IDEALg, s ~ REALgpc 4, when A

3
f3PC
corrupts P3. The views are shown to be indistinguishable via a series of intermediate hybrids.

— HYBy: Same as REALfpc 4.

— HYB;: Same as HYBg, except that P, P, use uniform randomness rather than pseudo-

randomness.

— HYBy: Same as HYBy, except that some of the commitments of input wire labels sent by Py, P,
which will not be opened are replaced with commitments of dummy values. Specifically, these

are the commitments with indices # mq, ms, x31, T32.
— HYBj3 : Same as HYBs, except the following:

- HYB31: When the execution results in abort, the GC is created as (C', X) < Sopy (17, C)

and the commitment to the decoding information is created for a dummy value.

- HYB32: When the execution results in output y, the GC is created as (C',X,d") <«
Spn (17, C\y), the commitment ¢ to the decoding information is created for a dummy value

and later equivocated to d’ using o computed via o < Equiv(c,d’, t1,t2).

— HYBy4: Same as HYBg, except that the protocol results in abort if neither P, nor P, receive Y

obtained upon GC evaluation from Pj.

Since HYBy4 := IDEALg, we show that every two consecutive hybrids are computation-

Si3pcH

ally indistinguishable which concludes the proof.

HYBy ~ HYB;: The difference between the hybrids is that P;, P> use uniform randomness in

HYB; rather than pseudorandomness as in HYBy. The indistinguishability follows via reduction
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to the security of the PRG G.

HYB; ~ HYB,: The difference between the hybrids is that some of commitments of the in-
put labels in HYB; that will not be opened are replaced with commitments of dummy values in
HYB,. The indistinguishability follows via reduction to the hiding property of Com that holds

even though pp was chosen by corrupt Pj.

HYBs ~ HYB3: The difference between the hybrids is in the way (C, X) is generated when
the execution results in abort. In HYBs, (C,e,d) < Gb(1%, ") is run, which gives (C,En(z,e)).
In HYB3;, it is generated as (C', X) < Sqpy (1%, C”"). Additionally, the commitment to the de-
coding information is created for a dummy value in HYB3 ;. The indistinguishability follows via

reduction to the obliviousness of garbling and the hiding property of eCom.

HYBy ~ HYB32: The difference between the hybrids is in the way (C, X, d) is generated. In
HYBy, (C,e,d) < Gb(1%,C") is run, which gives (C,En(z,e),d). In HYB3, it is generated as
(C, X,d") « 8pn (1%, C",y). Additionally, the commitment to the decoding information is cre-
ated for a dummy value and later equivocated to d’ using o computed via o < Equiv(c, d’, t1, t5).
The indistinguishability follows via reduction to the privacy of the garbling scheme and the hid-
ing property of eCom.

HYB3 ~ HYBy: The difference between the hybrids is that in HYB3, the protocol results
in abort if neither P, nor P, receive Y such that De(Y,d) # L from Pj; while in HYBy, the
protocol results in abort if neither P; nor P, receive the Y that P; obtained upon GC evalua-
tion. Due to authenticity of the garbling scheme, P3 could have sent Y such that Y # Ev(C, X)
but De(Y, d) # L only with negligibility probability. Therefore, the hybrids are indistiguishable.

. . C
Security against corrupt P;. We now argue that IDEALg,. st~ REALfPCA, when A

corrupts P;. The views are shown to be indistinguishable via a series of intermediate hybrids.
— HYBy: Same as REALfpc 4.

— HYB;p: Same as HYBg, except that P3 aborts if it accepts any decommitment that opens to a

value other than what was originally committed.

— HYBg: Same as HYBj, except that Y is computed via De(Y,d) = y rather that Y = Ev(C, X).

138



— HYBj3: Same as HYBsy, except that P, outputs L if GC could not be evaluated by Pj success-
fully.

Since HYBj3 := IDEALg, s, We show that every two consecutive hybrids are computationally

indistinguishable which concludes the proof.

HYBy ~ HYB;: The difference between the hybrids is that in HYBy, P3 aborts if the decom-
mitments sent by P, output L while in HYB, P3 aborts if the decommitments sent by P; opens
to any value other than what was originally committed. Since the commitment scheme Com is
binding and pp was chosen uniformly at random by Pj, in HYBy, P; could have decommitted
successfully to a different input label than what was originally committed, only with negligible

probability.

HYB; ~ HYBy: The difference between the hybrids is that in HYB;, P3 computes Y via
Ev(C, X), while in HYBy, Y is computed such that De(Y,d) = y. Due to the correctness of the
garbling scheme, the equivalence of Y computed via Ev(C, X) or such that De(Y,d) = y holds.

HYB, ~ HYB3: The difference between the hybrids is that in HYB,, P, may output non-_L if
it receives a valid ‘proof’ from P; even though P; was unable to evaluate the GC successfully,
while in HYB3, P, outputs L in this scenario. Due to the preimage resistance property of Hash
H, P, could have been able to compute a valid proof i.e 7} such that H(ry) = hy only with

negligible probability.

4.8.2 Security Proof for g4PC

In this section, we present the complete security proof of the Theorem. 4.3 that states the

security of g4PC relative to its ideal functionality.

We describe the simulator Sgpc for the case when Py, P3 and P, is corrupt. The simulator
acts on behalf of all the honest parties in the execution. The corruption of P, is symmetric
to the case when P is corrupt. For better clarity, we separate out the simulation for the
subroutine InputCommit,. Specifically, we describe the simulator corresponding to InputCommit,
(simulation of InputCommit,, InputCommit,, InputCommit, follow analogously) for the case of
corrupt P, and P». The cases of P3, P, being corrupt during InputCommit; is symmetric to
the case of P,. Figure 4.8 and Figure 4.9 describes the simulator with R1, R2, R3, R4, R5
depicting simulation for rounds 1, 2, 3, 4 and 5 respectively.

We first give brief overview of the main technicalities of the simulator. During simulation
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of InputCommit; corresponding to corrupt F;, it is possible for the simulator acting on behalf of
the honest parties to extract the committed input of the corrupt in the first round itself based
on whether P; had sent consistent messages to at least majority of the honest parties (else a
default value is used). Thus, the extracted input can be used to obtain output y via Fgeq at
the end of Round 1 of simulation. The main technicality arises with respect to simulation in
case of corrupt P3. In this case, either the oblivious simulator of the garbling scheme 84, (Ref.
[27]) or the privacy simulator 8, (can be invoked with output y obtained) is invoked based on
whether corrupt P3 would get access to input labels corresponding to any of his non-committed
input shares or not respectively in Round 2. This is known by the simulator acting on behalf of
both the honest garblers since the committed input of the corrupt P; is known to simulator at
end of Round 1. Finally in the former case when GC returned by S, is used, the commitment
on hash of decoding information is dummy (never has to be opened); while in the latter case
when GC returned by 8, is used, commitment on hash of decoding information is done on
the value d returned by the simulator. With this background, we now proceed to the formal

description.

,—[ Simulator SInputCommitl} )

81

InputCommit;

(Py is corrupt)

R1 Receive commitments ci9, 13,14 on behalf of each among Ps, Ps, Py. Receive 015 on behalf of
P53, Py; 013 on behalf of P, Py and 014 on behalf of P, Ps.

R1 Set C; = P, on behalf of P, (k € {2,3,4}) if sOpen(ppy, c1j,015) (j € ind(P1x)) received from

P results in L.

R1 If there does not exist majority in the versions of (ppy, c12, €13, c14) received on behalf of P, Ps, Py

from Py, assume a default value for P;’s input share and add P;* to €, where k € {2,3,4}.

R1 Else, set (ppy,ci12,C13,C14) as the majority value and (012, 013,014) as the corresponding opening.
Compute x1 = x12 ® 213 ® x14 where x1; = sOpen(ppy, c1j,015) for j € {2,3,4}. Invoke Fgoq
with (Input, z1) on behalf of P;* to obtain output y.

R1 If received different versions of (ppy,ci2,ci3,c14) on behalf of P,, Pg (where «a, 8 € {2,3,4}),
add (Pr, Py) in Fg and (Py, Pg) in Fy.
52

InputCommit;

(P5 is corrupt)
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R1 On behalf of P;: Sample pp; and compute ci; as commitments on randomly chosen z1; for
j € ind(P12) (input shares of P; available to corrupt Pj) and commitment of dummy value

corresponding to j ¢ ind(P12). Send (ppy,ci2,C13,C14) and openings (013, 014) to Py.

R2 Send (pp;,ci2,cC13,c14) and 014 to Py on behalf of P3. Send (pp;, ci2,¢13,c14) and 013 to Py on
behalf of Py .

R2 Receive (pp},cly, i3, €iy) from P on behalf of Py (k € {3,4}). Add (P1, P») to Fy, if the version
received from Pj is not identical to the one sent on behalf of P, in Round 1. Additionally,
receive 0} 5, 0}, on behalf of P, and Ps respectively. Add P» to Gy (k € {3,4}) if the opening
received on behalf of Py is anything other than what was originally sent on behalf of P} in
Round 1.

Figure 4.8: Description of 8jnputCommit,

,—[ Simulator 8g4pc}

824PC (P35 is corrupt)

R1 Simulation of Round 1 of 83

InputCommit,,

(o € [4]) (Figure 4.8). Let y denote the output

computed.
R1 Receive pp} and ppg from P3 on behalf of P; and P, respectively.

R2 Simulation of Round 2 of 83

InputCommit,,

(a € [4]) (Figure 4.8).

R2 If Ps € C; (i € {1,2}) or (P1, P3) € F3 or (P, P3) € F1 (i.e an honest garbler may not have
access to P3’s committed share at end of Round 1), use uniform randomness r on behalf of
Py, P, instead of pseudorandomness and run (C', X') «— Sgpy (1%, C'), where Sepy is the
oblivious simulator of the garbling scheme. Choose {mij}i€[4] jeind(?;) at random. Let
m; < || jcind(p,)Mi; and {CZL?, cgfm, cgﬁa, Cgﬁa}aem be commitments to the entries of X,
corresponding to pp3. Commit to dummy values corresponding to other input wire labels.
Let B! = {C, {cg}ae[12517b6{071}, ¢ {pij}ic) jeind(Pis) } Where pij’s are computed as follows:
With respect to i € ind(P3), j € ind(P;3), it is computed as p;; = x;; ® m;; consistent with
the (opening of) shares distributed to P; during simulation of InputCommit;. Corresponding
to P3’s shares, it is computed with respect to the opening received on behalf of P (if valid,
else take default) during simulation of InputCommits;. Here, ¢’ is a commitment to dummy
value. Send B! to Pj on behalf of P;. If P; ¢ €1, additionally send M; and (openings of)
encoding information corresponding to indices {mz‘j}ie[4]7j€ind((pﬂ) (corresponding to

{13,214, x34}) as per protocol. Analogous steps are executed on behalf of P,.
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R2

R3

R3

R4

R4

R4

R1

R1

R1

R2

R2

R2

Else, run (C', X', d’) <= 8, (17, C, y). Execute similar steps as above except that ¢’ is computed

as commitment on H(d").
IfCu#0DVTFa#0, Py (a€{1,2,4}), send (TTP, 3) to P; where Pz ¢ Co U F,.
If ¢, = F, =0 (g € [2]) send opening of hash of decoding information o to P; on behalf of P.
If received Y = Ev(C, X) from P; on behalf of Py(g € [2]), send y to P; on behalf of P,.

If received a valid view Vg from Pj (comprising of openings corresponding to P3’s committed
shares and the shares sent on behalf of honest parties in Round 1) along with (TTP,1),
l € [4]\ {3} on behalf of P, during Round 3, send (y, TTP) to P35 in Round 4 on behalf of F).

If had sent (TTP, 8) to Py on behalf of either P;, P>, Py in Round 3, send (y, TTP) to P5 on
behalf of Pg.

Séwc (Py is corrupt)

Simulation of Round 1 of S,lnputcommit

(o € [4]) (Figure 4.8). Let y denote the output

computed.
Receive s from P on behalf of P.
Send pp3 to P on behalf of Ps.

Simulation of Round 2 of 8} (o € [4]) (Figure 4.8).

InputCommit,,

On behalf of P3: Receive B comprising of the garbled circuit, commitments on encoding and
decoding information information and permutation strings p;; for (i € [4],j € ind(P;3)) from
Pf. Additionally, the openings corresponding to the input labels z;; for (i € [4],j € ind(P;1))

(except the labels for x93, x24, x43) are received.

Following steps are executed: (a) Set F3 = {P;, Po} if B is not consistent with B computed
using randomness G(s) and pps, where s received on behalf of P, in Round 1. (b) If
C3 = F3 =0, set P, to Cz if (openings of) encoding information for z;;, for
i € [4],7 € ind(P;3) are anything other than the originally committed labels (known on behalf
of P5). If any of the labels corresponding to x;(i € [4],j ¢ ind(P;3)) do not correspond to the
originally committed label (known on behalf of P»), then set F3 = { P, P»}. Here, z;; refers
to the value sent to P} during InputCommit; (for ¢ € ind(P1)) on behalf of P; or received on
behalf of P; from P} (during InputCommit;).
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R2

R3

R3

R4

R4

R4

R1

R2

R2

R3

R3

R3

R4

R4

R4

Receive ¢ from Pj on behalf of Py. Add {Py, P2} to Fy if ¢ received from Pj is not consistent

with B computed using s received on behalf of Ps.

If C3 = F3 = (), compute Y such that De(Y,d) = y (d known as simulator acts on behalf of P»).
Send Y to P} on behalf of Ps.

IfCu#0DVTFq#0D, Py (a€{2,3,4}), send (TTP, 3) to P; where Pz ¢ Co U F,.
If Y was sent to P, on behalf of P3, send y to P on behalf of P», Py.

If received a valid view V) from P} (comprising of openings corresponding to P;’s committed
shares and the shares sent on behalf of honest parties in Round 1) along with (TTP,1),
[ € [4]\ {1} on behalf of P, during Round 3, send (y, TTP) to P; in Round 4 on behalf of P,.

If had sent (TTP, 5) to P on behalf of either P, P3, Py in Round 3, send (y, TTP) to P; on
behalf of Pg.

8§4PC (P} is corrupt)

Simulation of Round 1 of SilnputCommita

(o € [4]) (Figure 4.8). Let y denote the output

computed.

Simulation of Round 2 of S (o € [4]) (Figure 4.8).

InputCommit,,

Use uniform randomness to compute ¢ as commitment on H(d). Send ¢ to P} on behalf of
Py, Ps.

If 6, = F, =0 for Py(g € [2]), send o (opening of hash of decoding information) to Py.
If C3 = F3 = 0, compute Y such that De(Y,d) = y. Send Y to P} on behalf of Ps.
IfCy#0DVTFq#0, Py (a€{1,2,3}), send (TTP, 3) to P; where Pz ¢ Co U F,.

If Y was sent to PJ, send y to P; on behalf of P, Ps.

If received a valid view V4 from P; (comprising of openings corresponding to P;’s committed
shares and the shares sent on behalf of honest parties in Round 1) along with (TTP,1),
I € [4]\ {1} on behalf of P, during Round 3, send (y, TTP) to P} in Round 4 on behalf of Fj.

If had sent (TTP, 5) to P on behalf of either P;, P>, P3 in Round 3, send (y, TTP) to P; on
behalf of Pg.

Figure 4.9: Description of 8gapc
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. . C
Security against corrupt P;. We now argue that IDEALg 0,S3pe ~ REALgapC.A; when an ad-
versary A corrupts P5. The views are shown to be indistinguishable via a series of intermediate

hybrids.

— HYBg: Same as REALgpc 4.

— HYB;: Same as HYBy, except that when the execution does not result in P; getting access to
the opening of commitment ¢;; (i € ind(P3),j ¢ ind(P;3)) sent by P, the commitment is

replaced with commitment of dummy value.

— HYBy: Same as HYB; except that P3 is added to € (k € ind(P3)) if the opening forwarded
by P; to Py during InputCommit, corresponding to P;’s committed share (i € ind(Psy)) is

anything other than what was originally committed.

— HYB3: Same as HYBs, except that P;, P, use uniform randomness rather than pseudo-

randomness.

— HYBy4: Same as HYBj3, except that some of the commitments of input wire labels sent on
behalf of P;, P, which will not be opened are replaced with commitments of dummy

values.
— HYBj5: Same as HYBy, except the following:

— HYBj51: When the execution results in P; getting access to labels corresponding to its
non-committed input for the garbled circuit, the GC is created as (C', X) = Sqpy (17, C)
and the commitment to the hash of the decoding information is created for a dummy

value.

— HYBj52: When the execution results in P; getting access to labels corresponding to its
committed input, the GC is created as (C', X, d’) < 8, (1%, C,y). The commitment c is

computed on decoding information H(d').

— HYBg: Same as HYBj;, except that P3 does not receive y in Round 4 if neither P, nor P

receive Y obtained upon GC evaluation from P3 in Round 3.

— HYB7: Same as HYBg except that the TTP assigned by P; sends y only if the view V3 sent by
P3 comprises of decommitments that opens to the input shares of the parties that were

originally committed.
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Since HYB7 := IDEALg, §3,,.0 We show that every two consecutive hybrids are computationally
od g

indistinguishable which concludes the proof.

HYBy ~ HYB;: The difference between the hybrids is that when the execution does not
result in P; getting access to the opening of commitment ¢;; (i € ind(Ps3), j ¢ ind(P;3)) sent by
P, ¢;;j corresponds to the actual input share x;; in HYB, while it corresponds to dummy value

in HYB;. The indistinguishability follows from the hiding property of sCom.

HYB; ~ HYBy: The difference between the hybrids is that while in HYB;, P; is added to
Cr (k € ind(P3)) if the opening forwarded by P; to Pj, during InputCommit, (i € ind(Psy))
corresponding to P;’s committed share results in L; in HYBg, Gy is set to P3 if P3 sends opening
anything other than what was originally committed. Since the commitment scheme sCom is
binding, in HYB,, P3 could have decommitted successfully to a different input share of P; other
than what was originally committed, only with negligible probability. Therefore, the hybrids

are indistinguishable.

HYBs ~ HYBj3: The difference between the hybrids is that Py, P, use uniform randomness in
HYBj3 rather than pseudorandomness as in HYB,. The indistinguishability follows via reduction
to the security of the PRG G.

HYB; ~ HYB4: The difference between the hybrids is that some of commitments of the input
wire labels in HYB3 that will not be opened are replaced with commitments of dummy values in
HYB,. The indistinguishability follows via reduction to the hiding property of the commitment

scheme Com.

HYBy ~ HYB;1: The difference between the hybrids is in the way (C, X) is generated when
the execution results in P3 getting access to labels corresponding to its non-committed input.
In HYBy, (C,e,d) < Gb(1%,C") is run, which gives (C,En(z,e)). In HYB5, it is generated as
(C',X) <= Sopv (17, C"). Additionally, the commitment to the decoding information is created for
a dummy value in HYBj5 ;. The indistinguishability follows via reduction to the obliviousness of

the garbling scheme and the hiding property of commitment scheme.

HYB, ~ HYBjo: The difference between the hybrids is in the way (C, X, d) is generated.
In HYBy, (C,e,d) < Gb(1%,C") is run, which gives (C,En(x,e),d). In HYBj, it is generated
as (C',X,d") < 8, (1%, C",y). Additionally, the commitment to the decoding information is
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computed on d’. The indistinguishability follows via reduction to the privacy of the garbling

scheme and the hiding property of Com.

HYB; ~ HYBg: The difference between the hybrids is that in HYBj5, P35 does not receive y
in Round 4 if neither P, nor P, receive Y such that De(Y,d) # L from Ps; while in HYBg, Ps
does not receive y if neither P, nor P, receive Y = Ev(C, X). Due to authenticity of the gar-
bling scheme and the property of preimage-resistant hash used in the decoding information, P;
could have sent Y such that Y # Ev(C, X) but De(Y,d) # L only with negligibility probability.
Therefore, the hybrids are indistiguishable.

HYBg ~ HYB7: The difference between the hybrids is that in HYBg, the TTP assigned by
P3; would return y to Pj if the view V3 sent by P3 comprises of decommitments that lead to
non-_L (corresponding to the commitments on shares output by the subroutine InputCommit);
while in HYB7, the TTP assigned by P; would return y to P3 only if the view V3 sent by P;
contains decommitments that open to the input shares that were originally committed. Since
the commitment scheme sCom is (strong) binding even against an adversarially chosen pp; in
HYBg, P53 could have decommitted successfully to a different input share than what was orig-

inally committed, only with negligible probability. Therefore, the hybrids are indistinguishable.

. . C
Security against corrupt P. We now argue that IDEALg, 81, A REALgpC A, when an ad-
versary A corrupts P;. The views are shown to be indistinguishable via a series of intermediate
hybrids.

— HYBy: Same as REALgpc 4.

— HYB;: Same as HYBy, except that when the execution does not result in P; getting access to
the opening of commitment ¢;; (¢ € ind(Py),7 ¢ ind(P;1)) sent by P, the commitment is

replaced with commitment of dummy value.

— HYBg: Same as HYB; except that P is added to C; (k € ind(Py)) if the opening forwarded
by P, to Py during InputCommit,; corresponding to P;’s committed share (i € ind(P1y)) is

anything other than what was originally commited.

— HYBj3: Same as HYBsy, except that when G5 = F5 = () at the end of Round 2, P, is added to Cs
if P3 receives anything other than the encoding information corresponding to committed
share z;; (i € [4],7 € ind(Py3)).
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— HYB4: Same as HYBj, except that when C3 = F3 = () at the end of Round 2, {P;, P} is
added to Jj3 if P5 receives anything other than the encoding information corresponding
to committed share z;; (i € [4],j ¢ ind(Pi3)).

— HYBj: Same as HYBy, except that Y is computed via De(Y,d) = y in place of Y = Ev(C, X).

— HYBg: Same as HYBj; except that the TTP assigned by P, sends y only if the view V; sent by
P, comprises of decommitments that opens to the input shares of the parties that were

originally committed.

Since HYBg := IDEALg_, §1oco We show that every two consecutive hybrids are computation-
od g

ally indistinguishable which concludes the proof.

HYBy ~ HYB;: The difference between the hybrids is that when the execution does not
result in P getting access to the opening of commitment ¢;;(i € ind(P1),j ¢ ind(P;1)) sent by
P, ¢;;j corresponds to the actual input share x;; in HYB, while it corresponds to dummy value

in HYB;. The indistinguishability follows from the hiding property of sCom.

HYB; ~ HYB,: The difference between the hybrids is that while in HYB;, P; is added to
Cr (k € ind(Py)) if the opening forwarded by P; to Py during InputCommit, (i € ind(P1x))
corresponding to P;’s committed share results in L; in HYBsg, G} is set to P, if P; sends opening
anything other than what was originally committed. Since the commitment scheme sCom is
binding, in HYB,, P, could have decommitted successfully to a different input share of P; other
than what was originally committed, only with negligible probability. Therefore, the hybrids

are indistinguishable.

HYB, ~ HYB3: The difference between the hybrids is that in HYB;, when €3 = F3 = () at
the end of Round 2, P; is added to Cj if the decommitments (corresponding to encoding of
committed share z;; (i € [4],5 € ind(P;3))) sent by P output L while in HYB,, P is added
to C3 if the decommitments sent by P, open to any value other than the originally committed
encoding information corresponding to x;;. Since the commitment scheme Com is binding and
pp was chosen uniformly at random by Ps; in HYB;, P; could have decommitted successfully
to a different input label than what was originally committed, only with negligible probability.
Therefore, the hybrids are indistinguishable.

HYB;3 ~ HYB4: The difference between the hybrids is that in HYBs, when C3 = F3 = () at
the end of Round 2, { P}, P»} is added to Fy if the index of the decommitments (corresponding
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to encoding of committed share x;; (i € [4],j ¢ ind(P;3))) sent by P, are inconsistent with that
known on behalf of P, while in HYBy, { Py, P} is added to F3 if the decommitments sent by Py
open to any value other than the originally committed encoding information corresponding to
x;;. Since the commitment scheme Com is binding and pp was chosen uniformly at random by
Ps; in HYB3, P, could have sent opening corresponding to the consistent index but decommitted
successfully to a different input label than what was originally committed, only with negligible

probability. Therefore, the hybrids are indistinguishable.

HYBy ~ HYBs5: The difference between the hybrids is that in HYB4, Y is computed via
Ev(C, X), while in HYB5, Y is computed such that De(Y,d) = y. Due to the correctness of the
garbling scheme, the equivalence of Y computed via Ev(C, X) or such that De(Y,d) = y holds.

HYB; ~ HYBg: The difference between the hybrids is that in HYB5, the TTP assigned by P;
would return y to P; if the view V; sent by P, comprises of decommitments that lead to non-_L
(corresponding to the commitments on shares output by the subroutine InputCommit;); while
in HYBg, the TTP assigned by P; would return y to P; only if the view V; sent by P; contains
decommitments that open to the input shares that were originally committed. Since the com-
mitment scheme sCom is binding even against an adversarially chosen pp; in HYB;, P; could
have decommitted successfully to a different input share than what was originally committed,

only with negligible probability. Therefore, the hybrids are indistinguishable.

. . C
Security against corrupt P;. We now argue that IDEALg, ~ REALgpc 4, When an ad-

od75§4pc
versary A corrupts P,. The views are shown to be indistinguishable via a series of intermediate

hybrids.
— HYBy: Same as REALgpc 4.

— HYB;: Same as HYBy, except that when the execution does not result in P, getting access to
the opening of commitment ¢;; (i € ind(Py4),j ¢ ind(P;4)) sent by P, the commitment is

replaced with commitment of dummy value.

— HYBy: Same as HYB; except that Py is added to Cx (k € ind(Py4)) if the opening forwarded
by P, to Py during InputCommit, corresponding to P;’s committed share (i € ind(Pyy)) is

anything other than what was originally committed.

— HYB3: Same as HYBo, except that P, P, use uniform randomness rather than pseudo-

randomness.
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— HYBy: Same as HYBy, except that Y is computed via De(Y,d) = y in place of Y = Ev(C, X).

— HYBj: Same as HYB, except that the TTP assigned by P, sends y only if the view V, sent by
P, comprises of decommitments that opens to the input shares of the parties that were

originally committed.

Since HYBj := IDEALg, 51, We show that every two consecutive hybrids are computationally
od g

indistinguishable which concludes the proof.

HYBy ~ HYB;: The difference between the hybrids is that when the execution does not
result in Py getting access to the opening of commitment ¢;; (i € ind(Py4), j ¢ ind(P;4) sent by
P, ¢i;j corresponds to the actual input share x;; in HYB, while it corresponds to dummy value

in HYB;. The indistinguishability follows from the hiding property of sCom.

HYB; ~ HYBy: The difference between the hybrids is that while in HYB;, P, is added to
Cr (k € ind(Py)) if the opening forwarded by P, to Py during InputCommit, (i € ind(Pyy))
corresponding to P;’s committed share results in |; in HYB,, C is set to P, if P, sends opening
anything other than what was originally committed. Since the commitment scheme sCom is
binding, in HYBs, P4 could have decommitted successfully to a different input share of P; other
than what was originally committed, only with negligible probability. Therefore, the hybrids

are indistinguishable.

HYB> ~ HYBj3: The difference between the hybrids is that Py, P, use uniform randomness in
HYB; rather than pseudorandomness as in HYB;. The indistinguishability follows via reduction
to the security of the PRG G.

HYB3 ~ HYBy: The difference between the hybrids is that in HYB3, Y is computed via
Ev(C, X), while in HYBy4, Y is computed such that De(Y,d) = y. Due to the correctness of the
garbling scheme, the equivalence of Y computed via Ev(C, X) or such that De(Y,d) = y holds.

HYB, ~ HYB;: The difference between the hybrids is that in HYB4, the TTP assigned by
P, would return y to Py if the view V4 sent by P, comprises of decommitments that lead to
non-_L (corresponding to the commitments on shares output by the subroutine InputCommit);
while in HYBj5, the TTP assigned by P; would return y to P, only if the view V4 sent by P,
contains decommitments that open to the input shares that were originally committed. Since

the commitment scheme sCom is binding even against an adversarially chosen pp; in HYBy,
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Py could have decommitted successfully to a different input share than what was originally
committed, only with negligible probability. Therefore, the hybrids are indistinguishable. This

completes the proof.

4.8.3 Security Proof for g4PC4

In this section, we provide a high-level overview of the proof of Theorem 4.5 that states the

security of g4PC4 relative to its ideal functionality.

We describe the simulator Sgspcs for the cases of corrupt P, and Ps;. The corruption of P
and Py is analogous to the case of P; and P; respectively. We give only a sketch of the simulator
below since the simulation proceeds almost exactly as the simulation of g4PC described formally
in Section 4.8.2.

For the case when Pj is corrupt, simulator 824PC4 acts on behalf of honest P;, P, P, as follows:
In round 1 of InputCommit,,, a € P3, 8,p¢, chooses random values corresponding to the shares
of honest parties accessible to Ps, namely z;; (1 € P3, j € P;3) and acts according to the protocol.
Commitments on the remaining shares of honest parties are dummy. Correspondingly, on behalf
of the honest parties, simulator receives commitments corresponding to x3;(j € P3) in round 1
of InputCommit; and checks if there exists a majority commitment corresponding to each of the
shares. If not, P; is added to C; (i € P3) and Fygoq is invoked with default value to retrieve y.
Else, P3’s input is extracted using the shares corresponding to the majority commitment and
its opening. Consequently, Fgoq is invoked using the committed input of P; and y is obtained.
The corrupt and conflict sets of the honest parties are populated according to the protocol. For
simulation of Round 2 on behalf of garblers, we consider two cases depending on whether: (a)
Py gets access to the labels corresponding to any of its non-committed input shares (b) Ps gets
access to labels corresponding to its committed input shares. The case that will follow can be
determined at the end of Round 1 itself by simulator acting on behalf of the honest garblers
since P3’s committed input is known to simulator by then. Accordingly in Round 2, either the
oblivious simulator of the garbling scheme 8cp, or the privacy simulator 8y, (can be invoked
with output y obtained) is invoked for case (a) and (b) respectively. In case (a) when GC
returned by Sgpy is used, the commitment on hash of the decoding information is dummy and
never has to be opened to P according to the protocol steps as for each garbler P, atleast one
of €, # 0/F, # 0 holds. In the latter case when GC returned by 8, is used, the commitment
is done on the value H(d), where d is returned by 8. This commitment is opened during
Round 3 by simulator acting on behalf of garbler P, if ¢, = F, = ().

Next, if P3 sends a (TTP, §) message to a party in P3 and sends a valid V3 (with openings
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of committed shares known to simulator) to Ps in Round 3, (y, TTP) is sent to P; on behalf of
Pj. Additionally, the conflict and corrupt set of P;,7 € P3 that are locally computed (during
simulation of InputCommit;) are used by P; to identify TTP as per the protocol and (TTP, 5)
message is sent accordingly to P3 in Round 3. Subsequently, (y, TTP) is sent to P3 on behalf
of the Pjs.

For the case when P; is corrupt, simulator 8 ,pc, acts on behalf of Py, Ps, Py as follows:
Simulation of InputCommit,,,a € [4] is the same as described for 8),pc, which would lead to
extraction of P;’s committed input and retrieval of y via Fgoq. On behalf of the evaluator,
say Py if C3 = F3 = ) (populated during simulation of executions of InputCommit,()), the
simulator checks if P; (a) sends GC consistent with randomness shared with P, (b) sends
encoding of committed input shares. If either of the checks fails, the corrupt or conflict set of
Py is populated accordingly (for (b), incase of shares known to P, corrupt set is populated,;
else conflict is populated with {P;, P,} corresponding to shares that are not held by P; and
held by both garblers) and the TTP is assigned as per the protocol. The output y is sent to
Py on behalf of the TTP in Round 4. If the checks pass and €; = F; = 0,7 € {3,4}, then Y
is computed such that it decodes to output y and sent to P; on behalf of P; in round 3. This
completes the simulation sketch of g4PC4.

4.8.4 Security Proof for protocol g3PC

In this section, we present the proof of Theorem 4.7 that states the security of GOD relative
to its ideal functionality. We describe the simulator Sgpc for the case when P;, P is corrupt.
The case of P, being corrupt is symmetric to that of P;. The description of the simulator is
available in Figure 4.10 with R1/R2/R3/R4/R5 indicating simulation for round 1, 2, 3, 4

and 5 respectively.

,—[ Simulator Sg3pc} \

823PC (P3 is corrupt)

R1 Receive (pp, c31, c32) via broadcast and (z31, £32,031,032) privately from P; on behalf of Py, Ps.

R2 Broadcast (Conflict, P3) on behalf of P; if Open(cs;,03;) # x3; for ¢ € [2]. If for exactly one i
the check doesn’t pass, set TTP to Ppy\; and broadcast B as per protocol on behalf of Pg)\; -
If check doesn’t pass for both i € [2], set TTP = P;.

R2 If TTP = ), extract x3 = 231 @ w32 and invoke Fgoq with (Input,z3) on behalf of P3 to retrieve

output y. Use uniform randomness r on behalf of P;, P, and run (C, X,d) < 8,n (1%, C, y).
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R2

R3

R4

R5

R1

R2

R2

R3

R3

R4

R5

If TTP = (), choose m1, ms at random. Let {c&n? , CZE;, cggia, ngia}ae[g] be commitments to the
entries of X. Commit to dummy values corresponding to other input labels. Set B to include C
and saet ofacommitments. Broadcast B on behalf of both P;, P,. Send ({021?,092”;5; atacl,M1),
({OZ_QQ, Ogg’ia}ae[g],mg) on behalf of P;, P, respectively.

If received broadcast of (Conflict, P;)(i € [2]) from Pj, set TTP = Py)\;. Else if received
Y # (C,X), set TTP = P.

If TTP # 0 and y = L: Invoke Fgoq with (Input,z3) to get output y where 3 is computed using
031,032 received in Round 1 on behalf of honest parties, else received from P3 on behalf of

TTP in Round 4 (take default value if not received or invalid).

Send y to P; on behalf of TTP if TTP # 0.

Séwc (Py is corrupt)

Choose 31, pp at random. Compute (c31,031) < Com(pp,x31). Broadcast {pp, c31,c32} where

c32 is commitment of dummy value. Send {31,031} to Pj on behalf of Ps.
Compute and broadcast By on behalf of P, using s received from P; as per protocol.
Set TTP = Ps if By # Bg. Set TTP = P, if P} broadcasts (Conflict, P3)

Suppose TTP = ): Check if any of the decommitments sent by P;* to P3 in Round 2 opens to
something other than what was originally committed (known on behalf of P»). If so, broadcast
(Conflict, P;) on behalf of P3 and set TTP = Px.

If TTP = 0, extract P;’s input as x; = my @ p1, where p;,m; is known on behalf of P, P3
respectively. Invoke Fgoq with (Input, z1) to receive output y. Compute Y such that De(Y,d) =
y (d known to P,) and broadcast Y on behalf of Ps.

If TTP # (), receive z1 from P} (take default value if not received) on behalf of TTP. Invoke

Feod with (Input,z1) to retrieve output y.

If TTP # (), send y to P} on behalf of TTP.

Figure 4.10: Description of 8g3pc

. . C
Security against corrupt P;. We now argue that IDEALg, ;3. ~ REALgpC.4, when A

corrupts P3. The views are shown to be indistinguishable via a series of intermediate hybrids.

— HYBy: Same as REALg3pc 4.
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— HYB;: Same as HYBg, except that P, P, use uniform randomness rather than pseudo-

randomness.

— HYBg: Same as HYB, except that some of the commitments of input wire labels sent by Py, P,
which will not be opened are replaced with commitments of dummy values. Specifically,

these are the commitments with indices # mq, mo, 31, T32.

— HYBj3 : Same as HYB,, except that when the execution results in P3 evaluating the garbled
circuit (GC), the GC is created as (C', X, d’) + 8, (1%, C, y).

— HYBy4 : Same as HYB3, except that P is set to TTP if P; broadcasts Y # (C, X).

Since HYBy4 := IDEALg, 83,00 We show that every two consecutive hybrids are computationally
od g

indistinguishable which concludes the proof.

HYBy ~ HYB;: The difference between the hybrids is that P;, P, use uniform randomness in
HYB; rather than pseudorandomness as in HYBy. The indistinguishability follows via reduction
to the security of the PRG G.

HYB; ~ HYBs: The difference between the hybrids is that some of commitments of the input
wire labels in HYB; that will not be opened are replaced with commitments of dummy values in
HYBy. The indistinguishability follows via reduction to the hiding property of the commitment
scheme Com that holds even though pp was chosen by corrupt Ps.

HYBy ~ HYBs: The difference between the hybrids is in the way (C,X,d) is generated. In
HYBs, (C,e,d) « Gb(1%,C) is run, which gives (C,En(z,e),d). In HYBj, it is generated as
(C", X,dy) < 8pn (1%, C,y). The indistinguishability follows via reduction to the privacy of the

garbling scheme.

HYB;3 ~ HYBy: The difference between the hybrids in that while in HYB3, P; is set to TTP
when Pj3 broadcasts Y such that De(Y,d) = L; in HYBy, P; is set to TTP when P broadcasts
Y # (C,X). It follows from the authenticity property of garbling that P; will be able to come
up with Y such that Y # (C, X) but De(Y,d) # L only with negligible probability.

. . (&
Security against corrupt Py. We now argue that IDEALg ~ REALgspc4, When A

0d78é3pc
corrupts P;. The views are shown to be indistinguishable via a series of intermediate hybrids.
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— HYBy: Same as REALg3pc 4

— HYB;: Same as HYBy, except that Pj raises a conflict with P if it accepts any decommitment

that opens to a value other than what was originally committed.

— HYBs: Same as HYBj, except that when the execution does not result in P getting access to
the opening of commitment c3s (corresponding to x3y) broadcast by P, the commitment

is replaced with commitment of dummy value.

— HYBj3: Same as HYBg, except that Y is computed via De(Y,d) = y rather than Y = Ev(C, X)

Since HYBj := IDEALg_ Sl WE show that every two consecutive hybrids are computationally
od g

indistinguishable which concludes the proof.

HYBy ~ HYB;: The difference between the hybrids is that in HYB, P; raises a conflict with
P, if the decommitments sent by P, output L while in HYBy, P raises a conflict if the de-
commitments sent by P, opens to any value other than what was originally committed. Since
the commitment scheme Com is binding and pp was chosen uniformly at random by Ps; in
HYB;, P, could have decommitted successfully to a different input label than what was orig-

inally committed, only with negligible probability. Therefore, the hybrids are indistinguishable.

HYB; ~ HYBy: The difference between the hybrids is that when the execution does not
result in P, getting access to the opening of commitment c3s (corresponding to x32) broadcast
by Pj, c32 corresponds to the actual input share x3, in HYB; while it corresponds to dummy

value in HYBy. The indistinguishability follows from the hiding property of Com.
HYBs ~ HYB3z: The difference between the hybrids is that in HYBy, P3 computes Y via

Ev(C, X), while in HYB3, Y is computed such that De(Y,d) = y. Due to the correctness of the
garbling scheme, the equivalence of Y computed via Ev(C, X) or such that De(Y,d) = y holds.
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Part 11

Round Complexity of MPC : Beyond

Traditional Adversaries
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Chapter 5

On the Round Complexity of
Best-of-Both-Worlds Multi-party

Computation

In this chapter, we study the exact round complexity of ‘Best of Both Worlds (BoBW)” MPC
protocols, a much sought-after species of MPC protocols that offer the best possible security
depending on the actual corruption. Specifically, such protocols simultaneously provide fn /

god in honest majority setting and ua in dishonest majority setting.

5.1 Introduction

While highly sought-after, fairness (fn) and guaranteed output delivery (god) can only be re-
alised, when majority of the involved population is honest [65]. In the absence of this favorable
condition, uananimous abort (ua) is the best security notion that can be attained. With these
distinct affordable goals, MPC with honest majority [30, 56, 177, 19, 17, 72, 4] and dishonest
majority [107, 73, 94, 44, 3, 113, 15] mark one of the earlier demarcations in the world of
MPC. While the constructions of each type are abound in the literature, one class of protocols
does not seem to withstand the threat model of the other. For instance, the honest-majority
protocols do not guarantee privacy of the inputs of the honest parties in the face of dishonest
majority and likewise the dishonest-majority protocols cannot achieve god and fn, tolerating
even a single corruption, let alone dishonest minority. In many real-life scenarios, it is highly
unlikely for anyone to guess upfront how many parties the adversary is likely to corrupt. In such
a scenario, the best a practitioner can do, is to employ the ‘best’ protocol from her favorite

class and hope that the adversary will be within assumed corruption limit of the employed
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protocol. If the guess fails, the employed protocol, depending on whether it is an honest or
dishonest majority protocol, will suffer from the above mentioned issues. To overcome this
worrisome shortcoming, an unconventional yet much sought-after species of MPC, termed as
‘Best-of-Both-Worlds’ (BoBW) which offers the best possible security depending on the actual
corruption scenario was introduced in [124, 134, 127].

Denoting the threshold of corruption in honest and dishonest majority case by ¢t and s
respectively, an ideal BoOBW MPC should promise the best possible security in each corruption
scenario for any population of size n, as long as t < n/2 and s < n. Quite contrary to the
expectation, the grand beginning of BoBW MPC with the works of [124, 134, 127] is mostly
marred with pessimistic results showing the above goal is impossible for many scenarios. For
reactive functionalities that receive inputs and provide outputs in multiple rounds maintaining
a state information between subsequent invocations, it is impossible to achieve BoBW security
[124]. While theoretical feasibility is not declined, non-reactive or standard functionalities are
shown to be impossible to realise as long as t + s > n in expected polynomial time (in the
security parameter), making any positive result practically irrelevant [134, 127]. A number of
meaningful relaxations were proposed in the literature to get around the impossibility of BoBW
security when t + s > n [134, 127]. The most relevant to our work is the relaxation proposed
in [152] where the best possible security of god is compromised to the second-best notion of fn
in the honest-majority setting. Other attempts to circumvent the impossibility result appear
in [124] and [134, 24] where the security in dishonest-majority setting is weakened to allowing
the adversary to learn s evaluations of the function (each time with distinct inputs ezclusively
corresponding to the corrupt parties) in the former and achieving a weaker notion of O(1/p)-
security with abort (actions of any polynomial-time adversary in the real world can be simulated
by a polynomial-time adversary in the ideal world such that the distributions of the resulting
outcomes cannot be distinguished with probability better than O(1/p)) in the latter. [124]
shows yet another circumvention by weakening the adversary in dishonest-majority case from
active to passive. On the contrary, constructions are known when ¢t + s < n is assumed [124],
tolerating active corruptions and giving best possible security in both the honest and dishonest
majority case.

In this work, we consider two types of BoOBW MPC protocols and study their exact round
complexity: (a) MPC achieving the best security of god and ua in the honest and dishonest
majority setting respectively assuming s+t < n, referred as (god|ua)-BoBW; (b) MPC achieving
second-best security notion of fn in the honest majority and the best possible security of ua in
the dishonest majority for any n, referred as (fnjua)-BoBW. We nearly settle the exact round

complexity of these two classes under the assumption of no setup (plain model), public setup
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(CRS) and private setup (CRS + PKI or simply PKI).

5.1.1 Related Work

We refer to Section 1.3 for relevant literature on exact round complexity of MPC in the tra-
ditional settings of honest and dishonest majority and outline works related to BoBW MPC
below. An orthogonal notion of BoOBW security is considered in [54, 119, 152] where information-
theoretic and computational security is the desired goal in honest and dishonest majority setting
respectively. Avoiding the relaxation to computational security in dishonest-majority setting,
the work of [114] introduces the best possible information-theoretic guarantee achievable in
the honest and dishonest majority settings simultaneously; i.e the one that offers standard
information-theoretic security in honest majority and offers residual security (the adversary
cannot learn anything more than the residual function of the honest parties’ inputs) in dishonest-
majority setting. A more fine-grained graceful degradation of security is dealt with in the works
of [152, 120, 121, 122, 169] considering a mixed adversary that can simultaneously corrupt in
both active and semi-honest style. [99] studies the communication efficiency in the BoBW set-
ting. In spite of immense practical relevance of BoBW protocols, the question of their exact
round complexity has not been tackled so far. Constant-round protocols are presented in (or
can be derived from) [124, 127] for (god|ua)-BoBW and BoBW where only semi-honest cor-
ruptions are tolerated in the dishonest majority. The recent work of [169] settled the exact
round complexity of the latter class, as a special case of a strong adversarial model that allows
both active (with threshold ¢,) and passive (with threshold ¢,, which subsumes the active cor-
ruptions) corruption for a range of thresholds for (t,,t,) starting from ([n/2] — 1, [n/2]) to
(0,n — 1). Lastly, the round complexity of BoOBW protocols of [24] that achieve 1/p-security
with abort in dishonest majority (and god in honest majority), depends on the polynomial p(k)

(where x denotes the security parameter).

5.1.2 Our Results

Assuming a network with pair-wise private channels and a broadcast channel, we show that
5 and 3 rounds are necessary and sufficient for (fnjua)-BoBW MPC under the assumption of
‘no setup’ and ‘public and private setup’ respectively. For the class of (god|ua)-BoBW MPC,
we show necessity and sufficiency of 3 rounds for the public setup case and 2 rounds for the
private setup case. In the no setup setting, we show the sufficiency of 5 rounds, while the known
lower bound is 4. All our upper bounds are based on polynomial-time assumptions and assume
black-box simulation. With distinct feasibility conditions, the classes differ in terms of the

round requirement. The bounds are in some cases different and on a positive note at most one
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more, compared to the maximum of the needs of the honest-majority and dishonest-majority
setting. While the details of our results appear in Section 1.4.2, we summarise and put them
along with the bounds known in the honest and dishonest majority setting in Table 5.1 for

quick reference.

No setup (Plain Model) ‘ Public Setup (CRS)

Private Setup (CRS + PKI)

Honest Majority Round: 3 Round: 3 Round: 2
t<n/2 Lower Bound: [166, 102] Lower Bound: [166, 102] Lower Bound: [112]
fn / god Upper Bound: [4, 16] Upper Bound: [108, 4, 16] | Upper Bound: [10§]

Dishonest Majority

s<n

Round: 4

Lower Bound: [95]

Round: 2

Lower Bound: [112]

Round: 2

Lower Bound: [112]

/ Upper Bound: [113, 15, 60] | Upper Bound: [94, 160] Upper Bound: [94, 160]
sa /ua

(sa only) [92, 93, 35] [92, 93, 35]
(fn|ua)-BoBW Round: 5 Round: 3 Round: 3

t<n/2,s<n
fn & ua

Lower Bound: This work

Upper Bound

: This work

Upper Bound

Lower Bound: [102, 166]

: This work

Lower Bound: This work

Upper Bound

: This work

Round: —

Round: 3

Round: 2

(god|ua)-BoBW

t<n/2,t+s<n Lower Bound: 4 [95] Lower Bound: This work | Lower Bound: [112]

god & ua Upper Bound: 5 This work | Upper Bound: This work | Upper Bound: This work
Table 5.1: Summary of results related to BoBW MPC
Extensions. We can boost the security of all our protocols to offer identifiability (i.e. public

identifiability of the parties who misbehaved) when abort happens— (fnjua)-BoBW protocols
with identifiable fairness (idfair) and abort (idua) in honest and dishonest majority setting re-
spectively and (god|ua)-BoBW protocols with idua in dishonest-majority setting. Our lower
bound results hold as is when ua and fn are upgraded to their stronger variants with identi-
fiability. Furthermore, all our upper bounds relying on CRS have instantiations based on a
weaker setup, referred as common random string, owing to the availability of 2-round Oblivious
Transfer (OT) [176] and Non-Interactive Zero Knowledge (NIZK) [179] under the latter setup
assumption. Lastly, we also propose few optimizations to minimize the use of broadcast chan-
nels in our compilers upon which our upper bounds are based. Specifically, these optimizations
preserve the round complexity of our upper bounds at the cost of relaxing the security notion

in dishonest majority setting to sa (as opposed to ua).

5.1.3 Techniques

(fnjua)-BoBW. The lower bounds are obtained via a reduction to 3-round OT in plain model

and 1-round OT in private setup setting, both of which are known to be impossible [95, 112]
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(albeit under the black-box simulation paradigm which is of concern in this work). The starting
point is a protocol m between 3 parties which provides fn when 1 party is corrupt and ua when
2 parties are corrupt, in 4 rounds when no setup is assumed and 2 rounds when private/public
setup is assumed. The heart of the proof lies in devising a function f such that the realization
of f via m, barring its last round, leads to an OT.

The upper bounds are settled with a proposed generic compiler that turns an r-round
dishonest-majority MPC protocol achieving ua to an (r + 1)-round BoBW MPC protocol
information-theoretically. The compiler churns out a 5-round and a 3-round BoBW protocol
in the plain model and in the presence of a CRS respectively, when plugged with appropriate
ua-secure dishonest-majority protocol in the respective setting. Since the constructions of the
known 4-round dishonest-majority MPC relying on polynomial-time assumptions [113, 15, 60]
provide only sa security, we transform them to achieve ua for our purpose which invokes non-
triviality for [113]. With CRS, the known constructions of [93, 35] achieve unanimity and
readily generate 3-round BoBW protocols.

Our compiler motivated by [130] uses the underlying r-round protocol to compute authen-
ticated secret sharing of the output y with a threshold ¢(< n/2) enabling the output recon-
struction to occur in the last round. Fairness is ensured given the unanimity of the underlying
protocol and the fact that the adversary (controlling ¢ corrupt parties) has no information
about the output y from the ¢ shares he owns. However, using pairwise MACs for authenti-
cation defies unanimity in case of arbitrary corruptions because a corrupt party can choose to
provide a verified share to a selected set of honest parties enabling their output reconstruction
while causing the rest to abort. This issue is tackled by enforcing public verifiability of the
shares via a form of authentication used in the Information Checking Protocol (ICP) primitive
of [173, 165] and unanimously identifiable commitments (UIC) of [128]. This technique makes
it impossible (except with negligible probability) for a corrupt party to keep two honest parties
on different pages about the correctness of the share it provides during output reconstruction

hence preserving unanimity.

(god|ua)-BoBW. The non-trivial lower bound for this class is for the CRS setting. The
other bounds imply from the dishonest-majority case. In the CRS setting, we prove a lower
bound of 3 rounds. We start with assuming a 2 round BoBW protocol 7 for a specifically
articulated 4-party function f. Next, we consider a sequence of executions of w, with different
adversarial strategies in the order of their increasingly malicious behaviour such that the views
of a certain party stays the same between the executions. This sequence finally leads us to a
strategy where the adversary is able to learn the input of an honest party breaching privacy,

hence coming to a contradiction. The crux of the lower bound argument lies in the design
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of the adversarial strategies that shuffle between the honest and dishonest majority setting
encapsulating the challenge in designing BoBW protocols. This is in contrast to existing lower
bounds in traditional models that deal with a fixed setting and single security notion at a time.

In the presence of a CRS, we build a 3-round protocol in two steps: a) we provide a generic
compiler that transforms a broadcast-only ua-secure 2-round semi-malicious protocol such as
93, 35] to a 3-round broadcast-only BoBW protocol of this class against a semi-malicious
adversary (that follows the protocol honestly but can choose bad random coins for each round
which are available to the simulator) b) then, the round-preserving compiler of [10] (using
NIZKs) is applied on the above protocol to attain malicious security. The first compiler, in
spirit of [4], ensures god against ¢ non-cooperating corrupt parties in the last round, via secret-
sharing the last-round message of the underlying protocol during the penultimate round of the
compiled protocol. This is achieved by means of a garbled circuit sent by each party outputting
its last-round message of the underlying protocol and the shares of the encoded labels with
a threshold of s so that s + 1 parties (in case of honest majority) can come together in the
final round to construct the last-round message of the corrupt parties. This garbled circuit of a
party P; also takes into account the case when some other parties abort in the initial rounds of
the protocol by taking the list of aborting parties as input and hard-coding their default input
and randomness such that P;’s last round message is computed considering default values for
parties who aborted. The compiler is made round-preserving with the additional provision of
pairwise-private channels or alternately, PKI. The latter (with PKI) just like its 3-round avatar
can be compiled to a malicious protocol via the compiler of [10].

In the plain model, we provide a 5-round construction which is substantially more involved
than our other upper bounds. To cope up with the demands of (god|ua)-BoBW security in the
plain model, we encountered several roadblocks that were addressed by adapting some existing
techniques combined with new tricks. The construction proceeds in two steps: a) we boost
the security of our broadcast-only 3-round semi-malicious BoBW protocol to a stronger notion
of delayed-semi-malicious security (where the adversary is required to justify his messages by
giving a valid witness only in the last but one round) and b) we plug this 3-round BoBW
protocol in the compiler of [35] with some additional modifications to obtain a 5-round BoBW
protocol secure against a malicious adversary. The compiler of [35] takes as input a (k — 1)-
round protocol secure with abort against a delayed-semi-malicious adversary and churns out a
k-round protocol secure with abort against a malicious adversary for any k > 5. The major
challenges in our construction surface in simulation, where we cannot terminate in the honest-
majority case even if the adversary aborts on behalf of a corrupt party (unlike the compiler of

[35] that achieves abort security only). Furthermore, we observed that the natural simulation
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strategy to retain the BoBW guarantee suffered from a subtle flaw, similar to the one pointed
in the work of [115], which we resolve with the help of the idea suggested therein. To bound
the simulation time by expected polynomial-time, we further needed to introduce two ‘dummy’
rounds (rounds which do not involve messages of the underlying protocol being compiled) in
our compiler as opposed to one as in [35]. This does not inflate the round complexity as
our underlying delayed-semi-malicious protocol only consumes 3 rounds (instead of 4 as in
the case of [35]). As a step towards resolving the question left open in this work (namely
proving the impossibility or alternately constructing a 4-round (god|ua)-BoBW protocol under
polynomial-time assumption), we present a sketch of a 4-round (god|ua)-BoBW protocol based
on sub-exponentially secure trapdoor permutations and ZAPs. This construction builds upon

the work of [64]. The pictorial roadmap to obtain the upper bounds is given in the figure below.

3-round —
2-round . 5-round
. . Delayed Semi- .
Semi-malicious s Malicious
Malicious
(god]ua)- (eodlun) (god]ua)-
od|ua)- 5.2,
BoBW goclt Sec 9922 5 BoBW
BoBW
Broadcast + Broadcast-
R Broadcast-
private channel Only
Only
no setup no setup
no setup
2-round 3-round 3-round
Semi-malicious Semi-malicious Malicious
ua-dishonest- Sec 5511 | (god|ua)- Sec 5.5.1.3 | (god|ua)-
majority | BoBW - BoBW
Broadcast-only Broadcast-only Broadcast-only
no setup See. no setup CRS
5,5_1
2
2-round 2-round
Semi-malicious Malicious
(god|ua)- Sec 5.5.1.3 | (god|ua)-
BoBW ~|BoBW
Broadcast-only Broadcast-only
PKI CRS + PKI

Model. Before moving onto the technical section, we detail our model here. We consider
a set of n PPT parties P = {P,,... P,} connected by pairwise-secure and authentic channels
and having access to a broadcast channel. A few protocols in our work that are referred to as
being broadcast-only do not assume private channels. Each party is modelled as a probabilistic
polynomial time (PPT) Turing machine. We assume that there exists a PPT adversary A, who

can corrupt a subset of these parties.

Roadmap. Our lower and upper bounds for (fn|ua)-BoBW appear in Section 5.2-5.3. Our
lower and upper bounds for (god|ua)-BoBW appear in Section 5.4 - 5.5. The primitives used

in our upper bounds and the security model appear in Chapter 2.
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5.2 Lower Bounds for (fn|ua)-BoBW

In this section, we show two lower bounds concerning (fn|ua)-BoBW protocols— one with no
setup and the other with private setup. In the plain model, we show that it is impossible
to design a 4-round (fn|ua)-BoBW protocol (with black-box simulation). In the CRS setting,
the 3-round lower bound for (fn|ua)-BoBW protocols follows directly from the impossibility
of 2-round protocol achieving fn [108, 102, 166]. However, they do not hold in the presence
of PKI. While the argument of [108] crucially relies on the adversary being able to eavesdrop
communication between two honest parties (which does not hold in the presence of PKI), the
lower bounds of [102, 166] also do not hold if PKI is assumed (as acknowledged / demonstrated
in [102, 168]). In the setting with CRS and PKI, we show impossibility of a 2-round protocol.
The proof of both our lower bounds relies on the following theorem, which we formally state

and prove below.

Theorem 5.1 An n-party r-round (fn|ua)-BoBW protocol implies a 2-party (r — 1)-round

maliciously-secure oblivious transfer (OT).

Proof: We prove the theorem for n = 3 parties with £ = 1 and s = 2 which can be extended
for higher values of n in a natural manner. Let P = { P}, P2, P;} denote the 3 parties and the
adversary A may corrupt at most two parties. As per the hypothesis, we assume that there
exists a r-round (fnjua)-BoBW protocol protocol 7; that can compute the function f defined
as f((mo,m1), (¢, Re), R3) = ((m. + Ry + R3), m., m.) which simultaneously achieves fn when
t = 1 parties are corrupt and ua when s = 2 parties are corrupt. At a high-level, we transform
the r-round 3-party protocol 7y among {P, P, Ps} into a (r — 1)-round 2-party OT protocol
between a sender Pg with inputs (mg,m1) and a receiver Pg with input c. Before describing

the transformation, we present the following lemma:

Lemma 5.1 Protocol my must be such that the combined view of { Py, Ps} at the end of Round

(r — 1) suffices to compute their output.

Proof: Consider an adversary A who corrupts only a minority of the parties (t = 1). A
controls party Py with the following strategy: P; behaves honestly in the first (r — 1) rounds
while he simply remains silent in Round r (last round). Since P; receives all the desired
communication throughout the protocol, it follows directly from correctness of 7, that A must
be able to compute the output. Since 7 is assumed to be fair for the case of ¢ = 1, it must
hold that the honest parties P, and P; must be able to compute the output without any
communication from P, in Round r. This implies that the combined view of {P,, P;} at the

end of Round (r — 1) must suffice to compute the output. a
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Our transformation from 7s to a (r — 1)-round OT protocol mot between a sender Py with
inputs (mg, m;) and a receiver Pr with input ¢ goes as follows. Ps emulates the role of P;
during 7y while Pr emulates the role of both parties {1, Ps} during 7, using random inputs

r

Ry, R3 respectively. In more detail, let m;_;

denote the communication from P; to F; in round
r of my. Then for r € [r — 1], the interaction in round r of protocol mor is the following: Pg
sends mj_,, and mj_,5 to Pr while Pr sends mj_,; and m§_,; to Pg. Pr computes the output m,
using the combined view of {P,, P3} at the end of Round (r — 1). Ps outputs nothing. Recall
that the output of the OT between (Ps, Pr) is (L, m.) respectively. We now argue that mor

realizes the OT functionality.
Lemma 5.2 Protocol mot realizes the OT functionality.

Proof: We first prove that mor is correct. By Lemma 5.1, it follows that Pg emulating the
role of both { P, P3} of m; must be able to compute the correct output m. by the end of Round
(r —1). We now consider the security properties. First, we consider a corrupt Pr (emulating
the roles of { P, P3} in m¢). Since by assumption, 7; is a protocol that should preserve privacy
of Py’s input even in the presence of an adversary corrupting { P, Ps} (s = 2 corruptions), the
input m;_. of P must remain private against a corrupt Pr. Next, we note that privacy of 7
against a corrupt P, (t = 1 corruption) guarantees that P; does not learn anything beyond the
output (m. + Ry + R3) in the protocol m¢ which leaks nothing about c. It thus follows that a
corrupt Pg in mor emulating the role of P, in 7, will also not be able to learn anything about
Pg’s input ¢. More formally, we can construct a simulator for the OT protocol ot for the cases
of corrupt Pr and corrupt Pg by invoking the simulator of 7y for the case of dishonest majority
(s = 2) and honest majority (¢ = 1) respectively. In each case, it follows from the security
of 7y that the simulator of m¢ would return a view indistinguishable from the real-world view;
directly implying the security of the OT protocol mot. a
Thus, we can conclude that a (r — 1)-round 2-party OT protocol ot can be derived from

r-round 7. This concludes the proof of Theorem 5.1. O

Theorem 5.2 There exists a function [ for which there is no 4-round (resp. 2 round) protocol
computing f in the plain model (resp. with CRS and PKI) that simultaneously realises— (1)
Ftair (Figure 2.3) when t < n/2 parties are corrupted (2) Fua (Figure 2.2) when s < n parties

are corrupted. In the former setting (plain model), we assume black-boz simulation.

Proof: We start with the proof in the plain model, followed by the proof with CRS and PKI.
We assume for contradiction that there exists a 4-round (fn|ua)-BoBW protocol (with black-

box simulation) in the plain model. Then, it follows from Theorem 5.1 that there must exist a
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3-round 2-party maliciously-secure OT protocol with black-box simulation in the plain model.
We point that this OT derived as per the transformation of Theorem 5.1 is a bidirectional OT,
where each round consists of messages from both the OT sender and the receiver. Using the
round-preserving transformation from bidirectional OT to alternating-message OT (where each
round consists of a message from only one of the two parties) [60], we contradict the necessity of
4 rounds for alternating OT in the plain model with black-box simulation [95]. This completes
the proof for plain model.

Next, we assume for contradiction that there exists a 2-round (fn|ua)-BoBW MPC protocol
in the presence of CRS and PKI. Then, it follows from Theorem 5.1 that there exists 1-round
OT protocol in this model. We have arrived at a contradiction since non-interactive OT is
impossible to achieve in a model with input-independent setup that includes CRS and PKI
(notably 1-round OT constructions which use an input-dependent PKI setup such as [25] exist).
To be more specific, a 1-round OT protocol would be vulnerable to the following residual attack
by a corrupt receiver Pg: Pg can participate in the OT protocol with input ¢ and get the output
m. at the end of the 1-round OT protocol (where (mg, m;) denote the inputs of sender Pg). Now,
since the Round 1 messages of Ps and Pg are independent of each other, Pr can additionally
plug in his input as being (1 —c¢) to locally compute m;_. as well which is a violation of sender’s

security as per the ideal OT functionality. O

5.3 Upper Bounds for (fnjua)-BoBW

In this section, we construct two upper bounds for the (fn|ua)-BoBW class. Our upper bounds
take 5 and 3 rounds in the plain model and in the CRS setting respectively, tightly matching
the lower bounds presented in Section 5.2. We begin with a general compiler that transforms
any n-party r-round actively-secure MPC protocol achieving ua in dishonest majority into an
(r + 1)-round (fn|ua)-BoBW protocol.

5.3.1 The Compiler

Drawing motivation from the compiler of [130] from ua to fn in the honest majority setting,
our compiler uses the given r-round protocol achieving ua security to compute an “authenti-
cated” secret sharing with a threshold of ¢ of the output y and reconstruct the output y during
the (r + 1)* round. The correct reconstruction is guaranteed thanks to unanimity offered by
the underlying protocol and the authentication mechanism that makes equivocation of a share
hard. Alternatively termed as error-correcting secret sharing (ECSS) [130], the authenticated
secret sharing was instantiated with pairwise information-theoretic or one-time MAC as a form

of authentication. This, when taken as is in our case, imbibes fairness in the honest majority
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setting as in the original transformation. The sharing threshold ¢ ensures that the shares of
the honest set, consisting of at least t 4+ 1 parties, dictate the reconstruction of the output, no
matter whether the corrupted parties cooperate or not. The pairwise MAC, however, makes it
challenging to maintain unanimity in the dishonest majority case of the transformed protocol,
where a corrupt party may choose to verify its share to selected few enabling their output re-
construction. This seems to call for a MAC that cannot be manipulated part-wise to keep the
verifiers on different pages. A possible approach to achieve the property of public verifiability
is by means of digital signatures i.e each party obtains a signed output share which it broad-
casts during reconstruction and can be verified by remaining parties using a common public
verification key (that the parties obtain as part of the output of the r-round protocol achieving
ua). However, we opt for an alternate solution that avoids the use of digital signatures, en-
abling us to achieve the desirable property of the compiler (transforming any n-party r-round
actively-secure MPC protocol achieving ua in dishonest majority into an (r + 1)-round (fn|ua)-
BoBW protocol) being information-theoretic (i.t). Achieving i.t security is a worthwhile goal,
as substantiated by its extensive study in numerous settings including those where achieving
this desirable security notion demands additional tools. For instance, there are well-known
results circumventing the impossibility of achieving i.t security in dishonest majority by relying
on additional assistance such as tamper-proof hardware tokens [110, 128, 80] and Physically
Uncloneable Functions (PUFs) [164, 45]. Having an i.t compiler opens up the possibility of
achieving i.t BoBW MPC by plugging in an i.t. secure dishonest majority protocol (say, that
uses hardware tokens / PUFs or some other assistance) in the compiler.

Our i.t compiler is realized via a clean trick inspired from a form of authentication used in
the Information Checking Protocol (ICP) primitive of [173, 165] and unanimously identifiable
commitments (UIC) of [128]. A value s is authenticated using a ‘joint” MAC which is a t-degree
(uniform) polynomial a(x) over a field with constant term s. Each verifier P; receives evaluation
of a(x) at a random secret point K; as verification information— (K;, a(K;)). The secret random
points when picked from large enough field make it statistically hard for a corrupt authenticator
to lie about the MAC polynomial (and the underlying secret) that can cause disagreement across
the verifiers. We now define authentication with public verifiability and authenticated t-sharing
below. Subsequently, we present a protocol for reconstruction of an authenticated t-shared value
and capture the unanimity it offers in a lemma (Lemma 5.3). The protocol and the lemma are

used in our compiler and its security proof respectively.

Definition 5.1 (Authentication with Public Verifiability) A value s € F = GF(2) is

said to be authenticated with public verifiability with an authenticator P and n verifiers P =
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{P,..., P}, if the designated authenticator holds a polynomial a(x) of degree at most t over
F, picked uniformly at random, with the constraint that a(0) = s and each verifier P; holds
v; = (Ky, a(K;)) for a random secret value K; € F\ {0}. a(z) is denoted as MAC and v; as the

corresponding verification information of verifier P;.

Definition 5.2 (Authenticated t-sharing) A value s € F = GF(2%) is said to be authen-
ticated t-shared (refer to Section 2.4.3 for t-sharing) amongst n parties {Py,..., P,} if there
exists a polynomial p(x) of degree at most t over F, picked uniformly at random, with the con-
straint that p(0) = s, such that each share s; = p(i) of s is authenticated with public verifiability
w.r.t. authenticator P; and verifiers P and j™ verifier holding common point K; for all authenti-
cation instances. Each P; holds a;(x) as the MAC of s; and v;; = (K;, a;(K;)) as the verification
information corresponding to MAC a;(x) held by P;.

—[ Protocol Rec ]

Input: Party P; holds (a;(z),{vij = (Ki,aj(Ki))}je[n]).
Output: Secret s or L

Round 1: P; broadcasts a;(z). If a;(z) broadcasted by P; is a polynomial of degree at most ¢ and
is consistent with v;;, then P; adds j in a set V;, marked as verified, which is initialized to {i}.

If [V;| > t+ 1 and {a;(0)};ev, lie on a t-degree polynomial, it reconstructs the secret s as the

constant term of the interpolated polynomial. Else it outputs L.

Figure 5.1: Protocol Rec to reconstruct an authenticated t-shared value

Lemma 5.3 All the honest parties either output s or L in Rec (Figure 5.1), except with prob-

n2

ability at most -
Proof: To prove the lemma, we show that the respective V sets held by all honest parties are
identical and do not comprise of any j such that P; broadcasts an incorrect MAC polynomial

* 2

a;(z) # a;j(w), except with probability at most w1~ Lhe latter condition would prove that the
reconstructed secret (if any) would be s while the former would show that all honest parties
compute the same output. With F = GF'(2%), the above probability is negligible in .

First, consider an honest FP; with verification information v;; = (KZ-, aj(Ki)) corresponding
to MAC a;(x) held by P;. According to Rec, P; would include j in V; only if a}(x) broadcast
by P; is consistent with v;;. Since a potentially corrupt P; has no information about the

random secret point K;, the probability that P; broadcasts aj(x) # a;(z) but a}(K;) = a;(K;)
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is the probability that P; guessed the secret point K; correctly which is IIFl%l (K; was picked
uniformly at random from I\ {0}). Extending this argument to all potentially corrupt F;’s,
the probability that V; includes at least one j such that a}(x) # a;(r) is at most \IFl\L—ll (applying
union bound), where € is the set of parties controlled by the adversary A. Finally, applying the
union bound over the set of honest parties H, we conclude that the probability that at least
one honest party includes some j in its V set such that P; broadcast a}(x) # a;(z) is at most

%Hﬁ'. Taking into account that |H]|,|C| < n, this probability is bounded by Wl*zlz_il‘ Thus all

honest parties would have identical V sets, excluding js such that P; broadcast the incorrect
MAC polynomial, except with probability mf‘"‘—il.
O

We present our protocol 7Ty fair in Figure 5.3. The correctness and security of 7y fair are
analyzed in Theorem 5.3 and Theorem 5.4, respectively, in a hybrid-execution model where
the parties have access to a functionality 5 that computes the authenticated t-sharing of the

output y = f(x1...z,) with ua security. The description of F5" appears below in Figure 5.2.

r—[ Ideal Functionality 3"32} N

Input: On message (sid, Input, z;, K;) from a party P; (i € [n]), do the following: if (sid, Input, )
message was received from P;, then ignore. Otherwise record it internally. If (x;, K;) is outside

of the domain for P; (i € [n]), consider x; = abort.

Output to adversary: If there exists i € [n] such that x; = abort, send (sid,Output, L) to all
the parties. Else, compute y = f(x1 ...x,) and compute the authenticated ¢-sharing of secret
s = y (Definition 5.2). Let p(x) denote the t-degree polynomial with p(0) = ¥, a;(x) denote the
MAC of s; = p(i) and v;; = (K;, a;(K;)) represent the verification information corresponding to
MAC a;(x) held by Pj. Set z; = (a;(x), {vij = (Ki, aj(Ki))}jep))- Send (sid, Output, {zi}ice)

to the adversary, where C denotes the set of parties controlled by the adversary.

Output to honest parties: Receive either continue or abort from adversary. In case of continue,

send z; to each honest P;, whereas in case of abort send L to all honest parties.

Figure 5.2: Ideal Functionality F5!

—[ Protocol wa.fair}

Inputs: Party P, has z; for ¢ € [n]

Model: F31- hybrid model (Figure 5.2)

Output: y = f(z1...2,) or L
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Round 1 — r: P; interacts with F3h with input (z;, K;) to compute authenticated ¢-sharing of output
y = f(x1...2y,), where K; denotes its secret random key from F \ {0}.

Round (r 4 1): If 73" returns L, P; outputs L. Else it participates in Rec with the output obtained
from F= and outputs the output of Rec.

Figure 5.3: (fn|ua)-BoBW protocol

Theorem 5.3 Protocol Ty fair 1S correct, except with negligible probability.

Proof: We argue that an honest party’s output y which is not L is correct, with very high
probability. In F"-hybrid model, the output of F*! is indeed a correct authenticated t-sharing
of the output y = f(x; ...x,) where z; denotes the input committed by P, to F=1. In the honest
majority setting (i.e. t < n/2), |V;| of an honest P; will contain all the honest parties. Therefore,
the reconstructed polynomial via the points {a;(0)},ev, is indeed the correct polynomial and
computes the correct output y. In the dishonest majority setting (i.e. s < n), |V;| of an honest
P, may contain a corrupt party P; broadcasting a wrong a;(x) with probability at most IIFl%l
and as a consequence a wrong t-degree polynomial may get reconstructed. Therefore, except

with probability VF\L—P P;’s reconstructed output is correct. O

Theorem 5.4 Protocol Ty fair Tealises— (i) Frair (Figure 2.3) when at most t < n/2 parties are
corrupt and (ii) Fua (Figure 2.2) when at most s < n parties are corrupt, in the F"-hybrid

model. It takes (r + 1) rounds, assuming the realization of F= requires r rounds.
We defer the proof of Theorem 5.4 to Section 5.6.2.

5.3.2 The Upper Bounds

Building our round-optimal (fn|ua)-BoBW protocols in the plain and CRS model involves con-
structing 2 and 4 round protocols that achieve ua security against dishonest majority in the
respective models. Such protocols when plugged in our compiler of Section 5.3.1 to realise
the functionality F3" would directly yield the round-optimal (fn|ua)-BoBW protocols. In the
CRS setting, the known 2-round protocols of [93, 35] achieve ua and thereby lead to a 3-round
(fnlua)-BoBW protocol, matching the lower bound. Unfortunately, the existing 4-round MPC
protocols in the plain model relying on polynomial-time assumptions [113, 15, 60], in spite of
convenient use of broadcast, only satisfy the weaker notion of sa. In this work, we demon-
strate how the protocol of [113] and [15, 60] can be tweaked to achieve ua in Appendix 5.7.
The former reuses the technique of authentication with public verifiability introduced previ-

ously and involves a few other tinkering. With respect to the above-mentioned realizations of
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Fh our (fn|ua)-BoBW MPC protocols rely on the assumption of 2-round OT in the common

ua?’

random /reference string model and 4-round OT in the plain model.

Theorem 5.5 Assuming the existence of a 4 (resp., 2) round MPC protocol that realizes F,
(Figure 2.2) for upto n—1 malicious corruptions in the plain (resp., CRS) model, there exists a
5 (resp., 8)-round MPC protocol in the plain (resp., CRS) model that simultaneously realises—
(1) Feair (Figure 2.3) when t < n/2 parties are corrupted (2) F,a (Figure 2.2) when s < n

parties are corrupted.

A minor observation regarding the use of broadcast in our compiler is that we can replace it
with point-to-point communication at the expense of relaxing ua to sa security in the dishonest

majority setting.

Security with Identifiability. Our compiler preserves the property of identifiability. Since
the underlying dishonest-majority protocols [93, 35] can be augmented with NIZK in the CRS
model to achieve identifiable abort, the upper bound in the CRS model achieves identifiable
fairness and abort in the honest and dishonest majority setting respectively. With respect to
the plain model, we show how security of [15] can be boosted to achieve identifiable abort with
minor tweaks in Appendix 5.7.2. This variant, when compiled using our compiler of Section
5.3.1 would achieve identifiable fairness and abort in the honest and dishonest majority setting
respectively. We therefore get a version of Theorem 5.5 where F,, and F,;, are replaced with

Fiqua (Figure 2.5) and Fiypir (Figure 2.6) respectively.

5.4 Lower Bounds for (god|ua)-BoBW

In this section, we prove that it is impossible to design a 2-round (god|ua)-BoBW protocol
with ¢ + s < n in the CRS model. Note that the necessity of 3 rounds for (god|ua)-BoBW
protocol for most values of (n,s,t) follows from the 2-round impossibility of fair MPC for
honest majority in the CRS model [108, 166, 102]. Accounting for the fact that these existing
results do not rule out the possibility of 2-round (god|ua)-BoBW MPC for (t = 1,5 > t,n > 4),
we present a unified proof that works even for s > t, for all values of ¢ (including ¢t = 1). Our
proof approach deals with adversarial strategies that shuffle between the honest and dishonest
majority setting, highlighting the challenge of designing protocols that simultaneously provide
different guarantees for different settings. This is in contrast to the existing lower bounds of
[108, 166, 102] which deal only with honest majority setting and single security notion of fn.
Lastly, we demonstrate why our proof breaks down in the presence of PKI. Indeed, we construct
a 2-round (god|ua)-BoBW protocol assuming CRS and PKI in this work.
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Theorem 5.6 Let n,t,s be such thatt+s <n andt < n/2. There exist functions f for which
there is no two-round protocol in the CRS model computing f that simultaneously realizes— (1)
Feod (Figure 2.4) when t < n/2 parties are corrupted (2) F,a (Figure 2.2) when s < n parties

are corrupted.

Proof: We prove the theorem for n = 4 parties with ¢ = 1 and s = 2. The result then
can be extended for higher values of n in a natural manner. Let P = {P;, P,, P5, Py} denote
the set of 4 parties and A may corrupt at most two among them. We prove the theorem
by contradiction. We assume that there exists a 2-round (god|ua) BoBW protocol 7 in the
CRS model that can compute the function f(zy,xs,3,24) defined below for P;’s input x;:
f(z1, 29, 23,24) = 1 if 1 = 9 = 1;0 otherwise. By assumption, 7 achieves god when ¢t = 1
parties are corrupt and ua security when s = 2 parties are corrupt (satisfying feasibility criteria
t+s<n).

At a high level, we discuss three adversarial strategies A, Ay and Az of A. While both
A, and Ajz deal with ¢ = 1 corruption with the adversary corrupting P;, Ay involves s = 2
corruptions where the adversary corrupts {Ps, P,}. We consider A; strategy as being launched
in execution ¥; (i € [3]) of m. The executions are assumed to be run for the same input
tuple (z1,z9, L, 1) and the same random inputs (rq,rs,r3,74) of the parties. (Same random
inputs are considered for simplicity and without loss of generality. The same arguments hold
for distribution ensembles as well.) Our executions and adversarial strategies are sequenced in
the order of increasingly more non-cooperating malicious adversaries. Yet, keeping the views
of a certain party between two consecutive executions same, we are able to conclude the party
would output the correct value even in the face of stronger malicious behaviour. Finally, we
reach to the final execution X3 where we show that a party can deduce the output in the end of
Round 1 itself. Lastly, we show a strategy for the party to explicitly breach the input privacy
of one of the input-contributing parties.

We assume that the communication done in the second round of 7 is via broadcast alone.
This holds without loss of generality since the parties can perform point-to-point communication
by exchanging random pads in the first round and then use these random pads to unmask later
broadcasts. We use the following notation: Let p; _,; denote the pairwise communication from
P; to P; in round 1 and b} denote the broadcast by P; in round r, where r € [2], {4, j} € [4].
These values may be function of CRS as per the working of the protocol. V¢ denotes the view
of party P; at the end of execution ¥, (¢ € [3]) of 7. Below we describe the strategies Aq, As
and As.

Aq: A corrupts P; here. P, behaves honestly towards P, in Round 1, i.e sends the messages
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pi .., bl as per the protocol. However P; does not communicate privately to {Ps, P,} in

Round 1. In Round 2, P, behaves honestly as per the protocol.

Ag: A corrupts {Ps, Py} here. {Ps, P,} behave honestly in Round 1 of the protocol. In Round
2, P, (k € {3,4}) acts as per the protocol specification when no private message from P
is received in Round 1. Specifically, suppose P did not receive p} ., in Round 1. Let b_i
denote the message that should be sent by Py as per the protocol in Round 2 in such a

scenario. Then as per A,, corrupt P sends b_i in Round 2.

As: Same as in A; and in addition— during Round 2, P; simply remains silent i.e waits to

receive the messages from other parties, but does not communicate at all.

Next we present the views of the parties in X1, X5 and X3 in Table 5.2. Here, b_i (k € {3,4})
denotes the message that should be sent by P, according to the protocol in Round 2 in case Py

did not receive any private communication from P; in Round 1.

| 2 | = | %
|vi V3 Bz V! | V2 V3 |v3 V2 v V3 V3 Vi
Input | (z1,71) (29,72) r3 Ty (1,71) (z2,12) r3 T4 (1,71) (z2,12) r3 T4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P215 P31 | Pisas P3| 5 P23y | 5 P2 | Pasis P3| Pis2s P32y | Pisss Passs | Pisas Pasas | Pais P31 | Pisas P3as | 7 Passs | 5 Paoas
1 1 1 1 1 1 1 1 1 1 1 1
R1 Pi1s Pi2, Pys3s P34, Py, Pi2, Py3, P34, Pi1s Pi2, Pi3, P34,

bl bl b | bl bj bl | bl bl bl | bl bl bl | bl bl bl | bLbh b} | bl by b | bl bl bl | bl bl bl | bl b by | bl bbb | bl,bl, b

R2 | b3, b3, b7 | b7, b3, b} | b b3 bi|bf bl b3 | b3 b3 bf |bi b3 b7 | bi b3 bi | bf b3 b3 | b3 b3 bE |- b3 bY |- b3 bi |- bibj

Table 5.2: Views of Pl,Pg,Pg,P4 in El; 22, 23

We now prove a sequence of lemmas to complete our proof. Let y denote the output

computed as per the inputs (x1, z5) provided by the honest P, and P,.
Lemma 5.4 The view of Py is the same in X1 and X9 and it outputs y in both.

Proof: We observe that as per both strategies A; and As, P5 receives communication from
Py, P;, P, as per honest execution in Round 1. In Round 2, according to A;, corrupt P; did
not send private messages to P3 and P, who therefore broadcast b_g and b_i respectively as per
protocol specification. On the other hand, according to As, corrupt P3 and corrupt P, send
the same messages respectively as per protocol specification for case when Ps, P, receive no
private message from P in Round 1. It is now easy to check (refer Table 5.2) that Vi = V3.
Now, since 1 involves ¢ = 1 corruption, by assumption, 7 must be robust and Vi must lead to

output computation, say of output 3’. Due to view equality, P, in X must also output ¢’. In
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Y9, Py and P, are honest and their inputs are z; and x5 respectively. Due to correctness of 7
during Y, it must then hold that ¢/ = y i.e the output computed based on V3 is according to
honest P;’s input x; during ¥,. This completes the proof. O

Lemma 5.5 The view of Py is the same in Xy and X3 and it outputs y in both.

Proof: An honest P, has the same view in both ¥; and ¥y and outputs y as per Lemma 5.4.
As 7 achieves ua in the presence of s = 2 corruptions, P; learns y in ¥5. We now show that
Py’s view in Y, and X3 are the same and so it outputs y in 3. First, it is easy to see that
the Round 1 communication towards P; is as per honest execution in both Y5, 3. Next, recall
that as per As, both corrupt { P3, P;} send messages in Round 2 according to the scenario when
they didn’t receive any private communication from P; in Round 1. A similar message would
be sent by honest {Ps, Py} in 33 who did not receive private message from corrupt Py as per
Ajs. Finally, since corrupt P; behaved honestly to P, in Round 1 of X3 as per Ajs, the Round 2
communication from P, is similar to that in execution Y. It is now easy to verify (refer Table

5.2) that V? = V? from which output y can be computed. O
Lemma 5.6 P, in X3 should learn the output y by the end of Round 1.

Proof: Firstly, it follows directly from Lemma 5.5 and the assumption that protocol 7 is
robust against t = 1 corruption that all parties including P, must learn output y at the end of
Y3. Next, we note that as per strategy Az, P, only communicates to P in Round 1. We argue
that the second round communication from Pj, P, does not impact P»’s output computation
as follows: we observe that the output y depends only on (z1,x3). Clearly, Round 1 messages
of P3, P, does not depend on x;. Next, since there is no private communication to P3, P, from
P, as per strategy Az, the only communication that can possibly hold information on x; and
can impact the round 2 messages of P3, P, is bi. However, since this is a broadcast message,
P; also holds this by the end of Round 1 itself. Thus, P, must be able to compute the output
y at the end of Round 1.

In more detail, P, can choose randomness 73, r4 on behalf of P3, Py to locally emulate their
following Round 1 messages {p} .5, i .o, P2 4, Piss, Di b}, Next, P, can now simulate P3’s
Round 2 message b_§ which is a function of its view comprising of {p3 5, pi_3, b, bs,bi} (all
of which are available to P, where bj was broadcast by P, in Round 1). Similarly, P, can
locally compute P;’s Round 2 message b_i. We can thus conclude that P,’s view at the end of
Y3 comprising of {p]_,,, A2, Pi_a, b1, b3, b}l,b_g, b_i} can be locally simulated by him at the end

of Round 1 itself from which the output y can be computed. O

Lemma 5.7 A corrupt Py violates the privacy property of .
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Proof: The adversary corrupting P, participates in the protocol honestly by fixing input
x9 = 0. Since P, can get the output at the end of Round 1 (Lemma 5.6), it must be true that
P, can evaluate f locally by plugging in any value of x5. Now a corrupt P, can plug in x5 =1
locally and learn z; (via the output z; A z3). In the ideal world, corrupt P, must learn nothing
beyond the output 0 as it has participated in the protocol with input 0. But in the execution
of m (in which P, participated honestly with input xo = 0), P, has learnt ;. This is a breach
of privacy as P learns x; regardless of his input. a

Hence, we have arrived at a contradiction, completing proof of Theorem 5.6. O

We draw attention to the fact that Lemma 5.6 would not hold in the presence of any
additional setup such as PKI. With additional setup, P3, P, may possibly hold some private
information (such as their secret key in case of PKI used to decode P;’s broadcast message in
Round 1) that is not available to P,. Due to this reason, we cannot claim that P, can emulate
Round 2 messages of {Ps, P} locally at the end of Round 1. However, this holds in case of
CRS as the knowledge of CRS is available to all parties at the beginning of the protocol.

5.5 Upper Bounds for (god|ua)-BoBW

In this section, we present three (god|ua)-BoBW MPC protocols, assuming t + s < n which is
the feasibility condition for such protocols ([127]) consuming— a) 3-rounds with CRS b) 2-rounds
with an additional PKI setup ¢) 5-rounds in plain model. The first two are round-optimal in
light of the lower bound of Section 5.4 and [112] respectively. The third construction is nearly
round-optimal (falls just one short of the 4-round lower bound of [95]). Among our upper
bounds, the construction in the plain model is considerably more involved and uses several new

tricks in conjugation with existing techniques.

5.5.1 (god|ua)-BoBW MPC with Public and Private Setup

To arrive at the final destination, the roadmap followed is: (i) A 2-round MPC achieving ua
security is compiled to a 3-round (god|ua)-BoBW MPC protocol, both against a weaker semi-
malicious adversary. With the additional provision of PKI, this compiler can be turned to a
round-preserving one. (ii) The semi-malicious (god|ua)-BoBW MPC protocols are compiled to
malicious ones in CRS setting via the known round-preserving compiler of [10] (using NIZKs).
All the involved and resultant constructions are in broadcast-only setting. The protocol just with
CRS tightly upper bounds the 3-round lower bound presented in Section 5.4, which accounts
for both pair-wise and broadcast channels. The protocol with additional PKI setup works in
2 rounds, displaying the power of PKI and that our lower bound of 3-rounds in Theorem 5.6

breaks down in the presence of PKI. Yet, this construction is round optimal, in light of the
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known impossibility of 1-round MPC [112].
5.5.1.1  3-round (god|ua)-BoBW MPC in semi-malicious setting.

In this section, we present a generic compiler that transforms any 2-round MPC protocol 7,5 sm
achieving ua security into a 3-round broadcast-only (god|ua)-BoBW MPC protocol mpw.god.sm
assuming ¢t +s < n. Our compiler borrows techniques from the compiler of [4] which is designed
for the honest majority setting and makes suitable modifications to obtain BoBW guarantees.
Recall that a semi-malicious adversary needs to follow the protocol specification, but has the
liberty to decide the input and random coins in each round. Additionally, the parties controlled
by the semi-malicious adversary may choose to abort at any step. For completeness, semi-
malicious security is defined in Section 5.6.1. The underlying and the resultant protocol use
broadcast as the only medium of communication.

To transform my,sm to guarantee BoBW security, the compiler banks on the idea of giving
out the Round 2 message of my,sm in a way that ensures god in case of honest majority. The
dishonest majority protocols usually do not provide this feature even against a single corruption,
let alone a minority. Mimicking the Round 1 of my,sm as iS, pw.god.sm achieves this property
by essentially giving out a secret sharing of the Round 2 messages of my,sm With a threshold
of s. When at most ¢ parties are corrupt, the set of s + 1 honest parties pool their shares to
reconstruct Round 2 messages of m,,sm and compute the output robustly as in m,;¢m. This
idea is enabled by encoding (i.e garbling) the next message functions of the second round of
Tuasm and secret-sharing their encoding information using a threshold of s in Round 2 and
reconstructing the appropriate input labels in the subsequent round. (Refer Section 2.4.1 for
details on Garbling Schemes.) The next-message circuit of a party P, hard-codes Round 1
broadcasts of Tyasm, P;’s input and randomness and the default input and randomness of all
the other parties. It takes n flags as input, the j*® one indicating the alive/non-alive status
of P;. P; turning non-alive (aborting) translates to the j* flag becoming 0 in which case the
circuit makes sure P;’s default input is taken for consideration by internally recomputing P;’s
first round broadcast and subsequently using that to compute the Round 2 message of P;. Since
the flag bits become public by the end of Round 2 (apparent as broadcast is the only mode of
communication), the parties help each other by reconstructing the correct label, enabling all to
compute the garbled next-message functions of all the parties and subsequently run the output
computation of 7,,sm- The agreement of the flag bits further ensures output computation is
done on a unique set of inputs. The transfer of the shares in broadcast-only setting is enabled
via setting up a (public key, secret key) pair in the first round by every party. Broadcasting

the encrypted shares emulates sending the share privately. This technique of garbled circuits
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computing the augmented next-message function (taking the list of alive (non-aborting) parties
as input) followed by reconstruction of the appropriate input label was used in the work of [4]
for the honest majority setting. The primary difference in our compiler is with respect to the
threshold of the secret-sharing of the labels, to ensure BoBW guarantees.

The formal description of protocol 7y god.sm appears in Figure 5.4. We analyze its correctness

and security below.

—[ Protocol ﬂbw,god‘sm}

Inputs: Party P, has input z; and randomness r; for i € [n].

Common Inputs: 2- round semi-malicious protocol 7y, sm in the broadcast-only model with Bf

denoting the message broadcast by P; in Round ¢ (¢ € [2]). The messages of myasm can be

expressed as Bl < wl _ (x;,7;) and B? « 72, (i, 7, T1), where T denotes the transcript
of Round 1, namely (B},...BL) and «l .. 72 . . denote the next-message function for

Round 1 and Round 2 respectively of P; in mussm. Finally, let transcript 72 at the end of
Round 2 be defined as ({B}, B%}ie[n]) and the output computation function of P; is denoted

— 0 e T2
as y = Trua.sm,i(xl? T%T )

Primitives: Adaptive Garbling Scheme (Gb, En, Ev, De) (Section 2.4.1.1) which is projective (as-
sume side-information §(C') leaks topology of C'), Public-key encryption Scheme (Gen, Enc, Dec)

Round 1: Each party P; initializes flag; = 1, Vj € [n], computes (pk;,sk;) <+ Gen(1%) and B! «+
ml (z;,7;) and broadcasts (pk;, B). Let 7' = {B},... BL}.

ua.sm,i

Round 2: Let C;(flagy, .. .flag,) be a circuit that has (z;,7;,7") and default input and randomness
of all parties hardcoded and takes as input n bits {flag;}c,). Ci acts as follows:

— if flag; = 0, then recompute le- in T! as per W&asm’ ; based on default input randomness of
P;, for j € [n];

— compute B? + ﬂaa_smyi(fbi, r;, T1) and output B2.

P; does the following;:

— Run (C;, e;,d;) < Gb(1*, C;) and broadcast (C;, d;).

— Let {Iabf’b}ke[n]be{m} denote the set of input labels as per e;. Compute s-sharing of Iabf’b
for all k € [n] and b € {0,1} and broadcast Cf”f = Enc(pk;, la bﬁ’f) where la bﬁ’f denotes Pj’s

share of Iabf’b. For all j € [n], b € {0,1}, k € [n], compute Iabj’ib — Dec(ski,ci’ib).

— Set flag; = 0 if P; (j € [n]) aborts in Round 1 or Round 2. If flag; = 0, then recompute B;

in 7' based on default input and randomness of P;.
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Round 3: For each C; obtained in Round 2, P; participates in the reconstruction of {Iab?’ﬂag’“} ke(n]

by broadcasting share {Iab;’if Iagk} keln]-
Output Computation: Each P; does the following:

— For each (Cj,d;) received in Round 2, reconstruct the input labels {Iab?’ﬂag’“}ke[n} using
the shares broadcast in Round 3. Output L if any reconstruction fails. Else, compute
k. fl
‘Bi A De(EV(Cja {labj agk}k’e[n])adj)'

— Corresponding to P; where flag; = 0, compute ‘B? — ﬂﬁa'smyj(xj,rj,Tl) using default
(5,75)-
— Finally, compute and output y = Wﬁa'smj(xi,ri,TQ) with T2 = ({B}, B?}ie[n]).

Figure 5.4: 3-round semi-malicious (god|ua)-BoBW MPC protocol mpy god.sm from 2-round semi-
malicious MPC 7ya.sm

Theorem 5.7 Protocol Ty god.sm 15 correct, except with negligible probability.

Proof: We claim that if an honest party outputs y # L, y must be the correct output on the
‘committed’ inputs of parties. Here, ‘committed’ refers to the actual inputs for honest parties,
inputs written on witness tape at the end of Round 2 for the semi-malicious alive parties and
default input for the non-alive parties (who abort in either Round 1 or 2). We first argue that if
the reconstruction of an input label is successful, it must correspond to the appropriate public
value of flag. This is evident in the honest majority case, as the (s+41) shares contributed by the
honest parties would ensure that the reconstruction of the s-shared input label is correct. In the
dishonest majority case, we argue that the share (if any) sent by semi-malicious P; in Round
3 for reconstruction must indeed correspond to the original message (share) encrypted in the
ciphertext broadcast in Round 2 using pk;. This follows from the correctness of the public-key
encryption scheme as the semi-malicious P; will not be able to justify an incorrect share as
being a valid decryption of the ciphertext, except with negligible probability. It is now easy
to check that the correctness of the adaptive garbling scheme ensures that the garbled circuit
evaluated on the appropriate public values of flag would yield the Round 2 message based on the
‘committed’ inputs; leading to each honest party computing 72 accordingly. Finally, it follows
directly from the correctness of the underlying protocol m,,sm that the output computed using

T? by each honest party must be correct. O

Theorem 5.8 Let (n,s,t) be such that s+t < n. Let myasm realises Fya for upto n — 1 semi-

malicious corruptions. Then protocol Ty god.sm Tealises— (i) Fgoa (Figure 2.4) when at most
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t < n/2 parties are corrupt and (it) F,a (Figure 2.2) when at most s < n parties are corrupt,

semi-malictously in both cases. It takes 3 rounds, assuming that muasm takes 2 rounds.

We defer the proof of Theorem 5.8 to Section 5.6.3.
5.5.1.2  2-round (god|ua)-BoBW MPC in semi-malicious setting

The compiler of the previous section can be made round preserving by assuming pair-wise
channels or alternately, PKI. The main difference lies in preponing the actions of Round 2 of

Thw.god.sm t0 Round 1, by exploiting the presence of private channels or PKI.

2-round semi-malicious (god|ua)-BoBW MPC using both broadcast and pairwise-pri-
vate channels. We observe that the compiler of Section 5.5.1.1 can be modified such that it
transforms the 2-round broadcast-only semi-malicious protocol 7, sm (achieving security with
ua) into a 2-round semi-malicious (god|ua)-BoBW MPC protocol ¢py god.sm using both point-
to-point and broadcast channel. The 2-round protocol ¢pw.god.sm is similar to the 3-round
broadcast-only protocol mpy.god.sm (Figure 5.4), except for the following differences: The actions
of Round 1 and Round 2 of 7y god.sm are carried out in Round 1 of ¢py god.sm- In more detail,
Round 1 of ¢pw.god.sm pProceeds as follows - In addition to sending the Round 1 message as per
Tua.sm, the parties also prepare and send the adaptive garbled circuits meant to compute their
Round 2 message of m,,sm in Round 1 itself. Since the next-message function computing the
Round 2 message takes as input the transcript of Round 1, this garbled circuit (being sent in
Round 1) will need to take additionally as input the transcript of Round 1 apart from the list
of alive (non-aborting) parties (unlike 7y god.sm Where the garbled circuit was sent in Round
2 and thereby only needed to take the list of alive parties as input). Each party s-shares all
the input labels of its garbled circuit in Round 1. This step would involve using point-to-point
channels to communicate the shares (unlike 7y god.sm Where it was done via broadcast channels
in Round 2). Next, in Round 2 of ¢py god.sm, similar to Round 3 of 7y god.sm, the reconstruction
of the appropriate input labels occur. Note that this can be done as all the values of input wires
of the garbled circuit, including the set of alive parties and the transcript of Round 1 are public
(Tua.sm 18 & broadcast-only protocol). This completes the description of @py god.sm and it is easy
to check that its security can be proved similar to the security of mpy god.sm- This construction
is based on [4]. Instantiating 7y, sm with the 2-round broadcast-only semi-malicious protocol of
93, 35], the compiler described above would yield a 2-round (god|ua)-BoBW protocol @uw god.sm

in the semi-malicious setting using both pairwise-private and broadcast channels.

2-round semi-malicious (god|ua)-BoBW MPC using PKI. In the presence of PKI, the

protocol Ppw.god.sm can be easily transformed to a broadcast-only protocol ¥y god.sm- Elaborating
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on this, the private messages in ¢pw god.sm Via the pairwise channel can be emulated in ¥y god.sm
by broadcasting the encryption of the private message with the public-key of the intended
recipient. This leads to a 2-round broadcast-only (god|ua)-BoBW MPC 9 god.sm i semi-
malicious setting assuming PKI. Both protocols ¢pw god.sm and Ypw.god.sm are tight upper bounds,
in light of the known impossibility of 1-round MPC protocols for any meaningful security notion

([112]).

We state the formal theorems below whose proofs follow similar to proof of Theorem 5.8.

Theorem 5.9 Let (n,s,t) be such that s +t < n. Let Tyasm Tealises F,, for upto n — 1
semi-malicious corruption. Then there exists a protocol Gpw god.sm that uses both broadcast and
pairwise-private channel which realises— (i) Fgoa (Figure 2.4) when at most t < n/2 parties are
corrupt and (1i) Fua (Figure 2.2) when at most s < n parties are corrupt, semi-maliciously in

both cases. It takes 2 rounds, assuming that T,asm takes 2 rounds.

Theorem 5.10 Let (n,s,t) be such that s+t < n. Let myasm realises Fya for upto n — 1 semi-
malicious corruption. Then there exists a protocol Ypw.god.sm, assuming PKI which realises— (i)
Feod (Figure 2.4) when at most t < n/2 parties are corrupt and (ii) Fya (Figure 2.2) when at
most s < n parties are corrupt, semi-maliciously in both cases. It takes 2 rounds, given that

Tuasm takes 2 rounds.

5.5.1.3 The upper bounds with public and private setup

The 2-round semi-malicious broadcast-only protocol of [93, 35] can be plugged in as m,a.sm in our
compilers from previous sections to directly yield a 3-round broadcast-only protocol Ty god.sm;
2-round protocol @pw god.sm that uses both broadcast and pairwise-private channels and 2-round
broadcast-only protocol ¥y god.sm assuming PKI, all in the semi-malicious setting. Next, the
compiler of [10] that upgrades any broadcast-only semi-malicious protocol to maliciously-secure
by employing NIZKs, can be applied on Ty god.sm and Yy god.sm t0 yield a 3-round (god|ua)-
BoBW protocol in the CRS model and a 2-round (god|ua)-BoBW protocol given both CRS
and PKI. At a high-level, to ensure that the malicious parties indeed follow the description of
the protocol, as per the compiler of [10], each party has to prove in zero-knowledge that the
message it has produced is consistent with the transcript of the protocol so far. In our compiled
protocols, if the zero-knowledge proof of a malicious party, say P;, fails in a particular Round /;
then its message in Round ¢ is interpreted as L. This scenario is analogous to semi-malicious
P; aborting in the underlying semi-malicious protocol mpy god.sm during Round /. The BoBW
guarantees of the maliciously-secure compiled protocol thereby follow directly from the BoBW

guarantees of Thy god.sm (88 Thw.god.sm achieves GOD even if upto ¢ parties abort). However,
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while this works to compile Ty god.sm a1d Ypw.god.sm, the compiler of [10] cannot be applied to
®bw.god.sm Which uses private channels. This holds since if private channels are used, then a
party may need to prove different statements to different parties to prove its ‘honest behavior’
via zero-knowledge. The issue in this approach is that the honest parties at the end of each
round will not have consistent view of which parties have aborted / identified to be corrupt.
This is crucial as the next round message would depend on it. To bring them to the same page
will consume extra rounds which will compromise on the desirable round-preserving property
of the compiler of [10]. Thus, we obtain round-optimal protocols by applying the compiler on
our broadcast-only protocols i.e Thw.god.sm and Phw god.sm- The former yields a 3-round malicious
(god|ua)-BoBW protocol in the CRS model which is a tight upper bound as proven by our lower
bound (Theorem 5.6). The latter yields a 2-round (god|ua)-BoBW protocol in the CRS and
PKI model which is also round-optimal, as 1-round MPC protocols are known to be impossible
for any meaningful security notion ([112]). Notably, the latter demonstrates that our lower
bound of Theorem 5.6 can be circumvented in the presence of PKI.

We present the formal description of our 3-round malicious (god|ua)-BoBW protocol 7y god
in F,-hybrid model in Figure 5.5 below, where F, denotes the ideal functionality realizing
zero-knowledge. In the CRS model, J, can be realized using NIZKs to obtain the 3-round
maliciously secure (god|ua)-BoBW MPC protocol. In the private setup model (CRS and PKI),
the 2-round malicious (god|ua)-BoBW protocol can be similarly obtained upon compiling the

2-round semi-malicious protocol @pw god.sm-

—[ Protocol ﬂbw,god}

Inputs: Party P, has z;,7; as input and random input respectively for i € [n].
Output: y = f(z1...2,) or L

Common Input: The 3-round broadcast-only semi-malicious protocol 7y god.sm Which is parsed
as {Nextl\/lsg?(:ck;rk;ml <o -My1) }oe[3] keln] Where NextMsgf(mk;rk;ml ...my—1) denote the
next message function of P in Round ¢, given the messages my,...,my_1 broadcast so
far i.e in Rounds 1 to £ — 1. The output computation function of Py is denoted as y =
Outputy,(zg, 1, m1, M2, m3). Let Ry ¢ be the relation that gets as input x = (myq, ..., mg—1, my)

and a witness w = (xg,r), and returns 1 if and only if Nextl\/lsg?(xk; Try My ... My—1) = mf
Model: F,-hybrid model

Protocol steps. For each round ¢ from ¢ =1 to 3:

- Let my_; = m} ,...m? , be the concatenation of messages broadcast by the parties in
0—1 0—1 g y

180



Round (¢ —1). (assume my = 0).
- Each Py does the following: Compute mf = Nextl\/lsg’j(a:k; Tk;mi ... my_1). Broadcast mlg.

. R/, . . . . .
- For all k' € [n], invoke the g:zkk * ideal functionality corresponding to the relation Ry o on
common input (my ... me_q, mi?'). In addition, for k = k', P, acts as prover and inserts

. . . Ry /
its private input w = (zy, 7). If F," returns 0, set mj§ = L

Output. Let m3 = mi...m%. Each Py outputs Outputy, (zg; rx; m1, ma, ms).

Figure 5.5: 3-round maliciously-secure (god|ua)-BoBW Protocol mpw god

We state the formal theorem below (proof deferred to Section 5.6.4) Assumption wise, our
upper bound constructions rely on 2-round semi-malicious oblivious transfer and NIZK in the

common random /reference string model upon using the protocols of [93, 35] to realize 7y, sm-

Theorem 5.11 Let (n,s,t) be such that s +t < n. Assuming the ezistence of a 3-round
(resp., 2-round with PKI) broadcast-only semi-malicious (god|ua)-BoBW MPC and NIZKs,
there ezists a 3 (resp., 2)-round MPC protocol in the presence of CRS (resp., CRS and PKI)
that simultaneously achieves (i) Fgoq (Figure 2.4) when at most t < n/2 parties are corrupt and

(i1) Fua (Figure 2.2) when at most s < n parties are corrupt, maliciously in both cases.

A minor observation is that we can replace the last round broadcast with point-to-point
communication in the expense of relaxing ua to sa security in the dishonest majority setting.
However, use of broadcast in the earlier rounds is crucial since it enables the honest parties to
be in agreement on whether a corrupt party has aborted or not which is crucial to ensure that

the output computation is done on a unique set of inputs.

Security with Identifiability. Lastly, since the compiler of [10] uses NIZKs to prove cor-
rectness of each round, it offers the property of identifiability. Thus our maliciously-secure
(god|ua)-BoBW protocols achieve the stronger notion of identifiable abort in case of dishonest
majority, with no extra assumption. Therefore, we obtain the above theorem where JF,, is
replaced with Fig,, (Figure 2.5).

5.5.2 Upper Bound for (god|ua)-BoBW MPC in Plain Model

In this section, we present a 5-round (god|ua)-BoBW protocol in the plain model. For our
construction, we resort to the compiler of [35] that transforms any generic (k—1)-round delayed-
semi-malicious MPC protocol to a k-round malicious MPC protocol for any £ > 5. Our 5-round
construction comes in two steps: a) first, we show that our 3-round semi-malicious protocol

Thw.god.sm (described in Section 5.5.1.1) is delayed-semi-maliciously secure (refer Section 5.6.5.1
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for proof) and then b) we plug in this 3-round BoBW protocol in a modified compiler of [35] that
carries over the BoBW guarantees, while the original compiler works for security with abort.
Our final 5-round compiled protocol faces several technical difficulties in the proof, brought
forth mainly by the need to continue the simulation in case the protocol must result in god,
which needs deep and non-trivial redressals. The techniques we use to tackle the challenges
in simulation are also useful in constructing a 4-round (god|ua)-BoBW protocol based on sub-
exponentially secure trapdoor permutations and ZAPs. We give a sketch of this construction
in Section 5.8 (built upon the protocol of [64]) as a step towards resolving the open question of
proving the impossibility or alternately constructing a 4-round (god|ua)-BoBW protocol under

polynomial-time assumptions.
5.5.2.1 The compiler of [35]

Substituting k& = 5, we recall the relevant details of the compiler of [35] that transforms a 4-
round delayed-semi-malicious protocol ¢g4sm to a 5-round maliciously-secure protocol 7 achieving
security with abort. Each party commits to her input and randomness using a 2-round sta-
tistically binding commitment scheme Com in the first two rounds. The four rounds of the
delayed-semi-malicious protocol ¢gsm are run as it is in Round 1, 2,4 and 5 respectively (Round
3 is skipped) with two additional sets of public-coin delayed-input witness indistinguishable
proofs (WI). The first set of proofs (WI') which is completed by Round 4, is associated with the
first 3 rounds of ¢g4sm. In addition to proving honest behaviour in these rounds, this set of proofs
enables the simulator of the malicious protocol to extract the inputs of the corrupt parties, in
order to appropriately emulate the adversary for the delayed-semi-malicious simulator in the
last but one round. The second set of proofs (WIZ) which is completed by Round 5, is associated
with proving honest behaviour in all rounds of ¢4¢m. To enable the simulator to pass the WI
proofs without the knowledge of the inputs of the honest parties, it is endowed with a cheat
route (facilitated by the cheating statement of the WI proof, while the honest statement involves
proving honest behaviour wrt inputs committed via Com) which requires the knowledge of the
trapdoor of the corrupt parties; which the simulator can obtain by rewinding the last 2 rounds
of a trapdoor-generation protocol (Trap) run in the first 3 rounds of the final construction. To
enable this cheat route of the simulator, the compiler has an additional component, namely
4-round non-malleable commitment NMCom run in Rounds 1 - 4.

We discuss the tools used in the compiler of [35] in Figure 5.6 and present further details of

the compiler in Figure 5.7 below.
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,—[ Tools used in [35] Compiler}

- A (k — 1)-round delayed-semi-malicious protocol ¢gsm for computing a function f.

- A 2-message statistically binding commitment scheme Com from one-way functions.

- A 3-round protocol Trap to set up a trapdoor between a sender (S) and a receiver (R) as the

following sequence of rounds:

R1: S samples a signing and verification key pair (sk, vk) of a signature scheme and sends vk
to R.

R2: R sends a random message m < {0,1}* to S.

R3: S computes a signature o on m using sk and sends o to R who accepts if (m, o) is valid

w.r.t. vk.

A valid trapdoor td w.r.t. a verification key vk constitutes of (m, o, m’,o’) such that m’ # m

and o and ¢’ are valid signatures of messages m and m’ respectively corresponding to vk.

- A 4-round non-malleable commitment scheme NMCom.

- A 4-round public-coin delayed-input witness indistinguishable proof WI.

Figure 5.6: Tools used in [35] compiler

/—[ Compiler of [35]1

J

5-round Malicious Protocol 7 from 4-round delayed-semi-malicious protocol ¢gsmn

Each party P;,i € [n] runs the following sub-components with every P;,j € [n] \ {i}:

- Delayed-semi-malicious protocol ¢gsm: The 4 messages of ¢gqsm are sent in rounds (1,2,4,5)

of 7 i.e. round 3 of 7 is skipped in which no messages of ¢q4sm are sent.

- Commitment Com: P, commits to his input and randomness (x;,7;) using the commitment
protocol Com to P;. Let the commitment be denoted by ¢;—,;. The two messages of Com are

run in the first two rounds of =.

- Trapdoor generation Trap: The 3-round trapdoor generation protocol Trap is run in rounds
1 — 3 between P; as the sender and P; as the receiver. Let Trap;_,; be the produced transcript

and vk;_,; be the verification key that P; sends to F;.

- Non-Malleable Commitment NMCom: P; commits to a random string 5?_>j to Pj using NMCom

in rounds 1 — 4. Let NMCom;_,; denote the produced commitment.
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- P; sends another random string 521 _,; in the clear to P; in round 4.

J

- First proof of correctness WI': P; initiates an instance of witness indistinguishable proofs,
say WIZ-1 ~; in rounds 1 — 4 to prove to P; that he has generated the first 3 messages of ¢gsm
correctly using the input and randomness committed in c¢;,;. In detail, let wi} _,; denote the
proof generated by P; to P; to prove correctness of one of the following statements:

o Honest Statement: P; has correctly generated the first 3 messages of ¢gsm using the input

and randomness committed in ¢;_,;.

o Cheating Statement: XOR of the share s? L committed to in NMCom;_,; and the share s} N

is a valid trapdoor w.r.t. verification key vk;_;.

Each party P; verifies all pairwise proofs {WI} _j}ije[n) (proofs are publicly verifiable). If any

proof is not accepting, P; aborts and outputs L.

- Second proof of correctness WI?: P; intiates an instance of witness indistinguishable proofs,
say WI? _,; in rounds 2 —5 to prove to P; that he has generated all messages of ¢gsm correctly.
In detail, let WI? _,; denote the proof generated by P; to P; to prove correctness of one of the

following statements:

o Honest Statement: P; has correctly generated all messages of ¢gsm using the input and
randomness committed in ¢;_,;.

1
i—7]

o Cheating Statement: XOR of the share s . . committed to in NMCom;_,; and the share s

l%‘]
is a valid trapdoor w.r.t. verification key vk;_,;.

- Output Computation: P; verifies all proofs i.e.{ngﬁj}@je[N]. If any proof is not accepting,

it aborts and outputs L. Else, it computes the output according to the underlying delayed-

semi-malicious ¢gsm-

Figure 5.7: Compiler of [35] for k =5

Next, we give an overview of the simulator 8 (details appear in [35]) for the 5-round compiled
protocol 7 that uses the simulator 8, of the underlying 4-round protocol ¢gsm. To emulate the
ideal-world adversary corrupting parties in set €, § invokes the malicious adversary A, and
simulates a real execution of 7 for A, by acting on behalf of the honest parties in set {. Recall
that the delayed-semi-malicious security of ¢gsm guarantees that it is secure against an adversary
Ag who can choose to behave arbitrarily in the protocol as long as it writes a valid witness
(which consists of an input randomness pair ({z;,7;}ice) on behalf of all corrupt parties) on
the witness tape of the simulator 8, in the penultimate round such that the witness (z,7) can

justify all the messages sent by him. In order to avail the services of 84, § needs to transform
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the malicious adversary A, to a delayed-semi-malicious adversary A, i.e. it needs a mechanism
to write (x,r) on the witness tape of 84. This is enabled via extraction of witness i.e. {z;,7;}ice
from the WI' proofs sent by A, as the prover via rewinding its last two rounds (Round 3,4 of
).

Apart from the above set of rewinds for extraction of corrupt parties’ inputs, another set of
rewinds is required for the following reason: Consider messages of honest parties simulated by
84 that are used by 8 to interact with A, during the execution of 7. Here, § cannot convince A,
in the two sets of WI proofs that these messages are honestly generated. Hence, he opts for the
route of the cheating statement of the WI proofs which requires the knowledge of the trapdoor
of the corrupt parties. At a high-level, Trap (i.e the 3-round trapdoor generation protocol
described in Figure 5.6) between a sender S and receiver R allows R to obtain a message-
signature pair (m, o), where o is computed by S using his signing key sk (corresponding to
verification key vk which S sends to R in Round 1) on message m chosen by R (m is sent by R
to S in Round 2). The trapdoor of party P;, consists of two valid message-signature pairs with
respect to the verification key of P;. The simulator extracts the trapdoor of parties in € by
rewinding the adversary A, in Rounds 2 and 3 till he gets an additional valid message-signature
pair. The trapdoor has been established this way to ensure that only the simulator (and not
the adversary himself) is capable of passing the proofs via the cheating statement.

Finally, we point that the two sets of rewinds (Round 2-3 and Round 3-4 of 7)) can be
executed by 8 while maintaining that the interaction with 8, is straight-line since Round 3 of
the compiled protocol is ‘dummy’ i.e does not involve messages of @gem. This ‘dummy’ round is
crucial to avoid rewinding of messages in ¢gsm. Since there are no messages of ¢gsm being sent
in Round 3, § can simply replay the messages of ¢gsm (obtained via 8y4) to simulate Round 2

and Round 4 of 7 during the rewinds.
5.5.2.2 Our 5-round BoBW construction

Our final goal of a (god|ua)-BoBW protocol Ty god.plain 1 Obtained by applying the compiler
of [35] to our delayed-semi-malicious-secure (god|ua)-BoBW protocol mpy god.sm (described in
Section 5.5.1.1) with slight modifications. Broadly speaking, to preserve the BoBW guarantees
from semi-malicious to malicious setting upon applying the compiler, the malicious behaviour of
corrupt P; in the compiled protocol is translated to an analogous scenario when semi-malicious
P; aborts (stops communicating) in the underlying protocol Ty god.sm- Towards this, we make
the following modification: Recall from the construction of Ty god.sm that each party P is
unanimously assigned a boolean indicator i.e. flag; by the remaining parties which is initialized

to 1 and is later set to 0 if P; aborts (stops) in the first two rounds. Accounting for malicious
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behavior, we now require the value of flag; to be decided based on not just P;’s decision to
abort in a particular round but also on whether he misbehaves in the publicly-verifiable Trap
protocol or WI proofs. Specifically, if P, misbehaves in Trap or the first set of proofs WI' with
P; as prover fails, flag; is set to 0 (analogous to P; aborting in Round 1 or 2 of 7y god.sm)-
Further, if the second set of proofs WI? with P; as prover fails, then the last round message of
P, is discarded (analogous to P; aborting in last round of Ty god.sm)-

Next, we point that in our compiled protocol, the 3 rounds of the underlying semi-malicious
protocol Ty god.sm are run in Rounds 1, 4 and 5 respectively. As opposed to compiler of [35]
which needed a single ‘dummy’ round on top of the delayed-semi-malicious protocol, we face an
additional simulation technicality (elaborated in the next section) that demands two ‘dummy’
rounds. This could be enabled while maintaining the round complexity of 5, owing to our 3
(and not 4) round delayed semi-malicious protocol. Furthermore, as described earlier, in order
to simulate the WI proofs on behalf of an honest prover towards some corrupt verifier P;, the
simulator requires the knowledge of the trapdoor of P; which would be possible only if P; is
alive (has not aborted) during the rounds in which trapdoor extraction occurs i.e. Round 2
and Round 3. While the simulator of [35] simply aborts incase any party aborts, the simulator
of our BoBW protocol cannot afford to do so as god must be achieved even if upto ¢t < n/2

parties abort.

We handle this by adding a supplementary condition in our

‘ Thw.god.sm ‘ Com ‘ Trap ‘ NMCom ‘ wit ‘ WI2

construction, namely, a prover needs to prove the WI proofs only  rowd1| ®r | ri|R1 | R1 |RI|

to verifiers who have been alive until the round in considera-

Round 2 | | R2 | R2 | R2 | R2|Ri1

Round 3 | | | R3 | R3 |R3|R2

tion. This completes the description of the modifications of our — — i

| | R4 |R4|R3

|
compiler over [35]. The round-by-round interplay of the differ-  Rrowdas| rs | | | \

| R4

ent components is given in Table 5.3. We present the detailed Table 5.3: Thw.god.plain
description of our 5-round (god|ua)-BoBW MPC protocol 7y god.plain (incorporating the above

modifications) in the plain model in Figure 5.8.

—[ Protocol 7rbw.god.plain}

5-round Malicious (god|ua)-BoBW MPC Protocol 7y, god.plain from 3-round

delayed-semi-malicious BoBW protocol ¢4m

Primitives: Tools mentioned in Figure 5.6 with ¢gsm instantiated with mpy god.sm (Figure 5.4).
Round 1. Each party P;,i € [n] does the following with P;,j € [n] \ {i}:

- Execute Round 1 of ¢gsm. Initialize flag;, = 1 for all k € [n] as per ¢gsm-
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- Run Round 1 of Com;_,; to commit to his input and randomness (x;,r;) to P;. Let the
commitment be denoted by ¢;—,;. Run Round 1 of Com;_,; (where P; acts as

committer) as receiver.

Run Round 1 of Trap;_,; as sender, with vk;_,; denoting the verification key.

- Run Round 1 of NMCom;_,; as committer and Round 1 of NMComj_,; as receiver (with P;

as committer).

Run Round 1 of WI} _,; as prover and Round 1 of lel _,; as verifier (with P; as prover).

Round 2. Each party P;,i € [n] does the following with P, j € [n] \ {i}:

Run Round 2 of Com;_,; and Com,_,;.
- Run Round 2 of Trap,_,; (as receiver).

- Run Round 2 of NMCom;_,; and NMComj_,;.

Run Round 2 of lel_)j and WI;_H;. Also, run Round 1 of W|z2—>j as prover and Round 1 of

lez _,; as verifier (with P; as prover).

Set flag; = 0 if P; aborts in Round 1 or Round 2.
Round 3. Each party P;,i € [n] does the following with P;,j € [n] \ {i}:

- Run Round 3 of Trap,_,; (as sender).

- Run Round 3 of NMCom;_,; and NMComj_;.

Run Round 3 of WI}H]- and Wl}*)i. Also, run Round 2 of Wlfﬁj and Wl?ﬁw

Set flag; = 0 if either P; aborts in Round 3 or if there exists a k € [n],k # j such that the
message-signature pair (m, o) in Trap;_,;, is not valid w.r.t. vk;_x. Broadcast enables

everyone to agree on this.
Round 4. Each party P;,i € [n] does the following with P;, j € [n] \ {i}:

- Execute Round 2 of ¢gsm-
- Run Round 4 of NMCom;_;; in order to commit to a random string s? _,;- Run Round 4 of

NMComj_,; as receiver. Additionally, send another random string s!

i—j on clear to P;.

- Run Round 4 of WI}_”- as verifier. If flag; = 1, run Round 4 of WI}_>]~ to prove to P; the

1

i—j Proves correctness of one of

correctness of the first 2 messages of ¢g4sm. In detail, WI
the following statements: (1) Honest Statement: P; has correctly generated the first 2

messages of ¢gsm using the input and randomness committed in ¢;—,;. (2) Cheating
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Statement: XOR of the share s?_>j committed to in NMCom;_,; and the share 321_>j is a

valid trapdoor td;_,; w.r.t. verification key vk;_;.
2 2
- Run Round 3 of WI_, ; and WIj_,;.

- Set flag; = 0 if either P; aborts in Round 4 or if there exists a k € [n], k # j such that
lel- _ leads to reject. Public verifiability of WI proofs enables this.

Round 5. Each party P;,i € [n] does the following Pj,j € [n] \ {i}:

- Execute Round 3 of ¢gsm-

- Run Round 4 of WI2_,; as verifier. If flag; = 1, run Round 4 of WI?_U- to prove to P; the

J—
correctness of all messages of ¢g4sm that he broadcasted. In detail, WI? _,; broves
correctness of one of the following statements: (1) Honest Statement: P; has correctly
generated all messages of ¢gsm using the input and randomness committed in ¢;—,; (2)
Cheating Statement: XOR of the share s?_m- committed to in NMCom;_,; and the share
SZ-I_U- is a valid trapdoor td;_,; w.r.t. verification key vk;_,;.

- Output Computation: If any proof WIJQ- _,1 1s not accepting for any k € [n], k # j,

discard the message from P;. Compute the output as per ¢qsm.

Figure 5.8: 5-round Malicious (god|ua)-BoBW MPC Protocol Ty god.plain from 3-round delayed-semi-
malicious BoBW protocol ¢gsm

5.5.2.3 Proof-sketch for 5-round (god|ua)-BoBW protocol.

The simulator for the compiler of [35] runs in different stages. Plugging it for our 5-round
(god|ua)-BoBW construction with appropriate modifications, we present a high-level overview of
the simulation. Let Spy god.plain @0d Spw god.sm denote the simulators corresponding to Tw god.plain
and the underlying delayed semi-malicious protocol Ty god.sm Tespectively. Stage 1 involves
running the first three rounds with the following changes compared to the real-execution of
the protocol: a) Commit to 0 in Com instances (run in Round 1, 2) involving honest party as
committer. b) Invoke the simulator for the semi-malicious protocol, Spy god.sm t0O generate the
first message of Ty god.sm i Round 1 on behalf of honest parties. The rest of the actions in
Round 1 - 3 on behalf of honest parties are emulated by Spy god.plain @8 per protocol specifications.
Note that the simulator wrt compiler in [35] proceeds beyond the first stage only when the
adversary did not cause an abort on behalf of any corrupt party in Stage 1. Else, it aborts. This
works out because their protocol promises security with abort and hence, simply terminates if
a party aborts. However our protocol, in case of honest majority, promises god with the output

being computed on the actual input of the parties who have been alive till last but one round.
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To accommodate this, Spw.god.plain cannot simply afford to terminate in case a corrupt party
aborts. It needs to continue the simulation with respect to corrupt parties who are alive, which
demands rewinding. It can thus be inferred that Spy god.plain Must always proceed to rewinds
unless all the corrupt parties are exposed by adversary in Stage 1. The second and the fourth
stage, in particular, are concerned with rewinding of the adversary to enable Sy god.plain tO
extract some information. In Stage 2, the adversary is reset to the end of Round 1 and Rounds
2,3 are rewound in order to enable Spy god.plain t0 extract trapdoor of corrupt parties. In more
detail, consider Trap,_,; executed between corrupt sender P; and honest P; wrt verification key
VKji. Now, Spw.god.plain acting on behalf of P; computes the trapdoor of P; wrt vk;_,; to be
two message-signature pairs constituted by one obtained in Stage 1 and the other as a result
of rewinding in Stage 2 (note that both signatures are wrt vk;_,; sent in Round 1 of Trap;_,;;
rewinds involve only Round 2, 3). To enable continuation of the simulation after Stage 2,
which requires the knowledge of the trapdoors of corrupt parties who are alive, the logical halt
condition for the rewinds is: stop when you have enough! This translates to- stop at the ¢
rewind if a valid trapdoor has been obtained for the set of corrupt parties alive across the ¢
rewind. Since the /! (last) rewind is expected to provide one valid (m, o) pair (i.e message,
signature pair) out of two required for the trapdoor, all that is required is for the corrupt party
to have been alive across at least one previous rewind. Let the set of parties alive across i*"
rewind be denoted by A;;1 (A; represents the set of parties that were alive in the execution
preceeding the rewinds i.e after Stage 1), then the condition formalizes to: halt at rewind ¢ if
Apy CALU---UA,.

While this condition seems appropriate, it leads to the following subtle issue. The malicious
adversary can exploit this stopping condition by coming up with a strategy to choose the set of
aborting and the alive parties (say, according to some unknown distribution D pre-determined
by the adversary) such that the final set of alive parties A in the transcript output by the
simulator (when the rewinds halt) will be biased towards the set of parties that were alive in the
earlier rewinds. (Ideally the distribution of the set of alive parties when simulator halts should
be identical to D). This would lead to the view output by the simulator being distinguishable
from the real view. A very similar subtle issue appears in zero-knowledge (ZK) protocol of
[115] - While we defer the details of this issue of [115] to Section 5.6.5.2, we give a glimpse
into how their scenario is analogous to ours below. Consider a basic 4-round ZK protocol with
the following skeleton: the verifier commits to a challenge in Round 1 which is subsequently
decommitted in Round 3. The prover responds to the challenge in Round 4. At a very high-
level, the protocol of [115] follows a cut-and-choose paradigm involving N instances of the above

basic protocol. Here, the verifier chooses a random subset S C [N] of indices and decommits
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to the challenges made in those indices in Round 3. Subsequently, the prover completes the
ZK protocol for instances with indices in S. The simulator for the zero-knowledge acting on
behalf of the honest prover involves rewinds to obtain ‘trapdoors’ corresponding to the indices
in S. However, note that the verifier can choose different S in different rewinds. Therefore,
the simulator is in a position to produce an accepting transcript and stop at the ¢*" rewind
only when it has trapdoors corresponding to all indices in S chosen by the adversary during
the /*" rewind. However, if the simulation is stopped at the execution where the above scenario
happens for the ‘first’ time, their protocol suffers an identical drawback as ours. In particular,
the malicious verifier can choose the set of indices S in a manner that the distribution of the
views output by the simulator is not indistinguishable from the real view. Drawing analogy
in a nutshell, the set of indices chosen by the malicious verifier is analogous to the set of alive
corrupt parties in our context (details in Section 5.6.5.2). We thereby adopt the solution of
[115] and modify our halting condition as: halt at rewind ¢ if A,y € A; U--- U A, and
Apr € AU---UA,4. [115] gives an elaborate analysis showing why this simulation strategy
results in the right distribution. With this change in simulation of Stage 2, the simulation
of Stage 3 can proceed identical to [35] which involves simulating the WI' proofs via the fake
statement using the knowledge of trapdoor.

Proceeding to simulation of Stage 4, we recall that the simulator of [35] involves another
set of rewinds in Stage 4 which requires to rewind Round 3 and 4 to extract the witness i.e.
the inputs and randomness of the corrupt parties from WI'. Similar to Stage 2, two successful
transcripts are sufficient for extraction. Thus, the simulator is in a position to halt at /** rewind
if all the corrupt parties that are alive in Stage 4 have been alive across at least one previous
rewind. Next, following the same argument as Stage 2, it seems like the halting condition for
Stage 2 should work, as is, for Stage 4 too. With this conclusion, we stumbled upon another
hurdle elaborated in this specific scenario: Recall that the trapdoors extracted for corrupt
parties in Stage 2 are used here to simulate the WI' proofs (as described in Stage 3). It is
thereby required that Spw god.plain @lready has the trapdoors for the corrupt parties that are alive
in Stage 4. Let T be the set of trapdoors accumulated at the end of Stage 2. Consider a party,
say P;, which stopped participating in Round 3 of the last rewind ¢ of Stage 2 (P, was alive till
Round 2 of /" rewind). Spw.god.plain Still proceeds to Stage 4 without being bothered about the
trapdoor of P; (as the halting condition is satisfied). However in Stage 4, when the adversary is
reset to the end of Round 2 of /" rewind, P; came back to life again in Round 3. The simulation
of WI' proofs with P, as a verifier will be stuck if T does not contain the trapdoor for P;. Hence,
it is required to accommodate the knowledge of set T during Stage 4. Accordingly Spw.god.plain

does the following in Stage 4: During each rewind, if a party (say P;) whose trapdoor is not
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known becomes alive during Round 3, store the signature sent by P; in Round 3 (as part of
Trap) and go back to Stage 2 rewinds (if P;’s trapdoor is still unknown). Looking ahead, storing
the signature of P; ensures that the missing trapdoor of P; in T can cause Spw.god.plain tO Tevert
to Stage 2 rewinds atmost once (if the same scenario happens again i.e P; becomes alive in
Round 3 during Stage 4 rewinds, then another (message, signature) pair wrt verification key of
P, is obtained in this rewind by Spw god.plain; totalling upto 2 pairs which suffices to constitute
valid trapdoor of P; which can now be added to T). Else, if T comprises of the trapdoor of
all the corrupt parties that are alive during the rewind of Stage 4, then adhere to the same
halting condition as Stage 2. This trick tackles the above described problematic scenario, while
ensuring that the simulation terminates in polynomial time and maintains indistinguishability
of views.

Before concluding the section, we highlight two important features regarding the simulation
Of Tpw.god.plain: Despite the simulator Sy god.plain Feverting to Stage 2 rewinds in some cases (unlike
the simulation of [35]), the simulation terminates in polynomial-time since this can occur atmost
once per corrupt party (as argued above). Lastly, since there is a possibility of reverting back
to simulation of Round 2 after simulation of Round 4, we keep an additional ‘dummy’ Round 2
as well (on top of ‘dummy’ Round 3 as in [35]) in our construction. This allows us to maintain
the invariant that Spy god.sm is never rewound. To be more specific, as there are no messages of
underlying semi-malicious protocol being sent in Round 2, 3; even if Sy god.plain Needs to return
to Stage 2 from Stage 4 (after Round 4 has been simulated by obtaining the relevant message
from Spw.god.sm) and resume the simulation from Stage 2 onwards, the message of Tpw.god.sm
sent in Round 4 can simply be replayed. We are able to accommodate two dummy rounds
while maintaining the round complexity of 5 owing to the privilege that our delayed-semi-
malicious protocol is just 3 rounds. This completes the simulation sketch. Assumption wise,
our construction relies on 2-round semi-malicious oblivious transfer (a building block of our

3-round delayed-semi-malicious BOBW MPC 7y, god.sm). We state the formal theorem below.

Theorem 5.12 Let (n, s,t) be such that s+t < n. Let Tpy.god.sm realises— (i) Fgoq (Figure 2.4)
when at most t < n/2 parties are corrupt and (ii) Fua (Figure 2.2) when at most s < n parties
are corrupt, delayed-semi-maliciously in both cases. Then Tpy god.plain 41 the plain model realises—
(1) Feod when at most t < n/2 parties are corrupt and (i) Fu,a when at most s < n parties are

corrupt, maliciously in both cases. It takes 5 rounds, assuming that Tpw.god.sm takes 3 rounds.

Proof: The proof which includes the complete description of the simulator, a discussion about

its indistinguishability to the real view and its running time is deferred to Section 5.6.5.3. O
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Extension to Identifiability. We additionally point that the publicly-verifiable WI proofs
render identifiability to our construction. Thus our maliciously-secure (god|ua)-BoBW proto-
col achieves the stronger notion of identifiable abort in case of dishonest majority, with no
extra assumption. Therefore, we obtain the above theorem where F,, is replaced with Fiqu,
(Figure 2.5).

A minor observation is that we can replace the last round broadcast with point-to-point
communication in our (god|ua)-BoBW protocol Ty god.plain at the expense of relaxing ua to sa

security in the dishonest-majority setting.

5.6 Security Proofs

Before presenting the security proofs, we introduce the notion of a semi-malicious adversary,

which has been regarded as an effective intermediate step to attain malicious security.

5.6.1 Semi-malicious and Delayed-semi-malicious Security

Semi-malicious security had been introduced in [10] and subsequently used by many works as a
stepping-stone for achieving malicious security. We use two variants of semi-malicious security—
the original definition of [10, 160] and a variant known as delayed-semi-malicious security [35].

A semi-malicious adversary is modelled as an interactive Turing machine which, in addition
to the standard tapes, has a special witness tape. In each round of the protocol, whenever the
adversary produces a new protocol message m on behalf of some party Py, it must also write to
its special witness tape some pair (x,r) of input  and randomness r that explains its behavior.
More specifically, all of the protocol messages sent by the adversary on behalf of P, up to that
point, including the new message m, must exactly match the honest protocol specification for
P, when executed with input z and randomness r. Note that the witnesses given in different
rounds need not be consistent. Also, we assume that the attacker is rushing and hence may
choose the message m and the witness (x, ) in each round adaptively, after seeing the protocol
messages of the honest parties in that round (and all prior rounds). Lastly, the adversary may

also choose to abort the execution on behalf of P, in any step of the interaction.

Definition 5.3 We say that a protocol m securely realizes F for semi-malicious adversaries if

it satisfies Definition 2.3 when we only quantify over all semi-malicious adversaries A.

We point that a party controlled by the semi-malicious adversary must invoke the ideal
functionality with either L or a valid input in the input phase.
A stronger variant of semi-malicious adversary, denoted as delayed semi-malicious, was intro-

duced in the work of [35]. Informally, a party Py, under the influence of delayed-semi-malicious
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adversary, acts like one under a semi-malicious adversary, except that, it only “explains” all its
messages once, before the last round (unlike a semi-malicious party who explains each of its
messages after each round). This is formalized by letting Py, write to its special witness tape
before the last round some pair (z,7) of input x and randomness r which is required to be

consistent with all P;’s messages.

Definition 5.4 We say that a protocol m securely realizes F for delayed-semi-malicious ad-
versaries if it satisfies Definition 2.3 when we only quantify over all delayed-semi-malicious

adversaries A.

The real world for delayed-semi-malicious security is defined identically as the real world for
semi-malicious security except that adversary A is only required to provide a witness in the
second last round i.e round L — 1 with respect to a protocol of L rounds. Correspondingly, the
ideal world is defined identically as the ideal world for semi-malicious security except that the
simulator interacting with the adversary A (as a black-box) receives the witness that A output
after round L — 1.

5.6.2 Proof of Security of 7, fir (Theorem 5.4)

We give a brief intuition of the proof of Theorem 5.4 before presenting the formal proof. First,
consider the case of dishonest majority. If A aborts the computation of F5, then all honest

parties output L. Suppose A allows all honest parties to get authenticated t-shares of the out-

put y as output of %, then honest parties would either output y or L depending on whether

ua?’
(t+1) valid output shares are received in Round (r+ 1) or not. Unanimity amongst the honest
parties follows directly from the argument of Lemma 5.3. Thus we can conclude that muy fair
achieves ua in case of dishonest majority. Moving on to the honest majority setting, A again
has two choices - whether to allow computation of F to succeed or not. In the former case,
since there are (t+ 1) honest parties, their output shares would suffice to reconstruct the output
irrespective of any misbehavior of A during Round (r + 1); leading to output computation by
all. In the latter case, since A has access to only upto ¢ output shares, he learns nothing about
the output and all parties output L. Thus, Ty fair achieves fn incase of the honest majority

setting. This completes the intuition.

We prove the theorem by presenting two separate simulators for the honest and for the

dishonest majority case respectively.

Dishonest Majority. Let A be a malicious adversary controlling s parties in the hybrid-

dm

b i, Tunning an ideal-world evaluation of the

model execution of mpy fir. The simulator 8
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functionality F,, (refer Figure 2.2) computing f whose behaviour simulates the behaviour of A

is described in Figure 5.9.
/—[ Simulator ngn\;.fair} <

— Receive {;}ice sent to TN in this hybrid execution model. If for any i € €, x; is outside of the

domain of input, send L as output of F3h to A and send L as the input to F,, on behalf of
the corrupt parties. The simulation is completed in this case. Else invoke F,, on behalf of A

with {x;};ce to receive an output value y in return.

— Compute the authenticated t-sharing of value y (Definition 5.2) as done by 3" and send z; =
(ai(x), {vij = (Ki, a;(K;))}jepn)) as output of Fsh to P; (i € @)

— If §dm

dm_ receives abort on behalf of F3h from the adversary, it sends the ‘abort’ signal to F,, on

behalf of A. This concludes the simulation for this case.

- If ngn\:.fair receives continue on behalf of F from the adversary, it simulates Round (r 4 1) as

follows:

- Broadcast a;(z) for each (i € H) on behalf of honest P; and receive message {a}(z)}jee

from the corrupt parties in Round (r + 1).

- Let €' C € denote the set of indices for which a}(z) = a;(z). If [€'| +|H| > £ + 1, then send

‘continue’ to F,,. Else send ‘abort’ to F,.

dm

bw fair for the case of dishonest majority

Figure 5.9: Simulator §

We argue that the view of A in the hybrid world and the ideal world is indistinguishable due
to the following reason: Observe that the only difference in the ideal world as compared to the
hybrid world is in the output computation of the honest parties - In the ideal world, all honest
parties output y if €| 4 |3| > ¢ + 1, where €' C C is the set of indices such that a}(z) = a;(z),
else they all output L. In contrast, in the hybrid world, each honest party P; outputs the
output of Rec in which it participates with the output of ! in Round (r + 1). It follows
from the argument in Lemma 5.3 that all honest parties would have identical V sets comprising
only of parties in H and €', except with probability HFT_il . Thus, when |H| + |C'| >t + 1, for
each honest P;, |V;| > t + 1 leading P; to output y as output of Rec in the hybrid world as
well. Similarly, all honest parties would output L in both the ideal and the hybrid world when
|H| + |€| < t+ 1. Thus the difference between the two worlds occurs with probability atmost
Vl*jll_il ~ ¢, which is negligible when F = GF(2%), where ¢ > n?27%. This completes the proof for
the case of dishonest majority.
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Honest Majority. Let A be a malicious adversary controlling ¢ parties in a hybrid-model

hm

b i Tunning an ideal-world evaluation of the fair func-

execution of Ty fir. The simulator 8
tionality Fg, (refer Figure 2.3) computing f, whose behaviour simulates the behaviour of A, is
described Figure 5.10.

/—[ Simulator Sgw.fair] N

— Receive {z;};ce sent to = by A in this hybrid-execution model. If for any i € €, z; is outside of

the domain of input, send L as output of I to A and send L as the input to F; on behalf
of the corrupt parties. The simulation is completed in this case. Else it does the following.
Noticeably, in this case SEVT.fair cannot call Fgy;, yet with the inputs, as the adversary can still
abort the protocol by signaling F3" with abort in which case all parties will obtain L as the

output.

- Choose t random shares {s;};cec € F. For each i € C, compute MAC-polynomial a;(x)
that authenticates s; (Definition 5.1) with corresponding verification information as v;; =
(Kj,ai(Kj)) of verifier Pj.

- For each i € C,j ¢ C, set v;; = (K;, T;;) where K;, T;; are sampled randomly from F.

- Send (ai(x), {vij}jem)) as output of F51 to P; (i € €).

— If hm

bw.fair

to Frair. This completes the simulation for this case.

receives abort on behalf of Fh from the adversary, it sends L as the adversary’s input

— If §hm

hm . Teceives continue on behalf of F3h from the adversary, it sends the inputs {z;}ice to

hm
bw.fair

of I to P; (i € €) where v;; = (K;, Ty;) for j ¢ €. 8. does the following to simulate
Round (r + 1):

Jtair and receives output y in return. Recall that § had sent (a;(x), {vi; }je[n]) as output

- Interpolate a degree-t polynomial p(x) satisfying p(0) = y and p(i) = a;(0) for i € C. Set
s =p(j) for j ¢ €.

- Corresponding to each j ¢ €, interpolate a degree-t polynomial a;(x) satisfying a;(0) = s;-
and a;(K;) = T;j for i € C.

- Broadcast a;j(x) on behalf of each honest P; (j ¢ €) in Round (r + 1). Output y on behalf

of all honest parties.

Figure 5.10: Simulator SEVT.fair for the case of honest majority

We now claim that the view of A in the hybrid world and the ideal world is indistinguishable

due to the following: The difference between the hybrid and the ideal execution is that when
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A receives (a;(z), {vi;}jepn) for each i € € as output from F3n

ua?’

the values v;; in the former are
computed as verification information of the authenticated ¢-shares of the output y (Definition
5.2) (i.e v;; = (K;, a;(K;)) with a;(0) = p(j) as a t-share of y), while in the latter they are random
for j ¢ C. It is easy to verify that the indistinguishability follows since A has access to atmost
t points on the degree ¢ polynomial a;(z) for j ¢ €. Finally, in the case when A allows honest
it is easy to check that since |V;| >t + 1 for each

honest P; (as there are atleast (¢ + 1) honest parties), each P; would proceed to reconstruction.

parties to obtain the output shares from Fh,
Furthermore, the argument made in Lemma 5.3 shows that all honest parties would exclude js
from their V sets such that P; broadcast the incorrect MAC polynomial corresponding to its
output share, except with negligible probability. Subsequently, the correct secret y would be
reconstructed. We can thus conclude that all honest parties obtain output y in both the ideal
and the hybrid execution, except with negligible probability. This completes the proof for the
honest majority setting. This completes the proof of Theorem 5.4.

5.6.3 Proof of Security of 7y godsm (Theorem 5.8)

We prove the theorem by demonstrating that the 3-round protocol Tpw.god.sm (Figure 5.4) ob-
tained by compiling a 2-round semi-malicious protocol 7, sm satisfies the security guarantees of
(god|ua)-BoBW. We give the description of two simulators, namely 8§ . g o and 8pw . g o, that

simulates the view of the real-world adversary A in case of s semi-malicious corruptions and ¢

dm Shm

bw.god.sm? Sbw god.sm 11ternally use the simulator

semi-malicious corruptions respectively. Both 8
of the semi-malicious protocol 7y, sm, Say Suasm- 1The simulator of the adaptive garbling scheme
8.4 is also invoked (Refer Section 2.4.1.1 for details).

dm
bw.god.sm

is described in Figure 5.11. We argue that IDEALg, gdm ~

bw.god.sm

The simulator 8

REAL 4 when the semi-malicious adversary A corrupts s < n parties. The views are

Tbw.god.sm »

shown to be indistinguishable via a series of intermediate hybrids.

,—[ Simulator ngna.god.sm} N

Round 1. 8§¢m does the following-

bw.god.sm

- Interaction with Syasm to receive Round 1 of myasm: Execute the simulator Sy, sm(17) to
obtain {B}}c.

- On behalf of each i € H, setup (pk;, sk;) < Gen(1%) and broadcast (pk;, B}).

- Receive {pkj,’B}} broadcast by P; where j € C along with its “witness” (:c;,rjl) from its

witness tape.

Round 2. $4m

bw.god.sm

does the following-
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- For each i € H: run (Cj,d;) « S,a(1*,6(C;),0), where 6 is the side information known
about C; i.e the topology of the circuit and broadcast ((:, CZ) on behalf of P;.

- On behalf of each P; (i € H): For each b € {0,1}, k € [n], j € €, sample Iabi’;’ at random.
For j € € broadcast cﬁ’f = Enc(pk;, Iab,ﬁ’;}). For j ¢ C, broadcast cﬁ’f as encryption of a

dummy message.

2 r?) from

- For each j € C: Receive C; and {cf”ib}ke[n]7b€{0’1}7i€[n] along with its “witness” (a;j, J

its witness tape. For ¢ € H, compute Iabi’ib = Dec(sk;, c?”ib)
Round 3. ngT.god.sm does the following-

Interaction with Syasm to send Round 1 of myasm: For j € €, if P; did not abort in Round

1 or Round 2 of 7y god.sm, Use the “witness” (x?, TJQ) of the corrupt P; from its witness
tape and forward the witness and le- to Sua.sm as the Round 1 message from P;. Set
(z5,77) = (x?,r?) and flag; = 1. Else, forward the default values (27,7}) and B;l

computed using the default values to 8yasm as the Round 1 message from P;. In this

— (o _
case, set (x;‘,r;) = (:cj,rj) and flag; = 0.

Invoking the ideal functionality Fya: Invoke Fa computing f with the set of values {77 };ce
on behalf of A and obtain the output y. This is provided to Sya.sm as the response from

its ideal functionality when invoked by S,a.sm-

Interaction with S,a.sm to receive Round 2 of mya.sm: Invoke S,a.sm to obtain {'B?}ieg{.

Set flag; = 1 for all i € H. For each i € 3: Run ({lab;"®*}, (1) « 8,4(BZ,1). For
each k € [n], interpolate a degree-s polynomial MF(z) satisfying MF(0) = Iabf’ﬂag’“ and
ME(j) = Iabi}ﬂagk for j € € (chosen in Round 2), where || < s. For j € H, set
laby %84 = MF(j).

For each i € [n]: For j € H, broadcast Iabf’jﬂag’c hflag

. For j € €, receive lab;;

- Interaction with 8ya.sm to send Round 2 of myasm: For j € € such that flagj = 1, use the shares
broadcast in Round 3 to reconstruct the labels associated with C;. If the reconstruction of
all labels is successful, proceed to evaluation of C; and obtain bjz as per the protocol. Send
witness (:E;",rj) and b? as Round 2 message to 8,;3.sm from P;. Else, abort P;. For j € C such
that flag; = 0, compute default b? as per the protocol and send the default witness (x;, r;)

and bjz as Round 2 message to 8,3.sm from P;.

Output to honest parties: Let €’ C € denote the set of parties controlled by A who do not abort
throughout Thw god.sm- If [€'| +|H| > s+ 1, Spw.god.sm invokes Fy, computing f with continue
on behalf of A. Output y on behalf of the honest parties. Else Spy god.sm invokes F,; with

abort on behalf of A and output L on behalf of the honest parties.
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Figure 5.11: Description of Simulator ng'{,‘.god_sm

- HYB(: Same as REAL

Tbw.god.sm WA

- HYBj: Same as HYBy, except that for i, j € H, the ciphertext cf”f (forallk € [n],b € {0,1})

broadcast in Round 2 is an encryption of dummy message.

- HYB,: Same as HYBj, except that for i € X, (C,-,{Iabf’ﬂag’“}ke[n],di) is computed as
(Cirdy) + 8,4(1*,6(C;),0) and ({labl" ™ }iep) < Saa(B2,1).

- HYBj3: Same as HYB; except that {B;, BZ},cqc is generated via the simulator 8, ¢m of the

underlying semi-malicious protocol 7,s.em-

- HYBy: Same as HYBj3 except that honest parties output L if || + |H| < s + 1, where
€’ C C is the set of parties controlled by A that do not abort throughout 7Ty god.sm-

Since HYBy := IDEALg, _ gdm , we show that every two consecutive hybrids are computation-

25%bw.god.sm

ally indistinguishable which completes the proof for the case of s corruptions.

HYBy ~ HYB;: The difference between the hybrids is that the ciphertext cff (for k € [n],b €
{0,1}) broadcast in Round 2 using key pk; for i, j € 3, is the encryption of P;’s share of the
encoded input Iabf’b ie Iabf”;’ in HYBy while it is the encryption of a dummy message in HYB;.
The messages in Round 3 by P; (i € H) remain the same. The indistinguishability follows via

reduction to the security of the public-key encryption scheme (A has no information about sk;).

HYB; ~ HYBy: The difference in the hybrids is the way (C;, {Iabf’ﬂag’“}ke[n],di) is computed
for i € H. In HYBy, it is computed as (C;,e;, d;) < Gb(1*,C;) and then as {Iabf’ﬂag’c —
En(e;, flagy,) }refn- On the other hand, in HYB,, it is computed as (C;, d;) < S,q(1*,6(C}),0)
and ({lab;™®"}, 1) < 8.4(B2,1). The indistinguishability follows via reduction to the adap-

tive privacy of the garbling scheme.

HYB, ~ HYBs: The difference between the hybrids is that the values {B}, B2} for i € H are
generated using honest parties’ inputs in HYB, but generated via the simulator S,,sm in HYB3.

The indistinguishability follows directly from the semi-malicious security of the protocol 7 ;.¢m.

HYB3 ~ HYB4: The difference between the hybrids is that while the honest parties output L
in HYBj if any reconstruction fails, they do so in HYB, if €| + |H]| < s + 1, where €’ C C is
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the set of parties controlled by A that do not abort throughout mpy god.sm- It is easy to check
that the difference occurs only when some party in €, say P;, does not abort in Round 3,
but sends an incorrect share, say s’ leading to problems in the reconstruction. However, note
that the semi-malicious P; needs to be consistent with the transcript of Round 2 comprising
of ciphertexts encrypting the correct share, say s, with his public key pk;. Thus, the share s’
sent by P; in Round 3 must be a valid decryption of the ciphertext broadcast in Round 2. It
now follows from the correctness of the public-key encryption scheme that both s, s’ cannot be
valid decryptions of the same ciphertext.

This completes the proof of security for the case of s < n corruptions.

The simulator s';,c;,god,sm for the case of t < n/2 corruptions is described in Figure 5.12. The

dm

bw.god.sm» and only differs in terms of output computation of

steps are almost same as that of 8

. C
the honest parties. We argue that IDEALg  gim A REAL

bw.god.sm

adversary A corrupts t < n/2 parties. The views are shown to be indistinguishable via a series

4 when the semi-malicious

Thw.god.sm

of intermediate hybrids.

,-[ Simulator sgg;_god,sm} .

Round 1. Same as Round 1 of 8™ (Figure 5.11).

bw.god.sm

Round 2. Same as Round 2 of §¢m (Figure 5.11).

bw.god.sm

Round 3. Similar to Round 3 of §dm

bw.god.sm

(Figure 5.11) except the following:

- The ideal functionality Fgoq is invoked on behalf of A instead of Fy,.

- Additional step: For each P; (j € €), such that flag; = 1: For each k € [n], use {Iabﬁ’flag’“ Yiex

to reconstruct Iab;c’ﬂag’“ (recall that |H| = s+ 1). Evaluate C; using {Iab?’ﬂag’“}ke[n} to

obtain b?.

- Interaction with Syasm to send Round 2 message of Tyasm: For j € € such that flagj =1, send

witness (x;“,r;‘) and b? as Round 2 message t0 Syasm from P;. For j € € such that flag; = 0,

compute default b? as per the protocol and send the default witness (x;, r;) and b? as Round
2 message to Syasm from P;.

Output of honest parties: Output y on behalf of all honest parties.
.

Figure 5.12: Description of Simulator 8™

bw.god.sm

- HYBg: Same as REAL

Tbw.god.sm WA
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dm
bw.god.sm

- HYB1, HYBo, HYB3: Same as HYB, HYBy, HYBj3 described previously corresponding to 8

- HYB4: Same as HYBj3 except that honest parties do not output L.

Since HYBy := IDEALg , shm , we show that every two consecutive hybrids are computation-

w.god.sm

ally indistinguishable. The argument for HYB3 ~ HYB, suffices to complete the proof for the

case of t corruptions as the indistinguishability of HYBg ~ HYB3 has been described previously

dm

in the context of S5 g sm-

HYBj3 ~ HYB,: The difference between the hybrids is that in HYBj3, honest parties output L if
any reconstruction fails, but in HYBy4, honest parties do not output L. The indistinguishability
follows as in HYBg, the (n —t) = (s + 1) honest parties would broadcast their correct shares in
Round 3 which would suffice for the purpose of successful reconstruction of the s-shared value.
Also, as argued earlier, the shares broadcast by non-aborting semi-malicious parties in Round
3 must also be correct. This holds since the semi-malicious parties must remain consistent with
the Round 2 message that includes ciphertexts encrypting the correct shares (follows from the
correctness of the public-key encryption scheme).

This completes the proof of Theorem 5.8.

5.6.4 Proof of Security of 7y g4 (Theorem 5.11)

We prove the theorem by claiming that the protocol mpygoq achieves god against ¢ < n/2

malicious corruptions and security with ua against s < n malicious corruptions in the J-

hm

hybrid model. For contradiction, assume a malicious adversary Apy .,

4 controlling a subset of

t < n/2 parties, say C, that breaches security of mpy god. We build a semi-malicious adversary

‘Agvrv.god.sm corrupting the same set of parties € for the 3-round semi-malicious BoBW MPC
protocol Ty god.sm as follows. Amgod.sm internally uses .A[;V"v‘.god and interacts with the honest
parties in an execution of Ty god.sm as follows:

- In each round ¢ (¢ € [3]), AQp,oqem forwards the messages received in the execution of

hm

b god- Receive my from each Pi(i € C) sent by

Thw.god.sm from the honest parties to A

hm . .
Apw.god 111 the execution of Mo god-

- Simulate the F functionality for each Round ¢ (¢ € [3]) as follows: When an honest party
should be the prover, just check that the adversary sends the correct statement and return
1 as the response of F,. In case where a corrupted party P;(i € €) is the prover, check

that indeed NextMsgh(x;;r;;my...my_1) = m, where (z;,r;) is P/’s witness received by

hm

bw.god.sm 10 include

F,k. Incase this holds, return 1 to AEVT.gOd, update the witness tape of A
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(x;,7;) and send m@ on behalf of P; to honest parties in the execution of Ty god.sm. Incase

of failure, abort the party P;.

hm

_ ghm outputs whatever A

bw.god.sm outputs.

hm

Similarly, using the simulator Sgi'. 4 om

for Tyw.god.sm (refer Theorem 5.8), we can build a

hm
bw.god.sm

hm

bw.god behaves the same

simulator § for mow.god for the honest majority case. Since A
way as Aﬂw'god, any attack by AEV”J_god controlling ¢ < n/2 parties that breaks the security of
Thw.god 18 translated to an attack by Agw_god_sm controlling ¢ < n/2 parties to break security
of Thw.god.sm- This leads to a contradiction as Ty god.sm achieves god incase of ¢ < n/2 semi-

malicious corruptions as proved in Theorem 5.8. Similarly, a malicious adversary A{™ . for

bw.god
Thw.god controlling a subset of s < n parties, can be used to build a semi-malicious advgersary
A;jv";.god.sm corrupting s < n parties that breaks security of 7y god.sm Which is a contradiction.
This completes the proof of our claim that 7y, goq gives the necessary BoBW security guarantees
stated in Theorem 5.11 in the F,-hybrid model. In the CRS model, ¥, can be realized using

NIZKs; thereby completing the proof of Theorem 5.11.

5.6.5 Proof of Security of mp god.plain

Before presenting the proof, we first show that the 3-round protocol Ty god.sm (Figure 5.4)
satisfies the stronger notion of delayed-semi-malicious security (Section 5.6.1) and recall the

relevant technicalities in [115] which are useful for our proof.
5.6.5.1 Proof of Delayed-semi-malicious Security

Recall that the delayed-semi-malicious adversary is similar to semi-malicious adversary, except
that it is required to provide a witness only in the second-last round. We argue that 7y god.sm
achieves the desired BoBW security guarantees even against such an adversary due to the
following: First, we note that the simulators 8§ 4o and Siv o (Figure 5.11,Figure 5.12)
do not require the adversary’s witness at the end of Round 1 to simulate Round 2 and use only

the witness (z3,77) output by a corrupt P; at the end of Round 2 for simulation. Thus, the

simulation can proceed identical to Sgw.god.sm and Smgod.sm in case of a delayed-semi-malicious
adversary who provides witness only during Round 2 (second-last round). Next, we observe
that arbitrary malicious behavior in Round 1 by a delayed-semi-malicious adversary does not
affect simulation of Round 2 as it involves communication of only adaptive garbled circuits
and ciphertexts corresponding to shares of labels of the garbled circuit (encrypted with the
appropriate public-key of the share’s recipient). It is easy to check from description of the

simulators (in Figure 5.11-Figure 5.12) that the simulation of adaptive garbled-circuits requires
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only the circuit topology which is independent of the adversary’s potentially malicious Round
1 message. Lastly, a malformed public-key sent by an adversary in Round 1 does not affect
the simulation as the shares of honest parties are encrypted with their respective well-formed
public keys. This misbehavior would only affect the ciphertexts comprising of adversary’s share
which are simulated identical to the real-world. We point that since the ciphertext is decrypted
only in Round 3 after the delayed-semi-malicious adversary provides a witness justifying the
well-formedness of its public key, there is no scope of breach in security even if adversary
misbehaves in Round 1. We can thus conclude that the simulators Sgw_god_sm and SEVT.god.sm

maintain that the adversary’s view in the ideal and real-world is indistinguishable even in the

face of a delayed-semi-malicious adversary.
5.6.5.2 Recalling [115]

We begin with a quick overview of the 4-round Zero-knowledge argument of [115] that compiles
3-round sigma protocols of the following special form: The prover simply relies on commitments
to generate its first round message and decommits to some subset of the commitments depending
on the challenge provided by the verifier. Additionally, special soundness guarantee is needed
(for details refer to [115]). To amplify soundness of this 3-round zero-knowledge argument
system, the entire protocol can be repeated in parallel, where the verifier commits to all the
parallel challenges in a first round of the protocol while decommitting in the third round. To
avoid malleability attacks by corrupt prover (who can use the verifier's commitment in first
round to change it to another commitment that can be open to a valid accepting response
depending on the decommitment provided by the verifier in the third round), an approach
used is to ask the prover to prove “knowledge” of the messages in its commitment before the
verifier decommits its challenge. This can be achieved via extractable commitment schemes
which is a commitment scheme with ‘proof of knowledge’ property. To design a 4-round ZK
argument system, [115] follow a cut-and-choose paradigm. Their protocol comprises of N
parallel instances of the basic 4-round protocol. In Round 3, the verifier chooses a random
S C [N] of some size T" and decommits to the challenges made in those indices while providing
a challenge for the extractable commitment for repetitions outside S. Then in Round 4, the
prover will complete the zero-knowledge protocol for the parallel executions with indexes in
S and respond to the proof-of-knowledge challenge for the extractable commitment for the
remaining indexes. This completes the skeleton of the protocol.

We now elaborate on the simulation technicality relevant to us. To prove zero-knowledge, a
simple strategy for the simulator is to obtain the challenge, i.e. “trapdoor” for the indexes in S,

rewind and setup the prover messages in such a way that will allow for it to cheat in all instances
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corresponding to indices in .S. Now, the simulator can conclude with an accepting transcript if
the verifier opens the same set S. However, the verifier can choose to reveal different subsets
in different “rewindings”. However, in any rewinding, either the simulator has succeeded in
cheating in all the indexes of the subset revealed by the verifier or has learned a new trapdoor.
The natural simulation strategy is as above i.e the simulator tries to extract trapdoors and
outputs the “first” accepting transcript when it has managed to cheat in all indexes in the
revealed subset. This simple idea however has a subtle flaw. The issue is that one can come
up with a strategy for a malicious verifier where the distribution of the views output by the
simulator is not indistinguishable from the real view. Roughly speaking, the distribution of
the subset S in the transcript output by the simulator will be biased towards indexes revealed
earlier in the rewindings. The main technical contribution of [115] is to determine the “stopping”
condition for the simulator that will result in the right distribution. Let S; denote the subset
output by adversary in iteration i. The work of [115] proves that the following simulation
strategy achieves the goal of maintaining indistinguishability between the view output by the
simulator and the real-world view. In any iteration j, if S; € S; U Sy...S5;_1, then halt if
S; € S1US;_; else proceed to the next iteration.

Next, we give a brief insight into the proof of indistinguishability between the real and
simulated view as in [115]. Let 8, define the simulator following the simulation strategy

outlined above. The following intermediate hybrids are defined:

H1: In this experiment, the view of the verifier when it interacts with the honest prover with

witness w is considered.

H2: In this experiment, a simulator 8}, is defined that proceeds with the rewinding strategy as
simulator 8, does, with the exception that the prover’s messages are generated according

to the honest prover’s strategy. The view output by 8!, is considered here.
H3: The ideal-world view output by simulator 8.

Indistinguishability among each pair of hybrids is proven in [115] to complete the indistin-
guishability argument.

In the context of simulation of our 5-Round (god|ua)-BoBW MPC construction mpy god.plain;
we face a similar scenario as [115] during Stage 2 and Stage 4 rewinds. The set of indices S
is analogous to the set of corrupt parties that are alive. We therefore incorporate the halting

condition of [115] in our simulation strategy.

203



5.6.5.3 Security Proof (Theorem 5.12)

dm

Next, we discuss our simulator for the dishonest-majority setting, Sp.oq piain

in Figure 5.13.

Note that ng”v‘.god.sm ( Figure 5.11) is the underlying semi-malicious simulator which is invoked in
hm

the dishonest majority case. The simulator for honest majority Sgi .4 siain

is same as sgcg,god,p,ain
except that s is replaced by ¢ (in the number of iterations in Stage 2,4 of simulation) and the
underlying semi-malicious simulator invoked is Sgw.god.sm (Figure 5.12). The major differences
in our simulator as compared to the simulator of [35] are in Stage 2 and Stage 4 to tackle the

challenges that arise due to the required BoBW guarantees.

: d
f‘[ Simulator Sbvn;.god.plainJ N

Let € C [n] and H = [n] \ € denote the set of indices of s corrupt parties and the indices of honest

parties respectively. The simulation proceeds in stages as follows:

Stage 1: This stage simulates Rounds 1, 2 and 3 of the main thread as follows:

- Invoke Sgw.god.sm to simulate honest parties’ messages corresponding to Round 1 of Ty god.sm (sent

in Round 1 of 7w god.plain)- Note that Round 1-3 of Ty god.plain involves only first round of

dm

Thw.god.sm» t0 simulate which Sbw.god_sm

doesn’t need any witness.

- Commitment c;_,; is simulated as follows: If P; is honest, commit to 0 in ¢;—;, and if P; is honest,

emulate the receiver of Com honestly.

- Act as the honest receiver of Trap: Upon receiving verification key vk;_,;, send a random challenge
message on behalf each honest P; and receive the corrresponding signature from P;. Act as

honest sender wrt Trap;_, ;

0

- Commit in the first three messages of NMCom;_,; to a random share s; L

- Act according to the protocol in the first three messages of WI! _,; (on behalf of honest P; as
1 2

prover), WI;_,; (on behalf of honest P; as verifier) and similarly, first two messages of WI7_, ;,
wi?

Jj—

Stage 2: This stage involves rewinding Rounds 2 and 3 to extract trapdoors. Let T.,c € € be a
set that contains at most two tuples where each tuple is a set of message-signature pairs for each
honest party i.e. (mp_e, Ocsh)nesc valid with respect to vk._,. Initialize T. = (). Let T be the set
of corrupt parties {P;} for which the trapdoor has been obtained i.e. |T;| = 2.

Let the set of corrupt parties alive after Stage 1 of Spy god.plain b€ A1 and Ag = ). For each P, € Ay,

add one tuple to T, as follows: T, = T. U {(mp—c, Oc—h)nes} where mp,_,. is Round 2 message sent

by simulator and o, is Round 3 message received by simulator on behalf of each honest party
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Pr,h € H during Stage 1.

Let the set of corrupt parties alive across i*®

rewind (iteration) be A;;;. For iterations £ = 1 to

s + 1, the simulator proceeds as follows:

- For both Rounds 2 and 3, on behalf of each honest party in H, simulate all the components
Com, Trap, NMCom, WI*, WI? exactly as in Stage 1.

- Let the set of corrupt parties alive upto Round 3 in this iteration be A’. For each alive party P,
ie. P.e A if |T.| < 2, update T, as follows: T. = T.U {(mp_e, 0csh)nes} where mp_,. is
Round 2 message sent by simulator and o, is Round 3 message received by simulator on
behalf of each honest party Py, h € H. If |[T.| =2,T=TU{F.}.

Consider the exhaustive cases:

Case a. A" ¢ AjU---UAy: This implies that a party became alive for the first time in this iteration
and the simulator does not have his trapdoor required to proceed to the next stage. The
simulator sets Ay, 1 = A’ and continues to the next iteration. Note that every iteration results
in adding a tuple to T, for some ¢ such that P. ¢ T. Hence, at the end of s iterations |T.| > 1
for each ¢ € € must hold. Therefore, the number of iterations is bounded by (s + 1) since in
that iteration, the simulator will definitely be able to obtain trapdoor wrt all corrupt parties
that are alive (by combining the tuple in T, with the tuple it obtains in the last iteration

before halting).

Case b. A C A U---UAyand A’ C Ay U---UA,_1: Ignore this case and rewind again i.e. go to
Step 1. Note that the simulator has enough trapdoors to proceed to the next stage but this
case is still ignored to handle the situation where the adversary can choose the set of alive

parties such that the views in the real and the simulated world become distinguishable.

Casec. A" C A U---UA;and A’ € Ay U---UA,_q: This is the halting condition, when the set
of alive parties seen is covered by the set of alive parties seen in the previous ¢ iterations but
is not covered by the set of alive parties seen in the first £ — 1 iterations. The simulator sets

Agy1 = A’ and proceeds to the next stage.

Stage 3: This stage involves simulation of Round 4 of the main thread using trapdoors as follows:

- Invoke Sgw.god.sm to simulate honest parties’ messages corresponding to Round 2 of Ty god.sm (sent

in Round 4 of wa.god.plain)

2

- Simulate Round 3 messages of WI? _,; and WI7_,; (where P; is prover and verifier respectively)

honestly as per the protocol.
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- Simulate Round 4 of WI} _,; (on behalf of P; as verifier) honestly.

- In instances WIZ1 _,; where P; is an honest prover, do the following: (a) Commit in the last message
of NMCom;_,; to the random share sgﬁj tossed in Stage 1. (b) Send the other share s}%j =
sg j @ td;; on clear, where td;_,; comprises of the two message-signature pairs wrt vk;_;
obtained from T; wrt honest P; (c) Prove in the last message of WI} _,; the fake statement that

NMCom;_,; commits to s?_n- such that, td;_; = sll_m. ® s?_m- is a valid trapdoor w.r.t. vk;_,;.

Stage 4: This stage involves rewinding Rounds 3 and 4 to extract input of corrupt parties from
WIL. Let sets T,,c € € and T be defined as in Stage 2. Let the set of corrupt parties alive after
Stage 3 of Spw.god.plain be C1 and Cy = (). Let the set of corrupt parties alive upto Round 4 of the

ith rewind (iteration) be C;, ;. For iteration £ = 1 to s + 1, the simulator proceeds as follows:

1. For Round 3, simulate components Trap, NMCom, WI', WI? on behalf of each honest party in K

as done in main thread.
2. Let the set of corrupt parties alive in Round 3 be denoted by B. Consider the cases:

Case a. B C T: This corresponds to the case when the trapdoors collected so far are sufficient

to continue with this iteration. The simulator proceeds to step 3.

Case b. B ¢ T: This corresponds to the case when there exists at least one additional party (say
P.) that became alive in this iteration for which the simulator does not have the trapdoor.
For each such P, update T, as follows: T, = T.U{(mp—¢, 0csh)nes} where mj_,. is round
2 message sent by simulator and o._,; is round 3 message received by simulator on behalf
of each honest party Py, h € H. If |T.| =2,T=TU{F.}. Consider two sub-cases:

Sub-case bl. B C T: This corresponds to the case when for each P., T, already contained
one message-signature pair and the other message-signature pair collected in this iter-

ation yields trapdoor of P, i.e. T now includes P.. Proceed to step 3.

Sub-case b2. B ¢ T: This corresponds to the case when this was the first time P, was alive
in Round 3 i.e. T, was initially empty. Hence, the one message-signature pair obtained
in this iteration is not enough to compute the trapdoor and proceed. Re-run Stage 2

and Stage 3.

3. For Round 4, replay honest parties’ message of Thy.god.sm (obtained via ngnv‘.god_sm in Stage 3) and
simulate the third message of WI? as in the main thread. Note that we arrive at this step after
making sure that we possess the trapdoors for all the alive parties. Simulate the fourth round of
NMCom and WI' using the trapdoors in T.

4. Let the set of corrupt parties alive be C’. Consider the exhaustive cases:
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Case a. C' ¢ C; U---UCy: This implies that a party became alive for the first time and the
simulator can’t extract that party’s witness in this iteration. The simulator sets Cyp11 = C’

and continues to the next iteration.

Case b. ' CC;U---UCpand C' C CyU---UCy_;: Ignore this case and rewind again i.e. go
to step 1. Note that the simulator had enough executions to extract the witness to proceed
to the next stage but this case is still ignored to handle the issue where the adversary can
choose the set of alive parties in a manner that views in the real and the simulated world

become distinguishable.

Casec. C' CCiU---UCyand C' € C;U---UCy_q: This is the halting condition, when the
set of alive parties seen is covered by the set of alive parties seen in the previous £ iterations
but is not covered by the set of alive parties seen in the first £ — 1 iterations. The simulator
sets Cy1 = C'. For each corrupt P; € Cpyy, let k < £ be the iteration in which P; was alive
i.e. Pj € Cyy1. Use iterations k and ¢ to extract the input, randomness (x;,7;) as done
in [35] i.e from the two accepting transcripts in iterations k, ¢ that share the same first two

messages of WI} _,; with P; as prover and F; as honest verifier. Proceed to next stage.

Stage 5: Using the corrupted parties’ inputs and random tapes {x;,7;} extracted (corresponding
to P; € C' i.e corrupt parties who have been alive upto Round 4 in the final iteration of Stage 4),

simulate honest parties’ messages in Round 5 as follows:

- Feed Sgw.god.sm the witness {z;,7;} for P; € C’ and default values (7,7%) for P; € €\ C'. Use
Sgw.god.sm to simulate the honest parties’” message in the last round.

- In instances WI? _,; where P; is an honest prover, prove in the last message of Wi? _,; the fake

0

statement that NMCom;_,; commits to Sissj such that, td;_; = Szl—n’ @s?ﬁj is a valid trapdoor

w.r.t. vkj_;. Simulate WI?_H» with P; as verifier honestly.

- For each P; € C’ such that all proofs WI? _,, are accepting for k € [n], send Round 3 message of

Thw.god.sm on behalf of P; to Sgw_ god.sm- If Sgw.god.sm invokes its ideal functionality with abort

(resp., continue), Sbw.god.plain iNVOkes its ideal functionality J,, with abort (resp., continue).
. J

Figure 5.13: Description of simulator ngrc.god.plain

C o .
We argue that IDEALg,  gdm A REAL 4 when the malicious adversary A corrupts

bw.god.plain
s < n parties. We also need to prove that the simulator runs in expected polynomial time.

Tbw.god.plain »

Consider the following series of intermediate hybrids, most of which are similar to the series
of hybrids in [35]. While most of the security arguments follow from [35] and [115], the crux
of our proof lies in Claim 5.8. This claim argues that inspite of our modification in Stage 4

simulation where we re-run Stage 2 onwards in some cases, the simulator continues to run in
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expected polynomial time as the number of re-runs occur only a fixed constant number of times

in the worst case.

- HYB(: Same as REAL

wa.godApIainv‘A'

- HYB;: Same as HYBy, except that after generating the first 3 messages, Round 2 and 3
are rewound for extraction of trapdoors according to the Stage 2 simulation strategy in
Figure 5.13 (with the difference that the components Com, NMCom, WI*, WI? are done on

honest inputs).

- HYBy: Same as HYB; except that in Round 4 of the main thread, for every honest party
P, and every alive corrupt party P,., share s,ll . is set to 82 . Dtd.p, where td._,j, is the

trapdoor w.r.t. vke_p.

- HYBs: Same as HYB, except that in WI' and WI? of the main thread, for every honest
party P, as a prover and every alive corrupt party P. as verifier, P, proves the cheating
statement that NMCom,_,. commits to s9 .. such that s) . & s} . = td.., which is a

valid trapdoor w.r.t. vk._ .

- HYB4: Same as HYBj3 except that after generating Round 4 message, Round 3 and 4 are
rewound for extraction of witness from WI' according to the Stage 4 simulation strategy
in Figure 5.13 (with the difference that the Com and messages of the underlying delayed

semi-malicious protocol are done on honest inputs and randomness).
- HYBj5: Same as HYB, except that every honest party P, commits to 0 in ¢, _; (i # h).

- HYBg: Same as HYBj; except that the messages of underlying delayed-semi-malicious pro-
tocol Ty god.sm are simulated using ngr?.god.sm'
Note that HYBg := IDEALg sgm o To complete the proof for s corruptions, we prove two
7“bw.god.plain
things for each hybrid: a) it runs in expected polynomial time b) it is indistinguishable from
the previous hybrid in the sequence. Proving a) for the last hybrid implies that the simulator

also runs in expected polynomial time.
Claim 5.1 HYB, ~ HYB;

Proof: First, we note that the components of the compiler are run in an identical manner
in both HYBy and HYB;. To argue indistinguishability, we need to prove the following: the

distribution on the set of corrupt parties that are alive in the view output by the simulation
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strategy of Stage 2 when run with honest inputs, is identical to the same distribution in the
real-world execution of the protocol. The argument follows similar to Claim 3.2 of [115] (which
proves indistinguishability of H1 and H2 as defined in Section 5.6.5.2). a

Claim 5.2 HYB; runs in expected polynomial time.

Proof: To argue that HYB; runs in polynomial time, we need to prove that the simulation
strategy of Stage 2 (run with honest inputs) is such that the expected running time of the
iterations / rewinds (that are executed till the halting condition is satisfied) is polynomial. The
proof follows from the argument of Claim 8.4 of [115] (which argues that the expected running
time of 8!, as defined in Section 5.6.5.2 is polynomial).

O

. c
Claim 5.3 HYB; =~ HYB;

Proof: The argument follows directly from the proof of Claim 10.11 in [35] (via reduction to
hiding of NMCom). O

Claim 5.4 HYB; runs in expected polynomial time.
Proof: Same as proof of Claim 10.10 in [35]. O
Claim 5.5 HYBs ~ HYB;3

Proof: The argument follows directly from the proof of Claim 10.14 in [35] (via reduction to

witness indistinguishability property of the WI proofs). a
Claim 5.6 HYBj3 runs in expected polynomial time.

Proof: Same as proof of Claim 10.13 in [35]. O
Claim 5.7 HYB;3 ~ HYBy

Proof: The difference between HYB; and HYB, is that HYB4 has an additional set of rewinds
according to the simulator’s strategy in Stage 4 (except that it is run with honest inputs). The
proof of this claim is similar to argument in Claim 5.1. The only difference is that the rewinds
in Stage 4 may involve reverting to Stage 2 rewinds in certain cases. However, this does not
interfere with the indistinguishability argument as it suffices to argue that the final view output
by the simulation strategy in Stage 4 (after possibly reverting and restarting from Stage 2 until
a point when Stage 4 is simulated without any callbacks to Stage 2) is indistinguishable to the

view in HYBj. O
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Claim 5.8 HYBy runs in expected polynomial time.

Proof: Firstly, we note that Stage 4 rewinds in HYB, have additional possible calls to Stage
2 rewinds. Barring those calls, the Stage 4 rewinds are similar to Stage 2; hence they take
expected polynomial time as argued in Claim 5.2. Also, individually each additional Stage 2
call takes expected polynomial time as discussed in the run-time of HYB;. We can thus conclude
that if the number of possible Stage 2 calls is bounded by a constant (predefined parameter
of the protocol), then Claim 5.8 is automatically implied. We analyze the number of calls to
Stage 2 below.

Recall that Stage 2 rewinds can be called internally from an iteration of Stage 4 in the
following condition con: a party (say P;) whose trapdoor is not known i.e. P; ¢ T becomes
alive in Round 3 of that iteration. The simulator first adds the pair (m;, o;) obtained w.r.t. P,
to T;. He still could be at most one pair away from obtaining his trapdoor which is the case
when the Stage 2 rewinds are actually called. Observe that the Stage 2 rewinds are never called
again w.r.t P; because the mere occurrence of condition con is sufficient to serve another (m;, o;)
pair to the simulator and 2 such pairs are enough to compose the trapdoor of P;. Hence, the
upper bound on the number of additional Stage 2 calls per corrupt party is 1. Since there are
at most s corrupt parties, this bounds the number of additional calls to s; hence completing
the proof. O

. c
Claim 5.9 HYB; &~ HYB;

Proof: The difference between HYB; and HYBj; is that while Com with honest party as
committer is run with respect to honest party’s input (and randomness) in the former, the
latter involves commitment to 0 in the main thread and all the rewinds. The claim can be
proven similar to Claim 3.6 of [115] (that argues indistinguishability between H2 and H3 as
defined in Section 5.6.5.2) - Let there exist a polynomial p(n) such that for infinitely many n’s,

HYB, and HYB; can be distinguished with probability OB Consider the truncated experiments

1
n

HYB4 and HYB; which proceed exactly as HYB4 and HYBj5 respectively with the exception that
the simulation is aborted if it runs more than np(n)t(n) steps where t(n) is the polynomial

that bounds the expected run-time of HYB,. By an averaging argument (similar to [115]), it is

possible to distinguish HYB4 and HYB;5 with probability at least #(n).

Similar to [115], we consider a series of intermediate hybrids HYBY, ..., HYB] where in each
hybrid HYB, the strategy of HYBj (i.e. commit to 0 in Com) is followed in first ¢ iterations of
the Stage 2 rewinds and the strategy of HYB, (i.e. commit to honest input and randomness

in Com) is followed in the remaining iterations. Also if HYB{ runs over np(n)t(n) steps, the
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simulator outputs L. Note that HYB} = HYB; and HYB] = HYB;. If AYB; and HYBj5 are

distinguishable by probability #(n), then there exists an index i such that HYB} and HYB}'" are
distinguishable by probability ﬁ(n) (taking upper bound on s to be n). Now, the distinguisher
i1

used to distinguish between HYBY and HYB)™" can be used to break the hiding property of Com
(argument similar to Claim 10.20 in [35]). O

Claim 5.10 HYBj5 runs in expected polynomial time.

Proof: The only difference between HYB; and HYBj is in the value committed in Com, which
does not change the run-time. Hence the proof follows from the claim discussing the run-time

of HYB,. O
Claim 5.11 HYB; ~ HYBg

Proof: The argument for the claim follows similar to the argument in Claim 5.9. We consider a
similar series of sub-hybrids and argue that indistinguishability of HYB; and HYBg boils down to
the indistinguishability between a consecutive pair of sub-hybrids. Now, the indistinguishability
of a consecutive pair of sub-hybrids follows from the security of the delayed semi-malicious

simulator §¢m (similar to Claim 10.23 in [35]). O

bw.god.sm

Claim 5.12 HYBg runs in expected polynomial time.

Proof: The only difference between HYB; and HYBg is in the way the messages of Thw.god.sm
are generated. Hence the proof follows from the claim discussing the run-time of HYB; and the

knowledge that Sﬂ‘,”v‘.god_sm runs in expected polynomial time. a

5.7 Appendix: MPC with ua security

In this section, we discuss in detail how to augment the security of the existing 4-round MPC

protocols of [113, 15, 60] from sa to ua.

5.7.1 Boosting security of [113] to ua

This section is organised as follows: After a brief informal overview of the protocol of [113], we
first highlight the manner in which the adversary could disrupt unanimity and our proposed
fixes to tackle the issues. Next, for the sake of completeness, we recall the original protocol of

[113]. Lastly, we present the modified protocol that incorporates the fixes and achieves ua.

211



5.7.1.1 Issues in boosting security of [113] to ua

We begin with a high-level sketch of the protocol of [113]. The Boolean circuit, corresponding
to the function f to be computed, is first made resilient to additive attacks by applying the
AMD transformations of [97, 98] and then the BMR randomized encoding [19] is applied on the
transformed function. As per BMR encoding, each party P; (i € [n]) picks two keys ko, ki, |
and a bit X’ for every wire w, the latter as its contribution to a mask bit A, for w. The
garbled table of each 2-input gate g with inputs wires a, b and output ¢ comprises of 4 rows (for
the 4 input combinations). The (a, ) row of a NAND gate consists of n ciphertexts, where
. b s
where b, 3 = NAND(A\, ® a, A\, ® ) & Ae = [(Aa ® @)(Ay & B) @ 1] @ A.. This clever encoding
enables evaluating the circuit in masked form where the actual bits blinded with corresponding
mask (M) bits alone get published. Starting with input bits blinded with their masks, these

garbled tables enable to compute blinded output bits. Specifically, the keys corresponding to

the i*" ciphertext encrypts the bg}fﬁ output key from P;’s contribution on wire ¢, namely k

the masked bits for the input wires a, b of a gate are used to decrypt the relevant n keys for
the output wire, namely k;(sw where 0. denotes the masked bit on the output wire ¢. Each
P; deduces the value of . by comparing the key obtained from decryption of ith ciphertext
with its pair of keys (kZ, k). For the output gates, the mask value A is given out as output
translation table to recover the actual output.

Notably, the BMR encoding i.e. every ciphertext in the garbled tables represents a degree-
3 monomial over parties’ random inputs. To compute the monomials, [113] gives a 3-round
protocol Ty, (building upon the 3-bit multiplication protocol of [3]) against “defensible” ad-
versary (i.e adversary volunteers a defense or explanation of its actions so far, consisting of
some inputs and randomness at the end of Round 3). The protocol ends with every party
having an XOR-share of the encoding (every ciphertext of the garbled tables), XOR-share of
the output translation tables and the masked input bits. Now, to compile this defensible proto-
col to a malicious one, 2-round witness indistinguishable proofs (derived from ZAPs) are used
whose “witness” would act as the “defense”. Once all the actions upto Round 3 are verified
via ZAPs, all parties broadcast their respective shares in Round 4 to reconstruct the garbled
tables, which can now be locally evaluated and decoded (using BMR decoding first and AMD
decoding subsequently) to obtain the output. Note that there is no proof of correctness for
Round 4, meaning that the adversary A can modify the output translation tables, arbitrarily
making the honest parties output the wrong answer. This is tackled by taking additionally
as input a MAC key, say K;, from each party P;, and augmenting the output of the MPC to

include the authentication of the function output y under each of the parties’ keys. In more
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detail, {y,t; ...t,} denotes the output received by each party at the end of the protocol where
t; = MAC(K;, y) for i € [n]. Now, an honest party P; would accept the output only if ¢; validates
y as per its private MAC key K;. The privacy of K; for an honest P;, makes it hard for the
adversary to change y and match it with a valid ;.

Another technicality arises, as the ZAPs in [113] fall short of guarding against an adversary
that can lead to encryption of bit-strings in the garbled table that are not entirely the relevant
output wire keys, but rather mix of bits from both keys. This would help the adversary learn
some bits of the other key after decoding. This leakage is controlled via a slight variant of BMR
encoding where the garbled tables encrypt random values unrelated to the actual keys for the
wires and the keys are given out in a blinded format using blinders derived from the random
values operated with pairwise independent hash functions. Now, even if the adversary learns
some bit of the other random value, the left-over hash lemma ensures that the other blinder is
still random, guarding the privacy of the other key. This completes the high-level description
of the protocol.

There are two ways the adversary can disrupt unanimity of [113], that stem from the specifics
of BMR encoding and decoding. To present these issues comprehensively, we abstract out the
BMR encoding and decoding in Figure 5.14 and the backbone protocol of [113] in Figure 5.15,
stripping the ZAPs and other related details. We describe the issues and elaborate the solutions

below.

Issue I: Selective manipulation of the output and MAC. Though the MAC mechanism
on the output y keeps the sanity of y, the dedicated and independent MAC for every party
P; makes it easy for an adversary to selectively tweak some MACs and create disagreement.
A corrupt Pj, by broadcasting a modified share of the output translation table M for an
output wire w during Round 4, can make sure that AMD-encoding of (y,t,...,t,, ... t,) is
reconstructed, where ¢} is the only tampered MAC. Now an honest P; output L, while the rest
output y leading to a disagreeing honest population.

Unanimity in this case is enforced by making C' output y that is authenticated using the
authentication with public verifiability introduced in Section 5.3.1. Specifically, the additional
private input to C' on behalf of P; is now the verification information v;, which is a pair of
uniformly-picked from F secret points (K;,y;) (see Definition 5.1). The output of C' is a(x)
where a(z) is the n-degree MAC polynomial with a(0) = y and a(K;) = y; for i € [n]. An A
trying to change the output to the AMD-encoding of a*(z) # a(z) would be detected by each

honest P; except with negligible probability since v; is unknown to him.

Lemma 5.8 When y is authenticated using the above form of authentication, all the parties
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_n_

either output y or L, except with probability at most e

Proof: Assuming H is the set of honest parties, the adversary can make the honest parties

disagree by guessing one of the keys K of the honest parties so that it helps reconstruct a*(x) #

a(x) that verifies to only the honest party holding the guessed K value. The probability of the
| 5]

above event is F1 < \IF\L—l' With F = GF(2"), the above probability is negligible in x. a

Issue I1: Selective manipulation of the garbled tables. Recall from the protocol overview
of [113] that each row of a garbled table consists of n ciphertexts, the ith one decrypting to
a key on the output wire contributed by F;. During decoding, this decrypted key enables P,
to deduce the masked bit on the output wire. An A can break unanimity of the protocol of
[113] by tweaking the ith ciphertext alone in all the rows for a gate (say with output wire ‘c’)
for some ¢ so that P;’s decrypted key Ei from ith ciphertext does not match with either key
of the pair (K., k.,). Now P; cannot deduce the masked output bit d., while all other honest
parties can. This does not disrupt unanimity for the case when ¢ is not an output wire of the
circuit. Because the incorrect Ei received by all parties would be used to unmask each of the
n ciphertexts of the row corresponding to the gate h where ¢ is an input wire. The decryption
would lead to arbitrary values of keys corresponding to all parties for the output wire of h.
Since these arbitrary values would not match to the key pairs for all the parties, all honest
parties would abort; preserving unanimity.

However, this would be a problem in the case of output gates i.e if ¢ was an output wire of
the circuit. To handle this issue, every P; is additionally made to broadcast its respective pair
of keys (k, ¢, ki, 1), as a part of output translation table along with their share of mask bits A,
just for the output wires in Round 4. While processing the output gate, an honest party P;
would not only compare the key obtained upon decryption of the ith ciphertext with its pair
of keys, but checks all the keys corresponding to all the ciphertexts with the keys broadcast in
Round 4. P; outputs non-L only if all the keys are consistent with a common .. We point
that there is no privacy breach since both keys of an honest party is accessible to A only for
the output wires. Finally, we also comment that a rushing A who now knows the pair of
output keys belonging to honest parties can manipulate the ciphertext in such a manner that
it decrypts to the flipped value i.e say ki@ instead of k5, for all 7 € [n]. While this would lead
to honest parties deducing the wrong value of §. and thus potentially a wrong output, this kind
of manipulation of output is already taken care by authentication of the output with public
verifiability as detailed in the previous issue.

Lastly, we point that in order to preserve unanimity in scenarios where a corrupt party P;

uses the correct witness in ZAP;; but not in ZAP;;; the honest parties check all pairwise ZAP
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proofs (facilitated by public-coin property of ZAPs) and abort if any of them fail.
5.7.1.2 Recalling the protocol of [113]

We next present BMR Encoding, Decoding and the back-bone protocol of [113] in Figure 5.14
and Figure 5.15 respectively.

/-[ BMR.Encode & BMR.Decode} .

BMR.Encode

Notations: A Boolean circuit C with W as the number of wires and G as the number of NAND
gates (w.l.o.g, assume C to consist of only NAND gates). Let PRF be a pseudo-random
function with 4k-bit output size.

Input: Each party P; chooses randomness R; = {., ki o, ki, 1, ml, o, mb, 1, Bl o, Bl 1 Y] where
AL, is the bit contribution of P; for the mask of wire w, (k. o, k%, ;) is the r-bit PRF key-pair
contributed by P; for wire w, (my, o,m, 1) is the 4x-bit mask-pair contributed by P; for the
key-pair (k:fu,o, k‘fUJ) of wire w, and hfu,b is a hash function from a pairwise-independent family

from 4k to  bits.

Output: The mask bit for a wire w is computed as: Ay, = AL @---@® AL if w is not an input wire, else
Aw = X, where w is P;’s input wire. Following are the outputs for j € [n],w € [W],g € [G]
such that a,b and ¢ are the input and output wires respectively for gate g:

- Garbled tables: (ngﬁ) «,8€{0,1}, With the ciphertext C’g’% hiding the mask miﬁ corresponding
to the correct output key k:i)’baﬁ, instead of the key itself. mgﬂ and Cg/ﬁ are computed

as:

b? 5 = NAND(\, @ a, Ay @ B) @ Ac = [(Aa @ ) (N @ B) © 1] @ A,
ng = <®l€[n] PRFZG,Q (gvjv «, B)) @ (@ze[n] PRFk;B (gvjv «, B)) @ (mio 2] biﬁ(mi,o D
mg’l) (note that, this value is represented as degree-3 monomial)

- Masked keys: (hj Tj’b = hi;,b(mzu,b) S kz;,b)be{o,l}

w,b’ 'w

n

- Keys and masks for input wires w: d,, = Ay D Ty, kv}vﬁw ks,

- Output translation table for output wires w: Ay,

BMR.Decode

Input: Garbled table C}%, keys k‘i)’ 5, for every input wire w and output translation table Ay.
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Computation: For gate g (obtained according to topological ordering) with input wires a,b and
output wire ¢, each P; computes for j € [n]: ml = ngéb ® ®i€[n] (PRFk;éa (9,7, 0a,0p) ®
PRFki,éb (9,704, 6)). Let o, be the bit for which m}, = mi’ée. Set kgﬁc = 7‘3756 @ hi’ac(mﬁ).

C

Output: After obtaining ¢, for every output wire w, compute the output value as d,, B Ay

| J

Figure 5.14: BMR Encoding and Decoding of [113]

r-[ Protocol 7Tbackbone.sa} )

Inputs: Party P, has z; for i € [n].
Output: y = f(z1,...,z,) or L
Primitives: AMD code (Encode, Decode), Information-theoretic MAC MAC

Subprotocol: 3-round protocol m3pitmuir Securely computing any degree-3 polynomial against “de-

fensible” adversary (i.e adversary volunteers a defense (explanation) of its actions until the
end of Round 3)
Preprocessing in the start of Round 1: Each P; does the following -

- Chooses a random MAC key K; and sets 2} = Encode(x;, K;).

- Choose randomness R; for BMR encoding as per Figure 5.14 for a circuit C' defined as follows. Let
C’ be the circuit that takes input (z;, K;) from every party P; and returns y = f(z1,...,2,)
and MACs (ty...t,) for y with respect to K; to every P;. Then C is the AMD-transformed
version of C’ that takes AMD-encoding of the input of C’ and returns AMD-encoding of the
output of C’. Let Set; denote the set of 3-degree monomials to be computed as a part of the

BMR encoding. These monomials constitute the ciphertexts Cg’ ,8 as per Figure 5.14.
Rounds 1-3:
- Run m3pjtmuie to obtain XOR shares of the monomials in Set;.

- Each P; broadcasts 6, = Ay @ x, where w is an input wire that belongs to P;. Note that for input

wires, the party that owns the wire chooses the entire \,.
Round 4: Each party P; broadcasts its part of the output of BMR.Encode in Round 4 as follows:
- Share of Garbled tables: P;’s share of cg’% for all gate g € [G], rows (a, 8) € {0,1}? and j € [n].

- Masked key values for all its key contributions: {hi}’b, T&,b}be{o,l},we[W]

o . g
- Keys for all its input wires w: kw7 5

w
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- Share of output translation table for output wires w: A\,

Output Computation: P; computes the output as follows: reconstruct the garbled table and out-
put translation table by XORing the shares obtained in Round 4 and run BMR Decoding Algorithm
(Figure 5.14) to obtain AMD-encoded output Y. Obtain the output (y,t; .. .t,) after applying AMD
decoding Decode on Y. Output y if ¢t; validates y as per key K;, else L.

Figure 5.15: The back-bone [113] protocol

5.7.1.3 Protocol achieving ua

We present the final protocol with unanimous abort in two steps. First, we modify the foun-
dation protocol Tpackbone.sa 1O Mhackbone.ua 1IN Figure 5.16 to reflect the changes needed to tackle
the issues arising from BMR encoding and decoding. Next we attach the ZAPs and related

primitives as in [113].

/—[ Protocol 7Tbackbone.ua} )

Inputs: Party P, has z; for i € [n].
Output: y = f(z1,...,z,) or L
Primitives: AMD code (Encode, Decode), Authentication with Public Verifiability

Subprotocol: Same as in Tpackbone.sa-

Preprocessing: Each P; does the following:
- Chooses two random secret points K;,y; and sets a; = Encode(x;, Ki, y;).

- Choose randomness R; for BMR encoding as per Figure 5.14 for a circuit C' defined as follows: let
C’ be the circuit that takes input (z;, K;, y;) from every party P; and returns y = f(z1,...,x,)
and n-degree MAC polynomial a(z) with a(0) = y and a(K;) = y; with respect to verification
information (Kj;,y;) chosen by every P;. Then C is the AMD-transformed version of C’ that
takes AMD-encoding of the input of ¢’ and returns AMD-encoding of the output of C’.

Rounds 1-3: Same as Tpackbone.sa-

Round 4: Same as Tpackbone.sa- 1N addition, every P; broadcasts (kiu70, kful) as a share of output

translation table for every output wire w.

Output Computation: P; computes the output as follows: reconstruct the garbled table and out-

put translation table by XORing the shares obtained in Round 4 and run BMR Decoding Algorithm
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(Figure 5.14) to obtain AMD-encoded output Y. Obtain the output (y*, a*(z)) after applying AMD
decoding Decode on Y. Each P;(i € [n]) outputs L if any of the following is true:

- If there exist pairs a, b € [n] such that §2 # 62, where 6% (similarly b) be the bit for which the key
obtained after decrypting (and subsequently unmasking) the ath (similarly bth) ciphertext i.e.

kS matches with k¢ s, (similarly k‘fu matches with k‘ﬁ, st ). This check is done for every output

wire w.

Figure 5.16: The back-bone protocol for MPC with ua

The intuition for using the ZAPs in [113] is given below. We emphasize that we retain these
proofs in their original form and just recall from [113] for comprehensiveness. The foundation
of their actively secure protocol, namely Tpackbonesa; 1S Secure against a “defensible” adversary
which uses a 3-bit multiplication protocol m3pitmui to compute BMR Encoded garbled tables.
To keep the attacks by malicious adversary in check, the following tools are used: (1) A 3-round
weak one-many non-malleable commitment scheme, nmcom = (nmcom|1], nmcom|2], nmcom|3])
([111]). This is used to commit to the parties’ inputs and randomness in Tpackbonesa- (2) A
2-round resettable reusable witness indistinguishable proof, ZAP = (ZAP[1],ZAP[2]) ([81]).
This is used to prove the “correct behaviour” by parties in mpackbonesa SO that the attacks by a
malicious adversary can be essentially narrowed down to what a defensible adversary can do.
In more detail, the first set of ZAPs, ZAPZ-lj is run between each party pair (P; and P;) in the
first two rounds to prove the correctness of the parties’ actions in Round 1 of Tpsckbone.sa; and
the second set of ZAPs, ZAP?j is run to prove that nmcom (run in Rounds 1-3) commits to a
valid witness i.e. input and randomness conforming to the parties’ actions in Rounds 1-3 of
Thackbone.sa-  Once both the ZAP proofs verify for a particular party (which translates to the
adversay having given a valid “defense” at the end of Round 3 of mhackbonesa), it can send the
shares of the BMR encoding, the masked input keys and the output translation tables in Round
4 to enable BMR decoding and hence, computation of the output.

The modified protocol m,, which provides security with ua uses mpackbone.ua @s the foundation
protocol. The additional primitives of nmcom and ZAPs strapped to Tpackbonesa i [113] to
achieve security against malicious adversaries are appended tO Tpackbone.wa i the exact same
way with one extra abort condition: party P; aborts in Round 3 if any pairwise ZAP ZAP;k or

ZAP% (j,k € [n]) fails. The formal description of the modified protocol appears in Figure 5.17.
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f-‘ Protocol m,

Inputs: Party P; has z; for i € [n].
Output: y = f(z1,...,z,) or L

Primitives: 3-round non-malleable commitment scheme nmcom with round-wise messages (nmcom

[1], n mcom[2], nmcom[3]), 2-round resettable reusable witness indistinguishable proof ZAP with
round-wise messages (ZAP[1],ZAP[2]), AMD code (Encode, Decode).

Subprotocol: Tpackbone.ua (Figure 5.16).

Preprocessing: Same as protocol Tpackbone.ua-

Round 1: Each P; (i € [n]) does the following steps:

- Run Round 1 of mpackbone.ua-

- Engage in two instances of nmcom— nmcom?. and nmcoml-lj with every other party P;, com-

ij

mitting to arbitrarily chosen values wq;,wi,. Let nmcom?j[l], nmcom}j[l] denote the

corresponding messages.
- Engage in an instance of ZAP— ZAPilj with every other party P; by sending ZAP%j[l].
Round 2: Each P; (i € [n]) does the following steps:

- Run Round 2 of Thackbone.ua-

Send Round 2 messages of nmcom instances, namely nmcom?:[2], nmcom..[2].

1] J

Engage in an instance of ZAP— ZAP% with every other party P; by sending ZAP?j[l].

Send Round 2 messages of ZAP%]-, namely ZAP}j [2] to prove correctness of actions in Round
1 of T3pitmult-

Round 3: Each P; (i € [n]) does the following steps:

- Run Round 3 of Thackbone.ua-

- Send Round 3 messages of nmcom instances, namely nmcom?j 3], nmcom}j [3].

- Choose wq;, w1, such that wo; + wo,; = wi,; + wi; = wit; where wit; is the witness cor-
responding to the proof of correctness of P;’s actions during 7m3pjtmuir With respect to

all monomials in Set; and one instance of nmcom (nmcom% or nmcom%j for each j).

Broadcast wq;, w1 ;.
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0

- Send Round 2 message of ZAPZ namely ZAP% [2] to prove that at least one of nmcom;’; or

K
nmcomZ1 jisa valid commitment to a valid witness. Namely, for some b € {0, 1}, nmcomf j
is a valid commitment to wy; such that wy; + wp; is a valid witness proving correctness

of actions of P;.

- Abort if any pairwise ZAP fails. Public verifiability of the ZAPs enables everyone to agree

on this.
Round 4: Each P; (i € [n]) does the following steps:

- Run Round 4 of Thackbone.ua-

Output Computation: Same as Tpackbone.ua-
. J

Figure 5.17: Modified Protocol of [113]

5.7.2 Boosting security of [15, 60] to ua

We begin a high-level overview of the compiler presented in the work of [15] which can be
used for “compiling” any 3-round semi-malicious MPC protocol (with first round being public-
coin) into a 4-round MPC protocol achieving sa against dishonest majority. The primary tools
used in the compiler are a non-interactive commitment NCom, three-message delayed-input
distributional weak zero-knowledge argument system WZK, three-message delayed-input ex-
tractable commitment scheme Ecom, three-message trapdoor generation protocol TDGen, three-
message delayed-input witness-indistinguishable argument system WI, a three round delayed-
input witness-indistinguishable argument with non-adaptive bounded rewinding security RWI
and three-message non-malleable commitment scheme NMComn.

The skeleton of the 4-round protocol m,, compiling the underlying 3-round semi-malicious
protocol, say mem, is as follows: The rounds 1, 2 and 3 of 7y, are run during Rounds 1, 3 and 4 of
Tmal Tespectively. Each party P; participates in the 3-round subprotocols Ecom, NMComn and
TDGen in Round 1 - 3 of 7,; where Ecom and NMComn are used to compute commitments on
(xi, r;) i.e the input and randomness used in the protocol and L respectively. In parallel, each
P, computes a non-interactive commitment nc; to value 1 using NCom and proves via WZK run
in Rounds 1 - 3 that nc; is indeed a commitment to 1. Furthermore, RWI, run in Rounds 1 - 3
between every pair of parties, is used by each P; (prover) to prove towards verifier P; (j # %)
that Round 2 message of mg, (sent during Round 3 of 7, ) was honestly computed based on
(x;, r;) committed in its instance of Ecom and the Round 1 transcript of 7gy,. The alternative
statements for RWI that are used for simulation purpose include commitment to valid trapdoor

using NMCom and nc being a commitment to 0. Lastly, the 3-round WI, run in Rounds 1, 2 and
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4 between every pair of parties, is used as means for each P; (prover) to prove towards verifier
P; (j # 1) that Round 3 message of 7y (sent during Round 4 of 7, ) was honestly computed
based on (x;,r;) committed in its instance of Ecom and the Round 2 transcript of mg,. The
alternative statement for WI used for simulation includes commitment to valid trapdoor using
NMCom. This completes the high-level overview of the compiler focusing on just the relevant
details.

The above described 4-round protocol m,, achieves only security with selective abort as
the RWI, WI and WZK proofs are executed pairwise and allow a corrupt party to selectively
misbehave to a subset of honest parties; thereby keeping them on different pages. To boost
its security to ua, we propose the following modifications: First, if an honest party acting as
a verifier in WZK or RWI detects that any of the proofs have failed at the end of Round 3,
she broadcasts abort in Round 4. If any of the parties broadcast abort, all honest parties
simply output L. This tweak would ensure that even private misbehaviour by an adversary
upto Round 3 is made public to all by Round 4, enabling unanimity. Finally, in order to
maintain unanimity at the end of Round 4, we make all parties check each of the public-coin
pairwise witness-indistinguishable instances (WI) (instantiated with [142]) completing in Round
4 and abort if any of them failed (as opposed to only the pairwise WI instances where the party
acts as verifier). Thus, the above mentioned modifications incorporated in the protocol of [15]

produces a 4-round protocol achieving ua in dishonest majority.

Boosting security to identifiable abort. We observe that the security of the (modified)
protocol of [15] can be boosted to identifiable abort upon applying the following tweaks: First,
as described above, the actions of the parties are made publicly verifiable by making all parties
check each of the pairwise public-coin witness-indistinguishable proofs (as opposed to only the
ones where the party acts as verifier). Next, the private misbehavior in the 3-round weak
zero-knowledge (WZK) can be made public by allowing the verifier of the WZK to publish the
randomness used in the WZK in the last round (after the WZK instance has been completed).

Lastly, we point that the techniques of boosting security of [15] to ua, namely making
private misbehaviour upto Round 3 public by broadcasting abort in Round 4 and making all
the parties check each of the pairwise WI proofs (completing in Round 4) can be used to boost

the security of [60] to ua as well.
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5.8 Appendix: Towards obtaining a 4-round (god|ua)-BoBW

protocol

In this section, we present the sketch of a 4-round (god|ua)-BoBW protocol based on sub-
exponentially secure trapdoor permutations and ZAPs. We believe that these preliminary ideas
are promising to either prove the impossibility or build a construction of a 4-round (god|ua)-
BoBW protocol in the plain model under polynomial-time assumptions.

Firstly, we note that in order to compile our delayed-semi-maliciously secure (god|ua)-BoBW
to the malicious setting, the honest parties must unanimously agree on the identity of the parties
who have misbehaved till the penultimate round. To achieve the optimal round complexity of
4, this would demand a 3-round publicly verifiable proof that would prove correctness of the
actions upto the penultimate round. Thus, the absence of a 3-round zero-knowledge (ZK) proof
seems to constitute the primary bottleneck in building a 4-round maliciously-secure (god|ua)-
BoBW in the plain model. Since the existing compilers achieving security with abort within 4
rounds based on polynomial-time assumptions such as [15, 60] (which rely on weakened notion
of zero-knowledge, namely promise ZK) do not have the feature of public verifiability at the
end of Round 3, we build upon the compiler of [64] based on sub-exponentially secure trapdoor
permutations and ZAPs, which offers this property.

The structure of the compiler of [64] that compiles a 3-round delayed semi-malicious proto-
col, say Tg4sm t0 a 4-round malicious protocol, say 7y, is as follows: Each party commits to her
input in Round 1 of 7, using a non-interactive commitment scheme. The 3 rounds of 7y, are
executed in Rounds 2- 4 of m,,. To prove correctness of first two rounds of mysy, the parties
commit to their randomness and input (which represent a defence for mygy,) using a special non-
malleable commitment scheme (satisfying additional properties of honest-extractable, delayed-
input, reusable decommitment information and last-message psuedorandomness; refer [64] for
details), and prove via ZAP (in Rounds 2 - 3) that this commitment actually contains a valid
defence. Next, the parties engage in a 4-round delayed-input Non-Malleable Zero-Knowledge
(NMZK) argument to prove correctness of Round 3 of w4 (wrt the defence committed in
the non-malleable commitment scheme and the non-interactive commitment). There are two
additional components to aid the simulator— First, a 3-round witness-indistinguishable proof
of knowledge (WIPoK) between every pair of parties where each party proves to the other the
knowledge of a secret information (specifically knowledge of a value y such that f(y) = Y
or f(y) = Y1, given that f is a one-way permutation where (Yp,Y7) is chosen by the prover).
Second, another special non-malleable commitment of a random string. To be more specific,

simulator acting on behalf of honest P; extracts the trapdoor (the preimage y of the OWP)
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from the WIPoK instance with corrupt P; as the prover. Next, the simulator commits to this
trapdoor using the special non-malleable commitment scheme, which will be used as witness for
the ZAP (with P, as prover and corrupt P; as verifier). This completes the high-level description
of the protocol.

To construct the 4-round (god|ua)-BoBW in the plain model, we plug in our 3-round delayed
semi-malicious BoBW protocol in the above compiler. Similar to our modifications over the
compiler of [35], parties are made to set the boolean indicators flag; to 0 if malicious behavior of
P, is detected in the first three rounds. It is easy to check that all parties agree on the flag values
as the components of the compiler upto Round 3 including the ZAP are publicly verifiable. With
the above change, the BoBW guarantees of the underlying delayed semi-malicious protocols are
translated to the malicious setting as well. To avoid rewinding of messages in the underlying
delayed semi-malicious protocol, we run the 3-rounds of our delayed semi-malicious protocol
in Round 1, 2 and 4 of the 4-round compiled maliciously secure protocol. This completes the
sketch of the 4-round (god|ua)-BoBW protocol in the plain model relying on the assumptions
of the compiler of [64], namely sub-exponentially secure trapdoor permutations and ZAPs.

Before concluding this section, we give the sketch of the simulation. As per the simulator
of [64], the simulator extracts the trapdoor by rewinding the adversary from the third to the
second round (referred to as look-ahead threads). This means that before the rewinds the
simulator needs to use a valid witness for the ZAP without knowing the trapdoor. For this
purpose, the simulator during the look-ahead rewinding threads uses a valid defence for mysm
with a random input. After the extraction, the simulator rewinds up to the second round,
commits to the trapdoor, uses the simulator of the underlying mysm protocol and completes
the ZAP proof using the knowledge of the trapdoor. We use the same simulation strategy for
our BoBW protocol as well except for the following change: Unlike the simulator of [64], the
simulator of our BoBW protocol cannot halt incase a corrupt party aborts (in order to achieve
god in honest majority setting). We thereby follow the simulation strategy as described for our
5-round protocol Tyw.god.plain - The simulator proceeds to rewinds and extracts trapdoors and
inputs of corrupt parties who are alive (have not aborted upto Round 3). The halting condition
of the simulator and the security argument is similar to that of Ty god.plain. This completes the

proof sketch.
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Chapter 6

On the Round Complexity of Fair and
Robust MPC against Dynamic and

Boundary Adversaries

In this chapter, we investigate the round complexity of fair and robust (achieving god) MPC
against two powerful and generalized adversaries, namely the dynamic and boundary adver-
saries. Our results in these corruption settings overcome the demarcation of the study of round
complexity of MPC based on the adversarial behaviour (either active or passive). Specifi-
cally, we extend the study of round complexity of fair and robust MPC beyond the traditional
settings of passive majority (where majority of the parties are passively corrupt) and active
minority (where minority of the parties are actively corrupt) to include mixed adversaries who

can simultaneously perform both active and passive corruptions.

6.1 Introduction

Two of the most sought-after properties of Multi-party Computation (MPC) protocols are fn
and god, the latter also referred to as robustness. Achieving both, however, brings in the
necessary requirement of malicious-minority. In a generalised adversarial setting where the
adversary is allowed to corrupt both actively and passively, the necessary bound for a n-party
fair or robust protocol turns out to be t,+t, < n, where t,, ¢, denote the threshold for active and
passive corruption with the latter subsuming the former. Subsuming the malicious-minority
as a boundary special case, this setting, denoted as dynamic corruption, opens up a range of
possible corruption scenarios for the adversary. While dynamic corruption includes the entire

range of thresholds for (t,,1,) starting from ([5]—1, |5 ]) to (0,n—1), the boundary corruption
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restricts the adversary only to the boundary cases of ([5] — 1,[%]) and (0,n — 1). Notably,
both corruption settings empower an adversary to control majority of the parties, yet ensuring
the count on active corruption never goes beyond [§] — 1.

As detailed in Section 1.4.3 the protocols in dynamic and boundary setting offer strong
defence and are more tolerant and better-fit in practical scenarios where the attack can come
in many unforeseen ways. We target the round complexity of fair and robust MPC tolerating
dynamic and boundary adversaries. While a detailed description of our results appears in

Section 1.4.3, we present the related work and a brief summary of the results below.

Related Work. The relevant literature of round complexity of fair and robust MPC protocols
in the traditional adversarial settings involving only single type of adversary (either passive or
active) is outlined in Section 1.3. Moving on to the setting of generalized adversary, there are
primarily two adversarial models that are most relevant to us. The first model initiated by
[79] consider a mixed adversary (referred to as graceful degradation of corruptions) that can
simultaneously perform different types of corruptions. Feasibility results in this model appeared
in the works of [86, 87, 119, 22|. The dynamic-admissible adversary considered in our work is
consistent with this model since it involves simultaneous active and passive corruptions. The
second model proposed by [54] concerns protocols that are secure against an adversary that
can either choose to corrupt a subset of parties with particular corruption type (say, passively)
or alternately a different subset (typically smaller) of parties with a second corruption type
(say, actively), but only single type of corruption occurs at a time. Referred to as graceful
degradation of security [54, 152, 88, 89, 124, 134, 127], such protocols achieve different security
guarantees based on the set of corrupted parties; for instance robustness/information-theoretic
security against the smaller corruption set and abort/computational security against the larger
corruption set. We note that the boundary-admissible adversary when n is odd, involves either
purely active (since ¢, = t, holds when (¢,,t,) = ([n/2] — 1,|n/2])) corruptions or purely
passive corruptions (where (t,,t,) = (0,n — 1)); thereby fitting in the second model (Infact,
boundary-admissible adversary for odd n degenerates to the adversarial model studied in “best-
of-both-worlds” MPC [127]). However, in case of even n, the boundary-admissible adversary
with (t,,t,) = ([n/2] — 1, |n/2]) would involve simultaneous passive and active corruption
as t, = t, + 1 and fit in the prior model. Lastly, both graceful degradation of security and
corruptions were generalized in the works of [120, 122]. To the best of our knowledge, the
interesting and natural question of round complexity has not been studied in these stronger

adversarial models.
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6.1.1 Owur Results

We settle the question of exact round complexity of fair and robust MPC tolerating dynamic and
boundary adversaries in the public and private setup models. As it turns out, [%] 4 1 rounds
are necessary and sufficient for fair as well as robust MPC tolerating dynamic corruption.
The non-constant barrier raised by dynamic corruption can be sailed through for a boundary
adversary. The round complexity of 3 and 4 is necessary and sufficient for fair and GOD
protocols respectively, with the latter having an exception of allowing 3 round protocols in the
presence of a single active corruption. While all our lower bounds assume pair-wise private and
broadcast channels and are resilient to the presence of both public (CRS) and private (PKI)
setup, our upper bounds are broadcast-only and assume only public setup. The traditional and
popular setting of malicious-minority, being restricted compared to both dynamic and boundary
setting, requires 3 and 2 rounds in the presence of public and private setup respectively for
both fair as well as GOD protocols. The need for CRS in our constructions stems from the
underlying 2-round protocol achieving unanimous or identifiable abort. We leave open the

question of constructing tight upper bounds or coming up with new lower bounds in the plain

model.

Adversary ‘ Security ‘ Rounds ‘ Lower bound ‘ Upper Bound

Passive-majority fn, god |2 [112] (private) [93, 35] (plain)

. o fn, god |3 [108, 166] (public) [4, 16] (plain)

Malicious-minority ; .

fn, god | 2 [112] (private) [108] (private)

Bound fn 3 Our Work [169] (private) | Our Work [169] (public)
a

ounaaty god 4 (3 when t, < 1) | Our Work [169] (private) | Our Work [169] (public)
Dynamic fn, god | [3]+1 Our Work [169] (private) | Our Work [169] (public)

6.1.2 Techniques

In this section, we give a glimpse into the techniques used in our lower bounds and matching

upper bound constructions.

Lower Bounds. We present 3 lower bounds, all of which hold assuming access to both CRS
and PKI- (a) [n/2] + 1 rounds are necessary to achieve fairness against dynamic adversary.
(b) 4 rounds are necessary to achieve robustness against a boundary adversary. (c) 3 rounds
are necessary to achieve fairness against a boundary adversary.

The first lower bound (a) effectively captures the power of dynamic corruption stemming
from the ambiguity caused by the total range of thresholds (¢,,t,) starting from ([n/2] —
1, |n/2]) to (0,n—1). The proof navigates through this sequence starting with maximal active

corruption and proceeds to scenarios of lesser active corruptions one at a time. An inductive
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argument neatly captures how the value of ¢, growing alongside decreasing values of ¢, can be
exploited by adversarial strategies violating fairness, eventually dragging the round complexity
all the way upto [n/2] 4+ 1. The lower bounds (b) and (c) are shown by considering a specific
set of small number of parties and assume the existence of a 3 (2) round robust (fair) protocol
for contradiction respectively. Subsequently, inferences are drawn based on cleverly-designed
strategies exploiting the properties of GOD and fairness. These inferences and strategies are
interconnected in a manner that builds up to a strategy violating privacy, thereby leading to a

final contradiction.

Upper Bounds. We present 5 upper bounds, in the broadcast-only setting comprising of two
upper bounds each for fairness and GOD against dynamic and boundary adversary respectively
and lastly, an additional 3-round upper bound for GOD against the special case of single
malicious corruption by boundary adversary in order to demonstrate the circumvention of
lower bound (b). Tightness of this upper bound follows from lower bound (c) (that holds
for single malicious corruption) as GOD implies fairness. Our upper bounds can be viewed as
“compiled” protocols obtained upon plugging in any 2-round broadcast-only protocols [93, 35]
achieving unanimous abort against malicious majority. While the fair upper-bounds do not
require any additional property from the underlying 2-round protocol, our robust protocols
demand the property of identifiable abort and function-delayed property i.e the first round of
the protocol is independent of the function to be computed and the number of parties. Looking
ahead, this enables us to run many parallel instances of the round 1 in the beginning and run
the second round sequentially as and when failure happens to compute a new function (that
gets determined based on the identities of the corrupt parties). Assumption wise, all our upper
bound constructions rely on 2-round maliciously-secure oblivious transfer (OT) in common
random /reference string models. We now give a high-level overview of the specific challenges
we encounter in each of our upper bounds and the techniques we use to tackle them.

Dynamic adversary: The two upper bounds against dynamic adversary show sufficiency of
[n/2] + 1 rounds to achieve fairness and robustness against dynamic admissible adversary.
The upper bound for fairness is built upon the protocol of [122] that introduces a special-
kind of sharing, which we refer to as levelled-sharing where a value is divided into summands
(adding upto the value) and each summand is shared with varying degrees. The heart of the
protocol of [122] lies in its gradual reconstruction of the levelled-shared output (obtained by
running an MPC protocol with unanimous abort), starting with the summand corresponding
to the highest degree down to the lowest. The argument for fairness banks on the fact that
the more the adversary raises its disruptive power in an attempt to control reconstruction of

more number of summands, the more it looses its eavesdropping capability and consequently
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learns fewer number of summands by itself and vice versa. This discourages an adversary from
misbehaving as using maximal disruptive power reduces its eavesdropping capability such that
he falls short of learning the next summand in sequence without the help of honest parties.
The innovation of our fair protocol lies in delicately fixing the parameters of levelled-sharing in
a manner that optimal round complexity can be attained whilst maintaining fairness.

Next, we point that since the fair protocol consumes the optimal round complexity of
[n/2] + 1 even in the case of honest execution, the primary hurdle in our second upper bound
is to be able to carry out re-runs when an adversary disrupts computation to achieve robust-
ness without consuming extra rounds. Banking on the player-elimination technique, we use
identifiability to bar the corrupt parties disrupting computation from participating thereafter.
Having parallel execution of Round 1 of all the required re-reruns helps us get closer to the
optimal bound. While these approaches aid to a great extent, the final saviour comes in the
form of a delicate and crucial observation regarding how the thresholds of the levelled-sharing
can be manipulated carefully, accounting for the cheaters identified so far. This trick exploits
the pattern of reduced corruption scenarios obtained upon cheater identification and helps to
compensate for the rounds consumed in subprotocols that were eventually disrupted by the ad-
versary. The analysis of the round complexity of the protocol being subtle, we use an intricate
recursive argument to capture all scenarios and show that the optimal lower bound is never
exceeded. Lastly, we point that both upper bound constructions against dynamic adversary
assume equivocal non-interactive commitment (such as Pedersen commitment [175]). The GOD
upper bound additionally assumes the existence of Non-Interactive Zero-Knowledge (NIZK) in
the common random/reference string model.

Boundary adversary: The three upper bounds against boundary-admissible adversary re-
stricted to corruption scenarios either (t,,t,) = ([n/2] — 1, [n/2]) or (t,,t,) = (0,n — 1) show
that (a) 4 rounds are sufficient to achieve robustness against boundary-admissible adversary
(b) 3 rounds are sufficient to achieve robustness against special-case boundary-admissible ad-
versary when ¢, < 1 i.e adversary corrupts with parameters either (¢,,t,) = (1, |n/2]) or
(ta,tp,) = (0,mn — 1) (c) 3 rounds are sufficient to achieve fairness against boundary-admissible
adversary. At a high-level, all the three upper bounds begin with a 2-round protocol secure
against malicious majority that computes threshold sharing of the output. Intuitively, this
seems to serve as the only available option as protocols customized for malicious minority typ-
ically breach privacy when views of majority of the parties are combined (thereby will break
down against ¢, < n semi-honest corruptions). On the flip side, protocols customized for exclu-
sively passive majority may violate correctness/privacy in the presence of even single malicious

corruption. Subsequently, this natural route bifurcates into two scenarios based on whether
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the adversary allows the computation of the threshold sharing of output to succeed or not. In
case of success, all the three upper bounds proceed via the common route of reconstruction
which is guaranteed to be robust by the property of threshold sharing. The distinctness of
the 3 settings (accordingly the upper bounds) crops up in the alternate scenario i.e. when the
computation of threshold sharing of output aborts. While in upper bound (c), parties simply
terminate with | maintaining fairness enabled by privacy of the threshold sharing; the upper
bounds (a) and (b) demanding stronger guarantee of robustness cannot afford to do so. These
two upper bounds exploit the fact that the corruption scenario has now been identified to be
the boundary case having active corruptions, thereby protocols tolerating malicious minority
can now be executed. While the above outline is inspired by the work of [127], we point that
we need to tackle the exact corruption scenarios as that of the protocols of [127] only when n is
odd. On the other hand when n is even, the extreme case for active corruption accommodates
an additional passive corruption (¢, = ¢, + 1). Apart from hitting the optimal round complex-
ity, tackling the distinct boundary cases for odd and even n in a unified way brings challenge
for our protocol. To overcome these challenges, in addition to techniques of identification and
elimination of corrupt parties who disrupt computation, we employ tricks such as parallelizing
without compromising on security to achieve the optimum round complexity. Assumption wise,
while both the robust constructions (a) and (b) rely on NIZKs, the former additionally assumes
Zaps (2-round, public-coin witness-indistinguishable protocols) and public-key encryption.
Lastly, we present the model and useful definitions below before proceeding to the technical

sections.

Model and Definitions. We consider a set of PPT parties P = {P;,... P,}. Our upper
bounds assume the parties connected by a broadcast channel and a setup where parties have
access to common reference string (CRS). Our lower bounds hold even when the parties are
additionally connected by pairwise-secure and authentic channels and for a stronger setup,
namely assuming access to CRS as well as public-key infrastructure (PKI). We assume that
there exists a PPT adversary A, who can corrupt a subset of these parties.

We consider two kinds of adversarial settings in this work. In both settings, the A is
characterised by two thresholds (¢,,?,), where he may corrupt upto ¢, parties passively, and
upto t, of these parties even actively. Note that ¢, is the total number of passive corruptions
that includes the active corruptions and additional parties that are exclusively passively corrupt.

We now define dynamic and boundary admissible adversaries.

Definition 6.1 (Dynamic-admissible Adversary) An adversary attacking an n-party MPC
protocol with threshold (t,,t,) is called dynamic-admissible as long as t, +t, < n and t, <t,.
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For dynamic-admissible adversary, we denote the set of active and passively corrupt parties

by D and & respectively, where |D| =t, and [E] =1, .

Definition 6.2 (Boundary-admissible Adversary) An adversary attacking an n-party MPC

protocol with threshold (t,,t,) is called boundary-admissible as long as he corrupts either with
parameters (a) (ta,t,) = ([5] —1,[n/2]) or (b) (ta,t,) = (0,n —1).

In our work, we also consider a special-case of boundary adversary with ¢, < 1 where the

adversary corrupts either with parameters (t,,t,) = (1, [n/2]) or (¢4,t,) = (0,n — 1).

Roadmap. Our lower and upper bounds for dynamic and boundary corruption appear in Sec-
tions 6.2-6.3 and in Sections 6.4-6.5 respectively. The security definition and the functionalities

appear in Chapter 2.

6.2 Lower Bounds for Dynamic Corruption

In this section, we show that [ ]41 rounds are necessary to achieve MPC with fairness against a
dynamic-admissible A with threshold (¢,,,). This result shows impossibility of constant-round

fair and robust protocols in the setting of dynamic corruption.

Theorem 6.1 No [%]-round n-party MPC protocol can achieve fairness tolerating a dynamic-
admissible adversary A with threshold (t,,t,) in a setting with pairwise-private and broadcast
channels, and a setup that includes CRS and PKI.

Proof: We prove the theorem by contradiction. Suppose there exists a [#]-round n-party
MPC protocol m computing any function f(z;...z,) (where x; denotes the input of party
P;) that achieves fairness against a dynamic-admissible A with corruption threshold (¢,,t,)
and in the presence of a setup with CRS and PKI. At a high-level, our proof argument
defines a sequence of hybrid executions of 7, navigating through all the possible admissible
corruption scenarios assuming t, + ¢, = n — 1 and starting with the maximum admissible
value of t, = [n/2] — 1. Our first hybrid under the spell of a dynamic-admissible adversary,
corrupting [n/2] — 1 parties actively and stopping their communication in the last round, lets
us conclude that the joint view of the honest and passively-corrupted parties by the end of
penultimate round must hold the output in order for 7 to satisfy fairness. If not, while ceasing
communication in the last round does not prevent A from getting all the messages in the last
round and thereby the output, the honest parties do fail to compute the output due to the non-
cooperation of t, parties, violating fairness. The views of the passively corrupt parties need to

be taken into account as they follow protocol steps correctly and assist in output computation.
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Leveraging the fact that drop of ¢, leads to rise of ¢,, we then propose a new hybrid where
t, is demoted by 1 and consequently ¢, grows big enough to subsume the list of honest and
passive-corruption from the previous hybrid. As the view of the adversary in this hybrid holds
the output by the end of penultimate round itself, its actively-corrupt parties need not speak
in the penultimate round. Now fairness in the face of current strategy of the actively-corrupted
parties needs the joint view of the honest and passively-corrupted parties by the end of [n/2]—2
round to hold the output. This continues with the set of honest and passively-corrupted parties
growing by size one between every two hybrids. Propagating this pattern to the earlier rounds
eventually lets us conclude that an adversary with threshold (¢,,t,) = (0,n — 1) (no active
corruption case) can obtain the output at the end of Round 1 itself. This leads us to a final
strategy that violates privacy of 7 via residual attack. This completes the proof sketch. We

now prove the sequence of lemmas to complete the proof.

Lemma 6.1 In an execution of m where all parties behave honestly upto (and including) Round
([%] —1) fori e [[3] — 1], there exists a set of parties S with size (%] + i) whose combined

view at the end of Round [ —1i suffices to compute the output, with overwhelming probability.

Proof: We prove the lemma by induction. Let P = {P;, P, ..., P,} denote the set of parties
and D(E) denote the set of actively (passively) corrupt parties where D C €. Here |D| = ¢,
and |E| =t,.

Base Case (i = 1): We consider an execution of the protocol 7 with a dynamic-admissible
adversary A corrupting parties with threshold (t,,t,) = ([5] — 1,[n/2]) and an adversarial
strategy A, as follows. The set of actively corrupt parties D behave honestly upto (and in-
cluding) Round [%] — 1 and simply remain silent in the last round i.e the [%]th round. Since
A receives all the desired communication throughout the protocol, it follows directly from the
correctness of 7w that A must be able to compute the output with overwhelming probability.
Since 7 is assumed to be fair, the honest parties must also be able to compute the output
even without the [§]th round communication from parties in D. We can now conclude that
the combined view of parties in P\ D at the end of Round [§] — 1 must suffice to compute
the output. Thus, the set S = P\ D of parties with size n —t, =n — ([2] —1) = [%] + 1
hold a combined view at the end of Round [%] — 1 that suffices to compute the output with

overwhelming probability. This completes the base case.

Induction Hypothesis (i = ¢). Suppose the statement is true for i = ¢ i.e. if all parties
behave honestly upto (and including) Round ([5] — £), then there exists a set of parties, say
St with [SY| = (|2] + ¢) whose combined view at the end of ([2] — ¢)th round, suffices to

compute the output, with overwhelming probability.
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Induction Step (i = ¢+ 1). We consider an execution of the protocol 7 with a dynamic-
admissible adversary A corrupting parties with threshold (¢,,t,) = ([5] — € —1,[5] +£) and
& = S as defined in the induction hypothesis and an adversarial strategy A, as follows. The
set of actively corrupt parties D behave honestly upto (and including) Round ([§] — ¢ — 1)
and simply remain silent from Round ([5] — ¢) onwards. Since A receives all the desired
communication upto (and including) Round ([§] — ) of 7 (as per an honest execution) on
behalf of parties in &, it follows directly from the induction hypothesis that the combined view
of the parties in € where |E| = [ %] + ¢ must suffice to compute the output, with overwhelming
probability. Since 7 is assumed to be fair, the honest parties must also be able to compute the
output even though the parties in D stop communicating from Round ([§] — ¢) onwards. We
can now conclude that the combined view of parties in P\ D at the end of Round ([§] —£—1)
must suffice to compute the output. Thus, the set S = P\ D of parties with size n — t, =
n—([5]—¢—1)=[%] +£+1 hold a combined view at the end of Round ([5]| — ¢ — 1) that
suffices to compute the output with overwhelming probability. This completes the induction

hypothesis and the proof of Lemma 6.1. O

Lemma 6.2 There exists an adversary A that is able to compute the output at the end of

Round 1 of m with overwhelming probability.

Proof: When i = [§] —1, Lemma 6.1 implies that if all parties behave honestly in Round 1,
then there exists a set ST2171 of (| 2] +[2]—1) = (|2]+[2]—1) = n—1 parties whose combined
view suffices to compute the output at the end of Round 1, with overwhelming probability.
Consequently, a dynamic-admissible adversary A corrupting the parties with threshold (¢,,,) =
(0,n—1) and (D = 0, & = ST2171) must be able to compute the output at the end of Round 1
itself. a

Lemma 6.3 Protocol m does not achieve privacy.

Proof: It follows directly from Lemma 6.2 that there exists an adversary A with threshold
(ta,tp,) = (0,n — 1) corrupting a set of (n — 1) parties passively, say € = {P;,... P,_1}, that is
able to compute the output at the end of Round 1 itself, with overwhelming probability. Thus,
A can obtain multiple evaluations of the function f by locally plugging in different values for
{z1,..., 2,1} while honest P,’s input z,, remains fixed. This residual function attack violates
privacy of P,. As a concrete example, let f be a common output function computing x; A x,,
where z; (i € {1,n}) denotes a single bit. During the execution of 7, A behaves honestly with
input x; = 0 on behalf of P,. However, the passively-corrupt P; can locally plug-in x; = 1

and learn x,, (via the output x; A x,,). This is a clear breach of privacy, as in the ideal world,
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A participating honestly with input x; = 0 on behalf of P, would learn nothing about z,; in
contrast to the execution of m where A learns z,, regardless of his input. This completes the
proof. a
We have thus arrived at a contradiction to our assumption that m securely computes f and
achieves fairness. This completes the proof of Theorem 6.1.
O
For better understanding, we illustrate the adversarial strategies and implications derived
with respect to the specific case of n = 7 and 4-round ([n/2] = 4) protocol 7 in the Table
below. The last column (S, 7) indicates the implication that the combined view of parties in S

(= P\ D) at the end of Round number r suffices to compute the output.

(ta,tp) | D & Strategy of A S,r

(3.3) | {P1, P, B3} | (P, Po, P} Stop D after R3 S'={Py, Ps, B, P}, R3

(2,4) | {Ps. P} | {Py Py, Py, Py} (ie SV Stop D after R2 S2 =[P, P,, Py, P, 5}, R2
(1,5) | {P} {Py, Py, P3, Py, P5} (i.e S?) Stop D after R1 S3 ={Py, P5, P, Ps, Ps, P}, R1
0,6) |0 {Py, P, Py, Ps, Ps, P} (i.e S3) | Residual attack wrt € -

6.3 Upper bounds for Dynamic Corruption

In this section, we describe two n-party upper bounds tolerating a dynamic-admissible adversary
A with threshold (¢,,t,). The first upper bound achieves fairness and is a stepping stone to
the construction of the second upper bound that achieves guaranteed output delivery. Both
the upper bounds comprise of [n/2] + 1 rounds in the presence of CRS, tightly matching our
lower bound result of Section 6.2. We start with an important building block needed for both
the fair and GOD protocols.

6.3.1 Levelled-sharing of a secret

Our protocols in the dynamic corruption setting involve a special kind of sharing referred as
levelled sharing, which is inspired by and a generalized variant of the sharing defined in [122].
The sharing is parameterized with two thresholds, a and g with a > 3, that dictate the number
of levels as o — B + 1. To share a secret in («, 5)-levelled-shared fashion, o — 8 + 1 additive
shares (levels) of the secret, indexed from « to 3 are created and each additive share is then
Shamir-shared [180] using polynomial of degree that is same as its assigned index. Further
each Shamir-sharing is authenticated using a non-interactive commitment scheme, to ensure
detectably correct reconstruction. For technical reasons in the simulation-based security proof,

we need an instantiation of commitment scheme that allows equivocation of commitment to any
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message with the help of trapdoor and provides statistical hiding and computational binding.
Denoting such a commitment scheme by eNICOM (Equivocal Non-Interactive Commitment),
we present both the formal definition and an instantiation based on Pedersen’s commitment
scheme [175] in Section 2.4.2.1. While the sharing will involve the entire population P in our
fair protocol, it may be restricted to many different subsets of P, each time after curtailing

identified actively corrupt parties. The definition therefore is formalized with respect to a set
QC?.

Definition 6.3 ((«, 3)-levelled sharing) A value v is said to be («, 3)-levelled-shared with
a > [ amongst a set of parties Q C P if every honest or passively corrupt party P; in Q holds
L; as produced by ffsf(v) giwen in Figure 6.1.

/—‘ Function ff‘s’ﬁ ~

1. Choose uniformly random summands s4, 541, - .. 53 with Z?:,B 5j =0

2. For j € [a, ], do the following;:

- Choose a random polynomial g;(z) of degree j with g;(0) = s;.

- Sample the public parameter for eNICOM (Section 2.4.2.1) as (epp,t) < eGen(1%). For each

share s, = g;(k), run (¢, 0ji) < eCom(epp, sji; i) (Pr € Q) where rj;, denotes randomness.

3. Set L; = ({Sjiaoji}je[a,ﬁ}v {Cjk}je[a,ﬂ],PkeQ) for P; € Q.

Figure 6.1: Function ffls’ff for computing (a, §)-levelled sharing

In our protocols the function ffsﬁ will be realized via an MPC protocol, whereas, given
the (o, §)-levelled-sharing, we will use a levelled-reconstruction protocol LRec™”() that enforce
reconstruction of the summands one at a time starting with s,. This levelled reconstruction
ensures a remarkable property tolerating any dynamic-admissible adversary— if the adversary
can disrupt reconstruction of s;, then it cannot learn s;_; using its eavesdropping power. This
property is instrumental in achieving fairness against the strong dynamic-admissible adversary.
The protocol is presented in Figure 6.2. Its properties and round complexity are stated below.
Note that starting with the feasibility condition t, + ¢, < n = |P|, expelling a set of actively
corrupt parties, say B, makes the following impact on t¢,,t, and P: t, =t, —|B|, t, =1, — |B|
and P = P\ B. Consequently, the updated t,,t, and P continue to satisfy ¢, +1t, < |P|. Below,
we will therefore use the fact that ¢, + ¢, < |Q|, where Q denotes the relevant set of parties (i.e

the set of parties remaining after possibly expelling a set of identified actively corrupt parties).
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—[ Protocol LReca’ﬁ}

Inputs: Each P; (P; € Q) has input L; = ({sji, 0ji }je[a,8) {5k }jela, ], Peca) -
Output: Secret v or L with set B constituting indices of the identified actively corrupt parties.
- For j = a down to 3, P; does the following round-by-round:

- Broadcasts (s;;,05;) and receive (sj,05;) from all P, € Q where k # i.
- Initialize Z; = i and populate Z; in order to compute s; as follows:

- For each k # i, if commitment c;; opens to sj; via opening o,i, then add k to Z;.

- If |Z;] > j+1, interpolate a j-degree polynomial g;(x) satisfying g;(k) = s, for k € Z;
and compute s; = g;(0). Else output L, set B =Q\ Z; and terminate.

- Output v = s, + ... s3.

Figure 6.2: Protocol LRec®”

Lemma 6.4 LRec™” satisfies the following properties—

i. Correctness. Each honest P; participating in LRec®™” with input L; as generated by ffs’f(v),
outputs either v or L except with negligible probability.

ii. Fault-Identification. If an adversary disrupts the reconstruction of s;, then |B| > |Q| —j.
iii. Fairness. If an adversary disrupts the reconstruction of s;, then it does not learn s;_;.
iv. Round Complexity. [t terminates within o — 4+ 1 rounds.

Proof:

i. Consider an honest P; participating with input L; = ({sji, 0ji }jela,8> {Cjk}je[a7ﬁ]7pkeg). We
observe P; outputs v’ # {v, L} only if at least one of the summands, say s;(j € [«, 3]) is
incorrectly set. This can happen only if F; adds at least one index %k to Z; such that P
sends an incorrect share s, # sj,. This occurs when (s, 0};) received from Py is such
that c;x opens to s via of; but s’ # sj. It now follows directly from the binding of

eNICOM that this violation occurs with negligible probability. This completes the proof.

ii. Firstly, it follows from the property of Shamir-secret sharing and binding property of eNI-
COM that reconstruction of s; would fail only if |Z;| < j. Next, note that as per the

steps in Figure 6.2, each honest P; would output B = Q \ Z; if reconstruction of s; fails.
We can thus conclude that |B| = |Q| —|Z;| > |Q| — j.
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ili. To prove fairness, we first prove that if an adversary can disrupt the reconstruction of s;,
then it cannot learn s;_; using its eavesdropping power. Since as per the protocol, the
honest parties do not participate in the reconstruction of s;_; when they fail to reconstruct
sj, the security of s;_; follows from the information-theoretic security of Shamir-sharing
and the statistical security (hiding) of eNICOM.

An adversary can disrupt reconstruction of s; only if |Z;| < j. It is easy to check that Z;
would constitute the non-actively corrupt parties (honest and purely passive parties) i.e
Q\ € Z,. Thus, |Q\| = 9| —t, < |Z;| < j. Lastly, to maintain ¢, +t, < |Q|, it must hold
that t, < |Q] —t, —1 < j — 1. Thus, the adversary corrupting ¢, < j — 1 parties cannot

learn s;_; using its eavesdropping power.

iv. The proof of the round complexity is straightforward. LRec®” involves reconstruction of

summands s, down to sg, each of which consumes one round; totalling upto oo — 5 + 1.

O

6.3.2 Upper bound for Fair MPC

The key insight for this protocol comes from [122] that builds on an MPC protocol with abort
security to compute the function output in (n — 1, 1)-levelled-sharing form, followed by levelled-
reconstruction to tackle dynamic corruption. Fairness is brought to the system by relying on
the fairness of the levelled-reconstruction. In particular, the adversary is disabled to reconstruct
(¢ — 1)th summand, as a punitive action, when it disrupts reconstruction of the 7th summand
for the honest parties. In the marginal case, if the adversary disrupts the MPC protocol for
computing the levelled-sharing and does not let the honest parties get their output, we disable
it to reconstruct the (n — 1)th summand itself.

In a (a, B)-levelled-reconstruction, the parameters a and S dictate the round complexity.
The closer they are the better round complexity we obtain. The o and § in [122] are n—2 apart,
shooting the round complexity of reconstruction to n — 1. We depart from the construction of
[122] in two ways to build a ([%] + 1)-round fair protocol. Firstly and prominently, we bring a
and 8 much closer, cutting down |7 | summands from the levelled-secret sharing and bringing
down the number of levels to just n — 1 — [§] from n — 1 of [122]. Second, we plug in the
round-optimal (2-round) MPC protocol of [93, 35] achieving unanimous abort against malicious
majority in the CRS model for computing the levelled-sharing of the output, making overall a
([5]+ 1)-round fair protocol. We discuss the first departure in detail below.

Our innovation lies in fixing the best values of o and § without flouting fairness. The value

of a and (3, in essence determines the indispensable summands that we cannot do without.
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Every possible non-zero threshold for active corruption maps to a crucial summand that the
adversary using its corresponding admissible passive threshold cannot learn by itself, whilst
the pool of non-disruptive set of parties, i.e. the set of honest and passive parties, can. This
unique summand, being the ‘soft spot’ for the adversary, forces him to cooperate until the
reconstruction of the immediate previous summand. As soon as the adversary does so, the
honest parties turn self-reliant to compute the output, upholding fairness. We care only about
the non-zero possibilities for the threshold of active corruption, as an all-passive adversary
holds no power at its disposal to disrupt, leading to robust output reconstruction by all. For
the minimum non-zero value of 1 active corruption, the unique summand is s,_» that the
adversary cannot learn using its admissible eavesdropping capacity of n — 2, yet the set of non-
disruptive parties, which is of size n — 1, can. On the other extreme, for the maximum value
of [§] — 1, the unique summand is s|z) that the adversary cannot learn using its admissible
eavesdropping capacity of | %], yet the set of non-disruptive parties, which is of size |5 | + 1,
can. This sets the values of a and  as n—2 and | 5] respectively, making the number of crucial
summands only [5] — 1. The distance between these two parameters also captures the number
of possible corruption scenarios with non-zero active corruption.

In the table below, we display for each admissible adversarial corruption (this set subsumes
the crucial summands that we retain), whether the adversary and the set of non-disruptive
parties respectively by themselves, can learn the summand, using its maximum eavesdropping
capability and putting together their shares respectively. The pattern clearly displays the fol-
lowing feature: irrespective of the corruption scenario that the adversary follows, its maximum
power to disrupt and eavesdrop remains one summand apart i.e. if it can disrupt ¢th summand
with its maximum disruptive capability (and fall short of its power for failing the (i — 1)th
one), then its maximum eavesdropping capability does not allow it to learn (i — 1)th summand
by itself. Our fair protocol any " tolerating dynamic corruption appears in Figure 6.3. Assump-
tion wise, W?nyn relies on 2-round maliciously-secure OT in the common random/reference string
model (when myapert is instantiated with protocols of [93, 35]) and eNICOM (used in LRec™”()

and instantiated using Pedersen commitment scheme).

Table 6.1: Levelled-reconstruction where (¢ = Y/N,b = Y/N) under s; indicates if A and non-
active parties respectively can reconstruct s; or not (Y = Yes, N = No)
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(te =D, t, = 1€]) | [P\ D| Sp—2 | Sn—3 | Sp—4a Sp—i—1 S|n/2)+1 | Sin/2]
(0,n—1) n (Y,Y) | (Y,Y) | (Y,Y) | ... |... (YY) (Y,Y)
(1,n—2) n—1 NY) | (,Y) [ (,Y) | ... | ... YY) (Y,Y)
(2,n—3) n—2 (N,N) | (N, Y) | (YY) | ... |... (YY) (Y,Y)
(t,n—i—1) n—i (N,N) | (N,N) | (N,N) | ... | (N,Y) || (YY) (Y,Y)
([n/2] —1,|n/2]) | |[n/2]+1] (N,N) | (N,N) | (N,N) | ... |... coe | (NN) (N,Y)

—[ Protocol wfny"}

Inputs: Party P; has z; for j € [n]

Building blocks: (a) Protocol myaport achieving security with unanimous abort (realizing function-
ality F,, (Figure 2.2)) against malicious majority; (b) Protocol LRec®? for reconstructing a
(o, B)-levelled-shared value (Figure 6.2); (c) Function flils_hlbJ (Figure 6.1).

Output: y = f(z1...2,) or L

L3

. -2, . .
Round 1 — 2: Every P; runs protocol myaport to compute the function fCSh : ¢ f with input x;

to obtain L; as the output. If L; = L, it outputs L and halts.

Round 3 — ([n/2] +1): Each P; participates in LRec" %) with input L; and outputs the out-

come of LRec" %151,

Figure 6.3: Fair MPC against dynamic-admissible adversary

We state the formal theorem below.

Theorem 6.2 Assuming the presence of a 2-round MPC protocol myaporr Tealizing F,a (Fig-

ure 2.2) against malicious-majority, protocol ﬂ?ny " with n parties satisfies —
— Clorrectness: computes the correct output.
— Security: realizes Feyie (Figure 2.3) against a dynamic-admissible A with threshold (t,,t,).
— Round complexity: runs in [n/2] + 1 rounds.

Proof: Correctness of W?ny

" follows directly from correctness of Tyaport and LRec" %lz! (Lemma
6.4). The security proof appears in Section 6.6.1.2. Round complexity of w?ny " includes 2 rounds
of Tuppor and the round complexity of LRec" %L3) which is (n —-2—[3]+ 1) = [n/2] — 1

(Lemma 6.4); totalling upto [n/2] + 1 rounds. O
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6.3.3 Upper Bound for GOD MPC

At a broad level, robustness is achieved by rerunning our fair protocol as soon as failure occurs
which can surface either in the underlying MPC or during reconstruction of any of the summands
of the output. Taking inspiration from the player-elimination framework [118, 116], we maintain
a history of deviating/disruptive behaviour across the runs and bar the identified parties from
further participating. Such a paradigm calls for sequential runs and brings great challenge when
round complexity is the concern. We hit the optimal round complexity banking on several ideas
and interesting observations. First, we turn the underlying MPC protocol for computing (a, 3)-
levelled-sharing of the output to achieve identifiability so that any disruptive behaviour can be
brought to notice. Slapping NIZK on the 2-round broadcast-only construction of [93] readily
equips it with identifiability, without inflating the round complexity. Second, we leverage the
function-delayed property of a modified variant of the protocol of [93] (proposed by [4]) where
the first round messages are made independent of the function to be computed and the number
of parties. This enables us to run many parallel instances (specifically [n/2]) of the round 1 in
the beginning and run the second round sequentially as and when failure happens to compute
a new function each time as follows— (a) it hard-cores default input for the parties detected
to be disruptive so far and (b) the output now is levelled-shared with new thresholds « and
each of which are smaller than the previous run by a function of the number of fresh catch, say
0. The latter brings the most crucial impact on the round complexity. Recall that the distance
between a and § that impacts the round complexity, is directly coupled with the number of
possible corruption scenarios with non-zero active corruption. Starting with the initial value
of [§] — 1, each catch by § reduces the number of possible corruption scenarios (with non-zero
active corruption) and the distance between o and 3 by ¢.

In the protocol, we maintain a number of dynamic variables which are updated during the
run— (a) £: the set of parties not identified to be actively corrupt and thus referred as alive;
this set is initialized to P; (b) C: the set of parties identified as actively corrupt; this set

n

initialized to (); (c) n: the parameter that dictates the number of corruption scenarios as [3]

and the possible corruption cases as {(0,n —1),...,([n/2] — 1, [n/2])}; this is initialized to n

that dictates the initial number of corruption cases as [%] and the possible corruption cases as
{(0,n—=1),...,([n/2] — 1, |n/2])}. After every failure and a fresh catch of a set B of active
corruptions, the sets £, € and n are updated as L = L\ B, €= CU B and n = n — 2|B|. The
reduction of n by 2|B| denotes counting the reduction for active as well as passive corruptions.
For every value of n, the formula for the total number of corruption scenarios, the values for

(cr, B) (that speaks about the indispensable summands as discussed in the fair protocol) and
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the number of corruption scenarios with non-zero active corruption (which denotes the distance
between («, #)) remain the same— namely [5], (n—2, [n/2]) and [§] —1. In the marginal case,
n becomes either 1 or 2, the former when n is odd and all active corruptions are exposed
making (t,,t,) = (0,0) and the latter when n is even and (t,,t,) = (0,1). With no active
corruption in £, the Round 2 of the MPC can be run to compute the output itself (instead of
its levelled-sharing) robustly in both the marginal cases.

As the protocol follows an inductive behaviour based on n, to enable better understanding,
we present below a snapshot of how the corruption scenarios shrinks after every catch of o
active corruption. The first column indicates a set of possible corruption scenarios, with (4, 1,)
varying from (0,n — 1) to ([n/2] — 1, |n/2]). If 0 cheaters are identified, the first 0 rows can
simply be discarded as it is established that t, > §. The number of feasible corruptions is thus
slashed by 6. Next, these ¢ identified cheaters are eliminated, which reduces each (t,,1,) of the
rows that sustained (¢, = 6 onwards) by d as shown by column 2. Finally, the column 3 displays
column 2 with n updated as n — 20. The formal description of the protocol Wé‘SD appears in
Figure 6.4. Assumption wise, WgyO"D relies on 2-round maliciously-secure OT in the common
random /reference string model, NIZK (when 74y, is instantiated with function-delayed variant
of the protocol of [93] satisfying identifiability) and eNICOM (used in LRec®”() and instantiated

using Pedersen commitment scheme).

(tasty) (tarty) (tarty)

after 0 cheater identification | after updating n =n — 26
(0,n—1) - -
(I,n—2) - -
(on—06—1) 0,n—2—1) (0,n—1)
0+1,n—=6-2) | (Ln—2—-2) (IL,n—2)

(In/2] =1, [n/2]) | (In/2] =1 =6, [n/2] = 0) | ([n/2] —1,[n/2])

—[ Protocol wgygD}

Inputs: Party P, has z; for ¢ € [n]

Building blocks: (a) Protocol gy, achieving unanimous abort with identifiability (i.e. realizing
functionality Fiq,a, refer Figure 2.5) against malicious majority and having function-delayed
property; (b) Protocol LRec®” for reconstructing a («, 3)-levelled-shared value (Figure 6.2);
(c) Function fl‘_)‘s’ﬁ (Figure 6.1).

Output: y= f(z1...2,)
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Step 1: P; runs [n/2]| parallel instances of Round 1 of migua, each using input z; and independent
randomness. Note that this round is independent of the function to be computed and number

of parties. Initialize k = 1.

Step 2: Initialize, L = P, € = 0, n = n. Let f° denote the function that is same as f except that

the inputs of parties in € are hardcoded with default inputs. P; executes the following steps:

2.1 If n = 1,2, then run Round 2 of 74y, (considering kth instance of Round 1) among parties
in £ using input z; to compute f© and output the output of miq,s and terminate. (This
corresponds to the case of no active corruptions.)

2.2 Run Round 2 of 7y, (considering kth instance of Round 1) among parties in £ using
input x; to compute f:s_hQ’L%J o f© and obtain L;. If L; = L and B is set of parties
identified to be corrupt, update € = CUB, L =L\ B, n=n—-2|B|, k =k + 1 and
repeat this step using updated value of n. Otherwise, participate in LRec" 2l3) with
input L;. If (L, B) is the output, then update £,C,n, k as above and repeat this step

using updated value of n. Otherwise, output the output of LRec" %12} and terminate.

Figure 6.4: Robust MPC against dynamic-admissible adversary
We now analyze the round-complexity and security of ngD below.
Lemma 6.5 Wg’gD terminates in [n/2] + 1 rounds.

Proof: Consider an execution of 7oy (initialized with n = n). The outline of the proof is
as follows: We give an inductive argument to prove the following - ‘If Step 2 is executed with
parameter n, then Step 2 terminates within [3] rounds’. Assuming this claim holds, it follows
directly that during the execution with n = n, Step 2 would terminate within [§] rounds;
thereby implying that the round complexity of WgyO"D is atmost [5] 41 (adding the round for

Step 1). We now prove the above claim by strong induction on n > 1.

Base Case (n = 1,2): It follows directly from description in Figure 6.4 that Step 2 terminates
in [n/2] =1 round when n =1, 2.

Induction Hypothesis (n < /¢): Assume Step 2 terminates in [n/2] rounds for n < /.
Induction step (n=/¢+1): Consider an execution of Step 2 with parameter n = ¢+ 1. We
analyze the following 3 exhaustive scenarios - (1) Suppose neither mg,, nor LRec" 213! fails. (2)
Suppose Tigua aborts. (3) Suppose mgya does not abort but LRec" >!2) fails. We show that in

each of them, Step 2 terminates within [n/2] = [“1] rounds; thereby completing the induction

step.
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- Suppose neither mg,, nor LRec" *!2] fails. Then Step 2 involves following number of rounds—
1 (for Round 2 of 7gya) + number of rounds in LRec" 2Lz e m—2—|5]+1)=[5]=
[(¢+1)/2] in total.

- Suppose Tigua aborts. Then B must comprise of at least one active party, implying that § > 1,
where § = |B| and subsequently n is updated ton = (n—20) < ({+1—-2) = ({ —1).
Note that Step 2 now involves following number of rounds— 1 (for Round 2 of migya,)
+ number of rounds in which Step 2 terminates when re-run with updated parameter
n i.e [n/2] by induction hypothesis. Thus, the total number of rounds in Step 2 is
(14 [n/2]) < (L4 [5) = [42].

- Suppose Tigua does not abort but reconstruction LRec" L2} fajls. Say adversary disrupts
reconstruction of summand s,_, in Round r of Step 2 (Round r — 1 of LRec" %["/2)),
where r € [2,[n/2]]. It follows from fault identification property of Lemma 6.4 that
|B| > |L] — (n—7r) > r (since |£| > n always holds). Consequently, § = |B| > r and
updated parameter n = n — 26 < £+ 1 — 2r. We now analyze the round complexity.
Note that Step 2 involves following number of rounds— r (Reconstruction failed in Round
r > 2 of Step 2 run with n = £+ 1) + number of rounds in which Step 2 terminates when
re-run with updated parameter n i.e [n/2] by induction hypothesis. Thus total number

of rounds in Step 2 is (r + [n/2]) < (r + [E22]) = [41].

We point that induction hypothesis for n = n — 26 with § > 1 can be applied as n > 1 holds
always in 7285 due to the following: the maximal value of § is [n/2] — 1 i.e the maximum

possible number of actively corrupt parties. This completes the proof. O

Theorem 6.3 Assuming the presence of a 2-round protocol Tiqua Tealizing functionality Fiqua
(Figure 2.5) against malicious magjority and having function-delayed property; protocol Wg{)"D

with n parties satisfies—
— Correctness: computes the correct output.
— Security: realizes Fgoq (Figure 2.4) against a dynamic-admissible A with threshold (t,,t,).

— Round complexity: runs in [n/2] + 1 rounds.

Proof:  Correctness of ngo follows directly from correctness of 74, and correctness of
LRec" 2Lz! (Lemma 6.4). The formal security proof appears in Section 6.6.2. Round com-

plexity follows from Lemma 6.5. a
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6.4 Lower Bounds for Boundary Corruption

In this section, we present two lower bounds for MPC protocol tolerating boundary-admissible
adversaries and in the presence of CRS and PKI setup. Recall that such an adversary is
restricted to corruption scenarios either (t,,t,) = ([n/2] —1,[n/2]) or (t,,t,) = (0,n — 1).
We show that three and four rounds are necessary to achieve fairness and GOD respectively
against a boundary-admissible adversary. It is to be noted that GOD is the de facto notion

achieved in the pure passive corruption setting of (¢,,t,) = (0,n — 1).

6.4.1 Impossibility of 3-round Robust MPC

In this section, we show that it is impossible to design a 3-round robust MPC protocol against
boundary-admissible adversary with threshold (%,,¢,) assuming both CRS and PKI. Notably,
this lower bound is indeed surprising as the individual security guarantees translate to GOD
against malicious-minority [108] and passive-majority [93, 35] for odd n (as t, = t, wrt (¢,,t,) =
([n/2] —1,|n/2])), both of which are known to be attainable in just 2 rounds in the presence
of CRS and PKI. Furthermore, it turns out interestingly that this lower bound does not hold
against a boundary-admissble adversary with ¢, < 1 (i.e boundary adversary corrupting with
either (t,,t,) = (1, [n/2]) or (t4,ty) = (0,n—1)), and can be circumvented for this special case.
In fact, we demonstrate a 3-round robust protocol in Section 6.5.3, against this special-case

boundary-admissible adversary.

Theorem 6.4 Assume parties have access to pairwise-private and broadcast channels, and a
setup that includes CRS and PKI. Then, there exist functions f for which there is no 3-round
protocol computing f that achieves guaranteed output delivery against boundary-admissible ad-

versary.

Proof: We prove the theorem for n = 5 parties. Let P = { Py, ... Ps} denote the set of parties,
where the adversary A may corrupt either with parametes (t,,t,) = (2,2) or (¢4, t,) = (0,4).
Here, the corruption scenarios translate to upto 2 active corruptions or upto 4 pure passive
corruptions. We prove the theorem by contradiction. Suppose there exists a 3-round protocol 7
computing a common output function f that achieves GOD against such a boundary-admissible
adversary.

At a high level, we discuss three adversarial strategies Aq, Ay and Az, where A; is launched
in an execution Y; of protocol . While Ay, A, involve the case of active corruption of { P, } and
{Py, P,} respectively, Az deals with the strategy of pure passive corruption of { Py, P3, Py, Ps}.

The executions are assumed to be run for the same input tuple (x1, xo, T3, 4, z5) and the same
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random inputs (ry,re, r3,74,75) of the parties. Let z; denote the default input of P,. (Same
random inputs are considered for simplicity and without loss of generality. The same arguments
hold for distribution ensembles as well.) First, when A; is launched in ¥; we conclude that
the output y at the end of the execution should be based on default input of P, and actual
inputs of the remaining parties i.e y = f(z7, x2, 3, T4, x5). Next, strategy Yo involving actively
corrupt { Py, P,} is designed such that corrupt P, obtains the same view in Y5 as an honest Py
in 3; and therefore computes the output y at the end of ¥y. (Here, view of P; includes x;, r,
the messages received during 7 and the knowledge related to CRS and PKI setup.) Lastly,
a carefully designed strategy Az by semi-honest parties {Pi, Ps, Py, Ps} allows A to obtain
y = f(z1, %9, 73,4, T5), in addition to the correct output i.e y = f(x1,xq, x3, T4, v5) at the end
of execution 3. This is a contradiction as it violates the security of m and can explicitly breach
the privacy of honest P,. This completes the proof overview.

We assume that the communication done in Round 2 and Round 3 of 7 is via broadcast
alone. This holds without loss of generality since the parties can engage in point-to-point
communication by exchanging random pads in the first round and then use these random pads
to unmask later broadcasts. We use the following notation: Let p} _,; denote the pairwise
communication from F; to P; in round 1 and b} denotes the broadcast by F; in round r, where
r € [3],{i,7} € [5]. These values may be function of CRS and the PKI setup as per the protocol
specifications. Let V¢ denotes the view of party P; at the end of execution X, (¢ € [3]) of 7.
Below we describe the strategies A, As and As.

Ajq: A corrupts { P} actively here. P, behaves honestly in Round 1 and simply remains silent
in Round 2 and Round 3.

Ay: A corrupts {P;, P,} actively here. The active misbehavior of P; is same as in A; i.e P
behaves honestly in Round 1 and stops communicating thereafter. On the other hand,

P; participates honestly upto Round 2 and remains silent in Round 3.

Asz: A corrupts { Py, P3, Py, Ps} passively here. The semi-honest parties behave as per protocol
specification throughout the execution Y3 to obtain the correct output. The passive
strategy of { Py, Ps, Py, Ps} is to ignore the Round 3 message from honest P, and locally
compute the output based on the scenario of execution >, i.e imagining that P; stopped
after Round 1 and P, stopped after Round 2.

We present a table depicting the views of the parties in executions ¥; and Y5 in Table 6.2.
Here b_f’ for 7 € {2,3,4,5} denotes the message broadcast by honest P; (as per its next-message

function) in Round 3 in case P, behaves honestly in Round 1 but is silent in Round 2. The
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views of parties in 33 which is as per honest execution (since it involves only purely passive

corruptions) appears in Table 6.3.

Table 6.2: Views of P17 PQ, Pg, P4, P5 in Zl and ZQ
21 22

V! ‘ V] ‘ Vi ‘ vl ‘ Vi V2 ‘ V2 ‘ V2 ‘ V2 ‘ V2

Input | (z1,71) | (x2,72) | (x3,73) | (@a,74) | (w5,75) | (21,71) | (x2,72) | (23,73) | (@4,74) | (w5,775)

P Pl Pl Pl Plos: P, Plsas Pl Pl Plosss
p%ﬁl? péﬁZ? p%—)?)? p%—>47 p%—»B? pé—»l? pé—»Q? p%—»fﬂ? p%—>47 p%—>57
pglal% pia% péllaih péa# pé*}f}‘r péllﬁh piﬁ?: pélla:b p}%a47 pilia:):
R1 pé—>1> pé—>2> pé—>3> i p%—u& i pi—»B p%—»la p%—»Qa p%—»{%a p%—»:l: p411—>5:

b%v bé‘ b%v bé‘ b%v b%, b%v bé, b%v bév b%v bév b%v bév b%~ bév b%~ bév b%~ bév
bi, bl | bl bl | bl bl | bl bl |bi b} | bl bl |blbl |blbl |blbl |bl bl

R2 b%v b?i/ B b%, B b%, B b%, B bg, b%'* b§7 B bg, R bg, R bg R bg/
bi, b3 | b, b3 | bf b |bf bi |bf bf |bf bl | b bl |bibi | bfbi |bi bi
R3 F% Fg/ B bif’; B bi%? R F%? B Fg B @7 B F%: BERR] BERR] DR

BB | BL6 |BLbE |BLED | B bT | BLBE BLBI BB | BB | BB

Table 6.3: Views of Pl, PQ, P3, P4, P5 in 23

Y3
1 1 1 1 1
Vi V3 V3 Vi Vs
Input | (21,71) (w2,72) (w3,73) (w4,74) (w5,75)
1 1 1 1 1 1 1 1 1 1
P215 P31 P1-25 P32, P1-3; P2—3s P1-45 P24 P1-55 P25,
1 1 1 1 1 1 1 1 1 1
R1 Pi—15 P51 P12y P52 Py—35 P53 P3_45 P54 P3—55 Pi—5

b%? bé? bﬁll? bé b%7 b;137 b}l'/ b% b%7 b%? b4117 bé bi7 b%? b.%)7 bé b%? b%‘ bé7 b}l

R2 | b3, b3, b, b3 | bi, b, bi, b5 | b, b3, bi, bf | bf, b3, b, b3 | bi, bj, b, b

R3 | b, b3, b, b3 | b, bj, b, b3 | b?, b, b, by | bf, b, b, b3 | by, b3, b, b]

We now present a sequence of lemmas to complete the proof.

Lemma 6.6 At the end of 31, parties compute output y = f(x1, x2, 23, x4, T5), where 7 denotes
the default input of P;.

Proof: Firstly, since ¥ involves active behavior only by P, it follows directly from correctness

and robustness of 7 that the output computed at the end of X1, say 3’ should be based on actual
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inputs x; for i € {2,3,4,5}. Now, there are two possibilities with respect to input of P; i.e ¢/
is based on either x; (i.e the input used by P; in Round 1 of ) or z7 (default input). In case
of the latter, the lemma holds directly. We now assume the former for contradiction.

Suppose the output 3’ is based on x; rather than z;. Since P; stops communicating after
Round 1, we can conclude that the combined views of {P», P3, Py, Ps} must suffice to compute
the output ' = f(x1,...,x5) at the end of Round 1 itself. If this holds, we argue that 7 cannot
be secure as follows: Suppose 7 is such that when all parties participate honestly in Round
1, the combined view of {Ps, P3, Py, Ps} suffices to compute the output at the end of Round
1 itself. Then, in an execution of m, an adversary corrupting { P, Ps, Py, Ps} purely passively
(correponding to (t,,t,) = (0,4)) can learn the output on various inputs of its choice, keeping
x1 fixed. This residual attack breaches privacy of honest P; (A concrete example of such an f
appears at the end of this section). We have thus arrived at a contradiction. This completes the
proof that ¢’ must be based on z7, rather than z; and consequently v =y = f(x1, 22, x3, 4, T5)

must be the output computed at the end of ;. O

Lemma 6.7 At the end of X9, parties compute output y = f(x1, x9, T3, x4, T5), where 1 denotes
the default input of P;.

Proof: Recall that A, is similar to A; involving active Pj, except that P, is active as well
with the strategy of behaving honestly upto Round 2 and remaining silent in Round 3. Since
the executions Y; and X5 proceed identically upto Round 2, it is easy to check that the view
of corrupt P, in ¥, is same as honest P, in X (refer to Table 6.2). It now follows directly
from Lemma 6.6 that P, computes the output y = f(z1, %2, x3, 24, 25). By correctness and
robustness of 7 computing the common output function f, it must hold that all parties output
y at the end of Xs. a

Lemma 6.8 The combined view of parties { Ps, Py, Ps} at the end of Round 2 of ¥y suffices to
compute the output of ¥o i.e y.

Proof: We note that as per Aq, both { P, P} do not communicate in Round 3; implying that
the combined view of honest parties {Ps, Py, Ps} at the end of Round 2 of Y5 must suffice to
compute the output of ¥, i.e ¥ (Lemma 6.7). O

Lemma 6.9 An adversary executing strateqy As obtains the value y = f(x1, %2, 3, T4, T5), in

addition to the correct output y = f(x1, e, T3, T4, x5) al the end of 3s.

Proof: Firstly, ¥3 must lead to computation of correct output i.e y = f(z1, x2, x3, x4, x5) by

all parties since Ajz involves only semi-honest corruptions. Next, it is easy to check from Tables
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6.2 and 6.3 that the combined view of adversary corrupting {P;, Ps, Py, Ps} passively at the
end of Round 2 of ¥3 subsumes the combined view of honest parties {Ps, Py, Ps} at the end
of Round 2 of 5. It now follows directly from Lemma 6.8 that the adversary can obtain the
output y as well.

In more detail, A launching A3 in 33 can compute the output as per the scenario of 3, as
follows- Let b_? for i € {2,3,4,5} denotes the message broadcast by honest P; (as per its next-
message function) in Round 3 in case P; behaves honestly in Round 1 but is silent in Round 2.
Locally compute {b3, b3, b3} (b3 is a function of P’s (i € {3,4,5}) view at the end of Round 2)
by imagining that P; did not send Round 2 message and compute y by ignoring the message
sent by honest P, in Round 3. Thus, by following strategy As, A obtains multiple evaluations
of f i.e both y and ¥ which violates the security of 7. (We give a concrete example of such an
f below that breaches privacy of honest P,.) This completes the proof of the lemma. O
Thus, we have arrived at a contradiction to our assumption that 7 is secure. While the above
proof was shown specifically for n = 5, it can be extended to any n > 5 in the following natural
manner: The strategies A;, Ay remain the same (feasible as atleast two active corruptions are
allowed when n > 5) and let us conclude that the combined view of {Ps, Py ... P,} at the end
of Round 2 suffices to compute y = f(z7,x2...2,). Accordingly, strategy Az involving passive
corruption of {Py, P3, Py ... P,} would lead to the adversary obtaining multiple evaluations of
the function leading to the final contradiction. This completes the proof of Theorem 6.4. O

Next, we give a concrete example of f to demonstrate how the strategy of residual attack

used to prove the lower bound in Theorem 6.4.

Concrete Example of f: Let f(x1,x9, 23,24, 25) with 27 = (o, 8), 29 = (b, mg, m1) (where

a, 3, b are single bit values) and z3 = x4 = x5 = L be defined as below for P;’s input z;:

me fb=0
f(x17$27w3ax47m5) - .
Mepp Otherwise

Using this function f, we describe explicitly how multiple evaluations of f breaches privacy of
P, and P, in the argument of Lemma 6.6 and Lemma 6.8 respectively. Consider the adversary
corrupting {Ps, P3, Py, Ps} passively ((t,,t,) = (0,4)) that can learn the output on various
inputs of its choice, keeping z; fixed (in Lemma 6.6). By locally plugging in inputs b = 0 and
b = 1 on behalf of passive P, it is easy to check that the adversary can learn both « and f.
This violates privacy of honest P; as its input [ is never revealed as per the ideal functionality.
Next, consider the adversary of Lemma 6.8 corrupting {P;, Ps, P;, Ps} who obtains both y =

f(z1, 29, 23, 24, x5) and ¥ = f(x71, 29, 23,24, 25). We claim this breaches privacy of honest P,
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as follows: As per the ideal functionality, the adversary would learn exactly only one among
mo, my. Next, suppose the default value of 27 = (0,0). Then by participating in 33 with input
x1 = (1,0), the adversary would obtain both y = m; and y = my (irrespective of b) which
compromises the security of honest P’s input.

Before concluding this section, we give quick intuition of why the above lower bound argu-
ment does not hold when malicious corruption £, < 1. Note that the strategy Az carried out
by the adversary corrupting { P;, Ps, P, Ps} purely passively was feasible only since the output
on default input of P; could be computed without any dependency on honest P,’s message in
Round 3. Had it been the case that honest P,’s Round 3 message was crucial for output com-
putation, then the semi-honest parties { P, Ps, Py, P5} would have obtained only the output on
the combination of actual inputs and would be unable to breach security. Tracing back, recall
that the partnership of malicious {P;, P,} together in Ay was crucial in implying this non-
dependency on Round 3 message of P, (which led us to the conclusion of view of {Ps, Py, Ps}
being sufficient to compute output on P;’s default input). It is thereby evident that without
such a partnership of two malicious parties, it would not be possible to arrive at such a contra-
diction. This intuition is further substantiated by our 3-round upper bound achieving GOD in

case of single active corruption (Section 6.5.3).

6.4.2 Impossibility of 2-round Fair MPC

We begin with the observation that the existing 3-round lower bounds of [102, 108, 166] for fair
malicious-minority MPC do not carry over in our setting. The lower bound of both [102, 108]
break down when the parties have access to a PKI (as acknowledged/demonstrated in their
work). The result of [166], assuming access to pairwise-private and broadcast channels, also
breaks down when parties have access to a PKI. The proof, originally given without the mention
of CRS, seems to withstand a CRS. The proof approach of [166] is via contradiction i.e derives
a series of implications assuming that 2-round fair MPC protocol 7 exists and eventually builds
up to a contradiction. A crucial lemma in their proof (Lemma 24 in their full version [168])
states that m must be such that a single party, say P;, is able to compute the output at
the end of Round 1. The argument for this claim relies on the fact that (a) the adversary’s
communication stops after Round 1 and (b) the Round 2 messages of honest parties do not
hold any potential useful information to aid P;’s output computation. Roughly speaking, (b)
follows since the honest party’s messages are fully determined by the information available to
P, at the end of Round 1 itself and can therefore be locally computed by P;. This information
includes the broadcast communication by the adversary in Round 1. While the above argument

regarding (b) holds in the plain model and even in the presence of public setup such as CRS,
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it does not hold in the presence of private setup like PKI. In this case, an honest party may
hold some private information unknown to P; at the end of Round 1, such as the decryption
of the adversary’s Round 1 broadcast using its exclusive secret key; which may aid in output
computation by P;. Consequently, this claim of [166] and their proof are not resilient to the

presence of PKI. We now present our lower bound formally.

Theorem 6.5 There exist functions f for which there is no 2-round n-party MPC protocol that
achieves fairness against boundary-admissible adversary, in a setting with pairwise-private and
broadcast channels, and a setup that includes CRS and PKI.

Proof: We prove the theorem for n = 3 parties, where boundary-admissible adversary A
chooses corruption parameters either (t,,t,) = (1,1) or (t,,t,) = (0,2). Here, the corruption
scenarios translate to either upto 1 active corruption or upto 2 purely passive corruptions. Let
{Py, P, P3} denote the set of parties with P, having input z;. Suppose by contradiction, 7 is
an MPC protocol computing f that achieves fairness against A. To be more specific, 7 is fair if
(ta,tp) = (1,1) and achieves GOD otherwise (as GOD is the de-facto security guarantee incase
of no active corruptions i.e (t,,t,) = (0,2)). On a high-level, we first exploit fairness of 7 to
conclude that the combined view of a set of 2 parties suffices for output computation at the
end of Round 1. (Here, view of P; includes x;, its randomness 7;, the messages received during
7 and the knowledge related to CRS and PKI setup.) Next, considering a strategy where the
adversary A corrupts this set of 2 parties purely passively leads us to conclude that A can
compute the output at the end of Round 1 itself; leading upto a final contradiction. We now

present the sequence of claims to complete the formal proof.

Lemma 6.10 Protocol m must be such that the combined view of { Py, Ps} at the end of Round

1 suffices for output computation.

Proof: The proof of the lemma is straightforward. Assume A corrupting P; actively (with
(ta,tp,) = (1,1)) with the following strategy: P behaves honestly in Round 1 and simply remains
silent in Round 2. It is easy to check that P, would obtain the output due to correctness of
7, as he receives the entire protocol communication as per honest execution. Since 7 is fair,
the honest parties {P,, P3} must also obtain the output at the end of m; even without P;’s
communication in Round 2. Thus, we conclude that the combined view of { P, P;} at the end

of Round 1 suffices for output computation. a

Lemma 6.11 There exists an adversarial strateqy such that the adversary obtains the output
at the end of Round 1.
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Proof: The proof follows directly from Lemma 6.10— A corrupting { P, P3} purely passively
((ta,tp) = (0,2)) would obtain the output at the end of Round 1. O

Lemma 6.12 Protocol ™ does not achieve privacy.

Proof: It is implied from Lemma 6.11 that A corrupting { P, Ps} purely passively can obtain
multiple evaluations of the function f by locally plugging in different values for {xq, z3} while
honest P;’s input x; remains fixed. This ‘residual function attack’ violates privacy of P;. We
refer to the argument in Lemma 6.3 for a concrete example. a
We have arrived at a contradiction, concluding the proof of Theorem 6.5. It is easy to check

that this argument can be extended for higher values of n. O

6.5 Upper bounds for Boundary Corruption

In this section, we describe three upper bounds with respect to the boundary-admissible adver-
sary A with threshold (¢,,t,). We first present a robust upper bound in 4 rounds for the general
case. Next, we present a 3-round robust protocol for the special case of single active corrup-
tion, which circumvents our lower bound of Section 6.4.1. Finally, we present our fair 3-round
upper bound that can be arrived at by simplifying the robust general-case construction. Note
that even the fair construction is robust in the corruption scenario of no active corruptions i.e
(ta,tp) = (0,n —1). The security guarantees differ only in case of corruption scenario involving
malicious corruptions. All the above three constructions are round-optimal, following our lower
bound results of Section 6.4.1 and 6.4.2. We start with a building block commonly used across

all our constructs.

6.5.1 Authenticated Secret Sharing

We introduce the primitive of Authenticated Secret Sharing [130, 127] used in our upper bounds
against the boundary-admissible A.

Definition 6.4 (a-authenticated sharing) A value v is said to be a-authenticated-shared
amongst a set of parties P if every honest or passively corrupt party P; in P holds S; as produced

by fasn(v) given in Figure 6.5.

Function fgg, (v)}

1. a shamir-sharing of secret v: Choose random ai,as...a, € F, where F denotes a finite field.
Build the a-degree polynomial A(x) = ap + a1z + asx? + a3z’ + - + aqg_12% 1 + agx®, where
ag = v. Let sh; = A(4) for i € [n].
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2. Authentication of shares: For all i, j € [n], choose random one-time message-authentication codes
(MAC) [105] keys k;j € {0,1}" and compute tag,; = Macy,, (sh;).

3. Output S; = (Shi7 {kji}je[n]a {tagij}je[n}) for i € [TL]

Figure 6.5: Function for Authenticated secret-sharing

In our upper bounds, the function fgg, is realized via MPC protocols. The reconstruction

will be done via protocol ARec® (Figure 6.6) amongst the parties. We prove the relevant
properties below:

—[ Protocol ARec"‘}

Inputs: P; participates with S; = (shy, {kji} e, {tagi;}jepm)

Output: Secret v
Each P; does the following:

1. Broadcast (sh;, {tagij}je[n}) and receive (sh;,taggi) from j # i.

2. Each P; outputs v’ as follows:

- Initialize V to {i}. For j # i, if Macy,(sh}) = tag];, set sh; = sh} and add j to V; else set
Shj =1.

o If [V| > a + 1, interpolate a a degree polynomial A’(x) satisfying A’(y) = sh, for v € V.
Output L if the above fails, else output v' = A’(0).

Figure 6.6: Protocol for Reconstruction of an authenticated-secret

Lemma 6.13 The pair (fas,, ARec) satisfies the following:

i. Privacy. Forallv € F, the output (S1,...,S) < fas,(v) satisfies the following—V{iy,...in} C
[n] with o < a, the distribution of {S;,,...,S; } is statistically independent of v.

ii. Correctness. Forallv € F, the value v’ output by all honest parties at the end of ARec®(S7, ... S))
satisfies the following— For all (S1,...,S,) < fasy(v) and (S1,...,S)) such that S! =S,

corresponding to atleast oo+ 1 parties P;, it holds that Pr[v' # v] < negl(k) for a compu-
tational security parameter k.

iii. Round complexity. ARec® terminates in one round.

Proof:
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i. Privacy: It is easy to check from the description of fgs, that privacy follows directly from

the fact that v is Shamir-shared with degree a.

ii. Correctness: Firstly, we note that since atleast a + 1 parties P; participate with S! = S,
in ARec”(S],...5!), the V set of each honest party comprises of atleast (o 4 1) correct
shares sh;. These shares suffice to uniquely reconstruct the a-shared secret v. We can
thus conclude that an honest P; would output L only if the interpolation of the a-degree
polynomial fails, which in turn occurs if there is an incorrect share, say sh;-, such that j
is added to V. This would imply that a corrupt P; broadcasts sh;- # sh; and tag); but
satisfied the condition Macy,(sh}) = tagj;, with respect to the MAC-key kj; (present in
S;) available to honest P; (not to P;). However, security of MAC ensure that the above

cannot happen except with negligible probability. This completes the proof of correctness.

iii. Round complexity. The proof is self-evident.

6.5.2 Upper bound for Robust MPC: The general case

In a setting where either at most n — 1 passive corruption or at most ([4]—1) active corruption
takes place, [127] presents a protocol relying on two types of MPC protocol. An actively-
secure protocol against malicious majority is used to compute an authenticated-sharing of the
output with threshold ([5] — 1). When this protocol succeeds, the output is computed via
reconstruction of the authenticated-sharing. On the other hand, a failure is tackled via running
a robust honest-majority (majority of the parties are honest) actively-secure protocol, relying
on the conclusion that the protocol is facing a malicious-minority. When n is odd, we need
to tackle the exact corruption scenarios as that of the protocols of [127]. On the other hand
when n is even, the extreme case for active corruption accommodates an additional passive
corruption. Apart from hitting optimal round complexity, tackling the distinct boundary cases
for odd and even n in a unified way brings challenge for our protocol.

We make the following effective changes to the approach of [127]. First, we invoke a 2-
round actively-secure protocol T4, with identifiable abort against malicious majority (can be
instantiated with protocols of [93, 35] augmented with NIZKs) to compute | 7 ]-authenticated-
sharing of the output. When we expel the identified corrupt parties in case of failure (which
may occur in corruption scenario (¢4, t,) = ([n/2]—1, [n/2])), the remaining population always
displays honest-majority, no matter whether n is odd or even (For instance, elimination of 1
corrupt party results in ¢ < (¢,—1) = |n/2| —1 total corruptions among n’ = (n—1) remaining

parties which satisfies n’ > 2t +1.). The robust honest-majority protocol mgop is then invoked
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to compute the function f where the inputs of the identified parties are hard-coded to default
values. The change in the degree of authenticated sharing ensures that an adversary choosing
to corrupt in the boundary case of [§] — 1 active corruption and zero (when n is odd) or
one (when n is even) purely passive corruption, cannot learn the output by itself collating the
information it gathers during mq,,. Without the change, the adversary could ensure that miqy,
leads to a failure for the honest parties and yet could learn outputs from both 4., and mgop
with different set of adversarial-inputs. Lastly, the function and input independence property
of Round 1 of the 3-round honest-majority protocol of [108, 4] allows us to superimpose this
round with the run of mq4,,. Both these instantations of wgop are also equipped to tackle the
probable change in population for the remaining two rounds (when identified corrupt parties
are expelled) and the change in the function to be computed (with hard-coded default inputs
for the identified corrupt parties). Our protocol appears in Figure 6.7. Assumption wise,
e relies on 2-round maliciously-secure OT in the common random/reference string model,
NIZK (when miqy, is instantiated with function-delayed variant of the protocol of [93] satisfying
identifiability) and Zaps and public-key encryption (when mgop is instantiated with the protocol

of [4]).

—[ Protocol wgc’ouD}

Inputs: Party P, has z; for ¢ € [n]

Building Blocks: (a) 2-round protocol mig,, achieving identifiable abort against malicious majority
(realizing functionality Figua, refer Figure 2.5); (b) 3-round honest-majority actively-secure
robust protocol mgop (realizing functionality Fgoq, refer Figure 2.4) with additional property
of Round 1 being function and input independent; (c) Protocol ARec!™?! for reconstructing

an |n/2]-authenticated-shared secret (Figure 6.6); (d) Function fAL\Z{]ZJ (Figure 6.5).

Output: y= f(z1...2,)

Round 1-2: The parties run mq,, computing the function flig(]% ¢ f with input x; to obtain
output (S; = (sh, {k;ji}jen), {tagij}jem)), B), where B denotes the set of identified cheaters.
Additionally, the parties run (input-independent and function-independent) Round 1 of wgop.

Round 3-4: If S; = L, the parties in P\ B run Round 2 and 3 of mgop computing f® (f with the
inputs of parties in B are hardcoded to default values) and output y as the outcome of mgop.

Else, participate in ARecl™?) with input S; and output the outcome of ARec [n/2],

Figure 6.7: Robust MPC against boundary-admissible adversary

We state the formal theorem below.
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Theorem 6.6 Assuming the presence of a 2-round protocol gy realizing Figua (Figure 2.5)
against malicious magjority and a 3-round protocol mgop realizing Fgoq in the presence of honest
magjority (with special property of Round 1 being function and input-independent), the 4-round
MPC protocol w2%, (Figure 6.7) satisfies:

— Correctness: computes the correct output.

— Security: realizes Fgoq (Figure 2.4) against boundary-admissible A

Proof: Correctness of Wg‘(’)“D follows directly from that of migu., Tgop and ARecl™/ (Lemma
6.13). We prove its security in Section 6.6.3.2. O

We conclude this section with a simplification to 7235 that can be adopted if additional
access to PKI is assumed. In such a case, parallelizing Round 1 of mgop with Round 1 of gy,
can be avoided and the 2-round honest-majority protocol of [108] achieving GOD assuming
CRS and PKI setup can be used to instantiate mgop (which would be run in Rounds 3-4 of
7ed). Both our 4-round constructions with CRS (Figure 6.7) and its simplified variant with
CRS and PKI are tight upper bounds, in light of the impossibility of Section 6.4.1 that holds

in the presence of CRS and PKI.

6.5.3 Upper bound for Robust MPC: The single corruption case

Building upon the ideas of Section 6.5.2 and Section 6.3.3, a 3-round robust MPC ﬁé%”l’)l against
the special-case boundary-admissible adversary can be constructed as follows. Similar to 2%
Round 1 and 2 involve running protocol mgu, realizing |n/2]-authenticated secret-sharing of

the function output. When m4,, does not result in abort, 71'2%1[’31 proceeds to reconstruction of

output; identical to WE%UD and thereby terminating in 3 rounds. However, when miq,, results in
output L, we exploit the advantage of atmost one malicious corruption by noting that once the
single actively-corrupt party is expelled, the parties involved thereafter comprise only of the
honest and purely passive parties. We adopt the idea of Section 6.3.3 and re-run Round 2 of
Tidua among the remaining parties to compute the function output directly, with input of the
expelled party substituted with default input. This step demands the function-delayed property
of migua i.e Round 1 is independent of the function to be computed and the number of parties.
In order to accommodate this re-run, two instances of Round 1 of ., are run in Round 1 of
WE‘S’,’;. It is easy to see that robustness is ensured as mq,, is robust in the absence of actively-
corrupt parties. Lastly, we point that similar to Section 6.3.3, we use the modified variant of the
2-round protocol of [93] to instantiate mg,, that is function-delayed and achieves identifiability.
The formal description of WE‘S’,’; appears in Figure 6.8. This upper bound is tight, following the

impossibility of 2-round fair MPC (that holds for single malicious corruption) proven in Section
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. . . . . bou.1 . ..
6.4.2 as GOD implies fairness. Assumption wise, mlop relies on 2-round maliciously-secure

OT in the common random /reference string model and NIZK (when mq,, is instantiated with

function-delayed variant of the protocol of [93] satisfying identifiability).

bou,ﬂ
—[ Protocol TGoD |

Inputs: Party P; has z; for i € [n]

Building Blocks: (a) 2-round protocol migu, achieving identifiable abort against malicious major-
ity (realizing functionality Figua, refer Figure 2.5) and having function-delayed property; (b)
Protocol ARec!™?] for reconstructing an |n,/2]-authenticated-shared secret (Figure 6.6); (c)
Function f}gﬁ% (Figure 6.5).

Output: y= f(z1...2,)

Round 1: P; does the following: Run 2 instances of Round 1 of mjq,,, each using input z; and

independent randomness. Note that this round is independent of the function to be computed

and the number of parties.

Round 2: P; does the following: Run Round 2 of miq,, (based on first instance of Round 1 of
Tidua) among P computing the function f}g(?J o f using input x; to obtain output (S; =

(sh, {k;ji}jem), {tagij}jem)), B), where B denotes the set of identified cheaters.

Round 3: If S; = L, the parties in P\ B run Round 2 of mig,a (based on second instance of Round
1 of miqua) computing f? (where the inputs of the party in B is hardcoded to default value)

and output y as the outcome of this (second) instance of migua. Else, participate in ARec [n/2]

with input S; and output the outcome of ARecl™/2]

Figure 6.8: Robust MPC against special-case boundary-admissible adversary

We state the formal theorem below.

Theorem 6.7 Assuming the presence of a 2-round protocol Tiqua realizing functionality Fiqua
(Figure 2.5) against malicious majority and having function-delayed property, the 3-round MPC
protocol ngjubl (Figure 6.8) satisfies:

— Correctness: computes the correct output.

— Security: realizes Fgoq (Figure 2.4) against special-case boundary-admissible A with corrup-
tion parameters either (tq,t,) = (1, |n/2]) or (ta,t,) = (0,n — 1).

Proof: Correctness of wgg“,’; follows directly from correctness of migua, and correctness of
ARec!™?) (Lemma 6.13). We prove its security in Section 6.6.3.3. O
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6.5.4 Upper bound for Fair MPC

The 4-round robust protocol 7235 (Section 6.5.2) can be simplified as follows to yield a 3-round
fair MPC protocol w£¥. Similar to 72%5, Round 1 and 2 involve execution of m,, (instantiated by
(93, 35] in the CRS model) achieving unanimous abort against malicious-majority (identifiability
is not needed) in order to compute |n/2|-authenticated sharing of the output. If m,, does not
result in abort, the honest parties proceed to reconstruction of output in Round 3. Else, the
honest parties simply output L. It is easy to check that fairness is preserved due to privacy
of |n/2]-authenticated secret-sharing (Lemma 6.13). Protocol 7f° appears in Figure 6.9 and
is round-optimal, in view of the lower bound of Section 6.4.2. Assumption wise, 72 relies
on 2-round maliciously-secure OT in the common random /reference string model (when m, is

instantiated with the protocols of [93, 35]).

—[ Protocol ﬂ?n"”}

Inputs: Party P, has z; for ¢ € [n]

Building Blocks: (a) 2-round protocol 7, achieving security with unanimous abort against mali-
cious majority (realizing functionality F,, refer Figure 2.2); (b) Protocol ARec [7/2) for recon-

structing an |n/2]-authenticated-shared secret (Figure 6.6); (c) Function fALg{IZJ (Figure 6.5).

Output: y = f(r1...2,) or L.

Round 1-2: The parties run m,, computing the function fgﬁﬂ o f with input x; to obtain output

(Si = (shi, {Kji}jepm), {tagi;}jem))-

Round 3: If S; = L, the parties output L. Else, participate in ARecl™?) with input .S; and output

the outcome of ARec™/2

Figure 6.9: Fair MPC against boundary-admissible adversary

We state the formal theorem below.

Theorem 6.8 Assuming the presence of a 2-round protocol m,, realizing functionality F,, (Fig-

ure 2.2) against malicious magority, the 3-round MPC protocol 7€ (Figure 6.9) satisfies:

— Correctness: computes the correct output.

— Security: realizes against (t,,t,) boundary-admissible A (1) Feir (Figure 2.3) when (tq,t,) =
([n/2] = 1,|n/2]) (2) Fgod (Figure 2.4) when (t,,t,) = (0,n —1).

[e]

Proof: Correctness of g follows directly from correctness of m,, and the correctness of

ARec!™?) (Lemma 6.13). We prove its security in Section 6.6.3.4. O
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6.6 Security Proofs

6.6.1 Proofs for Upper Bounds for Dynamic Corruption

6.6.1.1 Ideal Functionality Fis 20

We formally define the ideal functionality computing the (n — 2, |5 |)-levelled sharing (Defini-
tion 6.3) of the output y = f(x1,...x,) securely with unanimous abort in Figure 6.10. This
ideal functionality is identical to &F,, with the only difference being that the relevant function

computed is f, fs_hQ’L%J o f. Refer Figure 6.1 for the description of f[zs—hZL%J.

f‘[ Functionality gﬁZ*ZL%J)} |

Input: Receive message ((D,E),Input, {.I'Z'}ieg) from A. Next, do the following: if (x,Input,*)
message was received from P;, then ignore. Otherwise record it internally. If x; is outside of

the domain for P; (P; €), consider z; = abort.

Output to adversary: If there exists ¢ € [n] such that z; = abort, send (sid, Output, L) to all
the parties. Else, compute y = f(x1...z,) and compute (Li,...L,) = CS;Q’L?J (y). Send

(sid, Output, {L;};ce) to A.

Output to honest parties: Receive either continue or abort from A. In case of continue, send

L; to each honest P;, whereas in case of abort send L to all honest parties.
. J

Figure 6.10: Ideal Functionality ?ﬁzfz’L%J)

6.6.1.2 Security Proof of 73" (Theorem 6.2)

2D -hybrid model where the parties have access to a

trusted party H’EZ_Z’L%J) (Figure 6.10). Let A be a dynamic adversary with threshold (t,,%,)

that controls t, parties passively and upto ¢, among them actively in the 3"5:72’L%J)—hybrid

dyn
fn

We analyze the protocol 78" in a Fi

model execution of Wfrf' ". We describe a simulator 8£*", running an ideal-world evaluation of the
functionality Fe, (refer Figure 2.3) computing f whose behaviour simulates the behaviour of
A in Figure 6.11.

]

Simulator S?X n )

Recall that D(E) denotes the set of actively (passively) corrupt parties where D C €. Here |D| = ¢,
and |€] = t,. Let H and € denote the set of indices of honest parties (in P\ €) and parties in €

respectively. S?ny " does the following:
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— Interaction with 3“5272’%% Receive ((D, €), Input, {x;}ce) sent by A to 3"5272’%” Compute
te = |D|,t, = |E|. If for any P; € D, z; is outside of domain of input, send L as output of

3’57;72’%” to A and send L as input to Fg; on behalf of A. Else continue.

(n=2,151])
a

— Output of F, to A: We have two cases.

- If t, = 0, invoke Fgjr on behalf of A with {x;},ce to receive an output value y in return.

Compute (L1, ...L,) = fﬁSf’L%J (y) (Figure 6.1) and return {L;};ce to A as output from
(n=2,15])
Fua .

- Else, do the following: Let ¢/ = n —2 and /' = |[n/2]. For j € €, return L; =
({Sij70ij}i€[a’,6/]a {cil}ie[a’,ﬂ’],le[n]) where s;; are randomly chosen, (¢;j,0;;) < eCom(s;;;
ri;) computed as per protocol specifications and {Cil}ie[a/’ﬂ/]yleg{ are computed as com-

mitments on dummy values, say involving {s};, o} }icja g),1c5¢-

n=2,[3])
a

— Completing Simulation of Round 1 - 2: If A invokes 3“1(1 with abort, invoke g, with

input L on behalf of A and output L on behalf of honest parties.

Note: Recall that in Round r (r € [3, [n/2]+1]), summand s,_,4+1 is attempted to be reconstructed
(in Round 7 — 2 of LRec" %Lz,

— Round 3 to Round (n —t;) : S?ny" does the following in Round r/, where 7’ = [3,n — t,)]

- Let i = n— 71"+ 1. Send {s};, 0}, }1e3 on behalf of honest parties and receive {s;., 0 };ce

j>%ij
from A.

- Initialize V; = P\. Add P; € tf Vi if Pj sends (s;;,0;;) = (si5,0i;) (consistent with L;

1z)) to Pj). If |V;| < i+ 1, then abort and invoke Fg,, with

input L on behalf of A; thereby completing simulation. Else, continue to ' = r’ + 1.

-2,
returned as output of ?ﬁ’;‘

— Round (n —t, + 1) : This round involves reconstruction of summand sy, . S?g’ " does the follow-

ing:

- Invoke Jg,jr on behalf of A with {x;};ce to receive output y.

- Note that reconstruction of summands s¢,11,...,8,-2 has been completed and the sum-
mands s;, where i € [|n/2],...,t, — 1] is already fully determined by {s;;};ce returned

o |n _ _
3"57; Lg)) to A. Compute s;, =y — Z?:Liﬂj 8; — Z?:tiﬂ S;.

as output of
- Let p = t,. Interpolate a p-degree polynomial g,(z) satisfying g,,(0) = s, and g,(j) = su;j
for j € €. Let s,y = gu(l) for | € H. Compute oy < Equiv(cu, (s);,0),), $u,t) (Section

2.4.2.1). Broadcast (s, 0,) on behalf of P, [ € J{.
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— Round (n — t, + 2) to Round ([n/2] + 1) : In Round ’ (' € [n—1t,+2, [n/2]+1]), broadcast
(s};,0},) on behalf of P, I € H; where i =n — 1" + 1.

Figure 6.11: Simulator S?g’ ;

At a high-level, the simulation is divided into 4 parts: Rounds 1-2, Rounds 3 to n—t,, Round
n —t, + 1 and finally Rounds n — ¢, + 1 to Round [n/2] + 1. In order to complete the proof,
we argue how each of them maintain that the view of A is the ideal world is indistinguishable

_2’L%J

from its view in Fon \_hybrid model execution of 72" (hybrid-world):

Rounds 1 - 2. It is straightforward to check that the view of A in the real and hybrid-world
are indistinguishable. Note that incase of no active corruptions, Fg;, is invoked on behalf
of A to get the output directly which is consistent with the hybrid-world, where the
output of f can be deduced by A corrupting ¢, = n — 1 parties from the output of
3"52_2’L%J). 2130 with abort, it must hold that ¢, > 1

implying ¢, < n — 1. In this case Fg;, is invoked with L, which is consistent with the

Furthermore, if A invokes gl

hybrid-world where A has no information about s,,_, and consequently the output. This

follows directly from the property of Shamir-Sharing and hiding property of eNICOM.

Rounds 3 to Round n — t,. Note that these rounds involve only reconstruction of sum-
mands s,_...8;,41. Indistinguishability follows from the fact that in both ideal and
hybrid-world, A corrupting upto ¢, number of parties has no information regarding the
summand s;, and consequently the output y. This can be inferred from the property
of Shamir-sharing of s,, with threshold ¢, and the hiding property of eNICOM. Next,
we observe that the only difference in the ideal and the hybrid-model is the following:
In the hybrid-model, the share of a party Pj, say s;; (i = [n — 2,t, + 1]) is discarded

ZL%J))

during LRec"~>"/2)() if the corresponding commitment ¢;; (output from 3'“527 does

not open successfully using the given opening o;; obtained from P;. However, in the ideal
world, the share of P; (P; €) is discarded if P; does not send (s;;, 0;;), same as output from

3”52’72’%”. It follows from the binding property of the equivocal commitment eNICOM

/

that P; will not be able to send (sj;, 0};) # (si,0i5) such that eOpen(epp, c;;,0;;) = si;,

except with negligible probability. Thus, indistinguishability holds.

Round n — t, + 1. This constitutes the crux of the simulation. We observe that if recon-
structions of summands upto s;,,1 were successful, in the hybrid-world, A can deduce the
output in Round n — ¢, + 1 involving reconstruction of s;, (Summands Sin/2)y -+ s Sty—1
are already fully determined by output of A received from ?5272’%”). To maintain in-

distiguishability, S‘fjny " invokes Fpir to obtain output y and sets s;, accordingly so that
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Z::fn /2| Si = Y- The only difference between the ideal and hybrid-world is the following:
In the hybrid world, for ¢ = ¢,, the commitments {c; };esc correspond to {s;,0;} com-
puted as per output y. However in the ideal world, {c¢;; };e5 were commitments on dummy
values that were later equivocated to appropriate values of shares of honest parties as per
the computed s;, (set such that the summands add upto y). Indistinguishability follows

from the properties of equivocal commitment schemes (Section 2.4.2.1).

Round n —t, +2 to Round ([n/2] + 1). It is easy to check that the view of A is identical
in the ideal and hybrid-world.

This completes the proof of Theorem 6.2.

6.6.2 Security Proof of 705, (Theorem 6.3)

Let A be a dynamic-admissible adversary with threshold (t,, t,) that controls ¢, parties passively
and upto t, among them actively during an execution of Wég'D. We prove Theorem 6.3 by
describing a simulator S‘(?SD, running an ideal-world evaluation of the functionality Fgoq (refer
Figure 2.4) computing f whose behaviour simulates the behaviour of A in Figure 6.12. SéygD
invokes the simulator of the subprotocol Tigya, say 8r,,, (running an ideal-world evaluation of

functionality Fig,a, refer Figure 2.5).
r-[ Simulator Sgycr;D} ~

Let D(&) denote the set of actively (passively) corrupt parties where D C €. Here |D| = t, and

|€] = t,. Let 3 and C denote the set of indices of honest parties (in P\ €) and parties in &

respectively. The following steps are carried out by S‘éygD:

— Step 1: For k = 1to [n/2], let m%’k ¢ 8y (TF) (i € H) correspond to the Round 1 message of P;
for the kth instance obtained by invoking 8., . with fresh independent randomness r¥. Note
that this message is independent of the function to be computed by miqua and the number of

parties. Send {mz-l’k}kewn/m on behalf of P; to A. Receive {m}’k}ke[[n/ﬂ] sent by P; (P; € €).

— Step 2: Initialize k=1, L =P, € =0, n = n. Let f© denote the function same as f except with
default inputs hardcoded for parties in €. Send m}’k for each P; € LN E to 8x,,,. When 8, .

returns the extracted input {x?’ } P;ecne to invoke its ideal functionality Figua on behalf of A,
ifx; =1 for P € LN D, return (L, B = P;) as output of Figya.

Step 2.1: If n = 1,2, invoke Fgoq with {x?}pjegmg on behalf of corrupt parties that are alive and
default inputs on behalf of identified actively corrupt parties in €. Receive an output value y

in return, which is forwarded to 8., = as response from Fiq, .. Let m?’k — Srin (Th v, 1€, L; rf)

idua

(i € H) correspond to the Round 2 message of P; obtained by invoking 8., with P;’s ran-

idua
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domness ¥, transcript of Round 1 (kth instance) i.e T# = {m}’k}jee, output y, f° as the
function to be computed and £ as the parties involved in computation. Send m?’k on behalf
of P; to A. Receive m?’k as Round 2 message of migya sent by P; (P; € €) and send it to 8,

on behalf of P;. This completes the simulation.
Step 2.2: Else, we have two cases (similar to S?nyn ). Let o =n—2and 5 = [n/2].

- If £, = 0, invoke Fgoq with {xf} P;ecne on behalf of corrupt parties that are alive and default
inputs on behalf of identified actively corrupt parties in €. Receive an output value y in
return. Compute (L1,...Ly) = ff‘slf/ (y) (Figure 6.1) among parties in £ (where ¢ = |£])
and return ' = {L;} i.e the set of L;s for all P; € £L N & as output of Figya to Sx

idua *

- Else, for Pj € €, set Lj = ({sij,0ij}icio 3 {Citicjo 3], pec) Where si; (i € [o,5]) are
randomly chosen and (c;j,0i;) < eCom(s;j;7i;) computed as per protocol specifica-
tions. {Cil}ie[a/7ﬁ/],l€% are computed as commitments on dummy values, say involving
{81, 051 Yiclor g 0e3c- Return y' = {L;} i.e the set of Ljs for all P; € £ N & as response to
8

from Figya-

Tidua

?’k — Smdua(T’f,y’,ffS/’hB/ o f€ L;rF) (i € H) correspond to the Round 2 message

of P; obtained by invoking 8.,  with P;’s randomness r¥, transcript of Round 1 i.e

- Let m

Th = {m}’k}jee, output ¢/, function ff‘sl’hﬂ/ o f¢ie (o, ') levelled-Sharing of output of
f¢ as the function to be computed and £ as the parties involved in computation. Send
m?’k on behalf of P; to A. Receive m?’k as Round 2 message of mig, sent by P; (P; € €)

and send it to 8, . on behalf of P;.

idua

There are 2 cases based on whether A aborts the computation of 7iqy,.

- If 8, invokes Figya with (abort, B) with B C D or (L, B) had been returned as output of
Fidua to A, update C=CUB, L=L\B, D=D\B,n=n-2|B|, k=k+1, t, =t, —|B|

and repeat this simulation of step 2 using updated value of n, k and the updated sets.

- Else, if 8, invokes Fiq,a with continue, run the following steps to simulate LRec" 212

(similar to analogous steps in S?nyn). Recall that in Round 7 of LRec"%12) (r € [1, [n/2]-1]),

summand s,_,_1 is attempted to be reconstructed. Sgycr;D does the following in Round r of

LRec" %131,

I Ifr <n—t,—2: Let i =n—r—1. Send {s};,0};};c5 on behalf of honest parties and
receive (sgj, ogj) from each P; € £LNE. Initialize V; = L\D. Add P; € V; if P; € D sends
(s}, 0i;) = (8ij,0ij) (consistent with L; returned as output of Figua to Pj). If [V;| <i+1,
then let B =L\V;. Update C=CUB, L=L\B, D=D\B,n=n—-2|B|, k=k+1,
te = ta —|B|, t, = t, — |B| and repeat the simulation of step 2 using these updated

values.
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2. If r =n —1t, — 1 : This round involves reconstruction of summand s,. S?SD does the

following:

o Invoke JFgoq with {:cé“} p;ecne on behalf of corrupt parties that are alive and default
inputs on behalf of identified actively corrupt parties in €. Receive output value y in
return.

o Note that reconstruction of summands sy, 11 ... sp—2 has been completed and the sum-
mands s;, where ¢ € [[n/2],...t, — 1] is already fully determined by values returned
as output of Fig,a. Compute sy, =y — Zfiﬁ/% S; — Z?:_tiﬂ S;.

o Let u = t,. Interpolate a p-degree polynomial g, (x) satisfying g, (0) = s, and g,(j) =
suj for Pj € ENL. Let sy = g,(1) for L € H. Compute oy <= Equiv(cy, (s}, 0,), S, t)-
Send (s,4,0.1) on behalf of Py, | € H.

3. If r e [(n—tp), [n/2] — 1] : Send (s}, 0};) on behalf of P, | € H, where i =n —r — 1.

. . dyn
Figure 6.12: Simulator 8Zgp

The argument to show that the view of A in the ideal world is indistinguishable from its
view in the real-world i.e during an execution of ngD is an extension of the security argument

dyn
for m,]

neither 7q,, nor any invocation of LReca,’B/() fails with the only difference that the messages

of the honest parties in Round 1, 2 are simulated by invoking 8. (as opposed to 9’57;_2’[%”_

. Firstly, it is easy to check that the simulation proceeds identical to that of ﬂ?nyn incase

hybrid model analysis in ﬂ?ny ") and involve multiple Round 1 instances of 74y, whose simulation
is indistinguishable to the real world. It thus follows directly from security of mq,, that the
view of A in the ideal world is indistinguishable from its view in the real-world in such cases.
Next, we note that during execution of mg.,, the output from its ideal functionality Figua
can be appropriately simulated based on whether there are any active parties or not, similar
to Y™ (Figure 6.11). If mgua aborts by exposing (atleast one) cheater adding to set €, then
the simulation of Round 2 of mgu, is re-run wrt set of parties £ = £ \ € and updated n
and the modified function f:;f’tgj o f¢ computing levelled-sharing of output of f¢. When
Tidqua Succeeds, the simulation of the steps of LRec" >L2! () is identical to S?ny " with the following
difference: If LRec* 12 () returns L, the identified set of actively corrupt parties are eliminated
from the computation and the simulation of Step 2 is re-run wrt the remaining parties and
the modified function to be computed. To give better insight to the security of protocol,
we emphasize that SgyO”D invokes Fgoq only once: Either when computation involves no active
parties (t, = 0 or n = 1,2) or when the gradual reconstruction of levelled-shared output
proceeds without failure until summand s;,,,. The latter case is consistent with the real-world

where A corrupting ¢, parties would obtain complete information about the output if he does
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not disrupt reconstruction upto summand s;, ;. Thus, it is evident that A gets only unique
output as SGOD invokes Fgoq only once while maintaining throughout the execution that view
of A in the ideal world is indistinguishable from its view in the real-world. This completes the
sketch of the simulation.

It is now easy to check that the formal security proof of Wgy(;]D can be derived in a straight-
forward manner from the security proof of 7rfn " (Section 6.6.1.2). We can thus conclude that
it follows directly from the security proof arguments of Wdyn and the security of mqua that the

simulator 8241, outputs a view indistinguishable to the view of A in wopgy.

6.6.3 Proofs of Upper Bounds for Boundary Corruption

6.6.3.1 Ideal Functionality FAo"

We formally define the ideal functionality F2°" computing the authenticated sharing of the
output y = f(x1,...x,) securely with abort in Figure 6.13. This ideal functionality is identical

to Fa, with the only difference being that the relevant function computed is f/ksfj o f. Refer
Figure 6.5 for the description of f ,Egﬁzj.
~ Functionality 7] .

Input: On message (sid, Input, x;) from a party P; (i € [n]), do the following: if (sid, Input, *) message
was received from P;, then ignore. Otherwise record it internally. If z; is outside of the domain

for P; (i € [n]), consider z; = abort.

Output to adversary: If there exists ¢ € [n] such that z; = abort, send (sid, Qutput, L) to all the
parties. Else, computey = f(z1...x,) and (S1,...5S,) = ng{]QJ (y). Send (sid, Output, {S; }ice)

to the adversary, where € denotes the set of parties controlled by the adversary.

Output to honest parties: Receive either continue or abort from adversary. In case of continue,

send 5; to each honest P;, whereas in case of abort send _L to all honest parties.

Figure 6.13: Ideal Functionality FAo"

Similar to the above, functionality ?ﬁﬁg

can be defined identical to Fq,,, with the only

difference being that the relevant function computed is fye, /2l f.
6.6.3.2 Proof of Security of 723 (Theorem 6.6)

We prove Theorem 6.6 by presenting two separate simulators 8, and 8Ta, for the case of
pure passive corruption (¢,,t,) = (0,n — 1) and (t,,t,) = ([n/2] — 1, [n/2]) involving active
bou

corruptions respectively. The protocol 7% is analyzed in a F4"- hybrid model where the
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parties have access to a trusted party computing F4>"

‘ion (as defined in the previous section).

Additionally, the simulator of the subprotocol mgop, say & is also invoked.

TGOD

Simulator 8y, wrt (¢,,t,) = (0,n —1): Let A be a boundary-admissible adversary with
parameters (t,,t,) = (0,n— 1) in the FA"-hybrid model execution of 724} (hybrid-world). The
simulator 8¢y, running an ideal-world evaluation of the functionality Fgoq (refer Figure 2.4)
computing f whose behaviour simulates the behaviour of A is described in Figure 6.14. It
is straightforward to see that the view of A in the ideal world is indistinguishable from the
view of A in the F4M-hybrid model execution of 2%, The only difference is that in the ideal
world, Round 1 of 783 is obtained via 8,.,,, whose simulation is independent of the parties’
inputs. We can thus conclude that 8, outputs a view indistinguishable to the view of A in

the hybrid-world.
A Simulator 8¢,p] N

Let € C [n] and H be the set of indices of corrupt and honest parties respectively. The following

. h .
steps are carried out by 8ggp:

— Simulation of Round 1 of mgop: Let m} < 8o (ri) (i € H) correspond to the Round 1 message

of P; obtained by invoking 8,.,, with P;’s randomness ;. Recall that this step is independent

of parties’ inputs. Send mi1 on behalf of P; to A. Receive mjl

sent by P; (j € C).

as Round 1 message of mgop

— Invoking Fgod: Receive {x;};ce corresponding to the parties controlled by passive adversary A.

Invoke Fgoq on behalf of A with {x;}ice to receive an output value y in return.

— Output of FAN to A: Compute the authenticated secret-sharing of value y with threshold |n/2]

idua
(Figure 6.5) as (S1...5,) = ){2{1% (y) and send S; = (sh;, {kij}icn) {tag;iticin)) as output of
FASh to P (j € ©).

idua

— Round 3: For each i € 3(, send (sh;,tag;;) (j # i) on behalf of P;.

\ J

Figure 6.14: Simulator 8&yp

/—[ Simulator SES'D} N

Let C C [n] and H = [n] \ C be the set of indices of the parties controlled by adversary and the

honest parties respectively. The following steps are carried out by SESID:

— Simulation of Round 1 of mgop: Let m} < 8xcop(ri) (i € H) correspond to the Round 1 message

of P; obtained by invoking 8., with P;’s randomness r;. Recall that this step is independent
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1

j as Round 1 message of mgop

of parties’ inputs. Send mi1 on behalf of P; to A. Receive m
sent by P; (j € C).

— Interaction of A with ?ﬁﬁg: Receive {x;};ce sent by A to Sr"ﬁﬁg. If for any i € C, x; is outside

of domain of input, return B = P; (identified cheater) as output of F4" to A and skip to

idua

simulation step of Handling Abort. Else run the following steps.

— Qutput of ’J’“ﬁig to A: Choose random sh; for j € € and compute its authentication (Step
2, 3 of fgﬁ% in Figure 6.5). The resulting values S; = {shj, {ki; }ic[n), {tag;i }icin)} are
given to A as the outputs of the corrupted parties from functionality ?ﬁﬁg. Note that

functionality Fgo4 computing f has not been invoked yet.

— If A invokes 4" with (abort, B), proceed to simulation step of Handling Abort.

idua

— Round 3 in case of no abort: Else, if A invokes ?ﬁig with continue, then invoke Fgoq with
{z;}jee on behalf of A to obtain output y. The following steps are used to simulate

Round 3:
1. Interpolate a |n/2]-degree polynomial A(z) with A(j) = sh; for j € € and A(0) = v.
2. Set sh; = A(i) for i € H. Using k;; (consistent with output of F4N), compute

tag,; = Macy,; (sh;). Send (sh;,tag;;) (j # i) on behalf of P; in Round 3.
— Handling Abort. SES'D does the following:

— Round 3: Let m? < 8o (T1, f2;74) (i € H) correspond to Round 2 message of P; obtained

by invoking 8r.,, with randomness r;, function to be computed f® and transcript of
Round 1 ie Ty = {mj}jcc. Send m? on behalf of P; to A. Receive m3 as Round 2
message of Tgop sent by P; (j € €). When 8y, returns the extracted input {z}};ce
of the corrupt party to invoke its ideal functionality Fgoq, ES'D invokes Fgoq with input
{2} jee\s on behalf of corrupt P; (not identified among set of cheaters) and default input

on behalf of parties in B. Then, forward the obtained output 3’ as response to Sx.p-

— Round 4: Let m? < 8y (Ta,9/;7:) (i € H) correspond to Round 3 message of P; obtained
by invoking &

rcop With randomness r; and transcript upto Round 2 i.e Ty = {mjl-, m? }iee

and output 3’ of its ideal functionality. Send m? on behalf of P; to A in Round 4,

completing the simulation.

Figure 6.15: Simulator 873,

Simulator 873, wrt (t,,t,) = ([n/2] —1,|n/2]): Let A be a boundary-admissible malicious
adversary with corruption parameters (t,,t,) = ([n/2] — 1, |n/2]) in the FA -hybrid model

idua

execution of 7% . The simulator 8%3, running an ideal-world evaluation of the functionality
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Feod (refer Figure 2.4) computing f whose behaviour simulates the behaviour of A is described in

Figure 6.15. There are 2 different scenarios based on whether A aborts the computation of FA".

Incase abort doesn’t occur, it follows directly from the properties of privacy of authenticated
sharing (Lemma 6.13) that the view in the ideal world is indistinguishable to the view of A
in the hybrid-world (F4>"-hybrid model execution of 7¢%,). The additional step of Round 1

idua
of mgop being executed in Round 1 of 72% is simulated identical to 8%,5. In case of abort,

it follows from privacy of authenticated sharing fkgﬁ% that output of FAh

‘aon can be simulated

without invoking JFgoq. This indicates that A who can potentially participate with a different
set of inputs in mgop (compared to mgu,) Will have no information about the output based on
its inputs in mgu,. Lastly, in this abort case, we note that the only difference between the ideal

and hybrid-execution is that the messages of mgop are obtained via the simulator § in the

TTGOD
former. Indistinguishability thus follows from the security of subprotocol mgop.

6.6.3.3 Proof of Security of moay (Theorem 6.7)

We prove Theorem 6.7 by presenting two separate simulators SSGh(’)lD and 828',’31 for the case of

(ta,tp) = (0,n — 1) and (t,,t,) = (1, [n/2]) respectively. Sag, and Sgay invoke the simulator
of the subprotocol Tigua, say 8r,,, (running an ideal-world evaluation of functionality Figy,, refer
Figure 2.5).

Simulator S3g, wrt (t,,t,) = (0,n—1): Let A be a boundary-admissible passive adversary
with parameters (t4,t,) = (0,n — 1) in the execution of meay'. The simulator Sigr, running an
ideal-world evaluation of the functionality Fyoq (refer Figure 2.4) computing f whose behaviour

simulates the behaviour of A is described in Figure 6.16. Since 71'2%“61 proceeds in the same

manner as T2%5 in this case of pure passive corruptions, the simulator SSGhélD executes similar
steps as simulator 8y (Figure 6.14). The only difference is that instead of analysis in the
FA_hybrid model, the simulator 8, is invoked to simulate messages of honest parties in
Round 1 and Round 2. Note that the simulation of Round 1 of 7gop in 8y is skipped here
and instead an additional instance of Round 1 of 74y, is simulated. It thus follows from security
of Tqua and the arguments wrt SSGhOD that the view of A in the ideal world is indistinguishable

. . . 1
to the view of A in the execution of WE‘S’,’D .

/—[ Simulator SSGh(’)lD} N

Let G, be the set of indices of corrupt and honest parties respectively. The following steps are

. sh,1 |
carried out by S¢op:

— Invoking Fgoq: Receive {x;};ce corresponding to the parties controlled by semi-honest adversary

A. Invoke Fgoq on behalf of A with {z;};ce to receive an output value y in return.
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— Interaction with 8, : Compute the authenticated secret-sharing of value y with threshold |n/2|

idua *

as (S1...5,) = ){Z{fJ (y) (Figure 6.5).

Round 1: For k =1,2, let mz-l’k 8y (TF) (i € H) correspond to the Round 1 message of P;

4. With P;’s randomness r¥. Send {m,}’k}ke[g] on behalf of P; to A in
Round 1. Receive {m;’k}kem sent by P; (j € C).

When 8.
Sj = (shj, {kij tien), {tag;i tiepn)) corresponding to Pj (j € €) as response from Figya-

obtained by invoking S,

invokes its ideal functionality Fiqua computing f ALQ{]QJ o f with input z;, send output

idua

Round 2: Let m>' « 8., (T1,v/, fkg{\zj o f,P;r}) (i € H) correspond to Round 2 message of
P; obtained by invoking 8 . with randomness 7“1»1 and transcript of Round 1 (first instance
E=1)ieT; = {mjl-’l}jee, Yy = {S;}jcc i.e output of Figya, fALgP/]QJ o f as the function to be
computed and P as the set of parties involved in computation. Send mf’l on behalf of P; to
A. Receive m?’l sent by P; (j € C).

— Round 3: For each i € J(, send (sh;,tag;;) (j # i) on behalf of P;.

|

i s h1
Figure 6.16: Simulator 8¢y

/-[ Simulator Sgglbl }

Let € C [n] and H = [n] \ C be the set of indices of the corrupt parties and the honest parties

Smal,l‘

respectively. The following steps are carried out by Sy :

— Round 1: For k = 1,2, let mil’k ¢ 8ra (TF) (i € H) correspond to the Round 1 message of P;

(2

. With randomness r¥. Send {m}’k}keg on behalf of P; to A. Receive
{m;’k}ke[g] sent by P; (j € €).

obtained by invoking S

idua

— Round 2: Send mjl-’1 to 8y

the corrupt party to invoke its ideal functionality Figua computing f}gﬁﬂ o f, 828',’31 does the

on behalf of P;. When 8, . returns the extracted input {z;};ce of

following:

- If there exists a j € € such that z; = L, send ¥ = (L, P;) to A as output response of Figya.
- Else choose random sh; for j € € and compute its authentication (Step 2, 3 of fkg{]%() of
Figure 6.5). The resulting values S; = {shj, {ki;}ic[n), {tag;; }icpn)} for each j € C are

given to A as the output from functionality Fiqya-

Let m?’l — S (Tl,ty’,]‘“ﬁt‘g{]2J o f,P;rl) (i € H) correspond to the Round 2 message of P;

obtained by invoking 8., ~with P;’s randomness ril, transcript of Round 1 (first instance

E=1)ie T, = {mjl-’l}je@, output ¥’ = {S;};ce of Fiqua, flyslﬁzj o f as the function to be

idua
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computed and P as the set of parties involved in computation. Send m?’l on behalf of P; to
A. Receive m?’l sent by P; (j € €) and send it to 8r,,, on behalf of P;.

— Round 3: We now have 2 cases -

Tidua

- If 8., invokes Figya with (abort,B), do the following: Send mjl»’2 to § on behalf of A
(P; € &) corresponding to second instance of 7igua. Suppose {x;};ce is the extracted
input returned by 8r,.., then invoke Fyoq with {z;};ce and substituting default input
of party in B; on behalf of A to obtain output y. Let m?’Q S (T1,y, £2, P\ B; )

. With P’s

randomness 72, transcript of Round 1 (second instance k = 2) i.e Ty = {mjl-’Q}jee, output

(1 € H) correspond to the Round 2 message of miq,, obtained by invoking S

y, f? as function to be computed (same as f except with default inputs hardcoded for
2,2
i

behalf of P; to A. Receive m?’2 sent by P; (j € €) and send it to 8, on behalf of P;.

the parties in B) and P \ B as the set of parties involved in computation. Send m;** on

- It 871Fidua
abort of 8T8l ( Figure 6.15).

invokes JFiqus with continue, run the same steps as Round 3 simulation incase of no

Figure 6.17: Simulator Sgglg

Simulator 85 wrt (t,,t,) = (1, |n/2]): Let A be a malicious adversary controlling atmost

1 party actively and upto |n/2| parties passively in an execution of ﬂgg’bl. The simulator

873 running an ideal-world evaluation of the functionality Fyoq (refer Figure 2.4) computing

f whose behaviour simulates the behaviour of A is described in Figure 6.17. There are 2
different scenarios based on whether A aborts the computation in first instance of mq,,. Incase

abort doesn’t occur, simulation proceeds similar to 8T3, (Figure 6.15) except that instead of

analysis in FA

lina- hybrid model, the simulator 8, is invoked for simulation in Round 1 and

Round 2. Another difference is that an additional instance of Round 1 of mq,, is simulated.

Thus, in case of no abort, it follows from the security argument wrt 8T8}y and the security of

Tidua that the view of A in the ideal world is indistinguishable to the view of A in the execution

f bou,l

Consider case of abort which returns the identity of cheater, say singleton set B, (igua
realizes Figua). Another execution of gy, is used to compute the function f® (same as f except

that it hardcodes default input of the actively corrupt party identified). Accordingly, Round 3

of 71'2%“61 is simulated by invoking 8., to obtain Round 2 of migu, wrt function f® among parties

in P\ B (wrt second instance of Round 1 of mg,, run in Round 1 of WZCS',’DI). Note that the

output of first instance of mqg,, was simulated perfectly by Sgg'g without invoking Fgoq (relying

on privacy of f,_ligfj (), similar to argument in 8Z3,), implying that A had no information about
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the output of f at the end of Round 2. It is now easy to check that the only difference that
remains between the ideal and the real execution is that the messages of honest parties are
in the ideal world. We can thus conclude that the view of A in the ideal

world is indistinguishable to the view of A in the execution of WZ%BI based on the security of

obtained via 8,

idua

Tidua and the security arguments presented wrt 8Ta,. This completes the proof.
6.6.3.4 Proof of Security of 72 (Theorem 6.8)

We prove Theorem 6.8 by presenting two separate simulators 8g' and 8™ for the case of
corruption scenarios (t,,t,) = (0,n — 1) and (t,,t,) = ([n/2] — 1, |n/2]) respectively. The
bou

protocol m£% is analyzed in a FAM-hybrid model where the parties have access to a trusted

party computing 2" (Figure 6.13).

Simulator 8§" wrt (¢,,¢,) = (0,n—1): Let A be the boundary-admissible passive adversary
controlling upto (n — 1) parties in the F/M-hybrid model execution of 7£°. The simulator
8. running an ideal-world evaluation of the functionality Fgeq (refer Figure 2.4) computing f
whose behaviour simulates the behaviour of A is described in Figure 6.18. It directly follows
from the security arguments presented wrt 8y (Figure 6.14), that the view of A in the ideal

world is identical to the view of A in the FAM-hybrid model execution of wEu.

/—‘ Simulator S?L‘ N

Let € C [n], H denote the set of indices of corrupt and honest parties respectively. The following

steps are carried out by 8?2‘

— Invoking Fgoq: Receive {x;};jce corresponding to the parties controlled by passive adversary A.

Invoke Fgoq on behalf of A with {z;};ce to receive an output value y in return.

— Qutput of ’J"ﬁaSh to A: Compute the authenticated secret-sharing of value y with threshold ¢t =
In/2] (Figure 6.5) as (S1...S,) = ,&g{]% (y) and send S; = (shy, {kij}icin), {tag;i}icpn)) as
output of FA" to P; (j € €).

— Round 3: Broadcast (sh;,tag;;) on behalf of P; for each i € 3, j # i.

\ J

Figure 6.18: Simulator Sg"

Simulator 87" wrt (¢,,t,) = ([n/2] — 1,|n/2]): Let A be a malicious adversary with
corruption parameters (t,,t,) = ([n/2]—1, |n/2]) parties in the FA>P-hybrid model execution of
7!, The simulator 87! running an ideal-world evaluation of the functionality Fe,;, (Figure 2.3)
computing f whose behaviour simulates the behaviour of A is described in Figure 6.19. There

are 2 different scenarios based on whether A aborts the computation of FAh. Incase of abort,
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it follows from privacy of sharing function fALg{]ZJ that the view of A in the ideal world is
indistinguishable to the FA>P-hybrid model execution of £, In case of no abort, the simulation
proceeds similar to 8Z3, (Figure 6.15, no abort case). We can thus conclude based on the
security arguments of T3y and the properties of authenticated secret-sharing that the view
of A in the ideal world is indistinguishable to the FA>"- hybrid model execution of 72°!. This

fn
completes the proof.

: man
/—[ Simulator 8§ ] \

Let € C [n] and H = [n] \ € be the set of indices corrupt and honest parties respectively. The

following steps are carried out by S?r}a':

— Interaction of A with FA": Receive {x;};ece sent by malicious A to FASh in this FASN-hybrid

ua
execution model. If for any j € C, x; is outside of domain of input, send L as output of fr"ﬁfh

to A and send L as input to Frj, on behalf of A. Else run the following steps.

— Qutput of L/?aSh to A: Choose random sh; for j € € and compute its authentication (Step 2, 3 of

fgﬁﬂ in Figure 6.5). The resulting values S; = {shy, {kij}icin) {tag;i} e[} arve given to A

as the outputs of the corrupted parties from functionality ?uAaSh. Note that functionality Fr.;,

computing f has not been invoked yet.
— Invoking Fsar: We have 2 cases based on whether A invokes ?uAaSh with abort or continue.

- abort: Send L as input to g, on behalf of A; thereby completing the simulation.

- continue: Invoke Jg with {z;};ce on behalf of A to obtain y.
— Round 3: The following steps are used to simulate Round 3 -

- Interpolate a |n/2]-degree polynomial A(x) with A(j) = sh; for j € € and A(0) =y.

- Set sh; = A(i) for i € H. Using k;; (consistent with the output of FAN sent to A), compute
tag;; = Macy,; (sh;).

- Send (sh;,tag;;) (i € 3() on behalf of P; (j # 1).

Figure 6.19: Simulator 8T
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Part 111

Secure Computation in Hybrid
Networks
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Chapter 7

On the Power of Hybrid Networks in
Multi-Party Computation

In this final chapter, we depart from the computational and synchronous setting of the previous
chapters of the thesis and explore the information-theoretic setting where the adversary is
computationally unbounded and explore asynchrony in the network as well. Specifically, we
investigate perfectly-secure VSS and MPC protocols in hybrid networks that combine the best

features of protocols in the synchronous and asynchronous networks.

7.1 Introduction

In the literature, VSS and MPC have been explored in two prominent network settings: syn-
chronous and asynchronous networks. Recall that in the synchronous setting (also known as
bounded-synchronous [83, 175, 100, 13]), it is assumed that the delay of messages in the chan-
nels of the network is bounded by a known constant. This allows protocols to proceed in rounds,
with the strong delivery guarantee that every message sent in any given round is delivered to
all the recipients in the same round. In contrast, in the asynchronous setting, the channels in
the network may have arbitrary delays and may deliver messages in any arbitrary order, with
the only restriction that every sent message must eventually be delivered. In order to model
the worst case, the adversary is allowed to control the scheduling of messages in the network.
The synchronous network is well-behaved and convenient, but unrealistic and inapplicable
in many practical environments. Whereas, the asynchronous network can aptly model real-life
networks like Internet, is difficult to deal with and less convenient. When the channel delays
are short, the protocols in asynchronous networks may be faster than synchronous protocols

which have to allow each round to be long enough, such that all messages can get through, even
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in the very worst case. As a result, softwares based on practical implementation of synchronous
protocols must choose actual waiting time correctly with respect to the network used. This
makes the software dependant on the underlying network which is clearly undesirable, as it
creates an extra source of errors, insecurity, or both [75]. Therefore, many practical frameworks
follow an asynchronous communication model. For instance, VIFF (Virtual Ideal Functionality
Framework) [75] is basically asynchronous and operates on the principle that parties proceed
whenever possible and allows automatic parallel scheduling of the operations, i.e. the program-
mer does not have to specify any explicit timing of operations. Sharemind [39], a framework for
fast privacy-preserving computations is also based on asynchronous communication model that
allows to omit the central synchronisation service and thus reduce network delays that have
significant impact on the overall efficiency. Finally, implementations with network layer based
on UDP networking must account for a malicious network scheduler that can drop messages or
change their order, which is appropriately modelled by the asynchronous network [38]. These
clearly substantiate that asynchronous network is more realistic and in many cases results in
faster protocols than synchronous network.

On the downside, asynchronous protocols suffer from low fault-tolerance, high communica-
tion complexity and relatively weaker guarantees compared to their synchronous counterparts.
The asynchronous VSS suffers from dealer-dependent termination where termination of the
sharing phase is guaranteed only when the dealer is honest. Whereas, synchronous VSS guar-
antees termination independent of the status of the dealer. Similarly, asynchronous MPC suffers
from input deprivation that refers to a property where inputs of upto ¢ honest parties may be
excluded from computation. Whereas, synchronous MPC offers input provision which refers to
inclusion of the inputs of all the honest parties for computation, apart from giving the other
properties of asynchronous MPC. All the above issues are supposedly caused by the following
inherent and trademark difficulty in the asynchronous model. In an asynchronous network, an
honest party whose message is delayed in the network cannot be told apart from a corrupted
party who did not send a message at all. So an honest party in an asynchronous protocol,
unlike in a synchronous protocol, cannot wait for the messages from all the parties, as it would
potentially risk him to wait infinitely. To avoid the risk, an honest party’s computation in an
asynchronous protocol should be carried on with the receipt of (n — t) parties at any given
step. Unfortunately, this may risk ignoring the values of up to ¢ potentially honest parties at
any given step. In what follows, we highlight the well-known gaps in the feasibility results of
the synchronous and asynchronous VSS and MPC that corroborate with the above inherent

difficulty faced in asynchronous protocols.
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7.1.1 Related Work

It is known that the feasibility of asynchronous protocols holds under stricter conditions than
that of synchronous protocols. Perfect (error-free) asynchronous MPC (and VSS) requires
t < n/4 [31], whereas perfect synchronous MPC (and VSS) is feasible with ¢ < n/3 [30, 79].
Statistical and computational asynchronous MPC (and VSS) protocols require t < n/3 [51, 32,
48], whereas their synchronous counterparts are feasible with ¢ < n/2 [83, 177, 175]. Though
our work mainly concerns the theoretical feasibility gap between the two classes, the following
results on communication efficiency further substantiate that the state-of-the-art protocols in
asynchronous world lag far behind. The best known perfect MPC protocol in the synchronous
and asynchronous network achieves communication complexity O(|C|n|F|) [21] and O(|C|n?|F|)
[174] bits respectively. Here |C| denotes the number of multiplication gates in the arithmetic
circuit C representing the function to be computed and [F denotes the underlying field. The gap
is noticeably wider in the statistical case. For a statistical security parameter p, it is O(|C|nu)
bits [33] versus O(|C|n°u) bits [173]. The situation is slightly promising in the cryptographic
setting. For a security parameter denoted as k, the best protocols in both the worlds achieve
O(|C|nk) bits of communication complexity [117, 61]. However, while the synchronous protocol
of [117] relies on homomorphic encryption, the protocol of [61] uses somewhat homomorphic

encryption (SHE). A summary of the above results are given below.

Security Network Resilience Communication
Complexity

Synchronous | t <n/3 [30] | O(|C|n|F|) [21]
Perfect

Asynchronous | t <n/4 [31] | O(|C|n?|F]|) [174]

o Synchronous | t <n/2 [177] | O(|C|nu) [33]

Statistical

Asynchronous | t <n/3 [32] | O(|C|n°u) [173]

Bridging the Gaps While no effort has been made thus far to close the gaps in fault-tolerance
of VSS protocols in any setting, MPC literature has seen a few attempts. The first attempt
to bridge the feasibility gap between synchronous and asynchronous MPC was made by [23].
Their cryptographic MPC protocol provides input provision and works with ¢ < n/2 which is the
same bound necessary and sufficient for synchronous cryptographic MPC. This is achieved at
the expense of one initial synchronous round that allows access to broadcast oracle in the hybrid
network setting. A network that is asynchronous in nature and yet supports a few synchronous
rounds at the onset of a protocol execution is denoted as hybrid network. In an alternative

approach, [75] introduces a synchronisation point (the network is asynchronous before and after
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the point) and presents a perfect asynchronous MPC protocol with ¢ < n/3. MPC protocol
in the synchronisation point model inherently do not guarantee termination and outputs to
all honest parties. In yet another approach, [14] uses non-equivocation technique to achieve
asynchronous MPC with ¢ < n/2 that matches the bound needed for cryptographic synchronous
MPC. Non-equivocation is a message authentication mechanism to restrict a corrupted sender
from making conflicting statements to different (honest) parties and requires cryptography for
realization. [63, 62| shows how to bridge communication-efficiency gap for perfect MPC with
the help of a single synchronous round. There have also been attempts to improve feasibility
bounds of broadcast [12, 84, 153] which is a special case of MPC and a fundamental problem
in distributed computing, by assuming slightly more powerful communication models. [85, 68]
achieve improved fault resilience of unconditional broadcast by assuming existence of partial

broadcast channel among subset of parties.

7.1.2 Our Results

Taking cognizance of the fact that asynchronous network is more realistic and may result in
faster protocols on one hand and on the other, synchrony of a network has positive impact
on several aspects of distributed protocols, we set our focus on the power of hybrid networks
that combines best of both the worlds. In hybrid networks, we wish to investigate feasibility
of protocols giving guarantees attainable in synchronous as well as asynchronous networks.
Denoting synchronous/asynchronous VSS (SVSS/AVSS) and synchronous/asynchronous MPC
(SMPC/AMPC) to refer to the properties of the protocols that can be achieved in the respec-
tive networks, we present our findings below. The notations should not be confused with the
underlying network. All our results are based in the hybrid network model. For asynchronous
protocols, we wish to bridge the fault-tolerance gap between synchronous and asynchronous pro-
tocols with minimum synchrony assumption needed, leveraging the initial synchronous rounds.
For synchronous protocols, we explore if the known lower bounds on round complexity can be
circumvented, leveraging the asynchronous phase available in the hybrid network. While the
details of our results appear in Section 1.4.4, we summarize them below.

For the asynchronous protocols in hybrid networks, we hope to leverage the initial syn-
chronous rounds to bridge the gap in the fault-tolerance with the synchronous protocols under
minimal synchrony assumption. We ask the following fundamental question of both theoretical
and practical importance: What is the minimum number of initial synchronous rounds nec-
essary and sufficient in a hybrid network to construct asynchronous perfectly-secure VSS and
MPC protocols with the fault-tolerance of synchronous protocols? On the positive note, we show

that the answer is one for VSS which is clearly optimal. Notably no broadcast oracle is invoked
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in the synchronous round of our proposed VSS protocol. On the negative side, we prove that
one synchronous round is not enough for MPC, putting MPC on a higher pedestal than VSS
in terms of difficulty.

For synchronous protocols in hybrid networks, we hope to save on the synchronous rounds
leveraging conveniently the available asynchronous phase. We settle the question for VSS in the
negative showing that three rounds that are known to be necessary (and sufficient) for VSS in
synchronous networks, are also required in hybrid networks. VSS being a special case of MPC,
the lower bound holds true for MPC. We match the lower bound with a 3-round protocol.
Notably, synchronous MPC with cryptographic security is known to be achievable in hybrid
networks with one synchronous round.

We summarize the feasibility results of SVSS/AVSS and SMPC/AMPC in hybrid networks
in terms of initial synchronous rounds needed in the table below. Finding a tight upper bound

for AMPC with two rounds remains an interesting open question.

Table 7.1: Feasibility for SVSS/AVSS and SMPC/AMPC with ¢ < n/3 in Hybrid networks

Security ‘ ‘ Asynchronous ‘ Synchronous

Necessary One [Trivial] Three (Our Work) [167]
Sufficiency | One (Our Work) [167] Three [101]

Necessary | Two (Our Work) [167] Three (Our Work) [167]
Sufficiency | Three (Our Work) [167] | Three (Our Work) [167]

VSS

MPC

Lastly, our results reinforce several general beliefs in the context of hybrid networks: (a)
AMPC is harder to achieve than AVSS, (b) SVSS is harder to achieve than AVSS with the
same resilience, (c) perfectly-secure SMPC is harder to achieve than cryptographic SMPC.

Roadmap. In Section 7.2, we describe the network and adversarial model, introduce some
notation, recall the relevant definitions and discuss the primitives needed for our protocols.
In Section 7.3, we present a novel primitive termed as asynchronous weak polynomial sharing
(AWPS) protocol which will serve as a building block for our proposed AVSS protocol. In
Section 7.4, we present our AVSS protocol. The impossibility results on AMPC and SVSS
appear in Section 7.5 and 7.6 respectively. Section 7.7 presents our SMPC over hybrid network

with three synchronous rounds.

7.2 Preliminaries

7.2.1 Model

We consider a set of n > 3t + 1 PPT parties P = {P,..., P,}, connected by pairwise secure

and authentic channels. We assume that there exists a static computationally unbounded
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adversary A, who can actively corrupt at most ¢ out of the n parties and make them behave
in any arbitrary manner during the execution of a protocol. We further allow the adversary to
be rushing, i.e. in every round (or step) it can wait to hear the messages of the honest parties
before sending his own messages.

We consider a hybrid network that is asynchronous in nature and yet supports a few initial
synchronous rounds. During the onset of a protocol execution, the network behaves like a syn-
chronous network with a global clock, and the protocol proceed in rounds with strong delivery
guarantee that messages sent by any party in any given round are delivered to all recipients in
the same round. The channels have fixed delays. After the synchronous rounds, the underlying
network turns to a complete asynchronous network that deliver messages in an arbitrary order
and impose arbitrary delays on them. Specifically, the communication channels between the
parties have arbitrary, yet finite delay (i.e. the messages are guaranteed to reach their desti-
nations eventually). Moreover the order in which the messages reach their destinations may
be different from the order in which they were sent. To model the worst case scenario, A is
given the power to schedule the delivery of every message in the network. However, A can only
schedule the messages communicated between the honest parties, without having any access to

the “content” of these messages. More details on asynchronous model can be found in [49].

Notation. he computation in our protocols is performed over a finite field F such that |F| > n.
Every field element can be represented by log |F| bits. A set of values Set = {(i, s;)} of size at
least t+1 is said to be t-consistent if there exists a polynomial over F, say f(z), of degree at most
t, such that f(i) = s;. We define an algorithm constantTerm that takes a set Set = {(i,s;)}
with at least ¢ + 1 values and returns f(0) if Set is ¢-consistent and f(x) is the polynomial
passing through the points, L otherwise. When there are exactly ¢t + 1 points, constantTerm

always returns f(0).

7.2.2 Definitions
Synchronous/asynchronous VSS (SVSS/AVSS) and synchronous/asynchronous MPC (SMPC

/ AMPC) refer to the properties of the primitives attainable in synchronous and asynchronous
networks respectively as defined formally below. This should not be confused with the under-

lying network. All our results are based in the hybrid network model.
We next recall the definition of AVSS from [31, 49].

Definition 7.1 (Asynchronous Verifiable Secret Sharing (AVSS) [31, 49]) A pair of pro-
tocols (Sh,Rec) for n parties P, where a dealer D € P holds a private input s € F for Sh is an
AVSS scheme tolerating A if the following requirements hold for every possible A and for all
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possible inputs of D:
— Termination:

1. If D is honest and all the honest parties participate in the protocol Sh, then each

honest party eventually terminates the protocol Sh.

2. If some honest party terminates Sh, then irrespective of the behavior of D, each

honest party eventually terminates Sh.

3. If all the honest parties invoke Rec, then each honest party eventually terminates

Rec.

— Correctness: If some honest party terminates Sh, then there exists a fixed value s € F, such
that the following requirements hold. We refer to the above as ‘D has committed/shared s

during Sh’.:

1. If D is honest then 5 = s and each honest party upon completing the protocol Rec,

outputs s.

2. Even if D is corrupted, each honest party upon completing Rec outputs s, irrespec-
tive of the behavior of the corrupted parties. This property is also known as strong

commaitment.

— Privacy: If D is honest then the adversary’s view during Sh reveals no information about s
in the information-theoretic sense; i.e. the adversary’s view is identically distributed for

all possible s.

The termination guarantee of AVSS is dealer-dependent. The sharing phase protocol needs
to terminate when the dealer is honest. In contrast, the sharing phase of SVSS protocols must

terminate irrespective of any adversarial behavior. We now formally define synchronous VSS
(SVSS).

Definition 7.2 (Synchronous Verifiable Secret Sharing (SVSS) [59]) A pair of proto-
cols (Sh,Rec) for n parties P, where a dealer D € P holds a private input s € F for Sh is a
SVSS scheme tolerating A if the following requirements hold for every possible A and for all
possible inputs of D:

— Termination: If the honest parties participate in Sh and Rec, the respective protocols must

terminate.
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— Correctness: There ezists a fized value 5§ € F, such that the following requirements hold.

1. If D is honest then 5 = s and each honest party upon completing the protocol Rec,

outputs s.

2. Even if D is corrupted, each honest party upon completing Rec outputs s, irrespec-
tive of the behavior of the corrupted parties. This property is also known as strong

commitment.
We refer to the above as ‘D has committed/shared s during Sh’:

— Privacy: If D is honest then the adversary’s view during Sh reveals no information on s.

More formally, the adversary’s view is identically distributed for all possible values of s.
Next, we recall the definition of t-sharing and 2d-sharing.

Definition 7.3 (t-sharing and 2d-sharing) A value s € F is said to be t-shared among P if
there exists a polynomial over F, say f(x), of degree at most t, such that f(0) = s and every
(honest) party P; holds a share s; of s, where s; = f(i). A value s € F is said to be 2d-shared
among P if:

— s is t-shared among P with shares (s1,...,S,) and
— each share s; is also t-shared among P.

We use [s| and (s) to denote that s is t-shared and 2d-shared respectively.
We now proceed to present the definition of AMPC and SMPC.

Definition 7.4 (Asynchronous Multi-Party Computation (AMPC) [32]) Let F : F* —
F" be a publicly known function and let party P; have a private input x; € F. Any AMPC con-
sists of three stages. In the first stage, each party P; commits its input. Even if P; is faulty, if it
completed this step, then it is committed to some value (not necessarily x;). Let ) be the value
committed by P;. If P; is honest then x, = x;. Then the parties agree on a common subset C
of at least n — t committed inputs. In the last stage the parties compute F(y1,...,y,), where
y; =z if P, € C, otherwise y; = 0.

An asynchronous protocol m among the n parties for computing the function F is called an
AMPC protocol if it satisfies the following conditions for every possible A and inputs of the

honest parties:
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— Termination: If all the honest parties participate in the protocol, then every honest party

eventually terminates .

— Correctness: Fuvery honest party outputs F(yi,...,yn) after completing w, irrespective of

the behavior of the corrupted parties.

— Privacy: The adversary obtains no additional information (in the information-theoretic
sense) about the inputs of the honest parties during w, other than what is inferred from

the input and the output of the corrupted parties.

While AMPC suffers from input deprivation that refers to a property where inputs of upto ¢
honest parties may be excluded from computation, SMPC provides input provision and includes
inputs of all the honest parties for computation. Moreover, the termination is implicit for

perfectly-secure SMPC and is not defined separately.

Definition 7.5 (Synchronous Multi-Party Computation (SMPC)) Let F': F* — F" be
a publicly known function and let party P; have a private input x; € F. A protocol m among the
n parties securely computes y = F(x1,...,x,), if it satisfies the following for every possible A,

on all possible inputs:
— Correctness: All honest parties obtain y at the end of .

— Privacy: A obtains no additional information (in the information-theoretic sense) about the
inputs of the honest parties during mw, other than what is inferred from the input and the

output of the corrupted parties.

7.2.3 Primitives

7.2.3.1 Asynchronous Broadcast

In our protocols, we use the asynchronous broadcast primitive, which was introduced and
elegantly implemented by Bracha [43]; the primitive allows a special party S € P, called sender,

to send a message identically to all the parties. More formally:

Definition 7.6 (Asynchronous Broadcast [51]) Let II be an asynchronous protocol for the
n parties initiated by a special party S € P, having input m (the message to be broadcast). We

say that 11 is an asynchronous broadcast protocol if the following hold, for every possible A:

— Termination:
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1. If S is honest and all the honest parties participate in the protocol, then each honest

party eventually terminates the protocol.

2. Irrespective of the behavior of S, if any honest party terminates the protocol then

each honest party eventually terminates the protocol.

— Correctness: If the honest parties terminate the protocol then they do so with a common

output m*. Furthermore, if the sender is honest then m* = m.

Bracha presented a protocol called a-cast, for realizing the asynchronous broadcast primitive;
the protocol can tolerate upto ¢ < n/3 corruptions. For the sake of completeness, we recall the

Bracha’s a-cast protocol from [49] and present it in Figure 7.1.

—[ Protocol a—cast()}

— Input of S: A message m.

1. Code for the sender S: — only S executes this code:
(a) Send the message (MSG,m) to all the parties.
2. Code for the party P;: — every party in P (including S) executes this code:

(a) Upon receiving a message (MSG,m) from S, send the message (ECHO,m) to all the parties.

pon receiving n — t messages ,m at agree on the value of m*, send the message
b) U ivi t ECHO, m*) that th | f m* d th
(READY, m*) to all the parties.

(c) Upon receiving t + 1 messages (READY,m*) that agree on the value of m*, send the message
(READY, m*) to all the parties.

(d) Upon receiving n — t messages (READY, m*) that agree on the value of m*, send the message

(0K, m*) to all the parties, output m* and terminate the protocol.

Figure 7.1: Bracha’s asynchronous broadcast protocol tolerating ¢t < n/3 corruptions [49]

Theorem 7.1 ([49]) Protocol a-cast is an asynchronous broadcast protocol.

7.2.3.2 Online Error Correction (oec) [49, 20]

Online error correction protocol oec can be viewed as the method of applying Reed-Solomon
(RS) error-correction [154] in the asynchronous setting. Given a value which is t-shared among

a set of parties P, the goal is to publicly reconstruct the value robustly (actually oec allows
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the parties to reconstruct the entire polynomial using which the value is t-shared). In the
synchronous setting, this can be achieved by asking every party in P to send its share. Then
the parties apply RS error-correction to reconstruct the value. Given the condition t < (|P|—2t),
the reconstruction will be robust. In the asynchronous setting, achieving the same goal requires
a small trick.

The intuition behind oec is that the parties wait till they receive the shares of 2¢ + 1
parties, all of which lie on a unique polynomial of degree t. This step requires applying RS
error-correction repeatedly. We denote an RS error-correcting procedure as RS-dec(t,r, W)
that takes as input a vector W of shares (some of them possibly incorrect) of a t-shared value
(that we would like to reconstruct) and tries to output a polynomial of degree ¢, by correcting
at most r errors in W. Coding theory [154] says that RS-dec can correct r errors in W and
correctly interpolate the original polynomial provided that |W| > ¢ + 2r 4 1. There are several
efficient implementations of RS-dec (for example, the Berlekamp-Welch algorithm [154]). Once
the parties receive the shares from 2t 4+ 1 parties that lie on a unique polynomial of degree
t (returned by RS-dec), then that unique polynomial is the actual polynomial, say Q(z), of
degree t that defines t-sharing of Q(0). This is because at least ¢ 4+ 1 values out of the 2¢ + 1
values are from the honest parties, which uniquely define the original polynomial Q(z). Note
that the corrupted parties in P may send wrong values. But there are at least n —¢ > 2t + 1
honest parties in the set P whose shares will be eventually received by all parties in P and so
every honest party in P will eventually terminate the process. The above procedure is nothing
but applying RS error-correction algorithm in an “online” fashion.

The steps for the oec are now presented in Figure 7.2. The current description is inspired

from [49]. The properties of oec are stated in the following theorem.

—[ Protocol oec()]

Setting: A value is t-shared among a set of parties P, where Q(z) is the underlying sharing polyno-
mial of degree at most ¢, where ¢t < (n — 2t); each party P; € P holds the share v; = Q(i) of Q(0).
The parties are supposed to publicly reconstruct the polynomial Q(x).

Code for the party P, — Every party in P executes the following code:
1. Send share v; to all P; € P.
2. For r =0,...,t, do the following in iteration r:

(a) Let W denote the set of parties in P from whom P; has received the shares and I, denote the

values received from the parties in W, when W contains exactly 2t 4+ 1 4 r parties.
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(b) Wait until |[W| > 2t 4+ 1 + r. Execute RS-dec(t,r, I,) to get a polynomial Q,(x) of degree t. If

no polynomial is output, then skip the next step and proceed to the next iteration.

c) If for at least 2t + 1 values v; € I, it holds that Q,(j) = v;, then output @, (x) and terminate.
j j

Otherwise, proceed to the next iteration.

Figure 7.2: Protocol for online error-correction [49]

Theorem 7.2 ([49, 20]) Let a value be t-shared among a set of parties P where t < (|P| — 2t)
and let Q(x) be the underlying sharing polynomial. Then protocol oec achieves the following

properties for every possible A:
— Termination: Every honest party in P eventually terminates the protocol.

— Correctness: Fach honest party in P upon terminating outputs Q(x).

7.2.4 Beaver’s Circuit Randomization Technique

Beaver’s circuit randomization method [18] is a well known method for securely computing [z-y],
from [z] and [y], using a precomputed t-shared random and private multiplication-triple, say
([a], [0], [c]), at the expense of two public reconstructions of t-shared values. For this, the parties
first (locally) compute [e] and [d], where [e] = [z] — [a] = [z — a] and [d] = [y] — [b] = [y — b],
followed by the public reconstruction of e = (r — a) and d = (y — b). Since the relation
zy = ((z —a) +a)((y —b) + b) = de + eb + da + ¢ holds, the parties can locally compute
[zy] = de + e[b] + d[a] + [c], once d and e are publicly known. The above computation leaks
no additional information about x and y if @ and b are random and unknown to the adversary.

We present protocol Beaver in Figure 7.3.

—[ Protocol Beaver()}

— Input of the parties in P: A ¢-shared multiplication triple ([a], [0], [¢]) and ¢-shared pair ([z], [y]).

— Primitives Used: Protocol oec

— The Protocol: The protocol runs asynchronously.

1. Compute [e] and [d] as [e] = [z] — [a] =[x — a] and [d] = [y] — [b] = [y — b].
2. The parties publicly reconstruct d and e using two instances of oec.

3. The parties locally compute [zy] = de + e[b] + d[a] + [c].
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Figure 7.3: Beaver’s Circuit Randomization for Multiplication

The properties of the protocol Beaver are stated in Theorem 7.3.

Theorem 7.3 ([18]) Given a t-shared multiplication triple ([a], [b], [c]) and t-shared pair ([z], [y])

unknown to the adversary A, Protocol Beaver achieves the following for every possible A:
— Termination: All honest parties eventually terminate the protocol.
— Correctness: The honest parties correctly output [xy| at the end of the protocol.

— Privacy: The view of A is distributed independently of the x and y values.

7.2.5 Properties of Bivariate Polynomials

We state some well known standard properties of symmetric bivariate polynomials below from

[9] which are used to prove security of our AVSS protocol.

Lemma 7.1 ([9]) Let K C [n] be a set of indices such that |K| > t 4+ 1. Let {fx(2)}rex
be a set of polynomials of degree atmost t. If for every i,j € K, it holds that f;(j) = f;(i),
then there exists a unique symmetric bivariate polynomial F(x,y) of degree atmost t such that
fi(x) = F(x,i) = F(i,z) for everyi € K.

Lemma 7.2 ([9]) Suppose I C {1,...,n} with |I| < t, and q(z), q(z) are two degree t
polynomials over F such that q1(i) = qa2(2) for every i € I. Then the following distributions are
indistinguishable; i.e,

{<i’F1(xvi))}i€I} = {(i7F2(x7i))}i€I

where FY(x,y) and F*(z,y) are symmetric degree t bivariate polynomials chosen at random

under the constraints that F'(x,0) = q;(z) and F?(x,0) = q(x), respectively.

7.3 Asynchronous Weak Polynomial Sharing

We introduce a new primitive termed as Asynchronous Weak Polynomial Sharing (AWPS).
Informally the goal of the primitive is to allow a special party dealer D € P to share a random
polynomial, say f(x) over F of degree at most ¢t among n parties in P so that every honest
party P; obtains ith point on the polynomial f(i). When the dealer is corrupted, we wish
to settle for a weaker requirement where corrupt D may choose a subset of honest parties to

own shares of a unique and fixed polynomial of its choice. However, the subset must be big
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enough, namely of size at least t + 1, for D to be qualified in the AWPS. The most interesting
and important property of AWPS is that every honest party including those who are outcasted
will know whether it holds the share of the unique polynomial of corrupt D’s choice and will
terminate either with the correct share or with L.

An AWPS can be viewed as a primitive that allows to do ‘weak’ ¢-sharing (cf. Definition 7.3)
of the constant term of the input polynomial. Specifically, when D is honest, AWPS outputs
t-sharing of f(0). When D is corrupt, it is guaranteed that at least a set of ¢ + 1 honest parties
receive shares of f(0) where f(z) denotes the unique polynomial of degree at most t of D’s
choice. The remaining honest parties output L. We prefer AWPS as a primitive that shares
a polynomial instead of a secret. The former representation fits better when the primitive is
invoked in the AVSS protocol presented in the next section.

In the literature Asynchronous Weak Secret Sharing (AWSS) has been the key primitive
that AVSS relied on. AWSS, much like AVSS, is a two-protocol (Sh, Rec) primitive and allows
reconstruction of D’s committed secret via Rec protocol in a ‘weak sense’ (reconstructs either
the committed secret or L). Our AWPS primitive is weaker than AWSS in the sense that it only
involves the sharing phase and may not even allow weak reconstruction of the committed secret.
Yet, it helps build an AVSS protocol that achieves 2d-sharing of a secret (cf. Definition 7.3),
a lucrative feature that is very useful for building MPC. The formal definition of AWPS is

presented below.

Definition 7.7 Asynchronous Weak Polynomial Sharing (AWPS): A protocol wsh for
n parties P, where a dealer D € P holds a private polynomial f(x) of degree at most t picked
uniformly at random over F is a AWPS protocol tolerating A if the following requirements hold

for every possible A and for all possible inputs of D:
— Termination:

1. If D is honest and all the honest parties participate in the protocol wsh, then each
honest party eventually terminates the protocol wsh.
2. If some honest party terminates wsh, then each honest party eventually terminates

wsh.

— Correctness: If some honest party terminates wsh, then there exists a fived polynomial f(x)

over IF, such that the following requirements hold. We refer this as ‘D has partially-shared
flx)”
1. If D is honest, then f(z) = f(z) and each honest party outputs f(i).
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2. If D is corrupt, then every honest party P; upon completing wsh outputs either f(i)
or L. Moreover, there exist a set of at least t + 1 honest parties H such that each

honest party P; € H upon completing wsh outputs f(i).

— Privacy: If D is honest then A’s view is identically distributed for all possible f(0).

7.3.1 An AWPS Protocol in Hybrid network with One Synchronous
Round

We present an AWPS protocol wsh with n parties P where n > 3t + 1. The dealer initiates
the protocol by picking a symmetric bivariate polynomial F'(x,y) of degree ¢ in both variables
uniformly at random over F such that F'(x,0) and F'(0,y) are the same as the input polynomial
f(z) (with change of variable for F'(0,y)). Following some of the existing VSS protocols based
on bivariate polynomials [139], the synchronous round of the protocol goes as follows: D sends
fi(x) = F(x,7) to party P, and in parallel the parties exchange random pads to be used for
pairwise consistency checking of their common shares in the asynchronous phase. When a
bivariate polynomial is distributed as above, a pair of parties (P, P;) will hold the common
share F(i, j) via their respective polynomials f;(z) and f;(z). Namely, f;(j) = f;(i) = F (4, ).
In addition to the above information exchange, a party also registers the pads it sends to other
parties with the dealer. Looking ahead, the dealer will use these pads in the asynchronous
phase to detect potential conflicting pairs of parties.

In the asynchronous phase, every P; sends its list of pads received during the synchronous
round to the dealer. Using the sent list of pads from the synchronous round and the received
list of pads as reported by P;, the dealer records in a list ¢; the set of parties who are conflicting
with P; and communicates the list to P;. P, publicly discloses its share in clear that is common
with a party in conflict. For the rest, it makes the padded shares publicly available. D concludes
a party to be correct if he finds that the padded values and the shares in clear are consistent
with his chosen polynomial F'(x,y) and his recorded pad lists. D waits until he finds a set of
at least 2t + 1 correct parties. D publicly announces the set denoted as W. For an honest D,
we show that any pair of parties in W will be pairwise consistent. To prevent a corrupt D from
cheating, every honest party checks the sanity of W by enforcing that no pair in W publicly
conflicts over their values that are either in padded or in clear form. So even a corrupted D
cannot cheat and make the honest parties accept a set of (honest) parties who are not pairwise
consistent. Once W is agreed upon, there is a unique bivariate polynomial, say F(x,y) that is
committed by the dealer and is defined by the f;(x) polynomials of the honest parties in 'W.

The unique bivariate in turn defines a unique univariate polynomial f(x) = F(z,0) = F(0,y).
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The honest parties in W outputs the constant term of their f;(z) polynomials received from
the dealer as the share of f(z). The remaining parties who lie outside W compute their share
by interpolating a degree t polynomial over its common shares with the parties in W. If it
has conflict with a party in W, then the common share is publicly available. Otherwise, it
computes the common share by subtracting the padded value made public by the party in W
from the pad it sent in the synchronous round. For an honest D, the interpolation will result
in a degree t polynomial f;(x) consistent with the dealer’s original pick F'(z,y). Otherwise, the
interpolation may fail and P; outputs L. wsh is described in Figure 7.4.

For public announcement in asynchronous phase, we use the well-known asynchronous
broadcast primitive known as a-cast, which was introduced and elegantly implemented by
Bracha [43]. a-cast allows a sender in P to send a message identically to all the parties with
a termination guarantee when the sender is honest. If the sender is corrupt and one honest
party terminates then eventually every honest party will terminate the protocol with the same
output. The complete details of a-cast is given in Section 7.2.3.1. We say that ‘P; a-casts z’ to

denote that P, acts as a sender to broadcast x in an instance of a-cast.

—[ Protocol wsh()}

— Input of D: A random polynomial f(x) of degree at most ¢ over F.

— Primitives Used: Protocol a-cast (cf. Section 7.2.3.1)

— The Protocol: It assumes a synchronous phase with one round followed by an asynchronous
phase.

Synchronous Phase:

1. D chooses a random symmetric bivariate polynomial F'(z,y) of degree at most ¢ in both variables
such that F(z,0) = f(x). D sends the polynomial f;(z) = F(z,i) to party P;.

2. Each party P; € P picks a random pad m;; for every P; and sends m;; to P; and D. D denotes
the set of pads sent by P; to other parties as {mj;}p,eo.

Asynchronous Phase:
1. Each P; sends its received list of pads {m;;}p,;ep to D.

2. D denotes P;’s list as {mgz} p,ep- It computes and sends to P; a set ¢; of all P; € P for which

3. Each P; computes two lists A; and B; and a-casts (A;, B;, c;).
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— Ai = {aij = fi(j) + mij}per
— B; = {bij}pjejp where bij = fl(j) if Pj € ¢; and bi]’ = fl(]) + myj; otherwise.
4. On receiving (A;, Bj, c;), D marks a party P; as correct, includes it in a set W and a-casts Agree;
if:
— ai; —mj; = F(i,7)
— by = F(i,j) for VP;j € ¢; and b;; —mj; = F(i,j) otherwise
— ¢; is the same list that D communicated to P; over point-to-point channel
D waits until [W| > 2¢ + 1 and then a-casts W.
5. On receiving W, P; accepts W if W is wvalid where a valid W satisfies the following:
— For each P; € W, Agree; and (Aj,Bj,cj) is received from the a-cast of D and P; respectively
— Every pair (P}, P;) € W is pairwise consistent where pairwise consistency is defined as follows:
i. if (Pj eEcp, NP € Cj) then bjk = bkj7
ii. if (Pj ccp NP & Cj) then agj = bjk,
iii. if (Pj gcp NPy e Cj) then Qi = bkj;
iv. else A = bkj and agj = Ojk-
- W] >2t+1

6. On accepting W, P; outputs s; and terminates wsh where s; is computed as follows:

— If P, € W, then s; = f;(0).

— Else s; = constantTerm({(j, si;) } p,ew) Where s;; = bj; if P; € c¢; and s;; = bj; — m;; otherwise.

Figure 7.4: A Weak Polynomial Sharing Protocol

Claim 7.1 An honest D eventually consider every honest party P; € P as correct and a-cast

Agree,.

Proof: As both P; and D are honest, all the following conditions will be true: (i) a;; —mj; =
F(i,j) (i) by = F(i,j) for VP; € ¢; and bj; — mj; = F(i,j) otherwise (iii) c; is the same list

that D communicated to P; over point-to-point channel. Hence the claim follows. O
Claim 7.2 For an honest D, any pair of correct parties (P;, Py) is pairwise consistent.

Proof: We consider the checks for the four possible cases of pairwise consistency checking

based on whether P; belongs to P;’s conflict list ¢, and vice versa.

288



— P; € ¢, A Py € ¢;: An honest D verifies that bj, = F(k,j) and by; = F(j, k). So bji, = by,
will hold.

— Pj € cp A Py & c;: An honest D verifies that ay; = F(j, k) +mj;, by = F(j, k) +mj; and

My = M, The last equality follows from Py & ¢;. So ax; = bj, will hold.

i & ¢k A Py, € ¢;: An honest D verifies that aj, = F(j, k) +m3,, by; = F(j, k) + mj, and

mf, = mj,. The last equality follows from P; € cx. So ;i = by; will hold.

— Pj & cp A P & cj: An honest D verifies that aj, = F(j, k) +m3,, by = F(j,k) + mj;,
arj = F(j, k) +mi;, b = F(j, k) + mjy, mj, = m3 and my; = mj, . So a;, = by; and

Qr; = bjk:‘

The proof holds good irrespective of whether P; and P} are honest or corrupt. O

Claim 7.3 If an honest P; finds a set W valid, then every other honest party will find it valid

eventually.

Proof: We note that the W set is a-casted by D. By the correctness property of a-cast, if
honest P; receives a set W, all the other honest parties will receive the same set eventually.
Since the validity checking of W is done on the information received from a-cast of various
parties, every honest party will find the conditions true following the correctness property of

a-cast. U
Lemma 7.3 Protocol wsh satisfies the termination property stated in Definition 7.7.

Proof: We first show that if D is honest and all the honest parties participate in protocol
wsh, then each honest party eventually terminates the protocol. To prove the statement, we
show that an honest D can always find a set W that will be accepted by one honest party.
Subsequently, by Claim 7.3, every other honest party will accept W. After accepting W, the
parties terminate protocol wsh after a local computation step. Now our claim that an honest
D will always find a valid W where every pair will be pairwise consistent follows from the
following argument. First, D will eventually consider every honest P; as correct and a-cast
Agree; (by Claim 7.1) and there are at least 2¢ 4+ 1 honest parties. Second, any pair (F;, P))
who are considered to be correct by an honest D, no matter if they are honest or corrupt, they
are pairwise consistent (by Claim 7.2).

Next, we show that if some honest party P; terminates wsh, then each honest party eventually

terminates wsh. If P; terminates wsh, then it must have accepted a set W and subsequently
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computed the output via local computation. By Claim 7.3, every other honest party will agree
on the same W and will terminate the protocol after doing the local computation. a

Next, we prove the correctness property of wsh via a set of claims.
Claim 7.4 If some honest party accepts a set W, then the following hold:

(a) Each pair of honest parties (P, P;) in W holds fi(z) and f;(z) respectively such that f;(j) =
(@)

(b) There exists a unique symmetric bivariate polynomial of degree at most t, say F(x,y)
such that an honest P; in W holds f;(z) that is same as F(x,i). In case D is honest,

F(z,y) = F(z,y).

(c) There exists a unique polynomial of degree at most t, say f(x) such that an honest P; in
W holds f(i). In case D is honest, f(x) = f(x).

Proof: We prove the first part of the claim by contradiction. Assume a pair of honest parties
(P;, P;) € W such that fi(j) # f;(i). We show that no honest party will accept W since (B, P;)

will not be pairwise consistent. Thus, we arrive at a contradiction.

— P, €c; \NP; €c;: Here b;; = fi(j) and bji = f](z) So bi; # bjj.

— P, ecj\NP; &c;: Here aj; = fj(@) +mj; and b;; = () + Mmj;. S0 aj; # byj.
— P, & c; A Pj € ¢;: Here ai; = fi(j) +my; and by; = f;(i) + mij. So a;j # bjq.
— P, & cj \NP; &c;: Here both a;; # bj; and aj; # by;.

For the second part, we note that the number of honest parties in W is at least t + 1 (since
IW| > 2t +1). By the property of bivariate polynomials (Lemma 7.1) of degree at most ¢
in both variables, there exist a unique bivariate polynomial say F'(z,y) such that for every
honest P; € W it holds that f;(x) = F(x,y). For an honest D, every honest P, € W holds
the polynomial f;(x) = F(z,i) as given by the honest D in the synchronous round. Thus, the
bivariate polynomial determined by the honest parties in W is F(z,y).

For the last part, we define the unique polynomial f(z) as F(x,0) where F'(x,y) is as defined
in the proof of part (b). By part (b), every honest P; in W holds f;(x) = F(z,y). To complete
the proof, we claim that f;(0) is same as f(i). The equality f(i) = £;(0) holds following the
given equalities: (i)F(x,0) = f(z) and F(i,0) = f(i) (the evaluation of the previous equation at
0), (i) fi(x) = F(x,4) (by the definition of f;(z) polynomial) and f;(0) = F(0,4) (the evaluation
of the previous equation at 0) and (iii) finally F'(i,0) = F(0,) (by the symmetricity of F(z,y)).
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It is easy to note that in case D is honest, f(x) = f(x), since F(x,y) = F(x,y) as proved in
part (b). O

Lemma 7.4 Protocol wsh satisfies the correctness property stated in Definition 7.7.

Proof: For an honest dealer D, we show that every honest party P; outputs f(i) upon
termination where f(x) is the input of D in the protocol. Part (c) of Claim 7.4 shows that
every honest P; € W outputs f(i). To conclude the honest D case, we show that the above is true
for every honest P; ¢ W. Recall that P, computes a set of values {s;;} p,ew such that s;; = by; it
P; € ¢; and s;; = bj; —m;; otherwise and finally computes f(i) as constantTerm({(J, si;)} p;ew)-
When the dealer is honest, b;; = f;(i) = fi(j) if P € ¢; and bj; —my; = f;(i) = fi(j) otherwise.
Therefore, we have {(j,s:;)}r,ew = {(4, f;(9))}r,ew = {(J, fi(§))}p,ew. The set of points is
t-consistent and passes through f;(x). It follows now that s; as returned by constantTerm is
same as f;(0). Finally f;(0) is same as f(i) as proved in part (c) of Claim 7.4.

For a corrupted D, we show that there exists a unique polynomial f(x) so that every honest
P; outputs f(i) or L and there exists a set of at least ¢ + 1 honest parties who outputs shares
of f(x). By Claim 7.4, there exist unique polynomials of degree at most ¢, F(z,y) and f(z)
such that F(z,0) = f(x) and an honest P; in W holds f;(x) and f(i). We show that f(z) is the
unique polynomial so that every honest party will output either f(i) or L. Part (c) of Claim 7.4
shows that every honest P; € W outputs f(i). Here we show that P, ¢ W will either output
either f(i) or L. Recall that P; computes a set of values {s;;} pjew such that s;; = by; if P € ¢;
and s;; = bj; —m;; otherwise. We show that constantTerm({J, s;;} p,ew) either returns f;(0) or L
where f;(z) = F(z,i). In other words, the points in {j, s;;} p,ew are either ¢-consistent and pass
through f;(x) = F(z,i) or are not t-consistent. To prove the claim, we show that at least ¢ + 1
sii’s are same as fi(j). Specifically, we prove that {7, Sijypex = 1J; fj(i)}pjeg{ = {7, ﬁ(j)}pjeg{
where H denotes the set of honest parties in W. For an honest P;, s;; = f;(i) no matter
whether P; € c; or not. Because, if P, € c; then s;; = fj(z) Otherwise, it must be true
that bj; = f;(i) + my; and so s;; = f;(i). The set of points are t-consistent and pass through
fi(x) = F(x,i). Lastly |H]| is at least ¢t + 1 and every party in H outputs f(i). This concludes

our correctness proof. O
Lemma 7.5 Protocol wsh satisfies the privacy property stated in Definition 7.7.

Proof: Let € denote the set of parties under control of A with |C| < ¢. We first show that if
D is honest, then the information the adversary has about the dealer’s input at the end of wsh

consists of the polynomials { f;(z)}p.ce. We then argue that this information is independent of

£(0).
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In the synchronous phase, A gets access to the polynomials {f;(z)}p.cec. As for the values
broadcast in the asynchronous phase, consider a pair of honest parties, say (P, P;). Since
P;,P; are honest, it must be true that m?;, = m$; and mj; = mj;. Consequently, P; ¢ ¢; and
P, ¢ c¢;. We now argue that the broadcast of P, with respect to P; i.e a;; = fi(j) + m;; and
bi; = fi(j) + m;; will not leak anything about the value of f;(j) = F(i,j) to A. This follows
from the fact that m;;, m;; are chosen randomly and unknown to A since P;, P;, D are all honest.
Similar argument holds for the broadcast of P; in the asynchronous phase as well. Now suppose
atleast one among (P;, P;) is corrupt, say P;. Then it is possible that P, € ¢; or P; € ¢; and
the point F'(i,j) may be broadcast in the asynchronous phase. However, this reveals no new
information since F'(i,j) = f;(j) = f;(¢) is already known to A controlling P;.

We have seen above that the adversary’s view consists nothing beyond the polynomials
{fi(x)} p.ce. We now argue this view is identically distributed for all possible f(0). Consider
any two degree-t polynomials ¢;(z) and ¢o(x) such that ¢;(i) = ¢2(7) = f;(0) for every i € C.

Then, according to Lemma 7.2

{(i,Fl(iU,i))}iee} = {{(27 FQ(x’i))}iee

where F'(z,y) and F?(z,y) are symmetric degree t bivariate polynomials chosen at random
under the constraints that F'(z,0) = ¢;(x) and F?(z,0) = g2(x), respectively. In more detail,
the distribution over the shares {f;(x)}ice received by the corrupted parties when F(z,y)
is chosen based on ¢;(z) (i.e when F(z,y) = F'(x,y)) is identical to the distribution when
F(x,y) is chosen based on ¢y() (i.e when F(x,y) = F?(z,y)). In other words, no information
is revealed about whether the private polynomial of D equals ¢;(z) or ¢2(x). Hence, we can
conclude that { fi(x)} p,ce is independent of D’s private polynomial f(z), and consequently f(0).
O

Theorem 7.4 Protocol wsh is a AWPS protocol.

Proof: The theorem follows from Lemmas 7.3,7.4 and 7.5. O

7.4 Asynchronous VSS

In this section, we describe an AVSS protocol with n parties P where n > 3t + 1. In the
Sh protocol, the dealer 2d-shares (cf. Definition 7.3) its secret s via a symmetric bivariate
polynomial F'(z,y) with its constant term as the secret. The secret s will be shared via F'(0,y)
(which is same as F'(z,0)), while the ith share of s, denoted as s; and is same as F'(0,4) (and

also F'(i,0)) will be shared via F'(x,i). For the reconstruction, the parties participate in an
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instance of online error correction protocol denoted as oec with the shares of s. Namely P,
participates in oec with s; to reconstruct s. oec can be viewed as the method of applying
Reed-Solomon (RS) error-correction [154] in the asynchronous setting that allows each party
to robustly reconstruct not only the ¢-shared value but also the underlying polynomial used for
sharing. The complete details of oec is given in Section 7.2.3.2. We now take a detailed look
at the Sh protocol.

At a high level, Sh performs two layers of communication. The first layer of communication
helps to determine a set of parties called R in which the information held by the set of honest
parties uniquely determine a symmetric bivariate polynomial of degree ¢t and hence determine a
unique secret committed by the dealer. This layer resembles the wsh protocol structure where D
picks a symmetric bivariate polynomial F(z,y) of degree t so that its constant term equals the
secret s. Then in the synchronous round, D hands out f;(z) = F(z,) to party P; and each pair
of parties exchange random pads to check pairwise consistency of their common shares later
in the asynchronous phase. The parties also record their sent and received set of pads with D.
During the asynchronous phase, based on recorded pads D finds and publishes a set of at least
2t + 1 correct parties, called R who are pairwise consistent. The first layer of communication
seems to be not enough to achieve AVSS since the honest parties outside R may not hold
a polynomial that is consistent with the unique committed bivariate polynomial in case of a
corrupt dealer. This is exactly what happened in wsh and so at most ¢ honest parties may end
up with no share or 1. The second layer of communication repairs the above drawback and
aids every honest party outside R to recover a correct and consistent polynomial f;(x) and thus
also a share of the committed secret. The second layer includes n instances of wsh led by the
individual parties. Every honest party P; partially-shares a random polynomial p;(x) via wsh;,
the ith instance of wsh and uses p;(x) to publicly commit its polynomial f;(z) in blinded form.
Namely, P, makes f;(z) + p;(z) public. Later if honest P; is declared to be part of R, a party
P; ¢ R can recover f;(j) as and when it computes p;(j) as the output in wsh;. Note that when
P; is honest, then an honest P; will recover p;(j) by the correctness of wsh. If a corrupted P,
is part of R, we ensure that it must have made public commitment of correct f;(x) polynomial
in the blinded form. This is enforced as follows. First, we ask each party P; to conditionally
participate in P;’s instance wsh; based on whether the blinded polynomial made public by F;
is consistent with respect to its received point on p;(x) and common share f;(j). Second, P,
is part of R only when its instance of wsh; leads to a valid W (cf.Figure 7.4 for the definition
of a valid W) that has at least 2t + 1 parties in common with R. Recall that a valid W in
wsh ensures the honest parties in W defines a unique polynomial p;(x). Unfortunately, for a

corrupted P; € R, an honest P; outside W may output L instead of p;(j) at the end of wsh;.

293



This is not a problem since R contains at least ¢ 4+ 1 honest parties and P; can recover at least
t+ 1 points on f;(x) which are clearly enough to recover f;(x). The AVSS protocol appears in
Figure 7.5. We proceed to prove the properties.

/-[ AVSS Protocol} \

Protocol Sh()

— Input of D: A secret s € F
— Primitives Used: Protocol wsh, a-cast (cf. Section 7.2.3.1)

— The Protocol: It assumes a synchronous phase with one round followed by an asynchronous

phase.

Synchronous Phase:

1. D chooses a random symmetric bivariate polynomial F'(x,y) of degree at most ¢ such that F'(0,0) =

s and sends the polynomial f;(x) = F(x,i) to each party P; € P.

2. Each P; € P picks a random pad m;; for every P; and sends m;; to P; and D. D denotes the set
of pads sent by P; to other parties as {m;;}p,e».

3. Each P; picks a random polynomial p;(x) and executes the synchronous phase of wsh() as a dealer
with input p;(z). We refer to this instance as wsh;. P; participates in synchronous phase of wsh;
for VP;.

Asynchronous Phase:

1. Each P; sends its received list of pads {mji}p,cp to D. D denotes P;’s list as {m;i}Pjefp. It

computes and sends to F; a set ¢; of all P; € P for which mZ; # mj,.

2. Each P; computes two lists (A;, B;) as follows and a polynomial d;(x) = p;(z) + fi(z). It then
a-casts (A;, B;, ci, bi(x)).

— A = {ai; = fi(j) + mij}p].efp
— B; = {bij}P-e? where b;; = fi(j) if P; € ¢; and b;; = fi(j) + mj; otherwise.
J

3. Each P; participates in wsh; as the dealer. It participates in wsh; if (a) d;j(z) received from the

a-cast of P; is a polynomial of degree at most ¢ and (b) d;(i) = p;(i) + fi(j)-

4. D finds and A-casts sets R C P and W; C P, VP; € R with the following properties:

— Every P, € R is correct
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— VP, € R,'W; is a valid W in wsh;
— |R|>2t+1and [RNW;| >2t+1

5. On receiving (R, {W;}p,cr), P; accepts the sets if the following conditions hold:

— VP; € R, (Aj,Bj,cj) is received from the a-cast of P;.

Every (Pj, P,) € R is pairwise consistent.
— VP; € R, Wj is a valid W in wsh;.
— R >2t+1and |[RNW;| >2t+1

6. On accepting the sets, P; outputs s; and terminates Sh where s; is computed as follows:

— If P, € R, then it sets s; = f;(0).
— Otherwise, it computes its output p;; in wsh; for every P; € R, finds the set {s;; = d;(i) —

Dij}PjeR A py#L and outputs s; = constantTerm({(j, 5ij)} pjeR A pij#L1)-

Protocol Rec()

— Input of each P, € P: s; i.e P;’s output of Sh
— Primitives Used: Protocol oec (cf. Section 7.2.3.2)

— The Protocol: It assumes an asynchronous network.

The parties run an instance of oec and terminate with s = f(0) where f(x) is the output of

oe€ecC.

J

Figure 7.5: AVSS Protocol

Claim 7.5 If D is honest, then he eventually finds sets (R,{W,}p,ex) which some honest party

accepts.

Proof: We first show that D can compute sets (R, {W;}p,cx) satisfying the following three
conditions in polynomial time: (i) Every P; is correct, (ii) VP, € R, W, is a valid W in wsh;, (iii)
|R| > 2t +1 and |[RNW;| > 2t + 1. In the second part of the proof, we will show that the sets
satisfying the above conditions will be accepted by some honest party. D follows the following
steps to find the sets (R, {W;}p.cx):

— Initialisation: Initialise a dynamic set T to (). For every party P; initialise a dynamic set
Wi to @
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— Update of W Sets: Include every P; in W; for which Agree; is received from the a-cast of
P; in wsh;. If W; is not valid, then reset W; to 0.

— Update of T: Include a party P; in T if the following are true: (i) P; is correct and (ii)
|'W;| > 2t + 1.

— Finding Candidate Solution: If there exists a subset R of T such that |[RNW;| > 2t + 1
is true for every P; € R, then return (R,{W,}pcx) and stop. Else wait and verify if the

above condition is true after every update of T or W;s.

It is easy to note that if at some point of time T contains all the honest parties and for every
honest party P;, W, contains all the honest parties, then D can find a candidate solution
(R, {W;}p.cx). The following observations prove that eventually the above event will happen.
First, every honest P; will be considered as correct by an honest D following Claim 7.1. Second,
every honest P; will a-cast Agree; for every honest P; eventually in wsh;. Consider an honest
P; participating in wsh; of an honest P,. P; will find d;(z) of degree at most ¢. In addition,
the relation d;(j) = p;(7) + f;(¢) will hold true. So P; will continue to participate in wsh;. So
P; will a-cast Agree; for P; following Claim 7.1. Third, for an honest F;, the set of parties for
which P; a-casts Agree at any point of time will always constitute a valid W;.

Now moving on to the second part of the proof, the sets (R, {W;}p,cx) computed as above
and a-casted by D will be accepted by an honest P;. The conditions checked by P; and D on the
sets are different with respect to the following: P; checks if every pair (P;, Py) € R is pairwise
consistent, while D checks if the parties in R are correct. The proof follows from Claim 7.2 that

shows that for an honest D, the check for correctness guarantees pairwise consistency. O

Claim 7.6 If one honest party accepts the sets (R,{W;}per), then every other honest party

accepts them.

Proof: It is easy to note that the checks done by the parties are based on a-casted information.
By the correctness of a-cast, all the honest parties will receive the same information and conclude

the same. O

Lemma 7.6 The pair of protocols (Sh, Rec) satisfies the termination property stated in Defini-
tion 7.1.

Proof: Claim 7.5 and Claim 7.6 together imply that if D is honest and all the honest parties
participate in Sh, then each honest party eventually terminates the protocol. Because once the

parties accept the sets (R, {W;}p,cr), they terminate after local computation. Next, Claim 7.6
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implies that if some honest party terminates Sh, then each honest party eventually terminates
Sh. Lastly, if all the honest parties participate in Rec, it follows from the termination property

of oec (cf. Theorem 7.2) that each honest party eventually terminates Rec. a

Claim 7.7 If some honest party accepts sets (R,{W;}p.ex), then the following holds:

(a) Each pair of honest parties (P;, P;) in R holds f;(x) and f;(z) respectively such that fi(j) =
f(0).

(b) There exists a unique symmetric bivariate polynomial of degree at most t, say F(x,y)
such that an honest P; in R holds fi(x) that is same as F(x,i). In case D is honest,

F(z,y) = F(z,y).

(c) A corrupt P; € R must have a-casted d;(x) = F(z,1) + p;(x) where p;(z) denotes the unique
polynomial P; has partially-shared in wsh;. In case D is honest, F(z,i) = F(x,1).
(d) An honest P; ¢ R eventually holds fi(x) that is same as F(x,i). In case D is honest,

F(x,i) = F(x,17).

Proof: The statements in (a) and (b) can be proved in the same way Claim 7.4 has been
proved with respect to W of wsh. We now prove part (c). By Lemma 7.4, every honest party
P; in 'W; holds p;(j). Now consider the honest parties in R N'W;. Each such honest party P;
holds f;(x) that is same as F(z,j) (by part (b)) and ensures that P,’s a-casted polynomial
d;(z) evaluates to f;(i) + p;(j) and is of degree t. Since R N'W; contains at least ¢t + 1 honest
parties and f;(i) = fi(j), d;(x) evaluates to the set of at least ¢+ 1 points { f;(j) —i—pi(j)}PjemWi
corresponding to the honest parties in R N'W;. So we can conclude that d;(z) is identical to
F(z,i) + p;i(z). Tt is easy to note that for an honest D, F(z,i) = F(x,1).

We now prove the last part. Consider an honest P, ¢ R. For every honest P; € R, P; outputs
pi; that is same as p;(¢) where p;(x) is partially-shared by honest P; in wsh; (by the correctness
property of wsh). Therefore, for every honest P;, P; will recover f;(i) (and so fi(7)) as d;(j) —pi;-
For every corrupted P; € R, P; outputs either f;(j) or L based on whether p;; is p;(i) or L, where
pj(z) is partially-shared by corrupted P; in wsh;. The correctness of f;(j) is guaranteed by part
(c). Since R contains at least t+ 1 honest parti?s, the set of points {s;; = d;(i) _%)ij}Pjeﬂz At
is big enough and contains correct points on f;(x). Therefore, P; can recover f;(z) as well as
the constant term s; of f;(z) by running s; = constantTerm ({(j, si;) } p,ex A ;L) It is easy to
note that for an honest D, F(x,4) = F(x,1). O

Lemma 7.7 The pair of protocols (Sh,Rec) satisfies the correctness property stated in Defini-
tion 7.1
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Proof: From part (b) and (d) of Claim 7.7, there exists a symmetric bivariate polynomial of
degree at most t, say F(x,y) such that each honest P, holds f;(x) that is same as F'(z,4). We
prove that 5 = F'(0, 0) is the unique secret shared by D which will be reconstructed after running
Rec protocol. Each party honest party holds f;(z) and finally outputs 5; = f;(0) in Sh as the
share of 5. Clearly, the 5; values define t-sharing of 5 via degree ¢ polynomial fy(z) = F(z,0)
(which is same as (0, y) by the symmetry of the bivariate polynomial). Now by the correctness
of oec (cf. Theorem 7.2), the parties will output s at the end of Rec. Finally, if D is honest

F(z,y) is same as F'(x,y), the original pick of the honest D and so s = s. O

Lemma 7.8 The pair of protocols (Sh,Rec) satisfies the privacy property stated in Definition
7.1

Proof: Let € denote the set of parties under control of A where |C| < t. A gets access
to {fi(z)}pee in the synchronous phase. In addition to this, A also knows the polynomial
d;(z) = fi(x)+ pi(x) broadcast by an honest P; in the asynchronous phase. Let us now check if
d;(x) leaks any information. Recall that P; acts as dealer in wsh;. Since P; is honest, it follows
from privacy of wsh; (Lemma 7.5) that p;(x) remains unknown to A. Therefore, A does not learn
anything from the broadcast d;(x) since f;(z) is ‘blinded’ by the polynomial p;(z) unknown to
A. Also, by the same argument as in Lemma 7.5, broadcast of values by honest parties in the
asynchronous phase will reveal no new information about the secret s. We can now conclude
that A knows nothing beyond { fi(x)}p,ce. We now argue that this information is independent
of s. Consider any two degree-t polynomials ¢;(z) and go(x) such that ¢;(i) = ¢2(7) = f;(0) for

every ¢ € C. Then, according to Lemma 7.2

{(i,Fl(x,i))}iee = {(i,FQ(x,i))}iee

where F'(z,y) and F?(z,y) are symmetric degree t bivariate polynomials chosen at random
under the constraints that F'(z,0) = ¢;(x) and F?(z,0) = g2(x), respectively. In more detail,
the distribution over the shares {f;(z)}ice received by the corrupted parties when F(z,y) is
chosen based on ¢ (z) (i.e when F(x,y) = F'(z,y)) is identical to the distribution when F(z,y)
is chosen based on ¢o(z) (i.e when F(z,y) = F?(x,y)). An important point to be noted is
that both ¢;(z) and ¢o(x) are consistent with the information { f;(z)}ice possessed by A since
¢1(1) = q2(7) = fi(0) for every i € C. Consequently, no information is revealed about whether the
secret equals s; = ¢1(0) or sy = ¢2(0). Hence, we can conclude that { f;(z)}p ce is independent

of D’s input s, which completes the proof. O
Theorem 7.5 The pair of protocols (Sh,Rec) is an AVSS protocol.
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Proof: The theorem follows from Lemma 7.6,7.7 and 7.8. O
Theorem 7.6 The value 5 committed by D during Sh is 2d-shared. If D is honest, then 5 = s.

Proof: It is easy to see that 3 = F(0,0) is t-shared via F(0,y) and each P; € P holds
5; = fi(0) = F(0,i) (Lemma 7.7). Now each 5; is t-shared via f;(z) which is same as F(0,y).
Because, each honest P, holds f;(z) and therefore f;(j) (which is same as f;(i)). If D is honest,

then s = s where s is D’s input to Sh. O

7.5 Impossibility of AMPC with One Synchronous Round

In this section, we prove impossibility of a perfectly-secure AMPC (Definition 7.4) with n < 4t
parties over a network that provides a single synchronous round with broadcast oracle access
prior to turning to asynchronous mode. The proof takes inspiration from the proof of impossi-
bility of perfectly-secure AMPC with n < 4¢ [49].

Theorem 7.7 For every n > 4, there exist functions f such that no perfectly-secure AMPC
protocol can compute f with n < 4t parties over a hybrid network that supports a single syn-

chronous round with broadcast oracle access.

Proof: Consider the setting (n = 4,t = 1). The proof can easily be generalized to all n < 4t.
Let P = {P, P, P5, P,} denote the set of parties. We prove the theorem by contradiction.
We assume that there exists a perfectly-secure AMPC protocol m which computes the function
f(x1, z2, x3,24) defined below for P;’s input x; over a hybrid network that provides a single

synchronous round with access to broadcast oracle:

1 if To9 = T3 = 1
f(x17x27$37'r4) -
0 otherwise

Protocol 7 consists of two sub-protocols or phases: synchronous phase is denoted as m, and
asynchronous phase is denoted as 7,. We write m = (7, 7,). We assume that the communica-
tion done in the asynchronous phase in 7 are done via broadcast. This holds without loss of
generality since the parties can perform point-to-point communication by exchanging random
pads in the first round and then using these random pads to unmask later broadcasts [101].
We will consider an execution of m where A corrupts P, and follows a scheduling strategy
and a strategy for P, in 7, as described below. In each step of m,, A delivers the messages
of parties P;, P, and P5 in ‘round robin’ fashion. The messages of P, are delivered only when

there are no undelivered messages of the other parties. A communicates on behalf of P, in a
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malicious way (details below) such that P, and P3 do not identify P, as corrupt. So in each step
P, and P3 wait for messages from only (n —t) = 4 — 1 = 3 parties and proceed to the next step
before any message from P, is delivered. This strategy of A ensures that P, and P; terminate
7 without any consideration of the communication from P, during m,. The crux of the proof
is to show that P, and P; will output 0 when 7 is run with input (%, 1,1, ) in the presence
of the above scheduling strategy of A and a strategy for P; discussed below, where x denotes
any input value on behalf of P and P;. Since 7 is assumed to be a perfectly-secure AMPC, an
error in correctness is not allowed. Therefore, we will conclude that 7 is not a perfectly-secure
AMPC for f arriving at a contradiction.

p;",; denote the transcript of the point-to-point communication done in the first synchronous
round from P; to P; and pj,; denote {p;*,;,p;°,;}. bj* and bj* denote the broadcast communi-
cation done by P; in w, and 7, respectively. We denote the view of party P; at the end of 7 as
V; that constitutes of P;’s initial input z; and random input ] and the private and broadcast
communication that it has received in . The information sent out by P; can be polynomially
computed from the initial input and received information. Thereby, they are not considered as

a part of the view. So the view of a party P; can be defined as follows:

= {@i, 7 APT iz (0] Yo (D] i }

Let Tf ",; denote the transcript of the communication from F; to P; in m and T7,, =

}. We can write T7,; = {pJ,,;,b[*,bJ*} and T7,; = {p},,, b[*,b*, b bT}. De-

{T i—J AR Nt (AR g B Mt SR Ry |
noting 7(xe, x3) as an execution of m with the input of P, and Ps as x5 and x5 respectively and

i—7) g—)z

@) for i € [4] to denote the random inputs in execution 7(zs,23), we prove the following

useful claim:

Claim 7.8 There exist {r7 """ Vicup, {7 Yicrp, {7 View and {rT" ey such that Ty =

(0,1 (1,0 (1,1
T2<(—>3) = T2<(—>3) = T2<(—>3 g
Proof:  First, T2£30) = T2<_>3 holds. If it is not true, then the transcript T3 _, carries

information about P;’s input and so a corrupt P, can learn P3’s input. This will breach privacy
since P, should learn nothing beyond the output 0. Second, T, (_(:30) = T;rgéo) holds. Otherwise,
following similar argument as above, a corrupt Ps can learn P,’s input. Finally, we argue that
ng)él) = ngél) as follows. We claim that T;rfﬁg,}) must be independent of z3. Otherwise, corrupt
P5 can learn x5, breaching Ps’s privacy as P, should not learn anything beyond output 0. Next,
since T2<(_0,§1) is independent of w3, it must be consistent with x3 = 0. Therefore, it must be

such that it does not leak the input of P, to preserve P’s privacy in case x3 = 0. Thus, we
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7(0,1) .

o3 1is independent of P»’s input as well and T, (_?31) = T;(j;j) holds. These

can conclude that T,
equalities together prove the claim. a

We now consider two executions (0, 1) and 7(1,0) and claim the following:
Claim 7.9 There exist {r]""Yiciy and {r7"Vicy such that:

(a) T2<—>3 = T2<—1)30)7

(b) {T1£21)7T1£31)7T1a4 }— {Tlizo)fr ) TTSQLO)} and

1—-3 >

(C) pﬂ'é()l) p:lré_JO) db7r§01 _b7r510 fO?”ZG [3]

4—1

Proof: Part (a) follows from Claim 7.8. We now prove (b). If it is not true, then a corrupt
Py can learn beyond the output 0, namely whether it is (0,1) or (1,0) that led to output which
it is not supposed to learn. The third claim follows easily as the communication of Py in the
synchronous round is only dependent on its own random input and therefore the equalities hold
when 7} = 710, O

Skipping the annotation of (0,1) and (1,0) for the communications that are equal across
7(0,1) and 7(1,0), we present the views honest P;, Py, P; and P, in these two executions in
Table 7.2. We ignore the view and communication by P; beyond the synchronous round, as
it never gets chance to participate in the execution, except the synchronous round as per the

adversarial scheduling strategy mentioned above.

Table 7.2: Views of Py, Py, P5, Py in 7(0,1) and m(1,0)

Views in 7(0, 1) Views in (1, 0)
Vi (70, 1)) [Va(x(0,1)) | Va(@(0,1)) [ Va(m(0, 1)) [ Vi(n(L,0)) [ Va(x(L,0)) | Va(x(1,0)) | Va(n(L,0))
Initial Input 7""(0'1) (0, r§<°’“) (1, 77r(0 2 ) 7’2(0’” TW(LO) (1, 7";(1’0)) (0, 7’§(1 0)) 2(1 o
m5(0,1) s s s m5(1,0) s s s
p2~>1 ’ p1a27 p1437 p144> p2~>1 ’ p1~>27 pla3v pl%47
ms(0,1) s s ms(0,1) ms(1,0) s s ms(1,0)
T psal ’ P32, P2Zs35 p27§ 1): P31 s P32, P2>s3, p27{1 0)7
Pits1 P12 Pis3 354 Pits1 Pils P13 3554
b3", bg*, by* | bi*,b3", bi* | b, b3" bi* | bi*,b3*,b3* | b3, b3" bi* | bi*,b3*,b" | bT*,b3*, by | bi", by*, b3
Ta b3, b3" bi*, b3" b, b3” - b3*, b3" by, b3" b, b3” -

Now we consider execution m(1,1) and make the following claim:
Claim 7.10 There ezists {r7 " Vicu, {r7 " Yicrg and {17 Yiew such that:
(a) Tsz = ngéO) = ngél) and
(b) ppi0Y = ppl? = pprY and b Y = b = b for i € [3).

4—1
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Proof: Part (a) follows from Claim 7.8. The second claim follows easily as the communica-
tion of P, in the synchronous round is only dependent on its random input and therefore the
equalities hold when 7} " = p7H0) = 71D, O
We now describe the strategy of A corrupting P; in 7(1, 1) with random inputs {rf(l’l) Fieanqy-

Its private communication to P; is as in w(1,0) and to Pj is as in (0, 1). The broadcasts mes-
sages both in synchronous and asynchronous phases are the same as the common broadcast of
7(0,1) and 7(1,0). Clearly, the view of P, in w(1,1), Va(m(1,1)), with the above strategy of A
is same as Vq(7(1,0)). By correctness of m, P, outputs 0. On the other hand, the view of P5 in
m(1,1), V3(m(1, 1)), with the above strategy of A is same as Vo(7(0, 1)). By correctness of m, P;
outputs 0. This violates the correctness of m as both P and P3 have input 1. Since the above
breach is shown for certain set of random inputs which may be chosen with non-zero probability,
the breach holds with non-zero probability too. This is a contradiction to our assumption that
7 securely computes f.

(|

7.6 Impossibility of SVSS and SMPC with Two Syn-

chronous Rounds

We have seen in Section 7.4 that perfectly-secure AVSS with ¢ < n/3 is feasible in hybrid
networks with single synchronous round. This leads to the natural question regarding the
feasibility of perfectly-secure SVSS in hybrid networks with ¢ < n/3. It is known that three
synchronous rounds are necessary and sufficient for SVSS with ¢t < n/3 [101]. Consequently,
it is trivial to achieve SVSS with ¢ < n/3 in a hybrid network with three synchronous rounds.
Interestingly, it turns out that three rounds are not just sufficient, but also necessary. We prove

this through the following theorem:

Theorem 7.8 There is no perfectly-secure SVSS protocol with n < 4t over a network that
provides two synchronous rounds with broadcast oracle access prior to turning to asynchronous

mode.

Proof: Consider the setting (n = 4,t = 1). The proof can easily be generalized to all
n < 4t. Let P = {P, P,, P5, P,} denote the set of parties. Without loss of generality, we
assume D = P;. We prove the theorem by contradiction. We assume there is a perfect SVSS
protocol m = (Sh,Rec) in the above network setting and with (n = 4,¢ = 1). We assume
that the communication done in the second synchronous round and asynchronous phase in 7

are done via broadcast. This holds without loss of generality since the parties can perform
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point-to-point communication by exchanging random pads in the first round and then using
these random pads to unmask later broadcasts [101].

Protocol Sh consist of two sub-protocols or phases: a synchronous phase and an asyn-
chronous phase. The latter is denoted as Sh,. The synchronous phase has two rounds. We
denote the sub-protocols for the rounds as Shy, Shy. The Rec protocol is run asynchronously. So
we write m = (Shy, Shs, Sh,, Rec). pisilj denote the transcript of the point-to-point communica-
tion done in the first synchronous round from P; to P;. b>™, b?"™ and b?"™ denote the broadcast
communication done by FP; in Shy, Shy and Sh, respectively. We denote the view of party P;
at the end of Sh as V; that constitutes of P;’s initial input rfh which includes its random coin
if any (and the secret if P; is the dealer) and the private and broadcast communication that
it has received in Sh. The information sent out by P, can be polynomially computed from the
initial input and received information. Thereby, they are not considered as a part of the view.

So the view of a party P; can be defined as follows:

Vi(Sh) = {r?" {p5" s {65 Fistas {05 } i {B3" ot }

In the Rec protocol, the parties simply broadcast their view from Sh protocol. Denoting 7(x) =
(Shy(z), Sha(z), Sh,(z), Rec(z)) as an execution of m with the secret of the dealer P as z,
we now consider a couple of executions Sh(z) and Sh(y) with = # y. To differentiate the
communications and views across various executions, we will parametrize the communications
and views with execution names.

In Sh(x), Py, P,, P3 and P, participate with initial inputs rfh(x) (defining secret z), 5 he), rz,s)h(m)
and rih(x) respectively. In Sh(y), Pi, P, Py and P, participate with initial inputs rfh(y) (defining

Sh Sh Sh z Sh
), 75 (y)7T3 (y) (v) (=) _ 3 () (

and 1} respectively. Assuming that rgh which can hap-

pen with non-negligible probability), we now claim that there exists rfh(y), rgh(y), rih(y) so that
V5(Sh(z)) = V3(Sh(y)). If it is not true then a corrupt Ps can conclude that the secrets of
the dealer in Sh(x) and Sh(y) are distinct which violates the perfect secrecy of 7. Specifically,
the equalities that follow from the equality V3(Sh(z)) = V3(Sh(y)) are as follows. When the

equalities hold for two communications in Sh(z) and Sh(y), we will skip the annotation of x

secret y

and y and use a common notation. So

Shy(z Sh .
P]J:g )= pjjéy) = p]S'E:s for j #3

71)
Shi(z Sh . (
poriy” = paii¥) = p3M; for j # 3

Shr(z) _ | Shr(y) _ | Sh, :
b’ = b; = b;" for all j and r € {1,2,a}
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For clarity, we present the views honest P;, P, P; and P, in Sh(z) and Sh(y) in Table 7.3.

Table 7.3: Views of P, P, P, P, in executions Sh(z) and Sh(y)

Views in Sh(z)

Views in Sh(y)

ViSh@)  [Va(Sh()) [ Va(Sh)  [VaGh@)  [[ViSh(s)) [ VaGh@) [ Va(sh) [ Va(Sh(y))
Initial Input rfh(w) rgh(x) r?h rih(z) rfh(y) 7‘§h(y) r§“ rih(y)

Shy(z Shy (z) Sh Shy(z Shi(y) Shi( Sh Shy (y)

PzQLT) PH“Y ) [ H‘4T)7 Pont” s H'zy)v P13, PHIAEU »

Shy Shy Shy Shi(z) Shy Shy Shy Shi(y)
Shy P31 P32 Pa—3 Pasq s P31, P32, Py 24

Shi () Shy (z) Shy Shy Shi(y) Shi(y) Shy Shy

Pys1 42 Pis3 P34 Pi—1 Pi—2 P13 P34

G5B | BB b | B b | by b5 | BB | bbb | bbb | b
Sh, b5 b5 b5 | b5 bS5 | b5 b | b b5 b | b5 b b | b b b | b b b | b b b
Sh b b5 b5 | b b b | b b b | b b b | b5 b b | b S b | b b b | b b5 b

Now we consider three different corrupt executions that result in the same view of the
parties at the end of Sh. In all the executions, A schedules the messages of the parties so that

{Pz, P3, P;} be the set of parties who see each others message during Sh, and Rec.

— Execution &;: &; is similar to Sh(x) where the parties P;, P3, P, are honest and start with
their respective initial input of execution Sh(x). The adversary A corrupts P, with the
following corruption strategy - P,’s private communication towards P; and Pj is exactly
like in Sh(z). Its private communication to Py is the same as in Sh(y). After the private

communication is done, P, behaves exactly like an honest P in execution Ej.

— Execution &y: &, is similar to Sh(y) where the parties Pj, P», Py are honest and start with
their respective initial input of execution Sh(y). The adversary A corrupts P, with the
following corruption strategy - P,’s private communication towards P; and Pj is exactly
like in Sh(y). Its private communication to P, is the same as in Sh(x). After the private

communication is done, P; behaves exactly like an honest P, in execution Ej.

— Execution €3: In €3 the parties P», P3, P, are honest. P, and P, start with their respective
initial input of execution Sh(y) and Sh(z) respectively. Ps starts with its initial input
that is common to executions Sh(z) and Sh(y). The adversary A corrupts P;. P; acts

exactly as in Sh(y) towards P, and P;. However its behaviour towards Pj is as in Sh(zx).

Through a sequence of claims, we next prove the statement that: The view of honest Py in
Eo and Ez will be the same. The view of honest Py in €1, o and E5 will be the same. The view

of honest Py in €1, E3 will be the same.

Claim 7.11 The broadcast of every honest P; in Shy will be the same in €1, Es and E3.
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Proof: In &, &, and €3, every honest P;’s broadcast in the first synchronous round is the same
as bl-Shl. The first round broadcasts depend on initial inputs. By Equation 7.1 the synchronous
round broadcast of P; for i € {1,2,3,4} are the same irrespective of whether its initial input is

Tfh(m) or rfh(y). O

Claim 7.12 P, ’s broadcasts in Shy will be the same in E1,Ey and E3

Proof: A careful look implies that P,’s view until the first round of €; is exactly same as in
Sh(z) (refer to V1(Sh(x)) in Table 7.3). Similarly, P;’s view until the first round of €, is exactly
same as in Sh(y) (refer to V1(Sh(y)) in Table 7.3). It now follows from Equation 7.1 that the
second round broadcasts done by P; will be same as bth in 1 and &,. In €3, a corrupt P; can
broadcast b3"?. a

Claim 7.13 The broadcast of an honest Py will be the same in €1, E9 and E3 in both (Shy, Shy).

Proof: It follows directly from Claim 7.11 that an honest P3’s broadcast in Sh; remains
the same during &1, &, and €3. Also, since the view of honest P; until the first round in all
executions remains the same as in Sh(z) or Sh(y), the second round broadcasts done by Pj

must also be the same (refer to Equation 7.1). O

Lemma 7.9 The view of honest Py in €5 and E3 will be the same. The view of honest P3 in

€1, &9 and €3 will be the same. The view of honest Py in €1, E3 will be the same.

Proof: The common view of honest P, in €5/E3, the common view of honest Ps in €;/€5/&3
and the common view of honest P in €;/&3 are presented in Table 7.4. Given Claim 7.11-7.13,
it is easy to verify our claim. We denote the broadcasts in €;/€5/E3 that may be different from

the broadcasts of Sh(x) or Sh(y) because of view difference using a barred notation.

Table 7.4: View of honest P, P; and Py in (€2/E3), (£1/€2/E3) and (£;/E3) respectively.

| Va(Sh) | V3(Sh) | Va(Sh)
Initial Input r§h<y) rsh Tih(m)
Sh Shy  Shi(z) | Shi  Shy  Sh Shi(z) _Shi(y) _Sh
Shy pl—iéy)’ P35, p4_i§ ) P53 Pas3, Pass 1—1& ), Pg—iiy P304
by, b3, b™ pShi pSh ot | pShi pShi pSh
Sh2 bfhz’ b§h27 BihQ b§h27 thQ’ Bihz bfhza thza bghz
Shq b3, b3 bh, bh bshe, bShe
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Since 7 is assumed to be a SVSS, the honest parties (P, Ps, P;) in €3 must terminate after
Sh without the corrupt dealer’s participation in Sh,. Otherwise, a corrupt dealer may not
participate in Sh, at all leading to an endless waiting. Now as the views of the honest parties,
namely of (Ps, P;) in & and of (P, P3) in &, are identical in all the three executions, they will
terminate €; and &€, after Sh without D’s participation.

Now we discuss the adversary’s strategy in Rec of £;,&5 and €3. In €3, A corrupting P,
simply does not participate in Rec so that only { P, Ps, P,} see the views of each other from
Sh. In &; and &,, A corrupting P, and P, respectively presents the view of an honest P
and P, as shown in Table 7.4. A further delays the communication of honest P; so that only
{Ps, P3, P,} see views of each other from Sh. The above adversarial strategies in the three
executions ensures that {P», P3, Py} end up with the same view in Rec across all the three
executions. Now following the same argument as presented above for the termination of Sh,
€1, &2 and €3 must also terminate without P;’s participation in Rec protocol.

Since D is honest in €; and &€,, the parties should reconstruct x and y respectively in the
Rec protocol of the executions. This follows from the correctness property of m. Now recall
that the views of the parties in Rec protocol of all the three executions are the same. So in
€3 where D is corrupt, the parties may either reconstruct x or y. This clearly violates the
commitment property of m that demands there must exist a unique committed secret at the
end of Sh which will be reconstructed in Rec irrespective of the behaviour of A. Therefore
we arrive at a contradiction that 7 is not a perfect SVSS protocol. Since the above breach
is shown for certain set of initial inputs which may be chosen with non-zero probability, the
breach holds with non-zero probability too. This is enough for our proof as we are concerned
about impossibility of perfect SVSS. This completes the proof.

U

Since SVSS is a special case of SMPC protocol, the above theorem directly implies the
impossibility of perfectly-secure SMPC protocol with n < 4t over a hybrid network with two

synchronous rounds. Thus, we get the following theorem.

Theorem 7.9 There is no perfectly-secure SMPC' protocol with n < 4t over a network that
provides two synchronous rounds with broadcast oracle access prior to turning to asynchronous

mode.

In the following section, we show that three synchronous rounds are not just necessary, but

also sufficient to design an SMPC protocol with ¢t < n/3 over hybrid network.
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7.7 SMPC with Three Synchronous Rounds

In this section, we describe an SMPC protocol with three synchronous rounds in hybrid network
and n > 3t+1, tweaking the framework of [62] and plugging in the existing 3-round VSS protocol
offering ¢-sharing of the underlying secret [139] into the framework.

Let F' : F* — T be the publicly known function over field F where each party P; has the
input z; € F for the function and all the n parties receive the function output F(z1,...,z,).
The function F'is represented by an arithmetic circuit C' over IF, consisting of input gates, linear
gates, multiplication gates, random gates and output gates of bounded fan-in. Without loss
of generality, we assume that the multiplication gates have fan-in two and the random gates
have fan-in zero. Let ¢, cp,car, cr and co denote the number of input, linear, multiplication,
random and output gates respectively in the circuit representing F. We assume ¢; = n and
co = 1 for simplicity. We follow the standard technique of circuit evaluation where the parties
“securely” evaluate each gate in the circuit in a shared /distributed fashion. The parties interact
to maintain the following inwvariant for each gate in the circuit: given t-shared inputs of the
gate, say |a] and [b], the gate output is computed and made available among the parties in a
t-shared fashion at the end of the gate evaluation. Finally the shared circuit output is publicly
reconstructed. Since each intermediate value remains secret shared, privacy follows. Due to
the linearity of the sharing schemes, addition/linear gates can be locally evaluated by the
parties. However, computing a multiplication (non-linear) gate following the invariant requires
interaction among the parties.

A typical SMPC in information-theoretic setting consists of three phases: (a) The input
phase, where the parties t-share the inputs for computation of function. (b) The preprocessing
phase, where the parties jointly create t-sharing of a Beaver triple per multiplication gate [18§]
i.e. t-sharing of a private random multiplication triple. (c¢) The computation phase, where
the shared circuit evaluation is performed using the t-shared Beaver triplets to evaluate the
multiplication gates while the additional gates need only local computation. Noting that the
reconstruction of t-shared secrets via oec (Section 7.2.3.2) works in the asynchronous phase
with n > 3t+ 1, our goal is to pack the most of the protocol in the first three rounds so that the
asynchronous computation involves only reconstruction of secrets and local computation. The
input phase can be completed in the synchronous phase via invoking an VSS instance for every
party’s input. The computation phase, given the preprocessed t-shared Beaver triples, involves
only reconstructions of t-shared values (two for evaluating a multiplication gate and one for
evaluating an output gate) and local computation, making it feasible to run asynchronously.

The primary challenge, therefore, lies in generating the ¢-shared Beaver triples with the help
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of initial three rounds with n > 3¢ + 1 in the preprocessing phase. Both the preprocessing and
the input phase are run in parallel to take advantage of the synchronous rounds. While the
input phase terminates in the synchronous phase itself, the preprocessing phase spills over to
the asynchronous phase where only reconstructions and local computation are performed. We
now describe the three phases below.

7.7.1 Input Phase

The protocol Input is given in Figure 7.6.
—[ Protocol Input()}

— Input of each P, € P: Input z; € F for computation of circuit C.

— Primitives Used: Protocol Sh corresponding to a VSS protocol (Sh, Rec) of [139].

— The Protocol: It uses the synchronous phase with three rounds of the hybrid network. Each

P; invokes an instance of Sh as a dealer with secret as input x; and participates in other Sh

instances.

Figure 7.6: Protocol for the input phase of MPC.

Lemma 7.10 For every possible A and for every possible scheduler, protocol Input achieves:

— Termination: All the honest parties terminate the protocol.

— Correctness: FEach honest party will output its shares corresponding to t-sharing of the

inputs of the parties in C.

— Privacy: The information obtained by A in the protocol is distributed independently of the
inputs of the honest parties in the set C.

Proof: The termination property is easy to verify. Correctness follows from the correctness
of Sh. Privacy of Sh ensures that the information obtained by A during instances of Sh is

independent of the private value x; for all honest P;. a

7.7.2 Preprocessing Phase

In this phase, the parties create raw material for evaluating the multiplication and random
gates. Namely, the goal is to create (cp;+cg) t-shared random private multiplication triples. We
discuss our idea for a single t-shared random private multiplication (Beaver) triple generation.

We tweak the techniques of [62] used for building the preprocessing phase of an efficient MPC
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with n > 4t + 1 over hybrid network with one synchronous round. The framework proposes a
share-and-extract paradigm that has two clear steps: each party is asked to verifiably t-share
random multiplication triples and then ¢-shared random multiplication triples unknown to the
adversary are extracted from the pool of triples generated by all the parties. It is the verifiability
of a multiplication triple i.e. whether ¢ = ab for a shared (a,b,c) that we simplify leveraging
the three synchronous rounds and is different from [62]. We mention the difference in the
relevant section. Both the tasks of verifiable sharing of multiplication triple by a party and
the subsequent extraction rely on a protocol termed as triple-transformation protocol. In the
following, we discuss the triple transformation protocol and the extraction protocol first and
then conclude with the (verifiable) sharing of multiplication triples and preprocessing phase

protocol.
7.7.2.1 Triple Transformation protocol

The protocol tripleTrans takes t-sharing of a set of n independent triples as input and trans-
forms them into ¢t-sharing of a set of n correlated triples. Namely, all the first components of the
transformed triples lie on a t-degree polynomial. The same holds for the second components.
The third components lie on a 2t degree polynomial. Furthermore, the degree 2¢ polynomial
will be the product of the degree t polynomials if and only if all the input triples are multipli-
cation triples. The protocol steps are outlined in Figure 7.7 and its properties are presented in
Lemma 7.11.

—[ Protocol tripleTra ns()}

— Input: Sharing of set of n independent triples {([Cﬂ(i)], [y@)], [z(i)])}

i€[n]

— Primitives Used: Protocol Beaver (Section 7.2.4)
— Output: Sharing of set of n correlated triples {([x(i)], [y®], {Z(i)})}z’e[n}

— The Protocol: It runs asynchronously.
1. For each i € [t + 1], the parties locally set [x(V] = [z®], [y?] = [y)] and [z?)] = [219)].

2. Let the points {(a, x(i))}ie[tﬂ} and the points {(«;, y(i))}ie[tﬂ} define the polynomial X(-) and Y(-)
respectively of degree at most t. The parties locally compute [x*] = [X(o4)] and [yD] = [Y(as)],
for each® i € [t + 2,n].

3. For i € [t + 2,n], the parties invoke Beaver() on ([x("],[y®]) and ([z®], [y®],[z?]) to compute
20,
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4. Let the points {(o, z(i))}ie[n] define the polynomial Z(-) of degree at most 2¢. The parties output
{(X7], y9], [29)) }igpm) and terminate.

*Computing a new point on a polynomial of degree ¢ is a linear function of ¢t 4+ 1 given unique points on
the same polynomial.

Figure 7.7: Protocol for transforming a set of independent shared triples to a set of correlated shared
triples.

The protocol clearly implies the following one-to-one correspondence between the input and
the output triples, in an error-free fashion: (a) The i'" output triple is a multiplication triple
if and only if the " input triple is a multiplication triple and (b) The i"* output triple will
be known to A if and only if the i** input triple is known to A. The first property guarantees
that the relation Z(-) = X(-)Y(+) is true if and only if all the n input triples are multiplication
triples. On the other hand, the second property guarantees that if A knows ¢’ input triples,
then it implies ¢t + 1 — ¢’ “degree of freedom” in the polynomials X(-),Y(:) and Z(-), provided
t' <t;if t' > ¢, then A will know all the output triples. So we have the following lemma.

Lemma 7.11 (/62]) Let {([z9];, [y™P], [2):) biepn) e a set of n t-shared triples. Then for every

possible A, protocol tripleTrans achieves:
— Termination: All the honest parties eventually terminate the protocol

— Correctness: There exist polynomials X(-),Y(-) and Z(-) of degree t, t and 2t respectively,
such that X(o;) = x9, Y (a;) = y@ and Z(a;) = 29 holds for i € [n] and Z(-) = X(-)Y(*)
holds if and only if all the input triples are multiplication triples.

— Privacy: If A knows t' <t input triples then A learns t' values on X(-),Y(-) and Z(-).

The protocol slightly differs from that of [62] in terms of the degrees used. Namely, their

polynomials X(),Y(),Z() are of degree 3 3t and 3t respectively to facilitate generating one
multiplication triple at the expense of linear (in n) communication cost, leveraging presence of
n > 4t + 1 parties. Looking ahead, our verifiable triple sharing with n > 3t 4+ 1 does not work

for the above degrees and the degrees we use is the only possibility that works.
7.7.2.2 Triple Extraction protocol

This protocol ‘extracts’ sharing of one multiplication triple from sharing of a set of n correlated
multiplication triples where n > 3t + 1. If A knows at most t of the correlated triples, then the
extracted triple is random and unknown to A subject to the fact that it is a multiplication triple.

The protocol is outlined in Figure 7.8 and its properties stated and proved in Lemma 7.12.
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—[ Protocol tripIeExt()]

)
— Input: Correlated shared multiplication triples {([X(Z } ] with polynomials X(-), Y(+)
and Z(-) of degree t, t and 2t respectively, such that X( ) =xD,Y () = y@ and Z(o;) =z

for i € [n] and Z(-) = X(-)Y(").
— Output: A shared multiplication triple ([a], [b], [c])

— The Protocol: It runs asynchronously. The parties locally compute [a] = [X(5)], [b] = [Y(5)]

and [c] = [Z(B)] and terminate, where (3 is a publicly known point distinct from aq, ..., .

Figure 7.8: Protocol for extracting sharing of a multiplication triple from sharing of a set of n
multiplication triples, where n > 3t + 1.

Lemma 7.12 ([62]) Given a set of correlated shared multiplication triples { ([x?], [y™], [z(i)])}ie[n]
with polynomials X(),Y(:) and Z(-) of degree t, t and 2t respectively, such that X(cy;) =
xD Y(a;) = y9 and Z(e;) = 29 for i € [n] and Z(-) = X(-)Y(-), for every possible A pro-

tocol tripleExt achieves:
— Correctness: The output triple ([a], [b], [c]) is a multiplication triple.

— Privacy: If A knows at most t input triples, then the view of A is distributed independently
of the output multiplication triple ([al, [b], [c]).

7.7.2.3 Verifiable Multiplication Triple Sharing Protocol

To keep the presentation simple, we show how a specific party, say D shares a single multipli-
cation triple verifiably. D first t-shares n independent multiplication triples using 3n instances
of Sh (one for each component of the triple) of [139]. The triple transformation protocol is
invoked to transform his set of n t-shared independent triples to a set of n t-shared correlated
triples with the underlying polynomials as X(-), Y(+), Z(-) of degree ¢, ¢ and 2t respectively. Now
the input triples are verified for their product relation via a pubic verification of the relation
Z(-) = X(-)Y(+), in an error-free manner, where each party P; supervises the public verification
of Z(cy;) = X(a;)Y (). An honest supervisor will make sure the relation holds without any
error. Now since there are at least 2t + 1 honest supervisors and Z(+) is a polynomial of degree
at most 2¢, we can conclude that Z(-) = X(-)Y(:). The verification led by party P; is conducted
as follows:

P; t-shares a dummy random multiplication triple ([f;], [¢:], [h:]) using 3 instances of Sh in the
synchronous phase to help compute [X(«;)Y(«;] via Beaver’s technique. Then the difference of

Z(«;) and X(a;)Y () is reconstructed via oec. When the difference is zero, it can be concluded
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that Z(a;) = X(;)Y (). Else, the triple (X(a;), Y (), Z(c;)) is reconstructed using oec without
compromising privacy since the corrupt party that is either D or P; already knows the triple. If
it is found to be a non-multiplication triple, D can be identified as corrupt and default ¢-shared
multiplication triple is considered corresponding to D.

When Z(-) = X(-)Y(+) is verified, the t-sharing of (X(/3),Y(5),Z(B)) for a public value f is

taken as the multiplication triple dealt by D. We note that the above public verification of

3t 3t
2727
in [62]). With these degrees, Z(a;) = X(;)Y(a;) needs to be verified by at least 3t + 1 honest

parties, whereas we have just 2t + 1 honest parties in the population. On the other hand,

Z(-) = X(-)Y(+) will not work when the degree of the polynomials are 3t respectively (as

the polynomials X(-),Y(-) should be of degree at least ¢, otherwise an adversary corrupting
t parties would get access to ¢ points of each of these polynomials (via Beaver’s technique)
learning X(+), Y(+) entirely. Thus, the only feasible choice for the degree of the polynomials are
t, t, 2t respectively.

We differ from [62] in the following aspect. Using three synchronous rounds, we get ¢-shared
dummy triples. Whereas, the dummy triples [62] are not in ¢-shared form due to the availability
of a single synchronous round. Consequently, our protocol only needs to deal with malicious
behavior of sharing a non-multiplication dummy triple, while [62] needs to handle additionally
the case when the dummy triple is not ¢-shared. Working with n > 4t 4+ 1, [62] leverages the
larger honest population to handle this issue. We now present the protocol in Figure 7.9 and

prove its properties in Lemma 7.13.

Lemma 7.13 Protocol tripleSh() achieves the following for every possible A:
— Termination: All honest parties terminate the protocol corresponding to every D.
— Correctness: The output triple ([p], [q], [r]) is a multiplication triple.

— Privacy: If D is honest, then the view of A is distributed independently of the output mul-
tiplication triple ([p], [q], [r])-

Proof: Termination: The termination property is easy to verify and follows directly from
the termination property of synchronous phase, tripleTrans, Beaver and oec.

Correctness: We first consider the case of an honest D, where the t-shared triples {([z®], [y®],
[27)}rern will be multiplication triples. By the property of tripleTrans (Lemma 7.11), Z(-) =
X(-)Y(+) holds and {([x®], [y®)], [2])}rep will be multiplication triples. It now follows from
the property of Beaver that [2*) = x(®¥)y(*)] computed by honest parties using dummy multiplica-

tion triple ([f4], [gx], [h&]) shared by honest P, must correspond to z*) and lead to reconstruction
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of v®) = 0 (correctness of oec). However, dummy triples given by a corrupt party P, may lead
to 7v(®) £ 0 being reconstructed. However, the verification would be still be successful since
the triple {([x®], [y®],[z*])} would be reconstructed and found to be a multiplication triple
(correctness of oec). Finally, the correctness of tripleExt (Lemma 7.12) ensures that the output
triple ([p], [q], []) is a multiplication triple.

In case of corrupt D, the output may be either a default t-shared multiplication triple or
the triple computed as per the protocol. In the former case, correctness holds trivially. We
now consider the latter case. Note that it suffices to prove that corresponding to each honest
Pr, {([x®)], [y®], [z2¥])} is a multiplication triple, which will confirm that Z(-) = X(-)Y(-) holds
(since Z(-) is a 2t degree polynomial uniquely determined by 2¢ + 1 points). This would imply
that the triples shared by D are multiplication triples by property of tripleTrans (Lemma 7.11);
the proof would now follow from previous argument. We observe that the dummy triple shared
by honest P, must be a multiplication triple. Therefore, it follows from the correctness of
B = x®y®)] Clearly, if {([x®], [y®],[z*¥])} shared

by corrupt D is not a multiplication triple, v*) = z(*) — z(¥) - (0 would be reconstructed.

Beaver that all honest parties compute [z

However, in this case the triple {([x*],[y®], [z*])} would be reconstructed and found to be
non-multiplication triple and default t-shared multiplication triple would be output which con-
tradicts our assumption. So correctness holds for corrupt D.

Privacy: Since D is honest, all shared triples {([z®], [y™)], [z®™)])}1em will be random and
unknown to A. It thereby follows from properties of tripleTrans (Lemma 7.11) that all shared
triples {(x™], [y®], [z™])}xepn will be random and A will not learn any point on X(-), Y(+), Z(-).
Now there can be at most ¢ corrupted P;s and corresponding to them, A will learn the mul-
tiplication triple {([x®], [y®], [z”])} during its verification, as A will know the corresponding
dummy triple ([f;],[g:], [h:]) used for its verification. However, corresponding to the honest
P;s, the random dummy multiplication triples ([fi], [¢:], [h:]) will be t-shared and will be not
known to A. This further implies that while computing [2() = x®y®] using ([fi], [g], [l4]), no
additional information about the multiplication triple{([x"], [y®], [z¥])} will be leaked to A.
Finally, the sharings [2(¥] and [z)] will be independent, except that 2® = z¥ and so A will
already know that () = 0 and thus no new information is added to its view after the public
reconstruction of [y(?]. So overall, A will learn ¢ values on X(-),Y(-), Z(-).

O

Protocol tripIeSh()]

— Output: A verifiably t-shared multiplication triple corresponding to specific party D.

— The Protocol: The protocol runs over both the synchronous and asynchronous phase.

313



Synchronous Phase:
1. D invokes 3n instances of Sh for a SVSS of [139] to t-share {([z(®], [y*)], [z(’“)])}ke[n].

2. Every party P; (i € [n]) invokes 3 instances of Sh for a SVSS of [139] to t¢-share a random
multiplication triple ([fi], [gi], [Ri])-

3. All parties invoke tripleTrans() on {([z*®)], [y(*)], [z(’“)])}ke[n] to compute {([x(k)], [y®)], [z(k)])}ke[n].
Asynchronous Phase: Every P; does the following
1. Invoke Beaver() on {([x®], [y} and {([f4], [gx], [h#])} to compute [2*)] for k = [n].

2. For k = [n], compute locally [y®)] as [y(¥)] = [2F)] —[z(F)] and reconstruct using oec. If y*) £ 0 for
some k, reconstruct {([x®], [y®)], z*)])} using 3 instances of oec, one for each component of triple.
If reconstructed triple is a non-multiplication triple, output a default t-shared multiplication triple.
Otherwise invoke tripleExt() on {([x®], [y®)], [z(k’)])}ke[n] and output the t-shared multiplication
triple ([p], [q], [r]). which is the output of tripleExt.

Figure 7.9: Protocol for Verifiable Multiplication Triple Sharing.

7.7.2.4 The preprocessing phase protocol

For each Beaver triple (random secret multiplication triple) to be used for a multiplication gate,
each of the n parties acts as D in an instance of tripleSh to generate a single verified ¢-shared
multiplication triple. These n t-shared multiplication triples among which at most ¢ may be
known to the adversary are again transformed via the triple transformation protocol tripleTrans
and a single t-shared Beaver triple is extracted via tripleExt protocol. The protocol is presented

in Figure 7.10 and we prove its properties in Lemma 7.14.

—[ Protocol preProc()}

— Primitives Used: Protocol tripleSh, tripleTrans and tripleExt.

— The Protocol: It uses both the synchronous and asynchronous phase. The following is repeated
in parallel for cjr +cp times. Each P; invokes an instance of tripleSh as a dealer to verifiably ¢-
share a multiplication triple, say ([p], [¢?], [r(?)]) and participates in the instances of others.
The parties execute tripIeTrans({([p(i)]7 (™), [r(i)])}ie[n]) and output {([a(i)], ()], [c(i)])}ie[n].
Finally, tripleExt is executed on {([a®], [b], [C(i)])}ie[n] to extract and output a single Beaver
triple.

Figure 7.10: Protocol for the input phase of MPC.
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Lemma 7.14 For every possible A, the protocol preProc() achieves:
— Termination: All honest parties terminate the protocol.
— Correctness: c); + cg multiplication triples will be t-shared.

— Privacy: The view of A will be independent of the output multiplication triples.

Proof: Termination and privacy follows directly from the properties of the subprotocols
tripleSh, tripleTrans and tripleExt. For correctness, consider computation of a single prepro-
cessed triple. By property of tripleSh (Lemma 7.13), ([p®], [¢™], [r®)]) is guaranteed to be
a multiplication triple for each i € [n] which implies that {([a®], [b"], [c(i)])}ie[n] is a set of
multiplication triples (property of tripleTrans). Finally, correctness of tripleExt executed on
{([a9], [pD], [¢D]) }icpn) ensures that ¢-sharing of a multiplication triple is obtained.

O

7.7.3 Computation Phase

We now present our computation phase protocol computation in Figure 7.11 that securely
evaluates the given circuit C' on a gate by gate basis as discussed earlier. We use Beaver’s
circuit randomization technique to evaluate the multiplication and random gates with the help

of preprocessed c¢); + cg random t-shared multiplication-triples.

—[ Protocol computation()]

— Input of the parties in P: {([aV], [p(V)], [c(i)])}ie[cMJrcR} with the knowledge that ([a(], [b(],
[c]) is associated with the ith multiplication gate in the circuit C for i € [cps] and ([ale» 9],

[plerm+0)] [clem+D)]) is associated with the ith random gate in the circuit C for i € [cp].

— Common Inputs: A field F and the circuit C.

— The Protocol: The protocol runs asynchronously. For all the gates in the circuit C' the (honest)
parties in P do the following (depending upon the type of gate):

1. Addition/Linear Gate. The parties locally apply the linear function on their respective shares

of the inputs of the gate.

2. Random Gate. If this is the ith random gate in the circuit then the parties locally output their

shares corresponding to the sharing [a(cM+9)],

3. Multiplication Gate. For the ith multiplication gate with inputs [z(?] and [y()] the parties
invoke protocol Beaver() with ([a(?], [b®], [¢()]) and output [z(?)y®)].
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4. Output Gate. Let [s] be the ¢t-sharing associated with the output gate. The parties execute an

instance of oec to reconstruct s and terminate.

Figure 7.11: The computation phase protocol
The properties of the protocol computation() are stated below.

Lemma 7.15 Given t-sharings {([a”], [bD], [cD]) }Yicjer+en] Of crr + cr random multiplication-
triples and t-sharings of the inputs of the parties (for the computation), protocol computation

achieves the following for every possible A:
— Termination. All honest parties eventually terminate the protocol.

— Correctness.: All the gates are evaluated correctly.

— Privacy. For every gate in the circuit, the evaluation of the gate reveals no additional

information about the inputs and the output of the gate to A.

Proof: The correctness and termination property follows from the correctness and ter-
mination property of oec. The privacy follows from privacy of protocol Beaver() and the fact

that the evaluation of random and linear gates require no communication among the parties.
O

7.7.4 SMPC Protocol

The steps of the MPC protocol are outlined in Figure 7.12.

—[ Protocol mpc}

— Input of P, € P: x; .

— Common Inputs: A field F and circuit C

— Protocol: It assumes a synchronous phase with three rounds followed by an asynchronous phase.
The parties invoke Input and preProc together. After terminating both the protocols, they
invoke computation() and output the output of computation().

Figure 7.12: An Asynchronous MPC protocol.

Theorem 7.10 mpc is an SMPC protocol over a hybrid network with three synchronous rounds.

Proof: The termination, correctness and privacy follows from termination, correctness and

privacy of Input (Lemma 7.10), preProc (Lemma 7.14) and computation (Lemma 7.15) protocols.
O
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7.8 Conclusion and Open Problems

In this chapter, we have examined the feasibility of VSS and MPC protocols in hybrid networks
achieving properties obtainable in fully synchronous and asynchronous networks. For asyn-
chronous protocols, we attempted to bridge the gap in the fault-tolerance with synchronous
protocols by utilizing initial synchronous rounds present in hybrid networks. We proved that
to achieve fault tolerance of synchronous protocols, while one synchronous round is both nec-
essary and sufficient for perfectly-secure AVSS, the same does not hold for AMPC. The latter
result implies that atleast two initial synchronous rounds are necessary for AMPC; finding
corresponding tight upper bound remains an interesting open question.

Next, for synchronous protocols we explored whether number of synchronous rounds could
be reduced leveraging the asynchronous phase available in hybrid networks. Interestingly, the
answer turns out to be negative. We showed that three synchronous rounds known to be suffi-
cient for SVSS is also necessary. This result implies a lower bound of three rounds for SMPC
in hybrid network, corresponding to which we present a matching upper bound using existing

techniques. We conclude that three synchronous rounds are sufficient to design perfectly-secure
SMPC (and thus AMPC) in hybrid network.
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Chapter 8
Conclusion

In this chapter, we summarize the contributions of this thesis and list some open problems for

future work.

8.1 Summary of Results and Open Problems

8.1.1 MPC with Small Population

8.1.1.1 On the Exact Round Complexity of 3PC.

We settled the question of the exact round complexity of 3PC protocols with one active cor-
ruption in the plain model achieving a range of security notions, namely sa, ua, fn and god in a
setting with pair-wise private channels and without or with a broadcast channel. In the minimal
setting of pairwise-private channels, 3PC with sa is known to be feasible in just two rounds,
while god is infeasible to achieve irrespective of the number of rounds. Settling the quest for
exact round complexity of 3PC in this setting, we show that three rounds are necessary and
sufficient for ua and fn. Extending our study to the setting with an additional broadcast chan-
nel, we show that while ua is achievable in just two rounds, three rounds are necessary and

sufficient for fn and god.

Interesting Inferences: Our results gives the following insights regarding round complexity of
MPC protocols. First, it implies the tightness of several known constructions. Our lower bound
for fairness assuming broadcast implies that for 2-round fair (or guaranteed output delivery)
protocols with one corruption, the number of parties needs to be at least four, making the 4PC
protocol of [129] an optimal one. Next, the lower bound result of unanimous abort without

broadcast immediately implies tightness of the 3PC protocol of [129] achieving selective abort
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in two rounds, in terms of security achieved. Lastly, our results highlight that the availability
of broadcast only impacts the round complexity of ua and god, leaving the round complexity

of sa and fn unperturbed in the 3PC setting.

Open Problems: While our lower bound results extend for any number of parties in honest
majority setting., our upper bounds do not extend for t > 1. We leave the question of designing
round-optimal protocols for the general case with various security notions under the assumption

of injective one-way functions.
8.1.1.2 Fast Secure Computation for 3PC and 4PC over the Internet.

Assuming the minimal model of pairwise-private channels, we present two protocols that involve
computation and communication of a single GC— (a) a 4-round 3PC with fn, (b) a 5-round 4PC
with god. Empirically, our protocols are on par with the best known 3PC protocol of [159]
that only achieves sa, in terms of the computation time, LAN runtime, WAN runtime and
communication cost. In fact, our 4PC outperforms the 3PC of [159] significantly in terms of
per-party computation and communication cost. With an extra GC, we improve the round
complexity of our 4PC to four rounds. The only 4PC in our setting, given by [129], involves 12
GCs. Assuming an additional broadcast channel (inevitable due to known impossibility), we

present a 5-round 3PC with god that involves computation and communication of a single GC.

Interesting Inferences € Open Problems: Our constructions highlight that achieving strong
notions of fn and god is possible with nominal overhead over abort security incase of 3PC /
4PC with single corruption. This gives promise of more efficient fn and god protocols in practice.
We leave the question of designing practically-efficient protocols for the general honest majority

setting as open.

8.1.2 On the Exact Round Complexity of Best-of-Both-Worlds Multi-
party Computation

We nearly settle the exact round complexity of two classes of BoBW protocols differing on
the security achieved in the honest-majority setting, namely god and fn respectively, under the
assumption of no setup (plain model), public setup (CRS) and private setup (CRS + PKI or
simply PKI). The former class necessarily requires the number of parties to be strictly more than
the sum of the bounds of corruptions in the honest-majority and dishonest-majority setting,
for a feasible solution to exist. Demoting the goal to the second-best attainable security in the

honest-majority setting, the latter class needs no such restriction.
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Assuming a network with pair-wise private channels and a broadcast channel, we show that
5 and 3 rounds are necessary and sufficient for the class of BoBW MPC with fn under the
assumption of ‘no setup’ and ‘public and private setup’ respectively. For the class of BoBW
MPC with god, we show necessity and sufficiency of 3 rounds for the public setup case and 2
rounds for the private setup case. In the no setup setting, we show the sufficiency of 5 rounds,
while the known lower bound is 4. Our results remain unaffected when security with abort and

fairness are upgraded to their identifiable counterparts.

Interesting Inferences €/ Open Problems: Our results demonstrate that the optimal round com-
plexity of BoOBW protocols are on a positive note at most one more, compared to the maximum
of the needs of the honest-majority and dishonest-majority setting. This substantiates that
the desirable features of BoBW protocols over traditional protocols can be attained without
compromising on the number of rounds. If the same holds true regarding computation and
communication efficiency as well, then BoBW protocols would indeed be the best-suited choice
for real-life scenarios. We leave this question about exploring the other complexity measures of

BoBW protocols as open and note that the work of [99] makes progress in this direction.

8.1.3 On the Round Complexity of Fair and Robust MPC against
Dynamic and Boundary Adversaries

We settled the exact round complexity of fair and robust (achieving god) MPC tolerating dy-
namic and boundary adversaries. As it turns out, [n/2] 4 1 rounds are necessary and sufficient
for fair as well as robust MPC tolerating dynamic corruption. The non-constant barrier raised
by dynamic corruption can be sailed through for a boundary adversary. The round complexity
of 3 and 4 is necessary and sufficient for fn and god protocols respectively, with the latter having
an exception of allowing 3 round protocols in the presence of a single active corruption. While
all our lower bounds assume pair-wise private and broadcast channels and are resilient to the
presence of both public (CRS) and private (PKI) setup, our upper bounds are broadcast-only
and assume only public setup. The traditional and popular setting of malicious-minority, being
restricted compared to both dynamic and boundary setting, requires 3 and 2 rounds in the

presence of public and private setup respectively for both fair as well as robust protocols.

Interesting Inferences and Open Problems: The results provide us further insights regarding how
disparity in adversarial setting affects round complexity. Note that the round complexity of fair

protocols in the CRS model against an adversary corrupting minority of parties maliciously,
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remains unaffected in the setting of boundary adversary; which is a stronger variant of the
former. On the other hand, this switch of adversarial setting causes the lower bound of robust
protocols in the model assuming both CRS and PKI to jump from 2 to 4. Lastly, the gravity
of dynamic corruption on round complexity is evident in the leap from constant-rounds of 3,
4 in the boundary corruption case to [n/2] + 1. An interesting open question is to construct

tight upper bounds or come up with new lower bounds in the plain model.

8.1.4 On the Power of Hybrid Networks in Multi-Party Computa-
tion
We address the following fundamental question: What is the minimum number of initial syn-
chronous rounds necessary and sufficient in a hybrid network to construct perfectly-secure AVSS
and AMPC protocols with the same fault-tolerance of synchronous protocols? On the positive
side, we show that one synchronous round is sufficient for AVSS which is clearly optimal. On
the negative side, we show the same is not true for AMPC. Notably no broadcast oracle is
invoked in the synchronous round of our AVSS protocol. The latter result on AMPC implies at
least two initial synchronous rounds are necessary for MPC. With three synchronous rounds, we
design a perfectly-secure SMPC (and thus AMPC) protocol in this work. We further investigate
if the asynchronous phase of the hybrid network can be leveraged to save on the synchronous
rounds required for SVSS and SMPC. It is known that three synchronous rounds are necessary
and sufficient for SVSS with ¢ < n/3 [101]. This makes the feasibility of SVSS with ¢ < n/3 in
a hybrid network with three synchronous rounds trivial. The same question seems intriguing

when one or two synchronous rounds are assumed. We answer this question in the negative.

Interesting Inferences: Our results reinforce several general beliefs in the context of hybrid net-
works: (a) AMPC is harder to achieve than AVSS | (b) SVSS is harder to achieve than AVSS
with the same resilience, (c) perfectly-secure SMPC is harder to achieve than cryptographic
SMPC (follows from our work and the result of [23]).

Open Problems: The question of designing an AMPC protocol in a hybrid network with two

synchronous rounds with or without broadcast oracle access is left as an interesting open ques-

tion.
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