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Abstract

Secure Multi-Party Computation (MPC) is the area of computing a function on the inputs

of several parties, without compromising the secrecy of their individual inputs. The area has

been explored extensively starting with pioneering work of Yao (FOCS ’82, FOCS ’86) for two

parties, from late 80’s. Yao has shown how to perform secure MPC on any generic function

with a constant round protocol, by garbling the logical circuit of the function. Constant round

secure computation protocols are of great interest as they lead to protocols with low latency.

Later Beaver, Micali and Rogaway, (henceforth known as BMR protocol) (STOC ’90) extended

the Yao’s protocol to n parties, where n > 2 retaining the constant round complexity. There

are several optimizations proposed on garbled circuits such as Free-XOR technique, garbled

row reduction technique that lead to a number of variants of Yao protocol that are more

efficient than the original Yao construction. However, the scope of these techniques are limited

to the two-party case. Since a real-life MPC application may involve more than two parties

and the circuit may contain millions of gates, it is very important to scale the optimizations

on garbled circuits for the n-party case where n > 2. In this work we introduce couple of

optimizations called cheap-XOR and Almost Free-XOR on BMR protocol, which functionally

resembles FreeXOR and an XOR optimization from GLNP15[8] which are applicable in only

Yao’s protocol and allows to evaluate XOR gates free of cost. We also optimized NOT gate so

that no ciphertext is needed for NOT gate evaluation.
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Chapter 1

Introduction

1.1 Motivation

Multi-Party Computation (MPC) is the area where a set of n mutually distrustful parties can

securely compute a functionality on the inputs provided by those parties. An MPC protocol

must guarantee certain properties such as correctness (which ensures the protocol outputs same

as what the function would output from the inputs), privacy (each party should learn only the

output) and the independence of input (ensuring each party choosing their input independent of

the others). Formally, the security proof of an MPC protocol is done in Real-world Ideal-world

paradigm. This paradigm ensures that the output distribution of a real world execution of the

proposed protocol is same as that of ideal world execution, where there is a trusted third party

who will execute the function using the inputs given by the parties. The distrust between the

parties can be represented by an entity called Adversary who may corrupt t out of n parties.

We consider dishonest majority setting, that is t < n. There can be two different setting for

an MPC protocol by modelling the adversary as either semi-honest who is curious, but follows

the protocol or malicious who may even deviate from protocol.

1.2 Background

For a generic function to be executed securely, there are two approaches that have been followed;

the first one uses Yao’s garbled circuits [16] and the second utilizes the GMW protocol [7]. Both

protocols require the given function to be represented by a Boolean circuit and then evaluated

“securely” revealing nothing but the circuit output. While GMW demands interaction for each

AND gate of the circuit causing an overall round complexity in the order of the multiplicative

depth of the circuit, Yao’s protocol runs in constant (2) rounds. Even though the garbled

circuit construction is intricate and involved, the property of constant round results in faster
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execution of protocol.

In Yao’s protocol, the responsibilities of the two parties are not alike; one party acts as

garbled circuit constructor and the other one as garbled circuit evaluator. The circuit is repre-

sented as a set of wires and Boolean gates. To garble a circuit, every wire will be associated

with two indistinguishable keys (namely k0w and k1w for wire w), representing bits 0 and 1 which

are chosen by the constructor. The idea of Yao’s protocol is to let the evaluator evaluate the

circuit with precisely one key per wire and without knowing the meaning of the keys except

the circuit-output wires. To accomplish this, all the two-input garbled gates are represented as

a set of four ciphertexts, which can be decrypted with the key pair from the input wires. The

message encrypted will be the corresponding key of the output wire, depending on the gate and

input keys (For eg: if a, b are input wires and c is the output wire of a gate g, k
g(α,β)
c is encrypted

using kαa and kβb ). All the garbled gates of a circuit put together defines a garbled circuit. Yao’s

protocol make sure that evaluator will obtain all the keys of input wires, without revealing the

private inputs of parties to each other. After this, evaluator on receiving the garbled circuit

from the constructor can decrypt exactly one ciphertext out of four, revealing precisely one

key on each wire. In the end, evaluator will be left with the key of the output wire. Garbled

circuit constructor needs to provide the output wire keys to their bit mappings along with the

circuit so that, evaluator will get to know the output of the MPC function. Yao’s protocol takes

two rounds in semi-honest setting. The computational and communication efficiency of Yao’s

protocol depends on the efficiency involved in constructing and evaluating an garbled circuit

for a given circuit and respectively on the size of the garbled circuit.

Garbled circuits, apart from having application in MPC, find application in verifiable or

delegatable computation [6], Zero-Knowledge Proofs [5] and therefore is of immense interest in

cryptography community as an independent area of research [2, 3, 4, 13]. There has been con-

stant interest in optimizing the size of garbled circuits and in improving the construction and

evaluation of the same. There are several optimization techniques for Yao’s protocol, such as

Free-XOR [9], Garbled Row Reduction (GRR) [14], FleXOR [10], Garbled XOR With a Single

Ciphertext [8] (referred to as Almost Free-XOR henceforth), etc. Both the GRR and Free-XOR

techniques reduce the size of garbled circuit immensely and bring down the computational cost

of garbled circuit construction and evaluation. In fact, the Free-XOR technique enables the

XOR gates to be garbled and evaluated at free of cost. This is accomplished by maintaining

a constant distance between the two keys of any wire (k0w ⊕ k1w = R for any wire w). This

enables the XOR of any two input key pair to be one of two possible values; if a and b are input
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wires, the result of XOR will be either k0a ⊕ k0b or k0a ⊕ k0b ⊕R. These two will be chosen as the

k0c and k1c respectively where c is the output wire, and thereby enabling XOR gate evaluation

as XOR of the input keys. FleXOR [10], introduced by Kolesnikov et al., is a similar concept

to Free-XOR. Almost-Free-XOR [8] optimization questions the necessity to use non-standard

assumptions (such as Random Oracle model; refer to Section 2) in Free-XOR technique, by

introducing an optimization which is close to Free-XOR in efficiency and using only standard

assumptions.

The BMR protocol [1] is a variant of Yao’s protocol that runs in a multi-party setting with

more than two parties. In this protocol, all parties collaboratively garble the circuit in offline

phase, where parties need to know only the Boolean circuit corresponding to the functionality.

This offline phase is followed by an online phase where, parties will start evaluating the circuit

as a local computation using the garbled circuit from the offline phase along with their inputs.

However, in the case of malicious adversaries this protocol suffers from two main drawbacks:

(1) Security is only guaranteed if at most a minority of the parties are corrupt i.e. t < n/2;

(2) The protocol uses generic protocols secure against malicious adversaries (say, the GMW

protocol [7]) that evaluate the pseudo-random generator used in the BMR protocol. This non

black-box construction results in an extremely high overhead. Recently, [12] extends BMR

protocol in dishonest majority setting. However, thus far none of the optimizations techniques

for Yao’s garbled circuit are known to apply in BMR protocol. Specifically, the scope of Free-

XOR, GRR and Almost Free-XOR are limited to the two-party case. Since a real-life MPC

application may involve more than two parties and the circuit may contain millions of gates,

it is very important to explore whether scaling of the optimizations on garbled circuits for the

n-party case where n > 2 is feasible or not.

1.3 Our Contribution and Future Work

Our goal is to construct scalable MPC protocols. We would like to see if the optimizations of

Yao’s protocol resulted from techniques like Free-XOR, GRR etc, can be applied in multi-party

scenario. Towards that, we introduce a new optimization to BMR called Cheap-XOR, which

functionally resembles Free-XOR. That is, our new method enables us to garble and evaluate

the XOR gates for free. We have defined a generic garbling scheme where the multi-party proto-

cols can fit into, and prove properties like privacy with ease. We also extended the optimization

Almost Free-XOR to BMR protocol. Although Almost Free-XOR demands one ciphertext for

XOR gates unlike Free-XOR, this optimization is under standard assumption where Free-XOR

isn’t. Finally we also show an optimization on NOT gates, where no ciphertext is needed.
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We leave checking the scalability and relevance of techniques like GRR [14], FleXOR [10],

etc. in multi-party case as a future work.

1.4 Roadmap

In this Report, first we will explore Yao’s protocol (Section 2.1), followed by BMR, Free-

XOR and Almost Free-XOR (Section 2.2, 2.3 and 2.4 ), discussing circuit construction and

evaluation in detail. Then we will look into Cheap-XOR circuit construction and evaluation

(Section 3.1). We will conclude after giving an intuitive level proof of security for Cheap-XOR

(Section 3.1.4). We also defines a generic distributed garbling scheme (in Section 3.2) and show

that BMR fits into definition (in Section 3.3). We show our optimizations Almost Free-XOR (in

Section 3.4)and NOT gate with no ciphertext (in Section 3.5) in BMR and prove the security

(in Section 3.4.4).
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Chapter 2

Preliminaries

Before we discuss our contribution, we elaborate in detail on the required techniques and pro-

tocols, namely, Yao’s protocol [16], BMR protocol [1], Free-XOR [9] and Almost Free-XOR [8].

2.1 Yao’s protocol

Yao introduced an idea called garbled circuits in oral presentations about Secure Function Eval-

uation (SFE) [16, 15]. This idea lead to the first constant round MPC protocol known as Yao’s

protocol. The first written account of the protocol is by Goldreich, Micali, and Wigderson [7].

We briefly discuss Yao’s protocol based on garbled circuits. In this protocol, the desired func-

tion f is represented by a Boolean circuit C that is computed gate by gate from the input wires

to the output wires. We distinguish four different types of wires used in a given Boolean circuit:

(a) circuit-input wires; (b) circuit-output wires; (c) gate-input wires (that enter some gate g);

and (d) gate-output wires (that leave some gate g). We first discuss how to garble a circuit

and the underlying ideas. The first step to garble a circuit is to associate every wire w with

two random values, say k0w, k
1
w, such that k0w represents the bit 0 and k1w represents the bit 1.

Then the garbled table for each gate, also referred as a garbled gate, maps random input values

to random output values, with the property that given two input values it is only possible to

learn the output value that corresponds to the output bit. This is accomplished by viewing the

four potential inputs to a gate, k0a, k
1
a (values associated with the first input wire, denoted as a)

and k0b , k
1
b (values associated with the second input wire, denoted as b), as encryption keys. So

that the output key values k0c , k
1
c are encrypted under the appropriate input keys. More details

on how to construct a garbled gate follow.

Let us denote the considered logic gate as g, the input wires as a and b and output wire
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as c. k0a and k1a be the keys of wire a corresponding to bits 0 and 1 respectively, and similar

notation for wires b and c. We have four combinations of key pair 〈kαa , k
β
b 〉. We will encrypt

four messages using these four key pairs. The message which is encrypted each time will be

one of the keys of wire c (k0c or k1c ). Which one to encrypt depends on the key pair and g. i.e,

with key pair 〈kαa , k
β
b 〉, we will be encrypting the key kσc where σ = g(α, β) and α, β, σ ∈ {0, 1}.

We can visualize these ciphertexts as boxes which needs two keys to open.

It is obvious to see how to create a garbled table for NOT gate; we will possess only two

cipher-texts which are encryption of k0c using k1a and encryption of k1c using k0a. For an AND

gate g, k0c (that corresponds to bit 0) is encrypted under the pair of keys associated with the

values (0, 0), (0, 1), (1, 0). Whereas, k1c is encrypted under the pair of keys associated with

(1, 1) which yields the following four ciphertexts

Enck0a(Enck0b (k
0
c )),Enck0a(Enck1b (k

0
c )),

Enck1a(Enck0b (k
0
c )) and Enck1a(Enck1b (k

1
c ))

where (Gen,Enc,Dec) is a private key encryption scheme that has chosen double encryption

security; see [11] for the formal definitions. The idea of garbling an AND gate is pictorially

given in Figure 2.1.
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Figure 2.1: Garbled AND gate in Yao’s circuit

It is also important to randomly permute these four cipher-texts to lose the meaning of

mapping from key-pair to their values. Then, given the input wire keys kαa , k
β
b that correspond

to the bits α and β and the garbled table containing the four encryptions, it is possible to

obtain the output wire key k
g(α,β)
c . The other gates are garbled similarly. The description of

the garbled circuit is concluded with the output decryption tables, mapping the random values

on the circuit output wires back to their corresponding Boolean values. In summary, a garbled

circuit GC for a C includes: (a) All garbled gates (four or two ciphertexts per gate constructed

as discussed above) and (b) output decryption tables for the circuit-output wires.

Now we discuss Yao’s protocol that relies on the circuit garbling technique discussed above.

In this protocol, there are two parties among which one party act as the garbled circuit con-

structor, and the other one as garbled circuit evaluator. Without loss of generality, we can

call the circuit constructor as P0 and evaluator as P1. Once the given circuit C is garbled, P0

provides P1 the following to evaluate the circuit:

1. The garbled circuit GC for C.

2. Exactly one key corresponding to the input bit, for all input wires of P0.

7



3. A mechanism to know the key corresponding to input bit of P1 in each of his input wires.

It is not possible to provide both the keys for each of P1’s input wires; that may help a

corrupted evaluator to execute multiple evaluations of same circuit with fixed input from P0,

and that may lead to gain some information about P0’s input1. This problem of exchanging

exactly 1 key out of 2 keys, with the choice of receiver can be done using Oblivious Transfer (OT

is an MPC primitive where one party called sender inputs two messages m0, m1 and another

party receiver inputs a selection bit b. The OT execution will result in receiver’s knowledge

of mb without revealing mb to the receiver or b to the sender). If there are k number of input

wires for P1, we need to run k OTs with P1 providing input bit as choice bit, and P0 providing

keys for 0 and 1 as it’s messages, as in figure 2.2.

Figure 2.2: Yao’s protocol

Upon receiving P0’s circuit with all the input keys, the circuit-evaluation is just local com-

putation for P1. After the circuit evaluation, P1 will be left with the keys in the output wires.

P1 decrypts the output bits with the decryption table provided for output wires. It is optional

(rather, depending on the specification of the problem), P1 sends the output to P0. The security

1For example, if the function is to find maximum bidder among P0 and P1, and P1 can run circuit many
times with same X but different Y , then P1 can perform a binary search circuit evaluation to find out what is
X.
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lies in the security of OT as well as the indistinguishability of keys. Yao’s protocol is proven

secure in semi-honest setting.

2.2 BMR Protocol

In 1990, Beaver et al. [1] extended the Yao’s protocol for generic MPC function evaluation,

to n parties. Unlike Yao’s protocol, BMR demands the construction of the garbled circuit

collaboratively. Once constructed, a garbled circuit can be evaluated locally by the parties.

The garbled circuit construction is done in an offline phase also called as setup phase, where

the parties may communicate with the apriori knowledge of the logic circuit, but not the inputs.

This phase will be followed by an online phase where the garbled circuit from offline phase is

used to compute the underlying Boolean circuit. This offline-online paradigm is a very useful

and common approach to shift the burden of heavy computations to the time where parties

may be present, but they may not have decided their inputs.

2.2.1 Offline Phase of BMR protocol

In the offline phase of BMR, all the parties will collaboratively garble the circuit as follows.

Now, each party will choose two random keys of length κ, for each wire. Without loss of

generality, we name those keys k0w,i and k1w,i for each party Pi, for each wire w. Now we define

super-keys for a wire w, represented as K0
w and K1

w are defined as follows:

K0
w = k0w,1||k0w,2|| · · · ||k0w,i|| · · · ||k0w,n

K1
w = k1w,1||k1w,2|| · · · ||k1w,i|| · · · ||k1w,n

These two super-keys will act as two different keys, and bear the meaning of the bits; just

like two keys for each wire in Yao’s protocol. But here, the super-key Kb
w will not represent

the bit b. If it does so then, during the garbled circuit evaluation, a corrupted party will get

to know the bits associated with every wire in the circuit via the associated super-key and the

key it has contributed to the super-key. Namely, if the super-key for a wire contains k0w,i, then

Pi knows that the super-key represents 0 and therefore the wire is assigned the bit 0. This

will reveal the bits assigned to the intermediate wires. This is prevented by introducing an

additional random bit to each wire which determine the meaning of the super-keys and which

remain unknown to all the parties. Specifically, K0
w represent the bit πw and K1

w represents

the bit πw where πw is a random bit associated with wire w and is unknown to the adversary.

These π bits are generated as follows. For each wire w, all parties will collectively decide upon

a random bit πw, which is (n, n) shared among n parties (only with the shares of all parties,
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anybody can reconstruct the secret)1. For output wires, all parties collaboratively decide upon

π values, which are random but, known to everybody. The next step is to reconstruct πw to

party Pi if w is an input wire of Pi. So every party will know the π values of their input wires,

secret shares of πw for any intermediate wire w, and πz for output wire z.

Now we discuss how a gate is garbled in BMR protocol. Like Yao protocol, every two

input gate will be associated with four ciphertexts. We need two PRGs G1 and G2, both maps

{0, 1}k → {0, 1}nk. Let a and b be the input wires of the gate g, and c be output wire of g.

The ciphertexts corresponding to a gate are constructed as given below:

C1 :=
(
G1(k0a,1)⊕G1(k0a,2)⊕ · · · ⊕G1(k0a,n)

)
⊕
(
G1(k0b,1)⊕G1(k0b,2)⊕ · · · ⊕G1(k0b,n)

)
⊕Kr1

c

C2 :=
(
G2(k0a,1)⊕G2(k0a,2)⊕ · · · ⊕G2(k0a,n)

)
⊕
(
G1(k1b,1)⊕G1(k1b,2)⊕ · · · ⊕G1(k1b,n)

)
⊕Kr2

c

C3 :=
(
G1(k1a,1)⊕G1(k1a,2)⊕ · · · ⊕G1(k1a,n)

)
⊕
(
G2(k0b,1)⊕G2(k0b,2)⊕ · · · ⊕G2(k0b,n)

)
⊕Kr3

c

C4 :=
(
G2(k1a,1)⊕G2(k1a,2)⊕ · · · ⊕G2(k1a,n)

)
⊕
(
G2(k1b,1)⊕G2(k1b,2)⊕ · · · ⊕G2(k1b,n)

)
⊕Kr4

c

Where,

r1 = g(πa, πb)⊕ πc
r2 = g(πa, πb)⊕ πc
r3 = g(πa, πb)⊕ πc
r4 = g(πa, πb)⊕ πc

Intuitively, the ri values are balancing bits, to maintain relation (0 → πc, 1 → πc). We can

observe that ri = πc whenever the gate outputs 0, and ri = πc otherwise. So the relation

1A simple way to achieve (n, n)-sharing is to split the secret into n random shares subject to the condition
that they sum up to the secret and distribute the ith share to party Pi
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holds good if the output of g is computed upon the actual bit values of the input wires. In the

correctness proof of BMR, we will show that we always computes the boolean gate g upon the

actual bits of input wires.

The ciphertexts C1, C2, C3 and C4 should be a computed only via a generic MPC protocol.

We emphasize that, if each party just sends across the PRG outputs of both keys to all the

other parties for the computation of these 4 ciphertexts, then the A who might have corrupted t

parties, can gain extra information about the messages in the ciphertexts, that are not supposed

to open in a particular execution (For example: if t = n− 1, and without loss of generality P1

is the only honest party, then G1(k0a,1)), G
2(k0a,1)), G

1(k1a,1)), G
2(k1a,1)) are leaked to A, and he

can decrypt all the ciphertexts). If that is the case, A, who does not know the key(s) of honest

party, will see the ciphertexts as one-time padded messages with PRG outputs. In the end of

Offline phase, every party Pi knows,

• 2 keys of each wires

• 4 ciphertexts for each gate g

• Secret share of πj, for all wires j

• πz, for all output wire z

• πm, for each input wire m, if m belongs to Pi

2.2.2 Online Phase of BMR protocol

Each party will evaluate the circuit as a local computation, in this phase. Parties need to

know about their inputs, only at the beginning of this phase. So we start this phase with the

assumption that every party has fixed their inputs. We define a new bit called signal bit of a

wire w denoted by λw, as follows:

λw = vw ⊕ πw (2.1)

Where vw is the actual bit in a wire, in a specific evaluation. The λw value of the input wire

w of Pi can be calculated by the party Pi only; because only Pi knows πw. But the circuit has

been constructed in a way that, everybody needs λ to evaluate the circuit. So the owner of the

input wire(s) will broadcast the λ values of his input wires. After every party repeats this step,

all parties will get to know the λ values of all the input wires in the circuit. For decrypting one

logic gate, we need exactly one super-key for each input wire. So every party will send across

11



λa λb Decryptable Ciphertext
0 0 C1

0 1 C2

1 0 C3

1 1 C4

their keys kλww,i so that every party will get exactly one super-key corresponding to λw for each

input wire w. With this information, parties can decrypt exactly one ciphertext as follows:

Using the super-keys Kλa
a and Kλb

b , all parties can decrypt the ciphertext and get the super-

key of the output wire, and so on. But its not clear how to get λ value of the new (gate output)

wire. But every party knows their keys on all the wires, and super-key is constructed by ap-

pending all the keys of parties. So every party can locally check the key bits corresponding to

that party ((i − 1) · k + 1 to i · k for party Pi) in the super-key. If that happened to be equal

to k0c,i then the λc is 0; Otherwise it will be 1.

In short, after computing and sharing λw values and super-keys Kλw
w of all input wires w,

no other communication between the parties are required. The entire circuit evaluation is done

as local computation. Note that, λ values are found and propagated from input wires to out-

put wires. As far as π values are chosen random, by disclosing λ values, it guarantees perfect

security to the v value.

2.2.3 Correctness of BMR

Consider the case when λa = λb = 0. We have to prove that λc and Kλc
c are correctly computed,

so that they satisfy equation 2.1. When both λa and λb are 0, we can prove the correctness as

follows:

λa = 0 =⇒ va = πa

λb = 0 =⇒ vb = πb

As per the table of decryptable ciphertexts, we will decrypt C1.

• If g(πa, πb) = πc, that means g(va, vb) = πc and we will be encrypting Sc,0 as message, in

C1 (see the construction). We can see that λc must be 0, to become consistent with the

definition of λ. In this case,

12



g(va, vb) = πc (2.2)

g(va, vb) = vc (2.3)

(2.2)&(2.3) =⇒ πc = vc

=⇒ λc = πc ⊕ vc
=⇒ λc = 0

• If g(πa, πb) = πc, then g(va, vb) = πc and C1 will be an encryption of K1
c . Here, λc must

be 1, to become consistent with the definition of λ. In this case,

g(va, vb) = πc (2.4)

g(va, vb) = vc (2.5)

(2.4)&(2.5) =⇒ πc = vc

=⇒ λc = πc ⊕ vc
=⇒ λc = 1

When both λa and λb are 0, super-key and λc calculated are shown to be correct. All the

other ciphertexts, we can prove with similar argument.

At the end of circuit evaluation, all parties will get to know the λ values of output wires.

Note that, Parties already know the π values of output wires. Hence we can compute vc using

the equation (2.1) for each output wire c.

2.3 Free-XOR: An Optimization for Yao’s protocol

In 2008, Kolesnikov et al. introduced an optimization to Yao’s garbled circuit [9] which makes

the evaluation of XOR gates, free of cost. Their approach relies upon Random Oracle (RO)

assumption. Free-XOR is proven secure under semi-honest setting. Let’s first look at how the

Yao’s circuit is modified here.
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2.3.1 Free-XOR circuit construction

Party P0 (who constructs circuit) will first sort the gates of the circuit topologically, and then

chooses keys for garbled circuit. The key selection mechanism in Free-XOR is as follows: P0

will selects a random string R, only once for the circuit. If a wire w is not the output of an XOR

gate, then the key k0w is randomly chosen, and k1w := k0w ⊕ R. On the other hand, if wire c is

the output wire of an XOR gate of input wires, say a and b, then k0c := k0a⊕k0b and k1c := k0c⊕R.

2.3.2 Garbling of XOR gates

In this construction, we don’t need ciphertexts for XOR gate. P1 can get the output key by

performing XOR upon input keys of XOR gate. We are about to show correctness of this

approach with respect to XOR gate. Assume a, b are input wires and c is the output wire. We

know that the following equations hold for the keys of a, b and c.

k0c = k0a ⊕ k0b (2.6)

k1c = k0c ⊕R (2.7)

= k0a ⊕ k0b ⊕R (2.8)

Let Ba and Bb be the bit values on the wires a and b respectively. Then the keys that P1

(evaluator) possess will be kBaa and kBbb . According to the Free-XOR protocol, we will get the

key for wire c as kBaa ⊕ k
Bb
b . We now need to prove this expression evaluates to kBa⊕Bbc . We can

observe that,

kBww = k0w ⊕ (Bw ·R) (2.9)

for any wire w. Therefore,

kBaa ⊕ k
Bb
b =

(
k0a ⊕ (Ba ·R)

)
⊕
(
k0b ⊕ (Bb ·R)

)
= k0a ⊕ k0b ⊕R · (Ba ⊕Bb)

= k0c ⊕R · (Ba ⊕Bb)

= kBa⊕Bbc from (2.9)
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2.3.3 Garbling of non-XOR gates

Note that in Yao’s protocol both the keys corresponding to a wire are chosen uniformly at

random and independent of each other. Whereas Free-XOR technique demands that the keys

are related as discussed above. To negate the effect of the dependency, garbling of other gates

are done by masking the output wire key by the output of Random Oracle, parameterized with

input keys. Recall that RO implements a function that is chosen uniformly at random from

the set of functions (for a given domain and co-domain) and therefore it’s output distribution

is uniform over the co-domain.

For garbling non-XOR gates, we perform the following steps. First choose the key corre-

sponding to bit 0 in output wire (k0c ), randomly and we set k1c := k0c ⊕ R. Using the keys of

input wires a and b, we should be able to decrypt k
g(va,vb)
c for gate g (which will be an integer

representing topological position of the gate). In the construction of ciphertexts, we use a

Random Oracle H : {0, 1}∗ → {0, 1}l if l = |kbw| for all wire w and bit b.

Cva||vb := H(kvaa ||k
vb
b ||g)⊕ kg(va,vb)c (2.10)

In Yao’s protocol, they had an optimization technique called point and permute to limit the

attempts to decrypt the ciphertext from 4 to 1. Point and permute technique will assign a

random bit to one key, and the complement bit to the other key, on a wire. The permutation bit

is disclosed along with the key, so that 〈pvaa , p
vb
b 〉 will be the position of ciphertext corresponding

to keys kvaa and kvbb (pβw is the permutation bit for kβw, and pβw = (pβ
c

w )c). Point and permute is

a necessity here, as the encryption is just XOR operation1. Here we have random permutation

bits for keys that are chosen at random, and permutation bit for the output key from an XOR

gate will be pvaa ⊕ p
vb
b , a and b being input wires. Therefore, the equation (2.10) will become,

Cpvaa ||p
vb
b

:= H(kvaa ||k
vb
b ||g)⊕ (kg(va,vb)c ||pg(va,vb)c ) (2.11)

and the Random Oracle must be modified as H : {0, 1}∗ → {0, 1}l+1 The circuit is constructed

and given to the party P1 who evaluates the circuit. The keys corresponding to P0 is given

along with the circuit, and keys for P1 is transfered through OT similar to figure 2.2

Free-XOR circuit evaluation. P1, with exactly one key for each input wire, can evaluate

the circuit till the output wires. In Yao’s protocol, we used to give a decryption table which

maps key → bit which can’t be done here. If so, then P1 can be a passive adversary and he

1We can’t assume the failed decryption attempts will results in ⊥

15



can learn about R by performing XOR on the two keys of output wire. Even if we give just

one key to bit mapping (say, always k0z → 0. If key doesn’t match then bit is 1), still it may

compromise the privacy of P0 if the circuit outputs k1z , as he can still perform XOR with the

key from circuit with key from decryption table. So it is essential to encrypt the output bit,

using the keys.

Cpvzz := H(kvzz ||“out”||g)⊕ vz (2.12)

This gives an additional couple of ciphertexts for every output gate. By decrypting with the

only key, he gains no information about the other key, and hence R will not be revealed.

2.4 Almost Free-XOR

In this section, we briefly explain the Almost Free-XOR optimization from the paper GLPN15

[8], which enables the efficient evaluation of XOR gates in garbled circuit. This is a an alter-

native optimization to Free-XOR (section 2.3). Although this requires one ciphertext for XOR

evaluation unlike Free-XOR, this is based on standard assumption (Pseudo Random Function

Assumption).

Almost Free-XOR demands point and permute optimization in Yao’s protocol. For each

wire w of Yao’s garbled circuit, a random bit called permutation bit πw is chosen, and that bit

will be associated with k0w, whereas πw will be associated with k1w. Therefore while evaluation,

a bit will be exposed along with the key which we call signal bit λw. Note that λw = πw if the

key in the evaluation is k0w, and λw = πw if the key is k1w. Let vw be the actual bit on the wire

w. So in general, it holds that λw = πw ⊕ vw. Since πw is random, this reveals nothing about

the value vw. Almost Free-XOR tries to mimic the Free-XOR, but standing within standard

assumptions. But the basic idea of obtaining output key by taking XOR of the input keys stays

the same.

2.4.1 Garbling

Let the XOR gate possess the id g and have input wires a, b and output wire c and F be a

pseudo random function. The garbling of XOR gate according to the optimization works in the

following way.

• translate input keys on wire a: Let Da0 := Fk0a(g), Da1 := Fk1a(g) be computed and

called as derived keys.
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• set offset of output wire c: Compute their XOR of the derived keys of wire a and call

as ∆. i.e, ∆ := Da0 ⊕Da1 . This will be the offset of the two output keys on the wire c.

• translate input keys on wire b: Derived keys are computed on wire b as follows.

Dπb
b := Fkπbb

(g) and Dπb
b := Dπb

b ⊕ ∆. The two derived keys are computed differently

to keep the bitwise distance (XOR) of D0
b and D1

b as ∆ so that, we can perform XOR

evaluation as XOR of the keys itself.

• compute the output keys on wire c: We set the output wire keys as k0c = D0
a ⊕D0

b

and k1c = k0c ⊕∆. We can observe that Dva
a ⊕D

vb
b = kva⊕vbc , because of the bit difference

∆ within each pair of keys on the input wires.

• set the ciphertext: We need it as finding Dπb
b with kπbb seems impossible, as it is not a

function of that key. So we set a cipher text so that, only with the kπbb , the corresponding

derived key can be obtained. So the cipher text T := F
k
πb
b

⊕Dπb
b .

2.4.2 Evaluation

In order to evaluate a XOR gate g with ciphertext T and the keys ka and kb on the wires a and

b respectively, the evaluator needs to compute both the derived keys. They are Da = Fka(g)

and Db = Fkb(g) or Db = Fkb(g)⊕ T depends on the signal bit λb. It is left to find the output

wire key as kc = Da ⊕Db.

As we are using PRF outputs with unique gate id’s as seeds, for both computing ciphertexts

as well as determining output wire keys, the security of this optimization is implied by PRF

assumption. As PRF assumption holds, the output of PRF are pseudorandom and indistin-

guishable from a perfect random string for any polynomial time adversary. This makes it as

good as choosing the keys of output wires as random. Also without kπbb , no information about

Dπb
b is leaked from T, as it is padded with pseudo-random string.
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Chapter 3

Our Contributions

3.1 Cheap-XOR for BMR

Our contribution is an approach called Cheap-XOR that enables to evaluate the XOR gates

with no cost in BMR’s protocol and is equivalent to the Free-XOR technique in Yao’s pro-

tocol. However, besides the key acquisition of output wire by performing XOR on two input

wire keys, we do not adapt any techniques from the work of Kolesnikov et al. [9] and thereby

preventing copyright issues regarding intellectual properties. Cheap XOR can be proven secure

under semi-honest setting, with an underlying assumption on the existence of Random Oracle.

We will be discussing Cheap-XOR protocol in the following sections.

We will be following the notations used in BMR’s protocol, discussed in Section 2.2. Cheap-

XOR protocol will structurally resembles BMR’s protocol. Therefore, we will be having an

offline phase and an online phase followed by local computation of circuit evaluation.

3.1.1 Cheap-XOR: Offline phase

In offline phase of Cheap-XOR, all parties will collectively decide upon π values and shared (like

BMR’s protocol), as long as the wire is not an output of an XOR gate. If wire c is output of an

XOR gate, then πc := πa⊕πb. As the πa and πb are shared, one party may only possess πia and

πib. So output wire c’s π share is πic := πia⊕ πib 1. Please note that, we may need reconstruction

of πz and broadcast of the same for each output wire z, if z is the output wire of some XOR

gate. The structure of super-key is also similar to BMR, except the way in which the parties

choose keys for wires differ from BMR’s approach. For super-key calculation, each party Pi

1If (n,n) sharings are ⊕
i
(πi

a) = πa, ⊕
i
(πi

b) = πb, then being πi
c = πi

a ⊕ πi
b means ⊕

i
(πi

c) = πa ⊕ πb
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randomly choose a κ length random string ri, only once. Then they topologically sort all the

gates (and wires), then choose key for a wire as follows:

1. If wire w is not the output wire of any XOR Gate,

(a) Choose a random key k0w,i ∈R {0, 1}κ

(b) k1w,i := k0w,i ⊕ ri

2. Else (Let a, b be input wires of the XOR gate)

(a) k0w,i := k0a,i ⊕ k0b,i
(b) k1w,i := k0w,i ⊕ ri

The super-key computation is given below.

SK0
w = k0w,1||k0w,2|| · · · ||k0w,n

SK1
w = k1w,1||k1w,2|| · · · ||k1w,n

= k0w,1 ⊕ r1||k0w,2 ⊕ r2|| · · · ||k0w,n ⊕ rn

= SK0
w ⊕ (r1||r2|| · · · ||rn)

= SK0
w ⊕ Γ

Where Γ is common for all wires, as all parties will use same ri in all wires (assuming semi-

honest behaviour). We can see that performing XOR on input keys will result in the output

wire key, for XOR gates as similar to Section 2.3.2.

3.1.1.1 Garbling of Other Gates

We use two Random Oracles, namely H1, H2 : {0, 1}κ → {0, 1}nκ for encrypting cipher boxes

of non-XOR gates. The Garbling of non-XOR gates can be done as follows.

C1 :=
(
H1(k0a,1)⊕H1(k0a,2)⊕ · · · ⊕H1(k0a,n)

)
⊕
(
H1(k0b,1)⊕H1(k0b,2)⊕ · · · ⊕H1(k0b,n)

)
⊕Kr1

c

C2 :=
(
H2(k0a,1)⊕H2(k0a,2)⊕ · · · ⊕H2(k0a,n)

)
⊕
(
H1(k1b,1)⊕H1(k1b,2)⊕ · · · ⊕H1(k1b,n)

)
⊕Kr2

c
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C3 :=
(
H1(k1a,1)⊕H1(k1a,2)⊕ · · · ⊕H1(k1a,n)

)
⊕
(
H2(k0b,1)⊕H2(k0b,2)⊕ · · · ⊕H2(k0b,n)

)
⊕Kr3

c

C4 :=
(
H2(k1a,1)⊕H2(k1a,2)⊕ · · · ⊕H2(k1a,n)

)
⊕
(
H2(k1b,1)⊕H2(k1b,2)⊕ · · · ⊕H2(k1b,n)

)
⊕Kr4

c

Where,

r1 = g(πa, πb)⊕ πc
r2 = g(πa, πb)⊕ πc
r3 = g(πa, πb)⊕ πc
r4 = g(πa, πb)⊕ πc

3.1.2 Cheap-XOR: Online Phase

Cheap-XOR Online phase is same as that of BMR’s protocol in Section 2.2, where λ values and

Kλw
w values are shared for each input wire w, followed by the evaluation of the circuit as a local

computation. λ is propagated from input wires to output wires, and finally every party finds

out bit value by computing πz ⊕ λz.

3.1.3 Correctness

Correctness in non-XOR gates directly follows from Section 2.2.3. For proving correctness in

XOR gates, we will be using the following claim.

Claim 3.1 If λa and λb are the computed values of λ on two input wires of an XOR gate g,

then the output wire c will be associated with λc = λa ⊕ λb.

In correctness, we have to prove that the correlation between π, λ and v values are consistent

with the output wire of XOR. Please note that, for an XOR gate with input wires a and b and

output wire c, we chose π values in such a way that πc = πa ⊕ πb.

va ⊕ vb = (λa ⊕ πa)⊕ (λb ⊕ πb)

= (λa ⊕ λb)⊕ (πa ⊕ πb)

= λc ⊕ πc (follows from claim 1)

= vc
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Proof: From the construction of super-keys, we can see that the following equation holds for

all wires.

SKλw
w = SK0

w ⊕ (λw · Γ) (3.1)

If c is the output wire of XOR gate g with input wires a and b, then the super-keys of c must

have been calculated from the super-keys of a and b, as follows.

SKλc
c = SKλa

a ⊕ SKλb
b

= SK0
a ⊕ (λa · Γ)⊕ SK0

b ⊕ (λb · Γ)

= SK0
a ⊕ SK0

b ⊕ ((λa ⊕ λb) · Γ)

= SK0
c ⊕ ((λa ⊕ λb) · Γ) (3.2)

Applying Equation(3.1) for wire c,

SKλc
c = SK0

c ⊕ (λc · Γ) (3.3)

Comparing Equations(3.2) and (3.3),

(3.2)&(3.3) =⇒ λc = (λa ⊕ λb)

Hence we proved that correctness holds for both XOR and Non-XOR gates.

3.1.4 Security of Cheap-XOR

The Cheap-XOR differs from actual BMR protocol in the following areas:

• Construction of super-key SK1
w

• Choosing both super-keys of XOR output wires

• Encryption of cipher boxes (Non-XOR gates)

• Choosing λ values of XOR output wires.

Without loss of generality, we can assume P1 is honest, but the rest are corrupted parties

(worst case scenario). Here, A can get to know all ri, except r1. So A can predict SK1−λw
w from

SKλw
w only with probability 1/2k, as they differ by Γ and it contains r1. Therefore choosing

SK1
w = SK0

w ⊕ Γ is secure. If SKλa
a , SK

λb
b are the input wire keys of an XOR gate, SKλc

c will
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be the XOR of the above two. Like we have shown in the previous case, A will have only

a negligible chance to predict the SK1−λc
c without the knowledge of r1. In the encryptions

of Non-XOR gates, we use Random Oracle outputs to mask the message. Even though the

inputs may be correlated (k1a,i = k0a,i ⊕ ri) as long as they are different, Random Oracle will be

returning perfect random strings and that hides messages. To know what exact information

is leaked from bringing the correlation of λ values, let us analyse in the following way. Let’s

assume c is some output wire of an XOR gate g, whose input wires are a and b.

• Case 1: Both a and b are input wires of corrupted parties: Here, we can see that A may

learn πc which is πa⊕πb. Our claim is that, even if we choose πc randomly, A can compute

it. Here’s is how A can learn πc: Compute vc = va ⊕ vb, and compute πc = λc ⊕ vc (All

parties will λc as the circuit execution proceeds).

• Case 2: a, b are input wires, and only one wire (say, a) or neither of the wires are

possessed by corrupted parites: A will be missing one share of πb (In our case, π1
b ), hence

πb is hidden. As πc = πa ⊕ πb, πc is also hidden from A.

• Case 3: From wire c till output wire z, there is at least 1 non-XOR gate: Assuming a

and b are intermediate wires, A will not have any knowledge about πa and πb. Therefore,

A only knows the relation πc = πa ⊕ πb. In the path from c to z, if there is a non-XOR

gate, then πc will be hidden from A, as there is no correlation between π values of input

and output wires of a non-XOR gate.

• Case 4: From wire c till output wire z, all gates are XOR gates: We take w1, w2, · · ·wn be

the set of intermediate wires which are only connected with themselves using XOR gates

with the final output wire is z. In other words, vz = vw1 ⊕ · · · vwn . All parties (and A)

know the value of πz. Due to our construction, A may learn the value (πw1 ⊕πw2 · · · πwn).

However, we claim that this information A can learn even if we had chosen π values

randomly. It is obvious to see that A knows λw1 , · · ·λwn . As vz = ⊕
i
(λwi ⊕ πwi), A can

compute (πw1 ⊕ πw2 · · · πwn). This implies A doesn’t learn anything, apart from what he

already knows.

3.2 Generic Distributed Garbling Scheme Definitions

We define a generic distributed garbling scheme which acts as a framework for any multi-

party garbling protocol like BMR could fit in. Along with this, an optimization of XOR gates

and NOT gates to BMR sums up our second contribution. The generic distributed garbling
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scheme enables us to define properties privacy, obliviousness and authenticity through code-

based games. These are experiments where we expect no polynomial time adversary can win in

the game with non-negligible probability. We will claim that with the presence of an adversary

who can wins the experiment(s), we can solve a hard problem in polynomial time, which is

believed to be not true. In the following sections, we will first show that the BMR protocol

fits into this definition, then define our optimization Almost Free-XOR in BMR, followed by

showing if BMR with our optimizations fails any experiment, we can solve a hard problem

called 2PRF, thereby proving the properties.

Syntax. We follow the circuit conventions defined in [3]. A circuit is a 6-tuple f =

(u,m, q, A,B,G). Here u ≥ 2 is the number of inputs, m ≥ 1 is the number of outputs, and q ≥
1 is the number of gates. We let r = u+ q be the number of wires. We let Inputs = {1, · · · , u},
Wires = {1, · · · , u+q}, OutputWires = {u+q−m+1, · · · , u+q}, and Gates = {u+1, · · · , u+q}.
Every gate in a circuit has two incoming wires, and one outgoing wire (by which it is indexed).

Then A : Gates 7→ Wires\OutputWires is a function to identify each gate’s first incoming wire

and B : Gates 7→ Wires\OutputWires is a function to identify each gate’s second incoming wire.

Finally G : Gates×{0, 1}2 7→ {0, 1} is a function that determines the functionality of each gate.

We require A(g) < B(g) < g for all g ∈ Gates.

3.2.1 Syntax

Our garbling scheme uses a slight variant of the notation of Bellare et al. [3] in which a garbling

scheme consists of 4 algorithms:

– Garble(1n, c)→ (C,Ξ, E, d) is an algorithm that takes as input a security parameter 1n and

a description of a boolean circuit c, and returns a tuple (C,Ξ, E, d), where C = (c1, c2, · · · , cq)
represents the garbled circuit, Ξ = ξ1|| · · · ||ξi|| · · · ||ξn represents the evaluation information,

E = (e1, e2, · · · , eu) represents input encoding information and d represents output decoding

information. The output decoding information d is public.

– Encode(E, x) → X is a function that takes as input encoding information E and input

x = (x1, x2, · · · , xu) and returns garbled input X = (X1, X2, · · · , Xu). The garbled input X is

public and the encoding is necessarily projective. 1

1Projective garbling schemes, as defined by [3], adhere to the rule that the garbled input X can be parsed
as tokens X1, · · · , Xu, and that any token Xi depends only on input bit xi. ie. Encoding inputs x = x1, · · · , xu
and x′ = x′1, · · · , x′u with the same encoding information e will produce garbled inputs X = (X1, · · · , Xu),
X ′ = (X ′

1, · · · , X ′
u) with Xi = X ′

i if xi = x′i
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– Eval(C,X, ξi)→ Y is a function that takes as input a garbled circuit C, garbled input X,

and a single party’s evaluation information ξi and returns garbled output Y (corresponding to

the concrete output y = c(x)).

– Decode(Y, d) → y is a function that takes as input decoding information d and garbled

output Y and returns the clear output y of the circuit.

3.2.2 Code-based Experiments

Syntax for the experiment: For the ease of representing the collective information held

by the corrupted parties, we define the set of indices of corrupted parties as I = {i1, i2, · · · , it}
. The inputs provided by the corrupted parties are denoted XI = (Xi1 ,Xi2 , · · · ,Xit), and the

shares of the encoding information available to the corrupted parties are EI = (ei1 , ei2 , · · · , eit)
respectively. Then, x \ XI denotes the input of honest parties. The evaluation information

known to the corrupted parties is denoted ξI .

We define three security notions for garbling schemes adhering to the specification of 3.2.1,

along the lines of [3] as follows:

–Privacy: The tuple (C,X, ξI ,EI , d) should not reveal any information about x \ XI (in-

put of honest parties) that cannot be learned directly from c(x) and XI . More formally, there

exists a simulator S that receives input (1κ, c, c(x),XI) and outputs a simulated garbled cir-

cuit, encoded input, decoding information, along with the corrupted parties’ shares of encoding

information (EI) and evaluation information ξI that is indistinguishable from (C,X, ξI ,EI , d)

legitimately generated using the real garbling functions Garble(1n, c) and Encode(E, x). Observe

that S knows the output c(x) and corrupted parties’ inputs XI , but does not know the input

x \ XI .

–Obliviousness: (C,X, ξI ,EI) should not reveal any information about x. i.e., there exists

a simulator S that receives input (1κ, c,XI) and outputs a simulated garbled circuit and garbled

input, along with the corrupted parties’ shares of encoding information (EI) and evaluation in-

formation ξI that is indistinguishable from (C,X, ξI ,EI) legitimately generated using the real

garbling functions Garble(1κ, c) and Encode(E, x). Observe that S here is not even given the

output.
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–Authenticity: Given (C,X, ξI ,EI) as input, no adversary should be able to forge a dif-

ferent garbled output Ỹ that is not obtained as a direct output of Eval(C,X). More formally,

a probabilistic-polynomial time adversary should be able to output Ỹ 6= Eval(C,X) such that

Decode(Ỹ , d) 6= ⊥, with only negligible probability.

For each security definition we define an experiment that formalizes the adversary’s task.

In the following, G denotes a garbling scheme that consists of the 4 algorithms stated in 3.2.1,

and S denotes a simulator.

The basic non-triviality requirement for a garbling scheme, called correctness, is that for ev-

ery circuit c and input x ∈ {0, 1}poly(n), it holds that Decode(Eval(C,Encode(E, x), ξi), d) = c(x)

except with negligible probability, where (C,E,Ξ, d) ← Garble(1n, c), and ξi is parsed from Ξ

(correctness should hold for every ξi parsed from Ξ).

We define the privacy, obliviousness and authenticity experiments as ExptprivG,A,S(κ), ExptauthG,A(κ)

and ExptauthG,A(κ) respectively. For any scheme to be secure w.r.t. to the definitions, no poly-time

adversary should win the experiments with a non-negligible probability.

A distributed garbling scheme G achieves the property privacy if for any PPT adversary A

there exists a PPT simulator S and a negligible function µ(κ) such that, ∀κ ∈ N:

Pr
[
ExptprivG,A,S(κ) = 1

]
≤ 1/2 + µ(κ)
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A distributed garbling scheme G achieves the property obliviousness if for any PPT adver-

sary A there exists a PPT simulator S and a negligible function µ(κ) such that, ∀κ ∈ N:

Pr
[
ExptoblvG,A,S(κ) = 1

]
≤ 1/2 + µ(κ)

A distributed garbling scheme G achieves the property authenticity if for any PPT adversary

A there exists a negligible function µ(κ) such that, ∀κ ∈ N:

Pr
[
ExptauthG,A (κ) = 1

]
≤ µ(κ)

3.3 BMR as a distributed garbling scheme

We define the 4 functions Garble,Encode,Eval and Decode of the distributed garbling scheme

which resembles the BMR protocol. The intension is to show that BMR protocol fits in to the

generic scheme for distributed garbling.
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3.4 Almost Free-XOR in BMR

As we have seen, Almost Free-XOR garbling scheme produces one ciphertext per XOR gate,

and requires only three PRF invocations per XOR gate in the two party Yao-style setting. Here,

we adapt this optimization for distributed garbling in an n-party setting.

We assume a [1] style superkey structure; the superkey for bit b on a wire w is of the form

SKb
w = Kb

w,1||Kb
w,2||...||Kb

w,i||...||Kb
w,n

where Kb
w,i is the partial key contributed by party Pi.

It can be observed that the Almost Free-XOR optimization essentially produces keys for

the output wire as a function of derivations of the input wire keys. Along these lines, we adapt

this optimization (to the distributed setting) by making each partial key on the output wire

a function of derivations of the corresponding partial input wire keys. We will later see that

this allows the XOR gates to be garbled locally with no communication whatsoever before the
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online phase; each κ-bit block of the ciphertext can be generated independently of the parts of

the input and output keys at different positions.

The outline of the garbling scheme is as follows: in an n-party setting, each party locally,

independently executes an instance of the Almost Free-XOR garbling for an XOR gate, with its

partial keys on the input and output wires. As per the original scheme, there is one ciphertext

which encrypts the derived key corresponding to bit value 1 on the right input wire, with the

original 1 key on that wire. In the n-party setting, each party locally encrypts the partial

derived 1 key with the original partial 1 key on the right input wire. A simple concatenation

of every party’s ciphertext will comprise the entire ciphertext for the gate. Hence, the only

communication required to garble an XOR gate in this scheme is one broadcast round, to con-

struct the ciphertext for the gate. This is a significant improvement over using the generic gate

garbling described in [1], which requires a secure MPC to generate four ciphertexts for each

gate. The output permutation bit is computed as the XOR of the input permutation bits.

Consider the left and right incoming wires of an XOR gate to be labeled a and b respectively.

w. Even though the label of outgoing wire of gate g will be g itself, we will use w as the label

for the output wire, to avoid confusion. The outline of the distributed Almost Free garbling of

XOR gates is as follows:

1. Each party Pi locally computes their partial derived keys on wire a as D0
a,i = FK0

a,i
(g) and

D1
a,i = FK1

a,i
(g)

2. Each party Pi computes its partial offset ∆g,i = D0
a,i ⊕D1

a,i

3. The partial key corresponding to value 0 on wire b is derived for this gate as D0
b,i = FK0

b,i
(g)

4. The partial derived key corresponding to 1 on wire b is set such that it is offset from the

partial derived key corresponding to 0 on the same wire by ∆g,i; ie. D1
b,i = D0

b,i ⊕∆g,i

5. The partial output wire keys are set such that XORing the available partial input wire

keys will produce the appropriate output wire key. K0
g,i := D0

a,i ⊕D0
b,i = D1

a,i ⊕D1
b,i and

K1
g,i := D1

a,i ⊕D0
b,i = D0

a,i ⊕D1
b,i

6. As D1
b,i can not be directly derived from K1

b,i like the other derived keys, Pi publishes a

ciphertext encrypting D1
b,i using K1

b,i as follows: Tg,i := FK1
b,i

(g)⊕D1
b,i
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7. Functionality wise, along the lines of the [1] superkey, concatenating the partial elements

belonging to each party will provide the corresponding whole element. Specifically,

D0
a = D0

a,1|| · · · ||D0
a,i|| · · · ||D0

a,n

The same relation holds for all the derived keys D1
a, D

1
b , D

0
b . Also worth noting is that

the gate offset ∆g, even though never explicitly computed in its whole form by any party,

adheres to the same format.

∆g = ∆g,1|| · · · ||∆g,i|| · · · ||∆g,n

Each party broadcasts its locally computed ciphertext from the previous step, so that the

overall gate ciphertext may be constructed as follows:

Tg = Tg,1|| · · · ||Tg,i|| · · · ||Tg,n

Formally, we define the distributed version of this scheme in Algorithm 3.4.3.

The intuition for security is that every party’s contribution (the derived key D1
b,i) is masked

by a PRF keyed with a value known only to that party.

3.4.1 Privacy

Privacy of the permutation bit πw is preserved, as can be shown by examining all possible cases

for πa and πb. Consider S = P \ {Pi} to be an abstract party representing every party except

Pi.

1. S owns only wire a, and hence knows only πa. In this case, πb is known only to party Pi.

Hence, πw is masked information theoretically by πb to S, and by πa to Pi (as πw = πa⊕πb).

2. S owns only wire b, and Pi owns a. The same argument as above applies.

3. S owns both wires, a as well as b. In this case, wire w is effectively owned by S in the

security proof. Clearly, Pi knows nothing beyond her own share of πa, πb and πw.

4. Pi owns both wires, a as well as b. In this case, wire w is effectively owned by Pi in the

security proof. Clearly, S knows nothing beyond her own share of πa, πb and πw.
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3.4.2 Correctness

The intuition behind correctness of the scheme is that the n-party version of the Almost Free-

XOR scheme that is presented above is merely a concatenation of n independent instances of

the 2-party Almost Free-XOR scheme from [8].

The relation between the keys of the input and output wires is as follows:

K0
w,i = D0

a,i ⊕D0
b,i = D1

a,i ⊕D1
b,i

K1
w,i = K0

w,i ⊕∆g,i = D0
a,i ⊕D0

b,i ⊕∆g,i

= D0
a,i ⊕D1

b,i = D0
a,i ⊕D1

b,i

Correctness for the mapping {Ka,i} × {Kb,i} × {Ci[g]} 7→ {Kw,i} follows from [8], as each

party locally executes that exact protocol to generate Ci[g], K0
w,i, K

1
w,i from K0

a,i,K
1
a,i,K

0
b,i,K

1
b,i.

The zero and one superkeys for wire w are concatenations of K0
w,i,∀i and K1

w,i,∀i respectively.

Hence, as each of the n blocks of k bits of the superkeys of the input wires correctly map to the

corresponding k bit block of the output wire superkey using the (public) ciphertext, correctness

is preserved upon concatenation.

3.4.3 Signal and Permutation bit Invariant

Both [1] and [8] maintain the following invariant across every wire w : πw⊕λw = vw, where vw is

the actual bit value on the wire during evaluation. It can be seen that the Distributed GbXOR

and Eval XOR procedures preserve this invariant.

For an XOR gate g, consider the invariant to be true for incoming wires a and b. Hence

we have πa ⊕ λa = va and πb ⊕ λb = vb. By virtue of the gate functionality, we know that

vw = va⊕ vb. While garbling, the Local GbXOR procedure ensures that πw = πa⊕ πb. During

evaluation, Eval XOR sets λw = λa ⊕ λb.
Hence we have:

πw ⊕ λw =(πa ⊕ πb)⊕ (λa ⊕ λb)

=(πa ⊕ λa)⊕ (πb ⊕ λb)

=(va)⊕ (vb)

=vw

(3.4)
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Therefore, the invariant πw⊕λw = vw is maintained for the output wire of an XOR gate garbled

and evaluated with Algorithms GbXOR() and EvXOR() respectively, given that the input wires

maintain the same invariant.

It is left for us to define the garbling and evaluation sub-procedures specific for XOR gates

such that the distributed garbling scheme for BMR can be modified. Unlike the normal gate-

specific garbling function (Gb g), this determines the keys of output wire too. This means there

is a slight difference in Garble algorithm (3.3) too, where the output keys are determined by the

Gb XOR algorithm.

The Eval algorithm for BMR protocol needs to be updated by incorporating the Ev XOR

whenever XOR gates are evaluated.
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Proving our scheme achieves Privacy and Obliviousness, we will first define a Simulator S

which can construct the garbled circuit only with the information provided by the game. We

then claim that the garbled circuits constructed in the legitimate way is indifferent from the

one created by S. If otherwise, we can solve a hard problem called 2PRF [8] with the adversary

A. Here, we will prove the security of our optimization through the construction of Simulator

S and the reduction to 2PRF.

3.4.4 Security of Almost Free-XOR in BMR

priliminaries

We define the experiment Expt2PRFF,A (n, σ) [8] briefly here. Here, the adversary A is given access

to 4 oracle services (O1(.),O2(.),O3(.),O4(.)). The experiment starts with challenger chooses

two random keys k1, k2, two truly random functions f 1, f 2 and a random bit σ. If σ = 0,

challenger provides the oracles as (O1(.),O2(.),O3(.),O4(.)) = (FK1(.), FK1(.), FK2(.), FK2(.))

and if σ = 1, (O1(.),O2(.),O3(.),O4(.)) = (f 1, FK1(.), f
2, FK2(.)). Clearly, if A makes two

queries of same value, say, x to both O1(.) and O2(.) then the σ can be determined. The

hardness of this experiment exists because the same query is not allowed twice to the groups

(O1(.),O2(.)), (O3(.),O4(.)). It is intuitive to see the hardness as F is PRF because, it’s output

is indistinguishable from a truly random function. The only possibility to distinguish is to see

both the outputs of same query from (O1(.),O2(.)), or from (O3(.),O4(.)) which is prevented by

the game itself. A should try to predict σ, and the game outputs the same bit.

Claim 3.2 For any PPT adversary A, any negligible function µ(n) and for any pseudo random

function F ∣∣Pr [Expt2PRFF,A (n, 0) = 1
]
− Pr

[
Expt2PRFF,A (n, 1) = 1

]∣∣ ≤ µ(n)

The formal proof of this claim is in the paper GLNP15 [8]. For proving the security of our

scheme, we need a special PRF denoted as F̂ : {0, 1}nk × {0, 1}∗ → {0, 1}nk. Let F : {0, 1}k ×
{0, 1}∗ → {0, 1}k. Now let F̂ be defined as follows:

F̂SK(.) := F1(.)||F2(.)|| · · · ||Fn(.)

where SK := 1|| · · · ||n

Claim 3.3 if F is a PRF, then F̂ is a PRF.
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Proof: Proof of this claim with goes in a hybrid approach. We define a series of functions

as follows.

H0,SK(.) = F1(.) || F2(.) || · · · || Fn(.)

H1,SK(.) = r1 || F2(.) || · · · || Fn(.)

H2,SK(.) = r1 || r2 || F3(.) || · · · || Fn(.)

...

Hi,SK(.) = r1 || r2 || · · · || ri || Fi+1
(.) || · · · || Fn(.)

...

H2,SK(.) = r1 || r2 || · · · || rn

where ri ∈R {0, 1}k. It can be observed that H0,SK is F̂ itself, and Hn,SK return completely

random string. We can assume the contradiction of the claim i.e., ∃ a PPT adversary A who

can distinguish H0,SK and Hn,SK which is the reason F̂ is not a PRF. This implies ∃Ai which

can distinguish Hi,SK and Hi−1,SK. Therefore we can construct an efficient adversary A∗ for the

PRF game of F , using the Ai.
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Figure 3.1: Proof of Claim 3

If there us an adversary Ai which has non-negligible advantage on distinguishing Hi,SK and

Hi−1,SK, we can construct another adversary A∗ which has the a non-negligible advantage in

winning PRF game of F , which is a contradiction as F is a PRF. Hence the claim is true.

3.4.5 Simulation

We are going to simulate the Garble according to our new scheme of garbling. As per the

privacy experiment, Simulator S is provided with only the circuit c,XI and the output c(x),

and S is expected to return (C,X, ξI ,EI , d) where C is garbled circuit, X is garbled input, ξI

is the necessary information needed by the corrupted parties to evaluate the circuit, EI is the

encoding information of corrupted parties, and d is the decoding information.

The simulation will create the garbled circuit with only one active (super)key per wire. We
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choose superkeys randomly, except when the wire being output of an XOR gate. We will show

that if there is a poly-time adversary who can win the experiment ExptprivG,A,S(k), then we can

break the 2PRF game using A which leads to a contradiction to the fact that F̂ is a PRF.
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Claim 3.4 The garbling scheme G achieves privacy as for any PPT adversary A there exists

a PPT simulator S and a negligible function µ(κ) such that, ∀κ ∈ N:

Pr
[
ExptprivG,A,S(κ) = 1

]
≤ 1/2 + µ(κ)

Proof: We prove this claim using the proof of contradiction. Therefore first we assume ∃
an adversary A which can win the privacy experiment of G. We introduce a number of special

garbling schemes called G0, G1, · · · , Gq where G0 resembles our garbling scheme G and Gq re-

sembles completely simulated garbling by S. G1 through Gq−1 represents the hybrid garbling

schemes in between legitimate garbling and simulated garbling. Formally, Gi garble every gate

exactly same like in Gi−1 except the gate i. In Gi−1, the garbling of gate i would be legitimate

garbling whereas that of Gi is simulated garbling. In each Gi, for each wire l, do the following:

• If l is an input wire to g:

– If g ≤ i: Choose the active key, and a random string and add to El or ξl, as per

Simulator algorithm S().

– Else: Choose both the keys and add to El or ξl, as per Garble() of BMR.

• Else If l is an output wire of circuit, from gate g:

– If g ≤ i: Prepare dl according to S(), where only one superkey can be decoded as

the other entry is random.

– Else: Prepare dl according to BMR’s Garble(), where it contains decoding informa-

tion of both superkeys.

We can easily claim that ∃ at least one adversary Ai who can distinguish Gi from Gi−1 with

non-negligible probability. Otherwise, if no adversary exists who can distinguish (Gi, Gi−1) for

any i, then A can’t distinguish G0 from Gq also, which is not possible. So we assume

Pr
[
Expt

Dist(Gi−1,Gi)

Ch,Ai (κ) = 1
]
≥ 1

2
+

1

p(κ)

where p(κ) is some polynomial in κ. In ExptDistGi−1,Gi,Ai(κ, 0), challenger garbles using Gi−1

and in ExptDistGi−1,Gi,Ai(κ, 1), challenger garbles using Gi.

Now we construct an efficient adversary A∗ for 2PRF game, using the responses of Ai by

playing distinguishability experiment of (Gi−1, Gi) with him. This will contradict the fact that
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2PRF is a hard problem, which is not true.

Figure 3.2: Reduction based proof of privacy

From the figure, we can claim that A∗ can win experiment 2PRF with non-negligible prob-

ability, as when σ = 0, A∗ uses the garbling scheme Gi−1 and when σ = 1, it is Gi. Please note

that we take care of the other gates l > i which uses the wires a and/or b. We make sure those

gates are garbled legitimately by using the oracles O1 and O3, which are always PRF outputs.

The same query will not be asked to both (O1,O2), or to (O3,O4) because of the unique gate

id’s. Therefore for all polynomial p(κ),

Pr
[
Expt

Dist(Gi−1,Gi)

A∗,Ai (κ) = 1
]
≤Pr

[
Expt2PRFCh2PRF,A∗(κ) = 1

]
<

1

2
+

1

p(κ)
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which contradicts our assumption of Ai. Hence privacy is proved.

For proving obliviousness, we can use the same hybrid argument with a small change in

garbling. As the Simulator is not provided with the output of the circuit c(x), S can’t make

legitimate decoding information d. However, as it is obliousness experiment, S doesn’t need

to construct d and will not be provided to A. Therefore the proof goes same way, except the

absence of d.

We can prove the authenticity of our scheme by a proof of contradiction. If there is a poly-

time adversary A for ExptoblvG,A,S(κ) with non-negligible winning probability, that means it can

produce a garbled output which doesn’t decode to c(x). Note that, we give completely random

string to the d for the bits c(x)j when we simulate the garbling. This implies A can distinguish

some Gi from Gi−1 by verifying if A can win obliviousness experiment. But we proved that

such an adversary A doesn’t exists so, no poly-time adversary can win obliviousness experiment

unless with a negligible probability.

3.5 NOT gate with no ciphertext

This NOT gate optimization is a variant of Almost Free-XOR where we assume one arbitrary

wire Z for the entire circuit, which has only one superkey SKZ , permutation bit πZ = 1, and

bit value vZ = 1. This means the signal bit λZ = 0. We convert all the NOT gates to XOR

gates with Z as the second input. Note that, (vw ⊕ 1 = vw). As λz is always 1, we never need

ciphertext for these gates. The security of this optimization reduces to the security of Almost

Free-XOR.
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Chapter 4

Conclusions and Future Work

We introduced two optimizations called Cheap-XOR and Almost Free-XOR to BMR’s protocol,

which enables cheap computation of XOR gates. This is proven (informally) to be secure against

semi-honest adversary, even with a dishonest majority of (n−1) out of n. We also introduced a

generic distributed garbling scheme definition. Finally we optimized NOT gate, where garbling

is possible without any ciphertexts. We look forward to apply other optimizations (like Garbled

Row Reduction, FleXOR technique, etc.) to BMR protocol, which are currently known to only

Yao’s protocol.
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