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Abstract

Secure Multi-Party Computation (MPC) protocols allow a set of mutually-distrusting parties to jointly
evaluate a common known function over their inputs, while maintaining correctness of the outputs
and the security of their inputs. In the past decade, a plethora of MPC protocols have evolved, with
improvements in efficiency and security. Specifically, the introduction of mixed protocols opened up
the possibility of more efficient practical realizations that use a mixture of arithmetic and boolean
circuits to represent common operations in an optimal fashion.

In this work, we extend the well known two-party mixed-protocol Arithmetic Boolean Yao [9]
(ABY) framework to the three party setting, obtaining a new protocol which we call BAG (Boolean
Arithmetic Garble). The BAG protocol is constructed by the combining efficient schemes based on
Boolean sharing, Arithmetic sharing, and Garbled circuit based sharing; and using state-of-the-art
conversion techniques.

Similar to the ABY-framework, the BAG-framework also considers semi-honest centralized static
adversaries, and tolerates at most two corruptions out of three (dishonest majority). Again following
ABY, the BAG-framework has two phases (offline, online) and allows us to pre-compute many of the
expensive cryptographic operations, thus reducing the online phase execution time.

Implenting our protocol, we have benchmarked ABY (publicly available [8]) and BAG w.r.t. the
atomic operations which are known to give insights into the design of mixed protocols. In comparison
to ABY, our framework has an average of 55% overhead for elementary operations and 20% overhead
for conversions, which is reasonable considering that it is in the three-party setting.
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Chapter 1

Introduction

With the internet as the backbone, and especially after the significant leaps in wireless communication
technology and the near-ubiquitous proliferation of the Internet of Things idea in the past decade, we
now have millions of computational devices, with a great diversity of capabilities and uses, connected
to each other across the globe. This new ecosystem has brought with it a plethora of security and
privacy challenges hitherto unexplored.

In its beginnings, modern (theoretical) cryptography focused more on the formal study of prob-
lems related to the protection of data (encryption), authentication of messages and guarantee of non-
repudiation (digital signatures) etc. But the field has since grown to encompass many other problems
and techniques of both theoretical interest as well as practical applications. The framework of Secure
Multiparty Computation (MPC), introduced by Andrew Chi-Chih Yao [21], is a sub-field of mod-
ern cryptography that studies problems related to performing computations on data while preserving
privacy.

Although many of the earlier MPC constructions were studied for the sake of theoretical interest
without focusing on implementation constraints, the information revolution in the twenty-first century
has also shifted the focus towards practical MPC. Some of the notable applications of efficient MPC
design techniques include secure auctions, secure elections, privacy-preserving machine learning [17,
18], satellite collision [14] etc.

Over the past decade, research in multi-party computation has drifted towards a balance between
theory and practice. As a result, several protocols have been proposed focus on theoretical guarantees
and efficient implementation. In this work, we extend the two-party Arithmetic Boolean Yao (ABY)
framework [9] to three parties. Our protocol considers a scenario where three parties (P1, P2, P3),
who do not trust each other, need to evaluate a known function f on a combination of their private
inputs (x1, x2, x3), and obtain their corresponding outputs (y1, y2, y3) without the inputs being shared
with each other. Some potential applications of such a protocol include private set intersection and
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building classifiers without leaking training data.

1.1 Secure Multiparty Computation
Secure Multiparty Computation considers a set of n mutually-distrustful parties P1, . . . , Pn, with
private inputs x1, . . . , xn, who wish to jointly evaluate a known vector-valued function f (with n

outputs y1, . . . , yn) on ϕ(x1, . . . , xn) (which is a combination of their private inputs). But they also
wish to ensure that a bounded adversary who controls an arbitrary collated set of up to t (of n)
parties cannot learn any extra information other than the outputs of the corrupted parties (privacy) and
cannot affect the outputs of the honest parties successfully (correctness). We consider a monolithic

or centralized adversary, where the set of t corrupted parties can collude with each other. Here, the
adversary models the distrust among parties, and the possible collusion of a small set of parties with
the aim of disrupting the computation. These t parties are said to be ‘corrupt’ and the remaining
(n− t) parties are said to be ‘honest’. An MPC protocol should ensure that the following conditions
hold:

• Correctness: Each honest party Pi outputs the correct function value yi = f(ϕ(x1, . . . , xn)).

• Privacy: The adversary cannot learn any information other than what can be efficiently derived
from the inputs and outputs of the corrupted parties.

There are also other properties that may be fulfilled by MPC protocols. Some of the notable ones are
the following:

• Independence of Inputs: The corrupted parties must choose their inputs independently of the
honest parties’ inputs.

• Fairness: The corrupted parties should receive their outputs only if the honest parties also
receive their outputs.

• Guaranteed Output Delivery: The corrupted parties should not be able to prevent the honest
parties from receiving their output.

Multi-Party Computation (MPC) solutions can be categorized based on the adversary type and
behavior, the nature of the function to be computed, and the network (synchronous or asynchronous).
An adversary can either be centralized or decentralized, and either static or dynamic. In our work,
we consider a centralized adversary who can statically corrupt at most t parties, where t is called
the ‘threshold’. We consider a synchronous network in which the ‘rounds’ of communication are
well-defined due to the presence of a global clock. An adversary can either be semi-honest (follows
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the protocol faithfully, but tries to glean extra information) or malicious (can arbitrarily deviate from
the protocol). We consider only semi-honest adversaries for this work. We also consider the adver-
sary to be computationally bounded (allowed probabilistic polynomial-time computation) for all our
protocols.

1.1.1 Boolean and Arithmetic Circuits
In MPC protocols, the function to be computed is represented as a circuit, which may either be an
arithmetic or a boolean circuit. When modeling a higher-level computation as a mathematical func-
tion, we can choose to represent it either as a boolean circuit (with {0, 1} inputs and AND, OR, XOR
gates) or as an arithmetic circuit (with inputs from a field and +, × gates). For particular high-level
operations, it may be that one of these representations (arithmetic vs. boolean) can be realized much
more efficiently than the other. For example, the comparison operation may be realized more effi-
ciently as a boolean circuit, whereas addition may be realized more efficiently as an arithmetic circuit.
But it may be difficult for a non-expert (such as a developer) to choose between these representations
so as to yield the best performance in practice.

Most of the earlier protocols in MPC supported a particular representation of circuits. The generic
solutions for n parties were first proposed in [12] for arithmetic circuits and [6] for boolean circuits.

Later, some protocols attempted to support the combination of these representations in the circuit
for the function (to be computed). That is, a part of the circuit may be arithmetic, while another part
may be boolean. Such protocols are called mixed protocols. An expert could choose to realize a part
of her function as an arithmetic circuit and the other part as a boolean circuit, with the mixed protocol
using the appropriate conversions for each part. The ABY protocol [9] is a mixed protocol, and our
work also follows this regime.

However, it should be noted that a non-expert may find it difficult to choose the appropriate repre-
sentations for each part of the circuit so as to maximize performance. But mixed protocols potentially
allow approaches that automatically generate a “good” circuit given a function.

1.2 Related Work
We outline some of the relevant earlier work for mixed MPC protocols in this section. Even though
the MPC protocol was introduced in 1982 by Yao [21] (for boolean circuits), the first mixed protocol
that combined Yao’s garbled circuits and homomorphic encryption [4] was published in 2007 (to the
best of our knowledge). This paper used the mixed protocol technique to evaluate branching programs
with applications in remote diagnostics.

The Arithmetic Boolean Yao (ABY) protocol [9] provides an improved framework that allows
mixing of multiple protocols, shifts expensive parts of the protocol into a setup phase, and eliminates
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the need to use expensive homomorphic encryption operations. Compared to the previous mixed
protocol frameworks, ABY provides more flexibility in the design of protocols, more efficient mul-
tiplication, and more efficient conversions between the different constituent protocols. The ABY
protocol was a pioneering breakthrough, after which many other researchers come up with more effi-
cient implementations of two-party mixed protocols. For example, [19] exploits the secure hardware
(SGX) to improve the performance significantly. [5] is a framework built on top of ABY, which au-
tomatically generates efficient ABY code (mixing the representations) when given a function - this
allows a non-expert developer to easily write secure and peformant MPC programs for two parties.

1.3 Our Contribution
We extend the two-party Arithmetic Boolean Yao (ABY) [9] framework to the three party setting.
We use existing state-of-the-art cryptographic techniques to make our protocol efficient. For the
arithmetic world and the boolean world, we extend ABY sharing to the three party case. Instead of
the Yao world for two parties (as in ABY), we introduce the Garbled world which is based on [3] (and
originally from [1]). We call our new three-party protocol the Boolean Arithmetic Garbled (BAG)
protocol. We formulate simple and efficient conversions between these newly defined three-party
worlds. We implement the basic operations and compare its performance with the ABY protocol. We
find that the overhead is reasonable, considering that we move to the three-party setting.

1.4 Organization
In the next section, we define the preliminaries needed for our protocol construction. The following
Chapter 2 describes our protocol in detail. In this chapter, we also define the three worlds: arithmetic,
boolean, and garbled, and the conversions between them.

Chapter 3 contains the experimental details and the implementation results (including the compar-
ison to ABY).

Finally, chapter 4 summarizes our contributions and states our conclusions as well as possible
avenues for future work.

1.5 Preliminaries
In this section, we formally define our protocol setting and state the basic security definitions required
for understanding our protocols. We also introduce the notations used in our work and briefly describe
the well-known notions of oblivious transfer and garbling schemes, which are the main building
blocks in this work.
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1.5.1 The Three-Party setting
We make two assumptions about the parties, of which there are three: the first is that the parties
are connected pair-wise by private, secure and authenticated channels; the second assumption is that
each party is modeled as a Probabilistic Polynomial Time (PPT) Turing machine. We require these
assumptions for ensuring the security of our constructions.

1.5.2 Security against semi-honest adversaries
We use the semi-honest (passive) adversary model, where we assume a computationally bounded
PPT adversary who faithfully follows the protocol, but tries to learn additional information from
the messages seen during the protocol execution. In contrast, the stronger malicious adversaries are
allowed to deviate arbitrarily from the protocol to disrupt it or learn information. Although more
restrictive than the malicious adversary model, the semi-honest adversary model also finds many ap-
plications: for example, to protect against passive insider attacks by administrators or government
agencies, or in situations where the parties can be trusted to not actively misbehave. The semi-
honest model enables the development of highly efficient secure computation protocols and is there-
fore widely used to model privacy-preserving applications which require efficient realizations. Our
work concentrates on the design and implementation of an efficient mixed-protocol for the three-party
setting, in the semi-honest adversary model.

1.5.3 Notation
We summarize the general notations used in our protocol in this section. Throughout this work,
we refer to the protocol in [9] as ABY (Arithmetic, Boolean, Yao) and our new protocol as BAG
(Boolean, Arithmetic, Garbled). We denote a set of n = 3 parties as P = {P1, P2, P3}. We write
x ⊕ y for bitwise XOR and x ∧ y for bitwise AND. We use the subscript operator x[i] to refer to the
i-th element of a list x. In particular, if x is a sequence of bits, x[i] is the (i + 1)-th bit of x (from
right-to-left) and x[0] is the least-significant bit of x.

We denote the cryptographic security parameter by κ. A negligible function in κ is denoted by
negl(κ). A function negl(·) is negligible if for every polynomial p(·) there exists a value N such
that for all m > N it holds that negl(m) < 1

p(m)
.

We denote a shared variable x as 〈x〉t. The superscript t ∈ {B,A,G} indicates the type of sharing,
whereB denotes Boolean sharing,A denotes Arithmetic sharing, andG denotes Garbled sharing. The
semantics of the different sharing types and operations are defined in Section 2.1 and Section 2.2. We
refer to the individual share of 〈x〉t that is held by party Pi as 〈x〉ti.
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1.5.4 Oblivious Transfer
Oblivious Transfer (OT) is perhaps the most fundamental primitive in the theory of cryptographic
MPC protocols. It is a two-party protocol between a sender S and a receiver R. The sender holds an
array of inputs and the receiver holds an index indicating its intended pick from the sender’s array. OT
allows the sender to send the receiver’s selected input while preserving the secrecy of (i) the sender’s
other inputs and (ii) the choice of the receiver.

Of particular interest to the cryptographic community is the following variant of OT: In a 1-out-
of-2 OT [10], S holds two inputs x0, x1, and R holds a choice bit b. The output to R is xb and neither
party learns any additional information. In this work, we use 1-out-of-4 OT [7, 20] in the process of
generating boolean multiplication triples.

1.5.5 Garbling Scheme
Garbling Schemes, traditionally used as a technique in secure protocols, were formalized as a prim-
itive by Bellare et al. [2] and were assigned well-defined notions of security, namely correctness,
privacy, obliviousness, and authenticity. This terminology has largely been adopted by works that
followed in this domain [15, 22, 13].

A garbling scheme G is characterized by a tuple of PPT algorithms G = (Gb,En,Ev,De) described
below. With the exception of Gb, they are all deterministic.

• Gb (1κ, C) is invoked on a circuit C in order to produce a ‘garbled circuit’ C, ‘input encoding
information’ e, and ‘output decoding information’ d.

• En (x, e) encodes a clear input x with encoding information e in order to produce an encoded input
X.

• Ev (C,X) evaluates C on X to produce an encoded output Y.

• De (Y, d) translates Y into a clear output y as per decoding information d.

In the context of garbled circuits, in addition to correctness and privacy, the two security properties
of obliviousness and authenticity are also important. Obliviousness captures the notion that when
the decoding information is withheld, the garbled circuit evaluation leaks no information about any

underlying clear values; be they of the input, intermediate, or output wires of the circuit. Authenticity
enforces that the evaluator can only learn the output label that corresponds to the value of the function.
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Chapter 2

BAG protocol

In this chapter, we describe our new three-party protocol in detail. As stated earlier, BAG stands for
Boolean, Arithmetic, Garbled. We will define these three sharing schemes in detail and the conver-
sions between them. Our protocol is in the dishonest majority setting and tolerates a semi-honest
centralized static adversary. ‘Dishonest majority’ means that we allow at most two out of the three
parties (a majority) to be corrupt. We assume a synchronous network, so that all communication
should be complete at the end of each round.

2.1 Sharing Types
Here, we describe the sharing types that our BAG protocol use, namely the Boolean sharing, the
Arithmetic sharing, and the Garbled sharing. For each sharing type, we describe the semantics of the
sharing, standard operations and the state of the art in the respective subsections.

2.1.1 Arithmetic Sharing
For the Arithmetic sharing, we assume that each `-bit value is either represented as an element of
the ring Z2` or as as an element of finite field GF(2`) and shared additively. Later we will show that
depending upon the underlying algebraic structure over which we perform the arithmetic operations,
the cost of converting from one representation to another will vary. More specifically, if we perform
the arithmetic operations over GF(2`), then the conversion from Boolean sharing to arithmetic sharing
and vice-versa will be completely free, as the addition over GF(2`) is the same as XOR operation.
On the other hand, the conversions are not free if we perform arithmetic operations over Z2` , where
all operations are done modulo Z2` . The choice of using GF(2`) or Z2` depends upon the ease with
which the underlying computation can be represented as a circuit over these algebraic structures. In
the following discussion, we use the notation F, which could be either GF(2`) or Z2`; accordingly the
operations “+" and “·" should be interpreted.
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1) Sharing Semantics: Arithmetic sharing is based on additively sharing private values between
the parties as follows.

Shared values. An `-bit value x is arithmetic shared as 〈x〉A = 〈x〉A1 + 〈x〉A2 + 〈x〉A3 , with
〈x〉A1 , 〈x〉

A
2 , 〈x〉

A
3 ∈ F.

Sharing. ShrAi (x): Party Pi considers the `-bit input x as an element of F and chooses r1, r2, r3 ∈R
F, such that r1 + r2 + r3 = x. Party Pi sends rj to each Pj ∈ P, who sets 〈x〉Aj = rj .

Reconstuction. RecAi (x): Each Pj ∈ P sends its share 〈x〉Aj to Pi, who computes x = 〈x〉A1 +

〈x〉A2 + 〈x〉A3

2) Operations: We assume that the parties want to evaluate an Arithmetic circuit over F, consisting
of linear (addition) and non-linear (multiplication) gates over F, which are evaluated over Arithmetic-
shared values in the following fashion.

Addition. 〈z〉A = 〈x〉A + 〈y〉A: Given 〈x〉Ai and 〈y〉Ai , each party Pi ∈ P locally computes
〈z〉Ai = 〈x〉Ai + 〈y〉Ai .

Multiplication. 〈z〉A = 〈x〉A · 〈y〉A: Given 〈x〉Ai and 〈y〉Ai for i = 1, . . . , 3, the multiplication gate
is evaluated using a precomputed, Arithmetic-shared, random multiplication-triple (〈a〉A, 〈b〉A, 〈c〉A)
with c = a · b as follows: each Pi computes 〈e〉Ai = 〈a〉Ai + 〈x〉Ai and 〈f〉Ai = 〈b〉Ai + 〈y〉Ai , followed
by performing RecA(e) and RecA(f). Now if F = GF(2`), then each Pi then sets 〈z〉Ai = (e · f) +(
f · 〈a〉Ai

)
+
(
e · 〈b〉Ai

)
+ 〈c〉Ai . On the other hand, if F = Z2` , then P1 sets 〈z〉A1 = (e · f) +(

f · 〈a〉A1
)
+
(
e · 〈b〉A1

)
+ 〈c〉A1 , while Pi ∈ {P2, P3} sets 〈z〉Ai =

(
f · 〈a〉Ai

)
+
(
e · 〈b〉Ai

)
+ 〈c〉Ai .

(4) Generating Arithmetic-shared Random Multiplication Triples: In the offline phase, we gen-
erate Arithmetic sharings (〈a〉A, 〈b〉A, 〈c〉A) of random multiplication triples (a, b, c), with c = a · b,
using the method of [11], which is further based on C-OTs. We explain the idea with respect to the
generation of one multiplication triple; the same method can be executed in parallel to simultaneously
generate several multiplication triples. Moreover, we explain the method assuming F = GF(2`). The
parties first generate 〈a〉A and 〈b〉A, by each party Pi ∈ P sampling ai, bi ∈R GF(2`) and setting
〈a〉Ai = ai and 〈b〉Ai = bi, with a def

= a1+ a2+ a3 and b def= b1+ b2+ b3. As at least one honest party in
P is honest who samples a uniformly random ai, bi, it holds that the resultant a and b are truly random.
To generate 〈a · b〉A, we note that a · b = (a1+a2+a3) · (b1+ b2+ b3). Each party Pi can locally com-
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pute the term ai · bi in the above expression. The challenge is to securely compute the “cross terms"
ai · bj , with i 6= j, where Pi holds ai and Pj holds bj . For this we use the protocol of [11], which
allows two parties, say S and R, with private inputs β and α respectively from GF(2`), to securely
compute additive shares 〈α · β〉AS and 〈α · β〉AR respectively, such that 〈α · β〉AS + 〈α · β〉AR = α · β
holds. In our context, each pair of parties (Pi, Pj) with Pi 6= Pj , executes an instance of the protocol
of [11] (by playing the role of S and R) to generate the additive sharing of the mixed term ai · bj . The
details follow.

Let (α0, . . . , α`−1) ∈ {0, 1}` be the “bit-decomposition" of the element α ∈ GF(2`). This implies
that in GF(2`), the element α = α0 · X0 + α1 · X + . . . + α`−1 · X`−1. Hence the product α · β
can be written as (α0 · X0 + α1 · X + . . . + α`−1 · X`−1) · β, which can be further expressed as
α0 ·β ·X0+ . . .+α`−1 ·β ·X`−1. The idea of the secure multiplication protocol of [11] is to securely
generate additive-sharing of each of the terms αi · β · X i, for i = 0, . . . , ` − 1, using ` instances of
C-OT. More specifically, in the ith instance of C-OT, S acts as the sender with pair of co-related input
bit-strings (si, β ·X i+ si), where si ∈R GF(2`), while R acts as the receiver with αi as the choice bit.
It follows from the property of C-OT, that at the end, R receives si + αi · β ·X i, which it can set as
its additive share of αi · β ·X i, while S can set −si as its additive share of αi · β ·X i. It now follows
easily that

∑`−1
i=0 si + αi · β · X i and

∑`−1
i=0 −si constitutes the additive shares 〈α · β〉AR and 〈α · β〉AS

for R and S respectively.
If F = Z2` instead of GF(2`), then in the above method,X0, . . . , X`−1 are replaced by 20, . . . , 2`−1

respectively. This is because if x ∈ GF(2`) and has bit-decomposition (x0, . . . , x`−1), then x =

x0 · 20 + x1 · 21 + . . .+ x`−1 · 2`−1.

Complexity: To generate 〈a · b〉A, total six instances of the multiplication protocol of [11] need to
be executed, as there are six cross terms, in the expansion of a · b. Each instance of the multiplication
protocol needs ` instances of C-OT, dealing with `-bit strings. So in total, 6` instances of C-OT are
required to generate one 〈〉A-shared multiplication triple.

2.1.2 Boolean Sharing
The Boolean sharing uses an XOR-based secret sharing scheme to share a Boolean variable. We
evaluate functions represented as Boolean circuits using the GMW protocol [12]. In the following,
we first define the sharing semantics, describe how operations are performed, and give an overview
of related work.

1) Sharing Semantics: To simplify the presentation, we assume single bit values; for `-bit values,
each operation is performed ` times in parallel.
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Shared values. Let x be a Boolean value. Then a Boolean-sharing 〈x〉B of x consists of the
Boolean shares 〈x〉B1 , 〈x〉

B
2 , 〈x〉

B
3 ∈ {0, 1}, such that 〈x〉B1 ⊕ 〈x〉

B
2 ⊕ 〈x〉

B
3 = x holds.

Sharing. ShrBi (x): Party Pi chooses r1, r2, r3 ∈R {0, 1}, such that r1 ⊕ r2 ⊕ r3 = x and sends rj
to each Pj ∈ P, who sets 〈x〉Bj = rj .

Reconstuction. RecBi (x): Each Pj ∈ P sends its share 〈x〉Bj to Pi, who computes x = 〈x〉B1 ⊕
〈x〉B2 ⊕ 〈x〉

B
3 .

2) Operations: We imagine that the parties are given a Boolean circuit for evaluation, consisting of
XOR and AND gates, which are evaluated over Boolean-shared values in the following fashion.

XOR. 〈z〉B = 〈x〉B ⊕ 〈y〉B: Given 〈x〉Bi and 〈y〉Bi , each party Pi ∈ P locally computes 〈z〉Bi =

〈x〉Bi ⊕ 〈y〉
B
i .

AND. 〈z〉B = 〈x〉B ∧ 〈y〉B: Given 〈x〉Bi and 〈y〉Bi for i = 1, 2, 3, the AND gate is evaluated using
a precomputed, Boolean-shared, random multiplication-triple (〈a〉B, 〈b〉B, 〈c〉B), with c = a ∧ b, as
follows: each Pi computes 〈e〉Bi = 〈a〉Bi ⊕ 〈x〉

B
i and 〈f〉Bi = 〈b〉Bi ⊕ 〈y〉

B
i , followed by performing

RecB(e) and RecB(f). Each Pi then sets 〈z〉Bi = (e · f)⊕
(
f · 〈a〉Bi

)
⊕
(
e · 〈b〉Bi

)
⊕ 〈c〉Bi .

3) State-of-the-Art: The first implementation of the GMW protocol for multiple parties and with
security in the semi honest model was given in [7]. GMW protocol achieves good performance in
low-latency networks.

(4) Generating Boolean-shared Random Multiplication Triples: In the offline phase, we gen-
erate Boolean sharings (〈a〉B, 〈b〉B, 〈c〉B) of random multiplication triples (a, b, c), with c = a ∧ b,
using the method of [7, 20], which is further based on 1-out-of-4 OTs. We explain the idea with
respect to the generation of one multiplication triple; the same method can be executed in parallel to
simultaneously generate several multiplication triples.

The parties first generate 〈a〉B and 〈b〉B, where a, b ∈R {0, 1}. For this, each party Pi ∈ P samples
ai, bi ∈R {0, 1} and set 〈a〉Bi = ai and 〈b〉Bi = bi and a and b are defined as a def

= a1 ⊕ a2 ⊕ a3 and
b
def
= b1⊕ b2⊕ b3. Now notice that a∧ b = (a1∧ b1)⊕ (a2∧ b2)⊕ (a3∧ b3)⊕ ((a1∧ b2)⊕ (a2∧ b1))⊕

((a1 ∧ b3)⊕ (a3 ∧ b1))⊕ ((a2 ∧ b3)⊕ (a3 ∧ b2)). Each Pi ∈ P can locally compute the term ai ∧ bi.
The challenge is to securely compute the cross-terms ((ai ∧ bj)⊕ (aj ∧ bi)), for each i, j ∈ {1, 2, 3}
with i < j, where Pi holds ai, bi and Pj holds aj, bj . For this, Pi and Pj engages in an instance of 1-
out-of-4 OT, to securely generate a Boolean-sharing of ((ai∧ bj)⊕ (aj ∧ bi)) between them. In a more
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detail, Pj selects c{i,j}j ∈R {0, 1} and acts as a sender in an instance of 1-out-of-4 OT, with messages
c
{i,j}
j , c

{i,j}
j ⊕ aj, c{i,j}j ⊕ bj and c{i,j}j ⊕ aj ⊕ bj , while party Pi acts as the receiver with (ai, bi) as the

selection bits. Let c{i,j}i denote the OT output of Pi; it follows that c{i,j}i = c
{i,j}
j ⊕((ai∧bj)⊕(aj∧bi)).

Now to generate 〈a ∧ b〉B, each party Pi sets 〈a ∧ b〉Bi = (ai ∧ bi)
⊕

j 6=i c
{i,j}
i .

Complexity: To generate one Boolean-shared multiplication triple, we require three instances of
1-out-of-4 OT or 6 instances of 1-out-of-2 OT, as there are three cross-terms involved. To generate
l-bit multiplication triple, 6l instances of 1-out-of-2 OTs required.

2.1.3 Garbled Sharing
The BMR protocol [1] is the generalization of the Yao’s protocol to the multiparty case. In our
context, given a Boolean circuit, all the three parties jointly garble the circuit, which is evaluated
by a designated evaluator, say P3. In a more detail, for each wire w in the circuit, each party Pi

locally associates a pair of random “labels" (keys) kiw,0 and kiw,1, corresponding to the bit value 0 and

1 respectively over w. The concatenated keys kw,0
def
= k1w,0|| . . . ||knw,0 and kw,1

def
= k1w,1|| . . . ||knw,1 are

considered as the “0-superkey" and “1-superkey", corresponding to the bit value 0 and 1 respectively
over w. The parties then jointly garble each gate, using an encryption function Garble, where the
output-wire labels of each gate-output is encrypted separately under each single party’s gate-input
wire labels. For example, consider a gate g with gate function g(·, ·), with input wires u, v and output
wire w. And let ku,0, ku,1, kv,0, kv,1, kw,0 and kw,1 be the superkeys associated with these wires, with
each party Pi holding the key pairs (kiu,0, k

i
u,1), (k

i
v,0, k

i
v,1) and (kiw,0, k

i
w,1) respectively. Then for every

a, b ∈ {0, 1}, the jth gate-output label kjw,g(a,b) is encrypted as:

F 2
k1u,a,k

1
v,b
(g||j)⊕ F 2

k2u,a,k
2
v,b
(g||j)⊕ . . .⊕ F 2

knu,a,k
n
v,b
(g||j)⊕ kjw,g(a,b)

Here F 2 denotes a double-key PRF [3], which takes two keys and maintains security, as long as at
least one key is secret.

To hide which values of a and b are dealt with, a slight modification of the above idea is used.
Specifically, a random “permutation bit" λu is associated with each wire u, with each party holding
a share λiu, such that λu = ⊕ni=1λ

i
u. Then if the actual bits on the gate-input wires u and v are a and

b, then the circuit-evaluator sees masked values â = a ⊕ λu and b̂ = b ⊕ λv and the superkeys ku,â
and k

v,b̂
. The superkeys “guide" the evaluator regarding which entry in the garbled table to decrypt.

Moreover, the garbled gate is computed in such a way that after decrypting the appropriate entry in the
table using ku,â and k

v,b̂
, the evaluator obtains the superkey kw,ĉ, where ĉ = g(a, b)⊕λw, using which

the evaluator obtains the masked gate-output ĉ, which enables the evaluator to proceed to evaluate the
next gate. This maintains the invariant that for each wire w in the circuit, the evaluator sees masked
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value xw ⊕ λw and the corresponding superkey kw,xw⊕λw , where xw is the actual bit value over w. We
call the gate-evaluation process as Eval. Intuitively, even if two out of the three parties are corrupted
(possibly including the evaluator P3), nothing additional is revealed about the actual bit xw over wire
w, even though the superkey kw,xw⊕λw is available with the evaluator for wire w; this is because the
actual value of λw is hidden from the corrupted parties. Once the circuit-output gate is evaluated, the
clear value of the circuit output is reconstructed, using the procedure discussed below.

In the following description, we use the free-XOR technique [16], which is generalized for the
multi-party case in [3]. In this technique, for every wire w and for every party Pi, the key-pair
(kiw,0, k

i
w,1) is related by a global offset Ri, randomly and privately chosen by Pi. More specifically,

kiw,1 = kiw,0 ⊕ Ri holds. Moreover, if w is the output of an XOR gate with u, v being the gate-input
wires, then kiw,0 itself is selected as kiw,0 = kiu,0 ⊕ kiv,0 and the permute-bit share λiw is selected as
λiw = λiu ⊕ λiv.

1) Sharing Semantics: In the following, to simplify the presentation, we assume single bit values;
for `-bit values each operation is performed ` times in parallel.

Shared values. Let x ∈ {0, 1}. Then a garbled sharing 〈x〉G of x is defined as 〈x〉G1 = λ1x,
〈x〉G2 = λ2x and 〈x〉G3 = (λ3x, x̂, kx,x̂), with λ1x, λ

2
x, λ

3
x ∈ {0, 1}, such that λx = λ1x ⊕ λ2x ⊕ λ3x,

x̂ = x ⊕ λx and kx,x̂ = k1x,x̂||k2x,x̂||k3x,x̂. Here (kjx,0, k
j
x,1) denote the pair of keys implicitly available

with party Pj ∈ P, corresponding to the two possible values of x; for simplicity we do not include
them explicitly as part of state information, while defining the 〈〉G-sharing. In addition, each Pj also
holds the offset Rj , which is common for Pj across all the 〈〉G-shared values.

Sharing. ShrGi (x): To enable Pi share a bit x ∈ {0, 1}, the parties do the following: each party
Pj ∈ P samples (kjx,0, k

j
x,1, λ

j
x), where kjx,0 ∈R {0, 1}κ, λjx ∈R {0, 1} and kjx,1 = kjx,0 ⊕ Rj . Each Pj

then sends λjx to Pi, who computes λx = λ1x ⊕ λ2x ⊕ λ3x and broadcasts x̂ = x ⊕ λx. On receiving
the masked bit x̂, each Pj sends kjx,x̂ to party P3, who computes kx,x̂ = k1x,x̂||k2x,x̂||k3x,x̂. For j = 1, 2,
party Pj sets 〈x〉Gj = λjx, while P3 sets 〈x〉G3 = (λ3x, x̂, kx,x̂).

Reconstuction. RecGi (x): Let x ∈ {0, 1} be 〈〉G-shared, with P1, P2 and P3 holding 〈x〉G1 = λ1x,
〈x〉G2 = λ2x and 〈x〉G3 = (λ3x, x̂, kx,x̂) respectively. To enable party Pi reconstruct x, each party Pj ∈ P

sends λjx to Pi. In addition, P3 also sends x̂ to Pi, who then outputs x = x̂⊕ λ1x ⊕ λ2x ⊕ λ3x.

2) Operations: We assume that the parties are given a publicly known Boolean circuit, consisting
of XOR and AND gates, which is evaluated over 〈〉G-shared values as follows: let x and y be 〈〉G-
shared, with party P1 holding 〈x〉G1 = λ1x and 〈y〉G1 = λ1y, party P2 holding 〈x〉G2 = λ2x and 〈y〉G2 = λ2y

12



and party P3 holding 〈x〉G3 = (λ3x, x̂, kx,x̂) and 〈y〉G3 = (λ3y, ŷ, ky,ŷ).

XOR. 〈z〉G = 〈x〉G ⊕ 〈y〉G: each party Pj ∈ P locally sets 〈z〉Gj = 〈x〉Gj ⊕ 〈y〉
G
j .

AND. 〈z〉G = 〈x〉G∧〈y〉G is computed as follows: corresponding to z, each party Pj ∈ P samples
(kjz,0, k

j
z,1, λ

j
z), where kjz,0 ∈R {0, 1}κ, λjz ∈R {0, 1} and kjz,1 = kjz,0 ⊕ Rj . The parties then jointly

construct a garbled table for the AND gate by executing the protocol Garble [3], where the input for
Pj is 〈x〉Gj , 〈y〉

G
j and (kjz,0, k

j
z,1, λ

j
z) and the table is reconstructed towards P3. For j = 1, 2, party Pj

sets 〈z〉Gj = λjz, while party P3 evaluates the garbled table using Eval, with inputs 〈x〉G3 , 〈y〉
G
3 and λ3z,

to obtain 〈z〉G3 . We next provide the details of Eval and Garble.

(3) Protocol Garble: We recall the protocol Garble for constructing garbled gates from [3]. Since
we are using the free-XOR technique, the parties need to garble only AND gates. Let g be an AND
gate, with input wires x, y and output wire z. The input for the party Pi ∈ P is (kix,0, k

i
x,1, k

i
y,0,

kiy,1, k
i
z,0, k

i
z,1, λ

i
x, λ

i
y, λ

i
z, R

i), where kix,1 = kix,0⊕Ri, kiy,1 = kiy,0⊕Ri and kiz,1 = kiz,0⊕Ri. Moreover,
kix,0, k

i
y,0 and λix, λ

i
y are selected in a special way, if wires x or y is an output of an XOR gate, to

enable free evaluation of XOR gate, during Eval. Using Garble, the parties jointly create a garble table
g̃ = (g̃00, g̃01, g̃10, g̃11) for P3, where for every x̂, ŷ ∈ {0, 1}, the garbled entry g̃x̂ŷ = (g̃1x̂ŷ||g̃2x̂ŷ||g̃3x̂ŷ).
Moreover, for j ∈ {1, 2, 3}, the value g̃jx̂ŷ is of the form:

g̃jx̂ŷ =

(
3⊕
i=1

F 2
kix,x̂,k

i
y,ŷ
(g||j)

)
⊕ kjz,0 ⊕

(
Rj ∧ ((λu ⊕ x̂) ∧ (λy ⊕ ŷ)⊕ λz)

)
, (2.1)

where λx
def
= λ1x⊕λ2x⊕λ3x, λy

def
= λ1y⊕λ2y⊕λ3y and λz

def
= λ1z⊕λ2z⊕λ3z. Before going into the details

of how the garbled table g̃ is jointly constructed, let us first understand the computation of g̃jx̂ŷ. We
first recall that the BMR protocol maintains the invariant that during the circuit evaluation (namely
protocol Eval), for wires x and y, the evaluator P3 sees the masked value x̂ = x⊕ λx and ŷ = y ⊕ λy
and holds the superkey kx,x̂ = k1x,x̂||k2x,x̂||k3x,x̂ and ky,ŷ = k1y,ŷ||k2y,ŷ||k3y,ŷ. (Notice that this does not
reveal anything to the evaluator about the actual value of x and y, as λx and λy are unknown.) Now the
actual value of z will be (x̂⊕ λx)∧ (ŷ⊕ λy) and we need to ensure that g̃jx̂ŷ should be such that, later
by decrypting g̃jx̂ŷ using the superkeys kx,x̂ and ky,ŷ (using the protocol Eval), the evaluator P3 should
obtain the key kjz,ẑ, where ẑ = ((x̂⊕ λx)∧ (ŷ ⊕ λy))⊕ λz; this will further ensure that by decrypting
the entire entry g̃x̂ŷ using the superkeys kx,x̂ and ky,ŷ, evaluator P3 obtains k1z,ẑ, k

2
z,ẑ and k3z,ẑ and hence

the superkey kz,ẑ = k1z,ẑ||k2z,ẑ||k3z,ẑ, which further helps to maintain the required invariant for the next
gates.

Now let us consider the value g̃jx̂ŷ, as computed in Equation 2.1. There are two cases: if λz = 0
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(and hence ẑ = z = (x̂⊕ λx)∧ (ŷ⊕ λy)); then depending upon whether z is 0 or 1, the value g̃jx̂ŷ will
be either an encryption of kjz,0 or kjz,1. On the other hand, consider the case when λz = 1 (and hence
ẑ = z ⊕ 1); in this case, the result will be reversed. Hence, the value g̃jx̂ŷ, as computed in Equation
2.1, ensures to maintain the desired variant.

In order to enable P3 construct the garbled value g̃jx̂ŷ, the parties execute the protocol Garble,
which is an MPC protocol to allow P3 to securely compute Equation 2.1. Intuitively, in Garble, the
parties generate secret-shares of Rj ∧ ((λu ⊕ x̂) ∧ (λy ⊕ ŷ)⊕ λz) (by using an MPC protocol), from
which they further generate secret-shares of g̃jx̂ŷ, which are sent to P3, who can then reconstruct g̃jx̂ŷ.
The key insight is that the circuit for computing Rj ∧ ((λu⊕ x̂)∧ (λy ⊕ ŷ)⊕λz) has a constant depth
and hence can be efficiently computed using any dis-honest majority MPC. In [3], a highly optimized
and efficient protocol has been proposed to securely compute the garbled table.

4) Protocol Eval: Let g be an AND gate, with input wires x, y and output wire z, which is garbled
as per the protocol Garble. And let g̃ = (g̃00, g̃01, g̃10, g̃11) be the garbled gate, obtained by P3 at
the end of Garble. Moreover, P3 has the superkeys kx,x̂, ky,ŷ and the masked values x̂, ŷ, where
kx,x̂ = k1x,x̂||k2x,x̂||k3x,x̂ and ky,ŷ = k1y,ŷ||k2y,ŷ||k3y,ŷ. Moreover, corresponding to z, party P3 also has
λ3z and (k3z,0, k

3
z,1) available with it (recall that during Garble, these values are picked by P3 itself for

garbling the gate g). Now using the procedure Eval, the evaluator P3 evaluates the gate g̃ as follows:
based on the value of x̂ and ŷ, party P3 picks the entry g̃jx̂ŷ for decryption. Let g̃x̂ŷ = (g̃1x̂ŷ||g̃2x̂ŷ||g̃3x̂ŷ).
Then using kx,x̂ and ky,ŷ, party P3 computes the following for every j ∈ {1, 2, 3}:

kjz,ẑ = g̃x̂ŷ ⊕

(
n⊕
i=1

F 2
kix,x̂,k

i
y,ŷ
(g||j)

)
.

Party P3 then compares k3z,ẑ with k3z,0 and k3z,1, and accordingly sets ẑ = 0 or 1. Finally, P3 outputs
λ3z, ẑ and kz,ẑ = k1z,ẑ||k2z,ẑ||k3z,ẑ as its outcome for Eval. For the correctness and security of Eval, see
[3].

2.2 Sharing Conversions
We now discuss how to convert between different sharings. For this, we consider two cases, depending
upon whether for the arithmetic sharing, F = GF(2`) or F = Z2` . We first consider the case when
F = GF(2`), as in this case, most of the conversions have al most zero cost during the online phase
when the actual conversion needs to happen.
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2.2.1 Sharing Conversions when F = GF(2`) in the Arithmetic World

Garbled to Boolean Sharing (G2B): Converting a 〈〉G-shared bit to its 〈〉B-sharing is free and
involves only local computation. More specifically, let x ∈ {0, 1} be 〈〉G-shared, with P1 holding
〈x〉G1 = λ1x, party P2 holding 〈x〉G2 = λ2x and party P3 holding 〈x〉G3 = (λ3x, x̂, kx,x̂). To obtain a
Boolean-sharing 〈x〉B of x, we notice that P1 can set 〈x〉B1 = 〈x〉G1 , party P2 can set 〈x〉B2 = 〈x〉G2 ,
while party P3 can set 〈x〉B3 = x̂ ⊕ λ3x. The correctness simply follows from the fact that for the
〈x〉G-sharing, the condition x̂ = x⊕ λ1x ⊕ λ2x ⊕ λ3x holds.

Boolean to Garbled Sharing (B2G): Before presenting our B2G conversion, we introduce a no-
tation. Let b ∈ {0, 1}. We say that b is BG-shared, represented as (〈b〉B, 〈b〉G), if the bit b is both
〈〉B-shared as well as 〈〉G-shared. In our B2G conversion, we require a BG-sharing of a random and
private m ∈ {0, 1}, for each conversion. Such BG-sharings can be precomputed in the offline phase
as follows: to compute one random BG-sharing, the parties first compute 〈m〉G, for a random and
private m ∈ {0, 1}. For this, each party Pi ∈ P selects a random bit m(i) ∈ {0, 1} and the parties
execute ShrGi (m

(i)) to enable Pi garble-share m(i). Let 〈m(i)〉G be the resultant garbled-sharing. The
parties then set 〈m〉G = 〈m(1)〉G ⊕ 〈m(2)〉G ⊕ 〈m(3)〉G. As our G2B conversion is free, the parties
set 〈m〉B = G2B(〈m〉G), as a result of which the parties obtain (〈m〉B, 〈(〉Gm)). We next explain our
B2G conversion.

Let x ∈ {0, 1} be 〈〉B-shared. To obtain a 〈〉G-sharing of x, the parties deploy a (〈m〉B, 〈m〉G)-
shared random m ∈ {0, 1}, generated in the offline phase. The idea is to first make masked x

public, using m as the mask, followed by taking a default 〈〉G-sharing of the masked x. Since the
mask m is also available in 〈〉G-shared fashion, the effect of mask can be now locally removed from
the 〈〉G-sharing of the masked x, resulting in a 〈〉G-sharing of x. More formally, the parties first
compute 〈x⊕m〉B = 〈x〉B ⊕ 〈m〉B, followed by executing RecB(x ⊕ m), to publicly reconstruct
x ⊕ m. The parties then take a default 〈〉G-sharing 〈x⊕m〉G of 1 x ⊕ m, followed by computing
〈x〉G = 〈x⊕m〉G ⊕ 〈m〉G. The correctness is obvious and privacy follows from the fact that m is a
random and private value. The online complexity of this conversion is equivalent to the cost of public
reconstruction of an `-bits 〈〉B-sharing.

Arithmetic to Boolean (A2B) and Boolean to Arithmetic Sharing (B2A): Since in GF(2`) the
XOR operation is same as addition, both A2B as well as B2A conversions are free. More specifically,
consider an `-bit value x ∈ GF(2`), which is 〈〉A-shared, with 〈x〉A1 = x1, 〈x〉A2 = x2 and 〈x〉A3 = x3,

1A default 〈〉G-sharing of a publicly known bit b ∈ {0, 1} can be computed as follows: the parties publicly set
λ1b = λ2b = λ3b = 0 (which implies that λb =

⊕3
i=1 λ

i
b = 0 and hence the masked bit b̂ = b ⊕ λb = b). The parties

also publicly set k1
b,b̂

= k2
b,b̂

= k3
b,b̂

= {0, 1}κ. Party P1 sets 〈b〉G1 = λ1b , party P2 sets 〈b〉G2 = λ2b and party P3 sets

〈b〉G3 = (λ3b , b̂, kb,b̂), where k
b,b̂

= k1
b,b̂
||k2

b,b̂
||k3

b,b̂
. In addition, each Pi sets ki

b,1⊕b̂ = Ri.
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such that x = x1 + x2 + x3 holds in GF(2`). Now as per the definition of addition over GF(2`), it
holds that xB = xB1 ⊕ xB2 ⊕ xB3 , where xB, xB1 , x

B
2 and xB3 are `-bit bit-decomposition of x, x1, x2

and x3 respectively. So parties can set 〈x〉B1 = xB1 , 〈x〉B2 = xB2 and 〈x〉B3 = xB3 and hence the A2B
conversion is completely free.

Due to the same argument, even B2A conversion is free. Namely, let x ∈ {0, 1}` be an `-bit
string, which is 〈〉B-shared, with 〈x〉B1 = x1, 〈x〉B2 = x2 and 〈x〉B3 = x3, with x1, x2, x3 ∈ {0, 1}`,
such that x = x1 ⊕ x2 ⊕ x3 holds. Now as per the definition of addition over GF(2`), it holds that
xA = xA1 + xA2 + xA3 , where xA, xA1 , x

A
2 and xA3 are the encodings of the bit-strings x, x1, x2 and x3

respectively, as elements of GF(2`). So parties can set 〈x〉A1 = xA1 , 〈x〉A2 = xA2 and 〈x〉A3 = xA3 and
hence the B2A conversion is completely free.

Garbled to Arithmetic Sharing (G2A): In our framework, where both G2B as well as B2A con-
version are free, the parties can freely convert 〈〉G-shared `-bit string x to its 〈〉A-sharing as 〈x〉A =
B2A(G2B(〈x〉G)).

Arithmetic to Garbled Sharing (A2G): To convert an arithmetic sharing 〈x〉A to its garbled-
sharing, we first apply the A2B conversion, which is free. The intermediate Boolean-sharing is then
converted to a garbled-sharing, using our B2G conversion. Hence 〈x〉G = B2G(A2B(〈x〉A)).

2.2.2 Sharing Conversions when F = Z2` in the Arithmetic World
Garbled to Boolean Sharing (G2B) and Boolean to Garbled Sharing (B2G): The conversions
here are exactly the same as in the case of F = GF(2`).

Arithmetic to Garbled Sharing (A2G): To convert an arithmetic sharing over Z2` to its garbled
sharing, we use the same idea as used in [9]. More specifically, let x ∈ Z2` , which is arithmetic-shared
as 〈x〉A, with each Pi holding its share 〈x〉Ai = xi ∈ Z2` . To compute a garbled sharing 〈x〉G of x,
each party Pi garbled-share its share 〈x〉Ai as 〈xi〉G = ShrGi (xi). Let Adder be an `-bit Boolean adder,
whose inputs are `-bit x1, x2, x3 and output is (x1 + x2 + x3 mod 2`) = x. The parties in P then
jointly evaluate evaluate Adder and obtain 〈x〉G = Adder(〈x1〉G, 〈x2〉G, 〈x3〉G).

Arithmetic to Boolean Sharing (A2B): Let 〈x〉A be an arithmetic sharing over Z2` . As the G2B
conversion is for free, we simply convert 〈x〉A to a corresponding Boolean sharing as 〈x〉B = G2B(A2G(〈x〉A)).

Boolean to Arithmetic Sharing (B2A) : Let x ∈ {0, 1}` be an `-bit value, which is Boolean-shared
as 〈x〉B, with each party Pi ∈ P holding its share 〈x〉Bi = xi ∈ {0, 1}`, such that x = x1⊕x2⊕x3. Let
(x`−1, . . . , x0), (x1,`−1, . . . , x1,0), (x2,`−1, . . . , x2,0) and (x3,`−1, . . . , x3,0) be the bit-decomposition of
x, x1, x2 and x3 respectively. Then in the arithmetic world, we have x =

∑`−1
i=0 2

i · (x1,i⊕ x2,i⊕ x3,i).
The goal is to generate an arithmetic-sharing 〈x〉A of x. For this, we extend the idea used in [9] for the
two party case; however extending the idea to the three party case is non-trivial. The idea behind the
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conversion is to generate arithmetic-sharing of each of the ` terms 2i ·(x1,i⊕x2,i⊕x3,i), using instances
of OT. For this, we present a generic sub-protocol BA, where the inputs for P1, P2 and P3 are a, b and
c respectively, with a, b, c ∈ {0, 1}. In addition, there is a public constant α ∈ {0, . . . , ` − 1}. The
protocol securely generates arithmetic sharing 〈2α · (a⊕ b⊕ c)〉A. Namely, it outputs shares s1, s2
and s3 for P1, P2 and P3 respectively, such that s1 + s2 + s3 = 2α · (a⊕ b⊕ c). The protocol involves
three instances of 1-out-of-2 OT, whose details are as follows:

OT1: Here P3 acts as the sender, with input pair (2α · c− r3, 2α · (1⊕ c)− r3), where r3 is sampled
randomly from Z2` , while party P1 participates as the receiver, with a as its choice bit. It follows from
the property of OT that at the end, P1 obtains the output y1 = 2α · (a⊕ c)− r3.

(
2
1

)
-OT

P3

2α · c −r3
2α · (1⊕ c)
−r3

P1

a

y1 = 2α·
(a⊕ c)− r3

Figure 2.1: OT1 between P3 and P1

OT2: Here P3 acts as the sender, with input pair (r2, r2+r3), where r2 is sampled randomly from Z2` ,
while party P2 participates as the receiver, with b as its choice bit. It follows from the property of OT
that at the end, P2 obtains the output y2,1 = 2·b·r3+r2, which can be re-written as (1−(−1)b)·r3+r2.

(
2
1

)
-OT

P3

r2

r2 + 2 · r3

P2

b

y2,1 = (1−
(−1)b) · r3 + r2

Figure 2.2: OT2 between P3 and P2

OT3: Here P1 acts as the sender, with input pair (y1− r1, 2α−y1− r1) = (2α · (a⊕ c)− r3− r1, 2α ·
[1⊕ (a⊕ c)]− (r1− r3)), while P2 participates as the receiver, with b as its choice bit. It follows from
the property of OT that at the end, P2 obtains the output y2,2 = 2α · (a⊕ b⊕ c)− r1 − (−1)b · r3.
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(
2
1

)
-OT

P1

2α · (a⊕ c)
−r3 − r1
2α · [1⊕ (a⊕ c)]
−(r1 − r3)

P2

b

2α · (a⊕ b⊕ c)
−r1 − (−1)b · r3

Figure 2.3: OT3 between P1 and P2

At the end, party P1 sets its share s1 = r1 and P3 sets its share s3 = r2+ r3, while party P2 sets its
share s2 = y2,2−y2,1 = 2α ·(a⊕b⊕c)−r1−r2−r3. It is easy to verify that s1+s2+s3 = 2α ·(a⊕b⊕c)
holds. The security follows from the properties of OT.

Now to obtain an arithmetic sharing 〈x〉A from 〈x〉B, the parties execute ` instances BA0, . . . ,BA`−1

of the protocol BA, where for the instance BAi with i ∈ {0, . . . , ` − 1}, the parties set α = i and
a = x1,i, b = x2,i and c = x3,i. Let s1,i, s2,i and s3,i be the outputs for P1, P2 and P3 respectively
during the instance BAi. Party P1 then sets 〈x〉A1 =

∑`−1
i=0 s1,i, party P2 sets 〈x〉A2 =

∑`−1
i=0 s2,i and

party P3 sets 〈x〉A3 =
∑`−1

i=0 s3,i.

Garbled to Arithmetic Sharing (G2A): Let 〈x〉G be a grabled-sharing of x ∈ {0, 1}`. As the
G2B conversion is for free, we simply convert 〈x〉G to a corresponding arithmetic-sharing as 〈x〉A =
B2A(G2B(〈x〉G)).
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Chapter 3

Implementation Results

In this chapter, we detail the implementation and benchmarking of our BAG protocol. We run our
experiments in both local and cloud-based environments. The benchmarking values on cloud exe-
cution may better reflect real-world scenarios. We calculated the online and offline execution time
and data communication (time and quantity) in both cloud and local settings. Our implementation
considers F = GF(2`) in the arithmetic world. We find that local computation and communication
time is arbitrarily varying depending on the system load, so in this chapter, we mainly focus on the
cloud experimental results.

3.1 Experiment setup
For the performance evaluation of our work, we use two deployment scenarios: a local setting (with
a low-latency, high-bandwidth network) and an intercontinental cloud setting (with a high-latency
network). These two scenarios cover two extremes in the design space w.r.t. latency that affects the
performance. In the cloud setting, we put our three parties in three continents.

3.1.1 Hardware Details
Local setting. In the local setting, we run the benchmarks on a desktop machine equipped with
a 32GB RAM; an Intel Core i7-7700-4690 octa-core CPU with 3.6 GHz processing speed. The
hardware supports AES-NI instructions. We instantiate each party in different terminals for execution.
Cloud setting. In the cloud setting, we run the benchmarks on Microsoft Azure Cloud Services
with machines located in West USA, East Asia, and India. We used machines with 1.75GB RAM
and single core processor. The bandwidth is limited to 10Mbps. Before running our experiments,
we measured the round-trip delays between India–West USA, India–East Asia, and East Asia–West
USA. These values average to 0.34 s, 0.14 s and 0.18 s respectively.
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B G

A

Arithmetic Sharing
Op local cloud comm

ADD 0 0 0
MUL 257.5 µs 695.8 ms 2061

B2A (F = Z2l)
local cloud comm

186.5 µs 698.7 ms 2061

A2G (F = Z2l)
local cloud comm

86.6 µs 725 ms 3786

B2G
local cloud comm

54.9µs 356.1ms 8384

G2B
local cloud comm

0 0 0

Boolean Sharing
Op local cloud comm

XOR 0 0 0
AND 264.2 µs 712.4 ms 2061

Garble Sharing
Op local cloud comm

XOR 48.2 µs 58.6 µs 0
AND 52.1 µs 719.2 ms 2842

Figure 3.1: Setup time and communication (in Bytes) for a single atomic operation on 64-bit values
in a local and cloud scenario, averaged over 1000 operations

3.1.2 Design and Implementation
Similar to ABY, our main design-goal is to achieve an efficient online phase, and we build on top of
the C++ ABY [8] implementation. The operating system used for our experiments is Ubuntu 18.04.
Our code follows the standards of C++11. We used the openssl library, which operates with AES-
NI support from the Intel hardware.

We simulated the modified BMR execution for our Garbled world. For both the Boolean and the
Garbled world, we benchmark XOR and AND operations, and for the arithmetic world, we benchmark
addition (ADD) and multiplication (MUL). We implemented four conversions between the worlds,
namely Arithmetic to Garbled (A2G), Boolean to Arithmetic (B2A), Boolean to Garbled (B2G),
and Garbled to Boolean (G2B). All the other conversions can be done by combining these four.
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B G

A

Arithmetic Sharing
Op local cloud comm

ADD 0.013ns 0.032ns 0
MUL 79.3µs 364.7ms 16

B2A (F = Z2l)
local cloud comm

25.4µs 506.1ms 520

A2G (F = Z2l)
local cloud comm

225.4µs 545.7ms 1152

B2G
local cloud comm

0.38µs 554.2ms 16

G2B
local cloud comm

0 0 0

Boolean Sharing
Op local cloud comm

XOR 0.031ns 0.078ns 0
AND 78.3µs 372.5ms 16

Garble Sharing
Op local cloud comm

XOR 0.04ns 0.06ns 0
AND 178.6µs 183.4µs 0

Figure 3.2: Online time and communication (in bytes) for a single atomic operation on 64-bit values
in the local and cloud scenarios, averaged over 1000 operations

3.2 Benchmarking
For benchmarking the BAG protocol, we ran each of the elementary operations 1000 times and aver-
aged for both the online and offline phase. Figure 3.1 shows the setup time and communication for a
single atomic operation for l = 64-bit operands. Figure 3.2 shows the online time and communica-
tion for the same. We are mainly interested in the online cloud timing which is representative of the
real-world execution time. We find that the local execution time is not stable across multiple runs, so
we are not comparing it with ABY. Table 3.1 compares the cloud performance of online execution of
our BAG protocol with that of ABY.

Our BAG protocol for three-parties has a reasonably similar performance compared to two-party
ABY, with an average overhead of 55% for elementary operations and 20% for conversions; which is
really good considering that we have three parties. For the arithmetic world multiplication, we need
to communicate 16 bytes because our operands are 64 bits and we have three parties. Similarly for
Boolean AND, we need just 16 bytes which is equivalent to ABY. For ADD and XOR, both protocols
need only local computation which is negligible.

Our B2A conversion is much more complex because of the three parties; 3 OTs are performed
for each bit. The other conversions also have more overhead in the three-party setting compared to
two-party ABY. Because our three parties are on different continents, with a delay of up to 0.34s on
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Operation Cloud(ms) Comm(bytes)
ABY BAG ABY BAG

Arith ADD 0 0 0 0
Arith MUL 237.4 364.7 4 16
Bool XOR 0 0 0 0
Bool AND 237.4 372.5 16 16
Garble XOR 0.007 0 0 0
Garble AND 0.016 0.183 0 0
B2A 419.1 506.1 66 520
B2G 478.9 554.2 516 16
A2G 434.6 545.7 1028 1152
G2B 0 0 0 0

Table 3.1: Comparing online cloud performance of important elementary operations with ABY[9]

average, our typical single round will cost 0.34s if there is communication between the India and
west-USA parties in that round.

We moved most of the expensive operations to the setup phase. We need OTs for both arithmetic
and boolean triple generation. We used the exact same trick of ABY to generate the base OTs only
once, and then perform OT extension to create required number of OTs. Then we performed multi-
plication triples generation using these OTs. We can observe from Figure 3.1 that for the cloud, most
of the operation setup needs around 700ms. This is because of the two rounds. One round can cause
a delay up to 0.34s according to our cloud measurements.
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Chapter 4

Conclusion

Mixed protocols for Multi-Party Computation (MPC) are of vital importance in improving the ef-
ficiency and performance of practical realizations. In this work, we present the BAG protocol, an
extension of the two-party ABY framework to the three party setting. In our protocol, we used
state-of-the-art techniques and the best practices in secure computation. For use in our protocol,
we constructed faster conversion techniques between the three sharings (namely Boolean, Arithmetic,
Garbled) for the three party setting.

We implemented our BAG protocol and evaluated its performance on various elementary opera-
tions in real world settings, both local and cloud-based. We also compared the performance of our
three-party BAG protocol with the two-party ABY protocol, and found that it is comparable.

We now state some possible directions for future work.

Extending to n parties. The ABY protocol is designed for two parties and our BAG protocol works
for three parties. Extending our protocols to work in the n party setting would be a potential future
direction. Conceptually, all the three worlds — Boolean, Arithmetic and Garbled — can be easily
extended to the n party setting. But the challenge is in finding appropriate conversions that work in
the general setting.

Extension to Malicious Adversaries. Another potential direction for future work is to extend our
work to tolerate malicious adversaries that can arbitrarily deviate from the protocol, instead of semi-
honest adversaries. Secure MPC protocols tolerant of malicious adversaries are more complicated
and finding conversions between the three worlds will be the main challenge.

Implementation. In this work we implemented the BAG protocol for benchmarking purposes. An-
other future direction is to implement the protocol as a reusable library, so that arbitrary protocols can
be implemented on top of the BAG protocol.
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