
Fast Actively Secure OT Extension for Short Secrets

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Science (Engineering)

IN THE

Faculty of Engineering

BY

Ajith S

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2017

Declaration of Originality

I, Ajith S, with SR No. 11589 hereby declare that the material presented in the thesis titled

Fast Actively Secure OT Extension for Short Secrets

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2014-2017.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

c© Ajith S

June, 2017

All rights reserved

DEDICATION

I dedicate my sincere efforts to my sweet and loving

Achan & Amma

whose love, affection and words of encouragement guided me in

achieving success and honor,

Along with all my beloved

Teachers

for being a great source of inspiration

Acknowledgements

Firstly, I wish to thank the Almighty for blessing me with strength to fulfil this work.

Secondly, it gives me immense pleasure to express deep sense of gratitude and respect to my

research supervisor Dr. Arpita Patra, for accepting me into her family. I would love to address

her as my elder sister in place of my advisor. It has been a great experience to work under the

supervision of Dr. Arpita who treats her students as her family, bridging the gap between a

faculty and student. Her support and guidance helped me all along during my research and in

completing my thesis. She is by far one of the best advisors I could have hoped for my study.

I would like to extend my gratitude to my co-authors, lab mates and colleagues: Pratik

Sarkar, Divya Ravi, Dheeraj Ram, Swati Singla, Megha Byali and all those who couldn’t be

mentioned in the list. had a great time sharing the lab with all of you during last three years.

Special regards to the organizing committee of NDSS, Prof. N Balakrishnan (head of ISRDC

Information Security Research and Development Centre), organizing committee of Aarhus MPC

Workshop and IARCS (Indian Association for Research in Computing Science) for supporting

my travel to attend NDSS’17 and MPC Workshop.

My sincere thanks to all the teachers who have taught me since first grade. I’m also grateful

to my undergraduate, graduate and post graduate family. Finally, I would love to express

profound gratitude to my parents and my brother for encouraging me with unfailing support,

advice and affection throughout my research.

i

Abstract

Oblivious Transfer (OT) is one of the most fundamental cryptographic primitives with wide-

spread application in general secure multi-party computation (MPC) as well as in a number of

tailored and special-purpose problems of interest such as private set intersection (PSI), private

information retrieval (PIR), contract signing to name a few. Often the instantiations of OT

require prohibitive communication and computation complexity. OT extension protocols are

introduced to compute a very large number of OTs referred as extended OTs at the cost of a

small number of OTs referred as seed OTs.

We present a fast OT extension protocol for small secrets in active setting. Our protocol

when used to produce 1-out-of-n OTs outperforms all the known actively secure OT extensions.

Our protocol is built on the semi-honest secure extension protocol of Kolesnikov and Kumaresan

of CRYPTO’13 (referred as KK13 protocol henceforth) which is the best known OT extension

for short secrets. At the heart of our protocol lies an efficient consistency checking mechanism

that relies on the linearity of Walsh-Hadamard (WH) codes. Asymptotically, our protocol adds

a communication overhead of O(µ log κ) bits over KK13 protocol irrespective of the number

of extended OTs, where κ and µ refer to computational and statistical security parameter

respectively. Concretely, our protocol when used to generate a large enough number of OTs

adds only 0.011-0.028% communication overhead and 4-6% runtime overhead both in LAN

and WAN over KK13 extension. The runtime overheads drop below 2% when in addition the

number of inputs of the sender in the extended OTs is large enough.

As an application of our proposed extension protocol, we show that it can be used to obtain

the most efficient PSI protocol secure against a malicious receiver and a semi-honest sender.

ii

Publications based on this Thesis

• Arpita Patra, Pratik Sarkar and Ajith Suresh. Fast Actively Secure OT Extension for

Short Secrets. In The Network and Distributed System Security Symposium (NDSS) 2017

iii

Contents

Acknowledgements i

Abstract ii

Publications based on this Thesis iii

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Secure multi-party computation . 2

1.2 Oblivious Transfer . 3

1.3 OT Extensions . 4

1.4 Our Contribution . 6

1.5 Outline of this Thesis . 8

2 Preliminaries 9

2.1 Notations . 9

2.2 Walsh-Hadamard (WH) Codes . 10

2.3 Hash Function and Random Oracle Model . 10

2.4 Security Model . 10

2.4.1 The Universal Composability (UC) Security Model 11

3 An Attack on [KK13] Protocol 13

3.1 KK13 OT Extension Protocol . 13

3.2 An Attack . 14

iv

CONTENTS

3.3 Efficiency of [KK13] . 17

4 Actively Secure OT Extension for Short Secrets 18

4.1 Randomized Linearity Testing . 18

4.2 Functionalities . 20

4.3 The Protocol . 21

4.3.1 Security . 22

4.3.2 Efficiency . 29

4.4 Empirical Results . 29

4.4.1 Performance Comparison . 31

4.5 Application to Private Set Intersection . 33

5 Summary and Future Work 36

5.1 Summary of the Thesis . 36

5.2 Directions for Future Work . 36

Bibliography 38

v

List of Figures

1.1 A 1-out-of-2 Oblivious Transfer . 4

3.1 The KK13 OT Extension Protocol . 15

4.1 A Randomized Linearity Test for Many Strings 19

4.2 The Ideal Functionality for
(
n
1

)
-OTm` . 21

4.3 The Ideal Functionality for generating random common coins 21

4.4 Actively Secure OT Extension Protocol . 23

4.5 Simulator SS for Malicious Sender . 25

4.6 Simulator SR for Malicious Receiver . 26

4.7 Performance Comparison of various OT extensions for producing
(
16
1

)
-OTm4 32

4.8 Performance Comparison of various OT extensions for producing
(
n
1

)
-OT5×104

logn 33

vi

List of Tables

1.1 Asymptotic cost of various OT extensions for producing m 1-out-of-n OTs with `-bit inputs

of the sender and for achieving 2−κ computational security and 2−µ statistical security. . . . 6

1.2 Concrete cost of various OT extension protocols for producing 1.25×106 1-out-of-16 OTs with

sender’s input length as 4 and for achieving computational security of 2−128 and statistical

security of 2−40. 7

4.1 Runtime and Communication Overhead (in %) of Our protocol over KK13 for producing(
16
1

)
-OTm4 . 31

4.2 Runtime and Communication Overhead (in %) of Our protocol over KK13 for producing(
n
1

)
-OT106

logn. 32

4.3 Performance Comparison of various OT extensions for producing
(
16
1

)
-OTm4 32

4.4 Performance Comparison of various OT extensions for producing
(
n
1

)
-OT5×104

logn 33

vii

Chapter 1

Introduction

The word cryptography means secret (crypto-) writing (-graphy). Traditionally, cryptography

deals with study of techniques for secure communication. The problem of secure communica-

tion is formulated to enable secure transfer of sensitive and private information. In a secure

communication problem, a sender wants to send its private information to a receiver in a way

that no third party gets the information by eavesdropping over the communication medium.

Though it is non-trivial to solve the problem of secure communication, the goal is well-stated

and well-understood. We know how to solve the problem, namely with the help of encryption

schemes. A more pressing and challenging problem is achieving both privacy and computation

on private data simultaneously. Following are a few examples that demand protecting privacy

of data while they undergo computation:

• Secure Auction: Every party possesses bid amount as its private input. The goal is

to compute the maximum bid and the corresponding bidder ensuring nothing beyond the

winner and the winning bid are revealed.

• Satellite Collision: The orbital information of satellite is private data possessed by a

country which owns it. Different satellites may have orbits in close proximity and collision

among such satellites may lead to extensive damage. In order to prevent such collisions,

we need to compute the collision probability without leaking the highly accurate positional

information of the satellites.

• Privacy Preserving Data Mining: Hospitals possesses patient records, which are

deemed private. These records may require computation. For instance, several leading

hospitals in India would like to find the number of patients who have been infected with

a particular disease between say, 2015 and 2017 without revealing their patient database

1

to each other.

There are several other scenarios like above that demand both privacy and computation

on private data simultaneously such as secure benchmarking, secure set intersection, private

information retrieval etc. Here classical cryptography fails. Fortunately, the area of Secure

Computation or more commonly known as Secure Multi-party Computation (MPC) has evolved

naturally to tackle the above problem. In this thesis, we focus on the most fundamental building

block of MPC, known as Oblivious Transfer (OT) [NP05, Kil88, BCR86, EGL85, Rab81].

1.1 Secure multi-party computation

MPC [GMW87, DO10, BDOZ11, DPSZ12, AJL+12, GGHR14, LPSY15, BHP17, ACJ17, BGW88,

RB89, BMR90, BB89, Bea91, DN07, BFO12, BH06, BH07, BH08, CDD+99, CHP13, Yao82,

LP07, RFZ+13, NO09, JS07, MF06, Woo07, LP12, IPS08, AMPR15, SS13, FJN+13, Lin13,

HKE13, HKK+14, RR16, MR17], introduced by Andew Chi Chih Yao [Yao82], is arguably re-

garded as the most fundamental problem in cryptography. Being a powerful abstraction, it can

model any cryptographic task. The problem is defined as follows: We have a set of n distrusting

parties {P1, . . . , Pn}, each with its own private input x1, . . . , xn. They want to compute some

publicly known function f on their inputs without disclosing their inputs. The distrust among

2

the parties is formalized by having an adversary that may corrupt some of the parties. We

consider a monolithic or centralized adversary i.e., if two or more parties are corrupted, we

assume that they collude with each other. The parties under the control of the adversary are

called “corrupt” and the remaining parties are called “honest”. Informally, the basic properties

that an MPC protocol aims to achieve include:

• Correctness: The honest parties output the correct function value.

• Privacy: The adversary does not learn anything that cannot be efficiently derived from

the inputs and outputs of the corrupted parties.

• Independence of Inputs: Corrupted parties must choose their inputs independently of

the honest parties’ inputs.

The approach used by a generic secure computation protocol is to “securely” evaluate

Boolean circuit (with AND, OR, XOR gates) or arithmetic circuit (with +,× gates) repre-

senting the function f to be computed. By “secure circuit evaluation” we mean that the circuit

will be evaluated in such a way that nothing other than the circuit output that represents the

function output must be revealed during the circuit evaluation. The works on MPC mostly

follow either of the two paradigms: Yao’s garbled circuit based protocol [Yao86] or the GMW

protocol [GMW87]. Both of these protocols require the given function to be represented by a

Boolean circuit. While GMW demands interaction for each AND gate of the circuit causing an

overall round complexity in the order of the multiplicative depth of the circuit, Yao’s protocol

runs in constant rounds. Both these approaches rely on the most important building block of

MPC, namely OT. While GMW approach requires one instance of OT per AND gate, Yao-style

protocols require one OT per input bit. Therefore, OT is a fundamental and extremely useful

tool for building MPC protocols.

1.2 Oblivious Transfer

OT is perhaps the most fundamental primitive in cryptographic protocol theory. It is a two

party protocol between a sender S and a receiver R. The sender holds an array of inputs and

the receiver holds an index indicating its intended pick from the sender’s array. OT allows the

sender to send the receiver’s selected input while preserving the secrecy of the sender’s other

inputs on the one hand and the choice of the receiver on the other.

The necessity and sufficiency of OT for MPC [Kil88, GV87, GMW87, Yao86] backs the

theoretical importance of OT. On the practical front, OT has been pivotal in building sev-

eral state-of-the-art practically efficient general MPC protocols [Lin16, LP15, LR15, HKK+14,

3

FJN+13, SS13, NO09] and several protocols for special-purpose problems of interest such as

private set intersection (PSI) [PSSZ15, PSZ14, DCW13]. There is a fundamental limita-

tion to OT’s efficiency as it is unlikely that OT is possible without public-key cryptogra-

phy and solely relying on symmetric-key cryptography [IR89]. The OT extension protocols

[KOS15, ALSZ15, KK13, ALSZ13, NNOB12, IKNP03, Bea96] have been introduced to theoret-

ically circumvent the above limitation of OTs. They produce a large number of OTs referred as

extended OTs from a small number of OTs referred as seed OTs and symmetric-key primitives.

When the goal is to generate a large number of OTs which is usually the case for the appli-

cations of OT, the amortized cost of generating a single OT via OT extensions turns out to

be a constant number of symmetric-key operations. So most of the known practically efficient

general and special-purpose MPC protocols are byproduct of concretely efficient OT extension

protocols.

Figure 1.1: A 1-out-of-2 Oblivious Transfer

Of particular interest to cryptographic community are the following variants of OT: (a) In

a 1-out-of-2 OT [EGL85], S holds two inputs x0, x1, and R holds a choice bit b. The output

to R is xb and no other party learns anything. (b) A straight-forward extension of 1-out-of-2

OT is 1-out-of-n OT [BCR86] where S holds n inputs and R holds a choice index of log n bits.

While the first kind finds application in MPC [GMW87, Yao82], the second kind is useful in PSI

[PSSZ15, PSZ14], symmetric PIR [NP05], and oblivious sampling [NP05], oblivious polynomial

evaluation [NP99]. As discussed below, attempts have been made to construct OT extension

protocols to output both the above kinds of OTs.

1.3 OT Extensions

The theoretical feasibility of OT extension was proved by Beaver [Bea96]. Ishai, Kilian, Nissim

and Petrank [IKNP03] (referred as IKNP protocol henceforth) presented the first efficient OT

4

extension protocol that builds on κ seed OTs and requires computing and sending just two hash

values per extended OT. In [ALSZ13], IKNP protocol has seen several optimizations that boost

both its communication and computation complexity. Specifically, the communication per ex-

tended OT is brought down to one hash value for a special case where the extended OTs are

needed for random inputs of the sender. The computation bottleneck for implementing matrix

transposition is tackled by introducing a cache-oblivious algorithm. Yet another contribution

from [ALSZ13] is their crucial observation that the actual bottleneck in the runtime of IKNP

protocol results from its communication time, particularly in wide area networks (WANs) that

have high latency and low bandwidth. In a first of its kind approach, Kolesnikov and Kumare-

san [KK13] (referred as KK13 protocol henceforth) presented an OT extension protocol that

outputs 1-out-of-n OTs starting from 2κ 1-out-of-2 seed OTs and relying on specifics of Walsh-

Hadamard (WH) codes. KK13 protocol improves over all its predecessors (including IKNP)

customized to generate 1-out-of-n OTs by a factor O(log n) in communication complexity when

the inputs of the extended OTs are of short size. So far KK13 protocol remains to be the most

efficient way of generating 1-out-of-n OTs for short inputs. All the protocols discussed above

work when the adversary is assumed to be semi-honest. A passive or semi-honest adversary

follows the protocol specification but attempts to learn more than allowed by inspecting the

protocol transcript. An adversary is referred as active or malicious when it behaves in any

arbitrary way in an attempt to break the security of the protocol.

OT extension literature finds numerous attempts to achieve active security. All the attempts

restrict their attention in transforming the semi-honest secure IKNP protocol to an actively

secure one. Since the IKNP protocol is resilient to any malicious behavior of the sender, an

actively secure IKNP style protocol needs to enforce honest behaviour for the receiver. Adding

consistency checks for the receiver has been the strategy followed in all the known constructions.

The efficiency (both communication and computation wise) of the consistency checks defines

the overhead for an actively secure IKNP style protocol. The consistency check introduced

in [IKNP03] employs expensive cut-and-choose technique on µ parallel instances of the semi-

honest IKNP protocol where µ is a statistical security parameter. [HIKN08, Nie07] proposes

consistency checks per extended OTs. This is improved in [NNOB12] where the checks are

done per seed OT. In order to tackle information leakage in their consistency check, [NNOB12]

needs to start with 8
3
κ seed OTs which is 8

3
times more than what IKNP protocol needs.

This inflates their concrete communication and computation complexity by the same factor.

[ALSZ15] improves over [NNOB12] by trading computation in consistency checks for a reduced

number of seed OTs. Namely, the OT extension of [ALSZ15] requires κ + 1.55µ seed OTs

compared to 8
3
κ of [NNOB12] and thus improves the communication done via seed OTs. In a

5

recent work, [KOS15] reports the most efficient actively secure IKNP style protocol that brings

back the number of seed OTs to κ and handles the information leakage in the consistency check

by sacrificing κ+µ extended OTs. The check requires an O(κ) bits communication irrespective

of the number of extended OTs and two finite field operations per extended OT.

Above we concentrated on practically efficient OT extension literature. Some interesting

theoretical questions on OT extension are addressed in [Lar14, LZ13].

1.4 Our Contribution

We present an actively secure OT extension for short secrets building upon the semi-honest

secure protocol of [KK13]. Like KK13 protocol, our extension protocol turns 1-out-of-2 seed

OTs to 1-out-of-n extended OTs. Similar to IKNP protocol, KK13 protocol is secure against

any malicious behaviour of sender but falls apart in the face of a maliciously corrupt receiver.

We present a concrete attack on KK13 and add an efficient consistency check to enforce correct

behaviour of the receiver. Our check relies on the linearity of WH codes. Combined with an

additional trick, our efficient consistency check incurs a communication of O(µ log κ) bits irre-

spective of the number of generated extended OTs. Asymptotically, our OT extension matches

the KK13 protocol in every respect. Table 1.1 shows the efficiency of various OT extension

protocols achieving 2−κ computational security and 2−µ statistical security for producing m

1-out-of-n OTs with `-bit inputs of the sender. The following parameters have been used

for comparison: (i) number of seed OTs, (ii) communication complexity and (iii) computation

complexity in terms of number of hash value computations.

Table 1.1: Asymptotic cost of various OT extensions for producing m 1-out-of-n OTs with `-bit inputs of the
sender and for achieving 2−κ computational security and 2−µ statistical security.

Reference # Seed OTs Communication (bits) / Security
Computation (# hashes)

[KK13] 2κ O(m(κ+ n`)) semi-honest
[IKNP03] κ O(m(κ log n+ n`)) semi-honest
[NNOB12] 8

3
κ O(m(κ log n+ n`)) active

[ALSZ15] κ+ 1.55µ O(m(κ log n+ n`)) active
[KOS15] κ O(m(κ log n+ n`)) active

This Paper 2κ O(m(κ+ n`)) active

Concretely, our protocol when used to generate large enough number of OTs adds only

0.011-0.028% communication overhead and 4-6% runtime overhead both in LAN and WAN

over KK13 protocol. The runtime overheads drop below 2% when in addition the number of

6

inputs of the sender in the extended OTs is large enough. Our construction put in the context

of other OT extensions are presented in Table 1.2. The table presents figures for generating

1.25× 106 1-out-of-16 OTs with sender’s input length as 4 bits. The overheads are calculated

with respect to KK13 protocol. The implementation of [KOS15] is not available in the same

platform as the other OT extensions given in the table. As per the claim made in [KOS15], the

runtime of their OT extension bears an overhead of 5% with respect to IKNP protocol both

in LAN and WAN. So the runtime and overhead in runtime of [KOS15] with respect to KK13

protocol are calculated based on that claim. As evident from Table 1.2, our protocol when used

to compute 1-out-of-n OTs with short inputs of the sender outperforms all the known actively

secure OT extensions and secures the second best spot among all the OT extension protocols

listed in Table 1.2 closely trailing KK13 which is the overall winner. More elaborate empirical

results supporting the above claim with varied number of extended OTs and varied number of

inputs of the sender in the extended OTs appear later in the paper.

Table 1.2: Concrete cost of various OT extension protocols for producing 1.25 × 106 1-out-of-16 OTs with
sender’s input length as 4 and for achieving computational security of 2−128 and statistical security of 2−40.

Reference # Seed
Comm Runtime (in sec) Overhead w.r.t. [KK13] (in %)

OTs (in MB) LAN WAN Communication Runtime in LAN Runtime in WAN

[KK13] 256 47.69 21.68 115.34 0 0 0
[IKNP03] 128 87.74 24.07 133.81 84 11.02 16
[NNOB12] 342 215.95 24.84 143.20 352.7 14.6 24.14
[ALSZ15] 190 166.54 24.81 158.6 249.1 14.4 37.5
[KOS15] 128 > 87.74 > 25.27 > 140.5 > 84 > 16.5 > 21.8

This Paper 256 47.70 22.50 121.94 0.028 3.78 5.72

Lastly, the OT extensions presented in all the works in the table except [KK13] inherently

produce 1-out-of-2 OTs. The transformation from 1-out-of-2 to 1-out-of-n OT given in [NP05]

is used to transform their extended OTs to 1-out-of-n OTs. The transformation that works for

reverse direction [NP05] is unfortunately not maliciously secure. This prevents us from claiming

a similar gain when our protocol is used to generate 1-out-of-2 OTs. We leave open the question

of finding an efficient actively secure transformation from 1-out-of-n to 1-out-of-2 OT.

We show an interesting application of our proposed extension protocol in OT-based PSI

protocols. Specifically, we use our maliciously secure OT extension in the PSI protocol of

[Lam16] to obtain the most efficient PSI protocol that is maliciously secure against a corrupt

receiver and semi-honestly secure against a corrupt sender. In brief, a PSI protocol between

two parties, namely a sender S and a receiver R holding sets X = {x1, x2, . . . xn1} and Y =

{y1, y2, . . . yn2} respectively, outputs the intersection X ∩ Y to the receiver and nothing to the

7

sender. As evident from the theoretical and experimental results presented in this work, our

maliciously secure OT extension protocol is a better choice compared to the existing maliciously

secure extension protocols [ALSZ15, NNOB12, KOS15] when 1-out-of-n OTs are required as

output. As PSI employs 1-out-of-n (instead of 1-out-of-2) OTs, our extension protocol fits

the bill. Lastly, we find a concrete vulnerability for the malicious corrupt receiver case in

Lambæk’s PSI protocol when semi-honest KK13 OT protocol is used in it. This confirms

Lambæk’s concern of privacy breach of his PSI protocol that may result from privacy breach

of the underlying OT protocols and further confirms the necessity of maliciously secure OT

extension in Lambæk’s PSI protocol.

1.5 Outline of this Thesis

This thesis starts by introducing the basics of MPC and a high-level overview of the preliminaries

relevant to our work. This is followed by the problem formulation and our proposed solutions.

We now present the thesis outline.

• Chapter 2: This chapter provides an overview of preliminary topics such as Walsh-

Hadamard (WH) Codes, Universal Composability (UC) Model and the security notions.

• Chapter 3: In this chapter, we describe the efficient protocol of KK13 on which our

actively secure protocol is built upon. We then present a concrete attack on KK13 when

the receiver is considered to be maliciously secure.

• Chapter 4: In this chapter, we first give a technical overview of our protocol. We then

move onto a formal description of our protocol, followed by a rigorous security proof. Next,

we present our empirical findings and analyze the efficiency of our protocol in comparison

to the existing state-of-the-art protocols. Finally, we describe an interesting application

of our proposed protocol in OT-based Private Set Intersection (PSI) protocols.

• Chapter 5: We conclude with summary of the thesis and possible future directions to

this work.

8

Chapter 2

Preliminaries

2.1 Notations

We use ⊕ to denote bitwise XOR operation and � to denote bitwise AND operation. We

denote vectors in bold smalls and matrices in bold capitals. For a matrix A, we let aj denote

the jth row of A, and ai denote the ith column of A. For a vector a, ai denotes the ith element

in the vector. For two vectors a and b of length p, we use the notation a ⊕ b to denote the

vector (a1 ⊕ b1, · · · , ap ⊕ bp) and the notation a� b to denote the vector (a1 � b1, · · · , ap � bp).
The notation

m⊕
j=1

aj denotes the XOR of m vectors, i.e. a1 ⊕ · · · ⊕ am. We denote by a ⊗ b

the inner-product value
p⊕
i=1

ai � bi. Finally, suppose c ∈ {0, 1}, then c � a denotes the vector

(c � a1, · · · , c � ap). We denote by a ←R A the random sampling of a from a distribution A.

We denote by [x], the set of elements {1, . . . , x}.
We denote by HDI a function that takes two binary vectors of same length and returns

the indices where the input vectors are different. For a vector c of length, say p, and an

index set I ⊂ [p], PRNI(c) denotes the pruned vector that remains after removing the bits of c

corresponding to the indices listed in I. For a set C of vectors {c1, . . . , cm}, PRNI(C) denotes

the set of pruned vectors {PRNI(c1), . . . , PRNI(cm)}.
Security Parameters. We denote the statistical security parameter by µ and the cryptographic

security parameter by κ. A negligible function in κ (µ) is denoted by negl(κ) (negl(µ)),

while negl(κ, µ) denotes a function which is negligible in both κ and µ. A function negl(·) is

negligible if for every polynomial p(·) there exists a value N such that for all n > N it holds

that negl(n) < 1
p(n)

. We write PPT for probabilistic polynomial-time.

Oblivious Transfers. For oblivious transfers, we denote the sender by S and the receiver by R.

In a 1-out-of-2 OT on ` bit strings, S holds two inputs x0, x1, each from {0, 1}` and R holds a

9

choice bit b. The output to R is xb and no other party learns anything. We denote a 1-out-of-2

OT on ` bit strings as
(

2
1

)
-OT`. We denote a 1-out-of-n OT on ` bit strings as

(
n
1

)
-OT`. Finally,

we write
(
n
1

)
-OTm` to denote m instances of

(
n
1

)
-OT`. Similarly,

(
2
1

)
-OTm` denotes m instances

of
(

2
1

)
-OT`.

2.2 Walsh-Hadamard (WH) Codes

Walsh-Hadamard (WH) code is a linear code over a binary alphabet F2 that maps messages

of length p to codewords of length 2p. We use WH code that maps messages of length log κ

to codewords of length κ. For x ∈ {0, 1}log κ, WH(x) denotes the WH encoding of x defined as

WH(x) := (x ⊗ a)a∈{0,1}log κ . It is the κ-bit string consisting of inner products of each log κ-bit

string a with x. For each κ, the WH code, denoted by CκWH is defined as the set {WH(x)}x∈{0,1}log κ .

Note that CκWH contains κ codewords each of length κ bits. Our OT extension protocol relies on

the following well-known property of WH codes.

Theorem 2.2.1 The distance of CκWH is κ
2

when κ is a power of 2.

2.3 Hash Function and Random Oracle Model

We use a hash function H : {0, 1}∗ → {0, 1}Poly(κ) which we model as a random oracle. Namely,

we prove the security of our protocol assuming that H implements a functionality FRAND which

for different inputs x, returns uniform random output values from the range of H(x).

2.4 Security Model

We consider two types of adversary: semi-honest/passive and malicious/active. Semi-honest

is a naive adversarial model in which the adversary learns the entire internal information of

the corrupted parties, but the corrupted parties do not deviate from the protocol specification.

Security against this type of adversary ensures that inadvertent leakage of information between

parties does not occur. In the malicious model, the adversary takes full control of the corrupted

parties and can make them deviate arbitrarily from the protocol. Protocols that are secure

against malicious adversaries provide high security guarantee.

We consider adversaries that are polynomially bounded. Such adversaries run in probabilis-

tic polynomial-time (PPT). This captures the notion of feasible computation; any attack that

cannot be carried out in polynomial-time is not considered a threat in real life. Security in

this model is referred to as computational or cryptographic security and usually relies on hard

number-theoretic problems.

10

We assume that the parties are connected by secure channels. Such channels can be emulated

using secure encryption schemes.

2.4.1 The Universal Composability (UC) Security Model

We prove security of our protocol in the standard Universal Composability (UC) framework of

Canetti [Can01]. The UC framework introduces a PPT environment Z that is invoked on the

security parameter κ and an auxiliary input z and oversees the execution of a protocol in one

of the two worlds. The “ideal” world execution involves dummy parties P0 and P1, an ideal

adversary S who may corrupt one of the dummy parties, and a functionality F. The “real”

world execution involves the PPT parties P0 and P1 and a real world adversary A who may

corrupt one of the parties. The environment Z chooses the input of the parties and may interact

with the ideal/real adversary during the execution. At the end of the execution, it has to decide

upon and output whether a real or an ideal world execution has taken place.

We let IDEALF,S,Z(1κ, z) denote the random variable describing the output of the environ-

ment Z after interacting with the ideal execution with adversary S, the functionality F, on the se-

curity parameter 1κ and z. Let IDEALF,S,Z denote the ensemble {IDEALF,S,Z(1κ, z)}κ∈N,z∈{0,1}∗ .
Similarly let REALΠ,A,Z(1κ, z) denote the random variable describing the output of the environ-

ment Z after interacting in a real execution of a protocol Π with adversary A, the parties, on the

security parameter 1κ and z. Let REALΠ,A,Z denote the ensemble {REALΠ,A,Z(1κ, z)}κ∈N,z∈{0,1}∗ .

Definition 2.4.1 For n ∈ N, let F be a functionality and let Π be an 2-party protocol. We say

that Π securely realizes F if for every PPT real world adversary A, there exists a PPT ideal

world adversary S, corrupting the same parties, such that the following two distributions are

computationally indistinguishable:

IDEALF,S,Z
c
≈ REALΠ,A,Z.

The F-hybrid model. In order to construct some of our protocols, we use secure two-party

protocols as subprotocols. The standard way of doing this is to work in a “hybrid model” where

both the parties interact with each other (as in the real model) in the outer protocol and use ideal

functionality calls (as in the ideal model) for the subprotocols. Specifically, when constructing

a protocol Π that uses a subprotocol for securely computing some functionality F, the parties

run Π and use “ideal calls” to F (instead of running the subprotocols implementing F). The

execution of Π that invokes F every time it requires to execute the subprotocol implementing F is

called the F-hybrid execution of Π and is denoted as ΠF. The hybrid ensemble HYBΠF,A,Z(1κ, z)

describes Z’s output after interacting with A and the parties P0, P1 running protocol ΠF. By

11

UC definition, the hybrid ensemble should be indistinguishable from the real ensemble with

respect to protocol Π where the calls to F are instantiated with a realization of F.

12

Chapter 3

An Attack on [KK13] Protocol

The KK13 OT extension protocol is known to provide the best communication complexity

among the existing constructions when the input length of the sender is ‘short’. The protocol is

proven to be secure against a semi-honest receiver and a malicious sender. It was not known if

the protocol is secure against malicious receiver. We show that the protocol is insecure against

a malicious receiver. We prove this by giving an attack that can be mounted by a maliciously

corrupt receiver to break the security of the sender. Our finding sets the stage for a maliciously

secure OT extension in KK13 style which is the concern of this paper. Below we recall the

KK13 OT extension protocol prior to presenting our attack. We also briefly recall its efficiency

analysis from [KK13].

3.1 KK13 OT Extension Protocol

The KK13 OT extension protocol constructs a
(
n
1

)
-OTm` relying on an instance of

(
2
1

)
-OTκκ. We

recall the simpler version of the protocol that reduces
(
n
1

)
-OTm` to

(
2
1

)
-OTκm. It is well-known

that
(

2
1

)
-OTκm can be constructed from

(
2
1

)
-OTκκ with some additional cost.

Following the footstep of [IKNP03], KK13 OT extension allows the receiver to send an m×κ
matrix column-wise to the sender using an instance of

(
2
1

)
-OTκm where the sender acts as the

receiver and vice versa. In [IKNP03] OT extension, the ith row of the transferred matrix allows

the sender to create two pads for the two messages in the ith extended OT. One of the two pads

is a function of the sender’s input bit vector to
(

2
1

)
-OTκm and thus is unknown to the receiver.

The other pad is completely known to the receiver. The pad known to the receiver is used as

the mask for the intended message of the receiver. The above allows the receiver to unmask and

learn its intended message for each extended OT but nothing more. Going along the same line,

KK13 OT extension allows the sender to create n pads for the n messages in the ith extended

13

OT using the ith row of the transferred matrix. Much like IKNP, the receiver knows exactly

one pad out of the n pads and the pad it knows is in fact the mask for its intended message.

All the remaining n− 1 pads are function of the sender’s input bit vector to
(

2
1

)
-OTκm and thus

are unknown to the receiver. The ability to generate n masks instead of just 2 from each of the

rows of the transferred matrix is achieved by cleverly incorporating WH codewords from CκWH in

each of the rows of the transferred m× κ matrix. The use of CκWH restricts the value of n to be

at most κ.

The protocol uses WH code CκWH that consists of κ codewords each of length κ denoted as

(c1, · · · , cκ). The receiver R chooses two random m × κ matrices B and D such that ith row

of matrix E = B ⊕D is cri where ri is the input of the receiver for the ith extended OT. On

the other hand, the sender S picks a κ bit length vector s uniformly at random. The parties

then interact via
(

2
1

)
-OTκm reversing their roles. Namely, the sender S acts as the receiver with

input s and the receiver R acts as a sender with inputs {bj,dj}j∈[κ]. After the execution of(
2
1

)
-OTκm, the sender holds an m × κ matrix A such that the ith row of A is the ith row of

B xored with the bitwise AND of s and cri , i.e. ai = (bi ⊕ (s� cri)). With the ith row ai of

the matrix A, the sender creates n pads for the n messages in the ith extended OT as follows:{
H
(
i, ai ⊕ (s � cj)

)}
j∈[n]

where H is a random oracle. The jth pad will be used to blind

the jth message of the sender in the ith extended OT. It is easy to note that the pad for the

rith message is H(i,bi) (since ai = (bi ⊕ (s� cri))) which the receiver can compute with the

knowledge of B matrix. For the jth message where j is different from ri, the pad turns out

to be H
(
i,bi ⊕ (s � (cri ⊕ cj))

)
where cri and cj are distinct codewords. Since the distance

of WH code CκWH is κ/2, cri and cj are different at κ/2 positions implying that κ/2 bits of s

contribute to the input of the random oracle H. Since the vector s is unknown to the receiver

(recall that the sender picks s), it is hard for an PPT receiver to retrieve the other pads making

the protocol secure for a sender. The protocol of KK13 that realizes
(
n
1

)
-OTm` given ideal access

to
(

2
1

)
-OTκm appears in Fig. 3.1. It is easy to verify that the protocol is correct (i.e., zi = xi,ri)

when both parties follow the protocol.

3.2 An Attack

At the heart of the attack lies a clever way of manipulating the E matrix (cf. Section 3.1) which

should contain WH codewords in its rows in an honest execution. Recall that the security of

the sender lies in the fact that the distance of WH code CκWH is κ/2. The pads for the messages

that are not chosen as the output by the receiver, are the random oracle outputs of an input

consisting of κ/2 bits of s. Since the receiver R does not know s, it cannot guess the pads too

in polynomial time. So one way of breaking the privacy of the other inputs of the sender is to

14

find out the bits of the vector s. Our strategy allows the receiver to recover the ith bit of s at

the cost of two calls to the random oracle under the assumption that R has apriori knowledge

of its chosen input xi,ri for the ith extended OT. This is achieved by tweaking the rows of E

Figure 3.1: The KK13 OT Extension Protocol

Protocol for
(
n
1

)
-OTm` from

(
2
1

)
-OTκm

– Input of S: m tuples
{

(xi,1, · · · ,xi,n)
}
i∈[m]

of ` bit strings.

– Input of R: m selection integers (r1, · · · , rm) such that each ri ∈ [n].

– Common Inputs: A security parameter κ such that κ ≥ n, and Walsh-Hadamard code

CκWH = (c1, · · · , cκ).

– Oracles and Cryptographic Primitives: A random oracle H : [m] × {0, 1}κ → {0, 1}`.
An ideal

(
2
1

)
-OTκm primitive.

1. Seed OT Phase:

(a) S chooses s← {0, 1}κ at random.

(b) R forms two m× κ matrices B and D in the following way:

– Choose bi,di ← {0, 1}κ at random such that bi⊕di = cri . Let E := B⊕D. Clearly

ei = cri .

(c) S and R interact with
(

2
1

)
-OTκm in the following way.

– S acts as receiver with input s.

– R acts as sender with input
{

(bj ,dj)
}
j∈[κ]

.

– S receives output {aj}j∈[κ] and forms m× κ matrix A with the jth column of A as

aj . Clearly

i. aj =
(
bj ⊕ (sj � ei)

)
and

ii. ai =
(
bi ⊕ (s� ei)

)
=
(
bi ⊕ (s� cri)

)
.

2. OT Extension Phase:

(a) For every i ∈ [m], S computes yi,j = xi,j ⊕H
(
i,ai ⊕ (s� cj)

)
and sends {yi,j}j∈[n].

(b) For every i ∈ [m], R recovers zi = yi,ri ⊕H(i,bi).

matrix which are codewords from CκWH in an honest execution. Specifically, the ith row of E,

ei is cri in an honest execution. It is now tweaked to a κ-bit string that is same as cri in all

the positions barring the ith position. Specifically, recall that a WH codeword ci from CκWH is a

κ-length bit vector (ci,1, . . . , ci,κ). We denote complement of a bit b by b. Then the ith row ei

15

of E is set as (ci,1, . . . , ci,i, . . . , ci,κ). The matrix is tweaked as above for every ith row as long as

i ≤ κ. The rest of the rows in E starting from κ to m do not need to be tweaked. The matrix

E after tweaking is given below. We denote the tweaked matrix as E and the tweaked rows as

cri for i ≤ κ.

E =



cr1,1 cr1,2 cr1,κ

cr2,1 cr2,2 cr2,κ
...

...
. . .

...
. . .

...

cri,1 cri,2 . . . cri,i . . . cri,κ
...

...
. . .

...
. . .

...

crκ,1 crκ,2 . . . crκ,j . . . crκ,κ

crκ,1 crκ,2 . . . cr(κ+1),j . . . cr(κ+1),κ

...
...

. . .
...

. . .
...

cm,1 cm,2 cm,κ



=



cr1

cr2
...

cri
...

crκ

crκ+1

...

crm



When R uses E instead of E, the ith row of A for i ≤ κ will be ai = (bi ⊕ (s� cri)). The

pad used to mask the rith message xi,ri in ith extended OT is:

H
(
i, ai ⊕ (s� cri)

)
= H

(
i,bi ⊕

(
s� (cri ⊕ cri)

))
= H

(
i,bi ⊕ (s� 0i−110κ−i

)
= H

(
i,bi ⊕ 0i−1si0

κ−i)
Now note that the malicious receiver has cleverly made the pad used for xi,ri a function of sole

unknown bit si. With the knowledge of its chosen input xi,ri and the padded message yi,ri that

the receiver receives in the OT extension protocol, the malicious receiver R recovers the value of

the pad by finding yi,ri⊕xi,ri . It further knows that yi,ri⊕xi,ri is same as H (i,bi ⊕ 0i−1si0
κ−i).

Now two calls to the random oracle H with inputs
{

(i,bi ⊕ 0i−1si0
κ−i)

}
si∈{0,1}

is sufficient to

find the value of si. In the similar way, it can find entire input vector of the sender, s with

2κ number (polynomial in κ) of calls to the random oracle breaking the privacy of the sender

completely. The attack works in the version of KK13 that reduces
(
n
1

)
-OTm` to

(
2
1

)
-OTκκ without

any modification.

16

3.3 Efficiency of [KK13]

Since efficiency is the prime focus of this paper and we build an OT extension protocol in

KK13 style secure against malicious adversaries, we recall the communication complexity of

KK13 from [KK13]. For complexity analysis we consider the version of KK13 that reduces(
n
1

)
-OTm` to

(
2
1

)
-OTκκ (presented in Appendix D of [KK13]) and requires less communication

than the one that reduces
(
n
1

)
-OTm` to

(
2
1

)
-OTmκ . The communication complexity of KK13 OT

extension producing
(
n
1

)
-OTm` is O(m(κ+ n`)) bits.

The best known semi-honest OT extension protocol before KK13 is IKNP protocol [IKNP03]

which has a communication complexity of O(m(κ+`)) bits for producing
(

2
1

)
-OTm` from

(
2
1

)
-OTκκ.

To get
(
n
1

)
-OTm` as the output from IKNP protocol, the efficient transformation of [NP05] is

used. The transformation generates
(
n
1

)
-OT1

` from
(

2
1

)
-OTlogn

κ with an additional (outside the

execution of
(

2
1

)
-OTlogn

κ) communication cost of O(`n) bits. This transformation can be repeated

m times to reduce
(
n
1

)
-OTm` to

(
2
1

)
-OTm logn

κ with an additional communication cost of O(`mn)

bits. So to get
(
n
1

)
-OTm` as the output from IKNP protocol, first

(
2
1

)
-OTm logn

κ is produced

via [IKNP03] and then the reduction from
(
n
1

)
-OTm` to

(
2
1

)
-OTm logn

κ is used that requires an

additional communication cost of O(`mn) bits. So the total communication turns out to be

O(m log n · (κ+ κ) + `mn) = O(m(κ log n+ n`)) bits. Now recall that n ≤ κ, a restriction that

comes from the KK13 OT extension (due to the fact that CκWH contains κ codewords). Given this

bound, as long as ` = Ω(log n), KK13 OT extension gives better communication complexity

than IKNP protocol.

17

Chapter 4

Actively Secure OT Extension for

Short Secrets

We make the KK13 OT extension protocol secure against a malicious receiver by adding a

consistency check that relies on linearity of WH code and adds a communication of O(µ log κ)

bits irrespective of the number of extended OTs. We first discuss the properties of WH code

relevant to us for the correctness of the consistency check. We then discuss the check and

our actively secure protocol. As we will see the check involves an additional trick apart from

the linearity of WH codes to achieve the claimed communication complexity. We also describe

the required ideal functionalities. Finally, we show an interesting application of our protocol,

namely OT-based Private Set Intersection (PSI).

4.1 Randomized Linearity Testing

We focus on WH code that maps messages of length log κ to codewords of length κ. A WH

codeword for a log κ-bit input x can be viewed as a truth table of a linear function Lx :

{0, 1}log κ → {0, 1} parametrised with x where Lx(a) = x ⊗ a. The WH codeword for x

can be defined as WH(x) := (Lx(a))a∈{0,1}log κ . It is easy to note that Lx(a) = La(x) for any

a ∈ {0, 1}log κ. So we can rewrite the WH codeword for x as WH(x) := (La(x))a∈{0,1}log κ . It

is also easy to note that La() is a linear function since La(x ⊕ y) = La(x) ⊕ La(y) for any

x and y in {0, 1}log κ. This implies that given codewords, say cx and cy corresponding to x

and y respectively, the codeword for x ⊕ y can be obtained as cx ⊕ cy. In general, any linear

combination of a set of WH codewords will lead to a WH codeword. On the other hand XOR

of a codeword and a non-codeword will be a non-codeword. We note that the above statements

are true for pruned code PRNI(C
κ
WH) for any I of size less than κ/2. The distance of PRNI(C

κ
WH) is

18

κ/2− |I| which is at least 1.

In our OT extension protocol, we need to verify whether a set strings are individually valid

WH codewords or not. In particular the number of strings to be verified is proportional to the

number of extended OTs output by the OT extension protocol. In practice, it will be in the

order of millions. Individual string testing may inflate the computation and the communication

cost many-fold. We take the following route to bypass the efficiency loss. Given ν strings for

validity verification, we compress them to one string via linear combination taken using a

uniform random vector of length ν and then check the compressed string only for validity. We

show that the compression process ensures that the output string will be a non-codeword with

probability at least 1
2

if the input set contains some non-codeword(s). Below we present the

randomized linearity test for ν strings in Fig 4.1 and its probability analysis in Theorem 4.1.1.

Figure 4.1: A Randomized Linearity Test for Many Strings

Randomized Linearity Test for ν Strings

– Input: ν κ-bit strings y1, . . . ,yν .

– Output: Accept or Reject indicating whether the strings y1, . . . ,yν passes the test or not.

1. Selection of Random Combiners: Choose ν bits b1, . . . , bν uniformly at random.

2. The test: Compute y =
⊕ν

i=1 bi�yi. Output Accept if y is a valid WH codeword, output
Reject otherwise.

Theorem 4.1.1 Assume that some of the ν κ-bit strings y1, . . . ,yν are not WH codewords.

The randomized linearity test presented in Fig 4.1 outputs Reject with probability at least 1
2
.

Proof. Without loss of generality, let i1, . . . , iη denote the indices of the input strings that are

non-codewords. That is, {i1, . . . , iη} ⊆ {1, . . . , ν} and yi1 , . . . ,yiη are exactly the non-codeword

strings among the set of ν input strings. It is easy to verify that any linear combination of

the remaining strings that are codewords will result in a codeword. So we concentrate on

the linear combination that can result from the non-codewords yi1 , . . . ,yiη . Let the uniform

random bits used to find the linear combination of the non-codewords be bi1 , . . . , biη . There

are 2η possibilities in total for these η bits which can be interpreted as numbers in the set

{0, . . . , 2η−1}. We divide these 2η strings or numbers in two sets, say A and B. A and B consist

of all the strings that corresponds to even and odd numbers respectively from {0, . . . , 2η − 1}.
Clearly |A| = |B| = 2η−1. We now show that at least 2η−1 strings lead to a non-codeword

when they are used as linear combiners for the set of non-codewords yi1 , . . . ,yiη . We prove our

19

claim by showing that for every element in set A, there exists at least one unique string that

when used for linear combination of the non-codewords will lead to a non-codeword. Consider

a string w from set A. We have two cases to consider:

(i) w when used as the linear combiner for yi1 , . . . ,yiη yields a non-codeword. In this case w

itself is the string and element in A that when used as the linear combiner for the non-codewords

will lead to a non-codeword.

(ii) w when used as a linear combiner for yi1 , . . . ,yiη yields a codeword. Note that w is a string

that denotes an even number, say p in {0, . . . , 2η − 1}. The least significant bit of w is a zero.

The string corresponding to p + 1 will belong to the set B and will have the same form as

w except that the least significant bit will be 1. The linear combination of yi1 , . . . ,yiη−1 with

respect to w is a codeword. We exclude yiη from the list since the least significant bit of w

is zero. Whereas yiη is a non-codeword and will be included in the linear combination with

respect to the string corresponding to p+ 1.

Clearly, the string corresponding to p+1 will lead to a non-codeword as the linear combina-

tion of a codeword and a non-codeword always gives a non-codeword. We have shown that for

every w that leads to a codeword, there is a unique string in B that leads to a non-codeword.

The mapping is one-to-one.

We can now conclude that at least half the possibilities of bi1 , . . . , biη leads to a non-codeword

when used as a linear combiner. Since the linear combiners are chosen uniformly at random,

the probability that the linear combination that will result from the non-codewords yi1 , . . . ,yiη

is a non-codeword is at least 1
2
. Recall that any linear combination of the remaining strings

that are codewords will result in a codeword. So the compressed string y resulted from the

linear combination of all the ν strings will be a non-codeword with at least 1
2

probability too.

It is easy to note that the above theorem holds true for PRNI(C
κ
WH) for any I of size less than

κ/2. So we get the following corollary.

Corollary 4.1.2 Let I ⊂ [κ] be a set of size less than κ/2. Assume that some of the ν κ−|I|-bit

vectors y1, . . . ,yν are not pruned WH codewords. Then y 6∈ PRNI(C
κ
WH) with probability at least

1
2

where y =
⊕ν

i=1 bi � yi and the bits b1, . . . , bν are uniform random.

4.2 Functionalities

We describe the ideal functionalities that we need. Below we present an OT functionality

parameterized using three parameters ` that denotes the string length of the sender’s inputs, n

that refers to 1-out-of-n OTs and m that denotes the number of instances of the OTs.

Next we present a functionality to generate uniformly random common coins.

20

Figure 4.2: The Ideal Functionality for
(
n
1

)
-OTm`

Functionality F
(n,m,`)
OT

F
(n,m,`)
OT interacts with S, R and the adversary S and is parameterized by three parameters ` that

denotes the string length of the sender’s inputs, n that refers to 1-out-of-n OTs and m that
denotes the number of instances of the OTs.

• Upon receiving m tuples
{

(xi,1, · · · ,xi,n)
}
i∈[m]

of ` bit strings from S and m selection

integers (r1, · · · , rm) such that each ri ∈ [n] from R, the functionality sends
{
xi,ri

}
i∈[m]

to

R. Otherwise it aborts.

Figure 4.3: The Ideal Functionality for generating random common coins

Functionality FCOIN

FCOIN interacts with S, R and the adversary S.

• Upon receiving (coin, `) from both S and R, the functionality generates ` random bits, say
w and sends w to both S and R. Otherwise it aborts.

4.3 The Protocol

We now describe the protocol that realizes
(
n
1

)
-OTm` given ideal access to

(
2
1

)
-OTκκ. The protocol

is similar to the protocol of KK13 (cf. Fig. 3.1), except that our protocol includes a consistency

check for preventing R from behaving maliciously and using non-codewords in matrix E. The

check makes use of the Randomized Linearity Testing described in Section 4.1. It is trivial

to see that Randomized Linearity Test alone doesn’t suffice, since a malicious R can provide

some vector for the check independent from what he had used in the seed OTs. Thus we need

a check to ensure that the vector provided by R for the check is consistent with the vectors

used in the seed OTs. We make use of the fact that if both S and R are honest, then we have

ai = bi⊕ (ei � s). A closer analysis of this expression gives a simple verification mechanism for

a corrupt R. Namely, R sends to S a random linear combination of the rows of B and E, say

b and e respectively, for a commonly agreed random linear combiner generated using a coin

tossing protocol. S then applies the same random linear combiner on the rows of A to obtain

a and checks if b and e are consistent with s and a. Namely, whether a = b⊕ (e� s) holds or

not. While the above check is simple, it requires communication of κ-bit vectors, namely b and

e. The communication is brought down to O(log κ) using a couple of tricks. First, a second

level of compression function is applied on a, b and e� s via xor on the bits of the individual

vectors. This results in three bits a, b and p respectively from a, b and e� s. Then the check is

simply to verify if a = b⊕ p. Notice that e� s can be perceived as the linear combination of e

for random combiner s. Since s is privy to S, R cannot compute the linear combination of e�s,

21

namely p. So R sends across the index of the codeword that matches with e and on receiving

it S computes p after computing e � s. The index requires just log κ bits as CκWH consists of

κ codewords. Thus our final consistency check needs communication of O(log κ) bits and a

sequence of cheap xor operations. Lastly, the above check is repeated µ times, where µ denotes

the statistical security parameter. We show that either a corrupt R tweaks few positions of the

codewords allowing error-correction or it is caught. Either event takes place with overwhelming

probability. Looking ahead to the proof, the former event allows the simulator to extract the

inputs of corrupted R and thereby making the real and the ideal world indistinguishable with

high probability. Whereas, the protocol is aborted in both the real and ideal worlds when the

latter event happens. Our construction appears in Fig. 4.4.

4.3.1 Security

The correctness of our protocol follows from the correctness of the KK13 protocol and the

correctness of the consistency check. While the former is explained in Section 3.1, the latter is

explained below. The linearly combined vectors e(l) for l ∈ [µ] will be valid codewords follows

directly from the linearity of WH code as mentioned in Section 4.1. When R is honest we have

ai = bi ⊕ (ei � s) and cα(l) = e(l) for l ∈ [µ]. Thus, for every l ∈ [µ],

a(l) =

m+µ⊕
i=1

w
(l)
i � ai =

m+µ⊕
i=1

w
(l)
i � [bi ⊕ (ei � s)] (4.1)

=

[
m+µ⊕
i=1

w
(l)
i � bi

]
⊕

[(
m+µ⊕
i=1

w
(l)
i � ei

)
� s

]
= b(l) ⊕ (e(l) � s)

a(l) =
κ⊕
i=1

a
(l)
i =

κ⊕
i=1

(b
(l)
i ⊕ (si � e(l)

i)) = b(l) ⊕ p(l)

Now it is easy to verify that the protocol is correct (i.e., zi = xi,ri) when both the parties follow

the protocol.

We now move on to the security argument for our protocol. The original OT extension

of [KK13] provides security against a malicious S. Since our consistency check involves message

communication from R to S, it does not offer any new scope for a malicious sender to cheat.

However, the check may reveal some information about R’s input. Recall that R’s input is

encoded in the rows of matrix E and during the check, a random linear combination of the

rows of E (where the combiner is known to S) is presented to S for verification. The check is

repeated for µ times. To prevent information leakage on R’s input, E is padded with µ extra

22

Figure 4.4: Actively Secure OT Extension Protocol

Protocol for
(
n
1

)
-OTm` from

(
2
1

)
-OTκκ

– Input of S: m tuples
{

(xi,1, · · · ,xi,n)
}
i∈[m]

of ` bit strings.

– Input of R: m selection integers (r1, · · · , rm) such that each ri ∈ [n].
– Common Inputs: A security parameter κ such that κ ≥ n, and Walsh-Hadamard code

CκWH = (c1, · · · , cκ).
– Oracles, Cryptographic Primitives and Functionalities: A random oracle H : [m] ×
{0, 1}κ → {0, 1}` and a pseudorandom generator G : {0, 1}κ → {0, 1}m+µ. An ideal OT

functionality F
(2,κ,κ)
OT and an ideal coin tossing functionality FCOIN.

1. Seed OT Phase:

(a) S chooses s← {0, 1}κ at random.

(b) R chooses κ pairs of seeds (k0
j ,k

1
j) each of length κ.

(c) S and R interact with F
(2,κ,κ)
OT in the following way.

– S acts as receiver with input s.
– R acts as sender with input

{
(k0
i ,k

1
i)
}
i∈[κ]

.

– S receives output {ksii }i∈[κ].

2. OT Extension Phase I:

(a) R forms three (m+µ)× κ matrices B, E and D in the following way and sends D to
S:

– Set bj = G(k0
j).

– Set ei = cri for i ∈ [m]. For i ∈ [m+1,m+µ], set ei to a randomly picked codeword
from CκWH.

– Set dj = bj ⊕G(k1
j)⊕ ej .

(b) On receiving D, S forms (m + µ) × κ matrix A with the jth column of A set as
aj =

(
sj � dj

)
⊕G(k

sj
j). Clearly, (i) aj =

(
bj⊕(sj�ej)

)
and (ii) ai =

(
bi⊕(s�ei)

)
=(

bi ⊕ (s� cri)
)
.

3. Checking Phase:

(a) S and R invoke FCOIN with (coin, µ(m+µ)) and receives an µ (m+µ)-length random
bit vectors say w(1), . . . ,w(µ). On receiving the vectors, the parties do the following
for l ∈ [µ]:

– R computes b(l) =
m+µ⊕
i=1

w
(l)
i � bi, e

(l) =
m+µ⊕
i=1

w
(l)
i � ei and b(l) =

κ⊕
i=1

b
(l)
i . It sends b(l)

and α(l) where e(l) = cα(l) to S.

– S computes a(l) =
m+µ⊕
i=1

w
(l)
i � ai, a

(l) =
κ⊕
i=1

a
(l)
i , p(l) = s� cα(l) and p(l) =

κ⊕
i=1

p
(l)
i . It

aborts the protocol if a(l) 6= b(l) ⊕ p(l).

4. OT Extension Phase II:

(a) For every i ∈ [m], S computes yi,j = xi,j ⊕H
(
i,ai ⊕ (s� cj)

)
and sends {yi,j}j∈[n].

(b) For every i ∈ [m], R recovers zi = yi,ri ⊕H(i,bi).

23

rows consisting of random codewords. This ensures that the linear combination presented in

an instance of the check will look random and will bear no information about the m rows of E

that encode R’s input, unless the bits of the random combiner corresponding to the padded µ

rows are zero. However, the probability of that happening is only 1
2µ

.

A corrupt R can cheat by not picking the rows of E as codewords. Our consistency check

ensures an overwhelming probability for catching such a misconduct when ‘large’ number of

positions in the codewords are tweaked. If few positions are tweaked, then we show that the

tweaked codewords are error-correctable with high probability allowing the simulator in the

proof to extract input of the corrupt R. We now prove security formally.

Theorem 4.3.1 The protocol in Fig. 4.4 securely realizes F
(n,m,`)
OT in the (F

(2,κ,κ)
OT ,FCOIN)-hybrid

model.

Proof. Our proof is presented in Universal Composability (UC) framework recalled briefly in

Section 2.4.1. To prove the security of our protocol, we describe two simulators. The simulator

SS simulates the view of a corrupt sender and appears in Fig. 4.5. On the other hand, the

simulator SR simulates the view of a corrupt receiver and is presented in Fig. 4.6.

We now prove that IDEAL
F
(n,m,`)
OT ,SS,Z

c
≈ REAL(n1)-OTm` ,A,Z

when A corrupts S. In (F
(2,κ,κ)
OT ,

FCOIN)-hybrid model, we note that the difference between the simulated and the real view lies

in D matrix. In the simulated world, the matrix D is a random matrix, whereas in the real

world it is a pseudo-random matrix. The indistinguishability can be proved via a reduction to

PRG security.

Next, we prove that IDEAL
F
(n,m,`)
OT ,SR,Z

c
≈ REAL(n1)-OTm` ,A,Z

when A corrupts R via a series

of hybrids. The output of each hybrid is always just the output of the environment Z. Starting

with HYB0 = REAL(n1)-OTm` ,A,Z
, we gradually make changes to define HYB1 and HYB2 as

follows:

HYB1: Same as HYB0, except that in the Checking Phase, the protocol is aborted when

the simulator SR fails to extract the input of R.

HYB2: Same as HYB1, except that default value 0` is substituted for the inputs
{
xi,j
}
i∈[m]∧j 6=ri

Clearly, HYB2 = IDEAL
F
(n,m,`)
OT ,SR,Z

. Our proof will conclude, as we show that every two

consecutive hybrids are computationally indistinguishable.

HYB0
c
≈ HYB1: The difference between HYB0 and HYB1 lies in the condition on aborting

the protocol. In HYB0 the protocol is aborted when a(l) 6= b(l) ⊕ p(l) for some l ∈ [µ] (cf.

Fig. 4.4). Whereas, in HYB1 the protocol is aborted when either the condition for abortion in

HYB0 is true or the extraction fails. The latter implies that either |T| ≥ κ/2 or there exist an

24

Figure 4.5: Simulator SS for Malicious Sender

Simulator SS for S

The simulator plays the role of the honest R and simulates each step of the protocol
(
n
1

)
-OTm` as

follows. The communication of the Z with the adversary A who corrupts S is handled as follows:

Every input value received by the simulator from Z is written on A’s input tape. Likewise, every

output value written by A on its output tape is copied to the simulator’s output tape (to be read

by the environment Z).

1. Seed OT Phase: On behalf of F
(2,κ,κ)
OT , SS receives s, the input of S to the functionality

F
(2,κ,κ)
OT . Next it picks κ PRG seeds ki each of length κ and sends

{
ki
}
i∈[κ]

to S on behalf

of F
(2,κ,κ)
OT .

2. OT Extension Phase I: SS picks a (m+µ)×κ matrix D uniformly at random and sends

to S. It then computes matrix A using the PRG seeds sent to S, s and D. Namely, it sets

aj =
(
sj � dj

)
⊕G(kj).

3. Checking Phase: On receiving (coin, µ(m+ µ)) from S on behalf of FCOIN, SS sends µ

(m + µ)-length random bit vectors say w(1), . . . ,w(µ). For l ∈ [µ], it then computes a(l)

and a(l) using w(l) and A just as an honest S does. It chooses a random WH codeword,

say e(l), sets b(l) = a(l) ⊕ (s� e(l)) and computes b(l) using b(l). Finally, it sends α(l), the

index of e(l) and b(l) to S.

4. OT Extension Phase II: On receiving
{

(yi,1, · · · ,yi,n)
}
i∈[m]

from S, SS computes xi,j =

yi,j ⊕ H
(
i,ai ⊕ (s � cj)

)
for 1 ≤ i ≤ m and sends

{
(xi,1, · · · ,xi,n)

}
i∈[m]

to functionality

F
(n,m,`)
OT on behalf of S.

index i such that PRNT(ei) 6∈ PRNT(CκWH). Let PC denote the event of passing the consistency

check for a corrupt R who commits a non-codeword matrix E in the seed OT phase. Let

FE denote the event of failed extraction of R’s input. Lastly, let D denote the event that Z

distinguishes between HYB0 and HYB1. Then, we have Pr[D | ¬PC] = 0 (since the execution

aborts in both hybrids) and Pr[D | PC] = Pr[FE | PC]. So we have,

Pr[D] = Pr[D | PC] · Pr[PC] + Pr[D | ¬PC] · Pr[¬PC] (4.2)

= Pr[FE | PC] · Pr[PC]

We now show that Pr[D] is negligible in κ and µ because either the probability of passing the

check is negligible or the probability of failure in extraction when check has passed is negligible.

In other words, we show that Pr[PC] ≤ negl(κ, µ) when |T| ≥ κ/2 and Pr[FE | PC] ≤ negl(κ, µ)

25

otherwise. We capture the above in the following two lemmas.

Figure 4.6: Simulator SR for Malicious Receiver

Simulator SR for R.

The simulator plays the role of the honest S and simulates each step of the protocol
(
n
1

)
-OTm` as

follows. The communication of the Z with the adversary A who corrupts R is handled as follows:

Every input value received by the simulator from Z is written on A’s input tape. Likewise, every

output value written by A on its output tape is copied to the simulator’s output tape (to be read

by the environment Z).

1. Seed OT Phase: On behalf of F
(2,κ,κ)
OT , SR receives the input of R to the functionality,

namely
{

(k0
i ,k

1
i)
}
i∈[κ]

.

2. OT Extension Phase I: On receiving matrix D from R, SR computes E using the knowl-

edge of
{

(k0
i ,k

1
i)
}
i∈[κ]

. That is, it computes E as ei = G(k0
i)⊕G(k1

i)⊕ di, where i ∈ [κ].

3. Checking Phase: On receiving (coin, µ(m + µ)) from R on behalf of FCOIN, SR sends

µ (m + µ)-length random bit vectors say w(1), . . . ,w(µ) to R. Then l ∈ [µ], it receives

b(l) and α(l) from R and performs the consistency check honestly like an honest S. If the

check fails, then it sends Abort to F
(n,m,`)
OT on behalf of R and halts. If none of the check

fails, SR computes e(l) =
m+µ⊕
i=1

w
(l)
i � ei using the rows of E and finds Ti = HDI(e(l), cα(l))

for l ∈ [µ]. It then computes T =
µ⋃
l=1

Tl. If |T| ≥ κ/2 or there exists an index i such that

PRNT(ei) 6∈ PRNT(CκWH)
a, then it sends Abort to F

(n,m,`)
OT . Otherwise, SR extracts the ith

input of R as ri where PRNT(ei) = PRNT(cri) for i ∈ [m].

4. OT Extension Phase II: SR sends the input of R, namely (r1, · · · , rm) (such that each ri ∈
[n]) to functionality F

(n,m,`)
OT on behalf of R. From F

(n,m,`)
OT , it receives

{
xi,ri

}
i∈[m]

. It then

runs the protocol with R using
{
xi,ri

}
i∈[m]

and 0` for the unknown inputs
{
xi,j
}
i∈[m]∧j 6=ri

.

aNote that PRNT(CκWH) consists of κ vectors with distance κ/2−|T| which is at least one when |T| < κ/2.
This follows from the fact that the distance of CκWH is κ/2.

Lemma 4.3.2 Pr[D] ≤ max(1
2|T|
, 1

2µ
), when |T| ≥ κ/2.

Proof. When |T| ≥ κ/2, we note that Pr[FE | PC] = 1 as the extraction always fails. Plugging

the equality in Equation 4.2, we get Pr[D] = Pr[PC]. Next we conclude the proof by showing

that Pr[PC] = max(1
2|T|
, 1

2µ
) which is negligible in κ and µ.

Consider lth iteration of the check in Checking Phase. Recall that a(l) at S’s end is

computed as follows. First a(l) is calculated as a(l) =
m+µ⊕
i=1

w
(l)
i � ai where ai =

(
bi ⊕ (s� ei)

)
.

26

Denoting b(l) =
m+µ⊕
i=1

w
(l)
i � bi and e(l) =

m+µ⊕
i=1

w
(l)
i � ei, we have a(l) = b(l) ⊕ (s � e(l)). Lastly,

denoting b(l) =
κ⊕
i=1

b
(l)
i and p =

κ⊕
i=1

si � e(l)
i , we have a(l) =

κ⊕
i=1

a
(l)
i = b(l) ⊕ p(l). Let a corrupt R

sends the index α(l). Let b̄(l) denote the bit sent along with α(l) and let p̄(l) =
κ⊕
i=1

si� c(l)
i where

cα(l) = [c
(l)
1 , . . . , c

(l)
κ]. Now the check passes when b(l) ⊕ p(l) = b̄(l) ⊕ p̄(l). The equation implies

that

b(l) ⊕ b̄(l) = p(l) ⊕ p̄(l) =

(
κ⊕
i=1

si � e(l)
i

)⊕(
κ⊕
i=1

si � c(l)
i

)

=
κ⊕
i=1

si � (e
(l)
i ⊕ c

(l)
i)

Now note that the bits of s corresponding to the indices not in T do not have any impact on

the value of
κ⊕
i=1

si � (e
(l)
i ⊕ c

(l)
i). So 2κ−|T| possibilities of the vector s will lead to passing the

check. Since s is chosen uniformly at random and is a κ-length bit vector, the probability that

the chosen vector will hit one of the 2κ−|T| possibilities is 2κ−|T|

2κ
. The probability of passing

the check is thus 1
2|T|

. Another way of passing the check is to hit the value of b̄(l) in all the µ

instances of the check so that the equalities b(l) ⊕ p(l) = b̄(l) ⊕ p̄(l) for l ∈ [µ] hold good. The

probability of passing the check in this way thus turns out to be 1
2µ

. This concludes the proof.

Lemma 4.3.3 Pr[D] ≤ 1
2µ

, when |T| < κ/2.

Proof. From Equation 4.2, we get the inequality Pr[D] ≤ Pr[FE | PC]. We now show that

Pr[FE | PC] ≤ 1
2µ

. We note that when |T| < κ/2, the reason for failure in extraction happens

because some of the pruned rows of E do not belong to the the pruned code PRNT(CκWH). That

is, there exists an index i such that PRNT(ei) 6∈ PRNT(CκWH). Now the fact that the distance of

CκWH is κ/2 and the number of indices that are pruned are strictly less that κ/2 implies that

PRNT(CκWH) consists of κ vectors with distance κ/2−|T| which is at least one. Now Corollary 4.1.2

implies that if some of the pruned rows of E do not belong to PRNT(CκWH), then PRNT(e(l)) be-

longs to PRNT(CκWH) with probability at most 1/2. Since e(l)s are computed using independent

and uniformly picked random linear combiners, at least one of PRNT(e(1)), . . . , PRNT(e(µ)) do not

belong to PRNT(CκWH) with probability at least 1 − 1
2µ

. Recall that e(l) is computed using w(l).

But since PRNT(e(l)) = PRNT(cα(l)) and PRNT(cα(l)) ∈ PRNT(CκWH) for all l ∈ [µ], it implies that

PRNT(ei) for all i ∈ [m + µ] belong to PRNT(CκWH) with probability at least 1 − 1
2µ

. So we have

27

Pr[¬FE | PC] ≥ 1− 1
2µ

which implies Pr[FE | PC] ≤ 1
2µ

HYB1
c
≈ HYB2: The difference between HYB1 and HYB2 lies in the values for the inputs{

xi,j
}
i∈[m]∧j 6=ri

. In HYB1 these values are the real values of an honest S whereas in HYB2

these are the default value 0`. The security in this case will follow from the random oracle

assumption of H. We proceed in two steps. First, assume that the distinguisher of HYB1 and

HYB2 does not make any query to H. We show that the pads used to mask the unknown inputs

of S will be uniformly random and independent of each other due to random oracle assumption.

Recall that the pads for masking
{
xi,j
}
i∈[m]∧j 6=ri

are
{
H
(
i,bi⊕(s�(cri⊕cj))

)}
i∈[m]∧j 6=ri

. Since

CκWH is a WH code, the Hamming weight of each vector in the set
{

(cri⊕cj)
}
i∈[m]∧j 6=ri

is at least

κ/2. Since s is picked at random from {0, 1}κ, each of the values in
{
s� (cri ⊕ cj)

}
i∈[m]∧j 6=ri

is

uniformly distributed over a domain of size at least 2κ/2. Now random oracle assumption lets us

conclude that the pads
{
H
(
i,bi⊕(s�(cri⊕cj))

)}
i∈[m]∧j 6=ri

are random and independent of each

other and thus provide information-theoretic blinding guarantee to the values
{
xi,j
}
i∈[m]∧j 6=ri

.

Next, following the standard of proofs in the random oracle model we allow the distinguisher

to make polynomial (in κ) number of adaptive queries to H. Clearly, if a distinguisher makes a

query to H on any of the values
{(
i,bi ⊕ (s� (cri ⊕ cj)

))}
i∈[m]∧j 6=ri

that are used to mask the

unknown inputs of S, then it can distinguish between the hybrids. Such queries are denoted

as offending queries. As long as no offending query is made, each of these m(n − 1) offending

queries is (individually) distributed uniformly at random over a domain of size (at least) 2κ/2

and so the distinguisher’s probability of hitting upon an offending query remains the same as

in the case he does not make any query at all to H. So if the distinguisher makes q queries,

then it’s probability of distinguishing only increases by a polynomial factor over 2−κ/2.

Our security proof relies on random oracle assumption of H. However, as mentioned in

[KK13], the random oracle assumption can be replaced with a generalized notion of correlation-

robustness [IKNP03] referred as C-correlation-robustness [KK13] in a straightforward way. For

completeness, we recall the definition of C-correlation-robust hash functions below.

Definition 4.3.4 ([KK13]) Let C = {c1, . . . , cn} be a set of κ-bit strings such n = Poly(κ)

and for any j, k with j 6= k, the Hamming distance between cj and ck is Ω(κ). Then a hash

function H : {0, 1}∗ → {0, 1}`(κ) is C-correlation-robust if for any polynomial m(κ) and any

non-uniform PPT distinguisher A provided with input C has negl(κ) probability of distinguish-

ing the following distributions:

–
{{(

j, k,H(i,bi ⊕ ((cj ⊕ ck)� s))
)}

i∈[m],j,k∈[n],j 6=k

}
where each string in {bi}i∈[m] is a κ-bit

and s is a κ-bit string chosen uniformly at random and independent of {bi}i∈[m].

28

– Um(n−1)`; Um(n−1)` denotes uniform distribution over {0, 1}m(n−1)`.

4.3.2 Efficiency

The actively secure protocol incurs a communication of O(κ2) bits in Seed OT Phase. In

OT Extension Phase I, R sends κ(m + µ) bits to S. In Checking Phase, S and R invokes

FCOIN. We follow the implementation of [KOS15] for FCOIN that generates µ(m + µ) bits at

one go and uses a pseudorandom function (PRF) and a PRG. Let Fk : {0, 1}2κ → {0, 1}κ be a

keyed PRF with k ∈ {0, 1}κ be a uniform random string and G : {0, 1}κ → {0, 1}µ(m+µ) be a

PRG. Then FCOIN can be realized as follows:

1. R generates and sends random sR ← {0, 1}κ to S.

2. S generates and sends random sS ← {0, 1}κ to R.

3. Both parties compute s = Fk(sS, sR) and output w1||w2 . . . ||wµ = G(s) where each wi ∈
{0, 1}(m+µ).

With the above implementation of FCOIN, Checking Phase incurs a communication of

O(µ log κ). In OT Extension Phase II, S communicates mn` bits to R. So the total com-

munication our protocol is O(κ2 + κ(m+ µ) + µ log κ+mn`) = O(m(κ+ n`)) (assuming m is

asymptotically bigger than κ and µ) bits which is same as that of KK13 OT extension.

Computation-wise, Checking Phase constitutes the additional work that our protocol does

over KK13 protocol. The additional work involves cheap xor and bit-wise multiplications.

4.4 Empirical Results

We compare our work with the existing protocols of KK13 [KK13], IKNP [IKNP03], ALSZ15

[ALSZ15] and NNOB [NNOB12] in terms of communication and runtime in LAN and WAN

settings. The implementation of KOS [KOS15] is not available in the platform that we consider

for benchmarking. As per the claim made in KOS, the runtime of their OT extension bears an

overhead of 5% with respect to IKNP protocol both in LAN and WAN. The communication

complexity of KOS is at least the complexity of IKNP. These results allow to get a clear idea

on how KOS fares compared to our protocol.

In any practical scenario, the computation is not the prime bottleneck, as computing power

has improved a lot due to improvements in hardwares. The communication overhead is the

main issue, and so most of the aforementioned protocols are aimed at improving the communi-

cation complexity. Our empirical results show that our proposed protocol performs way better

than even the passively secure IKNP in terms of communication complexity when
(
n
1

)
-OTs

with short input are expected outcomes. Since ALSZ15, NNOB and KOS are built upon IKNP,

29

they lag behind our protocol in performance too. Though our prime focus is to improve the

communication complexity, our protocol outperforms IKNP and the existing actively secure

protocols in runtime both in LAN and WAN setting. We now detail the software, hardware

and implementation specifications used in our empirical analysis before presenting our experi-

mental findings.

Software Details. We build upon the OT extension code provided by the Encrypto group on

github [OTC]. It contains the OT extension implementations of KK13, NNOB and ALSZ15 in

C++, using the Miracl library for elliptic curve arithmetic. We build upon the KK13 code for

our actively secure protocol. AES-128 has been used for the PRG instantiation and the random

oracle has been implemented by the SHA-256 hash function.

Hardware Details. We have tested the code in a standard LAN network and a simulated WAN

setting. Our machine has 8 GB RAM and an Intel Core i5-4690 CPU with 3.5 GHz processor

speed. For WAN simulation, we used the tc tool of Linux, where we introduced a round trip

delay of 100 milliseconds into the network, with a limited bandwidth of 20 Mbps.

Implementation Details. We discuss our choice of m, n and ` denoting the number of extended

output OTs, the number of inputs of S in each extended OT and the bit length of S’s input

respectively. In other words, we refer to the parameters m,n and ` of
(
n
1

)
-OTm` . Recall that as

long as the input length of S, namely ` satisfies the relation ` = Ω(log n), theoretically KK13

OT extension (and our proposed OT extension) gives better communication complexity for

producing
(
n
1

)
-OTm` than IKNP protocol and its variants (cf. Section 3.3). For benchmarking,

we take two approaches. First, we fix n = 16 and ` = 4(= log 16) and experiment on the

following values of m: 1.25× 105, 2.5× 105, 5× 105 and 1.25× 106. Next, we fix m to a value

and vary n from 8 to 256 in the powers of 2. The value of ` for each choice of n is set as log n.

Our protocol and KK13 directly generate OTs of type
(
n
1

)
-OT` whereas IKNP, ALSZ15 and

NNOB generate OTs of type
(

2
1

)
-OT1. To compare with IKNP, ALSZ15 and NNOB, we convert

the output OTs of these protocols, namely
(

2
1

)
-OT1 to

(
n
1

)
-OT` using the efficient transformation

of [NP05] (cf. Section 3.3).

To obtain a computational security guarantee of 2−128, while KK13 and our protocol need

256 seed OTs, IKNP, NNOB and ALSZ15 need 128, 342 and respectively 170 seed OTs. Among

these, except IKNP and KK13, the rest are maliciously secure. To obtain a statistical security

guarantee of 2−40 against a malicious receiver, ALSZ15 and NNOB need 380 checks whereas we

need 96 checks.

30

We follow the approach of ALSZ15 implementation and perform the OT extension in batches

of 216 in sequential order. For each batch, the sender and the receiver perform the seed OTs,

participate in a coin tossing protocol, perform the checks and finally obtain the output. We use

one thread in the sender as well as in the receiver side in order to calculate the upper bound

on the computation cost. However our code is compatible with multiple threads where each

thread can carry out a batch of OTs. Lastly, our seed OT implementation relies on the protocol

of [PVW08].

4.4.1 Performance Comparison

Since we build upon KK13 protocol, we first display in Table 4.1-4.2 the overhead (in %)

of our protocol compared to KK13. Notably, the communication overhead lies in the range

0.011%-0.028%. Table 4.1 shows that for large enough number of extended OTs, the runtime

overhead of our protocol over KK13 ranges between 4-6% for both LAN and WAN. Table 4.2

demonstrates that the runtime overheads drop below 2% when in addition the number of inputs

of the sender in the extended OTs is large enough.

Next, our empirical results are shown in Table 4.3-4.4 and Fig. 4.7-4.8. First, we discuss

our results in Table 4.3 and Fig. 4.7 where we vary m. Next, we focus on the results displayed

in Table 4.4 and Fig. 4.8 where we vary n. In both the case studies, our protocol turns out

to be the best choice among the actively secure OT extensions and second best overall closely

trailing KK13 which is the overall winner. Communication complexity wise, our protocol is as

good as KK13 and is way better than the rest. The empirical results are in concurrence with

the theoretical log n improvement of KK13 and our protocol over IKNP (and its variants).

Table 4.1: Runtime and Communication Overhead (in %) of Our protocol over KK13 for producing
(
16
1

)
-OTm4 .

m

Runtime
Communication

LAN WAN

1.25× 105 6.48 9.27 0.012
2.5× 105 6.33 8.76 0.012
5× 105 5.88 7.09 0.012
1.25× 106 3.78 5.72 0.028

Performance Comparison for varied m values. The results in Table 4.3 reflects that KK13 is the

best performer in terms of communication as well as runtime in LAN and WAN. Our actively

secure protocol is the second best closely trailing KK13. Our protocol has communication

overhead of 0.012-0.028% over KK13, while IKNP, ALSZ15 and NNOB have overheads of

31

Table 4.2: Runtime and Communication Overhead (in %) of Our protocol over KK13 for producing
(
n
1

)
-OT106

logn.

n

Runtime
Communication

LAN WAN

8 6.16 11.77 0.011
16 4.13 6.6 0.012
32 4.5 2.29 0.013
64 3.65 1.81 0.014
128 1.24 1.18 0.015
256 0.58 0.8 0.015

79.7-84%, 249% and 352% respectively. Noticeably, we observe that the cost for generating

5× 105
(

16
1

)
-OT using our protocol is less than the cost of generating 1.25× 105

(
16
1

)
-OT using

NNOB. Similarly the cost of generating 1.25× 106
(

16
1

)
-OT using our protocol is 71.6% of the

cost of generating 5× 105
(

16
1

)
-OT using ALSZ15.

In LAN setting, the overheads over KK13 vary in the range of 3.78-6.48%, 11-17.60%,

14.4-22.7% and 14.5-20.8% respectively for our protocol, IKNP, ALSZ15 and NNOB. The sim-

ilar figures in WAN setting are 5.72-9.26%, 16-22.6%, 35.3-39% and 24.1-29.1% respectively for

our protocol, IKNP, ALSZ15 and NNOB. A pictorial representation is shown in Fig. 4.7.

Table 4.3: Performance Comparison of various OT extensions for producing
(
16
1

)
-OTm4 .

m Runtime in LAN (in sec) Runtime in WAN (in sec) Communication (in MB)

KK13 This paper IKNP ALSZ15 NNOB KK13 This paper IKNP ALSZ15 NNOB KK13 This paper IKNP ALSZ15 NNOB

1.25× 105 02.16 02.30 02.54 02.65 02.61 13.38 14.62 16.40 18.10 16.90 04.77 04.77 08.66 16.67 21.60
2.5× 105 04.23 04.50 04.88 05.26 05.05 24.32 26.45 29.26 33.80 31.40 09.54 09.54 17.15 33.33 43.21
5× 105 08.50 09.00 09.78 10.04 10.10 47.39 50.75 56.9 65.00 60.40 19.08 19.08 34.79 66.62 86.39

1.25× 106 21.68 22.50 24.07 24.81 24.84 115.34 121.94 133.81 158.60 143.20 47.69 47.70 87.74 166.54 215.95

Figure 4.7: Performance Comparison of various OT extensions for producing
(
16
1

)
-OTm4 .

(a) LAN Runtime

1.25 2.5 5 12.5
0

5

10

15

20

25

Number of OTs (of order 105)

R
u

n
ti

m
e

(s
)

KK13
This paper

IKNP
ALSZ15
NNOB

(b) WAN Runtime

1.25 2.5 5 12.5
0

50

100

150

Number of OTs (of order 105)

R
u

n
ti

m
e

(s
)

KK13
This paper

IKNP
ALSZ15
NNOB

(c) Communication

1.25 2.5 5 12.5

0

50

100

150

200

Number of OTs (of order 105)

C
om

m
u

n
ic

at
io

n
(M

B
) KK13

This paper
IKNP

ALSZ15
NNOB

32

Table 4.4: Performance Comparison of various OT extensions for producing
(
n
1

)
-OT5×104

logn .

n Runtime in LAN (in sec) Runtime in WAN (in sec) Communication (in MB)

KK13 This paper IKNP ALSZ15 NNOB KK13 This paper IKNP ALSZ15 NNOB KK13 This paper IKNP ALSZ15 NNOB

8 0.70 0.73 0.79 0.86 0.85 5.06 6.08 7.38 7.67 7.41 1.43 1.43 2.5 4.87 6.34
16 0.96 1.01 1.15 1.23 1.17 6.70 7.72 8.52 9.15 8.77 1.91 1.91 3.53 6.69 8.65
32 1.22 1.28 1.48 1.64 1.58 7.46 8.53 9.10 10.2 9.86 2.39 2.39 4.89 8.81 11.29
64 1.33 1.45 2.26 2.37 2.36 8.88 10.31 11.29 12.97 12.64 2.86 2.86 7.01 11.7 14.68
128 1.50 1.63 3.61 3.94 3.71 9.56 11.05 14.84 16.63 15.16 3.34 3.34 10.85 16.36 19.8
256 1.75 1.89 6.37 6.70 6.43 10.96 12.46 19.43 22.6 20.45 3.82 3.82 18.5 24.8 28.75

Figure 4.8: Performance Comparison of various OT extensions for producing
(
n
1

)
-OT5×104

logn .

(a) LAN Runtime

8 16 32 64 128 256

2

4

6

Value of n

R
u
n
ti

m
e

(s
)

KK13
This paper

IKNP
ALSZ15
NNOB

(b) WAN Runtime

8 16 32 64 128 256

5

10

15

20

Value of n

R
u
n
ti

m
e

(s
)

KK13
This paper

IKNP
ALSZ15
NNOB

(c) Communication

8 16 32 64 128 256

0

10

20

30

Value of n

C
om

m
u

n
ic

at
io

n
(M

B
)

KK13
This paper

IKNP
ALSZ15
NNOB

Performance Comparison for varied n values. Here we set m = 5×104 and vary n from 8 to 256

in the powers of 2. Similar to the previous case study, KK13 turns out the best performer here

as well (cf. Table 4.4). Our protocol is the second best closely trailing KK13. Our protocol has

communication overhead of 0.011-0.028% over KK13, while IKNP, ALSZ15 and NNOB have

overheads of 74.5-384.6%, 239.5-549.4% and 341.8-652.9% respectively. In LAN setting, the

overheads over KK13 vary in the range of 3.5-8.8%, 12.2-263.8%, 22.2-282.7% and 20.5-267.5%

respectively for our protocol, IKNP, ALSZ15 and NNOB. The similar figures in WAN setting

are 13.7-20.2%, 27.1-77.4%, 36.7-106.3% and 30.9-86.6% respectively for our protocol, IKNP,

ALSZ15 and NNOB. A pictorial representation is shown in Fig. 4.8.

In the following section, we describe one of the interesting applications of our OT Extension

protocol.

4.5 Application to Private Set Intersection

Our protocol can be used in the OT based Private Set Intersection (PSI) protocol of [Lam16]

to obtain the most efficient PSI protocol that is maliciously secure against a corrupt receiver

and semi-honestly secure against a corrupt sender. In PSI, a sender S and a receiver R hold

sets X = {x1, x2, . . . xn1} and Y = {y1, y2, . . . yn2} respectively. The goal of the protocol is to

let the receiver know the intersection X ∩ Y and nothing more. Put simply, a PSI protocol

33

realizes the functionality FPSI(X, Y) = (⊥, X ∩ Y). The set sizes are assumed to be public.

We set our focus on the PSI protocols that are OT-based so that we can employ our OT

extension protocol in them to improve efficiency. [PSZ14] introduced an OT-based PSI protocol

relying on black-box usage of random
(
n
1

)
-OT. Subsequently, [PSSZ15] improved the commu-

nication overhead of [PSZ14]. Both the protocols are semi-honestly secure. At the core of the

protocols lies an important building block called set inclusion that allows R to check whether

its input, say y, is contained in X, owned by S, while preserving the input privacy of both

the parties. In the set inclusion protocol, the receiver breaks its σ-bit element, say y into t

blocks of η-bits. Similarly S breaks each of its σ-bit element xi into t blocks of η-bits. Next,

a random
(

2η

1

)
-OT is used for kth block of receiver’s input for k = 1, . . . , t where the random

OT does the following. Denoting N = 2η, a random OT of above type generates N random

masks and delivers them to S. R receives from the OT the mask corresponding to its block

which acts as its choice string. S then generates a mask for each of its elements in X using

the masks received from the t random
(
N
1

)
-OTs. Similarly, R combines the masks it receives

from the OTs to generate the mask corresponding to its input element y. The verification

whether y is included in X is then done by performing checks over the masks. Namely S sends

across the masks corresponding to all its elements in X. R verifies if the mask corresponding

to y matches with one of them or not. In a naive approach, PSI can be achieved by having

the receiver run the set inclusion protocol n2 times, once for each element in Y . [PSZ14] and

subsequently [PSSZ15] improved the complexity of the naive approach by reducing the number

of OTs and improving the input length of S in the OTs. Various hashing techniques such as

Simple Hashing [PSZ14] and Cuckoo Hashing (with a stash s [KMW09]), h-ary Cuckoo Hash-

ing [FPSS03] and Feistel-like functions [ANS10] were used to achieve the goal. However, as

mentioned before, both [PSZ14] and [PSSZ15] works in semi-honest setting. Indeed, Lambæk

in his detailed analysis [Lam16] finds three vulnerabilities in [PSZ14, PSSZ15] when malicious

adversaries are considered. Details follow.

One of vulnerabilities corresponds to sender corruption. Fixing the problem remains an open

question. The remaining two vulnerabilities correspond to the receiver corruption. In more

details, the first problem comes from a malicious receiver who can learn whether some elements

of its choice outside his set Y of size n2 belong to S’s input X or not. The solution proposed

in the thesis to thwart this attack uses Shamir secret sharing (SS) paired with symmetric-key

encryption (SKE). Recall that, S sends the masks corresponding to its elements in X after the

OT executions to help R identify the elements in the intersection. The idea of the proposed

solution of [Lam16] is to lock the masks using a key of SKE, secret share the key and allow

R to recover the key only when R uses less than or equal to n2 elements in the set inclusion

34

protocols (i.e. in the OT executions). The second vulnerability may result from any malicious

behaviour of R in the OT executions of set inclusion protocol. [Lam16] proposes to fix the

problem by using maliciously secure (against corrupt receiver) OT protocols. Using off-the-

shelves maliciously secure OT extension protocols, [Lam16] therefore obtains a PSI protocol

that is maliciously secure against corrupt R but semi-honestly secure against corrupt S. For

complete details of the protocol of Lambæk, refer [Lam16].

We propose to use our maliciously secure OT extension protocol in the PSI protocol of

[Lam16] to obtain the most efficient PSI protocol that is maliciously secure against corrupt R

but semi-honestly secure against corrupt S. As evident from the theoretical and experimental

results presented in this work, our maliciously secure OT extension protocol is a better choice

compared to the existing maliciously secure extension protocols [ALSZ15, NNOB12, KOS15]

when the OTs required are of type
(
n
1

)
-OT. As PSI employs

(
n
1

)
-OT (instead of

(
2
1

)
-OT), our

extension protocol fits the bill. Lastly, we find a concrete vulnerability for the malicious corrupt

R case in Lambæk’s PSI protocol when semi-honest KK13 OT extension is used in it. This

confirms Lambæk’s concern of privacy breach of his PSI protocol that may result from privacy

breach of the underlying OT protocols and further confirms the necessity of maliciously secure

OT extension in Lambæk’s PSI protocol. The attack by the corrupt R goes as follows: Using

the concrete attack discussed in Section 3.1 for KK13 protocol, a corrupt R in the PSI protocol

can recover the outputs to S in the OT executions. The outputs to S are used to compute the

masks for the elements of X. Therefore by violating the privacy of semi-honest KK13, R can

completely recover the masks for all the elements of X bypassing the security of secret sharing

technique coupled with SKE. This allows R to learn whether some elements of its choice outside

his set Y of size n2 belong to S’s input X or not.

35

Chapter 5

Summary and Future Work

5.1 Summary of the Thesis

This thesis started by providing an overview of the area of Secure Multi-party Computation and

its building block, namely Oblivious Transfer. After presenting some preliminaries and litera-

ture survey, we proceeded with our main result. Prior to presenting our protocol, we revisited

the efficient protocol on which ours is built upon. We then showed the formal construction

of our protocol, followed by a rigorous security proof and the empirical findings. To be more

specific:

• Our protocol adds a communication overhead of O(µ log κ) bits over KK13 protocol ir-

respective of the number of extended OTs, where κ and µ refer to computational and

statistical security parameter respectively.

• In terms of concrete efficiency, our protocol when used to generate a large enough number

of OTs adds only 0.011-0.028% communication overhead and 4-6% runtime overhead both

in LAN and WAN over KK13 extension.

Finally, we showed an interesting application of our protocol in OT-based PSI protocols. Specif-

ically, we use our protocol to obtain the most efficient PSI protocol that is maliciously secure

against a corrupt receiver and semi-honestly secure against a corrupt sender.

5.2 Directions for Future Work

Owing to the novel nature of the problem studied, there are several natural extensions to this

thesis. The following list mentions a few immediate possible directions for future work.

36

• While we focused on the well-known Walsh-Hadamard codeword for optimizing our con-

sistency check, studying the proposed approach under other linear codewords such as

BCH, Golay Codes etc can be a prospective research direction.

• Another related challenging open problem is that of efficiently converting 1-out-of-n OTs

to 1-out-of-2 OTs in the malicious setting. Such a solution combined with our protocol

would enable us to compare with the state-of-the-art 1-out-of-2 OT Extension protocols.

• In [PSSZ15], Pinkas et al. have used permutation based hashing on [PSZ14] which

thereby reduced the runtime by a factor of 10 and the communication by a factor 2.5-3.4

of their PSI protocol. It would be interesting to see whether those optimizations can

be applied to the PSI protocol described in the thesis, while preserving the maliciously

secure property.

• It would also be interesting to see whether the protocol of Lambæk [Lam16] can be

extended to provide active security for the case of malicious sender.

37

Bibliography

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to

round-optimal secure multiparty computation. IACR Cryptology ePrint Archive,

2017:402, 2017. 2

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. Multiparty computation with low communication,

computation and interaction via threshold FHE. In Advances in Cryptology - EU-

ROCRYPT 2012 - 31st Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,

pages 483–501, 2012. 2

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More

efficient oblivious transfer and extensions for faster secure computation. In 2013

ACM SIGSAC Conference on Computer and Communications Security, CCS’13,

Berlin, Germany, November 4-8, 2013, pages 535–548, 2013. 4, 5

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More

efficient oblivious transfer extensions with security for malicious adversaries. In Ad-

vances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April

26-30, 2015, Proceedings, Part I, pages 673–701, 2015. 4, 5, 6, 7, 8, 29, 35

[AMPR15] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive

secure computation based on cut-and-choose. IACR Cryptology ePrint Archive,

2015:282, 2015. 2

[ANS10] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant

worst-case operations with a succinct representation. In 51th Annual IEEE Sympo-

38

BIBLIOGRAPHY

sium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las

Vegas, Nevada, USA, pages 787–796, 2010. 34

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in

constant number of rounds of interaction. In Proceedings of the Eighth Annual ACM

Symposium on Principles of Distributed Computing, Edmonton, Alberta, Canada,

August 14-16, 1989, pages 201–209, 1989. 2

[BCR86] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure

of secrets. In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California,

USA, 1986, Proceedings, pages 234–238, 1986. 2, 4

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-

homomorphic encryption and multiparty computation. In Advances in Cryptology

- EUROCRYPT 2011 - 30th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Pro-

ceedings, pages 169–188, 2011. 2

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Ad-

vances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Con-

ference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings, pages

420–432, 1991. 2

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private com-

putations. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the

Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages

479–488, 1996. 4

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-

secure multiparty computation with a dishonest minority. In Advances in Cryptology

- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 19-23, 2012. Proceedings, pages 663–680, 2012. 2

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for

non-cryptographic fault-tolerant distributed computation (extended abstract). In

Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May

2-4, 1988, Chicago, Illinois, USA, pages 1–10, 1988. 2

39

BIBLIOGRAPHY

[BH06] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Efficient multi-party computation

with dispute control. In Theory of Cryptography, Third Theory of Cryptography

Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, pages

305–328, 2006. 2

[BH07] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Simple and efficient perfectly-secure

asynchronous MPC. In Advances in Cryptology - ASIACRYPT 2007, 13th Inter-

national Conference on the Theory and Application of Cryptology and Information

Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, pages 376–392, 2007.

2

[BH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear

communication complexity. In Theory of Cryptography, Fifth Theory of Cryptogra-

phy Conference, TCC 2008, New York, USA, March 19-21, 2008., pages 213–230,

2008. 2

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure

computation without setup. IACR Cryptology ePrint Archive, 2017:386, 2017. 2

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure

protocols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium

on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–

513, 1990. 2

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS

2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145, 2001. 11

[CDD+99] Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Rabin.

Efficient multiparty computations secure against an adaptive adversary. In Advances

in Cryptology - EUROCRYPT ’99, International Conference on the Theory and

Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,

Proceeding, pages 311–326, 1999. 2

[CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra. Asynchronous multiparty com-

putation with linear communication complexity. In Distributed Computing - 27th

International Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013. Pro-

ceedings, pages 388–402, 2013. 2

40

BIBLIOGRAPHY

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big

data: an efficient and scalable protocol. In Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, CCS ’13, pages 789–800,

2013. 4

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure mul-

tiparty computation. In Advances in Cryptology - CRYPTO 2007, 27th Annual In-

ternational Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007,

Proceedings, pages 572–590, 2007. 2

[DO10] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest majority:

From passive to active security at low cost. In Advances in Cryptology - CRYPTO

2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19,

2010. Proceedings, pages 558–576, 2010. 2

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty

computation from somewhat homomorphic encryption. In Advances in Cryptology

- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 19-23, 2012. Proceedings, pages 643–662, 2012. 2

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for

signing contracts. Commun. ACM, 28(6):637–647, 1985. 2, 4

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Se-

bastian Nordholt, and Claudio Orlandi. Minilego: Efficient secure two-party compu-

tation from general assumptions. In Advances in Cryptology - EUROCRYPT 2013,

32nd Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 537–556,

2013. 2, 4

[FPSS03] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space efficient

hash tables with worst case constant access time. In STACS 2003, 20th Annual

Symposium on Theoretical Aspects of Computer Science, Berlin, Germany, February

27 - March 1, 2003, Proceedings, pages 271–282, 2003. 34

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure

MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th Theory

of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26,

2014. Proceedings, pages 74–94, 2014. 2

41

BIBLIOGRAPHY

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game

or A completeness theorem for protocols with honest majority. In Proceedings of

the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New

York, USA, pages 218–229, 1987. 2, 3, 4

[GV87] Oded Goldreich and Ronen Vainish. How to solve any protocol problem - an effi-

ciency improvement. In Advances in Cryptology - CRYPTO ’87, A Conference on

the Theory and Applications of Cryptographic Techniques, Santa Barbara, Califor-

nia, USA, August 16-20, 1987, Proceedings, pages 73–86, 1987. 3

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. Ot-

combiners via secure computation. In Theory of Cryptography, Fifth Theory of

Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008., pages

393–411, 2008. 5

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computa-

tion using symmetric cut-and-choose. In Advances in Cryptology - CRYPTO 2013 -

33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.

Proceedings, Part II, pages 18–35, 2013. 2

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J.

Malozemoff. Amortizing garbled circuits. In Advances in Cryptology - CRYPTO

2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,

2014, Proceedings, Part II, pages 458–475, 2014. 2, 3

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious

transfers efficiently. In Advances in Cryptology - CRYPTO 2003, 23rd Annual In-

ternational Cryptology Conference, Santa Barbara, California, USA, August 17-21,

2003, Proceedings, pages 145–161, 2003. 4, 5, 6, 7, 13, 17, 28, 29

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on obliv-

ious transfer - efficiently. In Advances in Cryptology - CRYPTO 2008, 28th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008.

Proceedings, pages 572–591, 2008. 2

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-

way permutations. In Proceedings of the 21st Annual ACM Symposium on Theory

of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 44–61, 1989. 4

42

BIBLIOGRAPHY

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on

committed inputs. In Advances in Cryptology - EUROCRYPT 2007, 26th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Barcelona, Spain, May 20-24, 2007, Proceedings, pages 97–114, 2007. 2

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the

20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,

Illinois, USA, pages 20–31, 1988. 2, 3

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring

short secrets. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology

Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,

pages 54–70, 2013. iv, v, 4, 5, 6, 7, 13, 17, 22, 28, 29

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing:

Cuckoo hashing with a stash. SIAM J. Comput., 39(4):1543–1561, 2009. 34

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension

with optimal overhead. In Advances in Cryptology - CRYPTO 2015 - 35th Annual

Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,

Part I, pages 724–741, 2015. 4, 6, 7, 8, 29, 35

[Lam16] Mikkel Lambæk. Breaking and fixing private set intersection protocols. IACR

Cryptology ePrint Archive, 2016:665, 2016. 7, 33, 34, 35, 37

[Lar14] Enrique Larraia. Extending oblivious transfer efficiently - or - how to get active

security with constant cryptographic overhead. In Progress in Cryptology - LAT-

INCRYPT 2014 - Third International Conference on Cryptology and Information

Security in Latin America, Florianópolis, Brazil, September 17-19, 2014, Revised

Selected Papers, pages 368–386, 2014. 6

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert ad-

versaries. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology

Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,

pages 1–17, 2013. 2

[Lin16] Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and covert ad-

versaries. J. Cryptology, 29(2):456–490, 2016. 3

43

BIBLIOGRAPHY

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party compu-

tation in the presence of malicious adversaries. In Advances in Cryptology - EURO-

CRYPT 2007, 26th Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings,

pages 52–78, 2007. 2

[LP12] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose

oblivious transfer. J. Cryptology, 25(4):680–722, 2012. 2

[LP15] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party compu-

tation in the presence of malicious adversaries. J. Cryptology, 28(2):312–350, 2015.

3

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient con-

stant round multi-party computation combining BMR and SPDZ. In Advances in

Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,

CA, USA, August 16-20, 2015, Proceedings, Part II, pages 319–338, 2015. 2

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online setting with

security for malicious adversaries. In Proceedings of the 22nd ACM SIGSAC Con-

ference on Computer and Communications Security, Denver, CO, USA, October

12-6, 2015, pages 579–590, 2015. 3

[LZ13] Yehuda Lindell and Hila Zarosim. On the feasibility of extending oblivious transfer.

In TCC, pages 519–538, 2013. 6

[MF06] Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious two-

party computation. In Public Key Cryptography - PKC 2006, 9th International

Conference on Theory and Practice of Public-Key Cryptography, New York, NY,

USA, April 24-26, 2006, Proceedings, pages 458–473, 2006. 2

[MR17] Payman Mohassel and Mike Rosulek. Non-interactive secure 2pc in the offline/online

and batch settings. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Paris, France, April 30 - May 4, 2017, Proceedings, Part III, pages 425–455,

2017. 2

[Nie07] Jesper Buus Nielsen. Extending oblivious transfers efficiently - how to get robustness

almost for free. IACR Cryptology ePrint Archive, 2007:215, 2007. 5

44

BIBLIOGRAPHY

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. A new approach to practical active-secure two-party computation. In Ad-

vances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa

Barbara, CA, USA, August 19-23, 2012. Proceedings, pages 681–700, 2012. 4, 5, 6,

7, 8, 29, 35

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.

In Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San

Francisco, CA, USA, March 15-17, 2009. Proceedings, pages 368–386, 2009. 2, 4

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In

Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,

STOC ’99, pages 245–254, 1999. 4

[NP05] Moni Naor and Benny Pinkas. Computationally secure oblivious transfer. J. Cryp-

tology, 18(1):1–35, 2005. 2, 4, 7, 17, 30

[OTC] Encrypto group otextension code. https://github.com/encryptogroup/

OTExtension. 30

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Pri-

vate set intersection using permutation-based hashing. In Proceedings of the 24th

USENIX Conference on Security Symposium, SEC’15, 2015. 4, 34, 37

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set inter-

section based on ot extension. In Proceedings of the 23rd USENIX Conference on

Security Symposium, SEC’14, 2014. 4, 34, 37

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient

and composable oblivious transfer. In Advances in Cryptology - CRYPTO 2008, 28th

Annual International Cryptology Conference, Santa Barbara, CA, USA, August 17-

21, 2008. Proceedings, pages 554–571, 2008. 31

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer, 1981. Harvard

University Technical Report 81 talr@watson.ibm.com 12955 received 21 Jun 2005.

2

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols

with honest majority (extended abstract). In Proceedings of the 21st Annual ACM

45

https://github.com/encryptogroup/OTExtension
https://github.com/encryptogroup/OTExtension

BIBLIOGRAPHY

Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA,

pages 73–85, 1989. 2

[RFZ+13] Ou Ruan, Cai Fu, Jing Zhou, Lansheng Han, and Xiaoyang Liu. Efficient fair uc-

secure two-party computation on committed inputs. In 12th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications,

TrustCom 2013 / 11th IEEE International Symposium on Parallel and Distributed

Processing with Applications, ISPA-13 / 12th IEEE International Conference on

Ubiquitous Computing and Communications, IUCC-2013, Melbourne, Australia,

July 16-18, 2013, pages 544–551, 2013. 2

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with

online/offline dual execution. In 25th USENIX Security Symposium, USENIX Se-

curity 16, Austin, TX, USA, August 10-12, 2016., pages 297–314, 2016. 2

[SS13] Abhi Shelat and Chih-Hao Shen. Fast two-party secure computation with minimal

assumptions. In 2013 ACM SIGSAC Conference on Computer and Communications

Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 523–534, 2013. 2,

4

[Woo07] David P. Woodruff. Revisiting the efficiency of malicious two-party computation.

In Advances in Cryptology - EUROCRYPT 2007, 26th Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques, Barcelona,

Spain, May 20-24, 2007, Proceedings, pages 79–96, 2007. 2

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In

23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois,

USA, 3-5 November 1982, pages 160–164, 1982. 2, 4

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).

In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada,

27-29 October 1986, pages 162–167, 1986. 3

46

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Secure multi-party computation
	1.2 Oblivious Transfer
	1.3 OT Extensions
	1.4 Our Contribution
	1.5 Outline of this Thesis

	2 Preliminaries
	2.1 Notations
	2.2 Walsh-Hadamard (WH) Codes
	2.3 Hash Function and Random Oracle Model
	2.4 Security Model
	2.4.1 The Universal Composability (UC) Security Model

	3 An Attack on KolesnikovK13 Protocol
	3.1 KK13 OT Extension Protocol
	3.2 An Attack
	3.3 Efficiency of KolesnikovK13

	4 Actively Secure OT Extension for Short Secrets
	4.1 Randomized Linearity Testing
	4.2 Functionalities
	4.3 The Protocol
	4.3.1 Security
	4.3.2 Efficiency

	4.4 Empirical Results
	4.4.1 Performance Comparison

	4.5 Application to Private Set Intersection

	5 Summary and Future Work
	5.1 Summary of the Thesis
	5.2 Directions for Future Work

	Bibliography

