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Abstract

Verifiable Secret Sharing (VSS) is a fundamental cryptographic primitive, which is used as

a basic building block in almost every protocol for secure computation. It also serves as an

important building block for Byzantine Agreement (BA) protocols. Informally, VSS allows a

dealer to share a secret among several players which may later be uniquely reconstructed, even

if some of the players are malicious (possibly including the dealer). Any VSS scheme consists

of two phases: the sharing phase and the reconstruction phase and is implemented by a pair

of protocols (Share, Rec). Here Share is the protocol for the sharing phase, while Rec is the

protocol for the reconstruction phase. Protocol Share allows a special player called the dealer

(denoted as D), to share a secret s among the n players in a way that later allows for a unique

reconstruction of s by every player using the protocol Rec. Moreover, if D is honest, then the

secrecy of s is preserved till the end of Share.

We focus on a standard setting of statistical information-theoretic security where VSS pro-

tocol exists if and only if t < n/2. In this model the standard assumption is that the players are

connected to each other via point-to-point secure and authenticated channels. Furthermore,

they have an access to a shared broadcast channel.

The round complexity of VSS protocols is defined as the number of rounds required to com-

plete the sharing phase of VSS. Broadcast round complexity is another important complexity

measure in VSS, which is estimated as the number of rounds in the protocol where a physi-

cal broadcast was required. Since a physical broadcast channel is an expensive resource, it is

desirable to minimize the broadcast round complexity of a protocol. In this thesis, we have

proposed a new VSS protocol with just two broadcast rounds in the sharing phase, inspired

from the VSS protocol of Patra et al. [10] which has three broadcast rounds in the sharing

phase. Our protocol has a overall round complexity 10 in the sharing phase. The only known

protocol with two broadcast rounds is given by Garay et al. [6]. The overall round complexity

of Garay et al. is 20. Our protocol is an improvement over the existing protocols in terms of

either broadcast round complexity or overall round complexity.

We also focus on information checking protocol (ICP) which is used as a building block

ii



Abstract

for VSS schemes. ICP is traditionally defined as an interactive protocol between three players

namely, the dealer D, the intermediary INT, and the verifier V [10]. Initially, D hands over the

secret s ∈ F to INT and passes some verification information to the V. V learns nothing about

s from the verification information. Later, INT passes the secret to V along with a proof that

s is indeed the actual secret. Then, V confirms the validity of the secret using the verification

information shared by D. In this work, we have modified the ICP given by Patra et al. [10]

and reduced its broadcast round complexity from four to three. We use this modified ICP to

come up with our new statistical VSS protocol with broadcast round complexity better than

known protocols.
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Chapter 1

Introduction

Secret sharing is one of the most important primitives used in secure multi-party computation

protocols. In secret sharing, a designated player, called dealer, wants to share a secret s among

n players in such a way that no set of t players are able to reconstruct the secret but any set of

t+1 players should be able to reconstruct it by combining their respective shares.

Verifiable Secret Sharing (VSS) is an extension of secret sharing which is used in the presence

of active corruption. Here a central adversary may corrupt upto t players (possibly including

the dealer) in an arbitrary manner. The requirement of VSS is that no t players can reconstruct

the secret in any way whereas the n players can reconstruct the secret successfully even if the

malicious t players deliver incorrect information. Moreover, if the dealer is honest, then no

information about the secret should be revealed to any of the t malicious players by the end of

the sharing phase. Nevertheless, even a malicious dealer, by the end of the sharing phase, is

irrevocably committed to some value which will be reconstructed by the honest players in the

reconstruction phase. Furthermore, if the dealer is honest then this committed value should be

same as the dealer’s initial input.

1.1 Motivation

Secret sharing is required quite often in secure multi-party computation. Different values are

required to be shared in a secret fashion to evaluate a multi-function, of many inputs, without

revealing a party’s own inputs to other players. And since few players can be malicious, hence

the protocol for secret sharing should be verifiable.

Information Checking Protocol (ICP) is also a basic building block for various VSS protocols.

In many cases, the complexity of VSS heavily depends upon the complexity of ICP. Hence we

study ICP in detail too.
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1.2 Contributions

Our focus is on information theoretic VSS, where the adversary possesses unbounded computa-

tional power. We also work on the case of statistical security where the security requirements

hold statistically but can be violated with negligible probability. We assume a broadcast chan-

nel, which allows each player to send a message to all the players and ensures that the received

message is identical. Using the broadcast channels along with private point to point channels is

a standard model for secure multi-party computation protocols in information-theoretic setting.

Without broadcast, VSS cannot be achieved in constant number of rounds. We try to reduce

the broadcast round complexity of VSS, given in [10], by using gradecast technique in the ICP

protocol given in the same paper. Gradecast allows us to simulate broadcast with weaker con-

sistency guarantees. It enables us to reduce communication complexity if multiple broadcast

rounds can be replaced by gradecast without affecting any of the characteristic property of

the protocol. We will show that it is possible to do so, hence increasing the efficiency of the

protocol.

1.3 Organization

The remainder of this thesis is organized as follows: Chapter 2 provides the background de-

tails that includes the model, definitions and other building blocks of VSS. Protocols like Weak

broadcast and Gradecast are discussed in this chapter. In chapter 3, few previous works regard-

ing VSS are reviewed. Chapter 4 discusses the contributions in this work in detail. The ICP

protocol is studied in detail and thereafter modified in section 4.1. Once the ICP is established

according to our model, we use it to come up with a improved VSS protocol in section 4.2.

2



Chapter 2

Background

In this chapter, we present necessary details about the model, definitions and tools related to

Verifiable Secret Sharing.

2.1 VSS model

We consider the standard model of communication where all the players have an access to

pairwise private channel and a common broadcast channel. The network is synchronous one

consisting of n players P1, P2, ..., Pn. There exists a centralized adversary A with unbounded

computational power. The adversary can corrupt upto t players, possibly including the dealer.

The corrupted players may deviate from the protocol in an arbitrary way. A is also rushing in

nature, which means that it first receives the messages of the honest players before deciding on

the messages of corrupted players in a particular round.

Let F denotes a finite field and set κ = log|F|. The dealer’s secret is supposed to lie in F
and κ is the security parameter. In the statistical VSS, we allow an error probability of at most

ε = 2−Θ(κ).

2.2 Verifiable Secret Sharing

A two phase protocol for a set of n players P = P1, P2, ..., Pn, where a designated dealer D ∈ P

holds the initial input secret s ∈ F, is a (1 - ε)-statistical VSS protocol tolerating t corrupted

players if the following conditions hold for adversary A controlling upto t players:

Privacy: If the dealer D is honest, then the joint view of the corrupted players should be

independent of the input secret value s at the end of the first phase (sharing phase).

3



Correctness/Commitment: Each honest player Pi outputs a value si at the end of the second

phase (reconstruction phase). The following should hold except with probability at most ε:

• At the end of the sharing phase, there exists a value s′ ∈ F which is defined by the

joint view of the honest players. All the honest players output s′ at the end of reconstruction

phase. If D is honest, then s′ = s.

2.3 Information Checking Protocol

An information checking protocol (ICP) was first introduced by Tal Rabin and Michael Ben-Or

[13]. It traditionally involves three players, namely, the dealer D, an intermediary INT, and a

verifier V. The dealer initially holds the input secret value s ∈ F which he passes to INT. D

also passes some verification information to V. This verification information does not reveal

anything about s. Later, INT passes s to V along with a “proof” that s is indeed the secret

value shared by D to INT.

2.3.1 Multi-Verifier Information Checking Protocol

The traditional ICP protocol involve only a single verifier. Patra et al. [12, 11] gave the pro-

tocol involving multiple verifiers, i.e., all the players in the network can act as a verifier. They

further gave a simplified version of ICP in [10]. Their version of the protocol consists of three

sub protocols (Distr, AuthVal, RevealVal).

• Distr (D, INT, s): It is executed by D using some input value s. The algorithm generates

some authentic information, which includes s, to give to INT. It also generates some ver-

ification information and gives it to each of the verifiers.

• AuthVal (D, INT, s): It is executed by INT after the Distr phase. The information held by

INT is called D’s IC-signature and is denoted by ICSIG(D,INT,s).

• RevealVal (D, INT, s): In this phase, INT broadcasts ICSIG(D,INT,s). Based on the values

received in the previous two phases, ICSIG(D,INT,s) is either accepted or rejected by all

the honest verifiers, with high probability.

4



The ICP protocol is required to satisfy the following properties:

Correctness:

• If D and INT are honest, then each honest verifier accepts ICSIG(D, INT,s) during Re-

vealVal.

• If INT is honest, then he holds an ICSIG(D,INT,s) at the end of AuthVal which will be

accepted by each of the honest verifiers with probability at least 1− 2−Θ(κ).

• If D is honest, then ICSIG(D,INT,s) broadcasted as s′ 6= s by a corrupt INT should be

rejected by each honest verifier with probability at least 1− 2−Θ(κ), during RevealVal.

Secrecy: If both D and INT are honest, then the adversary should not learn any information

about s till the end of AuthVal.

2.4 Gradecast

Graded broadcast or Gradecast was first given by Feldman and Micali [3]. Gradecast allows

us to distribute a value to all the players but with weaker consistency guarantees than the

standard broadcast. In the latter case, each player outputs the same value, but in gradecast,

each player has to output a binary grade gi ∈ {0, 1} along with the value vi.

A protocol achieves gradecast if it allows the dealer D ∈ P to distribute a value v ∈ F among

the players P with every player Pi outputting a value vi ∈ F along with a grade gi ∈ {0, 1} such

that the following conditions hold:

Validity: If the dealer D is honest, then each honest player Pi ∈ P outputs (vi, gi) = (v, 1).

Graded Consistency: If an honest player Pi ∈ P outputs (vi, gi) with gi = 1, then every

honest player Pj ∈ P outputs (vj, gj) with vj = vi.

Gradecast is achievable by private point-to-point channels in case of t < n/3 [4]. But for

t < n/2, a communication model consisting of 2-cast channels is required to achieve it. A 2-cast

channel allows a player to broadcast a value to two other players in the network. A construction

is given by Hirt and Raykov [8, 6] to prepare a setup which allows to simulate 2-cast channels.

A gradecast protocol using this setup is given by Garay et al. [6].

5



2.4.1 Gradecast Setup

A setup can be prepared allowing to simulate 2-cast channels over point-to-point channels

[8, 6]. In order to do that, we need to implement protocols Setup3 and Broadcast3 given by

[8]. The setup protocol Setup3 consists of three rounds, where in the first two rounds point-to-

point channels are used, and a physical broadcast is required in the third round. The protocol

Broadcast3 simulates the 2-cast channel from the prepared setup using point-to-point channels.

Broadcast3 also consists of three rounds but does not use any physical broadcast.

Since gradecast can be achieved from 2-cast channels when t < n/2, we can consider the setup

prepared for 2-cast channels as the setup for gradecast channels. Let SetupGradecast be the

protocol used to generate the setup of 2-cast channels within the network, i.e. it executes the

Setup3 protocol given by [8].

Let the protocol Gradecast (Figure 2.2) be defined as the gradecast protocol given by Garay et

al. [6]. Protocol Gradecast is a 6-round protocol which achieves gradecast from a setup and

point-to-point channels tolerating t < n/2 corrupted players.

2.4.2 Weak broadcast

Weak broadcast (also known as Crusader agreement [2]) is another weak form of broadcast,

where the recipients either can output the value sent by the broadcaster or a special symbol

{⊥}. {⊥} produced as the output indicates that the broadcaster is malicious. Weak broadcast

can be achieved over point-to-point channels only.

A protocol achieves weak broadcast if it allows the dealer D to broadcast a value v ∈ F
among the players P with every player Pi outputting a value vi ∈ F ∪ {⊥} such that the fol-

lowing conditions hold:

Validity: If the dealer D is honest, then each honest player Pi ∈ P outputs vi = v.

Weak Consistency: If an honest player Pi ∈ P outputs vi 6= ⊥, then every honest player

Pj ∈ P outputs either vj = vi or vj = ⊥.

Please refer Figure 2.1 and Figure 2.2 for the protocols of weak broadcast and gradecast re-

spectively given by Garay et al. [6].
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WeakBroadcast(P, D, v)

Round 1-3: Dealer D 2-casts v to every pair of players in P \ {D}. 2-cast is achieved by
executing Broadcast3 over point-to-point channels only.

∀Pi ∈ P \ {D}: If all the values received in the 2-cast are same (equal to some u ∈ F), then
output vi = u else output vi = ⊥.
Dealer D outputs v.

Figure 2.1: Weak Broadcast

Gradecast(P, D, v)

Round 1-3: Dealer D weak broadcasts v. Let the output of each player Pi be wi.
Round 4-6: ∀Pi ∈ P weak broadcasts wi. Let the output of each player Pj be wij.

∀Pi ∈ P: ∀u ∈ F let T ui = {Pj ∈ P|wji = u}. Let vi be u with maximal |T ui | (break ties
arbitrarily); if |T vii | > n/2 then gi = 1, otherwise gi = 0. Output (vi, gi).

Figure 2.2: Gradecast for t < n/2

7



Chapter 3

Literature Review

The concept of Verifiable Secret Sharing was introduced by Chor et al. [1]. Since then a number

of researchers have come up with various VSS protocols for different communication models and

under different assumptions. The protocols have been designed for many different models such

as synchronous and asynchronous network, information-theoretic and computational adversary,

perfect and statistical secret sharing etc. Different protocols have also been designed keeping

number of players controlled by the adversary in mind. Though we have focused our research

on t < n/2 setting where n is the total number of players in the network and t is the total

number of malicious players. But here below we review few VSS protocols for t < n/2 as well

as t < n/3 settings.

3.1 VSS Protocol by Gennaro et al. [7]

This paper was published in year 2000. The paper focused on the standard setting of perfect

information-theoretic security, where all the players have access to secure point-to-point chan-

nels and a common broadcast medium. They gave a 3-round VSS protocol for t < n/3 case

but the protocol was realized by exponential communication complexity.

In this protocol, the dealer shares the secret using replication-based secret-sharing [9] tech-

nique. It first creates the enumerations, S1, ..., SK for all
(
n
t

)
subsets of t players. Then it divides

the secret as s =
K∑
k=1

sk where sk are chosen at random subject to the summation condition

only. Then it gives each share sk to all the players who are not in Sk. In the reconstruction

phase, each player reveals the
(
n−1
t

)
shares in its own possession. The share sk is decided as

the value that is revealed most often by each player. The protocol is given in Figure 3.1 [7].

The secrecy property is achieved by the fact that all the players broadcast their shares

8



n
3
-EXP-VSS

Sharing Phase

1. Let S1, ...SK be an enumeration of all K =
(
n
t

)
subsets of t players.

D chooses K random values s1, .., sK ∈ F under the restriction that the secret s equals
K∑
k=1

sk. Then, D sends to player Pi the values sk for all k such that Pi /∈ Sk.

Simultaneously, each player Pi sends to each player Pj, a random pad r
(k)
ij ∈ F for each

subset Sk such that Pi, Pj /∈ Sk.

2. For each i, j, i < j : and each index k such that Pi, Pj /∈ Sk.

• Pi broadcasts a
(k)
ij = sk + r

(k)
ij ;

• Pj broadcasts a
(k)
ji = sk + r

(k)
ji .

3. For each index k for which there exists a pair i, j such that a
(k)
ij 6= a

(k)
ji the dealer

broadcasts the value sk which is now taken by all the players /∈ Sk as the proper share.

Reconstruction phase

1. For each index k each player Pi /∈ Sk provides the share sk it owns (either the one received
in Step 1 or the one broadcasted by the dealer in Step 3). Take the value that appears

most often as the proper share sk. Set Rec =
K∑
k=1

sk.

Figure 3.1: 3-Round VSS Protocol for n > 3t with exponential communication

padded with random pads selected in Round 1. And there are more than one shares which

are not received by any malicious player if the dealer is honest. The properties of correctness

and consistency are achieved as follows: If the dealer is honest and one share is missed by any

subset of t players, then they cannot prevent its reconstruction as it is given to 2t+ 1 players.

In this case, even an incorrect value cannot be reconstructed as the correct share will appear

with a majority in every case.

When the dealer is malicious, he can distribute different values of a share to honest players.

But every pair of players compare their shares with each other and the dealer is forced to

broadcast that share if an inconsistency is found. Since the secret is the summation of these

9



shares, the dealer is now committed to the new secret if he reveals a new value of the share at

the end of the sharing phase.

This protocol certainly was the first protocol to have just three rounds in the sharing phase,

but the number of enumerations created by the dealer makes it inefficient. Later on, Fitzi et

al. [5] came up with an efficient 3-round VSS protocol.

3.2 VSS Protocol by Fitzi et al. [5]

Fitzi et al. [5] gave an efficient 3-round VSS protocol in 2006. They focused on the same

standard model of communication as in Gennaro et al. [7] and solved the then open problem

of 3-round efficient VSS protocol for t < n/3.

In order to design 3-round VSS, they designed a 3-round Weak Verifiable Secret Sharing

(WSS) protocol as well. In WSS, a property of weak commitment s desired which is as follows:

Weak Commitment: After the sharing phase, there is a unique s∗ ∈ F such that either s∗

or the default value ⊥ /∈ F will be reconstructed in the reconstruction phase regardless of the

views presented by the malicious players.

In WSS, the dealer chooses a bivariate polynomial F (x, y) such that the secret is s =

F (0, 0). Each player Pi gets two polynomials F (x, i) and F (i, y). Then every pair of players

compares their shares by binding them with a random pad and then broadcasting them. In

the reconstruction phase, they use a concept of consistency graph to construct a CORE set of

honest players. But it is possible that the cardinality of CORE turns out to be less than n− t
in which case ⊥ is reconstructed. WSS protocol for t < n/3 appears in Figure 3.2 [5].

The VSS protocol proposed by them uses the same technique in the sharing phase. WSS

protocol is run in parallel step by step. In the reconstruction phase, the random pad of each

player is revealed and the secret is reconstructed. But in order to guarantee the consistency of

the random pad, each Pi shares a random field element by WSS, and chooses his pads as points

on the respective polynomial. The players whose WSS protocol reconstruct ⊥ get discarded

and the remaining players are put in COREsh set. The pads of players in COREsh are taken

into account to reconstruct the dealer’s secret. The full description of VSS protocol appears in

Figures 3.3 and 3.4 [5]. Superscript ”W” is used to denote the quantities corresponding to the

(n
3
)-WSS protocols that are run in order to WSS the players’ random pads.

Although their VSS is efficient and achieves all the required properties, but it may not be

suitable for general multi-party computation. In a case where multiple VSS are invoked simul-

10



(n
3
)-WSS

Sharing Phase

1. • D chooses a random bivariate polynomial F ∈ F[x, y] of degree at most t in each vari-
able, satisfying F (0, 0) = s. D sends to each player Pi the (univariate) polynomials
fi(x) = F (x, i) and gi(y) = F (i, y).

• Player Pi sends to each player Pj an independent random ”pad” rij picked uniformly
from F.

2. Player Pi broadcasts:

• aij = fi(j) + rij (rij is the pad Pi sent to Pj)

• bij = gi(j) + rji (rji is the pad Pi received from Pj)

3. For each pair aij 6= bji, the following happens:

• Pi broadcasts αij = fi(j)

• Pj broadcasts βji = gj(i)

• D broadcasts γij = F (j, i)

A player is said to be unhappy if the value which he broadcast does not match the dealer’s
value. If there are more than t unhappy players, disqualify the dealer and stop.

Reconstruction Phase

1. Every happy player Pi broadcasts his polynomials fi(x) = F (x, i) and gi(y) = F (i, y).

Local Computation

Each player Pi now constructs a consistency graph G over the set of happy players such that
there exists an edge between Pj and Pk in G if and only if fj(k) = gk(j) and gj(k) = fk(j).
Since these polynomials are broadcast, every player Pi constructs the same graph G.

Now each player Pi constructs a set CORE of players as follows. Initially, all the players in G
whose node degree is at least n− t are inserted into the set. Next, players in CORE consistent
with less than n − t other players in CORE are removed. This process continues until no
more players can be removed from the set. If the resulting CORE set contains less than n− t
elements then Pi outputs ⊥ otherwise, Pi reconstructs the polynomial F ∗(x, y) defined by any
t+ 1 players in CORE, and the secret s∗ = F ∗(0, 0) is reconstructed.

Figure 3.2: Round-Optimal WSS for n > 3t
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(n
3
)-VSS

Sharing Phase

1. • Dealer D chooses a random bivariate polynomial F ∈ F[x, y] of degree at most t in
each variable satisfying F (0, 0) = s. D sends to Pi the polynomials fi(x) = F (x, i)
and gi(y) = F (i, y).

• Player Pi, i = 1, ..., n, selects a random value ri and starts an instance of (n
3
)-WSS

acting as a dealer in order to share ri by means of bivariate polynomial FW
i (x, y)

(FW
i (0, 0) = ri). We call this instance (n

3
)-WSSi. Round 1 of (n

3
)-WSSi is run.

2. Player Pi broadcasts the following:

• aij = fi(j) + FW
i (0, j)

• bij = gi(j) + FW
j (0, i)

Concurrently, round 2 of (n
3
)-WSSi, i = 1, ..., n, also takes place.

3. For each pair aij 6= bji the following happens:

• Pi broadcasts αij = fi(j)

• Pj broadcasts βji = gj(i)

• D broadcasts γij = F (j, i)

Concurrently, round 3 of (n
3
)-WSSi, i = 1, ..., n, also takes place.

A player is said to be unhappy if the value that he broadcast does not match the dealer’s
value. If there are more than t unhappy players, disqualify D and stop.

Local Computation

• Let H denote the set of happy players. Remove from H each player Pi who gets disqualified
as the dealer in protocol instance (n

3
)-WSSi. Now, if |H| < n− t then disqualify D and

stop.

• For the remaining players, let HW
i denote the set of happy players in instance (n

3
)-WSSi.

For each player Pi ∈ H, check that there exist at least n− t players in H who are also in
HW
i ; if not, remove Pi from H. Let us call this final set COREsh := H. If |COREsh| < n−t

then disqualify D and stop.

Figure 3.3: Round-Optimal VSS for n > 3t (Sharing Phase)
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(n
3
)-VSS

Reconstruction Phase

1. For each Pi ∈ COREsh, run the reconstruction phase of (n
3
)-WSSi, concurrently.

Local Computation: Now each player Pi constructs a set CORERec as follows. Initially,
CORERec := COREsh.

• Remove from CORERec every player Pi such that the outcome of (n
3
)-WSSi equals ⊥.

• For every Pi ∈ CORERec, use the values aij he broadcast in round two of the sharing phase
to compute fi(j) = aij − FW

i (0, j), 1 6 j 6 n.

• Interpolate these points. Check that the resulting polynomial fi(x) is a polynomial of
degree at most t. If not, remove Pi from CORERec.

• Reconstruct the secret by taking any t + 1 polynomials fi(x), Pi ∈ CORERec, to obtain
F ∗(x, y), and compute s∗ = F ∗(0, 0).

Figure 3.4: Round-Optimal VSS for n > 3t (Reconstruction Phase)

taneously, we may end up with different COREsh sets.

3.3 VSS Protocol by Patra et al. [10]

In 2010, Patra et al. [10] gave a 4-round statistical information-theoretic VSS protocol for

t < n/2 setting with polynomial complexity. Currently, this protocol consists of least number

of overall rounds in the sharing phase for the mentioned model. They used a sub-protocol

Information Checking Protocol (ICP) which was also proposed in the same paper. Details of

ICP can be found in Chapter 2. The description of ICP with multiple verifiers appears in Figure

3.5 [10].

In the protocol, D selects a random symmetric bivariate polynomial F (x, y) such that

F (0, 0) = s and sends fi(x) to Pi. If D is not discarded at the end of the sharing phase, then

every honest Pi holds a t degree polynomial fi(x) which is deduced as fi(x) = F (i, x). Hence

after D distributes the polynomial, a pair of honest players Pi and Pj possess the polynomials

such that fi(j) = fj(i). By the properties of ICP, no malicious Pi would be able to reveal f ′(x) 6=
f(x) in the reconstruction phase. Hence irrespective of whether D is honest or malicious,

reconstruction of s = F (0, 0) is enforced. D gives the ICSig to every player and every individual

player gives the ICSig to every other player to achieve the properties of VSS. The description

13



of the protocol appears in the Figures 3.6, 3.7, and 3.8.

The dealer distributes fi(j)’s to the player Pi in round 1. In addition to this, Pi also shares

his random pad rij with player Pj and the dealer. The first round of AuthVal is executed for

all the ICPs in progress in round 2. The players and the dealer broadcast the respective values

received by them blinded with the random pad. If player Pi does not receive a polynomial of

degree t, then he broadcasts a request to D to broadcast the polynomial. In the third round, the

second round of AuthVal is executed for all the ICPs in progress. If any player had to broadcast

due to inconsistency in AuthVal, he immediately executes the RevealVal of those ICPs in which

he is an intermediary. Additionally, if D had to broadcast in AuthVal then he also broadcasts

the corresponding polynomial. The second round of RevealVal is executed in the fourth round

of VSS. D is discarded after some local computation if any inconsistency is found.

In the reconstruction phase, RevealVal of the uncompleted ICPs are executed. This takes

two rounds.

3.4 VSS Protocol by Garay et al. [6]

Garay et al. [6] came up with a perfect information-theoretic VSS protocol for t < n/2 with

only two broadcasts in the sharing phase. This is the least known complexity for this model in

terms of number of broadcasts. They modified the existing protocols of Weak Broadcast and

Gradecast for arbitrary domains.

Garay et al. [6] also used an ICP protocol which was proposed in the same paper. This

protocol is a triple of protocols (ICSetup, ICValidate, ICReveal) which successfully achieves ICP

for three players: a dealer D, intermediary I, and receiver R. This protocol is based upon the

concept of 1α−consistency. Let s, y, z, α ∈ F. We say that the triple (s, y, z) is 1α−consistent

provided that the three points (0, s), (1, y), and (α, z) are co-linear over F. Based upon the

information received by each player in the first two rounds, D may be in conflict with I and/or

R. So an additional broadcast round is required in ICValidate to resolve the conflicts. This ICP

protocol consists of two broadcast rounds in total. The protocol appears in Figure 3.9 [6].

VSS presented in this paper also uses a WSS-without-agreement protocol. WSS-without-

agreement uses two broadcast rounds in its sharing phase WSS-Share(P, D, s) and uses no

broadcast in its reconstruction phase WSS-Rec-NoBC(P, D, s) but without agreement over the

reconstructed value. It uses ICP to achieve WSS-without-agreement. The protocol description

appears in Figure 3.10 [6].

They first designed a VSS of 3-broadcast rounds (VSS3bc). This protocol was inspired from

Rabin and Ben-Or [13] which uses univariate polynomial. First D distributes the shares of a

t-degree polynomial f and of additional random t-degree polynomials gk where secret s = f(0).

14



Protocol No. of Rounds
in Sharing

Phase

No. of
Broadcast
Rounds in

Sharing Phase

No. of
Malicious
Players

Perfect/
Statistical
security

Communication
complexity

n
3

-EXP-VSS by
Gennaro et al. [7]

3 2 t < n/3 Perfect Exponential

n
3

-VSS by Fitzi et
al. [5]

3 2 t < n/3 Perfect Polynomial

4-round VSS by
Patra et al. [10]

4 3 t < n/2 Statistical Polynomial

VSS-Share2bc by
Garay et al. [6]

20 2 t < n/2 Perfect Polynomial

Table 3.1: Comparison of different protocols in literature

Each player Pi commits to all shares via WSS. All players then jointly carry out cut-and-choose

process in which the players have to reconstruct either gk or f + gk for each k, which must be

of degree t. Players who cannot reconstruct their shares have them broadcasted by D. The

description of VSS3bc is given in Figures 3.12 and 3.13 [6].

They also presented another sub-protocol Moderast. This protocol allows gradecast to take

place under the supervision of a designated moderator. Each time Moderast is invoked, all the

players update their flag fi to indicate whether the broadcast simulation, i.e. gradecast was

successful. In the paper, they have proved that if there exists a constant-round VSS protocol Π

which uses a broadcast channel and tolerates t malicious players, then there exists a moderated

VSS protocol Π′ which uses a gradecast channel and tolerates same number of malicious players.

Modercast protocol is given in Figure 3.11 [6].

In the 2-broadcast VSS protocol (VSS2bc) consisting of protocols VSS-Share2bc and VSS-Rec,

the players first generate the setup required for Gradecast by executing protocol SetupGradecast

which consists of one broadcast. Protocols Gradecast and SetupGradecast are discussed in detail

in Section 2.4. Then they run the moderated version of VSS3bc where the dealer himself acts as

the moderator. But the broadcasts are replaced by Moderast. Another broadcast, the second

one, is required to confirm the honesty of the moderator (who is same as dealer). All the players

broadcast their flags fi’s indicating whether they trust the moderator or not. If the true flags

come out in majority then the sharing phase is successful, otherwise the dealer is disqualified.

The description of VSS2bc is given in Figures 3.15 and 3.14 [6].

Though their protocol is optimal in terms of broadcast rounds, but they have left a lot of

scope to minimize the overall number of rounds.
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ICP(D,INT,s) with multiple verifiers

Distr (D, INT, s):
Round 1:

1. D sends the following to INT:

(a) A random degree-t polynomial F (x) over F, with F (0) = s. Let INT receive F ′(x) as
the polynomial with F ′(0) = s′. 1

(b) A random degree-t polynomial R(x) over F. Let INT receive R(x) as a t-degree
polynomial R′(x).

2. D privately sends the following to each verifier Pi:

(a) (αi, vi, ri), where αi ∈ F \ {0} is random (all αi’s are distinct), vi = F (αi) and ri =
R(αi).

AuthVal (D, INT, s):
Round 1: INT chooses a random d ∈R F \ {0} and broadcasts (d,B(x)) where
B(x) = dF ′(x) +R′(x).

Round 2: D checks dvi + ri
?
= B(αi) for i = 1, ..., n. If D finds any inconsistency, he

broadcasts sD = s.
The polynomial F ′(x) (when D does not broadcast sD in round 2 of AuthVal) or sD (broadcast
by D in round 2 of AuthVal) as held by INT is denoted by ICSIG(D,INT,s).

RevealVal (D, INT, s):
Round 1: INT broadcasts ICSIG(D,INT,s) (i.e., he reveals D’s secret contained in IC-
SIG(D,INT,s) as s′ = sD or as s′ = F ′(0)).

Round 2: Verifier Pi broadcasts Accept if one of the following conditions holds. (Otherwise,
Pi broadcasts Reject.)

1. ICSIG(D,INT,s) = s′, and s′ = sD.

2. ICSIG(D,INT,s) = F ′(x), and one of the following holds.

(a) C1: vi = F ′(αi); OR

(b) C2: B(αi) 6= dvi + ri (B(x) was broadcasted by INT during AuthVal).

Local Computation (By Every Verifier): If at least t + 1 verifiers have broadcasted
Accept during round 2 of RevealVal then accept ICSIG(D,INT,s) and output s′ or F ′(0)
(depending on whether ICSIG(D,INT,s) is s′ or F ′(x)). Else reject ICSIG(D,INT,s).

1If INT is honest, then F ′(x) = F (x).

Figure 3.5: ICP with multiple verifiers
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4-round VSS: Sharing Phase

Inputs: The dealer has a secret s. Let D be the dealer and let F (x, y) be a symmetric
bivariate polynomial of degree t in each variable. Let F (0, 0) = s.

Round 1: Let fi(x) be defined as F (i, x). Let rij ∈R F for each Pi, Pj.

1. Execute Distr(D,Pi, fi(j)). Let the corresponding value received by Pi be f ′i(j).

2. Execute Distr(Pi, Pj, rij). Let the corresponding value received by Pj be r′ij.

3. Execute Distr(Pi, D, rij). Let the corresponding value received by D be rDij .

Round 2:

1. Execute AuthVal(1)(D,Pi, fi(j)), AuthVal
(1)(Pi, Pj, rij), and AuthVal(1)(Pi, D, rij).

2. Pi broadcasts aij = f ′i(j) + rij and bij = f ′i(j) + r′ji.

3. D broadcasts aDij = fi(j) + rDij and bDij = fi(j) + rDji .

4. If Pi received f ′i(x) which is not a polynomial of degree t, then Pi broadcasts a request
asking D to broadcast a t-degree fDi (x).

Round 3:

1. Execute AuthVal(2)(D,Pi, fi(j)). If D broadcasted the secret in AuthVal(2)(D,Pi, fi(j)),
then he broadcasts the corresponding polynomial fDi (x) = fi(x) and executes
RevealVal(1)(Pi, D, rik) and RevealVal(1)(Pk, D, rki) for all k.

2. Execute AuthVal(2)(Pi, Pj, rij). If Pi broadcasted the secret in AuthVal(2)(Pi, Pj, rij), then
he also executes RevealVal(1)(D,Pi, fi(j)) and RevealVal(1)(Pj, Pi, rji).

3. Execute AuthVal(2)(Pi, D, rij). If Pi broadcasted the secret in AuthVal(2)(Pi, D, rij), then
he also executes RevealVal(1)(D,Pi, fi(j)) and RevealVal(1)(Pj, Pi, rji).

4. If Pi requested D to broadcast fDi (x), then D broadcasts fDi (x) = fi(x).

5. If aij 6= aDij or aij = ⊥, then D broadcasts fDi (x) = fi(x) and executes

RevealVal(1)(Pi, D, rik) and RevealVal(1)(Pk, D, rki) for all k.

6. If aij 6= bji or aji 6= bij or aij 6= aDij or bij 6= bDij , then Pi executes RevealVal(1)(D,Pi, fi(j))

and RevealVal(1)(Pj, Pi, rji).

Figure 3.6: 4-round VSS: Sharing Phase
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Round 4: Corresponding RevealVal(2) executions are completed in this round.

Local Computation: D is discarded if for some Pi, Pj:

1. D broadcasted more than t shares (i.e. polynomials of the form fDi (x)).

2. fDi (j) 6= fDj (i).

3. aDij 6= bDji.

4. Pi revealed f ′i(j) and f ′i(j) 6= fDi (j) or f ′i(j) 6= fDj (i).

5. Pi, Pj revealed f ′i(j), f
′
j(i) (respectively) and f ′i(j) 6= f ′j(i).

6. D did not broadcast fDi (x) and Pi did not broadcast the secret in AuthVal(2)(Pi, D, rij)
and D executed RevealVal(D,Pi, rij) and aDij − rDij 6= fDj (i).

Figure 3.7: 4-round VSS: Sharing Phase continued
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4-round VSS: Reconstruction Phase

Round 1-2:

1. Execute RevealVal(D,Pi, fi(j)).

2. Execute RevealVal(Pj, Pi, rji).

Local Computation: Let Pi ∈ UNHAPPY if D broadcasted fDi (x). Construct REC in the
following way:

1. Pi ∈ REC if Pi ∈ UNHAPPY . In this case, define f ′i(x) = fDi (x).

2. Pi ∈ REC if he successfully executed RevealVal(D,Pi, fi(j)) for all j. The values {f ′i(j)}j
must lie on a t-degree polynomial f ′i(x).

Delete Pi /∈ UNHAPPY from REC if

1. Pi revealed f ′i(j) and f ′i(j) 6= fDj (i) for some Pj ∈ UNHAPPY .

2. Pj revealed r′ij and f ′i(j) + r′ij 6= aij.

3. If for some Pj, Pj did not broadcast in AuthVal(2)(Pj, Pi, rji) and bij − r′ji 6= f ′i(j).

4. If for some Pj, Pi successfully executed RevealVal(D,Pi, fi(j)) in the sharing phase but in
the reconstruction phase reconstructed a different value for f ′i(j).

Reconstruct a symmetric bivariate polynomial F ′(x, y) of degree t from {f ′i(x)}Pi∈REC . Output
s′ = F ′(0, 0).

Figure 3.8: 4-round VSS: Reconstruction Phase
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ICSetup(D, I,R, s)

Round 1: Dealer D chooses a random value α ∈ F − {0, 1} and additional values y, z ∈ F
such that (s, y, z) is 1α−consistent. [D uses the same α for all parallel instances.] Also he
chooses random values s′, y′, z′ ∈ F such that (s′, y′, z′) is 1α−consistent. D sends (s, s′, y, y′)
to the intermediary I, and (α, z, z′) to recipient R.

ICValidate(D, I,R, s)

Round 1: I chooses a random value d ∈ F and sends it to D.

Round 2: D sends the triple (d, s′ + ds, y′ + dy) to R.

Round 3: Each player broadcasts the values he sent and received in the previous two rounds.
I broadcasts his view of the triple (d, s′+ ds, y′+ dy). Additionally, R checks that (s′+ ds, y′+
dy, z′ + dz) is 1α−consistent; if not R broadcasts ”reject values.”
Based on these broadcasts D may be in conflict with I and/or R:

1. D and I are in conflict if they disagree about the value of the triple (d, s′ + ds, y′ + dy).
[Or if they conflict in a parallel instance.]

2. D and R are in conflict if they disagree about what D sent in round 2, or if D is not in
conflict with I, and R broadcast ”reject values.” [Or if they conflict in a parallel instance.]

If no such conflicts arise, then all players are satisfied and the phase ends here. Otherwise
continue to round 4.

Round 4: If D, I are in conflict, then D broadcasts (s, y) and R adjusts z if necessary so that
(s, y, z) is 1α−consistent. This is done regardless whether D, R are in conflict or not, and the
phase ends here.
Otherwise, it must be that D, R are in conflict, but D, I are not. In this case D broadcasts
(z, α) and I adjusts y if necessary so that (s, y, z) is 1α−consistent.

ICReveal(I, R, s)

Round 1: I sends (s, y) to R, who accepts s if and only if (s, y, z) is 1α−consistent.

Figure 3.9: ICP
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WSS-Share(P, D, s)

Round 1: D chooses a random polynomial f(x) of degree ≤ t such that f(0) = s, and
sets si := f(i); this will be Pi’s share. For each pair Pi, Pj ∈ P−{D}, run ICSetup(D,Pi, Pj, si).

Round 2-5: For each Pi, Pj ∈ P− {D}, run ICValidate(D,Pi, Pj, si).

WSS-Rec-NoBC(P, D, s)

Round 1: For each pair Pi, Pj ∈ P− {D}, run ICReveal(Pi, Pj, si). If Pi accepts at least n− t
pieces, and all accepted pieces lie on a polynomial f(x) of degree ≤ t, then Pi takes s = f(0)
to be the secret, otherwise ⊥.

Figure 3.10: WSS with two broadcast rounds

Modercast(P, P ∗∗, Pi,m)

Round 1-6: Pi gradecasts the message m.

Round 7-12: The moderator P ∗∗ gradecasts the message he output in the previous step.

• Let (mj, gj) and (m′j, g
′
j) be the outputs of player Pj in steps 1 and 2, respectively. Within

the underlying execution of Π′, player Pj will use m′j as the message ”broadcast” by Pi.

• Furthermore, Pj sets fj := 0 if (1) g′i 6= 1, or (2) m′i 6= mi and gi = 1.

Figure 3.11: Modercast
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VSS-Share3bc(P, D, s)

Round 1: D chooses a random polynomial f(x) of degree 6 t such that f(0) = s, and sets
si := f(i). Also for 1 6 k 6 κn, D chooses random polynomials gk(x) of degree 6 t, and sets
tki := gk(i). D sends (si, {tki}k) to Pi.

Round 2-5: Pi and D will now each act as WSS dealers to commit to Pi’s share si. We
reserve si to denote the value D commits to, and let s∗i denote that which Pi commits to
(these may be different if D and/or Pi is dishonest). D and Pi act as dealer in steps 1 − 4
of WSS-Share(D, si), WSS-Share(Pi, s

∗
i ), WSS-Share(D, tki), and WSS-Share(Pi, t

∗
ki) (1 6 k 6 n).

Round 6: The players have just completed WSS-Share step 4/ICValidate step 3. In the next
step (corresponding to WSS-Share step 5/ICValidate step 4) the WSS/IC dealer will resolve
conflicts. Instead of doing so immediately, let BCi denote the broadcast which Pi would make.
Pi first sends-to-all BCi.

Also, if D conflicted with any Pi in the previous step (namely in ICValidate step 3) then in
the following round D will broadcast all the values (si, {tki}k). For now, D sends-to-all these
values, which we call public pieces.

Round 7: Now Pi broadcasts BCi, which completes WSS-Share step 5/ICValidate step 4, and
D broadcasts the values (si, {tki}k) which he sent-to-all in the previous step. Of course each
player broadcasts his view of the previous step; if it is not the case that at least t + 1 players
agree that Pi’s broadcast this round matches what he told them in the previous round, then Pi
is disqualified.
Additionally, each Pi 6= D broadcasts a random challenge Ci ∈ {0, 1}κ for D and for the other
Pj’s. The challenge indicates, for each index k ∈ [κn] assigned to Pi (κ such in total), whether:

1. D and Pj should reveal f(x) + gk(x), in which case set vkj = sj + tkj and v∗kj = s∗j + t∗kj;
or

2. D and Pj should reveal gk(x), in which case set vkj = tkj and v∗kj = t∗kj.

Round 8: ∀k ∈ [κn], j ∈ [n], Pi participates in WSS-Rec-NoBC(D, vkj) and WSS-Rec-

NoBC(Pj, v
∗
kj). Pi’s outputs from these protocols are v

(i)
kj and v

∗(i)
kj , respectively.

Figure 3.12: VSS-Share3bc

22



VSS-Share3bc(P, D, s)

Round 9: Each Pi broadcasts his view of the previous round - namely, the reconstructed shares
v

(i)
kj and v

∗(i)
kj , for all k, j.

If a majority of players agrees on a non-⊥ reconstructed value for vkj (resp. v∗kj ), then such
value is the broadcast (BC) consensus for the given commitment, and the players who agree
participate in the consensus. If no BC consensus exists, or if the player who shared the value
does not participate, then the sharing player is disqualified. Consequently, if D is not so
disqualified, then there exists a BC consensus (which D endorses) for all vkj. Assuming this is
the case, then D is nevertheless disqualified if for any k, the set of shares {vkj}j, together with
appropriate public pieces, does not lie on a polynomial of degree 6 t.
In addition to broadcasting his view as described above, D also accuses player Pj, by publicly
broadcasting the shares (sj, {tkj}k), if either of the following occurred:

1. D output ⊥ in any WSS-Rec-NoBC instance for which Pj was dealer; or

2. D reconstructed an incorrect value for Pj’s share of any challenge polynomial (v
∗(D)
kj 6= vkj).

If any such public pieces fail to lie on the appropriate degree-t polynomial, or if D neglects to
accuse Pj when there exists a BC consensus that (v∗kj 6= vkj), then D is disqualified.
Let HAPPY denote the set of non-disqualified players who were not accused by D. If
|HAPPY| < n− t, then D is disqualified.

Figure 3.13: VSS-Share3bc continued

VSS-Rec0bc(P, s)

Round 1: Each player Pi ∈ HAPPY invokes WSS-Rec-NoBC(Pi, si).
Each player Pi ∈ P creates a list of shares consisting of those sj which he accepts from any
WSS-Rec-NoBC(Pj, sj) (including his own), together with all public pieces sj. He takes any
t+ 1 shares from the list, interpolates a polynomial f(x), and outputs s := f(0) as the secret.

Figure 3.14: VSS-Rec
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VSS-Share2bc(P, D, s)

Round 1-2: Players execute rounds 1 and 2 of the protocol SetupGradecast in parallel with
rounds 1 and 2 of VSS-Share3bc.

Round 3-5: Players execute round 3 of the protocol SetupGradecast and rounds 3-5 of
VSS-Share3bc. Each player broadcasts the concatenation of the values resulting from protocols
SetupGradecast and VSS-Share3bc.

Round 6: Players execute round 6 of the protocol VSS-Share3bc.

Round 7-18: Players execute round 7 of VSS-Share3bc where the Modercast subroutine is used
instead of broadcast. The subroutine invokes two gradecast channels sequentially. Each call to
the gradecast channel is simulated using the protocol Gradecast, which takes 6 rounds.

Round 19: Players execute round 8 of the protocol VSS-Share3bc.

Round 20: Players execute round 9 of VSS-Share3bc. Each player additionally broadcasts flag
fi indicating whether Modercast was successful. If the number of fi = 1 is greater than n/2,
then the sharings generated by VSS-Share3bc are accepted; otherwise, the dealer is disqualified.

Figure 3.15: VSS-Share2bc
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Chapter 4

New ICP and VSS Protocol

We now turn our attention to contributions of this work which describes the modified ICP and

VSS protocol tolerating t < n/2 malicious players. In the following sections, these protocols

are discussed in detail with their proofs. The protocols below discussed are:

• ICP using Gradecast

• VSS using modified ICP

4.1 ICP using Gradecast

In Patra et al. [10], there are two broadcast rounds each in AuthVal and RevealVal. We show how

we can reduce its broadcast round complexity in the ICP using few additional rounds, including

just one broadcast. Using one additional round of broadcast, we can simulate sufficiently many

gradecast channels later on.

Gradecast is a very important technique to improve the efficiency of various protocols. It

can be used to replace broadcasts in many places without losing the properties of the protocol.

We propose the modified ICP which uses gradecast, [6] by which we can reduce the number

of broadcasts from four to only two. We eventually use this ICP to come up with a new VSS

protocol.

In Figure 4.1 and 4.2, we present the Information Checking Protocol using gradecast. Firstly,

all the three rounds of protocol SetupGradecast are executed to create the setup for 2-cast. Then,

one broadcast in the AuthVal sub-protocol is replaced by gradecast and one broadcast in Reveal-

Val of [10] is replaced by communication over point-to-point channels. In RevealVal, INT sends

the ICSIG(D,INT,s) over point-to-point channels to all the verifiers instead of broadcasting. All

the honest verifiers accept or reject INT accordingly as shown in the Figure 4.1. All the verifiers

also broadcast their outputs at the end and reach an agreement after some local computation.
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ICP(D,INT,s)

SetupGradecast:
Round 1-3: Players execute all three rounds of the protocol SetupGradecast.

Distr (D, INT, s):
Round 1:

1. D sends the following to INT:

(a) A random degree-t polynomial F (x) over F, with F (0) = s. Let INT receive F ′(x) as
the polynomial with F ′(0) = s′. 1

(b) A random degree-t polynomial R(x) over F. Let INT receive R(x) as a t-degree
polynomial R′(x).

2. D privately sends the following to each verifier Pi:

(a) (αi, vi, ri), where αi ∈ F \ {0} is random (all αi’s are distinct), vi = F (αi) and ri =
R(αi).

AuthVal (D, INT, s):
Round 1: INT chooses a random d ∈R F \ {0} and broadcasts (d,B(x)) where
B(x) = dF ′(x) +R′(x).

Round 2-7: D checks dvi + ri
?
= B(αi) for i = 1, ..., n. If D finds any inconsistency, he

gradecasts sD = s, else gradecasts ⊥ (indicating no issues).

RevealVal (D, INT, s):
Round 1: Let Pi and INT received messages mD

i and mD
INT from D during AuthVal with grade

gi and gINT respectively.
If mD

INT 6= ⊥ then INT sets s′ = mD
INT else sets s′ = F ′(x). Here, INT actually reveals D’s secret

to Pi as s′.
INT sends ICSIG(D,INT,s) = s′ to Pi over point-to-point channel.

If gi = 0, Pi blames D and accepts INT. If not, i.e. gi = 1, following cases can happen:
Case 1 (mD

i = sD):

1. Pi accepts INT if mD
i = ICSIG(D,INT,s) = s′.

2. Pi rejects INT otherwise.

Figure 4.1: ICP using gradecast
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Case 2 (mD
i = ⊥):

Pi accepts INT if either of the following condition holds:

1. C1: vi = F (αi); OR

2. C2: B(αi) 6= dvi + ri.

Pi rejects INT otherwise.

Round 2: Verifier Pi broadcasts Accept if he accepts INT in the previous round, otherwise
broadcasts Reject.
Local Computation (By Every Verifier): If at least t + 1 verifiers have broadcasted
Accept during round 2 of RevealVal then accept ICSIG(D,INT,s) and output s′ or F ′(0)
(depending on whether ICSIG(D,INT,s) is s′ or F ′(x)). Else reject ICSIG(D,INT,s).

1If INT is honest, then F ′(x) = F (x).

Figure 4.2: ICP using gradecast continued

Notably, the number of overall rounds here are increased due to gradecast but the broadcast

rounds have come down from four to three.

In our protocols, we use<SubProtocolName>(i) to denote the ith round of the<SubProtocolName>

sub-protocol. For example, AuthVal(1) denotes the first round of AuthVal.

The ICP with all the broadcasts satisfies all the required properties [10]. We now prove that

ICP with gradecasts also satisfies those properties.

4.1.1 Proof of Correctness of ICP

Claim 4.1 If D and INT are honest then D will always gradecast ⊥ during AuthVal.

Proof:

Since INT is honest, he will correctly broadcast (d,B(x)) in round 1 of AuthVal. So during

round 2-7 of AuthVal, D will find that B(αi) = dvi + ri is satisfied for all i = 1, ..., n. Thus D

will never gradecast s, but ⊥ during AuthVal. 2

Lemma 4.1 If D and INT are honest, then ICSIG(D,INT,s) produced by INT during RevealVal

will be accepted by each honest verifier.

Proof: Since INT is honest, then F ′(x) = F (x), Also an honest verifier will have vi = F (αi)

and ri = R(αi). Moreover by Claim 4.1, D will gradecast ⊥ during AuthVal. Hence INT will

set ICSIG(D,INT,s) = F ′(x) = F (x). Now an honest verifier will accept INT as the condition

C1 will hold. Since there are at least t+ 1 honest verifiers, ICSIG(D,INT,s) will be accepted by

every honest verifier. 2
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Claim 4.2 If (F(x), R(x)) held by an honest INT and (αi, vi, ri) held by an honest verifier Pi

satisfies F (αi) 6= vi and R(αi) 6= ri, then except with probability 2−Θ(κ), B(αi) 6= dvi + ri.

Proof: The proof of this claim is given in Claim 3 of [10]. The claim will hold as it is

independent of the distribution scheme. Hence this claim is true in case of ICP with gradecast

as well. 2

Lemma 4.2 If INT is honest then at the end of AuthVal, INT possesses an ICSIG(D,INT,s),

which will be accepted in RevealVal by each honest verifier, except with probability 2−Θ(κ).

Proof: Let Pi be an honest verifier. If D is honest, the lemma follows from Lemma 4.1. When

D is malicious, there can be two cases as described below:

1. ICSIG(D,INT,s) = mD
INT. In this case an honest INT will send s′ = mD

INT to the verifier. If

gi = 0, then Pi will blame D and accept INT. Moreover, if gi = 1, then mD
INT will be equal

to mD
i , due to the graded consistency property of Gradecast, and INT will be accepted by

Pi. Hence the lemma will hold without any error.

2. ICSIG(D,INT,s) = F ′(x). An honest INT will have F ′(x) = F (x) and R′(x) = R(x). We

have the following cases depending upon the values held by INT (i.e. F (x), R(x)) and Pi

(i.e. (αi, vi, ri)):

(a) If F (αi) = vi: Here Pi will broadcast Accept without any error probability as C1 (i.e.

F (αi) = vi) will hold.

(b) If F (αi) 6= vi and R(αi) = ri: Here Pi will broadcast Accept without any error

probability as C2 (i.e. B(αi) 6= dvi + ri) will hold.

(c) If F (αi) 6= vi and R(αi) 6= ri: Here Pi will broadcast Accept except with probability

2−Θ(κ), as C2 will hold from Claim 4.2.

Hence each honest verifier will broadcast Accept during RevealVal except with probability 2−Θ(κ).

This completes the proof. 2

Lemma 4.3 If D is honest then during RevealVal, with probability at least 1 - 2−Θ(κ), every

ICSIG(D,INT,s) revealed as s′ 6= s or by a corrupted INT will be rejected by each honest verifier.

Proof: Let Pi be an honest verifier. Let s′ = F ′(0). Here again, the proof can be divided into

two cases based upon the value of ICSIG(D,INT,s) as described below:
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1. ICSIG(D,INT,s) = mD
INT. The lemma will hold as an honest dealer D would have grade-

casted sD = s with grade g = 1 to all the honest players. Hence Pi will broadcast Accept

if and only if s′ = s.

2. ICSIG(D,INT,s) = F ′(x). Here Pi will broadcast Accept only in below mentioned two

cases:

(a) F ′(αi) = vi. Since Pi and D are honest, INT has no information about αi and ri. The

only way for INT to ensure that F ′(αi) = vi = F (αi) is by guessing αi correctly. The

probability of that is at most 1
|F|−1

= 2−Θ(κ).

(b) B(αi) 6= dvi + ri. This case will never happen since an honest D would have grade-

casted s during AuthVal if this was the case.

This proves that Pi will broadcast Accept with a probability of at most 2−Θ(κ) if F ′(x) 6=
F (x). Since there are only t < n/2 malicious players, the malicious INT’s ICSIG(D,INT,s)

will be rejected.

This ends the proof. 2

Lemma 4.4 If D and INT are honest, then at the end of AuthVal, s is information theoretically

secure from the adversary A (that controls at most t verifiers in P).

Proof: If both D and INT are honest, then D will gradecast ⊥ during AuthVal. A corrupt

verifier Pi will have knowledge of no more than αi, ri, d and B(x) . So the central adversary A

will have knowledge of at most t points on the polynomials F (x) and R(x). Since F (x) and

R(x) are independent, the constant coefficient of F (x) will be information theoretically secure

even after the knowledge of d and dF (x) +R(x). Hence the lemma. 2

Theorem 4.1 Proposed ICP with gradecast satisfies all the properties required by an Informa-

tion Checking Protocol.

Proof: The theorem follows from Lemmas 4.1, 4.2, 4.3, 4.4. 2

4.2 VSS using modified ICP

Now we can plug in the modified ICP into the VSS protocol given by Patra et al. [10]. The

protocol being discussed here is for the statistical case, i.e. it may not achieve VSS with a

negligible probability. We here try to come up with a protocol with lesser broadcast rounds

than the one in [10] using gradecast. [6] have used the gradecast technique to come up with a
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VSS protocol in constant number of rounds. We are able to come up with even lesser number

of overall rounds, though introducing a negligible probability of error.

In this section we present our new VSS protocol for t < n/2 which consists of two broadcasts

and constant number of overall rounds. This protocol uses the modified ICP with gradecast

which is discussed in Section 4.1.

This protocol is inspired by the VSS protocol of [10]. In the protocol, firstly, SetupGradecast

is run to create the setup for gradecast required by the ICP protocol. D selects a random

symmetric bivariate polynomial F (x, y) such that F (0, 0) = s and sends fi(x) to Pi in round

1. In round 3, the first step of AuthVal is executed. SetupGradecast completes its execution

by this round and the setup is ready for gradecasting. The steps 2-4 in round 2 of [10] are

run in parallel with AuthVal(1). The last six steps of AuthVal are merged with round 4 of

[10] in the same manner. If D is not discarded at the end of the sharing phase, then every

honest Pi holds a t degree polynomial fi(x) which is deduced as fi(x) = F (i, x). Hence after D

distributes the polynomial, a pair of honest players Pi and Pj possess the polynomials such that

fi(j) = fj(i). By the properties of ICP, no malicious Pi would be able to reveal f ′(x) 6= f(x) in

the reconstruction phase. Hence irrespective of whether D is honest or malicious, reconstruction

of s = F (0, 0) is enforced. D gives the ICSig to every player and every individual player gives

the ICSig to every other player to achieve the properties of VSS. Now we present the VSS

protocol in Figures 4.3, 4.4, 4.5.

4.2.1 Proof of Correctness

Claim 4.3 In our 10-Round-VSS protocol, Correctness1, Correctness2, Correctness3 hold

for concurrent executions of ICP(Pi, Pj, rij) and ICP(Pi, D, rij).

Proof: This is because the polynomials used in ICP(Pi, Pj, rij) and ICP(Pi, D, rij) are random

and independent of each other. Also when D is honest, Secrecy holds for concurrent executions

of ICP(Pi, Pj, rij) and ICP(Pi, D, rij). 2

Lemma 4.5 (Secrecy) Protocol 10-round-VSS satisfies perfect secrecy.

Proof: When D is honest, for every honest Pi, Pj, the values fi(j), fj(i) are never broadcasted

in the clear during the sharing phase. Therefore, the adversary knows at most t values on fi(x)

for an honest Pi. Therefore, he does not have any information about fi(0). As a result, the

adversary has exactly t polynomials {fj(x)|Pj is dishonest} and no information on the set

{fi(0)|Pi is honest}. Hence F (0, 0) = s is information theoretically private. 2
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10-round VSS: Sharing Phase

Inputs: The dealer has a secret s. Let D be the dealer and let F (x, y) be a symmetric
bivariate polynomial of degree t in each variable. Let F (0, 0) = s.

Round 1: Let fi(x) be defined as F (i, x). Let rij ∈R F for each Pi, Pj.

1. Execute Distr(D,Pi, fi(j)). Let the corresponding value received by Pi be f ′i(j).

2. Execute Distr(Pi, Pj, rij). Let the corresponding value received by Pj be r′ij.

3. Execute Distr(Pi, D, rij). Let the corresponding value received by D be rDij .

4. Execute SetupGradecast(1).

Round 2: Execute SetupGradecast(2).

Round 3:

1. Execute AuthVal(1)(D,Pi, fi(j)), AuthVal
(1)(Pi, Pj, rij), and AuthVal(1)(Pi, D, rij).

2. Pi broadcasts aij = f ′i(j) + rij and bij = f ′i(j) + r′ji.

3. D broadcasts aDij = fi(j) + rDij and bDij = fi(j) + rDji .

4. If Pi received f ′i(x) which is not a polynomial of degree t, then Pi broadcasts a request
asking D to broadcast a t-degree fDi (x).

5. Execute SetupGradecast(3).

Figure 4.3: 10-round VSS: Sharing Phase

Let us define the set UNHAPPY to consist of players Pj whose share (the polynomial fj(x))

was broadcasted by D in the sharing phase.

Claim 4.4 If D is not discarded and Pi is honest, then for every Pj ∈ UNHAPPY , f ′i(j) =

fDj (i).

Proof: If Pi ∈ UNHAPPY , then f ′i(x) = fDi (x), and since D is not discarded, we have

f ′i(j) = fDj (i) for every Pj ∈ UNHAPPY .

Now let Pi /∈ UNHAPPY . We have two cases:

Case 1: Pj ∈ UNHAPPY because Pj received an incorrect polynomial from D. In this case, Pj

would not have broadcasted anything for aji and bji. Hence, in round 4, aij 6= bji. Consequently,
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Round 4:

1. Execute AuthVal(2)(D,Pi, fi(j)). If D gradecasted the secret in AuthVal(2)(D,Pi, fi(j)),
then he executes RevealVal(1)(Pi, D, rik) and RevealVal(1)(Pk, D, rki) for all k.

2. Execute AuthVal(2)(Pi, Pj, rij). If Pi gradecasted the secret in AuthVal(2)(Pi, Pj, rij), then
he also executes RevealVal(1)(D,Pi, fi(j)) and RevealVal(1)(Pj, Pi, rji).

3. Execute AuthVal(2)(Pi, D, rij). If Pi gradecasted the secret in AuthVal(2)(Pi, D, rij), then
he also executes RevealVal(1)(D,Pi, fi(j)) and RevealVal(1)(Pj, Pi, rji).

4. If aij 6= aDij or aij = ⊥, then D executes RevealVal(1)(Pi, D, rik) and RevealVal(1)(Pk, D, rki)
for all k.

5. If aij 6= bji or aji 6= bij or aij 6= aDij or bij 6= bDij , then Pi executes RevealVal(1)(D,Pi, fi(j))

and RevealVal(1)(Pj, Pi, rji).

Round 5-9: Execute AuthVal(3−7)(D,Pi, fi(j)), AuthVal(3−7)(Pi, Pj, rij), and
AuthVal(3−7)(Pi, D, rij).

Round 10:

1. Corresponding RevealVal(2) executions are completed in this round.

2. If D gradecasted the secret in AuthVal(2)(D,Pi, fi(j)), then he broadcasts the correspond-
ing polynomial fDi (x) = fi(x).

3. If Pi requested D to broadcast fDi (x), then D broadcasts fDi (x) = fi(x).

4. If aij 6= aDij or aij = ⊥, then D broadcasts fDi (x) = fi(x).

Local Computation: D is discarded if for some Pi, Pj:

1. D broadcasted more than t shares (i.e. polynomials of the form fDi (x)).

2. fDi (j) 6= fDj (i).

3. aDij 6= bDji.

4. Pi revealed f ′i(j) and f ′i(j) 6= fDi (j) or f ′i(j) 6= fDj (i).

5. Pi, Pj revealed f ′i(j), f
′
j(i) (respectively) and f ′i(j) 6= f ′j(i).

6. D did not broadcast fDi (x) and Pi did not gradecast the secret in AuthVal(2−7)(Pi, D, rij)
and D executed RevealVal(D,Pi, rij) and aDij − rDij 6= fDj (i).

Figure 4.4: 10-round VSS: Sharing Phase continued
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10-round VSS: Reconstruction Phase

Round 1-2:

1. Execute RevealVal(D,Pi, fi(j)).

2. Execute RevealVal(Pj, Pi, rji).

Local Computation: Let Pi ∈ UNHAPPY if D broadcasted fDi (x). Construct REC in the
following way:

1. Pi ∈ REC if Pi ∈ UNHAPPY . In this case, define f ′i(x) = fDi (x).

2. Pi ∈ REC if he successfully executed RevealVal(D,Pi, fi(j)) for all j. The values {f ′i(j)}j
must lie on a t-degree polynomial f ′i(x).

Delete Pi /∈ UNHAPPY from REC if

1. Pi revealed f ′i(j) and f ′i(j) 6= fDj (i) for some Pj ∈ UNHAPPY .

2. Pj revealed r′ij and f ′i(j) + r′ij 6= aij.

3. If for some Pj, Pj gradecasted ⊥ in AuthVal(2−7)(Pj, Pi, rji) and bij − r′ji 6= f ′i(j).

4. If for some Pj, Pi successfully executed RevealVal(D,Pi, fi(j)) in the sharing phase but in
the reconstruction phase reconstructed a different value for f ′i(j).

Reconstruct a symmetric bivariate polynomial F ′(x, y) of degree t from {f ′i(x)}Pi∈REC . Output
s′ = F ′(0, 0).

Figure 4.5: 10-round VSS: Reconstruction Phase

Pi would execute RevealVal(D,Pi, fi(j)) and if f ′i(j) 6= fDj (i), D would have been disqualified.

Hence, the claim holds.

Case 2: Pj ∈ UNHAPPY because for some player Pk, D broadcasted fDj (x) because he

gradecasts the secret in AuthVal(2−7)(D,Pj, fj(k)) or because ajk 6= aDjk or ajk = ⊥.

In this case, D also executes RevealVal(Pi, D, rij) (in Steps 1,4 of round 4). There are two

subcases to consider now. First, if Pi gradecasted the secret (with grade 1 since he is honest)

in AuthVal(2−7)(Pi, D, rij), then he also executes RevealVal(D,Pi, fi(j)) and a contradiction (if

one exists) is visible to all players, and D would be discarded. On the other hand, if Pi

gradecasted ⊥ in AuthVal(2−7)(Pi, D, rij), then D has to reveal the correct value of rij (follows

from Correctness3), i.e. rDij = rij. Since Pi /∈ UNHAPPY , we have aDij = aij. Therefore, for

an honest Pi, we have aDij − rDij = aij − rij = f ′i(j). If aDij − rDij 6= fDj (i), then D is discarded (in

Step 6 of Local Computation). Therefore, f ′i(j) = fDj (i). 2
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Claim 4.5 If D is not discarded and Pi is honest, then Pi ∈ REC.

Proof: If Pi ∈ UNHAPPY , then Pi ∈ REC. Assume Pi /∈ UNHAPPY . Honest

Pi successfully executes RevealVal(D,Pi, fi(j)), and player Pj can successfully reveal r′ij in

RevealVal(Pi, Pj, r
′
ij) only for r′ij = rij (follows from Correctness3). We now show that none

of rules that delete Pi from REC apply to an honest Pi.

1. By Claim 4.4, we have that for each Pj ∈ UNHAPPY , f ′i(j) = fDj (i).

2. Since revealed r′ij is always equal to rij (by Correctness2), aij = f ′i(j) + r′ij.

3. If Pj gradecasted ⊥ to Pi in AuthVal(2−7)(Pj, Pi, rji), then an honest Pi will be successful

in revealing the pad r′ji (irrespective of the grade output by Pi) which he used while

broadcasting aij, bij. Hence bij − r′ji = f ′i(j).

4. If Pi is honest, he will reveal the same values as he had done before in the sharing phase.

2

Claim 4.6 If D is not discarded, then f ′i(j) = f ′j(i) for every honest Pi, Pj.

Proof: We have 4 cases:

Case 1: Pi, Pj ∈ UNHAPPY .

In this case, f ′i(x) = fDi (x) and f ′j(x) = fDj (x). Since D was not discarded, the claim holds.

Case 2: Pi, Pj /∈ UNHAPPY .

For honest Pi, Pj, if f ′i(j) 6= f ′j(i), then aij 6= bji and aji 6= bij. Consequently, Pi would execute

RevealVal(D,Pi, fi(j)) and Pj would execute RevealVal(D,Pj, fj(i)). If f ′i(j) 6= f ′j(i), then D is

discarded (Step 5 of Local Computation). Since we assume that D is not discarded, the claim

follows.

Case 3: Pi /∈ UNHAPPY, Pj ∈ UNHAPPY .

If Pj ∈ UNHAPPY , then f ′j(x) = fDj (x). If f ′i(j) 6= fDj (i), then Pi would have been deleted

from REC. But by Claim 4.5, we have honest Pi ∈ REC. Therefore, the claim must hold.

Case 4: Pi ∈ UNHAPPY, Pj /∈ UNHAPPY .

Switching Pi and Pj in the previous case, we see that the claim holds for this case. 2

Claim 4.7 If D is not discarded then all honest players are consistent with an unique t-degree

symmetric bivariate polynomial.
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Proof: Note that there are at least t+1 honest players. Hence their shares (which are consis-

tent by Claim 4.6) are sufficient to reconstruct a t-degree symmetric bivariate polynomial. 2

Let us call this t-degree polynomial FH(x, y).

Claim 4.8 If D is not discarded and Pi ∈ REC, then f ′i(x) is consistent with FH(x, y).

Proof: By Claim 4.4, for every Pi ∈ UNHAPPY , Pi’s share is consistent with all the honest

players’ shares. This implies that f ′i(x) is consistent with FH(x, y) and we are done. Now

let Pi /∈ UNHAPPY . Since Pi ∈ REC, we have f ′i(j) = fDj (i) for every Pj ∈ UNHAPPY
(otherwise, Pi is deleted from REC). Therefore, if f ′i(x) isn’t consistent with FH(x, y), then

f ′i(j) 6= f ′j(i) must hold for some honest Pj /∈ UNHAPPY . If aij 6= bji or aji 6= bij, then

Pi would execute RevealVal(D,Pi, fi(j)) and Pj would execute RevealVal(D,Pj, fj(i)) and a

contradiction (if one exists) would have been detected. Since D was not discarded, we have

f ′i(j) = f ′j(i). In the reconstruction phase, Pi and Pj would have to reveal the same values as

before (otherwise, they are deleted from REC) and hence, the claim holds. On the other hand,

if aij = bji and aji = bij, then we have two possible cases:

Case 1: Pi gradecasted the secret in AuthVal(2−7)(Pi, Pj, rij).

In this case, Pi reveals f ′i(j). If Pj had gradecasted the secret in AuthVal(2−7)(Pi, Pj, rij), then

Pj would have revealed f ′j(i) and a contradiction (if one exists) would have been detected. Since

D was not discarded, we have f ′i(j) = f ′j(i). On the other hand, if Pj had not gradecasted ⊥ in

AuthVal(2−7)(Pj, Pi, rji), then Pi would have to reveal r′ji = rji (follows from Correctness3) in

RevealVal(Pj, Pi, rji). Since Pj is honest, bij − rji = f ′j(i). If Pi ∈ REC, then bij − r′ji = f ′i(j).

Since r′ji = rji, this shows that f ′i(j) = f ′j(i). Hence f ′i(x) is consistent with FH(x, y).

Case 2: Pi gradecasted ⊥ in AuthVal(2−7)(Pi, Pj, rij).

In this case, an honest Pj would successfully reveal r′ij in RevealVal(Pi, Pj, rij). Since aij = bji =

f ′j(i) + r′ij, Pi would have to reveal f ′i(x) such that f ′i(j) = f ′j(i), otherwise aij 6= f ′i(j) + r′ij,

and Pi will be deleted from REC. 2

Claim 4.9 If D is not discarded, then FH(x, y) will be reconstructed in the reconstruction

phase. Moreover, this FH(x, y) is fixed at the end of the sharing phase.

Proof: By Claim 4.8, every Pi ∈ REC reveals f ′i(x) that is consistent with FH(x, y). Hence

in the reconstruction phase, FH(x, y) will be reconstructed. FH(x, y) can be computed from

the joint view of the honest players at the end of the sharing phase. Hence it is fixed at the

end of the sharing phase. 2
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Claim 4.10 If D is honest, then D will not be discarded.

Proof: We prove that none of the rules for ”discarding” D, apply to an honest D.

1. Since D is honest, he will give correct t-degree polynomials to every player. Hence he will

never have to broadcast more than t polynomials.

2. Since D is honest, all polynomials broadcasted are consistent with a symmetric bivariate

degree t polynomial F (x, y).

3. For an honest D, aDij = fi(j) + rDij = fj(i) + rDij = bDij .

4. For every Pj, no player Pi can successfully reveal f ′i(j) 6= fi(j) (follows from Correct-

ness3). And since D is honest, all his broadcasted polynomials are consistent with

successfully revealed values.

5. For every Pj, no player Pi can successfully reveal f ′i(j) 6= fi(j). This follows from Cor-

rectness3.

6. By Correctness2, D successfully reveals rDij = rij. For an honest D, aDij − rDij = fDi (j) =

fDj (i).

This completes the proof. 2

Lemma 4.6 (Correctness) Protocol 10-Round-VSS satisfies (1− ε)-correctness property.

Proof: Correctness follows from Claims 4.9 and 4.10. It is to be noted that FH(0, 0) = s. 2

Lemma 4.7 (Strong Commitment) Protocol 10-Round-VSS satisfies (1−ε)-strong commit-

ment property.

Proof: The proof follows from Claim 4.9. 2

Efficiency of the protocol is obvious. Hence the theorem follows from Lemmas 4.5, 4.6, and

4.7.
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Chapter 5

Conclusions and Future Work

In this work, we studied ICP and VSS protocols for t < n/2 setting. We also focused on the

statistical versions of ICP and VSS. We reduced the number of broadcast in ICP as well as VSS

using the gradecast technique. The modified ICP was found to be satisfying all the required

properties of an Information Checking Protocol. The proposed new VSS protocol is also found

to be better than the VSS given by Garay et al. [6] in terms of overall round complexity. Our

VSS protocol consists of ten rounds in the sharing phase as compared to 20 rounds in their

VSS. Though the broadcast round complexity is same in both the protocols.

Currently, VSS is being studied for all kinds of complexities, i.e. round, broadcast and

overall communication complexities. Hence it is worthwhile to pursue some research to bring

down all the types of existing complexities simultaneously.
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