Almost-surely Terminating Asynchronous Byzantine Agreement Revisited

(Extended abstract published in PODC 2018)

Ashish Choudhury

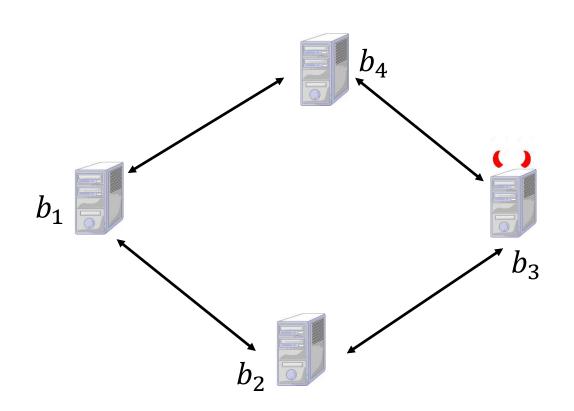
International Institute of Information Technology (IIIT) Bangalore

Joint work with:

B. Laasya (University of Rochester) --- acknowledgement for the slides

Arpita Patra (Indian Institute of Science)

Byzantine Agreement: Problem Definition



- \square *n* mutually-distrusting parties
- \Box Up to t corruptions
- Goal: to design a distributed protocol, allowing the honest parties to agree on a common output

$$\begin{bmatrix} b_1 & b_2 & b_3 & b_4 & \cdots & b_{n-1} & b_n \end{bmatrix} \xrightarrow{----} b$$

$$\begin{bmatrix} b & b & b_3 & b & \cdots & b_{n-1} & b \end{bmatrix} \xrightarrow{----} b$$

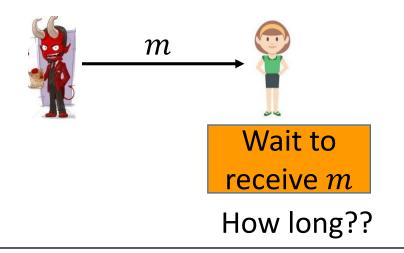
Agreement

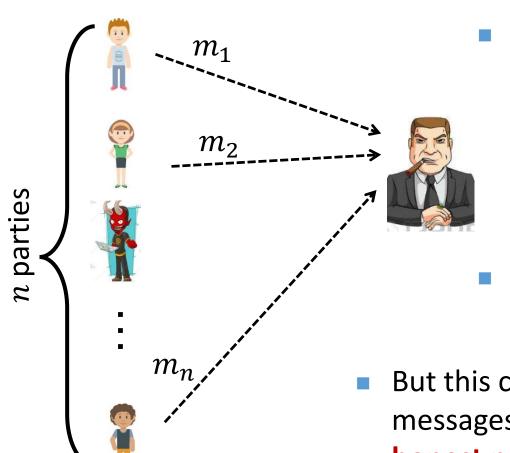
Validity

Asynchronous Communication Model

Asynchronous Network

- No Global Clock
- Channels unbounded delay
- Waiting time is not known





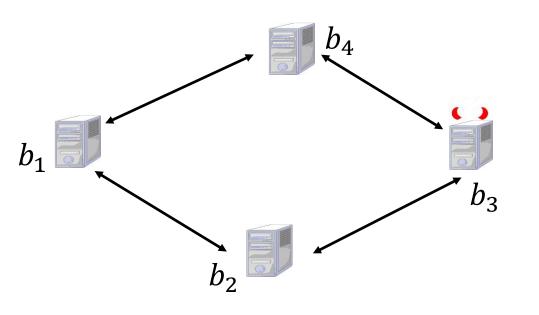
Waiting for all results in endless waiting!

- Can afford to wait for (n t) parties
- But this can lead to ignoring messages of t potentially honest parties

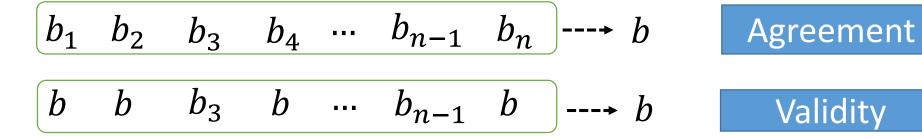
No distinction between a slow (but honest) sender and a corrupt sender

In the asynchronous setting, the network itself is the adversary

BA Problem in the Asynchronous Setting: ABA



- \square *n* mutually-distrusting parties, up to *t* corruptions
- ☐ Completely asynchronous network
- ☐ Goal: to design a distributed protocol, allowing the honest parties to agree on a common output

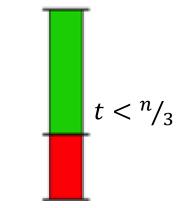


Termination

If all honest parties participate in the protocol, then all honest parties eventually terminate the protocol with an output

ABA Problem: Known Results

- \square ABA tolerating t Byzantine faults possible only if t < n/3
 - ❖ Holds, even if a PKI setup is available and parties are allowed to use cryptography



ABA: with or without cryptography

☐ FLP Impossibility results for ABA: Don't even dare to design a deterministic ABA protocol

[M. J. Fischer, N. A. Lynch and M. S. Paterson, JACM 1985]

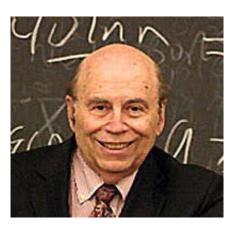
Any deterministic ABA protocol will have non-terminating runs, even if one party crashes

How to Circumvent FLP Impossibility Result?

[M. J. Fischer, N. A. Lynch and M. S. Paterson, JACM 1985]: any deterministic ABA protocol will have non-terminating runs, even if one party crashes

- ☐ Does FLP impossibility result mean the end of ABA?
 - ❖ No

[M. Ben-Or, PODC 1983]



[M. Rabin, FOCS 1983]

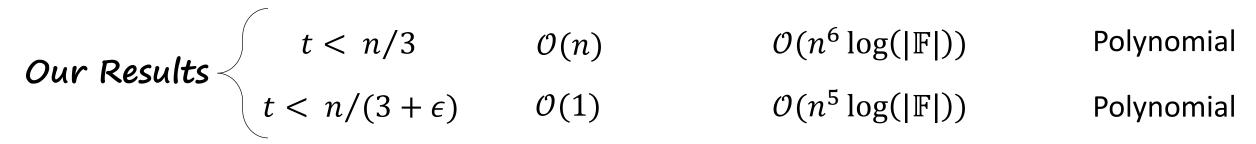
 $(1 - \lambda)$ -terminating ABA: honest parties terminate, with probability $(1 - \lambda)$

Almost-surely terminating ABA: honest parties terminate, with probability 1

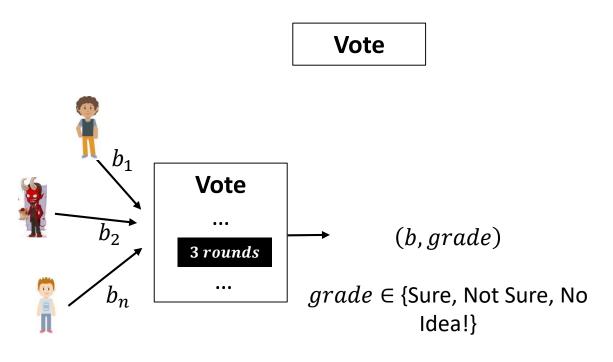
ABA

Relevant Results for Almost-surely Terminating ABA

Reference	Resilience	Expected Rounds	Expected Communication Complexity	Expected Computation
Feldman-Micali, STOC 1988	t < n/4	$\mathcal{O}(1)$	$\mathcal{O}(n^6\log(n)\log(\mathbb{F}))$	Polynomial
Abraham- Dolev-Halpern, PODC 2008	t < n/3	$\mathcal{O}(n^2)$	$\mathcal{O}(n^{10}\log(\mathbb{F}))$	Polynomial
Wang, CoRR 2015	t < n/3	$\mathcal{O}(n)$	$\mathcal{O}(n^7\log(\mathbb{F}))$	Exponential

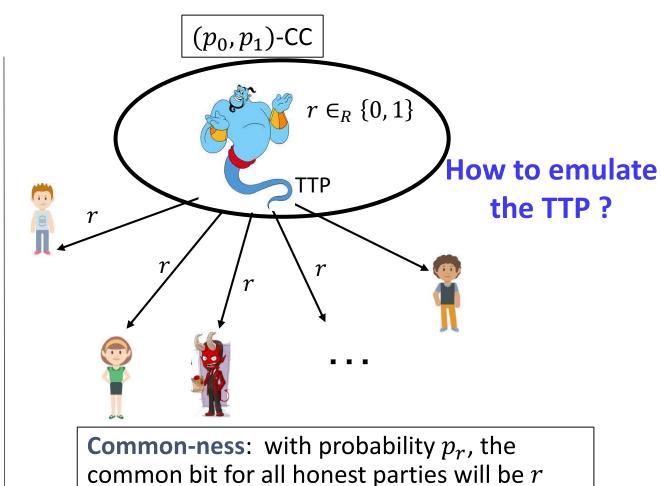


Common Framework for Randomized BA (Rabin, Ben-Or)



"whatever can be done deterministically"

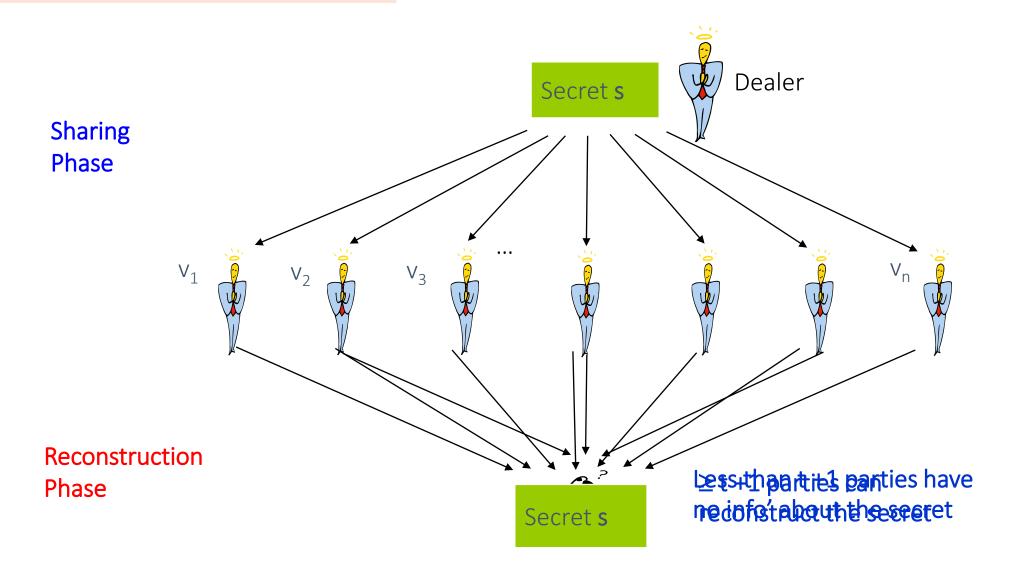
❖ If all honest parties have the same input bit ⇒ all honest parties output that common bit and grade = Sure



If p_0 and p_1 are constant, then expected constant number of iterations of Vote + CC \rightarrow ABA

(n,t) Secret Sharing

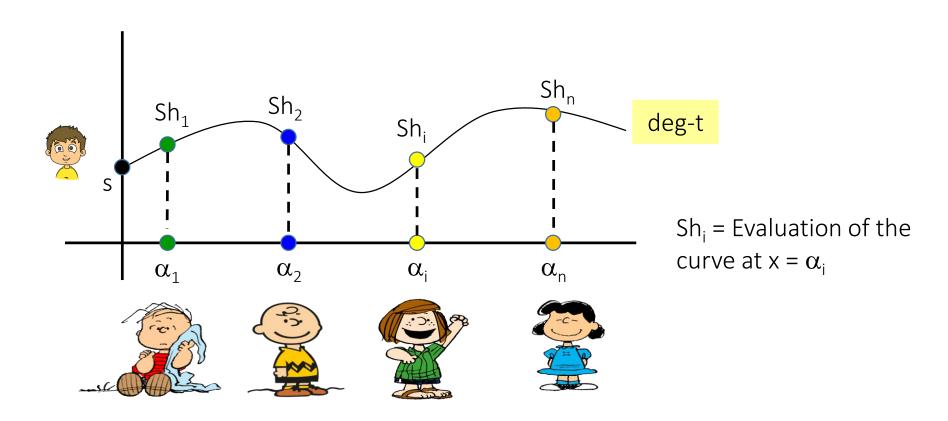
*Slide acknowledgement: Juan Garay



(n,t) Secret Sharing [Shamir79]

*Slide acknowledgement: Arpita Patra

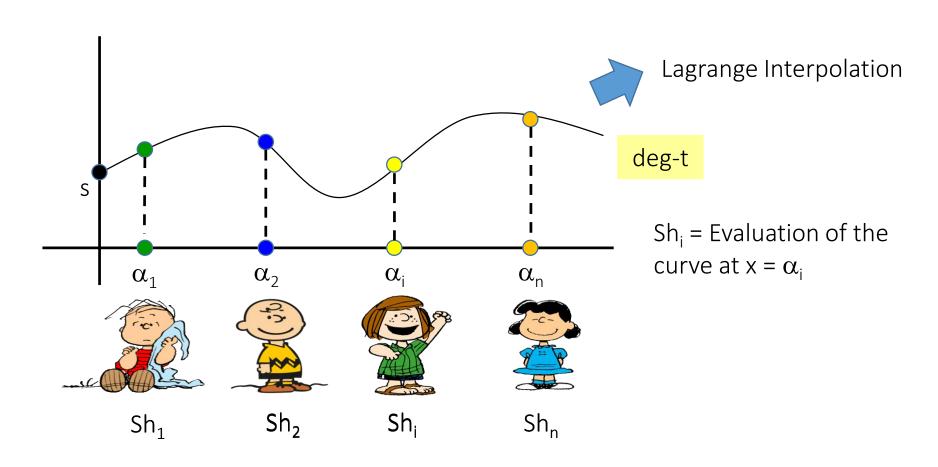
Sharing Phase



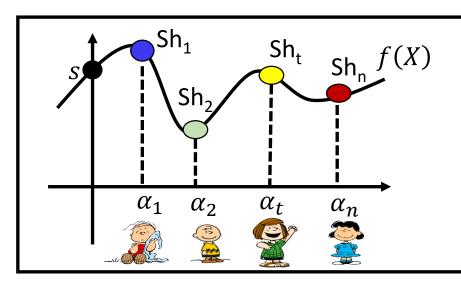
(n,t) Secret Sharing [Shamir79]

*Slide acknowledgement: Arpita Patra

Reconstruction Phase



(n, t)-Secret Sharing and Verifiable Secret-Sharing (VSS)



(t+1) distinct values of an unknown t-degree polynomial f(X) are sufficient to uniquely reconstruct f(X)

Provided

Bad Shares

 \star t distinct values of an unknown t-degree polynomial f(X) are not sufficient to uniquely recover f(X)

- ☐ Shamir's secret-sharing is **insecure against a malicious adversary**
 - Case I: Honest dealer, but corrupt share-holders
 - > Taken care by using Reed-Solomon (RS) error-correction
 - Case II: Corrupt dealer AND corrupt share-holders
 - \triangleright Honest parties need to verify that Dealer is committed to a single t-degree polynomial
- ☐ Asynchronous VSS (AVSS) requirements
 - Secrecy

- Correctness
- **❖** Termination

Reducing Common Coin (CC) to Asynchronous Verifiable Secret-sharing (AVSS)

• [Feldman-Micali, STOC, 1988]

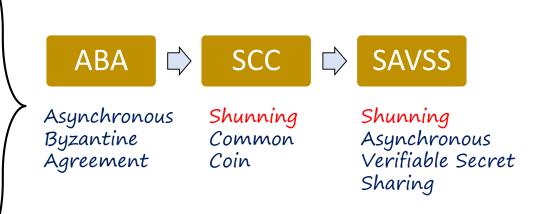
Asynchronous Byzantine Agreement Common Coin Asynchronous Verifiable Secret Sharing

[Abraham et. al., PODC, 2008]

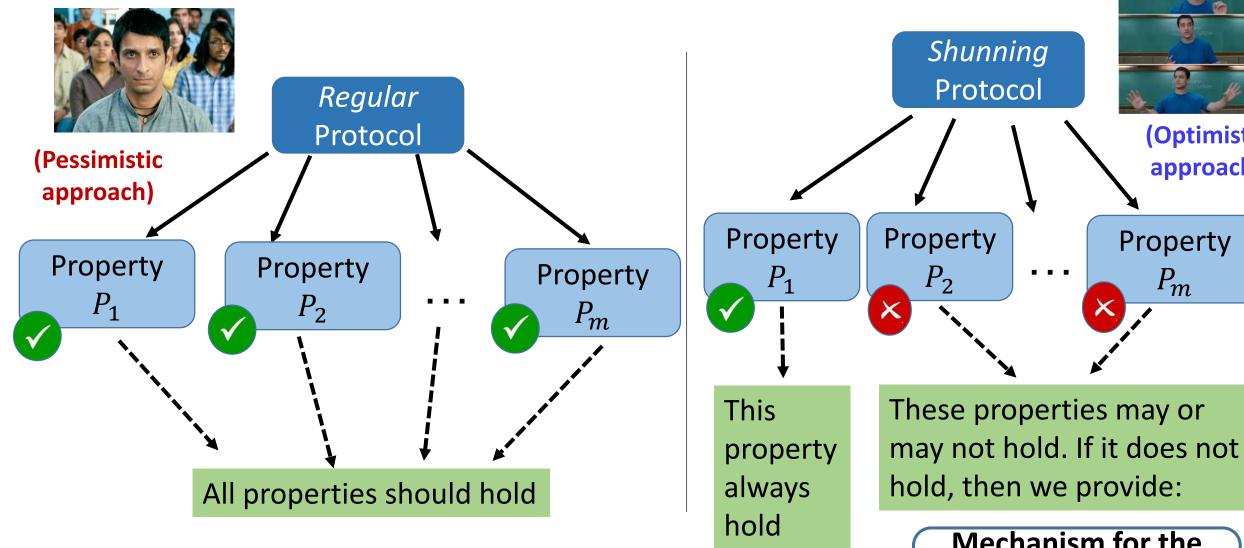
t < n/3

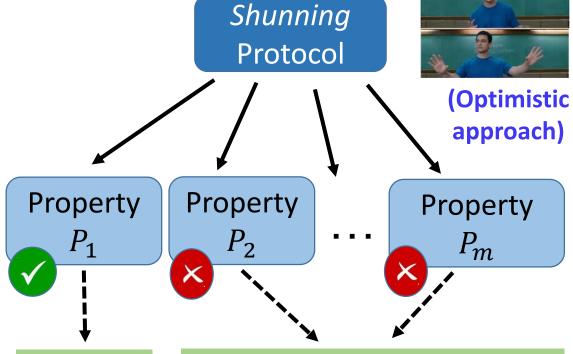
• [Wang, CoRR, 2015]

Our Protocol



The Notion of Shunning





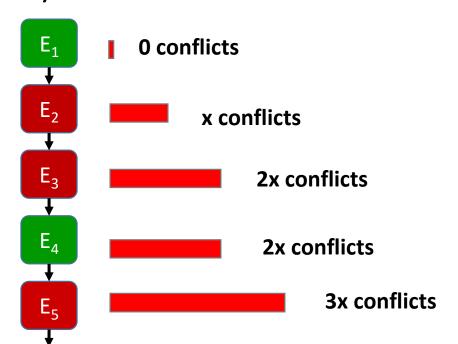
Mechanism for the honest parties to **Shun Corrupt Parties**

What does a Shunning Protocol Achieve?

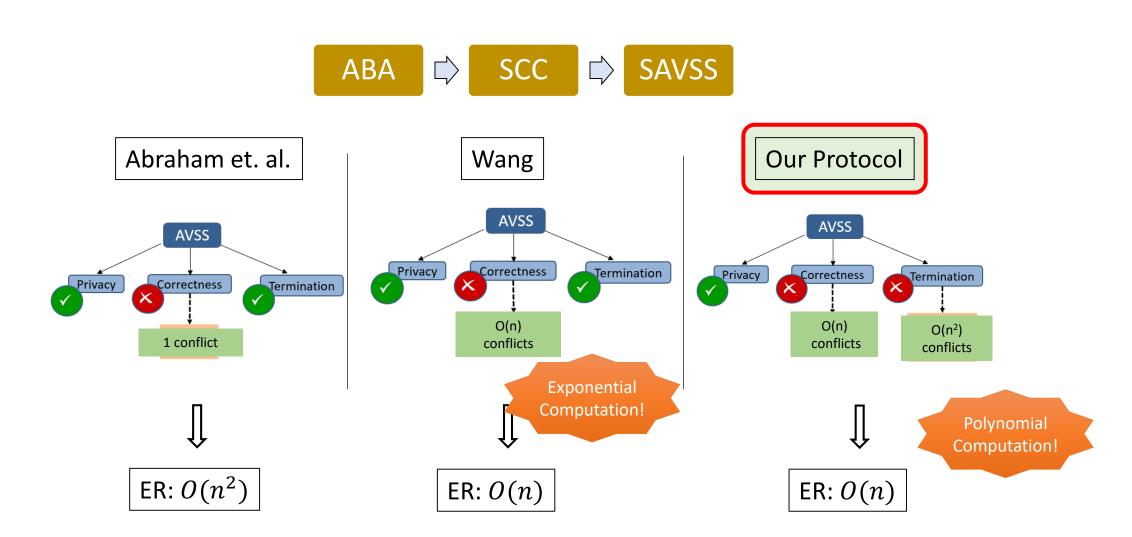
- ☐ Creates a win-win situation with the adversary
 - **Either**, the adversary let all the properties of the protocol being satisfied
 - Else, it exposes its identity to a subset of honest parties --- shunning/conflict

No honest party shunning another honest party, if any property is violated

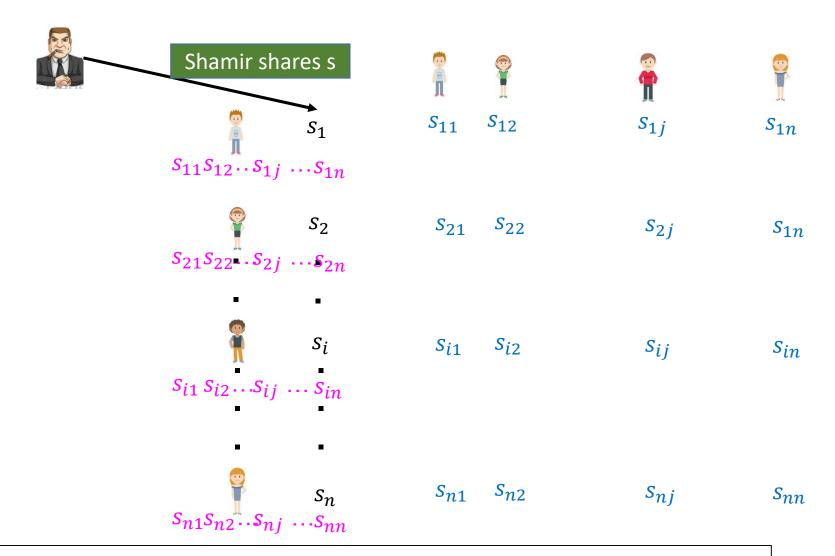
- \square Suppose X pairs of shunning happen whenever some property fails
 - \clubsuit At most $(n-t)t = \mathcal{O}(n^2)$ pairs of conflicts possible
 - \Leftrightarrow After $\mathcal{O}(n^2/X)$ failed execution, all executions will be clean executions
 - ightharpoonup If $X = \Omega(n)$ -> at most $\mathcal{O}(n)$ failed executions
 - ightharpoonup If $X = \Omega(n^2)$ -> at most $\mathcal{O}(1)$ failed executions



Almost-Surely Terminating ABA from Shunning Common Coin

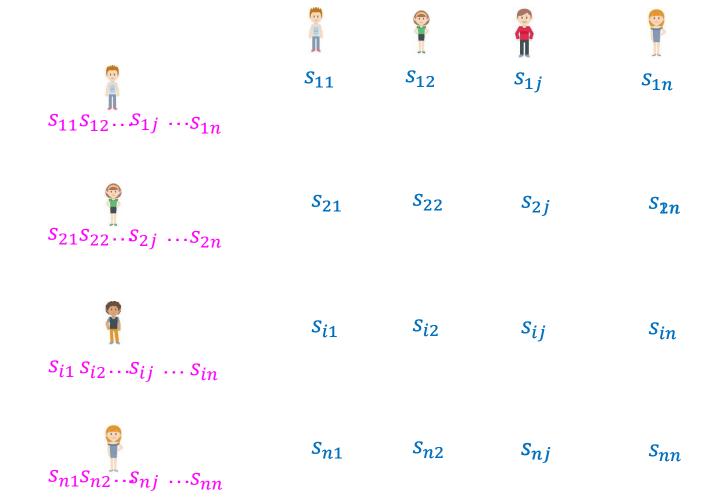


SAVSS: Dealer Shares the Secret



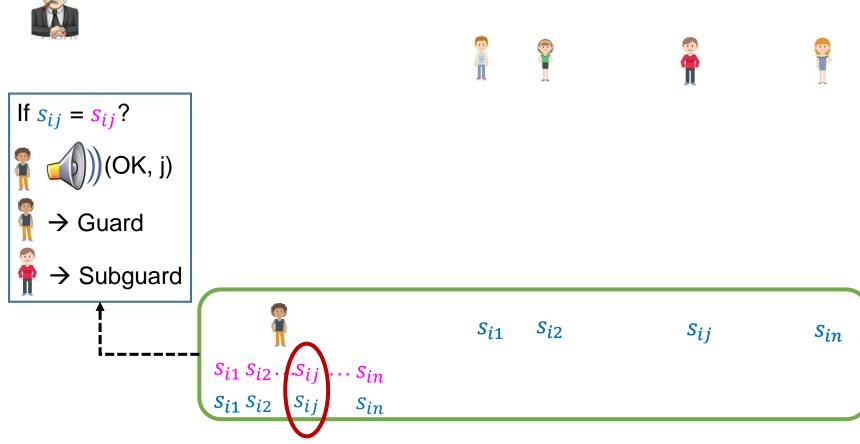
- D shamir shares its secret s
- Further, each share s_i is shamir-shared by D.

SAVSS: Pair-wise Consistency Check



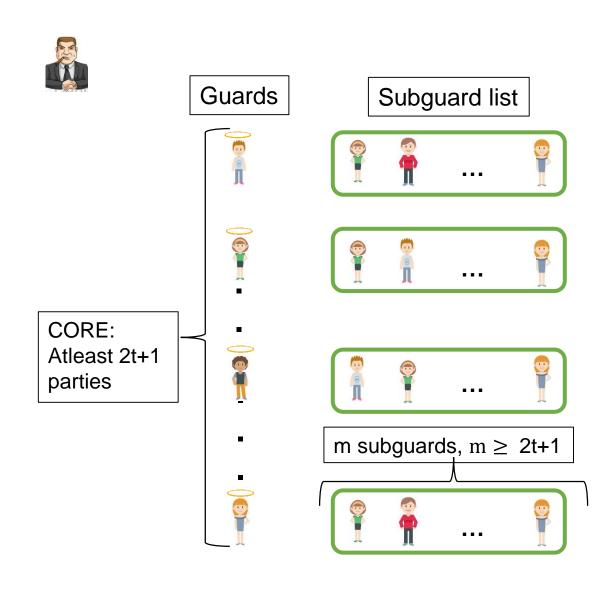
- Each P_i publicly confirms the consistency of its s_i shares
- P_i is a subguard for guard P_i if P_i broadcasts (OK, j)

SAVSS: Pair-wise Consistency Check



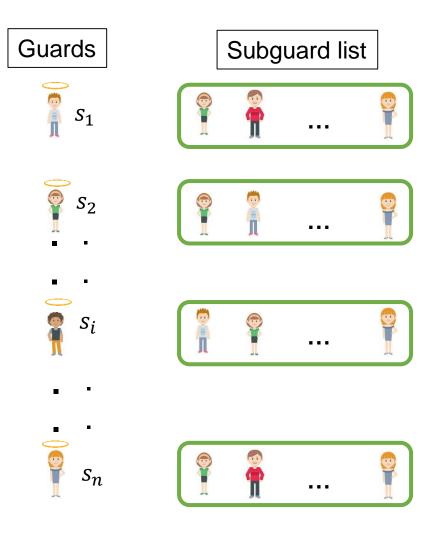
- Each P_i publicly confirms the consistency of its s_i shares
- P_i is **subguard** for **guard** P_i if P_i broadcasts (OK, j)

SAVSS: Identifying the CORE Set



- D identifies a set
 CORE consisting of at
 least 2t + 1 guards.
- Each guard in CORE has at least 2t+1 subguards.

SAVSS: Reconstructing the Secret s



Reconstructing the secret s reduces to reconstructing the shares s_1 , s_2 , ..., s_n .

SAVSS: Reconstructing the Share s_i

Reconstructing secret s reduces to reconstructing $s_1, s_2, ..., s_n$.

SAVSS: Reconstructing the Share s_i

 $S_{i1}S_{i2}...S_{ij}...S_{im}$

$$S_{i1} S_{i2} \dots S_{ij} \dots S_{im}$$

 $S_{i1} S_{i2} \dots S_{ij} \dots S_{im}$

Goal: To reconstruct the share s_i:

- Wait for any $\frac{3t}{2} + 1$ shares of shares from the subguards.
- Apply Reed Solomon Error Correction on these received shares:
 - Codeword size = $\frac{3t}{2} + 1$
 - t-degree polynomial
 - Corrects upto $\frac{t}{4}$ errors

Intuition Behind Proof: Termination

 $S_{i1}S_{i2}...S_{ij}...S_{im}$

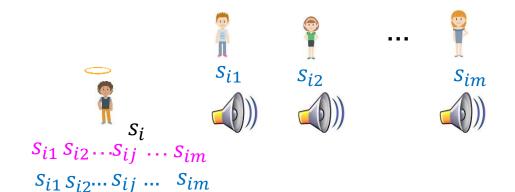
$$S_{i1} S_{i2} \dots S_{ij} \dots S_{im}$$

 $S_{i1} S_{i2} \dots S_{ij} \dots S_{im}$

Goal: To reconstruct the share secret s_i:

- Wait for any $\frac{3t}{2} + 1$ shares of shares from the subguards.
- Apply Reed Solomon Error Correction on these
- ☐ Termination fails if more than $\frac{\epsilon}{2}$ subguards don't broadcast their shares
- \square Each honest party suspects $\left(\frac{t}{2} + 1\right)$ corrupt parties
- \Box (n-t) $\left(\frac{t}{2}+1\right)$ conflicts occur.

Intuition Behind Proof: Correctness



$$S_{i1} S_{i2} \dots S_{ij} \dots S_{im}$$

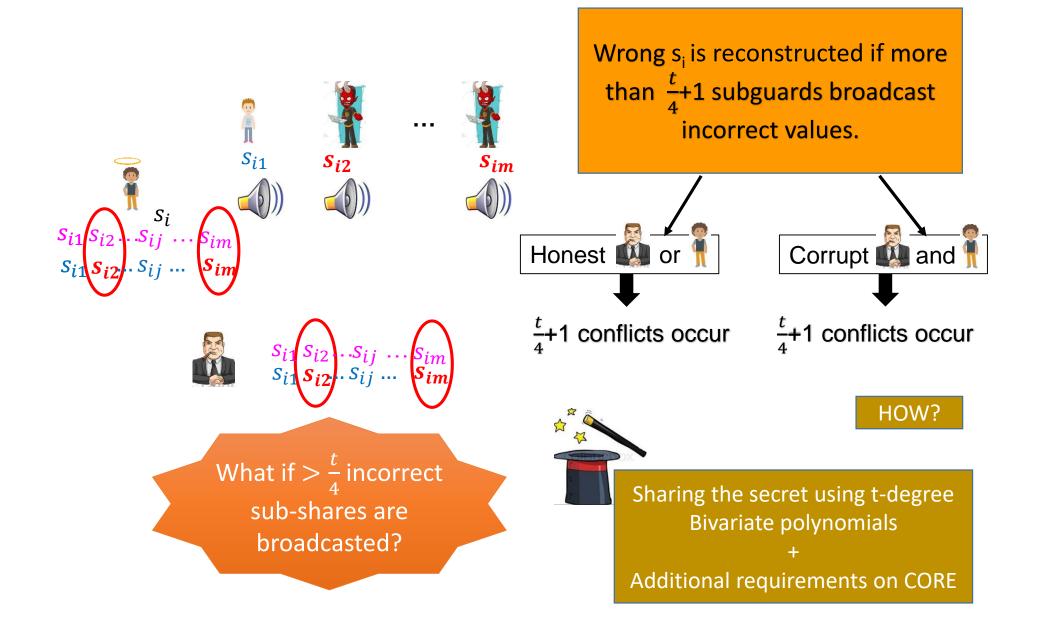
 $S_{i1} S_{i2} \dots S_{ij} \dots S_{im}$

What if $> \frac{t}{4}$ incorrect sub-shares are broadcasted?

Goal: To reconstruct the share s_i:

- Wait for any $\frac{3t}{2} + 1$ shares of shares from the subguards.
- Apply Reed Solomon Error Correction on these received shares:
 - Codeword size = $\frac{3t}{2} + 1$
 - t-degree polynomial
 - Correct upto $\frac{t}{4}$ errors

Intuition Behind Proof: Correctness



Conclusion

- \square A new optimally resilient (t < n/3) almost-surely terminating asynchronous Byzantine agreement (ABA) protocol with a linear $(\mathcal{O}(n))$ expected rounds
 - ❖ [Abraham et. al, PODC, 2008] $\mathcal{O}(n^2)$ expected rounds
 - ❖ [Wang, CoRR, 2015] linear expected rounds, but exponential computation complexity
- ☐ Efficient communication complexity: Improves over
 - \clubsuit [Abraham et. al, PODC, 2008] by $\mathcal{O}(n^4)$ bits
 - \bullet [Wang, CoRR, 2015] by $\mathcal{O}(n)$ bits
- ☐ Future work and open problems
 - Almost-surely terminating ABA with a constant expected running time
 - ❖ Almost-surely terminating ABA with an improved communication complexity
 - ❖ Almost-surely terminating ABA in the **full-information model**

