
MPC beyond the Generic Model
and

Private Intersection Analytics

Benny Pinkas, Bar-Ilan University

(with many coauthors)

1

The millionaires’ problem (Yao, 1982)

$X

• Want to find out if X > Y

• But leak no other information! (even to each other)

• Standard crypto tools (encryption) do not help in this case!

$Y
Alice Bob

2

The millionaires' Problem

x yAs if…

x > y? x > y?

3

The millionaires' Problem

x yAs if…

x > y? x > y?

4

The trusted party is
fully secure and
leaks no information!

Research on MPC

• MPC started as a curious mental game/challenge
• Millionaires problem, poker over the phone,…

• MPC research was theoretical for many years (1982 - 1998)
• Focused on feasibility results and not on implementation

• This type of basic research is important

5

Applications of the millionaires problem?

6

• Alice: I want to sell x stocks, for a minimum price of PASK

• Bob: I want to buy y stocks, for a maximum price of PBID

• Output:
• If PASK > PBID then output “no deal”

• Otherwise output “you can trade min(x,y) stocks”

• Auctions and bidding

Trading

7

Defining security

14

Desired Security of MPC

x y

F(x,y) and nothing else

Input:

Output:

x yAs if…

F(x,y) F(x,y)

15

Does this model make sense?

x y

F(x,y) F(x,y)

• We cannot hope for more privacy
• Does the trusted party scenario make sense?

• Are the parties motivated to submit their true inputs?
• Can they tolerate the disclosure of F(x,y)?

• If so, can implement the scenario without a trusted party

16

MPC is about a distributed implementation of a
trusted party

x yInstead of

F(x,y) F(x,y)

17

learn F(x,y) and nothing else

do
…

MPC does not tell
you which function
is safe to compute,

only how to
compute it without
trusted party

Implementing Secure
Computation

36

• Can be used to securely compute any function

• Considered theoretical, until the Fairplay system [MNPS04]

• Based on representing the function as a Boolean circuit

Generic secure computation (Yao, 1982)

i0 i2

DB3 DB2 DB0 DB1

i1

37

• A lot of very smart optimizations in recent years

• Actual performance depends on circuit size, and on

• setting

• security requirements

• preprocessing

• engineering

• Secure computation of AES: between 1μs to 1sec per block

• We can easily handle circuits with 106 - 109 gates

Implementing generic secure computation

41

MPC Beyond Generic
Computation

45

What we know

1.Efficient circuit → efficient MPC protocol

2.Function with polynomial run time → circuit of
polynomial size

3.(1) + (2) → if we can efficiently compute a function then
we can also run an MPC computing it

• Overhead of MPC depends on the circuit representation

46

Examples
• Alice has integer x, Bob has integer y

• Computing x+y, x-y

• Computing whether x>y, max(x,y)

• Computing xy, xy

• X, Y are sets
• Computing X ∩ Y

• Computing median(X,Y)

• X is an array, y is an index
• Computing X[y]

47

Examples
• Alice has integer x, Bob has integer y

• Computing x+y, x-y (easy)

• Computing whether x>y, max(x,y) (easy)

• Computing xy, xy (less easy)

• X, Y are sets
• Computing X ∩ Y (less easy)

• Computing median(X,Y) (less easy)

• X is an array, y is an index
• Computing X[y] (not easy)

48

Specific vs. Generic Protocols

• Sometimes we can design a specific protocol for a
specific problem, which will be more efficient than a
generic, circuit-based protocol

• Still, it is preferable to use a circuit-based generic
protocol

• We’ll now show how to get the best of both worlds

49

Private Set Intersection (PSI)
and Analytics

50

PSI Background,
and Why Circuit-Based PSI?

51

Private Set Intersection (PSI)

? ?

52

• Information sharing, e.g., intersection of threat information

• Matching, e.g., testing compatibility of different properties (preferences, genomes…)

• Join DB operations

• Analytics: Pr(A / B) = Pr(A ∩ B) / Pr(B)

• Identifying mutual contacts (Signal app)

• Computing ad conversion rates (Google)

Applications of PSI

53

Application: Common Contacts

...

...

?

54

Private Set Intersection (PSI)
Definition

𝑋 = 𝑥1, … , 𝑥𝑛 𝑌 = 𝑦1, … , 𝑦𝑛

PSI
𝑋 ∩ 𝑌

Alice Bob

56

Private Set Intersection (PSI) - Analytics
Definition

PSI-A
𝐹(𝑋 ∩ 𝑌)

1. Post processing function 𝐹. E.g. 𝐹 = 𝑋 ∩ 𝑌

𝑋 = 𝑥1, … , 𝑥𝑛 𝑌 = 𝑦1, … , 𝑦𝑛

Alice Bob

57

Private Set Intersection (PSI) - Analytics
Definition

PSI-A
𝐹(𝑋 ∩ 𝑌)

1. Post processing function 𝐹.
2. Items are associated with payloads (aka. PSI with data-transfer)

E.g. 𝐹 = 𝑋 ∩ 𝑌

𝑋 = 𝑥1, … , 𝑥𝑛 𝑌 = 𝑦1, … , 𝑦𝑛

Alice Bob

58

Private Set Intersection (PSI) - Analytics
Definition

PSI-A
𝐹(𝑥𝑖 , 𝑝𝑖 , 𝑦𝑗 , 𝑞𝑗 𝑥𝑖=𝑦𝑗

)

1. Post processing function 𝐹.
2. Items are associated with payloads (aka. PSI with data-transfer)

E.g. 𝐹 = 𝑋 ∩ 𝑌

𝑋 = 𝑥1, 𝑝1 , … , (𝑥𝑛, 𝑝𝑛) 𝑌 = 𝑦1, 𝑞1 , … , (𝑦𝑛, 𝑞𝑛)

Alice Bob

59

Private Set Intersection (PSI) - Analytics
Applications

60

Private Set Intersection (PSI) - Analytics
Applications: Online Ads to Offline Purchase Conversion

1
Register

2
Watch online ad

4
Buy offline

3
Dream about it

61

Private Set Intersection (PSI) - Analytics
Applications: Online Ads to Offline Purchase Conversion

XXXX-XXX1

XXXX-XXX2

XXXX-XXX3

…

XXXX-XXX1, 20$

XXXX-XXX2, 40$

XXXX-XXX3, 10$

…

PSI
SUM

Card no.Card no., purchase amount

Sum of $$ of
common users

𝐹 =෍

62

Implementing PSI

63

Private Set Intersection (PSI)
Naïve solution

𝐻(𝑥1), … , 𝐻(𝑥𝑛)

Alice Bob

64

Compare to
𝐻(𝑦1), … , 𝐻(𝑦𝑛)

Insecure when items have low entropy

Public-key based Protocols for PSI

(for example, based on the Diffie-
Hellman assumption)

66

• [S80, M86, HFH99, AES03]:

PSI based on Diffie-Hellman



x1,…,xn



y1,…,yn

(H(x1)),…, (H(xn))
(H(y1)),…, (H(yn))

((H(x1))),…, ((H(xn)))
((H(y1))),…, ((H(yn)))

Compares the two lists

68

• [S80, M86, HFH99, AES03]:

PSI based on Diffie-Hellman

 Simple to understand ☺

 Simple to implement ☺

 Can be based on elliptic-curve crypto ☺

 Minimal communication ☺ but a lot of computation 



x1,…,xn



y1,…,yn

(H(x1)),…, (H(xn))
(H(y1)),…, (H(yn))

((H(x1))),…, ((H(xn)))
((H(y1))),…, ((H(yn)))

Compares the two lists

69

More recent PSI constructions [PSZ1,PSSZ15,KKRT16]

• PSI is “equivalent” to oblivious transfer

• Oblivious transfer extension [IKNP04] is very fast, and can
enable very efficient PSI

• Used different hashing ideas to dramatically reduce the
overhead of PSI

70

Performance Classification of PSI protocols [PSZ]

DH-FFC'86

Blind-RSA'10

DH-ECC'86

GMW'12
Yao'12

Opt.GMW

Naïve

OT+Hash'15

Circuit-Based (PSI analytics):

- high run-time & communication,

but easily extensible to arbitrary

functions

OT-Based:

[PSZ15,PSSZ16,KKRT16] good

communication and run-time

1 10 100 1,000
Run-time (s)

C
o

m
m

u
n

ic
a

ti
o

n
 (

M
B

y
te

s
)

10

100

1,000

10,000

PK-Based: (starting from

[S80,M86])

- high run-time

+ best communication

- PSI on n = 218 elements of s=32-bit length for 128-bit security on Gbit LAN

71

SpOT PSI (Crypto 2019 [PRTY])

72

Private Set Intersection (PSI) - Analytics
Also known as: Circuit-Based PSI

Alice Bob

• Immediate security
for any 𝐹

• Modularity
• Existing code base

𝐹(𝑋 ∩ 𝑌)
Post
processing
circuit

Shares of
intersection 𝑋 ∩ 𝑌 𝐴 𝑋 ∩ 𝑌 𝐵

75

PSI

A circuit comparing two s-bit values (x=y?)

Xs Ys Xs-1 Ys-1 X1 Y1

… … ...

… … ...

 Free XORs

 s-1 gates

77

The Algorithmic Challenge

• Goal: Find the smallest circuit for computing the intersection
• Alice and Bob can prepare their inputs

• Circuit must not depend on data!

• Any symmetric function of the intersection could be then added
• E.g., the size of the intersection, or whether size is greater than some

threshold, potentially after adding noise to ensure differential privacy

79

Known circuit-based protocols for PSI

• A naïve circuit for PSI uses n2 comparisons

• A protocol based on sorting networks – O(n logn) comparisons
[HEK12]

• A protocol based on OT and hashing– O(n logn / loglogn)
comparisons [PSSZ16]

80

Known circuit-based protocols for PSI

• A naïve circuit for PSI uses n2 comparisons

• A protocol based on sorting networks – O(n logn) comparisons
[HEK12]

• A protocol based on OT and hashing– O(n logn / loglogn)
comparisons [PSSZ16]

• We reduced the overhead to O(n) [PSTY19]

81

• A PSI circuit that has three steps

• Sort: merge two sorted lists using a bitonic merging
network [Bat68]. Uses nlog(2n) comparisons.

A circuit based PSI protocol [HEK12]

83

• A circuit that has three steps
• Sort: Merge two sorted lists using a bitonic merging network

[Bat68]. Computes the sorted union using nlog(2n)
comparisons.

• Compare: Compare adjacent items. Uses 2n equality checks.

• Shuffle: Randomly shuffle results using a Waxman permutation
network [W68], using nlog(n) swappings.

• Overall Computes O(nlogn) comparisons.
Uses s(3nlogn + 4n) AND gates. (s is input length)

A circuit based PSI protocol [HEK12]

84

Private Set Intersection (PSI)
Main tool: Oblivious PRF (OPRF) [FIPR05]

OPRFAlice Bob
𝑘 𝑦

ො𝑦 = 𝐹𝑘(𝑦)

ො𝑥1, … , ො𝑥𝑛 = 𝐹𝑘 𝑥1 , …𝐹𝑘(𝑥𝑛)

• To compare 𝑥1, … , 𝑥𝑛 to 𝑦 Alice sends:
ො𝑥1 =? ො𝑦
ො𝑥2 =? ො𝑦

ො𝑥𝑛 =? ො𝑦
…If y ∉ {𝑥1, … , 𝑥𝑛} then it looks random to Bob

85

ො𝑥1 =? ො𝑦
ො𝑥2 =? ො𝑦

ො𝑥𝑛 =? ො𝑦
…

Private Set Intersection (PSI) - Analytics
Main tool: Oblivious PRF (OPRF) [FIPR05]

OPRFAlice Bob
𝑘 𝑦

ො𝑦 = 𝐹𝑘(𝑦)

• To compare 𝑥1, … , 𝑥𝑛 to 𝑦 Alice sends:

ො𝑥1, … , ො𝑥𝑛 = 𝐹𝑘 𝑥1 , …𝐹𝑘(𝑥𝑛)

• To compute a function – compare in a 2PC circuit:

𝑦 ∈ 𝑋
If y ∉ {𝑥1, … , 𝑥𝑛} then it looks random to Bob

Secure
Computation

𝑟 ∈ {0,1}

𝑛 comparisons
inside circuit

86

…

Private Set Intersection (PSI) - Analytics
Protocol Overview

Alice Bob
OPRF OPRF OPRF…

𝑦1 𝑦2 𝑦𝑛

𝑦1 ∈ 𝑋 𝑦2 ∈ 𝑋 𝑦𝑛 ∈ 𝑋

𝑟1 𝑟2 𝑟𝑛

Comparisons
(in circuit)

𝐹((𝑦1, 𝑟1), … , 𝑦𝑛, 𝑟𝑛)
Post
processing

87

Naively takes 𝒏𝟐

Results [PSTY19]

88

PSI Analytics PSI

Asymptotic First linear-communication protocol
(in OT-hybrid model and assuming correlation-robust hash function)

Concrete vs. [PSWW18]
10x less communication
3-6x faster

Functionality Payload from both parties

vs. DH-based
10-20% less communication
7x faster

vs. [KKRT16]
40-50% less communication
2-6x slower in LAN (10 Gbps)
2x faster in WAN (10 Mbps)

Cheapest in $ (always)

……

1

2

3

n

1

2

3

n

PSI + Hashing
Map to bins

Alice Bob
• ℎ: item → bin

• Map 𝑛 items to 𝑛 bins

• Some bins may have

multiple items

89

PSI + Hashing
Map to bins

Alice Bob
• Use a public ℎ: item → bin

• Map 𝑛 items to 𝑛 bins

• Some bins may have

multiple items

• Perform bin-wise PSI

• Must hide # items per bin:

(< 𝑀 = 𝑂(log 𝑛) w.h.p)

• Pad bins

• # in-circuit comparisons:

𝑛 ⋅ 𝑀2 = 𝑂(𝑛 log2𝑛)

……

1

2

3

n

1

2

3

n

…

90

Using 2 Hash Functions (Cuckoo hashing [PR,KMW])

Bob

…

1

2

3

෤𝑛

• ℎ1, ℎ2: item → bin

• Map 𝑛 items to (2 + 𝜖)𝑛 bins

• Each bin can store at most one item!

• Succeeds with very high probability

• If we also have a stash of size s, all items x

can be mapped to either h1(x),h2(x) or the

stash, except with probability n-(s+1).

stash

91

The Power of Using 2 Hash Functions (Cuckoo)

Alice Bob

…

1

2

3

෤𝑛

…

1

2

3

෤𝑛

• ℎ1, ℎ2: item → bin

• Map 𝑛 items to (2 + 𝜖)𝑛 bins

• Alice – simple hashing

• 𝑥 → ℎ1 𝑥 𝐚𝐧𝐝 ℎ2(𝑥)

• Max < 𝑀 = 𝑂(log 𝑛)

• Bob – Cuckoo hashing

• 𝑦 → ℎ1 𝑦 , 𝐨𝐫 ℎ2(𝑦)

• Max ≤ 1

• Caveat: stash size 𝜔(1)

…

stash𝑋

Number of
Comparisons

𝑂(𝑛 log 𝑛)

𝜔(𝑛)

92

Our Protocol
1st step

Alice Bob

……

1

2

3

෤𝑛

1

2

3

෤𝑛

…

stash𝑋

• Recall: each bin contributes 𝑂(log 𝑛)

comparisons to the circuit

• We transform it to only 1 comparison

using Oblivious Programmable PRF

93

Our Protocol
Oblivious Programmable PRF (OPPRF) [KMPRT17]

OPRFAlice Bob
𝑘 𝑦

ො𝑦 = 𝐹𝑘(𝑦)

94

Our Protocol
Oblivious Programmable PRF (OPPRF) [KMPRT17]

OPPRF

𝑦∗

• To compare 𝑥1, 𝑥2, … to 𝑦 Alice sends:

𝑦∗ =? ො𝑦

𝑘 𝑦

𝑋 = 𝑥1, 𝑥2, …
𝑦∗

ො𝑦 = ቊ
𝑦∗ 𝑦 ∈ 𝑋
𝐹𝑘(𝑦) 𝑦 ∉ 𝑋

Alice Bob

95

Our Protocol
Implementing Oblivious Programmable PRF (OPPRF) [KMPRT17]

OPPRF
𝑘 𝑦

𝑋 = 𝑥1, 𝑥2, …
𝑦∗ ො𝑦 = ቊ

𝑦∗ 𝑦 ∈ 𝑋
𝐹𝑘(𝑦) 𝑦 ∉ 𝑋

Alice Bob

96

OPRF
𝑦

𝑘
𝑦′ = 𝐹𝑘(𝑦)

ො𝑥𝑖 = 𝐹𝑘 𝑥𝑖 ⊕𝑦∗

Interpolate 𝑷: 𝑥𝑖 → ො𝑥𝑖 𝑷 ො𝑦 = 𝑦′ ⊕𝑷(𝑦)

⇒ ො𝑦 = 𝐹𝑘(𝑥𝑖) ⊕ 𝑷 𝑥𝑖 = 𝐹𝑘 𝑥𝑖 ⊕𝐹𝑘 𝑥𝑖 ⊕𝑦∗ = 𝑦∗

⇒ ො𝑦 = 𝐹𝑘 𝑦 ⊕ 𝑷 𝑦

𝑦 = 𝑥𝑖
𝑦 ≠ 𝑥𝑖

Our Protocol
1st step: “Programming” the PRF

Alice Bob

1 1

• Alice “programs” 𝑂(log 𝑛) items

• ➔ Single comparison in the

secure computation

• Communication of OPPRF:

• For each bin, linear in the number of programmed values

• ➔ communication per bin remains 𝑂(log 𝑛)

OPPRF

97

Our Protocol
2nd Step: Batching the OPPRF

Alice Bob

……

1

2

3

෤𝑛

1

2

3

෤𝑛

…

OPPRF

OPPRF

OPPRF

OPPRF

• We can “batch” many OPPRFs

with comm. O 𝒏

• Preserving obliviousness

without programming

padded values! O(𝒏)

98

Using high degree polynomials

• Need to interpolate very high degree polynomials
over arbitrary points

• Lagrange interpolation is too slow

• Used FFT to do that with overhead O(nlog2n)

99

Our Protocol
3rd Step: Handling the Stash

Alice Bob

……

1

2

3

෤𝑛

1

2

3

෤𝑛

…

stash𝑋

OPPRF

OPPRF

OPPRF

OPPRF

O(𝒏)

𝜔(𝒏)

100

Our Protocol
3rd Step: Handling the Stash

Alice Bob

…

𝑋

OPPRF

OPPRF

OPPRF

OPPRF

O(𝒏)

𝜔(𝒏)

𝑌𝑇

𝑌𝑆

𝑋

101

Dual Execution
3rd Step: Handling the Stash Alice Bob

O(𝒏) 𝑌𝑇

𝑌𝑆

• 3 phases protocol:

𝑋

O(𝒏) 𝑋𝑇

1

2

𝑌𝑆

𝑋𝑆

𝑌𝑆 𝑋𝑆o(𝒏) 3

102

Experiments – PSI Analytics

vs. Previous Circuit-Based PSI [PSWW18] vs. PSI-SUM [IKN+17]

[HEK12] [PSWW18] This
work

Communication 106 GB 25 GB 2.5 GB

Runtime (LAN) 5.5 min 2 min

Runtime (WAN) 25 min 4.5 min

65x faster (in LAN)

They leak intersection size

𝑛 = 220 items of arbitrary bit-length

Fixing failure probability to 2−40

103

Conclusions

• MPC can help in getting rid of trusted parties

• Generic MPC is efficient if circuit size is small

• PSI in an important and interesting primitive, for which a

naïve circuit is too large

• For such problems, need to design specific but adaptive MPC

protocols

129

