

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal

Outline

- Pseudorandom correlation generators (PCGs)
 - ➤ Motivation: MPC in the preprocessing model
- Why LPN is a perfect match for HSS/PCGs
- PCG for OT from LPN:
 - >Two-round "silent" OT extension
 - **≻**Practical
- PCG for OLE from LPN
 - ➤ Concretely efficient under variant of ring-LPN

Secure Computation with Preprocessing

Secure Computation with Silent Preprocessing

[BCGI 18, BCGIKS 19]

4

Pseudorandom Correlation Generators

[BCGI 18, BCGIKS 19]

- Target correlation: (R_0, R_1) >E.g. random OT $((b, m_b), (m_0, m_1))$
- Algorithms Gen, Expand:

Security:
$$(k_0, \tilde{R}_1) \approx (k_0, [R_1|R_0 = \text{Expand}(k_0)])$$

Landscape of PCGs

```
"Gentria"

> LWE+

General additive

correlations

[BCGIKS 19]

"Cryptomania"

> DDH

+ low-degree PRG

Low-degree correlations

[BCGIO 17]

(1/poly error)

> LWE

+ low-degree PRG

Low-degree correlations

[BCGIKS 19]
```


"Minicrypt"

➤ OWF

Linear correlations

Truth tables

Peter Scholl

"Minicrypt"

[GI 99, CDI 05]

[BCGIKS 19]

Background: LPN and LWE (spot the difference!)

Given $A \in \mathbb{Z}_p^{m \times n}$:

$$A \qquad \qquad \begin{vmatrix} s \\ + \end{vmatrix} e \mod p \approx u$$

LWE

- p > 2
- $s \leftarrow Z_p^n$
- $||e||_{\infty}$ is small

LPN

• $p \neq 2$ (arithmetic generalization/RLC)

- $s \leftarrow Z_p^n$
- HW(e) is small

LWE and LPN: what are they good for?

Simple PRGs from LPN

"Primal" construction

"Dual" construction

Security: both equiv. to LPN (if H is parity-check matrix of code A)

Limited to quadratic stretch

Arbitrary poly stretch

➤ best attack: exp(t)

Blueprint: How to exploit sparse noise for PCGs

Step 1: Compress secret-shares of sparse vector with FSS

Step 2: Use e as seed for PRG $e \rightarrow H \cdot e$

I: PCG for oblivious transfer from LPN

Oblivious Transfer

- Problem: OT is expensive ("public-key")
- OT extension: many OTs from a few base OTs + symmetric crypto [IKNP 03]
- Problem: communication $O(n\lambda)$ for n OTs
- Silent OT extension: communication sublinear in n

Towards silent OT extension

Goal: a PCG for correlated OT

i.e. compression of:

$$\vec{y}$$

$$\vec{v} + \vec{w} = y \cdot \vec{b}$$

Silent OT Extension: Overview

Main tool: puncturable PRF

- PRF $F : \{0,1\}^{\lambda} \times \{1, ..., N\} \rightarrow \{0,1\}^{\lambda}$
- $k \leftarrow \text{Gen}(1^{\lambda})$ > Master key: allows evaluating F(k, x) for all x
- $k^* \leftarrow \operatorname{Punc}(k, \alpha)$ > Punctured key: can evaluate at all points except for $x = \alpha$
- Security: $F(k, \alpha)$ is pseudorandom, given k^*

Simple tree-based construction from a PRG: $|k| = \lambda$, $|k^*| = \lambda \cdot \log N$

[BW13], [BGI 13], [KPTZ 13]

Key observation: puncturable PRF compresses sparse vectors

- Shares compressed from $\lambda \cdot N$ to $\approx \lambda \cdot \log N$ bits
- Can tweak to multiply by arbitrary $y \in \mathbb{F}_{2^{\lambda}}$

From weight-1 vectors to weight-t vectors

Approach 1: addition

Weight e.g. t = 4

Expansion cost: $O(t \cdot N)$ (naïve) O(N) (batch codes [BCGI18, SGRR 19])

Approach 2: concatenation

$$O\left(t \cdot \frac{N}{t}\right) = O(N)$$

Note: regular error pattern

From sparse products to correlated OT

• Recall, have shares:

Want: uniform vector

Setup protocol: inside the puncturable PRF

Recap: silent OT extension

- Setup protocol: 2 rounds from any 2-round OT
 - \triangleright Cost: $O(\lambda \log N)$ base Ots
- Silent expansion (*N* OTs):
 - $> O(N \log N)$ PRF evaluations
 - \geq 1 multiplication $H \cdot x$
- Implies two-round OT extension on chosen inputs
 - ➤ Can convert from random → chosen in parallel with setup
 - First concretely efficient two-round OT extension (bypass [GMMM 18] impossibility via LPN)

Extras: active security, implementation

Active security:

- ➤ Lightweight PPRF consistency checks for malicious sender
 - Allows selective failure attacks sender can guess 1 bit of LPN error
 - Assume problem is hard with 1-bit leakage
- ➤ 10-20% overhead on top of semi-honest

• Implementation:

- ➤ Main challenge: fast mult. by H
- ightharpoonupQuasi-cyclic H: polynomial mult. mod X^n-1
- ➤ Security based on quasi-cyclic syndrome decoding / ring-LPN

Runtimes (ms) for n=10 million random OTs

IKNP vs silent OT

Total comm: 160 MB vs 127 kB

II: PCG for OLE correlations from LPN and ring-LPN

Degree-2 correlation: Oblivious Linear Evaluation (OLE)

$$x \in Z_p$$

$$y = ax + b$$
OLE

Related: multiplication triples

Obtained from 2 random OLEs (two parties)

Main tool: FSS for point functions

• Point function $f_{\alpha,\beta}\colon\{1,\dots,N\}\to\{0,1\}^\lambda$ $f_{\alpha,\beta}(x)=\beta \qquad \text{if } x=\alpha \\ 0 \qquad \text{o. w.}$

PCG for tensor product from LPN and FSS

[BCGIKS '19]

- Pick *e*, *f* with *HW t*
- Tensor product $e \otimes f$ is sparse
- Distribute shares of e, f and $e \otimes f$
 - \triangleright With FSS for $O(t^2)$ points

PCG for tensor product from LPN and FSS

[BCGIKS '19]

Applications of PCG for tensor product

- Deg-2 correlations:
 - $\triangleright n$ OLEs or Beaver triples with o(n) communication
 - ightharpoonup Computation: $\Omega(n^2)$
 - \triangleright Extends to deg-d (cost: $\Omega(n^d)$)
- PCG for deg- $d \Rightarrow$ homomorphic secret-sharing for deg-d functions
 - \succ Let (Gen, Expand) be PCG for $R = [r, r \otimes r, ..., r \otimes^d r]$
 - > Share(x): apply Gen and make x' = x + r public
 - \triangleright Eval_p: write p(x) as p'(r), where p' is determined by x', and linear in R

Efficient PCG for OLE from ring-LPN

[ongoing work]

- Idea:
 - ➤ Replace tensor product with polynomial multiplication
 - ➤ Similar to [BV11] for FHE

- Take sparse polys e, e', f, f'
- Distribute shares of $(e, e') \otimes (f, f')$
- Output

$$e \cdot f \mod X^n + 1$$

$$(he + e') \cdot (hf + f') \mod (X^n + 1)$$

Linear in $(e, e') \otimes (f, f')$

for public, random $h \in Z_p[X]$

Efficient PCG for OLE from ring-LPN

[ongoing work]

• Cost: for 1 OLE in $Z_p[X]/(X^n + 1)$ $> O(t^2 + n \log n)$ computation

Gives n OLEs in Z_p if $X^n + 1$ splits into linear factors mod p

Security:

➤ Arithmetic ring-LPN

$$(h, h \cdot s + e) \mod (p, F(X))$$

> Does not appear significantly weaker

Conclusion

- PCG for OT from LPN
 - > Random OT (and correlated OT): practical, almost zero communication
 - \triangleright (previously: λ bits per OT)
 - > Two-round OT extension
- PCG for OLE
 - > From LPN (expensive)
 - ➤ Efficient from fully splitting ring-LPN
- Open problems:
 - ➤ Optimize OT: better codes
 - ➤ Security of arithmetic ring-LPN
 - > Efficient PCGs for more correlations:
 - \circ Truth tables (active security), random bits (\mathbb{Z}_p), garbled circuits...

Thank you!

Efficient Pseudorandom Correlation Generators: Silent OT Extension and More Boyle, Couteau, Gilboa, Ishai, Kohl, Scholl

https://ia.cr/2019/129

Two-Round OT Extension and Silent Non-Interactive Secure Computation BCGIKS + Rindal

https://ia.cr/2019/1159

Code: https://github.com/osu-crypto/libOTe