
Efficient Pseudorandom Correlation Generators:
MPC with Silent Preprocessing

Peter Scholl
21 January 2020, IISc Bangalore

Joint work with:
Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal

Outline

• Pseudorandom correlation generators (PCGs)
Motivation: MPC in the preprocessing model

• Why LPN is a perfect match for HSS/PCGs

• PCG for OT from LPN:
Two-round “silent” OT extension
Practical

• PCG for OLE from LPN
Concretely efficient under variant of ring-LPN

Peter Scholl 2

Secure Computation with Preprocessing

Preprocessing

𝑦𝑦𝑥𝑥
Online phase

𝑓𝑓(𝑥𝑥,𝑦𝑦)

Interactive
protocolCorrelated randomness

[Beaver ’91]

Peter Scholl 3

• Information-theoretic
• Constant comp. and comm.

overhead

Dominates overall cost

Secure Computation with Silent Preprocessing

Setup
functionality

𝑦𝑦𝑥𝑥 Online phase

𝑓𝑓(𝑥𝑥,𝑦𝑦)

“Small” setup
protocolCorrelated, short seeds

[BCGI 18, BCGIKS 19]

Peter Scholl 4

• Less communication
• Lower storage costs

Correlated pseudorandomness

Silent
expansion

• Target correlation: (𝑅𝑅0,𝑅𝑅1)
E.g. random OT (𝑏𝑏,𝑚𝑚𝑏𝑏 , 𝑚𝑚0,𝑚𝑚1)

• Algorithms Gen, Expand:

Pseudorandom Correlation Generators
[BCGI 18, BCGIKS 19]

Peter Scholl 6

𝑘𝑘0,𝑘𝑘1 ← Gen(1𝜆𝜆)

�𝑅𝑅0 ← Expand 𝑘𝑘0 �𝑅𝑅1 ← Expand(𝑘𝑘1)

𝑘𝑘0 𝑘𝑘1

Security: 𝑘𝑘0, �𝑅𝑅1 ≈ (𝑘𝑘0, 𝑅𝑅1 𝑅𝑅0 = Expand 𝑘𝑘0)

“Gentria”
LWE+ General additive

correlations [BCGIKS 19]
“Cryptomania”

DDH
+ low-degree PRG Low-degree correlations [BCGIO 17]

(1/poly error)
LWE
+ low-degree PRG Low-degree correlations [BCGIKS 19]

“Minicrypt”
OWF Linear correlations [GI 99, CDI 05]

Truth tables [BCGIKS 19]

Landscape of PCGs

Peter Scholl 8

“Lapland”
 LPN vector-OLE [BCGI 18]

OT, constant degree [BCGIKS 19]
correlations

Background: LPN and LWE
(spot the difference!)

LWE
• 𝑝𝑝 > 2
• 𝑠𝑠 ← 𝑍𝑍𝑝𝑝𝑛𝑛

• 𝑒𝑒 ∞ is small

LPN
• 𝑝𝑝 = 2
• 𝑠𝑠 ← 𝑍𝑍𝑝𝑝𝑛𝑛

• 𝐻𝐻𝐻𝐻(𝑒𝑒) is small

Peter Scholl 9

𝐴𝐴
𝑠𝑠

𝑒𝑒+ ≈ 𝑢𝑢mod 𝑝𝑝

Given 𝐴𝐴 ∈ 𝑍𝑍𝑝𝑝𝑚𝑚×𝑛𝑛:

𝑝𝑝 ≥ 2 (arithmetic generalization/RLC)

LWE and LPN: what are they good for?

Peter Scholl 10

LPN

Minicrypt
Cryptomania

Additive HE

FE

HSS/Succinct MPC

FHE

LWE

PKE OTSKE Sig.

*for low deg. functions

*

PRG

“MPC-
friendly” PRG

Today
low noise

low
noise

Simple PRGs from LPN

𝐻𝐻

Peter Scholl 11

𝐴𝐴
𝑠𝑠 +

“Primal” construction “Dual” construction

(𝑠𝑠, 𝑒𝑒)
𝑒𝑒

𝑒𝑒𝑒𝑒

Arbitrary poly stretch
 best attack: exp(𝑡𝑡)

Security: both equiv. to LPN (if 𝐻𝐻 is parity-check matrix of code 𝐴𝐴)

𝑚𝑚

𝑛𝑛

(𝑚𝑚− 𝑛𝑛)

𝑚𝑚

Limited to quadratic stretch

𝑛𝑛 + 𝑚𝑚 ⋅ log 𝑡𝑡
bits

𝑚𝑚 ⋅ log 𝑡𝑡
bits

𝑡𝑡 ≔ 𝐻𝐻𝐻𝐻(𝑒𝑒)

𝑠𝑠0 𝑠𝑠1

Blueprint: How to exploit sparse noise for PCGs

Peter Scholl 12

Step 1: Compress secret-shares of sparse vector with FSS

Expand

Step 2: Use 𝑒𝑒 as seed for PRG 𝑒𝑒 → 𝐻𝐻 ⋅ 𝑒𝑒

𝑒𝑒1𝑒𝑒0 𝑒𝑒 = 𝑒𝑒0 + 𝑒𝑒1

𝑒𝑒

I: PCG for oblivious transfer from LPN

Peter Scholl 13

Oblivious Transfer

• Problem: OT is expensive (“public-key”)

• OT extension: many OTs from a few base OTs + symmetric crypto [IKNP 03]

• Problem: communication 𝑂𝑂(𝑛𝑛𝑛𝑛) for 𝑛𝑛 OTs

• Silent OT extension: communication sublinear in 𝑛𝑛
Peter Scholl 14

OT

𝑋𝑋0,𝑋𝑋1b ∈ {0,1}

𝑋𝑋𝑏𝑏

Towards silent OT extension

Peter Scholl 15

Correlated OT
𝑏𝑏𝑖𝑖 , 𝑣𝑣𝑖𝑖 , (𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑖𝑖 + 𝑦𝑦)
𝑣𝑣𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝑏𝑏𝑖𝑖 ⋅ 𝑦𝑦

cr hash

[IKNP 03]

Random OT
𝑏𝑏𝑖𝑖 , 𝑣𝑣𝑖𝑖 , (𝑤𝑤𝑖𝑖0,𝑤𝑤𝑖𝑖1)
𝑣𝑣𝑖𝑖 = 𝑤𝑤𝑖𝑖

𝑏𝑏𝑖𝑖

OT
𝑏𝑏𝑖𝑖 , 𝑣𝑣𝑖𝑖 , (𝑚𝑚𝑖𝑖

0,𝑚𝑚𝑖𝑖
1)

𝑣𝑣𝑖𝑖 = 𝑚𝑚𝑖𝑖
𝑏𝑏𝑖𝑖

derand.

local

Goal: a PCG for correlated OT
i.e. compression of:

𝑏𝑏
𝑣⃗𝑣

𝑦⃗𝑦
𝑤𝑤

𝑣⃗𝑣 + 𝑤𝑤 = 𝑦𝑦 ⋅ 𝑏𝑏

Silent OT Extension: Overview

Setup

sparse 𝑒𝑒

seed

PPRF

Shares of 𝑦𝑦 ⋅ 𝑒𝑒:
.

∈ 0,1 𝑚𝑚 ∈ 𝔽𝔽2𝜆𝜆𝑦𝑦

seed

LPN

.
uniform

⇔ correlated OTs
Random OTs

local
comp.

Receiver Sender

Peter Scholl 16

Main tool: puncturable PRF

• PRF 𝐹𝐹 ∶ 0,1 𝜆𝜆 × 1, … ,𝑁𝑁 → 0,1 𝜆𝜆

• 𝑘𝑘 ← Gen(1𝜆𝜆)
Master key: allows evaluating 𝐹𝐹 𝑘𝑘, 𝑥𝑥 for all 𝑥𝑥

• 𝑘𝑘∗ ← Punc(𝑘𝑘,𝛼𝛼)
 Punctured key: can evaluate at all points except for 𝑥𝑥 = 𝛼𝛼

• Security: 𝐹𝐹(𝑘𝑘,𝛼𝛼) is pseudorandom, given 𝑘𝑘∗

Peter Scholl 17

[BW13], [BGI 13], [KPTZ 13]

Simple tree-based construction from a PRG: 𝑘𝑘 = 𝜆𝜆, 𝑘𝑘∗ = 𝜆𝜆 ⋅ log𝑁𝑁

Key observation: puncturable PRF compresses
sparse vectors

Setup
𝛼𝛼 ← {1, … ,𝑁𝑁}
𝑘𝑘 ← Gen(1𝜆𝜆)
𝑘𝑘∗ ← Punc(𝑘𝑘,𝛼𝛼)

Receiver Sender

𝛼𝛼, 𝑘𝑘∗ 𝑘𝑘

Eval at all 𝑥𝑥 ≠ 𝛼𝛼0 at pos. 𝛼𝛼 Eval at 1, … ,𝑁𝑁
+

=

• Shares compressed from 𝜆𝜆 ⋅ 𝑁𝑁 to ≈ 𝜆𝜆 ⋅ log 𝑁𝑁 bits

• Can tweak to multiply by arbitrary 𝑦𝑦 ∈ 𝔽𝔽2𝜆𝜆

𝐹𝐹(𝑘𝑘,𝛼𝛼)

𝑧𝑧 = 𝐹𝐹 𝑘𝑘,𝛼𝛼 + 𝑦𝑦

𝑧𝑧 at pos. 𝛼𝛼

𝑦𝑦
.= 0⋯0 1 0 ⋯ 0

𝑦𝑦 ∈ 𝔽𝔽2𝜆𝜆

Peter Scholl 18

From weight-1 vectors to weight-𝑡𝑡 vectors

Approach 1: addition Approach 2: concatenation
.
.
.
.+

. .

Weight e.g. 𝑡𝑡 = 4

𝑂𝑂 𝑡𝑡 ⋅
𝑁𝑁
𝑡𝑡

= 𝑂𝑂(𝑁𝑁)
Expansion cost: 𝑂𝑂(𝑡𝑡 ⋅ 𝑁𝑁) (naïve)

𝑂𝑂(𝑁𝑁) (batch codes [BCGI18, SGRR 19])

Note: regular error pattern

Peter Scholl 19

𝑦𝑦 ⋅ 𝑒𝑒1

𝑦𝑦 ⋅ 𝑒𝑒𝑡𝑡

⋮

From sparse products to correlated OT

• Recall, have shares:
• Want: uniform vector .

.

weight 𝑡𝑡

Public
linear 𝐻𝐻

Public
linear 𝐻𝐻

Pseudorandom
under LPN!

+
=

+
=

Peter Scholl 20

= 𝑦𝑦 ⋅ (𝐻𝐻𝐻𝐻)

Setup protocol: inside the puncturable PRF

Peter Scholl 22

Suppose Receiver has for first 2 levels:

OT
Left/right (sum of L, sum of R)

Recover

Based on [Doerner-shelat ‘17]

Use OT to transfer next : 𝛼𝛼

OTs for all levels can be
done in parallel!
(Unlike [Ds 17] for DPF)

Recap: silent OT extension

• Setup protocol: 2 rounds from any 2-round OT
Cost: 𝑂𝑂(𝜆𝜆 log 𝑁𝑁) base Ots

• Silent expansion (𝑁𝑁 OTs):
𝑂𝑂(𝑁𝑁 log 𝑁𝑁) PRF evaluations
1 multiplication 𝐻𝐻 ⋅ 𝑥𝑥

• Implies two-round OT extension on chosen inputs
Can convert from random → chosen in parallel with setup
First concretely efficient two-round OT extension
(bypass [GMMM 18] impossibility via LPN)

Peter Scholl 23

Extras: active security, implementation

• Active security:
Lightweight PPRF consistency checks for malicious sender

o Allows selective failure attacks – sender can guess 1 bit of LPN error
o Assume problem is hard with 1-bit leakage

10-20% overhead on top of semi-honest

• Implementation:
Main challenge: fast mult. by 𝐻𝐻
Quasi-cyclic 𝐻𝐻: polynomial mult. mod 𝑋𝑋𝑛𝑛 − 1
Security based on quasi-cyclic syndrome decoding / ring-LPN

Peter Scholl 24

Runtimes (ms) for n=10 million random OTs

Peter Scholl 26

268

13728

128854

2441 2726 2756

1

10

100

1000

10000

100000

LAN (10 Gbps) WAN (100 MBps) WAN (10 MBps)

IKNP vs silent OT

9x

5x
47x

Total comm: 160 MB vs 127 kB

II: PCG for OLE correlations from LPN and
ring-LPN

Peter Scholl 27

Degree-2 correlation:
Oblivious Linear Evaluation (OLE)

Peter Scholl 28

OLE

𝑎𝑎, 𝑏𝑏 ∈ 𝑍𝑍𝑝𝑝𝑥𝑥 ∈ 𝑍𝑍𝑝𝑝

𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏

Related: multiplication triples
• Obtained from 2 random OLEs (two parties)

Main tool: FSS for point functions

• Point function 𝑓𝑓𝛼𝛼,𝛽𝛽: 1, … ,𝑁𝑁 → 0,1 𝜆𝜆

𝑓𝑓𝛼𝛼,𝛽𝛽 𝑥𝑥 = 𝛽𝛽 if 𝑥𝑥 = 𝛼𝛼
0 o. w.

Peter Scholl 29

𝑠𝑠0 𝑠𝑠1

Eval at {1, … ,𝑁𝑁}

𝑦𝑦0 𝑦𝑦1
𝑦𝑦0 ⊕ 𝑦𝑦1 =

(00⋯𝛽𝛽⋯ 00)

Gen 𝛼𝛼,𝛽𝛽

PCG for tensor product from LPN and FSS
[BCGIKS ’19]

Peter Scholl 30

• Pick 𝑒𝑒, 𝑓𝑓 with 𝐻𝐻𝐻𝐻 𝑡𝑡
• Tensor product 𝑒𝑒 ⊗ 𝑓𝑓 is sparse
• Distribute shares of 𝑒𝑒, 𝑓𝑓 and 𝑒𝑒 ⊗ 𝑓𝑓
 With FSS for O(𝑡𝑡2) points

𝑒𝑒

𝑓𝑓

PCG for tensor product from LPN and FSS
[BCGIKS ’19]

Peter Scholl 31

𝑠𝑠0 𝑠𝑠1

𝑅𝑅0 𝑅𝑅1

Eval at {1, … ,𝑛𝑛2}

𝐻𝐻 ⋅ (𝑅𝑅0 + 𝑅𝑅1) ⋅ 𝐻𝐻𝑇𝑇 = 𝐻𝐻𝐻𝐻 ⊗ (𝐻𝐻𝐻𝐻)

𝑡𝑡-sparse 𝑒𝑒, 𝑓𝑓
𝑡𝑡2- point FSS for 𝑒𝑒 ⊗ 𝑓𝑓

𝑅𝑅0 + 𝑅𝑅1 = 𝑒𝑒 ⊗ 𝑓𝑓

Applications of PCG for tensor product

• Deg-2 correlations:
𝑛𝑛 OLEs or Beaver triples with 𝑜𝑜(𝑛𝑛) communication
Computation: Ω(𝑛𝑛2)
Extends to deg-𝑑𝑑 (cost: Ω(𝑛𝑛𝑑𝑑))

• PCG for deg-𝑑𝑑 ⇒ homomorphic secret-sharing for deg-𝑑𝑑 functions
 Let (Gen, Expand) be PCG for R = [𝑟𝑟, 𝑟𝑟 ⊗ 𝑟𝑟, … , 𝑟𝑟 ⊗𝑑𝑑 𝑟𝑟]
 Share(x): apply Gen and make 𝑥𝑥𝑥 = 𝑥𝑥 + 𝑟𝑟 public
Evalp: write 𝑝𝑝(𝑥𝑥) as 𝑝𝑝𝑝(𝑟𝑟), where 𝑝𝑝𝑝 is determined by 𝑥𝑥𝑥, and linear in R

Peter Scholl 32

Efficient PCG for OLE from ring-LPN
[ongoing work]

• Idea:
Replace tensor product with polynomial

multiplication
Similar to [BV11] for FHE

• Take sparse polys 𝑒𝑒, 𝑒𝑒′,𝑓𝑓, 𝑓𝑓𝑓
• Distribute shares of 𝑒𝑒, 𝑒𝑒′ ⊗ (𝑓𝑓, 𝑓𝑓′)
• Output

for public, random ℎ ∈ 𝑍𝑍𝑝𝑝[𝑋𝑋]
Peter Scholl 34

𝑒𝑒, 𝑓𝑓 ∈ 𝑍𝑍𝑝𝑝[𝑋𝑋]

𝑒𝑒 ⋅ 𝑓𝑓 mod 𝑋𝑋𝑛𝑛 + 1

ℎ𝑒𝑒 + 𝑒𝑒′ ⋅ ℎ𝑓𝑓 + 𝑓𝑓′ mod (𝑋𝑋𝑛𝑛 + 1)
Linear in 𝑒𝑒, 𝑒𝑒′ ⊗ (𝑓𝑓, 𝑓𝑓′)

Efficient PCG for OLE from ring-LPN
[ongoing work]

• Cost: for 1 OLE in 𝑍𝑍𝑝𝑝 𝑋𝑋 /(𝑋𝑋𝑛𝑛 + 1)
𝑂𝑂(𝑡𝑡2 + 𝑛𝑛 log 𝑛𝑛) computation

Gives 𝑛𝑛 OLEs in 𝑍𝑍𝑝𝑝 if 𝑋𝑋𝑛𝑛 + 1 splits into linear factors mod 𝑝𝑝

• Security:
Arithmetic ring-LPN

ℎ,ℎ ⋅ 𝑠𝑠 + 𝑒𝑒 mod (𝑝𝑝,𝐹𝐹(𝑋𝑋))

Does not appear significantly weaker

Peter Scholl 35

Conclusion

• PCG for OT from LPN
Random OT (and correlated OT): practical, almost zero communication
 (previously: 𝜆𝜆 bits per OT)
Two-round OT extension

• PCG for OLE
From LPN (expensive)
Efficient from fully splitting ring-LPN

• Open problems:
Optimize OT: better codes
Security of arithmetic ring-LPN
Efficient PCGs for more correlations:

o Truth tables (active security), random bits (ℤ𝑝𝑝), garbled circuits…

Peter Scholl 36

Thank you!

Efficient Pseudorandom Correlation Generators: Silent OT Extension and More
Boyle, Couteau, Gilboa, Ishai, Kohl, Scholl

https://ia.cr/2019/129

Two-Round OT Extension and Silent Non-Interactive Secure Computation
BCGIKS + Rindal

https://ia.cr/2019/1159
Code: https://github.com/osu-crypto/libOTe

Peter Scholl 37

https://ia.cr/2019/129
https://ia.cr/2019/1159
https://github.com/osu-crypto/libOTe

	Efficient Pseudorandom Correlation Generators:�MPC with Silent Preprocessing
	Outline
	Secure Computation with Preprocessing
	Secure Computation with Silent Preprocessing
	Pseudorandom Correlation Generators
	Landscape of PCGs
	Background: LPN and LWE�(spot the difference!)
	LWE and LPN: what are they good for?
	Simple PRGs from LPN
	Blueprint: How to exploit sparse noise for PCGs
	I: PCG for oblivious transfer from LPN
	Oblivious Transfer
	Towards silent OT extension
	Silent OT Extension: Overview
	Main tool: puncturable PRF
	Key observation: puncturable PRF compresses sparse vectors
	From weight-1 vectors to weight-𝑡 vectors
	From sparse products to correlated OT
	Setup protocol: inside the puncturable PRF
	Recap: silent OT extension
	Extras: active security, implementation
	Runtimes (ms) for n=10 million random OTs
	II: PCG for OLE correlations from LPN and ring-LPN
	Degree-2 correlation:�Oblivious Linear Evaluation (OLE)
	Main tool: FSS for point functions
	PCG for tensor product from LPN and FSS�[BCGIKS ’19]
	PCG for tensor product from LPN and FSS�[BCGIKS ’19]
	Applications of PCG for tensor product
	Efficient PCG for OLE from ring-LPN�[ongoing work]
	Efficient PCG for OLE from ring-LPN�[ongoing work]
	Conclusion
	Thank you!

