Probabilistic Termination and Composability of Cryptographic Protocols*

Juan A. Garay Texas A&M University garay@cse.tamu.edu

Joint work with Ran Cohen (MIT & NEU), Sandro Coretti (IOHK) and Vassilis Zikas (U. of Edinburgh & IOHK)

* Slides by Ran Cohen

Motivating Example

Coin flipping

- Stand-alone: Pr(*heads*) = ½
 Expected no. of coin tosses for *heads* outcome?
 2
- Flipping in parallel *n* coins:

Expected no. of (parallel) coin tosses until all *heads*? $O(\log n)$ ($\Theta(\log n)$)

Motivation Example (2)

Fact: The mathematical expectation of the maximum of *n* random variables does not necessarily equal the maximum of their expectations [BE'03,Eis'08]

Secure Multiparty Computation (MPC)

Ideal World

Simulation-based Security

Communication Model

- Point-to-point model
 - Secure (private) channels
 between the parties
 (Secure Message Transmission)
- Broadcast model
 - Additional broadcast channel

Instantiating Broadcast Channel

Broadcast

Sender with input x

- Agreement: all honest parties output the same value
- Validity: if the sender is honest, the common output is x

Byzantine agreement

Each P_i has input x_i

- Agreement: all honest parties output the same value
- Validity: if all honest parties have the same input x, the common output is x

Instantiating Broadcast Channel

Communication Model

- Point-to-point model
 - Secure (private) channels
 between the parties
 (Secure Message Transmission)
- Broadcast model
 - Additional broadcast channel
- Synchronous communication
 - Bounded delay
 - Global clock
 - Protocol proceeds in rounds
 - Guaranteed termination

Broadcast and MPC: Love-Hate Relationship

The Love

Protocols with Broadcast

Broadcast is Good for MPC

Everything computable can be *securely* computed

Every function can be securely computed with guaranteed output delivery assuming honest majority

- O(depth) rounds (info-theoretic) [BenOr-Goldwasser-Wigderson'88, Chaum-Crépeau-Damgård'88, Rabin-BenOr'89]
- *O*(1) rounds (OWF) [Beaver-Micali-Rogaway'90, Damgård-Ishai'05]
- 2 rounds (iO, Threshold-PKI, FHE, NIZK) [Garg-Polychroniadu'15, Gordon-Liu-Shi'15, Cohenshelat-Wichs'18, Benhamouda-Lin'19, Garg-Srinivasan'19, ...]

Broadcast is Very Good for MPC

If *r*-round π is secure under parallel composition \Rightarrow poly-many parallel executions of π in *r* rounds

The Hate: What if Broadcast Doesn't Exist?

MPC Protocols w/o Broadcast

MPC Protocols w/o Broadcast

Protocols Implementing Broadcast

- Broadcast protocol $\Leftrightarrow t < \frac{n}{3}$ [Pease-Shostak-Lamport'80]
- Trusted setup (PKI) required for $t \ge \frac{n}{3}$ [Borcherdin'96]
- Some functions can be computed without setup [Cohen-Lindell'14, Cohen-Haitner-Omri-Rotem'16]

Round Complexity of Broadcast Protocols

• LB1: Deterministic protocols require $\Omega(n)$ (t + 1) rounds [Fischer-Lynch'82, Dolev-Strong'83, Dolev-Reischuk-Strong'90]

Deterministic Broadcast Protocols

The [DS82] broadcast protocol: Assumes PKI, tolerates arbitrary number of corruptions (t < n)

- Source signs its input value and sends to all parties
- r = 1,...,t+1:
 - If any value $v_i \in V = \{0,1\}$ has been *newly* added to a set of accepted values, sign it and send value and signatures to everybody
 - If a value/signatures message is received by any party containing valid signatures by at least r distinct players including the sender, then accept the value and update signatures
- If only one accepted value, then the party outputs that value; otherwise a default value

Deterministic Broadcast Protocols (2)

- Perfect and adaptive security for t < n/3 [BGP'89, GM'93, HZ'10]
- Deterministic Termination (DT) single output round
- Compose nicely
- Require O(n) rounds this is inherent [FL'82, DS'82]

Deterministic Broadcast Protocols (2)

- Perfect and adaptive security for t < n/3 [BGP'89, GM'93, HZ'10]
- Deterministic Termination (DT) single output round
- Compose nicely
- Require O(n) rounds this is inherent [FL'82, DS'82]

MPC Protocols w/o Broadcast

Round Complexity of Broadcast Protocols

- **LB1**: Deterministic protocols require $\Omega(n)$ (t + 1) rounds [Fischer-Lynch'82, Dolev-Strong'83, Dolev-Reischuk-Strong'90]
- LB2: Randomized *r*-round protocols fail w.p. $\frac{1}{c \cdot r^r}$ [Chor-Merritt-Shmoys'85, Karlin-Yao'86]
- UB: Expected-constant rounds (guaranteed w/ polylog rounds) [BenOr'83, Rabin'83, Feldman-Micali'88, Fitzi-Garay'03, Katz-Koo'06] [Micali'17, Micali-Vaikuntanathan'17, Abraham-Devadas-Dolev-Nayak-Ren'18] [Abraham-Chan-Dolev-Nayak-Pass-Ren-Shi'19]

These protocols have *probabilistic termination*

- Termination round not a priori known
- Non-simultaneous termination

Randomized Broadcast Protocols

Randomization can help [Ben-Or'83, Rabin'83]

Binary BA protocol [Feldman-Micali'88]

- Proceeds in phases until termination
- In each phase each party has an input bit
 - If all honest parties start the phase with the same bit, they terminate at the end of the phase
 - Otherwise, with probability p > 0 all honest parties agree on the same bit at the end of the phase (and terminate in the next phase)
 - With probability 1 p
 - \odot No agreement at the end of the phase, or
 - the adversary makes some of the honest parties terminate; the remaining parties will terminate in the next phase

Randomized Broadcast Protocols (2)

- [FM'88] has *Probabilistic Termination* (PT):
 - Expected O(1) rounds
 - No guaranteed termination: Statistical security (for PPT parties)
 - No simultaneous termination: Honest parties might terminate at different rounds [DRS'90]
 - All honest parties terminate in a constant window
- Extends to multi-valued BA [Turpin, Coan'84]
 - Two additional rounds
- Perfect security [Goldreich-Petrank'90]
 - Best of both worlds
- Variant for parallel broadcast [Ben-Or-El-Yaniv'03]

Composition of PT Protocols

Sequential composition

Simultaneous start

Non-simultaneous termination

⇒ Non-simultaneous start

Parallel composition

Naïve parallel composition is *not* round preserving

Naïve Parallel Composition

Protocol with *expected* O(1) rounds (geometric distribution) $\Rightarrow n$ parallel instances take *expected* $\Theta(\log n)$ rounds

Example: Coin flipping

Stand-alone coin flip: Pr(heads) = 1/2
 ⇒ output is heads in expected 2 rounds

Flipping in parallel *n* coins, each coin until *heads* ⇒ expected log *n* rounds

Broadcast Composition: Prior Work

- Sequential composition of m BA protocols in expected O(m) rounds [Lindell-Lysyanskaya-Rabin'02]
- Parallel composition of *m* BA protocol in expected *O*(1) rounds [BenOr-ElYaniv'03, Fitzi-Garay'03, Katz-Koo'06]
- All prior work use **property-based** definitions
 - Security under **composition**?

What's missing?

Main challenge: How to simulate probabilistic termination

The Setting

- Secure channels (SMT = Secure Message Transmission)
- Synchronous communication [Katz-Maurer-Tackmann-Zikas'13]
- [KMTZ'13] model sync. **Deterministic-Termination (DT)** protocols in UC
 - Environment observes in which round the protocol terminates
 - Ideal functionality is parameterized by number of rounds
 - Parties continuously request output receive it at last round
- PT protocols are very delicate many subtle issues not captured by [KMTZ'13]

Randomized BA/Broadcast Protocol

[Feldman-Micali'88]

- Proceeds in phases until termination
- In each phase each party has an input bit

The Framework Part I: Modeling Probabilistic Termination

Canonical Synchronous Functionality

- Separate the function from the round structure
- A CSF consists of input round and output round
- Parameterized by
 - (Randomized) function $f(x_1, \dots, x_n, a)$
 - Leakage function $l(x_1, \dots, x_n)$

CSF Examples

SFE: parties compute a function *g*

- $f(x_1, ..., x_n, a) = g(x_1, ..., x_n)$
- $l(x_1, ..., x_n) = (|x_1|, ..., |x_n|)$

Broadcast: P_i broadcasts x_i

• $f(x_1, ..., x_n, a) = (x_i, ..., x_i)$

•
$$l(x_1, \dots, x_n) = |x_i|$$

parallel version

Byzantine Agreement:

• $f(x_1, ..., x_n, a) = \begin{cases} y \text{ if at least } n - t \text{ inputs are } y \\ a \text{ otherwise} \end{cases}$

•
$$l(x_1, \dots, x_n) = (x_1, \dots, x_n)$$
Synchronous Normal Form (SNF)

SNF protocol:

- In each round exactly one ideal functionality is called ("stand-alone composition")
- All hybrids are (2-round) CSFs

Extending Rounds (Deterministic Termination)

- Many protocols require more than two rounds
- Wrap the CSFs with *round-extension* wrappers
 - Sample a termination round $\rho_{term} \leftarrow D$
 - All parties receive output (exactly) at ρ_{term}

 $(input x_1)$ $(input x_2)$ $(input x_2)$

As in [KMTZ'13]

Extending Rounds (Probabilistic Termination)

Termination round is an upper bound

- Sample a termination round $\rho_{term} \leftarrow D$
- All parties receive output <u>by</u> ρ_{term}
- $-\mathcal{A}$ can instruct early delivery for P_i at any round

Where Do We Stand?

Protocol π_{RBA} realizes $\mathcal{W}_{PT}^{D}(\mathcal{F}_{BA})$ in $(\mathcal{F}_{PSMT}, \mathcal{F}_{OC})$ -hybrid model

assuming all parties start at the same round

D: Geometric distribution with parameter p over the phases

The Framework Part II: Non-Simultaneous Start (Dealing with "slack")

Problem: Sequential Composition

New execution starts **after all** parties finished previous one With PT protocols, fast parties start new execution **before** slow parties finished previous execution

Problem: Sequential Composition

New execution starts **after all** parties finished previous one With PT protocols, fast parties start new execution **before** slow parties finished previous execution

Sequential Composition: Solutions

Goal: ℓ sequential executions of expected O(1) rounds protocols in expected $O(\ell)$ rounds

• Naïve solution #1: wait until re-synchronized

- Naïve solution #2:
 Expand each round to 2c + 1 rounds
 - Execution 1, start slack $c_1 = c$, expansion factor $2c_1 + 1$
 - Execution 2, slack $c_2 = c(2c_1 + 1)$, factor $2c_2 + 1$
 - Execution 3, slack $c_3 = c(2c_2 + 1)$, factor $2c_3 + 1$
 - After *i* executions, slack $c(2c_{i-1} + 1) = O(2^{i-1}c^i)$

Sequential Composition: Solutions (2)

- **Goal:** ℓ sequential executions of expected O(1) rounds protocols in expected $O(\ell)$ rounds
- [LLR'02] add re-synchronization points
 - Statistical security (inherent)
 - Static corruptions
 - Property-based security
- [BE'03, KK'06]
 - Simpler solutions, partial proofs (no simulation)
- We introduce a generic compiler for PT protocols
 - Supports non-simultaneous start of the protocol
 - Reduces the slackness to 1
 - Simulation-based security a composition theorem

Non-Simultaneous Start: Our Solution

Main idea: Add "dummy" rounds to make overlap meaningless

Extend each round to 3c + 1

- 2c + 1 rounds: listen
 - Round c + 1: listen & send
- c rounds: wait (without listening)

Concurrent Composition

- Each party proceeds in a locally sequential manner
- Round *r* messages
 after round *r* 1
 before round *r* + 1

Controlling Round Blowup

- Sequential PT hybrids might cause exponential round blowup
- Use "asynchrony-reduction" techniques [Bracha'84]
 - Upon receiving output v, send (ok, v) to all the parties
 - Upon receiving t + 1 messages (*ok*, *v*), accepts *v*
 - Upon receiving n t messages (ok, v), terminates
- Reduces the asynchrony to 1 round
- Applies to public-output functionalities

Captured by non-simultaneous start wrapper

Composition Theorem (Illustrated)

Applications

Composition of Arbitrary PT Protocols

Arbitrary PT Protocols

Problem:

Solutions for broadcast crucially rely on its **privacy-free** nature

The new MPC protocols have probabilistic termination

(Naïve parallel composition not round preserving)

Can parallel composition of *arbitrary* PT protocols be round-preserving?

Parallel Composition of Functions

Given *n*-party functions $f_1, f_2, ..., f_m$

denote by $f_1 \parallel f_2 \parallel \cdots \parallel f_m$ the following function:

- Each P_i has input $\mathbf{x}_i = (x_i^1, x_i^2, \dots, x_i^m)$
- Output is $y = (y_1, y_2, ..., y_m)$

 $f_1(x_1^1, x_2^1, \dots, x_n^1)$

 $f_{m}(x_{1}^{m}, x_{2}^{m}, ..., x_{n}^{m})$

 $f_2(x_1^2, x_2^2, \dots, x_n^2)$

Arbitrary PT Protocols (2)

Synchronous MPC [KMTZ'13, CCGZ'16]

- Ideal world captures round complexity of π
- Trusted party samples $r_{term} \leftarrow D = D(\pi)$
- Parties continuously ask for output (receive by r_{term})
- *S* can instruct early delivery for specific parties

Protocol-BB Parallel Composition

Protocol-BB Parallel Composition

Theorem:

- Let π_1, \dots, π_m be PT protocols realizing f_1, \dots, f_m
- Then $\pi = \operatorname{compiler}(\pi_1, \dots, \pi_m)$ realizes $f_1 \parallel \cdots \parallel f_m$ s.t.
 - Composition is round-preserving, i.e.

 $\mathbb{E}(\pi) = O\left(\max_{i} \mathbb{E}(\pi_{i})\right)$

– Black-box w.r.t. protocols π_1, \dots, π_m

The compiler doesn't know the code of π_i

Protocol Compiler

Prevent Multiple Inputs

Use Setup, Commit, then Prove functionality with a tweak [Canetti-Lindell-Ostrovsky-Sahai'02] [Ishai-Ostrovsky-Zikas'14]

Prevent Multiple Inputs

Setup (correlated randomness)

Use Setup, Commit, then Prove functionality with a tweak [Canetti-Lindell-Ostrovsky-Sahai'02, Ishai-Ostrovsky-Zikas'14]

Setup (correlated randomness)

Commit (to inputs)

Implement the Setup, Commit functionality in constant rounds & info. theoretic (using correlated randomness for broadcast)

Setup (correlated randomness)

Commit (to inputs)

Reactive functionalities with Implement the Setup, in constant round: (using correlated randomness for producast)

Setup (correlated randomness)

Commit (to inputs)

Reactive functionalities with Implement the Setup, in constant rounds (using correlated randomness ior producast)

Extend the sequential-composition theorems from [CCGZ'16]

Setup (correlated randomness)

Commit (to inputs)

Implement the Setup, print in constant rounds

Reactive functionalities with probabilistic termination

1-to-many information-theoretic ZK black-box in $\pi_1, ..., \pi_m$ (honest majority) nposition in constant rounds

Setup (correlated randomness)

Commit (to inputs)

Reactive functionalities with

Impleme in co

Recover from invalid ZK proofs without:

1-to-many black-box in constant Breaching privacy

 (A might have learned output)

 Blowing up round complexity

Round-preserving Protocol-BB Parallel Composition

FBB Parallel Composition

Functionally BB Protocols

Protocol π is **FBB protocol** for \mathcal{F} if $\forall f \in \mathcal{F}$ protocol π^f securely computes f

Semi-Honest FBB Protocol

Theorem:

- Let $\mathcal{F}_1, \ldots, \mathcal{F}_m$ be deterministic function classes
- Consider (𝓕₁, ..., 𝓕_m)-hybrid model that ∀*j* computes a function *f_j* ∈ 𝓕_j with expected constant round complexity μ
- Then \exists FBB protocol for $\mathcal{F}_1 \parallel \cdots \parallel \mathcal{F}_m$ with expected constant round complexity

Semi-Honest FBB Protocol

- 1) Parties invoke ℓ instances of each f_j
- 2) Each P_i sends x_i^j to all instances of f_j parameters and asks output for *r* rounds
- 3) If some P_i received output y_j for each f_j distribute $(y_1, ..., y_m)$ and halt, otherwise restart

Semi-Honest FBB Protocol

Proof intuition:

- ✓ Correctness
- Privacy: corrupt parties always use the same input values (semi-honest)
- ✓ Round complexity: for $\ell = \Omega(\log m)$ and constant $r > \mu$, the expected number of "restarts" is constant (Markov)

What About Malicious Adv.?

- The previous protocol is not maliciously secure
- The adversary can send different x_i^j and \tilde{x}_i^j to f_j and learn multiple outputs
- This is inherent for batched parallel-composition protocols
 - For some f_k , all parties use original inputs $(x_1^k, ..., x_n^k)$ in two calls to the trusted party
 - $\circ~$ Possibly in different rounds ρ and ρ'
 - Possibly for computing different f_i and $f_{i'}$

Functionally BB Parallel Composition

There exist function classes $\mathcal{F}_1, \dots, \mathcal{F}_m$ s.t. for protocols computing $\mathcal{F}_1 \parallel \cdots \parallel \mathcal{F}_m$ in $(\mathcal{F}_1, \dots, \mathcal{F}_m)$ -hybrid model, either:

- Correctness is lost
- Privacy is broken
- Round complexity blows-up

Using known techniques

Want:

Have:

Summary & Open Questions

- We considered composability of cryptographic protocols with *probabilistic termination*
- Framework for designing cryptographic protocols in stand-alone fashion and compiler to fast composition in the UC framework
 - P-Broadcast can be realized over P2P channels in expected
 0(1) rounds
 - Recipe for MPC:
 - 1) Construct protocol assuming broadcast channel
 - 2) Replace broadcast channel using PT parallel broadcast protocol
 - MPC can be realized over P2P channels
 - Info-theoretic in expected O(depth) rounds
 - Assuming OWF in expected O(1) rounds

Summary & Open Questions (2)

- Parallel composition of *arbitrary* PT protocols
 - Black-box w.r.t. protocols: Round-preserving compiler for parallel composition
 - Functionally block-box (FBB) protocols:
 - No round-preserving parallel composition (using known techniques)
 - Round-preserving parallel composition with semi-honest security

Open:

- Does there exist a round-preserving FBB protocol for parallel composition of PT protocols?
- Partially synchronous/asynchronous PT protocols
- Dishonest-majority PT protocols

References

- R. Cohen, S. Coretti, J. Garay and V. Zikas. "Probabilistic Termination and Composability of Cryptographic Protocols," J. Cryptology 21(3): 690-741 (2019). Preliminary version in *Crypto* 2016. (See also ePrint)
- R. Cohen, S. Coretti, J. Garay and V. Zikas. "Round-preserving Parallel Composition of Probabilistic-Termination Protocols," *ICALP 2017*: 37:1-37:15. (See also ePrint)

Thank you