MPC in the Preprocessing Model

A Brief Tutorial

Peter Scholl

[ISc Bangalore, 19 February 2020

AARHUS
/ N uUNIVERSITY

Background: dishonest majority MPC

e Up tot =n — 1 parties may be corrupt

* In this setting:
» Can compute any function with

> Must settle for and
» Can’t have &
e |n the

»t = n — 1 and unconditional security possible
(with abort)

* Today: only

AARHUS
/ N uUNIVERSITY

Outline

* Warm-up: One-time truth tables (2PC, passive security)
* MPC for arithmetic circuits (passive “GMW protocol”)

 Active security with information-theoretic MACs
»Pairwise MACs (“BDOZ” or “TinyOT” style)
> Global MACs (“SPDZ” style)

AARHUS
/ N uUNIVERSITY

Secure Multi-Party Computation
a% ﬁ b
cf % d

Goal: Compute f(a,b,c,d)

AARHUS
/ N uUNIVERSITY

MPC should be as good as using a trusted

third party
b

Trusted
third party

f o) ic,@ \d%

AARHUS
/ N UNIVERSITY Peter Scholl

MPC in the preprocessing model

R R;
Preprocessing }

e Sample R4, ..., R,

R, % R,

* Preprocessing can be done in advance, before inputs known

* Online phase:
* After inputs are known
* Lightweight: only constant factor slower than plaintext, in some
cases

AARHUS
/ N UNIVERSITY Peter Scholl

Where does the preprocessing come from!?

* This talk: imagine a

* In practice:
»Use a based on e.g. or (more on Weds.)

»Non-colluding

device

AARHUS
/ N uUNIVERSITY

Warm-up: One time truth table protocol

[Ishai Kushilevitz Meldgaard Orlandi Paskin, TCC 3]

e 2-PC for
* Very , but inefficient

* Note: can be extended to MPC and active security

AARHUS
/ N uUNIVERSITY

One time truth table protocol

1) Take the truth-table of function f:{0,1}" x {0,1}"* — {0,1}

2) Pick random shifts (7, s) and rotate rows/columns
) s =1
0 | |

AARHUS
/ N UNIVERSITY Peter Scholl

One time truth table protocol

3) Secret share the permuted truth table:
»Sample random:

> Set

AARHUS
/ N UNIVERSITY Peter Scholl

One time truth table protocol

< Preprocessing S

Input x

u=x+r mod?2"

vV=y+S
MB [u, v]

Privacy: one-time pad

Output M, [u, v] @ Mz[u, v]

Correctness: from

preprocessing

AARHUS
/ N UNIVERSITY Peter Scholl

Input y

Summary: one-time truth table

communication (|x| + |y|)
» Exponential storage (2" bits)

e Still useful for small tables

»E.g. as a building block in larger computations
»>“TinyTable” [DNNR 6]

AARHUS
/ N uUNIVERSITY

* Warm-up: One-time truth tables (2PC, passive security)

e MPC for arithmetic circuits (passive “GMW protocol”)

 Active security with information-theoretic MACs
»Pairwise MACs (“BDOZ” or “TinyOT” style)
> Global MACs (“SPDZ” style)

AARHUS
/ N UNIVERSITY Peter Scholl

Securely computing arithmetic circuits

e Addition and multiplication \ /\ /

gates (over finite field F) % X
* |nput + output wires '/

AARHUS
/ N uUNIVERSITY

Main invariant throughout the protocol

* For each wire, with value x, we have:

>[x] = (xl’ ...,Xn)
PX =Xx1+ -+ Xy

»Party P; holds x; € F

AARHUS
/ N uUNIVERSITY

Basic operations on [-]-shared values

x from P _i
» P; privately sends random x; € F to every other P;
>Pi sets X; = X — Z]#x]

[x]
»Each P; sends x;
»Recover x =)}, x;

AARHUS
/ N uUNIVERSITY

Basic operations on [-]-shared values

|z] == alx] + b[y]
»P; computes z; =a-x; + b - y;

|1z]: = [x] + ¢
»P; computes z; = x; + ¢
» All other parties let z; = x;

* N.B. these require

AARHUS
/ N uUNIVERSITY

Multiplication of [x] and [y]

* Want sharesof z =x -y

e Observe:

-— (x+a—a)-(y+b—>b)

/v

AARHUS
UNIVERSITY

=(x+a)-

(y +b) — (x + @)

opened

Peter Scholl

N

(y +b)

preprocessed

Multiplication of [x] and [y]

» Take [al, [b], [a - b]
+Opend =x+aande =y +b

+ Compute

1z]=d-e—d-|b]—e-|a] +|a- D]
=[x -]

AARHUS
/ N uUNIVERSITY

* Warm-up: One-time truth tables (2PC, passive)

* MPC for arithmetic circuits (passive “GMW protocol”)

* Active security with information-theoretic MACs
»Pairwise MACs (“BDOZ” or “TinyOT” style)
> Global MACs (“SPDZ” style)

AARHUS
/ N UNIVERSITY Peter Scholl

20

What about active security!?

* Problem: additive secret sharing is not enough
» Corrupt P; can send x; + e during
> Parties reconstruct x + e
= breaks correctness

e Solution: use
» Approach I: (as in BDOZ or TinyOT)
» Approach 2: (as in SPDZ)

AARHUS
/ N uUNIVERSITY

Approach |: MAC the shares

*MAC(x) =a-x+pLinF
»Random keys a,f € F
»Fixed «a, fresh [for each MAC

prevents forgery m

* Given (x, MAC(x)), coming up witha MAC on x' # x
requires guessing

* MACs are linear
= can still do linear operations for free

AARHUS
/ N UNIVERSITY Peter Scholl

22

Approach |: MAC the shares

»P; gets x; and M;[x;] = MAC(K;[x;], x;)
>Pj gets Kj[xl-] = (aj,ﬁj [x:])

* Modify ;
»MAC the triple shares
»Extra random MAC’d shares, for phase

»>Send x; and M;[x;] to each P; to check

AARHUS
/ N uUNIVERSITY

Approach |: MAC the shares

* Problem: expensive!
>0 (n%) MAC:s for every x

»Communication and storage now 0(n?) per gate

e Solution: coming up

AARHUS
/ N uUNIVERSITY Peter Scholl

24

Approach 2:share the MACs

e MAC the value x, not the share m
MAC(x) =a-x

* Secret-share the MAC and key «:

|x] == (xq, oo, Xy, My, o, M)

»x=Yx;, MAC(x)=Ym;,=a-x
> Pi has (xi,ml-)

AARHUS
/ N uUNIVERSITY Peter Scholl

25

Approach 2:share the MACs

[x] == (xq, oo, Xy, My, .., M)

Xx=Yx;, MAC(x)=Ym;=a-x

Challenge: how to check the MAC without revealing o?

* Parties open x’ = x + e If e # 0, have to

e P; commits tod; = «a; - x' — m; guess @ to pass
»Note:d; +:-+d,, =a-x"—MAC(x) =a-e
* Open d; and check they sum to O

AARHUS
/ N UNIVERSITY Peter Scholl 26

VS

[BDOZ 11,NNOB 12] [DPSZ 12, DKLPSS 3]
* Storage: 0(n?) vs 0(n)
e Computation:* 0(n?) vs 0(n)
e Communication:* 0(n?) vs 0(n)

(all parties, per gate)

 MAC check: | round vs 3 rounds

* Assuming delayed batch verification of MACs

AARHUS
/ N uUNIVERSITY

Further reading

* (General resources: lecture notes, books etc.
» https://github.com/rdragos/awesome-mpc

e One-time truth tables:

»On the Power of Correlated Randomness in Secure Computation — Ishai,
Kushilevitz, Meldgaard, Orlandi, Paskin (TCC 2013)

https://link.springer.com/chapter/10.1007/978-3-642-36594-2_ 34

» Gate-scrambling Revisited - or:The TinyTable protocol for 2-Party Secure
Computation — Damgard, Nielsen, Nielsen, Ranellucci

https://ia.cr/2016/695

AARHUS
/ N uUNIVERSITY Peter Scholl

28

https://github.com/rdragos/awesome-mpc
https://link.springer.com/chapter/10.1007/978-3-642-36594-2_34
https://ia.cr/2016/695

Further reading

»>“TinyOT”: A New Approach to Practical Active-Secure Two-Party Computation -
Nielsen, Nordholt, Orlandi, Burra (Crypto 2012)

https://ia.cr/2011/091

»“BeD0OZa”: Semi-Homomorphic Encryption and Multiparty Computation — Bendlin,
Damgard, Orlandi, Zakarias (Eurocrypt 201 1)

https://ia.cr/2010/514

»“SPDZ”’:

= Multibarty Computation from Somewhat Homomorphic Encryption — Damgard, Pastro, Smart,
Zakarias (Crypto 2012)

» Practical Covertly Secure MPC for Dishonest Majority — or: Breaking the SPDZ Limits -
Damgard, Keller, Larraia, Pastro, Scholl, Smart (ESORICS 201 3)

https://ia.cr/2011/535 https://ia.cr/2012/642

AARHUS
/ N uUNIVERSITY

https://ia.cr/2011/091
https://ia.cr/2010/514
https://ia.cr/2011/535
https://ia.cr/2012/642

	MPC in the Preprocessing Model�A Brief Tutorial
	Background: dishonest majority MPC
	Outline
	Secure Multi-Party Computation
	MPC should be as good as using a trusted third party
	MPC in the preprocessing model
	Where does the preprocessing come from?
	Warm-up: One time truth table protocol
	One time truth table protocol
	One time truth table protocol
	One time truth table protocol
	Summary: one-time truth table
	Slide Number 13
	Securely computing arithmetic circuits
	Main invariant throughout the protocol
	Basic operations on ⋅ -shared values
	Basic operations on ⋅ -shared values
	Multiplication of [𝑥] and [𝑦]
	Multiplication of [𝑥] and [𝑦]
	Slide Number 20
	What about active security?
	Approach 1: MAC the shares
	Approach 1: MAC the shares
	Approach 1: MAC the shares
	Approach 2: share the MACs
	Approach 2: share the MACs
	MAC the shares vs share the MACs
	Further reading
	Further reading

