
MPC in the Preprocessing Model
A Brief Tutorial

Peter Scholl

IISc Bangalore, 19 February 2020

Background: dishonest majority MPC

• Up to 𝑡𝑡 = 𝑛𝑛 − 1 parties may be corrupt

• In this setting:
Can compute any function with computational assumptions
Must settle for security with abort and unfairness
Can’t have unconditional security 

• In the preprocessing model:
𝑡𝑡 = 𝑛𝑛 − 1 and unconditional security possible 
(with abort)

• Today: only static corruptions

Peter Scholl 2

Outline

• Warm-up: One-time truth tables (2PC, passive security)

• MPC for arithmetic circuits (passive “GMW protocol”)

• Active security with information-theoretic MACs
Pairwise MACs (“BDOZ” or “TinyOT” style)
Global MACs (“SPDZ” style)

Peter Scholl 3

Secure Multi-Party Computation

a b

c d

Goal: Compute f(a,b,c,d)

4Peter Scholl

MPC should be as good as using a trusted
third party

a b

c d

f(a,b,c,d)

5Peter Scholl

Trusted
third party

MPC in the preprocessing model

Peter Scholl 6

Preprocessing

• Sample 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛
Online

• Preprocessing can be done in advance, before inputs known

• Online phase:
• After inputs are known
• Lightweight: only constant factor slower than plaintext, in some

cases

𝑅𝑅1 𝑅𝑅2

𝑅𝑅3 𝑅𝑅4

Where does the preprocessing come from?

• This talk: imagine a “trusted dealer”

• In practice:
Use a protocol based on e.g. OT or HE (more on Weds.)

Non-colluding 3rd party

Trusted hardware device

Peter Scholl 7

Warm-up: One time truth table protocol

• 2-PC for any function

• Very simple, but inefficient

• Note: can be extended to MPC and active security

Peter Scholl 8

[Ishai Kushilevitz Meldgaard Orlandi Paskin, TCC 13]

One time truth table protocol

1) Take the truth-table of function 𝑓𝑓: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1
2) Pick random shifts (𝑟𝑟, 𝑠𝑠) and rotate rows/columns

Peter Scholl 9

0 1 2 3

0 1 0 1 1

1 0 0 1 0

2 1 1 0 1

3 1 0 0 1

𝑠𝑠 = 1

𝑟𝑟 = 3

One time truth table protocol

3) Secret share the permuted truth table:
Sample random:

Set

Peter Scholl 10

𝑀𝑀𝐴𝐴𝑀𝑀𝐵𝐵 = ⊕

0 1 2 3
0 1 0 1 1
1 0 0 1 0
2 1 1 0 1
3 1 0 0 1

𝑀𝑀𝐴𝐴

One time truth table protocol

Peter Scholl 11

Preprocessing 𝑀𝑀𝐵𝐵, 𝑠𝑠𝑀𝑀𝐴𝐴, 𝑟𝑟

𝑢𝑢 = 𝑥𝑥 + 𝑟𝑟 mod 2𝑛𝑛

𝑣𝑣 = 𝑦𝑦 + 𝑠𝑠

Output 𝑀𝑀𝑎𝑎 𝑢𝑢, 𝑣𝑣 ⊕𝑀𝑀𝐵𝐵[𝑢𝑢, 𝑣𝑣]

𝑀𝑀𝐵𝐵[𝑢𝑢, 𝑣𝑣]

Correctness: from
preprocessing

Privacy: one-time pad

Input 𝑥𝑥 Input y

Summary: one-time truth table

• Optimal communication (|x| + |y|)

• Exponential storage (22𝑛𝑛 bits)

• Still useful for small tables
E.g. as a building block in larger computations
“TinyTable” [DNNR16]

Peter Scholl 12

• Warm-up: One-time truth tables (2PC, passive security)

• MPC for arithmetic circuits (passive “GMW protocol”)

• Active security with information-theoretic MACs
Pairwise MACs (“BDOZ” or “TinyOT” style)
Global MACs (“SPDZ” style)

Peter Scholl 13

Securely computing arithmetic circuits

Peter Scholl 14

• Addition and multiplication
gates (over finite field 𝑭𝑭)

• Input + output wires

Main invariant throughout the protocol

• For each wire, with value 𝑥𝑥, we have:

 𝑥𝑥 ≔ (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

𝑥𝑥 = 𝑥𝑥1 + ⋯+ 𝑥𝑥𝑛𝑛

Party 𝑃𝑃𝑖𝑖 holds 𝑥𝑥𝑖𝑖 ∈ 𝐹𝐹

Peter Scholl 15

Basic operations on ⋅ -shared values

• Input 𝑥𝑥 from 𝑃𝑃_𝑖𝑖
𝑃𝑃𝑖𝑖 privately sends random 𝑥𝑥𝑗𝑗 ∈ 𝐹𝐹 to every other 𝑃𝑃𝑗𝑗
𝑃𝑃𝑖𝑖 sets 𝑥𝑥𝑖𝑖 = 𝑥𝑥 − ∑𝑗𝑗≠𝑖𝑖 𝑥𝑥𝑗𝑗

• Open [𝑥𝑥]
Each 𝑃𝑃𝑖𝑖 sends 𝑥𝑥𝑖𝑖
Recover 𝑥𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖

Peter Scholl 16

Basic operations on ⋅ -shared values

• Linear operation 𝑧𝑧 ≔ 𝑎𝑎 𝑥𝑥 + 𝑏𝑏[𝑦𝑦]
𝑃𝑃𝑖𝑖 computes 𝑧𝑧𝑖𝑖 = 𝑎𝑎 ⋅ 𝑥𝑥𝑖𝑖 + 𝑏𝑏 ⋅ 𝑦𝑦𝑖𝑖

• Add constant 𝑧𝑧 : = 𝑥𝑥 + 𝑐𝑐
𝑃𝑃1 computes 𝑧𝑧1 = 𝑥𝑥1 + 𝑐𝑐
All other parties let 𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖

• N.B. these require no communication

Peter Scholl 17

Multiplication of [𝑥𝑥] and [𝑦𝑦]

• Want shares of 𝑧𝑧 = 𝑥𝑥 ⋅ 𝑦𝑦
• Observe:

𝑥𝑥 ⋅ 𝑦𝑦 = 𝑥𝑥 + 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑦𝑦 + 𝑏𝑏 − 𝑏𝑏
= 𝑥𝑥 + 𝑎𝑎 ⋅ 𝑦𝑦 + 𝑏𝑏 − 𝑥𝑥 + 𝑎𝑎 ⋅ 𝑏𝑏 − 𝑎𝑎 ⋅ 𝑦𝑦 + 𝑏𝑏 + 𝑎𝑎 ⋅ 𝑏𝑏

Peter Scholl 18

preprocessedopened

Multiplication of [𝑥𝑥] and [𝑦𝑦]

• Take random, preprocessed triple 𝑎𝑎 , 𝑏𝑏 , [𝑎𝑎 ⋅ 𝑏𝑏]

• Open 𝑑𝑑 = 𝑥𝑥 + 𝑎𝑎 and 𝑒𝑒 = 𝑦𝑦 + 𝑏𝑏

• Compute
𝑧𝑧 = 𝑑𝑑 ⋅ 𝑒𝑒 − 𝑑𝑑 ⋅ 𝑏𝑏 − 𝑒𝑒 ⋅ 𝑎𝑎 + 𝑎𝑎 ⋅ 𝑏𝑏

= [𝑥𝑥 ⋅ 𝑦𝑦]

Peter Scholl 19

• Warm-up: One-time truth tables (2PC, passive)

• MPC for arithmetic circuits (passive “GMW protocol”)

• Active security with information-theoretic MACs
Pairwise MACs (“BDOZ” or “TinyOT” style)
Global MACs (“SPDZ” style)

Peter Scholl 20

What about active security?

• Problem: additive secret sharing is not enough
Corrupt 𝑃𝑃𝑖𝑖 can send 𝑥𝑥𝑖𝑖 + 𝑒𝑒 during Open
Parties reconstruct 𝑥𝑥 + 𝑒𝑒
⇒ breaks correctness

• Solution: use information-theoretic MACs
Approach 1: MAC the shares (as in BDOZ or TinyOT)
Approach 2: share the MACs (as in SPDZ)

Peter Scholl 21

Approach 1: MAC the shares

• MAC 𝑥𝑥 = 𝛼𝛼 ⋅ 𝑥𝑥 + 𝛽𝛽 in 𝐹𝐹
Random keys 𝛼𝛼,𝛽𝛽 ∈ 𝐹𝐹
Fixed 𝛼𝛼, fresh 𝛽𝛽 for each MAC

• Given (𝑥𝑥, MAC(𝑥𝑥)), coming up with a MAC on 𝑥𝑥′ ≠ 𝑥𝑥
requires guessing 𝛼𝛼

• MACs are linear
⇒ can still do linear operations for free

Peter Scholl 22

hides 𝑥𝑥prevents forgery

Approach 1: MAC the shares

• MAC each 𝑥𝑥𝑖𝑖 using a key held by 𝑃𝑃𝑗𝑗:
𝑃𝑃𝑖𝑖 gets 𝑥𝑥𝑖𝑖 and 𝑀𝑀𝑗𝑗[𝑥𝑥𝑖𝑖] = MAC(𝐾𝐾𝑗𝑗[𝑥𝑥𝑖𝑖], 𝑥𝑥𝑖𝑖)
𝑃𝑃𝑗𝑗 gets 𝐾𝐾𝑗𝑗[𝑥𝑥𝑖𝑖] = (𝛼𝛼𝑗𝑗 ,𝛽𝛽𝑗𝑗 𝑥𝑥𝑖𝑖)

• Modify preprocessing:
MAC the triple shares
Extra random MAC’d shares, for Input phase

• Check MACs when opening:
Send 𝑥𝑥𝑖𝑖 and 𝑀𝑀𝑗𝑗 𝑥𝑥𝑖𝑖 to each 𝑃𝑃𝑗𝑗 to check

Peter Scholl 23

Approach 1: MAC the shares

• Problem: expensive!
𝑂𝑂(𝑛𝑛2) MACs for every 𝑥𝑥

Communication and storage now 𝑂𝑂(𝑛𝑛2) per gate

• Solution: coming up

Peter Scholl 24

Approach 2: share the MACs

• MAC the value 𝑥𝑥, not the share
MAC 𝑥𝑥 = 𝛼𝛼 ⋅ 𝑥𝑥

• Secret-share the MAC and key 𝛼𝛼:

𝑥𝑥 ≔ (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝑚𝑚1, … ,𝑚𝑚𝑛𝑛)

 x = ∑𝑥𝑥𝑖𝑖 , MAC 𝑥𝑥 = ∑𝑚𝑚𝑖𝑖 = 𝛼𝛼 ⋅ 𝑥𝑥
 𝑃𝑃𝑖𝑖 has (𝑥𝑥𝑖𝑖 ,𝑚𝑚𝑖𝑖)

Peter Scholl 25

No 𝛽𝛽

Approach 2: share the MACs

𝑥𝑥 ≔ (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝑚𝑚1, … ,𝑚𝑚𝑛𝑛)

x = ∑𝑥𝑥𝑖𝑖 , MAC 𝑥𝑥 = ∑𝑚𝑚𝑖𝑖 = 𝛼𝛼 ⋅ 𝑥𝑥

Challenge: how to check the MAC without revealing 𝛼𝛼?
• Parties open 𝑥𝑥′ = 𝑥𝑥 + 𝑒𝑒
• 𝑃𝑃𝑖𝑖 commits to 𝑑𝑑𝑖𝑖 = 𝛼𝛼𝑖𝑖 ⋅ 𝑥𝑥′ − 𝑚𝑚𝑖𝑖
Note: 𝑑𝑑1 + ⋯+ 𝑑𝑑𝑛𝑛 = 𝛼𝛼 ⋅ 𝑥𝑥′ − MAC(𝑥𝑥)

• Open 𝑑𝑑𝑖𝑖 and check they sum to 0
Peter Scholl 26

= 𝛼𝛼 ⋅ 𝑒𝑒

If 𝑒𝑒 ≠ 0, have to
guess 𝛼𝛼 to pass

MAC the shares vs share the MACs

• Storage: 𝑂𝑂(𝑛𝑛2) vs 𝑂𝑂(𝑛𝑛)

• Computation:* 𝑂𝑂(𝑛𝑛2) vs 𝑂𝑂 𝑛𝑛

• Communication:* 𝑂𝑂(𝑛𝑛2) vs 𝑂𝑂 𝑛𝑛
(all parties, per gate)

• MAC check: 1 round vs 3 rounds

* Assuming delayed batch verification of MACs

Peter Scholl 27

[BDOZ 11, NNOB 12] [DPSZ 12, DKLPSS 13]

Further reading

• General resources: lecture notes, books etc.
https://github.com/rdragos/awesome-mpc

• One-time truth tables:
On the Power of Correlated Randomness in Secure Computation – Ishai,

Kushilevitz, Meldgaard, Orlandi, Paskin (TCC 2013)
https://link.springer.com/chapter/10.1007/978-3-642-36594-2_34
Gate-scrambling Revisited - or: The TinyTable protocol for 2-Party Secure

Computation – Damgård, Nielsen, Nielsen, Ranellucci
https://ia.cr/2016/695

Peter Scholl 28

https://github.com/rdragos/awesome-mpc
https://link.springer.com/chapter/10.1007/978-3-642-36594-2_34
https://ia.cr/2016/695

Further reading

• Ciruit-based MPC and active security:
“TinyOT”: A New Approach to Practical Active-Secure Two-Party Computation -

Nielsen, Nordholt, Orlandi, Burra (Crypto 2012)
https://ia.cr/2011/091
“BeDOZa”: Semi-Homomorphic Encryption and Multiparty Computation – Bendlin,

Damgård, Orlandi, Zakarias (Eurocrypt 2011)
https://ia.cr/2010/514
“SPDZ”:

 Multiparty Computation from Somewhat Homomorphic Encryption – Damgård, Pastro, Smart,
Zakarias (Crypto 2012)

 Practical Covertly Secure MPC for Dishonest Majority – or: Breaking the SPDZ Limits -
Damgård, Keller, Larraia, Pastro, Scholl, Smart (ESORICS 2013)

https://ia.cr/2011/535 https://ia.cr/2012/642

Peter Scholl 29

https://ia.cr/2011/091
https://ia.cr/2010/514
https://ia.cr/2011/535
https://ia.cr/2012/642

	MPC in the Preprocessing Model�A Brief Tutorial
	Background: dishonest majority MPC
	Outline
	Secure Multi-Party Computation
	MPC should be as good as using a trusted third party
	MPC in the preprocessing model
	Where does the preprocessing come from?
	Warm-up: One time truth table protocol
	One time truth table protocol
	One time truth table protocol
	One time truth table protocol
	Summary: one-time truth table
	Slide Number 13
	Securely computing arithmetic circuits
	Main invariant throughout the protocol
	Basic operations on ⋅ -shared values
	Basic operations on ⋅ -shared values
	Multiplication of [𝑥] and [𝑦]
	Multiplication of [𝑥] and [𝑦]
	Slide Number 20
	What about active security?
	Approach 1: MAC the shares
	Approach 1: MAC the shares
	Approach 1: MAC the shares
	Approach 2: share the MACs
	Approach 2: share the MACs
	MAC the shares vs share the MACs
	Further reading
	Further reading

