
Fault-tolerant Distributed Consensus

Ashish Choudhury

International Institute of Information Technology (IIIT) Bangalore

(Slides courtesy : former student B. Laasya)

Roadmap

❑ Part I : Byzantine agreement

❖ Problem definition and practical applications

❖ Known results

❑ Part II : Randomized Byzantine agreement

❖ Framework of Rabin and BenOr

❖ Instantiating the framework using verifiable secret-sharing (VSS)

PART I

Byzantine Generals Problem
Leslie Lamport, Robert E. Shostak, Marshall C. Pease: The Byzantine Generals Problem. ACM

Trans. Program. Lang. Syst. 4(3): 382-401 (1982)

❑ Each general has a secret plan (bit):
retreat (0) or attack (1)

❖Up to 𝑡 generals may be traitor

❑ Goal: to come up with a common
action plan for the honest generals

❖Should be equal to the action plan
of the honest generals if they all
had the same individual action plan

𝐺1

𝐺2

𝐺3

𝐺4
❑ 𝑛 generals, connected by pair-wise

private, authentic channel𝑏4

𝑏3

𝑏2

𝑏1

Byzantine Generals Problem : CS Abstraction

𝑚4

𝑚3

𝑚2

𝑚1

𝑚2𝑚1 𝑚3 𝑚4 𝑚𝑛−1 𝑚𝑛…

𝑚𝑚 𝑚3 𝑚 𝑚𝑛−1 𝑚…

𝑚

𝑚

Agreement

Validity

❑ 𝑛 mutually-distrusting parties

❑ Up to 𝑡 corruptions

❑ Goal: to design a distributed protocol,
allowing the honest parties to agree on a
common output

Byzantine Agreement Problem : Applications
❑ Secure multi-party computation (MPC) protocols

❑ State-machine replication / distributed databases

𝐷

𝐷

𝐷

𝐷

Dynamic distributed database

𝑡𝑥1
(multicast)

𝑡𝑥2
(multicast)

𝑡𝑥3

(multicast)

𝐷1

𝐷4

𝐷3

𝐷2

BA protocol

𝐷′

𝐷′

𝐷′

Updated database

The Landscape (Vishwaroopam) of BA Problem
𝑚4

𝑚3

𝑚2

𝑚1 BA protocol

❑ Widely-studied by both the distributed-
computing, as well as CRYPTO community

❖ JACM

❖ PODC

❖ STOC

❖ FOCS

Some of the widely-studied settings

❖ DISTRIBUTED COMPUTING

❖ DISC

Level of synchronization

❖ Completely synchronous

❖ Partially synchronous

❖ Completely asynchronous

Type of faults

❖ Crash

❖ Malicious
(Byzantine)

Setup available

❖ PKI setup

❖ No setup

Type of channels

❖ Private-and-authentic

❖ Authentic

D
ifficu

lty level

Known Results in the Synchronous Setting
❑ Synchronous communication model: parties synchronized by a global clock

❖ Protocol operates as a sequence of communication rounds : sequence
of compute-send-receive

❖ Channels have a fixed known delay, say ∆

❖ An expected message not arriving within time ∆⇒ corrupt sender

𝑚

❑ BA (with or without any setup) tolerating 𝑡 Byzantine faults
possible only if 𝑡 < Τ𝑛 2

❑ If a PKI setup is available, then BA possible with 𝑡 < Τ𝑛 2

[D. Dolev and H. Strong, Siam Journal of Computing 1983]

❑With no setup, BA possible if and only if 𝑡 < Τ𝑛 3 [L. Lamport, R. E.
Shostak and M. C. Pease, ACM Trans. Program. Lang. Syst. 1982]

❖ Presented inefficient protocols

❖ Efficient protocols: [P. Berman, J. A. Garay and K. J.Perry, FOCS 1989], [J. A. Garay and Y. Moses, STOC 1993]

More Practical Setting: Asynchronous Model
Asynchronous Network

◼ No Global Clock

◼ Channels unbounded delay

◼ Waiting time is not known

𝑚

Wait to
receive 𝑚

How long??

No distinction between a slow (but
honest) sender and a corrupt sender

…

𝑚1

𝑚2

𝑚𝑛

𝑛
p

ar
ti

e
s

◼ Waiting for all
results in endless
waiting!

◼ Can afford to wait
for (𝑛 − 𝑡) parties

◼ But this can lead to ignoring
messages of 𝑡 potentially
honest parties

In the asynchronous setting, the
network itself is the adversary

BA Problem in the Asynchronous Setting : ABA
𝑚4

𝑚3

𝑚2

𝑚1

𝑚2𝑚1 𝑚3 𝑚4 𝑚𝑛−1 𝑚𝑛…

𝑚𝑚 𝑚3 𝑚 𝑚𝑛−1 𝑚…

𝑚

𝑚

Agreement

Validity

Termination

❑ 𝑛 mutually-distrusting parties, up to 𝑡 corruptions

❑ Completely asynchronous network

❑ Goal: to design a distributed protocol, allowing
the honest parties to agree on a common output

If all honest parties participate in the protocol, then all honest
parties eventually terminate the protocol with an output

ABA Problem : Known Results

❑ ABA tolerating 𝑡 Byzantine faults possible only if 𝑡 < Τ𝑛 3

❖ Holds, even if a PKI setup is available and parties are
allowed to use cryptography

❖ In the synchronous setting, using cryptography
increases the resilience from 𝑡 < Τ𝑛 3 to 𝑡 < Τ𝑛 2 ABA: with or without

cryptography
BA: without

cryptography
BA: with

cryptography

𝑡 < Τ𝑛 3 𝑡 < Τ𝑛 3 𝑡 < Τ𝑛 2

❑ FLP Impossibility results for ABA: Don’t even dare to design a deterministic ABA protocol

Any deterministic ABA
protocol will have non-
terminating runs, even

if one party crashes
[M. J. Fischer, N. A. Lynch and M. S. Paterson, JACM 1985]

ABA

How to Circumvent FLP Impossibility Result ?

❑ Does FLP impossibility result mean the end of ABA ?

[M. J. Fischer, N. A. Lynch and M. S. Paterson, JACM 1985]: any deterministic ABA protocol
will have non-terminating runs, even if one party crashes

❖ No

❑ A common approach to circumvent FLP impossibility result --- “embrace” randomness

[M. Ben-Or, PODC 1983] [M. Rabin, FOCS 1983]

❖ (𝟏 − 𝝀)-terminating ABA: honest parties
terminate, with probability 1 − 𝜆

❖ Almost-surely terminating ABA: honest
parties terminate, with probability 1

Almost-surely vs (1 − 𝜆)-terminating

❖ Probability that loop does not terminate

after 𝑘 iterations : (
1

2
)𝑘

Do
{
𝑏 ⟵ Coin-Toss();

} while (𝑏 = 0)

❖ Probability that loop terminates after 𝑘

iterations : 1 − (
1

2
)𝑘

❖ Probability that loop eventually terminates:

lim
𝑘→∞

1 − (
1

2
)𝑘 = 1

❖ Expected number of iterations:

෍

𝑘=1

∞

𝑘 ∙
1

2

𝑘

= 2

Do
{
𝑏 ⟵ Coin-Toss();
Wait for event 𝑬 to occur;

} while (𝑏 = 0)

❖ Conditioned on the event that event 𝑬 occurs
in each iteration, the loop eventually
terminates, with probability 1

❖ Conditioned on the event that event 𝐸
occurs in each iteration, the expected
number of iterations is 2

❖ If event 𝑬 does not occur in some
iteration, then the loop never
terminates, even if 𝑏 = 1

Necessity of 𝑡 < 𝑛/3 for Asynchronous BA
❑ Goals of an ABA protocol (apart from termination):

❖ Validity

❖ Agreement

❑ Theorem: ABA possible only if 𝒕 <
𝒏

𝟑

❖ Proof by contradiction

❖ Let ∏ be an ABA protocol with 𝑛 = 3𝑡

❑ Consider the following executions of ∏

𝑃1

𝐶1

𝑃2 𝑃𝑡

𝑃𝑡+1

𝐶2

𝑃𝑡+2 𝑃2𝑡 𝑃2𝑡+1

𝐶3

𝑃2𝑡+2 𝑃3𝑡

𝑃1

𝐶1

𝑃2 𝑃𝑡

𝑃𝑡+1

𝐶2

𝑃𝑡+2 𝑃2𝑡 𝑃2𝑡+1

𝐶3

𝑃2𝑡+2 𝑃3𝑡

𝑃1

𝐶1

𝑃2 𝑃𝑡

𝑃𝑡+1

𝐶2

𝑃𝑡+2 𝑃2𝑡 𝑃2𝑡+1

𝐶3

𝑃2𝑡+2 𝑃3𝑡

(𝟎)

(𝟎)

❑ Parties in 𝐶2 output 𝟎

(𝟏)

(𝟏)

❑ Parties in 𝐶3 output 𝟏

(𝟎)

(𝟎)

(𝟏)

(𝟏)

❑ Parties in 𝐶2 output 𝟎

❑ Parties in 𝐶3 output 𝟏

No
agreement

From Bit BA (ABA) to BA (ABA) for Any Domain

𝑏4

𝑏3

𝑏2

𝑏1

Each 𝑏𝑖 ∈ {0, 1}

Bit BA (ABA)

𝑚4

𝑚3

𝑚2

𝑚1

Each 𝑚𝑖 ∈ 𝒟 = {0, 1}ℓ

BA (ABA) for any domain

Domain

extension

[R. Turpin and B. A. Coan, IPL 1984] [M. Fitzi and M. Hirt, PODC 2006] [A. Patra, OPODIS 2011]

[M. Hirt and P. Raykov, ASIACRYPT 2014] [C. Ganesh and A. Patra, PODC 2016]

[A. Choudhury, ICDCN 2017]

Roadmap

❑ Part I : Byzantine agreement

❖ Problem definition and practical applications

❖ Known results

❑ Part II : Randomized Byzantine agreement

❖ Framework of Rabin and BenOr

❖ Instantiating common-coin using verifiable secret-sharing (VSS)

PART II

Common Framework for Randomized BA (Rabin, Ben-Or)

Vote
…
…
…

…

𝑏1

𝑏2
𝑏𝑖

𝑏𝑗

Common-ness: with probability 𝑝𝑏,
the bit for all honest parties will be 𝑏

If 𝒑𝟎 and 𝒑𝟏 are constant, then expected constant number of
iterations of Vote + CC → ABA

𝑏𝑛

𝑏2

𝑏1

𝑏, 𝑔𝑟𝑎𝑑𝑒

𝑔𝑟𝑎𝑑𝑒 ∈ {Sure, Not Sure, No
Idea!}

𝟑 𝒓𝒐𝒖𝒏𝒅𝒔

(𝑝0, 𝑝1)-CC

“whatever can be done deterministically”

Vote

𝑏𝑛

𝑏1, … , 𝑏𝑛:
random bits

Vote
…
…
…

𝑏𝑛

𝑏2

𝑏1

𝑏, 𝑔𝑟𝑎𝑑𝑒
𝟑 𝒓𝒐𝒖𝒏𝒅𝒔

𝑔𝑟𝑎𝑑𝑒 ∈ {Sure, Not
Sure, No Idea!}

(Asynchronous) Vote Protocol
❑ A deterministic protocol, with 3 rounds of asynchronous communication

❑ Properties

❖ All honest parties same input bit 𝒃 ⇒ all honest
parties output 𝑏, Sure

Overwhelming majority for bit 𝑏

❖ If some honest party outputs 𝒃, Sure ⇒ every other
honest party outputs either 𝑏, Sure or 𝑏,Not Sure Distinct majority for bit 𝑏

❖ If some honest party outputs 𝑏,Not Sure AND no
honest party has output 𝑏, Sure ⇒ every other honest
party outputs either 𝑏, Not Sure or ⊥,No Idea!

Non-distinct majority for bit 𝑏

Overwhelming
Majority for 0

Distinct
Majority
for 0

Distinct
Majority
for 1

Overwhelming
Majority for 1

Non-
Distinct
Majority

Sure
SureNot Sure Not SureNo Idea!

0 1Choose 0 Prefer 0 Prefer 1 Choose 1?

Output 0 Output 1Output ⊥

Vote + CC ⇒ Randomized BA

…

𝑏2𝑏1 𝑏3 𝑏4 𝑏𝑛−1 𝑏𝑛

𝑏𝑏 ⊥ 𝑏 ⊥ 𝑏…

…

Vote
Let output be b for
some parties and
for others.

𝑏𝑏 𝑟 𝑏 𝑟 𝑏…

Call CC-TTP
Let output be r.

⊥

Iteration

If 𝒓 ≠ 𝒃?If 𝒓 = 𝒃?

Similar to the
current iteration

Special case.
ABA will terminate.

…

𝑟1

𝑟2
𝑟𝑖

𝑟𝑗

(𝑝0, 𝑝1)-CC

𝑟𝑛

How to emulate
trusted guruji ?

❑ CC emulated by running a protocol

❖ (𝟏 − 𝝀)-terminating CC ⇒
(𝟏 − 𝝀)-terminating ABA

❖ always-terminating CC ⇒
almost-surely terminating ABA

Tools Deployed for Instantiating CC
❑ Asynchronous reliable broadcast:

𝑃1

❑ 𝑛 mutually-distrusting parties

❑ Up to 𝑡 corruptions (potentially including 𝑺)

𝑃2 𝑃𝑖 𝑃𝑛

𝑆 𝑚

❑ Termination:

❖ Honest 𝑆 ⇒ all honest parties eventually
terminate

❖ Some honest 𝑃𝑖 terminates ⇒ all honest
parties eventually terminate

❑ Agreement:

❖ All honest parties upon terminating output
𝑚⋆, where 𝑚⋆ = 𝑚, if 𝑆 is honest

❑ [Bracha, PODC 1984]: asynchronous broadcast protocol with 𝑛 = 3𝑡 + 1

Tools Deployed for Instantiating CC
❑ Asynchronous Verifiable Secret Sharing (AVSS): a pair of protocols (Sh, Rec)

𝐷

𝑠

𝑠1 𝑠𝑖 𝑠𝑛

❑ 𝑛 mutually-distrusting parties ❑ Up to 𝑡 corruptions (potentially including 𝑫)

❑ During Sh, an unknown secret 𝑠 is shared ❑ During Rec, shared secret publicly reconstructed

❑ Termination:

❖ Honest 𝐷 ⇒ honest parties eventually terminate Sh

❖ Some honest 𝑷𝒊 terminates Sh⇒ all honest parties eventually terminate Sh

❖ Honest parties participate in Rec ⇒ all honest parties eventually terminate Rec

❑ Correctness: if Sh terminates, then 𝐷 has shared some secret 𝑠⋆and later only 𝑠⋆is
reconstructed during Rec

❑ Privacy: Honest 𝐷 ⇒ secret 𝑠 is hidden till Rec

𝑃1 𝑃𝑖 𝑃𝑛

𝑠𝑠

𝑠1 𝑠𝑖 𝑠𝑛

--- 𝑠⋆ = 𝑠 holds for an honest 𝑫

Instantiating CC Using AVSS (Sh, Rec)
❑ Each 𝑃𝑖 shares a random and private element 𝑠𝑖𝑗 ∈ 𝔽 on the behalf of 𝑃𝑗 --- sharing instance Sh𝑖𝑗

𝑃1 𝑠11

𝑃𝑖

𝑃𝑛

𝑠𝑖1

𝑠𝑛1

⋯
List 𝐶𝑗

𝑃1

𝑠1𝑗

𝑠𝑖𝑗

𝑠𝑛𝑗

𝑃𝑗

𝑠1𝑛

𝑠𝑖𝑛

𝑠𝑛𝑛

𝑃𝑛

❑ Each 𝑃𝑗 publicly announces a set 𝐶𝑗 of 𝑡 + 1 dealers from its dealer list, after terminating their Sh𝑖𝑗 instances

❖ Parties verify if 𝐶𝑗 is a valid list by themselves waiting to terminate those Sh𝑖𝑗 instances

❑ Claim: a valid 𝐶𝑗 defines a random and

unknown value coin𝑗 ∈ 𝔽 with 𝑃𝑗

𝑃1 𝑃𝑖 𝑃𝑘

𝑠1𝑗 𝑠𝑖𝑗 𝑠𝑘𝑗+ + = coin𝑗

coin𝑗 ≝ ෍

𝑃𝑖 ∈ 𝐶𝑗

𝑠𝑖𝑗

Instantiating CC Using AVSS (Sh, Rec)
❑ Each 𝑃𝑖 interacts and maintains a list of valid unknown coin values 𝒮𝑖, such that:

coin𝑝𝐶𝑝

𝑃𝑖

coin𝑞𝐶𝑞 coin𝑟𝐶𝑟

𝒮𝑖 = {𝐶𝑝, 𝐶𝑞 , 𝐶𝑟}

coin𝑎𝐶𝑎

𝑃𝑗

coin𝑏𝐶𝑏 coin𝑐𝐶𝑐

𝒮𝑗 = {𝐶𝑎, 𝐶𝑏, 𝐶𝑐}

❖ Eventually each 𝒮𝑖 ≥ 𝑛 − 𝑡

❖ There exists a common (unknown) subset 𝑀 of size at least 𝑛/3 across all 𝒮𝑖 sets

𝒮1 ∩ 𝒮2⋯∩ 𝒮𝑛 ≥ ൗ𝑛 3

❖ The above property is the crux to maintain common-ness property across final outputs

Instantiating CC Using AVSS (Sh, Rec)
❑ Once 𝒮𝑖 is of size 𝑛 − 𝑡, party 𝑃𝑖 publicly announces the same and parties reconstruct the coins in 𝒮𝑖

coin𝑝

𝐶𝑝

𝑃𝑖𝒮𝑖 = {𝐶𝑝, 𝐶𝑞, 𝐶𝑟}

coin𝑞

𝐶𝑞

coin𝑟

𝐶𝑟

❖ The required AVSS-Rec instances are invoked

⋯ 𝐶𝑝

𝑃1 𝑃𝑖 𝑃𝑘 coin𝑝 ≝ ෍

𝑃𝑖 ∈ 𝐶𝑗

𝑠𝑖𝑝

𝑠1𝑝 𝑠𝑖𝑝 𝑠𝑘𝑝 coin𝑝+ + =𝑠1𝑝 𝑠𝑖𝑝 𝑠𝑘𝑝+ + = coin𝑝

❖ Each reconstructed coin-value is reduced modulo 𝑢 ≝ 0.87𝑛

val𝑝 ≝ (coin𝑝 mod 𝑢)

--- Each val𝑝 ∈𝑟 [0,⋯𝑢 − 1]

❑ Deciding final output bit 𝑏𝑖 for party 𝑃𝑖:

𝑏𝑖 = ቊ
0, if some val𝑝=0 in set 𝒮𝑖

1, otherwise

❑ Probability that all honest parties output 𝑏 = 0

❖ Favorable event: some val𝑝 = 0 in the common subset 𝑀

1 − (1 −
1

𝑢
)|𝑀| ≥ 0.25

❑ Probability that all honest parties output 𝑏 = 1

❖ Favorable event: each val𝑝 ≠ 0

(1 −
1

𝑢
)𝑛 ≥ 0.25

Roadmap

❑ Part I : Byzantine agreement

❖ Problem definition and practical applications

❖ Known results

❑ Part II : Randomized Byzantine agreement

❖ Framework of Rabin and BenOr

❖ Instantiating common-coin using verifiable secret-sharing (VSS)

Conclusion

❑ We discussed about asynchronous Byzantine agreement (ABA)

❖ A fundamental problem in secure distributed computing

❑ Plenty of challenging open problems

❖ Stay tuned for my second talk in the workshop

Advertisement : NPTEL MOOC on Cryptography
❑ 12-week (32 hours) online course titled “Foundations of Cryptography”

❖ Jan – May 2020 session

❖ Provision for a certificate from IISc/NPTEL

Week 1: Historical Ciphers, Perfect Security and Limitations
Week 7: Birthday Attacks, Applications of Hash Functions,
Random Oracle Model and Authenticated Encryption

Week 2: Computational Security, Semantic Security and
Pseudorandom Generators (PRGs)

Week 3: Stream Ciphers, Provably-secure Instantiation of
PRG, Practical Instantiation of PRG, CPA-security and
Pseudo-random Functions (PRFs)

Week 4: CPA-Secure Ciphers, Modes of Operations,
Theoretical and practical constructions of Block Ciphers

Week 5: DES, AES and MAC

Week 6: Information-theoretic Secure MAC, Cryptographic
Hash Functions, Ideal-Cipher Model, Davies-Meyer
construction and Merkle-Damgård Paradigm

Week 8: Generic Constructions of Authenticated Encryption
Schemes, Key-exchange Problem, One-way Trapdoor Functions
and Cyclic Groups

Week 9: Discrete-Logarithm Problem, Computational Diffie-
Hellman Problem, Decisional Diffie-Hellman Problem, Elliptic-
Curve Based Cryptography and Public-Key Encryption

Week 10: El Gamal Encryption Scheme, RSA Assumption, RSA
Public-key Cryptosystem, KEM-DEM Paradigm

Week 11: CCA-secure Public-key Hybrid Ciphers Based on Diffie-
Hellman Problems and RSA-assumption, Digital Signatures

Week 12: Schnorr Signature, Overview of TLS/SSL, Number
Theory, Interactive Protocols and Farewell

