Fault-tolerant Distributed Consensus

(Slides courtesy : former student B. Laasya)

Ashish Choudhury
International Institute of Information Technology (llIT) Bangalore

Roadmap

 Part | : Byzantine agreement
** Problem definition and practical applications

** Known results

1 Part Il : Randomized Byzantine agreement
** Framework of Rabin and BenOr

¢ Instantiating the framework using verifiable secret-sharing (VSS)

PART |

Byzantine Generals Problem

Leslie Lamport, Robert E. Shostak, Marshall C. Pease:istrThe Byzantine Generals Problem. ACM
Trans. Program. Lang. Syst. 4(3): 382-401 (1982)

1 n generals, connected by pair-wise
private, authentic channel

1 Each general has a secret plan (bit):

b 5 retreat (0) or attack (1)

* **Up to t generals may be traitor

Gz [Goal: to come up with a common
b action plan for the honest generals

*»*Should be equal to the action plan
of the honest generals if they all
had the same individual action plan

Byzantine Generals Problem : CS Abstraction

o
1 n mutually-distrusting parties
|)

1

m1§@ ‘%B Q Up to t corruptions
o *m J Goal: to design a distributed protocol,
/ 3 allowing the honest parties to agree on a
= common output
=
777,2’@;a

my My Mgz My = My_q My ——=> M Agreement

~
g J

\m m msz3 m - Mu_1 M -+ m Validity

Byzantine Agreement Problem

1 Secure multi-party computation (MPC) protocols

(J State-machine replication / distributed databases

B / \ ”
L2 D, ' =
(multicast) - @‘ proto@ et
\ / D,

s

. ’ tx3 =V
(

multicast)

Dynanmti®daterbdadabsebase

: Applications

4

txq
(multicast)

The Landscape (Vishwaroopam) of BA Problem

Level of synchronization
s Completely synchronous
¢ Partially synchronous

s Completely asynchronous

:{\ﬁ m, 0 Widely-studied by both the distributed-
| / ” computing, as well as CRYPTO community
¢)
o' f = = * JACM
‘\ BA protocol D % PODC < DISTRIBUTED COMPUTING

m
\ = / 3 *+ STOC < DISC
=,

Some of the widely-studied settings

Type of faults Setup available Type of channels

** Crash K ., : '
»* PKIl setup ** Private-and-authentic

% Malicious o
«* No setup . :
(Byzantine) *¢ Authentic

[9A3] A} nd1yi@

Known Results in the Synchronous Setting

(1 Synchronous communication model: parties synchronized by a global clock FARN
¢ Protocol operates as a sequence of communication rounds : sequence g
of compute-send-receive
+** Channels have a fixed known delay, say A '

** An expected message not arriving within time A = corrupt sender

I

U BA (with or without any setup) tolerating t Byzantine faults
possible only if t <™/,

O If a PKI setup is available, then BA possible with t < "/,
[D. Dolev and H. Strong, Siam Journal of Computing 1983]

 With no setup, BA possible if and only if t < /5 [L. Lamport, R. E. p— m._. %%\gg\

Shostak and M. C. Pease, ACM Trans. Program. Lang. Syst. 1982]

s Presented inefficient protocols

¢ Efficient protocols: [P. Berman, J. A. Garay and K. J.Perry, FOCS 1989], [J. A. Garay and Y. Moses, STOC 1993]

More Practical Setting: Asynchronous Model|

Asynchronous Network

= No Global Clock
= Channels unbounded delay
= Waiting time is not known

> \ 4
|

oG

Wait to
receive m

How long??

n parties

A

No distinction between a slow (but
honest) sender and a corrupt sender

= Waiting for all
results in endless
waiting!

s = Can afford to wait
for (n — t) parties

= But this can lead to ignoring
messages of t potentially
honest parties

In the asynchronous setting, the
network itself is the adversary

BA Problem in the Asynchronous Setting : ABA

] ‘\,U

1 n mutually-distrusting parties, up to t corruptions
(d Completely asynchronous network

\ /] Goal: to design a distributed protocol, allowing

the honest parties to agree on a comr;1on OL;tput
my
:ml Mm; Mz My = Mnp—g mn:“'* m
momomy m o mygm e

If all honest parties participate in the protocol, then all honest
parties eventually terminate the protocol with an output

ABA Problem : Known Results

(] ABA tolerating t Byzantine faults possible only if t < ™/,
% Holds, even if a PKI setup is available and parties are t </, t <™y t<n/
allowed to use cryptography ?
** In the synchronous setting, using cryptography

increases the resilience fromt < "*/;tot <™/, ABA: with or without BA- without BA: with

cryptography cryptography cryptography

d FLP Impossibility results for ABA: Don’t even dare to design a deterministic ABA protocol

Any deterministic ABA

protocol will have non-

terminating runs, even
if one party crashes

[M. J. Fischer, N. A. Lynch and M. S. Paterson, JACM 1985]

How to Circumvent FLP Impossibility Result ?

[M. J. Fischer, N. A. Lynch and M. S. Paterson, JACM 1985]: any deterministic ABA protocol
will have non-terminating runs, even if one party crashes

ABA
(d Does FLP impossibility result mean the end of ABA ?

% No

O A common approach to circumvent FLP impossibility result --- “embrace” randomness

[M. Ben-Or, PODC 1983] [M. Rabin, FOCS 1983]

% (1 — A)-terminating ABA: honest parties s Almost-surely terminating ABA: honest
terminate, with probability 1 — A parties terminate, with probability 1

Almost-surely vs (1 — A)-terminating

Do

{
b < Coin-Toss();
} while (b = 0)

» Probability that loop does not terminate
: : 1
after k iterations : (E)k

% Probability that loop terminates after k
: : 1
iterations : 1 — (E)k

lim 1 - () =1

k—o0

» Expected number of iterations:

Z()

** Probability that loop eventually terminates:

Do
{
b < Coin-Toss();
Wait for event E to occur;
} while (b = 0)

** Conditioned on the event that event E occurs
in each iteration, the loop eventually
terminates, with probability 1

+» Conditioned on the event that event E
occurs in each iteration, the expected
number of iterations is 2

+» If event E does not occur in some
iteration, then the loop never
terminates, evenif b = 1

Necessity of t < n/3 for Asynchronous BA

J Goals of an ABA protocol (apart from termination):

s Validity

s Agreement

L Consider the following executions of [

1 Theorem: ABA possible only if t < g
** Proof by contradiction

¢ Let [] be an ABA protocol withn = 3t

Py

%%

/’

V¥

Priq

V¥

t+2 PZt

§ ‘P2t+1 P2t+2 P3t

(D)

C,

O Parties in C, output 0

O Parties in C, output 0

O Parties in C3 output 1

No

agreement

!

‘\

‘Pt+1 Pt+2 Pyt

L Parties in C5 output 1

(1)

From Bit BA (ABA) to BA (ABA) for Any Domain

BA (ABA) for any domain

Domain

extension

Fach b; € {0,1] Each m; € D = {0, 1}/

[R. Turpin and B. A. Coan, IPL 1984] [M. Fitzi and M. Hirt, PODC 2006] [A. Patra, OPODIS 2011]
[M. Hirt and P. Raykov, ASIACRYPT 2014] [C. Ganesh and A. Patra, PODC 2016]

[A. Choudhury, ICDCN 2017]

Roadmap

d Part | : Byzantine agreement

** Problem definition and practical applications

** Known results

1 Part Il : Randomized Byzantine agreement

** Framework of Rabin and BenOr

¢ Instantiating common-coin using verifiable secret-sharing (VSS)

PART I

Common Framework for Randomized BA (Rabin, Ben-Or)

Vote (po, p1)-CC

bl' ver) bn:
random bits

Vote

g (b, grade)

grade € {Sure, Not Sure, No
Idea!}

“whatever can be done deterministically”

Common-ness: with probability py,
the bit for all honest parties will be b

If po and p, are constant, then expected constant number of
iterations of Vote + CC - ABA

(Asynchronous) Vote Protocol

A deterministic protocol, with 3 rounds of asynchronous communication

Not Sure Noldea! Not Sure Sure
b Sure
1 : Distinct Non- Distinct .
\ Vote ngrwhelmlng Majority Distinct Majority Overwhelming
_ . MaJOrlty forO for 0 Majority for 1 I\/Iajority for 1
b, — (b, grade)
\——
[on) / grade € {Sure, Not
N bn Sure, No Idea!} 0 Prefer 0 Choose1 ,
. Output L
O Properties Output 0 Hted Output 1
¢ All honest parties same input bit b = all honest Overwhelming majority for bit b
parties output (b, Sure)

¢ If some honest party outputs (b, Sure) = every other

honest party outputs either (b, Sure) or (b, Not Sure) } Distinct majority for bit b

¢ If some honest party outputs (b, Not Sure) AND no

honest party has output (b, Sure) = every other honest Non-distinct majority for bit b
party outputs either (b, Not Sure) or (L, No Idea!)

Vote + CC = Randomized BA

How to emulate

é@ [.e) _CC
B & 5 6 g\'d V trusted guruiji ? (Po. 1)
[[b1 b, b3 by bp-1 by
Vote
Let output be b for n
some partiesand L G
for others. l;
v
b b 1 b v L b
Call CC-TTP]
Let output ber. L .
b b r b r b —— U CCemulated by running a protocol
7 = b? gl TNa 7 = b? (1 — A)-terminating CC =
. o (1 — A)-terminating ABA
SpeC|a! case. Similar to the
ABA will terminate. current iteration < always-terminating CC =

almost-surely terminating ABA

Tools Deployed for Instantiating CC

J Asynchronous reliable broadcast:

J n mutually-distrusting parties

1 Up to t corruptions (potentially including §)

] Termination:

** Honest S = all honest parties eventually
terminate

¢ Some honest P; terminates = all honest
parties eventually terminate

J Agreement:

+** All honest parties upon terminating output
m*, where m* = m, if S is honest

1 [Bracha, PODC 1984]: asynchronous broadcast protocol withn = 3t + 1

Tools Deployed for Instantiating CC

L Asynchronous Verifiable Secret Sharing (AVSS): a pair of protocols (Sh, Rec)
d n mutually-distrusting parties 1 Up to t corruptions (potentially including D)

 During Sh, an unknown secret s is shared [During Rec, shared secret publicly reconstructed

. (1]
¥
D \))
Pﬁsl Pﬁsi Pﬁsn

] Termination:

Q- edtenastels Sifrsnestraprites enantuniudetmivdtsodhe secret s*and later only s*is

"e§89§érH6Wéiijri9§rﬁﬁﬁéfe§*Sh==3 hplAs ARcepdeREHh Bntually terminate Sh

 Privacy: Honest D = secret s |s hidden thl Rec
1% Honest partles participate in Rec = all honest parties eventually terminate Rec

Instantiating CC Using AVSS (Sh, Rec)

O Each P; shares a random and private element s;; € IF on the behalf of P; --- sharing instance Sh;;

p% P% i P% Claim: a valid C; defines a random and
! J ‘7% n unknown value coin; € F with P;

P1 Pi Pk

¥
| | | | + +

P% Sni Snj (Snn

n coin; = z Sij

P;€eC;j

Skill] = coinjl

-

 Each P; publicly announces a set (; of (t + 1) dealers from its dealer list, after terminating their Sh;; instances

* Parties verify if C; is a valid list by themselves waiting to terminate those Sh;; instances

Instantiating CC Using AVSS (Sh, Rec)

L Each P; interacts and maintains a list of valid unknown coin values §;, such that:

C

DO QG
@% %@ B/

com coing Cr]| coin,

S; = {Cp, Cq, Cr'} Pi%

% Eventually each |§;| = n—t

|51 NSy -

Ca

9 V¥V \U¢Y

coin Cp }| coiny, Cc }| coin,

Si = {Ca) Cp, Cc} pj%

¢ There exists a common (unknown) subset M of size at least n/3 across all S; sets

¢ The above property is the crux to maintain common-ness property across final outputs

Instantiating CC Using AVSS (Sh, Rec)

L Once S; is of size n — t, party P; publicly announces the same and parties reconstruct the coins in §;

** The required AVSS-Rec instances are invoked

%%7 ﬁ?% ?%7?%7
?%7% %%’? %?%?

S; = {cp, Cq Cr) %P (@

% Each reconstructed coin-value is reduced modulo u & 0.87n --- Eachval,

O Deciding final output bit b; for party P;:

>

E

if some val,=0 in set §;

b=
L 1, otherwise

T

(2 =]

CO”H,

Er [0,...

-

coin, = z Sip

] val,, = (coin, mod u)

u— 1]

 Probability that all honest parties output b = (0

¢ Favorable event: ean’mmd}jp Z#=@ in the common subset M

(—15" 2)Bb5 0.25

Roadmap

 Part | : Byzantine agreement

** Problem definition and practical applications

** Known results

 Part Il : Randomized Byzantine agreement

¢ Framework of Rabin and BenOr

** Instantiating common-coin using verifiable secret-sharing (VSS)

Conclusion

1 We discussed about asynchronous Byzantine agreement (ABA)

** A fundamental problem in secure distributed computing

1 Plenty of challenging open problems

¢ Stay tuned for my second talk in the workshop

Advertisement : NPTEL MOOC on Cryptography

1 12-week (32 hours) online course titled “Foundations of Cryptography”

% Jan — May 2020 session

** Provision for a certificate from I1ISc/NPTEL

@‘*’E’
"‘L‘? N7

®NPTEL

J

C

Week 1: Historical Ciphers, Perfect Security and Limitations

Week 2: Computational Security, Semantic Security and
Pseudorandom Generators (PRGs)

Week 3: Stream Ciphers, Provably-secure Instantiation of
PRG, Practical Instantiation of PRG, CPA-security and
Pseudo-random Functions (PRFs)

Week 4: CPA-Secure Ciphers, Modes of Operations,
Theoretical and practical constructions of Block Ciphers
Week 5: DES, AES and MAC

Week 6: Information-theoretic Secure MAC, Cryptographic

Hash Functions, Ideal-Cipher Model, Davies-Meyer
construction and Merkle-Damgard Paradigm

Week 7: Birthday Attacks, Applications of Hash Functions,
Random Oracle Model and Authenticated Encryption

Week 8: Generic Constructions of Authenticated Encryption

Schemes, Key-exchange Problem, One-way Trapdoor Functions
and Cyclic Groups

Week 9: Discrete-Logarithm Problem, Computational Diffie-
Hellman Problem, Decisional Diffie-Hellman Problem, Elliptic-
Curve Based Cryptography and Public-Key Encryption

Week 10: El Gamal Encryption Scheme, RSA Assumption, RSA
Public-key Cryptosystem, KEM-DEM Paradigm

Week 11: CCA-secure Public-key Hybrid Ciphers Based on Diffie-
Hellman Problems and RSA-assumption, Digital Signatures

Week 12: Schnorr Signature, Overview of TLS/SSL, Number
Theory, Interactive Protocols and Farewell

